
Analysis and parallelization

strategies for Ruge-Stüben AMG

on many-core processors

P. Zaspel

Departement Mathematik und Informatik Preprint No. 2017-06
Fachbereich Mathematik June 2017
Universität Basel
CH-4051 Basel www.math.unibas.ch

Journal of Scientific Computing manuscript No.
(will be inserted by the editor)

Analysis and parallelization strategies for

Ruge-Stüben AMG on many-core processors

Peter Zaspel

Received: date / Accepted: date

Abstract The Ruge-Stüben algebraic multigrid method (AMG) is an optimal-
complexity black-box approach to solve linear systems arising in discretizations of
e.g. elliptic PDEs. Recently, there has been a growing interest in parallelizing this
method on many-core hardware, especially graphics processing units (GPUs). This
type of hardware delivers high performance for highly parallel algorithms. In this
work, we analyse convergence properties of recent AMG developments for many-
core processors and propose to use more classical choices of AMG components for
higher robustness. Based on these choices, we introduce many-core parallelization
strategies for a robust hybrid many-core AMG. The strategies can be understood
and applied without deep knowledge of a given many-core architecture. We use
them to propose a new hybrid GPU implementation. The implementation is tested
in an in-depth performance analysis, which outlines its good convergence proper-
ties and high performance in the solve phase.

Keywords Ruge-Stüben algebraic multigrid (AMG) · Graphics processing units
(GPUs) · Parallelization · Many-core · Iterative linear solvers · Graph traversal

Mathematics Subject Classification (2000) 65N55 · 65F10 · 65Y05 ·
68W10 · 65F50 · 65N22

1 Introduction

The solution of sparse linear systems from discretized elliptic partial di�erential
equations (PDEs) is the time-dominant component of many numerical simula-
tions. Iterative solvers based on multigrid methods solve such systems in optimal
(linear) complexity. Standard geometric multigrid often struggles with discretiza-
tions of PDEs in complex geometries. However, algebraic multigrid (AMG) is able

P. Zaspel
Departement für Mathematik und Informatik
Universität Basel
Spiegelgasse 1
4051 Basel, Switzerland
E-mail: peter.zaspel@unibas.ch

2 Peter Zaspel

to handle this special case without further adoptions. AMG builds the multigrid
hierarchy by a purely algebraic construction involving only the entries of the un-
derlying system matrix.

Many-core processors achieve high performance by executing a very high num-
ber of concurrent computational threads. However, they are often limited by a
relatively low per-thread performance and other simplifications. One example of
many-core processors are graphics processing units (GPUs). Another example are
Xeon Phi processors. Nowadays, a series of high performance computing (HPC)
cluster systems is equipped with many-core processors as accelerators. That is,
many-core processors can be used in addition to the existing multi-core processors
in a given compute node. To achieve high performance on many-core processors, it
is necessary to develop numerical algorithms that use the provided rather extreme
amount of parallelism. Here, it is often not enough to reformulate an existing algo-
rithm in a smart way. Instead, the applied numerical method has to be changed to
achieve high (parallel) performance. However, by changing the numerical method,
the solution properties are a�ected. As a rule of thumb, we note that a higher
degree of parallelism in a numerical method is often connected to weaker solution
properties. Hence, we have to make a trade-o� between (parallel) performance and
strong solution properties.

This article analyses this kind of trade-o� in recent work, e.g. [23], on the de-
sign and implementation of Ruge-Stüben algebraic multigrid [31, Appendix A] on
many-core processors. We consider Ruge-Stüben AMG as main object of study,
since it is well-known for its good convergence and robustness. Based on our anal-
ysis, we propose a di�erent balance of algorithmic components and parallel perfor-
mance than used, for many-core processors, before. For a practical realization, we
propose many-core parallelization strategies for major parts of the method. This
leads to a hybrid GPU-based Ruge-Stüben AMG implementation, for which we
analyse the performance.

1.1 Related work

Whenever we discuss algebraic multigrid in this article, we actually refer to Ruge-
Stüben AMG. For completeness, we note however that quite some work on non-
Ruge-Stüben AMG types on many-core processors has been conducted in e.g. [4,
32,10,9,6,21,18] for (smoothed) aggregation AMG and in [34] for auxiliary grid
AMG.

Algebraic multigrid has a setup phase with the multigrid hierarchy construction
and a solve phase with the iterative application of recursive multigrid cycles. The
solve phase is almost identical in geometric and algebraic multigrid. Hence, the
core of AMG lies in the setup phase. Traditionally, the execution of the setup phase
has been considered to be purely sequential [31, Appendix A]. With the need of
parallelization of AMG on multi-core clusters, a parallelization of the setup phase
has been mainly achieved by applying the purely sequential parts of the setup
phase, i.e. the coarsening or C/F splitting, onto partitions of the full system ma-
trix and by adding some corrections at the interface [15,35]. Unfortunately, this
approach does not scale to the degree of parallelism provided by many-core pro-
cessors. In fact, a single many-core processor roughly requires the parallelism that
is normally distributed over a full cluster. This leads to a bad domain-to-interface
ratio when applying the parallelization strategy for multi-core processors to many-

Title Suppressed Due to Excessive Length 3

core processors. One very parallel coarsening approach, which shows acceptable
performance even on many-core processors, is the PMIS (parallel maximum inde-
pendent set) classification [35]. However, PMIS is not always robust. This is often
overcome by some stronger interpolation techniques at higher computational costs
[8]. The choice of suitable algorithmic components in the setup phase is therefore
one of the crucial trade-o�s that has to be made in the construction of AMG on
many-core hardware. These trade-o�s will be discussed in this work.

Maybe the first work on (Ruge-Stüben) AMG for many-core processors has
been performed in [19,14]. In that work, the setup phase is based on matrix de-
composition with boundary treatment. In [16,24], only the solve phase of AMG
was parallelized on GPU and also used in a multi-GPU setting. This approach
might not yet use the full performance of GPUs. More recently, AMG has be-
come available in the open-source libraries ViennaCL [27] and Paralution [17]. In
[33,28], performance results of ViennaCL have been discussed for AMG, however
Ruge-Stüben AMG has still only been considered either with a multi-core CPU
setup or with a single-threaded GPU setup. To the author’s knowledge, details on
the implementation of Paralution are not published. Two current state of the art
commercial many-core (GPU) implementations are GAMPACK [11] and AmgX
[23]. They provide a solve and setup phase that runs fully on GPUs by using
PMIS. In their works [11] and [23], the authors provide an overview of their im-
plementations and some excellent performance results when comparing CPU and
GPU based AMG. To keep their competitive advantage, they can, however, not
uncover the full details of their parallelization approaches. Moreover, their choice
of test cases for convergence results is, understandably enough, targeted mainly
at their customers’ needs.

1.2 Contribution of this work

The objective of this work is two-fold. First, the aim is to complement the above
works by a balanced discussion of the impact of the choice of the numerical compo-
nents of AMG on the robustness and solution properties. To start this discussion,
we introduce the components of AMG. We then discuss choices of AMG compo-
nents that have been made for many-core AMG by authors in the past. Here, we
especially focus on the commercial GPU implementations [11,23] as gold standard.
Within these implementations we closely follow [23] and (numerically) study the
convergence and robustness properties of methods used therein. Our numerical
study uses modified versions of the AMG2013 benchmark, which is a stripped-
down version of BoomerAMG [15] in hypre [12]. Within that study, we propose a
set of parameters and components for AMG that we consider to be more robust
than existing choices in many-core AMG.

Second, the aim is to propose a series of parallelization strategies that allow
to run the major part of the AMG setup phase on many-core processors. This
discussion shall give starters in the field of many-core programming an insight
into the algorithmic challenges that have to be faced when dealing with AMG
on many-core hardware. In order to understand the properties of the proposed
algorithms, an implementation has been performed based on CUDA and a sparse
linear algebra library for GPUs (CUSP [5]). This implementation is hybrid in the
sense that the full solve phase and almost the full setup phase is done on GPU.
The only part, which is left on CPU is a subset of the operations in the C/F

4 Peter Zaspel

splitting. The new AMG solver runs on a single GPU together with one CPU
core. As we will see, the resulting AMG implementation has strong convergence
and robustness properties. A performance study will outline that the solve phase
of our AMG runs clearly faster than a parallel version of AMG2013. However, the
hybrid GPU setup phase struggles in competing with AMG2013. Those di�culties
will be analyzed and explained individually. Finally, a real-world application with
linear systems from a discretized PDE in a complex geometry will be shown.

This work is structured as follows. In Section 2, we review Ruge-Stüben AMG.
Section 3 analyses the convergence and robustness properties of typical AMG con-
structions in GPU-based AMG. Section 4 introduces parallelization strategies for a
robust hybrid many-core AMG and briefly discusses our concrete GPU implemen-
tation. Numerical results and performance measurements of our implementation
are outlined in Section 5. Section 6 summarizes the outcome of this work.

2 Overview of the components of Ruge-Stüben algebraic multigrid

We will closely follow [31, Appendix A] to give a short overview of Ruge-Stüben
AMG. Notation from [31] will be partially adapted. We want to solve linear systems

Ax = b (1)

with A � RN�N a sparse symmetric M-matrix, and x,b � RN . These linear
systems arise e.g. in the approximate solution of elliptic PDEs by finite di�erences.
In the following, will first discuss the two-level idea of multigrid and then the
multigrid algorithm. This is followed by a summary of all algorithmically important
components of AMG, namely C/F splitting, interpolation and smoothers.

2.1 Two-level idea

The two-level or two-grid algorithm contains all important properties of multigrid.
To explain it, we start by identifying the original linear system as system on a fine
level or fine grid, noting that we will use the terms grid and level equivalently. On
the fine grid, we thus have

Afxf = bf �
�

j��f

af
ijx

f
j = bf

i �i � �f ,

with Nf := N , Af := A, xf := x, bf := b and �f := {1, . . . , Nf}. Next, we
introduce the smoother Sf � RNf �Nf . Starting from an approximation Pf � A�1

f
to the inverse of the system matrix, it is defined as

Sf := (If � PfAf) .

If is the identity matrix. One step of the smoother generates from xf a smoothed
vector x̄f with

x̄f := Sfxf + (If � Sf)A�1
f bf . (2)

The smoother has a structure, which avoids to invert the system matrix. It shall
damp the highly oscillatory modes in the error ef = xf � A�1

f bf . Examples for
smoothers, i.e. concrete choices for Pf , will be given in Section 2.5.

Title Suppressed Due to Excessive Length 5

Having damped highly oscillatory error modes on the fine level by the pre-
smoother, the idea of the two-level method is to construct a coarse level or coarse
grid on which the remaining low error modes are damped. The coarse level is
constructed by introducing a splitting �f = C ·�F , the C/F splitting, into coarse
and fine grid variables. Fine grid variables will be kept on the next level, while the
information of all variables will be transferred from coarse to fine grid by transfer
operators. The linear system that is solved on the fine grid is given as

Acx
c = bc �

�

j��c

ac
ijx

c
j = bc

i �i � �c , (3)

with the obvious choice of �c := C such that that Ac � RNc�Nc , xc,bc � RNc ,
Nc := |C|. The above equation is coupled to the fine grid problem by restricting the
residual rf = bf �Af x̄ on the fine level to the coarse grid and by using it as right-
hand side. To transfer solutions from fine to coarse level, a restriction operator
Ic
f � RNc�Nf is introduced. The opposite mapping is done by an interpolation or

prolongation operator If
c � RNf �Nc . Together, they define the coarse grid system

matrix
Ac := Ic

fAfIf
c ,

which we call the Galerkin operator. We usually set the interpolation matrix as
transposed restriction matrix Ic

f := (If
c)�. In a pure two-level method, the coarse-

level problem is solved directly. Its solution is transfered back to the fine grid
by the coarse grid correction xf = x̄ + If

c xc and another post-smoothing step is
applied. Iterating this approach leads to an iterative linear two-level solver.

In AMG, we call the construction of the C/F splitting, the construction of
the prolongation and restriction, the construction of the Galerkin operator and
the construction of the smoother the setup phase. The remaining part is the solve
phase. It will turn out, that the setup phase is actually the algorithmically more
challenging part.

2.2 Multigrid method

By carefully choosing all numeric ingredients it is possible to have linear complex-
ity in the degrees of freedom for all operations on the fine grid during one iteration
of the solve phase, cf. [31, Appendix A] for more details. However, directly solving
the coarse problem (3) still has a computational complexity of O(Nc

3), leading
to a non-optimal method. To overcome this issue, the algorithmic idea of pre-
smoothing, coarse grid correction and post-smoothing can be extended such that
the direct solve on the coarse grid is replaced by a recursive application of pre-
smoothing, coarse grid correction and post-smoothing on the coarse level. Extend-
ing this to several levels leads to the so-called V-cycle in a multigrid method. Algo-
rithm 1 summarizes the V-cycle. Here, we have introduced levels l = 0, 1, . . . , lmax

with nested sets of variables �0 � �1 � . . . � �lmax . Now, level lmax is the finest
level �f . Analogously we introduce per-level coarse/fine grid sets Cl/F l, matri-
ces Al, vectors xl, bl, smoothers Sl, interpolation operators Il

l�1 and restriction

operators Il�1
l . In lines 3/4 and 9/10, the smoother is applied � times. The con-

struction of coarser levels is usually stopped as soon as the number of variables
per level goes below a certain threshold and the coarsest grid is solved directly.

Algorithm 2 introduces AMG as iterative solver. Lines 2–7 correspond to the
setup phase. Lines 8–12 describe a simple iterative solver where the function cycle

6 Peter Zaspel

Algorithm 1 V-cycle in AMG

Require: complete multigrid hierarchy already set up
1: function cycle(l, xl, bl)
2: if l > 0 then � finer levels
3: for s = 1, . . . , � do
4: xl = Sl(xl,bl) � pre-smoothing

5: bl�1 = Il�1
l (bl � Alxl) � residual restriction

6: xl�1 = 0
7: cycle(l � 1, xl�1, bl�1) � solve on coarse grid
8: xl = xl + Il

l�1x
l�1 � update solution

9: for s = 1, . . . , � do
10: xl = Sl(xl,bl) � post-smoothing

11: return xl

12: else � coarsest level
13: x0 = A�1

0 b0 � direct solve
14: return x0

Algorithm 2 Iterative algebraic multigrid solver

Require: A � RN�N symmetric M matrix
1: function AMGsolver(A, b, �res)
2: Almax := A, �lmax := {1, . . . , N}
3: for l = lmax, . . . , 1 do � multigrid hierarchy setup
4: Cl ·�F l = �l, �l�1 := Cl � C/F splitting

5: construct Il
l�1, Il�1

l := (Il
l�1)� � transfer operators

6: Al�1 := Il�1
l AlIl

l�1 � Galerkin operator
7: construct Sl � smoother

8: x0 := 0, n := 0
9: repeat � iterative solution

10: xn+1 = AMG(lmax, xn, b) � multigrid cycle
11: rn+1 = b � Axn+1

12: until �rn+1�2 � �res

13: return xn+1

corresponds to the launch of the V-cycle in Algorithm 1. Instead of applying the V-
cycle in an iterative scheme, it could also be launched as preconditioner in a Krylov
subspace solver, e.g. a conjugate gradient (CG) method. This second approach is
often preferred due to faster convergence.

2.3 C/F splitting

The core idea of the algebraic multigrid method is to introduce the dual view of
the linear system as a graph. Thereby, the C/F splitting or coarsening can be done
on a graph instead of a geometry. The mapping between matrix and graph is done
by considering the system matrix as adjacency matrix for a graph in which the
variables are the nodes or points. Hence, weighted connections or edges between
nodes exist if there is a non-zero non-diagonal entry in the system matrix A relating
one variable to the other.

2.3.1 Sequential coarsening

The crucial sequential part of the Ruge-Stüben AMG method is the choice of
coarse and fine grid points (C-/F-points), i.e. C/F splitting. It is based on the
above discussed graph representation.

Title Suppressed Due to Excessive Length 7

Algorithm 3 Standard coarsening algorithm

Require: level l
1: function AMGstandardCoarsening
2: F l := �, Cl := �, U l := �l

3: for i � U l do

4: �l
i :=

���Sl
i
� � U l

��� + 2
���Sl

i
� � F l

���

5: while �i s.th. �l
i �= 0 do

6: find imax := argmaxi �l
i

7: Cl := Cl � {imax}
8: U l := U l \ {imax}
9: for j � (Sl

i
� � U l) do

10: F l := F l � {j}
11: U l := U l \ {j}
12: for i � U l do

13: �i :=
���Sl

i
� � U l

��� + 2
���Sl

i
� � F l

���

14: return Cl, F l

The neighborhood of a point/variable i � �l is given by

N l
i :=

�
j � �l

���j �= i, al
ij �= 0

�
.

We say that a variable i is strongly negatively coupled to variable j if we have, for
a fixed 0 < �str < 1, the relaxation

�al
ij � �str max

al
ik<0

|al
ik| .

All strong negative couplings of a variable i can be denoted by the set

Sl
i =

�
j � N l

i

���i strongly negatively coupled to j
�

.

We also need the set of all variables j which are strongly coupled to i. It is

Sl
i
�

:=
�

j � �l
���i � Sl

j

�
.

The rough idea of C/F splitting is to create a rather uniform distribution of coarse
and fine grid variables with fine variables being surrounded by coarse variables (in
the graph). Good convergence is achieved, if fine grid points are strongly coupled to
coarse grid points [31, Section A.7.1.1]. A first algorithmic idea [26,31] to achieve
this, is as follows. One repeats the choice of coarse grid points until all points
are classified as coarse or fine grid points. Whenever a coarse grid point has been
chosen, all neighboring points, which are strongly coupled to the coarse point, are
defined as fine grid points.

In real applications, this algorithmic idea is replaced by the standard coarsening
algorithm [31, Section A.7.1.1], which is stated in Algorithm 3. This method also
introduces sets of undecided variables U l and importance measures �l

i. It results in
a rather evenly distributed set of coarse grid points due to the indirectly imposed
ordering by the weights �l

i.

8 Peter Zaspel

2.3.2 Parallel coarsening

As sketched in Section 1, the standard idea to parallelize the setup phase and thus
also the coarsening on multi-core processors is to apply a domain-decomposition
idea. That is, the system matrix / graph is divided into subparts where the stan-
dard sequential coarsening is applied. Afterwards, the resulting splittings are con-
nected by some boundary treatment, cf. [35,13]. However, it is well-known that
the quality of the splitting gets a�ected if the ratio between internal points and
points treated by the boundary correction becomes smaller. Applying multi-core
coarsening on many-core processors is somewhat the extreme case of this situa-
tion. To be able to have a high utilization of the compute resources of a many-core
processor, a large amount of threads have to be executed in parallel. Thereby,
almost all points become boundary points. Consequently, it is not advisable to
apply multi-core coarsening techniques on many-core hardware.

One exception to this rule is the parallel maximal independent set (PMIS) [35]
coarsening. This algorithm can be parallelized on many-core processors without a
degradation of the generated C/F splitting. However, PMIS, parallelized or not,
often does not produce optimal splittings. To keep a relatively robust AMG imple-
mentation, PMIS usually is combined with strong, thus computationally expensive,
interpolation [8] methods. Interpolation will be discussed in the next section.

2.4 Interpolation

Interpolation defines the transfer between information on di�erent levels in AMG.
As previously stated, the interpolation operator Il

l�1 transfers solutions on a coarse
level to the next finer level. Since we use the transpose of the interpolation operator
matrix as restriction matrix, it su�ces to describe the interpolation operation and
its construction.

We start by introducing some additional notation with

Cl
i := Cl � N l

i , F l
i := F l � N l

i , C̄l
i := Cl � Sl

i, F̄ l
i := F l � Sl

i .

2.4.1 Direct interpolation

Direct interpolation uses the strongly coupled coarse grid points to interpolate to a
given fine grid point. Thus, for each i � F l we use the set of so-called interpolatory
variables P l

i = C̄l
i and interpolate a given fine grid variable el

i by

el
i =

�

k�P l
i

wl
ikel

k, wl
ik = ��l

i
al

ik

al
ii

, �l
i =

�
j�N l

i
al

ij
�

k�P l
i
al

ik

.

We still assume here that the system matrix is an M-matrix. Therefore, we can
neglect the handling of positive non-diagonal entries.

2.4.2 Standard interpolation

A much better convergence can be achieved by standard interpolation. It not only
considers strongly connected coarse grid nodes but also includes strong connections
between fine grid nodes. In order to describe this process, we have a look at a fine

Title Suppressed Due to Excessive Length 9

grid point i � F l. The application of its corresponding matrix row to a vector e
reads as

al
iie

l
i +

�

j�N l
i

al
ije

l
j .

To apply standard interpolation, we introduce a modified system matrix. There,
we replace in those rows that are associated with a fine grid point i � F l, as above,
the variables ej with j � F̄ l

i , thus the strongly coupled fine grid points, as

ej �� �
�

k�N l
j

al
jkel

k/al
jj .

The newly generated matrix Âl has entries âl
ij and possesses new neighborhood

sets N̂ l
i . By further setting for all i � F l that P̂ l

i = C̄l
i � (

�
j�F̄ l

i
C̄l

j), we can define

standard interpolation analogously to direct interpolation as

el
i =

�

k�P̂ l
i

âl
ikel

k, ŵl
ik = ��̂l

i
âl

ik

âl
ii

, �̂l
i =

�
j�N̂ l

i
al

ij
�

k�P̂ l
i
âl

ik

.

We thus extend direct interpolation to include the neighborhood of the strongly
connected fine grid points.

2.4.3 Truncation

The more connections between variables are taken into account when construct-
ing the interpolation operator, the better the interpolation. However, too many
connections lead to rather densely populated interpolation operator matrices and
thus to denser system matrices on coarser levels. This in turn might heavily a�ect
the overall complexity of the multigrid method. Therefore, it is often necessary to
introduce a truncation of the interpolation. One thus drops all entries related to
connections with a strength smaller than the largest entry scaled by a threshold
�tr. The resulting entries finally have to be rescaled accordingly.

2.5 Standard smoothers

We already introduced smoothers Sl � RNl�Nl to be an important numerical
ingredient on a given level of the algebraic multigrid method. For P := D�1

l ,
Dl = diag(Al) we get the Jacobi smoother SJ

l := Il � D�1
l Al. For a given point i

its application reads as

x̄i =
1

aii

�

�bi �
�

j �=i

aijxj

�

� .

Due to its trivial nature it can be very easily applied in parallel, even on many-
core hardware. Furthermore, we can introduce a relaxed Jacobi iteration with the
parameter � � R and P := �D�1

l , thus S�J
l := Il ��D�1

l Al, resulting in a similar
iteration rule. By a proper choice of the relaxation parameter, the smoothing can
be improved a lot.

10 Peter Zaspel

A stronger smoother than Jacobi is the Gauss-Seidel smoother with Pl := L�1
l

and L�1
l the lower triangular part of Al including all diagonal entries. It results

in the smoother SGS
l = Il � L�1

l Al which has the iteration rule

x̄i =
1

aii

�

�bi �
i�1�

j=1

aij x̄j �
N�

j=i+1

aijxj

�

� . (4)

By iteration rule (4) we can already see that this smoother is purely sequential. A
way to overcome this is to introduce a coloring [20, Section 3.6.3] for the variables
of the linear system, decoupling subsets of the variables which can be then treated
in a parallel way. For more details on coloring for iterative linear solvers see e.g. [29,
Section 12.4]. Note however, that colored Gauss-Seidel versions are not considered
here.

3 Convergence and robustness in existing many-core AMG

In this section, we review and analyse the convergence and robustness impact of
typical combinations of methods and parameters in many-core AMG. In addi-
tion, we propose a set of parameter and method choices, which still cover some of
the many-core performance considerations while achieving better convergence and
robustness results. The analysis will be based on three model problems, i.e. dis-
cretizations of a Poisson problem in two and three dimensions as well as dis-
cretizations of an elliptic problem in two dimensions with an anisotropic Laplace
operator.

As discussed in the previous section, the choice of coarsening, interpolation
and smoother can strongly impact the quality of the numerical results. Choosing
the best combination for a given application is a challenge by its own. Clearly,
reviewing the current state of the art in this field for arbitrary applications and
all available techniques is out of scope. However, we here aim at discussing choices
that have been made recently in context of GPU-based AMG. In this context, we
focus on the two commercial GPU AMG implementations AmgX and GAMPACK.
Since both implementations use similar techniques, we have chosen to discuss
results with respect to AmgX, more specifically results based on [23].

In [23], the authors introduce AmgX and compare it to the AMG2013 bench-
mark [1]. The latter is a stripped-down version of BoomerAMG in hypre 2.9.0b.
AMG2013 was introduced to perform cluster scalability studies with complex work
loads. The benchmark uses a pre-designed application setup and a fixed set of
coarsening, interpolation and smoother choices. While these choices seemingly are
favorable for a benchmark study, they do not necessarily represent the best choices
for convergence and robustness. In fact, BoomerAMG might converge much bet-
ter for other parameter choices. This should be kept in mind when assessing the
impact of our and other results. Moreover, note that, at time of writing this arti-
cle, the current version of hypre is 2.11.2 and no longer 2.9.0b. A comparison of
a recent hypre version against AmgX has been made in [25], where performance
improvements for hypre were reported.

Title Suppressed Due to Excessive Length 11

3.1 Benchmark applications

We report on three benchmarks, which can be performed with the AMG2013
benchmark application. The benchmarks solve linear systems from discretized el-
liptic partial di�erential equations. The first benchmark is a Poisson problem in
three dimensions with homogeneous Dirichlet boundary conditions,

��u = f in D ,

u = 0 on �D ,
(5)

which corresponds for D = (0, 1)3 exactly to one important benchmark in [23]. The
linear systems that we consider are obtained by discretizing the above problem by
a standard second-order seven-point finite di�erence stencil on a uniform grid
with mesh width h := 1

ND+1 , where ND is the number of (inner) grid points in

each space dimension. The right-hand side is set to f �
�

1
h

�2
. We abbreviate this

benchmark by the name Poisson3D.
It is well known that the condition number of the resulting linear system ma-

trix in Poisson3D scales like O(h�2). Hence, it only depends on the mesh width
in one dimension. This also means that, for a given amount of unknowns, the
condition number of the system matrix for a discretization of a two-dimensional
Poisson problem becomes much larger than the condition number in context of
the three-dimensional problem for a fixed number of unknowns. Consequently, for
a given number of unknowns, considering a two-dimensional problem should be
more challenging than a three-dimensional problem. Therefore, we also include the
two-dimensional test case Poisson2D based on (5) with D = (0, 1)2 and a standard
five-point stencil discretization into our considerations.

Moreover, we are interested in the robustness of the linear solver with respect
to anisotropies. Therefore we consider a third benchmark, Anisotropic2D in which
we discretize the elliptic PDE

�c1
�2u

�x2
1

� �2u

�x2
2

= f in D ,

u = 0 on �D ,

with anisotropy coe�cient c1 � R on a two-dimensional domain D = (0, 1)2. We
again use a corresponding second-order five-point finite di�erence stencil and the
same right-hand side.

3.2 Solver test cases

In our convergence studies, we mimic the AMG2013 benchmark and the examples
picked in [23]. Therefore we solve the given linear systems Ax = b for an initial
solution guess x0 = 0 and let the solver run until the relative residual �ri�/�b� of a
given iterate xi drops below 10�6. AMG is used as preconditioner in a conjugate
gradient solver. Throughout our convergence studies, we stop coarsening, when
the current level has less than 10 unknowns. Moreover, we apply a truncation
with �tr = 0.2. Whenever applicable, we further set the strength parameter to
�str = 0.25.

We use three di�erent sets of parameters for algebraic multigrid. These pa-
rameters are summarized in Table 1. The first set of parameters is identical to

12 Peter Zaspel

AMG2013 param. AmgX param. parameter proposal

coarsening PMIS PMIS standard coarsening
aggressive coarsening first level no no
interpolation extended standard standard
smoother L1-Gauss-Seidel Jacobi (� = 0.8) Jacobi (� = 0.8)

Table 1 We compare convergence and robustness properties of three sets of parameters for
AMG (AMG2013 benchmark, AmgX parameters in [23], our own parameter set proposal).

the settings considered in the AMG2013 benchmark: The coarsening is done using
PMIS. Aggressive coarsening, cf. [36], with appropriate interpolation is use on the
first level. On all other levels, extended interpolation, cf. [8], is applied. The pre-
and post-smoother is always an L1-Gauss-Seidel smoother.

Our second set of parameters shall reflect the settings chosen in [23] for AmgX.
Unfortunately, [23] does not give all the details about their applied parameters.
Therefore, we tried our best to reverse-engineer these parameters using the same
software, hardware (Titan cluster), a similar build environment, etc. The parame-
ters reported in Table 1 seem to fit best the results in [23]. That is, we use PMIS
as coarsening without aggressive coarsening on the first level. Moreover, we apply
standard interpolation and use a (twice applied) relaxed Jacobi smoother with
relaxation parameter � = 0.8.

The final set of parameters is our own proposal of parameters, which is more
close to the classical way to build AMG. That is, we choose standard coarsening,
no aggressive coarsening on the first level, standard interpolation and a relaxed
Jacobi smoother with relaxation parameter � = 0.8. As we will see in our results,
the convergence properties for this approach clearly outperform the AmgX param-
eters and are at least as good as the AMG2013 parameters. We will argue that
these parameters show good convergence properties and robustness with respect
to anisotropies. Meanwhile, the Jacobi smoother still allows for a very high paral-
lelism in the solve phase. The crucial di�erence to AMG2013 will be the choice of
a mainly sequential AMG setup. However, as we will see, there is still a lot of room
for a many-core parallelization for major pieces of the setup phase while keeping
the only truly sequential part of the standards coarsening on CPU.

Note that we perform all convergence studies in this chapter with hand-modified
versions of the AMG2013 benchmark. Hence, we use a reliable, well tested CPU-
based code to do the comparison of the di�erent choices of parameter sets. We
even use the same hardware as in [23], i.e. we run our studies on the compute
nodes of the cluster Titan at Oak Ridge National Lab. The Titan cluster is a
Cray XK7 system. Each node is equipped with a 16-core 2.2GHz AMD Opteron
6274 processor and 32 GB of RAM. We used the GCC 4.9.3 compiler and MPICH
7.5.2 and compiled AMG2013 and the hand-modified versions with compiler flag
-O3. Within our study, similar to [23], we also compare the convergence proper-
ties between benchmarks running sequentially on one node and benchmarks being
distributed to 8 cores by the MPI-parallelization within AMG2013 or hypre, re-
spectively. As we will see, the use of a parallelized setup phase will have an impact
on the setup and solve phase.

Title Suppressed Due to Excessive Length 13

0 50 100

0

20

40

60

80

ND

#
it

er
a
ti

o
n
s

Poisson3D, sequential

AMG2013 parameters

AmgX parameters

parameter proposal

0 2,000 4,000

0

20

40

60

80

ND

#
it

er
a
ti

o
n
s

Poisson2D, sequential /
Anisotropic2D, c1 = 1, sequential

AMG2013 parameters

AmgX parameters

parameter proposal

Fig. 1 In some cases, we observe significant di�erences in the convergence behavior for the
three solver parameter settings in the Poisson3D application problem (left) and the Poisson2D
application problem (right).

3.3 Numerical results

In the following, we discuss the convergence results that we obtain with the above
given parameters. We always report the number of iterations of the solver with re-
spect to the parameter ND, i.e. the discretization parameter used above for defining
the finite di�erence discretization. This parameter is not identical to the number
of unknowns which is N3

D and N2
D in Poisson3D and Poisson2D/Anisotropic2D,

respectively.
On the left-hand side of Fig. 1, we show the results for the Poisson3D bench-

mark running sequentially for the di�erent parameters sets defined before. This
benchmark is shown in [23]. We observe a growing number of iterations for grow-
ing problem size. Hence, all benchmarks seem not to be in an asymptotic regime,
where we would expect to see constant or at least very slowly growing number of
iterations. The general tendency is that our parameters outperform the parameters
of AMG2013. The worst results are seen for the AmgX parameters.

In contrast, the results in Fig. 1, on the right-hand side, are in the asymp-
totic regime. For the AMG2013 parameters and our parameter proposal, we ob-
serve almost constant iteration counts when going to finer discretizations with an
asymptotically high condition number. In contrast, the AmgX parameters do not
result in the AMG-type optimal convergence. The more expensive extended inter-
polation in connection with the Gauss-Seidel-type smoother seem to recover the
optimal convergence of AMG in presence of the less strong PMIS coarsening for
AMG2013.

The results on the right-hand side of Fig. 1 together with the two results in
Fig. 2 form the robustness study Anisotropic2D for growing anisotropies c1 =
1, 10, 100. The tendency of the results fits together with the results obtained in
the previous benchmarks. The parameters from AMG2013 and our parameter
proposal show similar convergence results. Both parameters are almost perfectly

14 Peter Zaspel

0 2,000 4,000

0

20

40

60

80

ND

#
it

er
a
ti

o
n
s

Anisotropic2D, c1 = 10, sequential

AMG2013 parameters

AmgX parameters

parameter proposal

0 2,000 4,000

0

20

40

60

80

ND
#

it
er

a
ti

o
n
s

Anisotropic2D, c1 = 100, sequential

AMG2013 parameters

AmgX parameters

parameter proposal

Fig. 2 The (potential) parameters of AmgX in [23] lead to a strong dependence on the
anisotropy parameter comparing c1 = 1 (Fig. 1, right), c1 = 10 (left) and c1 = 100 (right).
That is, AMG is not robust with respect to anisotropies in this case.

0 50 100

0

20

40

60

80

ND

#
it

er
a
ti

o
n
s

Poisson3D, sequential

AMG2013 parameters

AmgX parameters

parameter proposal

0 50 100

0

20

40

60

80

ND

#
it

er
a
ti

o
n
s

Poisson3D, parallel

AMG2013 parameters

AmgX parameters

parameter proposal

Fig. 3 When running AMG2013 / hypre in parallel, the coarsening in our parameters get
degraded leading to a worse solver performance.

robust with respect to the anisotropy. On the other hand, the AmgX parameters
are not robust with respect to anisotropy.

Finally, we also compare, similar to [23], convergence results for the sequential
use of AMG2013 / hypre (as before) with results obtained when distributing the
work over eight MPI processes. Fig. 3 highlights these results comparing the se-
quential results for Poisson3D on the left with the parallel results for Poisson3D on
the right. It becomes obvious that the PMIS-based parameter sets converge almost
identical in the sequential and in the parallel case. In contrast, the parallelization
of the standard coarsening requires corrections at the interface of the decomposed
domains. Thereby performance results degrade in the parallel case, still achieving
similar convergence as with the AMG2013 parameters.

Title Suppressed Due to Excessive Length 15

3.4 Discussion

As expected, our results show that the best possible choice of parameters is not
perfectly clear, even in our minimalistic benchmark. The standard parameters
in AMG2013 always produce almost problem-size independent convergence, are
robust with respect to anisotropies and seem to be robust with respect to an in-
crease in the number of processors for the parallel setup phase. The good parallel
properties might be the reason why the authors used these parameters for the
parallel benchmark AMG2013, even though the classical parameters in Boomer-
AMG/hypre are much more similar to our proposed parameter set. However, the
AMG2013 parameters use the sequential Gauss-Seidel-type smoother and rather
expensive extended interpolation.

The AmgX parameters, keeping in mind that we don’t know the exact pa-
rameters and just reverse engineered them, seem to be not robust to anisotropies
and seem to show a growing number of iterations for larger problem sizes. How-
ever, since a Jacobi smoother is used, the solve phase will run very e�ciently on
many-core hardware. The setup phase will be e�cient due to PMIS. This is also
reported in [23], where the authors show impressive performance results compar-
ing AmgX to AMG2013. That is, with the parameters of AmgX used in [23], the
convergence and robustness properties of the method are lowered at the gain of
a pre-asymptotically fast solution behavior. This is a typical balancing done for
numerical methods for many-core processors.

Our proposed parameters shall introduce a third flavor. That is, we aim for
best (asymptotic) convergence rates, still seeking for a method that will have
a very parallel and e�cient solve phase. However, achieving a good many-core
performance in the setup phase, when using standard coarsening and standard
interpolation, is challenging. In fact, parallelizing some part of the coarsening is
impossible. However, as we will show, it is still possible to parallelize a major part
on the setup phase even if the coarsening is done on CPU.

4 Hybrid many-core parallelization strategies

In this section, we discuss algorithms and parallelization strategies for AMG on
many-core hardware. These algorithms are generic in terms of the target many-
core hardware. That is, their e�cient implementation shall not be restricted to
GPUs but should also be possible for, e.g., Xeon Phi processors. To this end, the
applied amount of hardware-specific functionalities is reduced to a minimum. We
do this with an educative objective: We want to lower the bar for beginners in
many-core computing to be able to write scientific codes and to focus more on the
core idea in many-core parallelization, i.e. exposing a high degree of parallelism.

We first give an overview about details of our general strategy to do a many-
core parallelization. Thereafter, we explain the general methodologies of sparse
matrix construction and local graph traversal. This general consideration allows
to simplify the discussion of parallelization details for the setup phase with the
(hybrid) C/F splitting and the interpolation operator construction, afterwards.
Moreover, we address the parallelization of the V-cycle and the smoothers. Finally,
details of the concrete implementation on GPU are discussed.

16 Peter Zaspel

4.1 General many-core parallelization strategy

Our general base strategy for many-core parallelization is to move a big portion of
the parallelization complexity to libraries. In the context of the given application
(AMG) this means that we use libraries implementing a standard set of routines for
(sparse) linear algebra (sparse matrix formats, matrix–matrix products, matrix–
vector products, scalar products, . . .). We claim that such libraries exist with the
(incomplete) list of examples containing CUSP, CUSPARSE, LAMA, ViennaCL,
Paralution, GHOST, MAGMA, MKL. Similarly, we use libraries, which implement
STL vector algorithm type methods in parallel, such as sum, exclusiveScan or
maximum. Again, several libraries allow this, including but not being limited to
Thrust, ArrayFire and Boost.Compute.

Only if we are lacking appropriate library support, we actually propose to
implement new many-core parallel functions. We call such functions kernels. In
addition to the function parameters, we pass the amount of parallel threads on
which the kernel executes its code. Within the kernel code, the thread index is
fetched first. Afterwards, computations are done relative to that thread index,
cf. Algorithm 5 for an example. Writes into the many-core processor’s memory are
not considered to be consistent / thread-safe during the kernel execution. That is,
while executing a kernel, two di�erent threads shall not write into the same mem-
ory location. The only exception are atomic operations. They serialize conflicting
parallel writes, if necessary. However, this might impact performance. A global
synchronization over all threads is done at the end of the kernel execution. Note
again that these assumptions are strong simplifications of the usually much more
elaborated memory and thread execution models used in recent many-core proces-
sors. However, they make it much more easy to introduce many-core algorithms.

4.2 CSR matrix construction

We store matrices in the compressed sparse row (CSR) matrix format. It encodes
a sparse matrix A � RN�N with Nnonzero non-zero entries by arrays

– row o�sets of indices (of length N + 1) describing the o�set to take in
column indices and values to find entries of a given matrix row,

– column indices of indices (of length Nnonzero) describing the column index of
a given row entry and

– values of (double precision) floating point values (of length Nnonzero) describ-
ing the respective matrix entry .

Throughout the construction of the interpolation operators, we have to assem-
ble sparse CSR matrices. This can be rather easily done in parallel, when using one
parallel thread per row of the matrix that shall be filled. Algorithm 4 shows the
necessary steps. First, a generic function countEntries mimics the work that
would be done for generating the matrix entries. This is done in a completely
parallel way. While doing this, instead of writing the data into the new matrix,
the number of generated non-zero entries per row are counted and stored in array
num entries per row. Then, a parallel sum and a parallel exclusive scan opera-
tion allow to compute the total number of non-zeros and the o�sets for the CSR
matrix data structure. Finally another generic function fillCsrMatrix does the
actual work and fills the system matrix as simulated in countEntries, before.

Title Suppressed Due to Excessive Length 17

Algorithm 4 Generic method to construct CSR matrix in parallel

1: function buildCsrMatrix(A, N , . . .)
2: allocate num entries per row[N]
3: setValue�N�(num entries per row,0)
4: countEntries�N�(num entries per row, . . .) � count number of entries per row
5: total entries := sum�N�(num entries per row) � compute number of non-zeros
6: allocate num rows[N + 1], column indices[total entries], values[total entries]
7: exclusiveScan�N�(num entries per row, row offsets) � compute o�sets
8: fillCsrMatrix�N�(num rows, column indices, values, . . .) � fill matrix

Fig. 4 In the local graph traversal, the next neighbors of each node are visited up to a fixed
depth (indicated by the di�erent ellipse sizes). The many-core parallelization makes use of the
independence of each traversal (indicated by the di�erent line types).

Even though the above approach actually requires to compute the sparse matrix
twice, it is still a very e�ective way to construct a CSR matrix in parallel.

4.3 Local graph traversal up to a fixed depth

Several algorithms within the AMG setup phase require to iterate over neighbours
and/or neighbours of neighbours of a node in the graph representation of the linear
system. This can be translated to a local graph traversal up to a depth of one/two
starting from each node in the graph, cf. Fig. 4. In the following, we formulate a
generic many-core parallel local traversal up to depth two for a graph that is given
by an adjacency matrix stored in the CSR format.

The easiest way to parallelize this embarrassingly parallel local graph traversal
is by parallelizing it over the starting nodes for each of the traversal steps. Algo-
rithm 5 formalizes this idea. It is launched in parallel with N threads and a sparse
matrix A � RN�N given as parameter. In each thread, first the current thread
index idx is retrieved. Then, each neighbour of node idx is visited by iterating
over all non-zero o�-diagonal elements in the idxth matrix row. The same idea is
repeated to iterate over all neighbours of a visited neighbour node. Clearly, Algo-
rithm 5 is not the necessarily most e�cient parallelization approach for a specific
many-core architecture. To give an example, an implementation of the algorithm
in the CUDA programming model and running on GPUs of Nvidia, might not
achieve the fastest possible performance due to thread divergence. Here, e.g. [22]
gives an excellent overview over optimization techniques. However, Algorithm 5 is
very generic and delivers a high degree of parallelism for a lot of many-core ar-
chitecures. Still, optimized graph traversal algorithms are considered future work.

18 Peter Zaspel

Algorithm 5 Generic kernel for local graph traversal up to depth two

1: function traverse�N�(A, N , . . .)
2: idx := getThreadIndex()
3: for jj � [A.row offsets[idx], A.row offsets[idx + 1] � 1] do
4: j := A.column indices[jj] � get column index of current matrix entry
5: if (idx �= j) AND . . . then
6: . . . � do something with weight on edge (idx, j)
7: for kk � [A.row offsets[j], A.row offsets[j + 1] � 1] do
8: k := A.column indices[kk]
9: if (j �= k) AND . . . then

10: . . . � do something with weight of edge (j, k)

4.4 Hybrid C/F splitting

We use the C/F splitting following Algorithm 3. The coarsening algorithm is the
only part of the code which is only partially parallelized on many-core hardware.

Steps three and four of Algorithm 3 compute the strong influence weights �l
i for

the current level. This operation can be parallelized in a many-core fashion. Here,
the first necessary step is to pre-compute the maximum (negative) non-diagonal
entry for each matrix row, thus, maxal

ik<0 |al
ik|. The parallel graph traversal idea

of Section 4.3 is applied for this. Using these maxima, it is possible to identify
strongly coupled nodes in an algorithm for evaluating the �l

i. The weight evaluation
algorithm again traverses the graph up to a depth of one. Whenever a strongly
influencing node is found, the appropriate weight �l

i is increased by an atomic
operation.

The remaining part of Algorithm 3 is implemented sequentially including the
necessary copy operations between sequential processor (CPU) and many-core
processor. To achieve an optimal computational complexity, the lookup of the
largest weight �l

i in step 6 of the algorithm is performed with a priority queue data
structure [7, Section 6.5]. Since e.g. the STL-based implementation of a priority
queue does not allow to have a constant-complexity maximum-find and -removal
operation (in fact that implementation has a logarithmic complexity in that case),
the data structure is hand-implemented. The proposed implementation uses bucket
sort [7, Section 8.4] as base algorithm and allows to achieve the designated constant
complexity removal operation with a linear-complexity data structure setup time.
Overall this keeps a linear complexity for the standard coarsening algorithm.

Finally, while skipped in Algorithm 3, it is necessary to identify the mapping
between the newly found coarse grid points and their position in the next coarser
grid level. This can be implemented by means of a many-core parallel STL vector
algorithm-type operation. Fig. 5 shows an example for the approach. A given array
coarse contains — per node — the flag whether the node will become a coarse grid
node. By applying an exclusiveScan operation to that array, an enumeration of
the coarse grid nodes is generated. As long as one accesses only those entries in
fine to coarse that correspond to a new coarse grid node, the correct mapping will
be returned.

Title Suppressed Due to Excessive Length 19

Fig. 5 An exclusive scan operation allows to compute the mapping between a coarse node on
the current and next multigrid level. Only entries with light background will be accessed.

Al =

�

��

1.00 �0.25
�0.25 1.00 �0.25

�0.25 1.00 �0.25
�0.25 1.00

�

�� �

�

��

f t
t f f

f f t
t f

�

��

Fig. 6 In the standard interpolation operator construction, we reuse the existing sparsity
pattern of Al to store the set of interpolatory points P l

i = C̄l
i via a boolean indicator (t/f).

4.5 Interpolation operator construction

4.5.1 Direct interpolation

The many-core parallel implementation of direct interpolation starts by pre-com-
puting the intermediate coe�cients

�l
i =

�
j�N l

i
al

ij
�

k�P l
i
al

ik

.

To build the two sums, parallel local graph traversal up to a depth of one be-
comes necessary. The core idea for this has been discussed in Section 4.3. The
weights wl

ik are computed while building the interpolation matrix following the
ideas in Section 4.2. The positions of the interpolation coe�cients in the finally
constructed matrix Il

l�1 are determined by the lookup table created at the end
of the C/F splitting as outlined in Section 4.4. Overall the direct interpolation
matrix is constructed fully in parallel.

4.5.2 Standard interpolation

Implementing standard interpolation for many-core processors is more involved.
Here, the algorithm starts by finding the set of interpolatory variables P l

i = C̄l
i

for direct interpolation. Since this is necessary for each row, a sparse matrix is
constructed to store this information. We reuse the existing data structure of the
sparse system matrix and replace the array of non-zeros by boolean indicator values
as shown in Fig. 6. The boolean values (t/f) store, whether a given neighbor node
is part of the interpolatory set or not. Filling this indicator matrix can be done by
parallelization over the number of rows of the system matrix similar to the local
graph traversal in Section 4.3

Next, the original system matrix is modified such that strongly coupled fine
grid points are expanded as

ej �� �
�

k�N l
j

al
jkel

k/al
jj .

Note, that this construction is rather compute intensive and might be replaced by
a more sophisticate method in the future. It requires e.g. to implement a sparse

20 Peter Zaspel

matrix row addition. The new set P̂ l
i = C̄l

i � (
�

j�F̄ l
i
C̄l

j) of interpolatory variables

is computed, as well. Finally the algorithm reproduces the direct interpolation
implementation now using the expanded system matrix and P̂ l

i .
Truncation in the interpolation matrix can also be done in a many-core parallel

way. This is done within the construction algorithm for interpolation matrices, to
avoid building new sparse matrices. However, this algorithm is also available as
stand-alone method.

4.6 V-cycle and smoothers

Due to the (assumed to be) available linear algebra primitives, the implemen-
tation of a V-cycle on many-core hardware is straight-forward, since the V-cycle
only contains standard matrix-matrix, matrix-vector and vector-vector operations,
cf. Algorithm 1. Within the V-cycle of Algorithm 1, we replace the direct solver
on the coarsest level by a Jacobi-preconditioned CG solver.

For now, we only use a relaxed Jacobi iteration as smoother. The construction
and application of the Jacobi smoother can be easily realized by the available
linear algebra primitives

4.7 Implementation on GPU

Our concrete implementation of algebraic multigrid for a single GPU is based on
the sparse linear algebra library CUSP [5] in version 0.4.0 and the STL Vector al-
gorithm library Thrust, which comes with the CUDA Toolkit 7.5. The first library
provides a set of linear algebra primitives (matrix-matrix products, matrix-vector
products, . . .), iterative solvers (CG, GMRES, . . .) and preconditioners (Jacobi,
. . .) for sparse matrices of di�erent sparse matrix formats, including CSR. Thrust
provides operations such as sum or exclusiveScan. The implemented code inte-
grates withing the CUSP framework, thus the new Ruge-Stüben classical AMG
can be used as preconditioner for the standard CUSP solvers. It can be further-
more applied as stand-alone solver. Compute kernels are implemented as CUDA
kernels based on the CUDA Toolkit 7.5.

Note that we do not use the latest CUSP version due to issues with the matrix-
matrix product implementation. Moreover, we did not consider to use the more
recent CUSPARSE library instead of CUSP, since, at the time of starting this
software project, CUSPARSE was still at a very early development stage. Finally,
the at time of writing this article latest CUDA Toolkit version 8.0 is currently not
supported on our target benchmark system.

5 Performance of the hybrid GPU AMG

In the following, we discuss convergence and performance results of our hybrid
GPU AMG. First, we double-check the convergence and robustness of our code
by repeating the convergence studies of Section 3 with our specific implemen-
tation. The remaining part of the section is a performance benchmark. To this
end, we first introduce our benchmark setup in terms of hardware and software.
Afterwards a general performance comparison between our implementation and
AMG2013 (following [23]) is given. As we will see, the solve phase is fast, however
our expectations in terms of speedup for the setup phase on GPU are not met.

Title Suppressed Due to Excessive Length 21

0 50 100

0

20

40

60

80

ND

#
it

er
a
ti

o
n
s

Poisson3D

direct interp.

standard interp.

0 2,000 4,000

0

20

40

60

80

ND

#
it

er
a
ti

o
n
s

Poisson2D /
Anisotropic2D, c1 = 1

direct interp.

standard interp.

Fig. 7 Our hybrid GPU implementation of AMG attains the predicted convergence behavior
for our proposed parameter set when using standard interpolation. This is shown here for
the Poisson3D (left) and the Poisson2D (right) test case. Direct interpolation shows slightly
weaker convergence results.

Therefore, we further give a detailed performance analysis and discussion for the
setup phase. Finally, we show results for a real-world test problem on a complex
geometry.

5.1 Convergence and robustness check

We repeat the convergence studies performed in Section 3, i.e. Poisson3D, Pois-
son2D and Anisotropic2D, for the proposed hybrid GPU AMG implementation.
Hence, we show results for the parameter set that was proposed in Section 3.2, but
now for our own implementation. The objective of this study is to double-check
that our implementation is correct and that it is not a�ected by any parallelization
issue.

As discussed in Section 3.2, we use standard coarsening, standard interpola-
tion and a twice applied relaxed Jacobi pre- and post-smoother with relaxation
parameter � = 0.8. Truncation is used with �tr = 0.2 and the strength param-
eter is �str = 0.25. The recursive construction of coarser levels is stopped as
soon as a given level has less than 100 unknowns. The coarse grid solver is a
Jacobi-preconditioned CG method converged to an absolute residual of 10�20.
The V-cycle is used as preconditioner within a CG method. In addition to these
parameters, we also discuss convergence results for direct interpolation, since – as
we will see – the GPU-parallel version of direct interpolation is much faster than
the one for standard interpolation. Convergence results are again reported for the
benchmark problems defined in Section 3.1 with the stopping criterion of the outer
CG solver set to a relative residual norm of 10�6.

In Fig. 7 we report the convergence results for the benchmark problems Pois-
son3D and Poisson2D on the left-hand side and right-hand side, respectively. In
both cases, the convergence by using standard interpolation matches the conver-

22 Peter Zaspel

0 2,000 4,000

0

20

40

60

80

ND

#
it

er
a
ti

o
n
s

Anisotropic2D, c1 = 10

direct interp.

standard interp.

0 1,000 2,000

0

20

40

60

80

ND

#
it

er
a
ti

o
n
s

Anisotropic2D, c1 = 100

direct interp.

standard interp.

Fig. 8 Direct interpolation is not robust to the anisotropy in the Anisotropic2D benchmark.
Meanwhile, our proposed parameter set applied in our hybrid GPU implementation achieves
the predicted almost perfect robustness.

gence results predicted in Section 3: The three-dimensional problem still has a very
slight increase in iteration count for a grid size of up to ND = 128, i.e. N = 1283

unknowns. In contrast, the two-dimensional problem is already in its asymptotic
convergence behavior with a constant number of iterations for growing problem
size. In the two-dimensional problem, direct interpolation only slightly increases
the number of iterations until convergence. This behavior is worse for the Pois-
son3D problem, where there is a stronger, but still acceptable, increase in the
number of iterations when using direct interpolation.

The impact of the weaker direct interpolation becomes clearly visible when
considering the Anisotropic2D test case in Fig. 8. Direct interpolation, together
with our other parameters, is not robust to anisotropies. With growing anisotropy,
the number of iterations until convergence becomes much larger. In contrast, stan-
dard interpolation shows only a very slight increase in the number of iterations,
i.e. it is almost perfectly robust. Again, this matches the convergence behavior
predicted in Section 3.

5.2 Performance benchmark setup

Our performance benchmark shall be comparable with the result presented in
[23]. To this end, we use the same hardware and in general the same software
environment as in this study. Our benchmark platform is a Cray XK7 system,
namely the GPU cluster Titan at Oak Ridge National Lab. Our performance
comparisons are limited to a single node of this cluster. Each node contains an
16-core 2.2GHz AMD Opteron 6274 processor and 32 GB of RAM. The GPU is an
Nvidia Tesla K20X. We use the standard GNU compiler framework on that cluster,
i.e. GCC 4.9.3 with MPICH 7.5.2. The Nvidia CUDA Programming Toolkit is used
in version 7.5. As stated before, we further use the library Thrust, as it comes with
the CUDA Toolkit as well as CUSP in version 0.4.0.

All software is compiled with compiler flag -O3 for optimization. The GPU
code is compiled for the specific compute capabilities of the Tesla K20X. That

Title Suppressed Due to Excessive Length 23

is, we use the additional compiler flag -arch sm 35. To comply with [23], the
AMG2013 benchmark is run either sequentially or in parallel using MPI on eight
cores of a single node of Titan. The parallel MPI processes are distributed evenly
over the physical cores of the Opteron processor. Reported AMG2013 timings
correspond to the timings reported as wall clock time by the AMG2013 benchmark.
Timings reported for our hybrid AMG GPU implementation were measured with
the gettimeofday command and thereby also represent wall clock times. Our GPU
code fully runs at double precision. The GPU AMG implementation is not intended
to be an accelerated part of an existing CPU code but a solver within a full GPU
code. This is why, in the hybrid GPU case, it is expected that the system matrix,
right-hand side and initial guess are stored in GPU memory before the benchmark
starts. Nevertheless, all remaining transfer times between CPU and GPU memory,
as well as the full CPU and GPU compute time, are included for the hybrid GPU
setup/solver test runs.

5.3 Performance comparison against AMG2013

In the following, we report the performance of our hybrid GPU AMG imple-
mentation, comparing it to the performance of the AMG2013 benchmark for the
benchmark applications defined in Section 3.1. It shall be noted here again that the
specific set of AMG parameters used in AMG2013 might not reflect the best pos-
sible choice of parameters for a CPU-based AMG method. However, for the sake of
comparable results with [23], we keep these parameters even though BoomerAMG
might be much faster for other parameters (and more recent versions of hypre).

5.3.1 Setup phase

In Figures 9 and 10, we show the di�erent runtimes for the setup phase of the Pois-
son3D, Poisson2D and Anisotropic2D benchmarks using AMG2013 sequentially
or in parallel on CPU and using our hybrid GPU AMG implementation on GPU.
It turns our that the setup phase of our GPU AMG implementation is surprisingly
slow, especially in comparison to the parallel AMG2013 test case. For direct inter-
polation, we often outperform the sequential AMG2013 benchmark. However, the
proposed use of standard interpolation on GPU is always the slowest method. To
study the reasons for this rather pessimistic performance result, we do a detailed
performance analysis of the setup phase for the Poisson3D test case for ND = 128.
This study is presented and discussed in Section 5.4.

5.3.2 Solve phase

The performance results for the GPU solve phase are much better than the per-
formance results for the setup phase. In Fig. 11, we give on the left-hand side
the performance results of the solve phase for the Poisson3D test case and on the
right-hand side the results for the Poisson2D test case. In the three-dimensional
test case, the GPU-parallel solve phase (for standard interpolation) is by a factor
of roughly 3.3 faster than the AMG2013 benchmark parallelized on eight cores.
Moreover, the GPU AMG is faster by roughly a factor of 7.1 in the two-dimensional
test case and the same interpolation. Note again that we use here only eight of
the available 16 cores of a Titan node, as done in [23]. Also, there exists a newer
version of hypre, which is a superset of the AMG2013 benchmark with more recent
performance optimizations [25].

24 Peter Zaspel

0 50 100

0

5

10

15

20

ND

ru
n
ti

m
e

o
f
th

e
se

tu
p

p
h
a
se

(i
n

se
c.

) Poisson3D

hybr. GPU (direct interp.)

hybr. GPU (std. interp.)

AMG2013 sequential

AMG2013 parallel

0 1,000 2,000

0

10

20

30

40

ND

ru
n
ti

m
e

o
f
th

e
se

tu
p

p
h
a
se

(i
n

se
c.

)

Poisson2D /
Anisotropic2D, c1 = 1

hybr. GPU (direct interp.)

hybr. GPU (std. interp.)

AMG2013 sequential

AMG2013 parallel

Fig. 9 We compare the runtime of the setup phase for our hybrid GPU implementation
(using direct and standard interpolation) with the runtime of the setup phase of the AMG2013
benchmark (left: Poisson3D benchmark, right: Poisson2D benchmark).

0 1,000 2,000

0

5

10

15

20

ND

ru
n
ti

m
e

o
f
th

e
se

tu
p

p
h
a
se

(i
n

se
c.

)

Anisotropic2D, c1 = 10

hybr. GPU (direct interp.)

hybr. GPU (std. interp.)

AMG2013 sequential

AMG2013 parallel

0 1,000 2,000

0

5

10

15

20

ND

ru
n
ti

m
e

o
f
th

e
se

tu
p

p
h
a
se

(i
n

se
c.

)

Anisotropic2D, c1 = 100

hybr. GPU (direct interp.)

hybr. GPU (std. interp.)

AMG2013 sequential

AMG2013 parallel

Fig. 10 The Anisotropic2D benchmark for c1 = 10 (left) and c1 = 100 (right) outlines
a similar low performance for the setup phase of our hybrid GPU AMG compared to the
AMG2013 benchmark.

It has to be made clear at this point that our positive performance results for
the solve phase could only be achieved since the chosen parameters in the setup
phase lead to an iterative method with strong convergence and robustness, as
discussed before. To underline this, we show the performance of the solve phase for
the Anisotropic2D test case in Fig. 12. Using the weak direct interpolation, we only
get a low (c1 = 10) or no speedup (c1 = 100) compared to the parallel AMG2013
benchmark. However, the robust standard interpolation leads to speedups similar
to the Poisson2D test case.

Title Suppressed Due to Excessive Length 25

0 50 100

0

5

10

ND

ru
n
ti

m
e

o
f
th

e
so

lv
e

p
h
a
se

(i
n

se
c.

) Poisson3D

hybrid GPU (direct interp.)

hybrid GPU (std. interp.)

AMG2013 parallel

0 1,000 2,000

0

5

10

ND

ru
n
ti

m
e

o
f
th

e
so

lv
e

p
h
a
se

(i
n

se
c.

)

Poisson2D /
Anisotropic2D, c1 = 1

hybrid GPU (direct interp.)

hybrid GPU (std. interp.)

AMG2013 parallel

Fig. 11 In the solve phase, the hybrid GPU AMG implementation clearly outperforms the
parallel AMG2013 benchmark, both for the Poisson3D (left) and the Poisson2D (right) test
case.

0 1,000 2,000

0

5

10

ND

ru
n
ti

m
e

o
f
th

e
so

lv
e

p
h
a
se

(i
n

se
c.

)

Anisotropic2D, c1 = 10

hybrid GPU (direct interp.)

hybrid GPU (std. interp.)

AMG2013 parallel

0 1,000 2,000

0

5

10

ND

ru
n
ti

m
e

o
f
th

e
so

lv
e

p
h
a
se

(i
n

se
c.

)

Anisotropic2D, c1 = 100

hybrid GPU (direct interp.)

hybrid GPU (std. interp.)

AMG2013 parallel

Fig. 12 The hybrid GPU AMG solve phase also clearly outperforms the parallel AMG2013
benchmark when using standard interpolation in the Anisotropic2D test case. However, the
performance advantage of the GPU gets lost, if the chosen set of parameters for AMG does
not lead to a robust method as shown here for direct interpolation.

In Fig. 13, we summarize the performance results for the setup and the solve
phase for the largest test cases of the Poisson3D and the Poisson2D problem. The
parallel version of the AMG2013 benchmark is faster than the hybrid GPU AMG
in the setup phase, while the GPU code outperforms AMG2013 in the solve phase.
Very often, it is possible to reuse an existing multigrid hierarchy from one setup
phase for several solve phases, e.g. if a single problem is solved for many right-hand
sides. In this case, relatively speaking, the GPU-based AMG could become much
faster. Meanwhile, we only show in Fig. 13 the total compute time for a single
setup and a single solve phase. Here, AMG2013 outperforms our implementation.

26 Peter Zaspel

setup
phase

solve
phase

total
0

10

20

30

ti
m

e
in

se
co

n
d
s

Poisson3D performance, ND = 128

hybrid GPU (std. interp.)

AMG2013 sequential

AMG2013 parallel

setup
phase

solve
phase

total
0

10

20

30

ti
m

e
in

se
co

n
d
s

Poissson2D performance, ND = 2048

hybrid GPU (std. interp.)

AMG2013 sequential

AMG2013 parallel

Fig. 13 In summary, the parallel version of the AMG2013 benchmark is faster for the setup
phase, while the hybrid GPU AMG is faster for the solve phase.

5.4 Detailed performance analysis of the setup phase

As seen in Section 5.3.1, the performance of the hybrid GPU AMG does not meet
our performance expectations, when comparing it to the AMG2013 benchmark
on CPU. Therefore, we make an in-depth analysis of the performance of all com-
ponents of the setup phase. To abbreviate the discussion, we focus on a single
test case, the Poisson3D problem with ND = 128. Moreover, we only discuss the
performance for the setup phase on the finest grid level.

In our study, we would like to analyse the impact of our parallelization of
the setup phase. To do this, we compare our many-core parallel implementation
with a sequential base CPU implementation that was initially done by the author.
Note again that comparing a single-core CPU implementation to a many-core
implementation is of course unfair. However, if we do not see significant speedups
within this comparison, we have no chance to get a fast many-core implementation,
anyway.

In Table 2, we report the results of our performance comparison against the
reference CPU implementation, both for direct and standard interpolation. We
include direct interpolation, since we want to find the reason for the strong per-
formance di�erences between direct and standard interpolation.

5.4.1 C/F splitting

The first two timings in Table 2 correspond to the initial part of the C/F splitting,
which are parallelized on many-core hardware. We compare the CPU and GPU
timings for computing the maximum non-diagonal entry for each matrix row and
the strong influence weights �l

i, as discussed in Sections 2.3 and 4.4. Based on the
speedups, we conclude that the parallelization of this part of the C/F splitting
is very successful. Actually, speedups in a range of 100 would correspond to a
speedup of 6-10 when comparing equally priced hardware.

The next block of timings corresponds to the part of the setup phase, which
is done on CPU. In the many-core implementation, we first have to copy the data

Title Suppressed Due to Excessive Length 27

direct interp. std. interp.
CPU [s] GPU [s] factor CPU [s] GPU [s] factor

C/F splitting
max. neg. nondiag. 0.0508 0.0003 169.3 0.0507 0.0003 169.0
strong influence 0.0779 0.0002 389.5 0.0780 0.0003 260.0
GPU to CPU transfer n/a 0.4537 n/a n/a 0.4565 n/a
CPU data structure 0.3319 0.3296 1.0 0.3320 0.3299 1.0
CPU coarsening 2.4872 2.4908 1.0 2.488 2.4929 1.0
CPU to GPU transfer n/a 0.0107 n/a n/a 0.0107 n/a
coarse node count 0.0033 0.0853 0.0 0.0033 0.0854 0.0
fine to coarse map 0.0121 0.0013 9.3 0.0121 0.0013 9.3
interpolation
coe�s. for interp. 0.0890 0.0004 222.5 n/a n/a n/a
direct interp. matrix 0.6149 0.0243 25.3 n/a n/a n/a
interp. point set n/a n/a n/a 0.0631 0.0002 315.5
modified matrix n/a n/a n/a 8.0044 0.3880 20.6
max. neg. nondiag. n/a n/a n/a 0.1146 0.0006 191
coe�s. for interp. n/a n/a n/a 0.0809 0.0124 6.5
direct interp. matrix n/a n/a n/a 0.5821 0.0200 29.1
restriction operator 0.2253 0.0185 12.2 0.1213 0.0184 6.6
Galerkin operator 2.7489 0.6378 4.3 2.7043 0.6384 4.2
Jacobi smoother 0.2852 0.0061 46.8 0.2891 0.0061 47.4

Table 2 The detailed benchmark analysis for the setup phase (Poisson3D, ND = 128, finest
grid) compares runtimes of all components of the proposed hybrid GPU implementation with
those of a base CPU implementation running on one CPU core.

back to CPU memory. Afterwards, the CPU part of the coarsening is applied and
the results are copied back to GPU. We can make several observations, here. First,
the CPU-based coarsening in the GPU implementation is the most expensive part
of the setup phase. Here, it has to be noted that the standard single-core perfor-
mance of the AMD Opteron 6274 processor is relatively low and Turbo CORE,
i.e. the AMD technology to overclock a single core, seems not to be switched on
on Titan. Second, our CPU coarsening implementation seems to be clearly slower
than coarsening implementations in e.g. AMG2013. This is not surprising, knowing
that the base library hypre has been developed since many years. Third, it would
be worth, overlapping the CPU data structure construction with major parts of
the GPU to CPU data transfer. However, this is not possible with CUSP in version
0.4.0, at least to the author’s knowledge, since an access to CUDA Streams is not
implemented in this version, yet.

In the final many-core parallel part of the C/F splitting, we compute the num-
ber of coarse nodes and get the fine to coarse node mapping as discussed in Sec-
tion 4.4. The reduction operation, to compute the number of coarse nodes, is
(surprisingly) slower on GPU than on CPU, but in general neglectable, due to low
overall performance impact. The exclusive scan operation for the node mapping is
faster on GPU by a factor of nine. This is the (acceptable) speedup delivered by the
thrust library and corresponds to an almost equal performance in a hypothetical
equally-priced-hardware comparison.

5.4.2 Interpolation

Next, we consider the di�erent interpolation strategies. In direct interpolation,
we first pre-compute the coe�cients �l

i by the (parallel) graph traversal strategy.

28 Peter Zaspel

This is fast on GPU with a speedup of beyond 200, i.e. even a decent speedup in
a multi-core to many-core comparison. The actual construction is by a factor of
25 faster on GPU than on CPU. This is in the range of a speedup of two, when
comparing equally priced hardware. This is a good result.

The overall time spend in the standard interpolation is much higher. Our par-
allelization strategy, to compute the set of interpolatory points, is successful, with
a speedup in the range of 300. However, seemingly, our CPU base implementation
to construct the modified system matrix, cf. Section 4.5, is too slow. Its parallelized
version achieves a speedup of roughly 20, which is acceptable. However, the general
approach to compute the modified system matrix has to be re-thinked. Afterwards,
the maxima for the negative non-diagonal weights have to be updated. As in the
C/F splitting, this is very fast on GPU. The computation of the coe�cients �l

i

for the modified system matrix is much slower than in the direct interpolation
case. First, we use a slightly di�erent version of the compute kernel here, since we
also include truncation. Second, the modified system matrix has a (significantly)
larger number of non-zeros per row. Thereby, each compute kernel has much more
sequential work to do, presumably leading to a higher thread divergence. Conse-
quently, only a moderate speedup of above 6 is achieved. Finally, the kernel to
compute direct interpolation is applied to the modified system matrix. This kernel
is again fast.

5.4.3 Restriction operator, Galerkin product, smoother

The final three steps of the setup phase are the construction of the restriction
operator by transposing the interpolation matrix, the triple matrix-product to
construct the Galerkin operator and the construction of the Jacobi smoother.
Transposing on GPU is more than a factor of 6 faster than on CPU. This speedup
is delivered by the CUSP library and is acceptable. The triple product is again
done using CUSP and is by a factor of 4 faster. We would have hoped to see higher
performance, here. The CUSP-based setup of the Jacobi smoother is fast on GPU,
anyway.

5.4.4 Summary and discussion

As it turns out, our general many-core parallelization strategies (parallel local
graph traversal, matrix construction, . . .) are fast. Whenever we use hand-imple-
mented kernels, we get a decent performance improvement. The speedup obtained
using the CUSP library is sometimes low. Note however that we do not use the lat-
est version of CUSP as we discussed before. Nvidia has more recently introduced
CUSPARSE, a commercialized version of CUSP, which might deliver higher per-
formance. Using this library is future work. Our way to construct the standard
interpolation by the modified system matrix seems to be a major performance
bottleneck. This has to be re-thinked. Finally, the major performance limitation
of the hybrid GPU AMG setup phase is the sequential CPU part. We still argue
that it is more important to get a robust numerical method. Therefore using the
sequential C/F splitting is favorable. Nevertheless, research on truely parallel and
robust versions of C/F splitting should be undertaken. In addition, we argue that
a strong GPU or many-core processor should be coupled with a few very fast CPU
cores, in the future. This would reduce the negative impact of tightly coupled
hybridization approaches as the one discussed here.

Title Suppressed Due to Excessive Length 29

Fig. 14 The finite element discretization of the Poisson problem (6) solved on a gear geometry
[2] is used as real-world application test case.

5.5 Real world application example

We finish this section with a more realistic application example. It is a Poisson
problem solved on the complex gear geometry shown in Fig. 14. The exact math-
ematical problem is

��u = �6 in D ,

u = 1 + x2
1 + 2x2

2 on �D ,
(6)

with D � R3 the inner part of the gear geometry. The exact solution of this
problem is u = 1 + x2

1 + 2x2
2 on the full domain D and thereby constant with

respect to the third coordinate direction. Note that it would be rather involved
to solve such a complex geometry problem with a geometric multigrid method.
However, AMG can solve such problems out-of-the-box.

The mesh that defines the geometry, i.e. �D, is available at [2]. An initial
meshing of D is done using tetgen 1.5.1-beta1 [30]. It generates meshes of tetrahe-
drons. To generate meshes at di�erent resolutions, we use the -a switch of tetgen
and impose maximum cell volumes of 22�l, with l � {0, . . . , 5}. Each mesh is
imported into FEniCS 2016.2.0 [3], a finite element framework, where it is used
in a standard linear finite element discretization of the PDE (6). FEniCS allows
to assemble a system matrix and right-hand side for the discretization using the
assemble system command. An export of matrix and right-hand side is done using
the linear algebra back end Eigen. The resulting system matrices and right-hand
sides are finally used in our hybrid GPU AMG.

Fig. 15 summarizes the convergence results for the gear application problem
on the left-hand side. We use the same parameters as in the performance and con-
vergence studies before. These lead to an almost perfect convergence for growing

30 Peter Zaspel

0 1 2 3

·105

0

20

40

60

80

unknowns

#
it

er
a
ti

o
n
s

convergence

standard interpolation

0 1 2 3

·105

0

2

4

unknowns
ru

n
ti

m
e

(i
n

se
c.

)

setup and solve phase performance

setup phase

solve phase

Fig. 15 Left: The hybrid GPU AMG shows excellent convergence results for growing problem
size of the discretized Poisson problem in a gear geometry. Right: The setup phase needs less
than three seconds for the largest problem size. The solve phase is then done in 0.2 seconds.

problem size with only a very slight increase of the number of iterations. Moreover,
we report the runtime for the setup and the solve phase on the right-hand side of
Fig. 15. For the largest problem size of more than 300,000 unknowns, the setup
phase lasts less than three seconds when using standard interpolation. As before,
the solve phase is very fast. Here, the hybrid GPU AMG only needs about 0.2
seconds to converge to the prescribed relative residual norm tolerance of 10�6.

6 Summary

In this work, we analysed recent approaches to run the setup and solve phase of
Ruge-Stüben algebraic multigrid on many-core hardware. Our focus was on the
numerical methods that were specifically used in [23], in which one of the gold-
standard commercial GPU AMGs is presented. Our empirical analysis showed
that the methods applied therein — together with an expert-class implementa-
tion — lead to a very good performance of the solver. However, depending on
the problem, the applied methods tend to show robustness issues, e.g. for larger
anisotropies. To overcome these, we proposed to use a more classical set of com-
ponents for AMG, leading to much more robust results. Unfortunately, this comes
at the disadvantage, to keep a small part of the setup phase on CPU.

Based on these considerations, we developed and presented strategies to still
parallelize a major part of the AMG setup phase on many-core hardware. Our
aim here was to show starters in the field of many-core computing, how to ap-
proach the many-core parallelization of the rather complex algorithms in AMG.
Our abstract strategies were realized in a specific hybrid GPU AMG code, which
we implemented on top of CUSP and using CUDA.

A detailed performance and convergence analysis finally showed that the im-
plemented code shows excellent convergence and robustness properties and has a
fast solve phase, when comparing it to the AMG2013 benchmark. However, the

Title Suppressed Due to Excessive Length 31

setup phase is rather slow. To understand this performance mismatch, we analyzed
each component of the setup phase intensively. It turned out that our paralleliza-
tion strategies always lead to a considerable performance improvement, at least by
comparison to our base CPU implementation. Nevertheless, our specific approach
to construct the standard interpolation (already on CPU) is not as optimal as
possible. Moreover, the CPU based part of the standard coarsening is surprisingly
slow due to a non-optimal GPU to single-core CPU ratio. Finally, we also studied
the performance in context of a real-world application.

Overall, we conclude that robustness in the numerical results comes, as ex-
pected, at a certain cost. More research on parallel methods for the AMG setup
should be done. However, from a technological point of view, it would be also fa-
vorable to always couple many-core processors with a few extremely fast standard
compute cores (with a fast interconnect). In that case, our discussed approach for
the setup phase should perform much better. If we focus more on the solve phase,
we conclude that it pays o� to have a robust method combined with many-core
parallelism. This is underlined by the excellent speedups reported for the solve
phase.

Acknowledgements This work is funded by the Swiss National Science Foundation (SNF)
under project number 407540 167186. The author was also partially supported by the project
EXAHD of the DFG priority programme 1648 “Software for Exascale Computing” (SPPEXA).
Furthermore, this research used resources of the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory, which is supported by the O�ce of Science of the
U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

References

1. AMG2013 benchmark (LLNL-CODE-659229). URL https://codesign.llnl.gov/
amg2013.php

2. GRABCAD Community. URL https://grabcad.com. The used gear model was uploaded
by Brian Majors on March 30, 2017.

3. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C.,
Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS Project Version 1.5. Archive of Numer-
ical Software 3(100) (2015)

4. Bell, N., Dalton, S., Olson, L.: Exposing fine-grained parallelism in algebraic multigrid
methods. SIAM Journal on Scientific Computing 34(4), C123–C152 (2012)

5. Bell, N., Garland, M.: Cusp: Generic parallel algorithms for sparse matrix and graph
computations (2012). URL http://cusplibrary.github.io. Version 0.4.0

6. Brannick, J., Chen, Y., Hu, X., Zikatanov, L.: Parallel unsmoothed aggregation alge-
braic multigrid algorithms on GPUs. In: O. Iliev, S. Margenov, P. Minev, P. Vassilevski,
L. Zikatanov (eds.) Numerical Solution of Partial Di�erential Equations: Theory, Algo-
rithms, and Their Applications, Springer Proceedings in Mathematics & Statistics, vol. 45,
pp. 81–102. Springer New York (2013)

7. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT Press
(2001)

8. De Sterck, H., Falgout, R.D., Nolting, J.W., Yang, U.M.: Distance-two interpolation for
parallel algebraic multigrid. Numerical Linear Algebra with Applications 15(2-3), 115–139
(2008). doi:10.1002/nla.559. URL http://dx.doi.org/10.1002/nla.559

9. Emans, M., Liebmann, M.: E�cient setup of aggregation AMG for CFD on GPUs. In:
PARA, pp. 398–409 (2013)

10. Emans, M., Liebmann, M., Basara, B.: Steps towards GPU accelerated aggregation AMG.
In: 2012 11th International Symposium on Parallel and Distributed Computing, pp. 79–86
(2012)

32 Peter Zaspel

11. Esler, K., Natoli, V., Samardzic, A.: GAMPACK (GPU accelerated algebraic multigrid
package). In: ECMOR XIII - 13th European Conference on the Mathematics of Oil Re-
covery (2012)

12. Falgout, R., Yang, U.: hypre: A library of high performance preconditioners. In: P. Sloot,
A. Hoekstra, C. Tan, J. Dongarra (eds.) Computational Science ICCS 2002, Lecture Notes
in Computer Science, vol. 2331, pp. 632–641. Springer Berlin Heidelberg (2002)

13. Griebel, M., Metsch, B., Oeltz, D., Schweitzer, M.: Coarse grid classification: A paral-
lel coarsening scheme for algebraic multigrid methods. Numerical Linear Algebra with
Applications 13(2–3), 193–214 (2006)

14. Haase, G., Liebmann, M., Douglas, C., Plank, G.: A parallel algebraic multigrid solver
on graphics processing units. In: W. Zhang, Z. Chen, C. Douglas, W. Tong (eds.) High
Performance Computing and Applications, Lecture Notes in Computer Science, vol. 5938,
pp. 38–47. Springer Berlin Heidelberg (2010)

15. Henson, V., Yang, U.: BoomerAMG: A parallel algebraic multigrid solver and precondi-
tioner. Appl. Numer. Math. 41(1), 155–177 (2002)

16. Kraus, J., Förster, M.: Facing the multicore-challenge II. chap. E�cient AMG on Hetero-
geneous Systems, pp. 133–146. Springer-Verlag, Berlin, Heidelberg (2012)

17. Labs, P.: Paralution v1.0.0 (2015). http://www.paralution.com/
18. Lewis, T.J., Sastry, S.P., Kirby, R.M., Whitaker, R.T.: A GPU-based MIS aggregation

strategy: Algorithms, comparisons, and applications within AMG. In: High Performance
Computing (HiPC), 2015 IEEE 22nd International Conference on, pp. 214–223. IEEE
(2015)

19. Liebmann, M.: E�cient PDE solvers on modern hardware with applications in medical
and technical sciences. Ph.D. thesis (2009)

20. Lukarski, D.: Parallel sparse linear algebra for multi-core and many-core platforms. Ph.D.
thesis, Karlsruher Instituts fr Technologie (KIT) (2012)

21. Lukarski, D.: PRALUTION user manual (2014). Version 0.7.0
22. Merrill, D., Garland, M., Grimshaw, A.: Scalable GPU graph traversal. In: Proceedings of

the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’12, pp. 117–128. ACM, New York, NY, USA (2012)

23. Naumov, M., Arsaev, M., Castonguay, P., Cohen, J., Demouth, J., Eaton, J., Layton, S.,
Markovskiy, N., Reguly, I., Sakharnykh, N., Sellappan, V., Strzodka, R.: AmgX: A library
for GPU accelerated algebraic multigrid and preconditioned iterative methods. SIAM
Journal on Scientific Computing 37(5), S602–S626 (2015)

24. Neic, A., Liebmann, M., Haase, G., Plank, G.: Algebraic Multigrid Solver on Clusters of
CPUs and GPUs, pp. 389–398. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

25. Park, J., Smelyanskiy, M., Yang, U.M., Mudigere, D., Dubey, P.: High-performance al-
gebraic multigrid solver optimized for multi-core based distributed parallel systems. In:
Proceedings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’15, pp. 54:1–54:12. ACM, New York, NY, USA (2015)

26. Ruge, J., Stüben, K.: Algebraic multigrid (AMG). In: S. McCormick (ed.) Multigrid
Methods, Frontiers in Applied Mathematics, vol. 3, chap. 4, pp. 73–130. SIAM (1987)

27. Rupp, K., Rudolf, F., Weinbub, J.: ViennaCL - A High Level Linear Algebra Library for
GPUs and Multi-Core CPUs. In: Intl. Workshop on GPUs and Scientific Applications,
pp. 51–56 (2010)

28. Rupp, K., Weinbub, J., Rudolf, F., Morhammer, A., Grasser, T., Jüngel, A.: A performance
comparison of algebraic multigrid preconditioners on CPUs, GPUs, and Xeon Phis. Under
Review (2015)

29. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA (2003)

30. Si, H.: Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math.
Softw. 41(2), 11:1–11:36 (2015)

31. Trottenberg, U., Schuller, A.: Multigrid. Academic Press, Inc., Orlando, FL, USA (2001)
32. Vratis Ltd.: SpeedIT 2.3 reference manual (2012)
33. Wagner, M., Rupp, K., Weinbub, J.: A comparison of algebraic multigrid preconditioners

using graphics processing units and multi-core central processing units. In: Proceedings
of the 2012 Symposium on High Performance Computing, HPC ’12, pp. 2:1–2:8. Society
for Computer Simulation International, San Diego, CA, USA (2012)

34. Wang, L., Hu, X., Cohen, J., Xu, J.: A parallel auxiliary grid algebraic multigrid method
for graphic processing units. SIAM Journal on Scientific Computing 35(3), C263–C283
(2013)

Title Suppressed Due to Excessive Length 33

35. Yang, U.: Parallel algebraic multigrid methods – High performance preconditioners. In:
A. Bruaset, A. Tveito (eds.) Numerical Solution of Partial Di�erential Equations on Par-
allel Computers, Lecture Notes in Computational Science and Engineering, vol. 51, pp.
209–236. Springer Berlin Heidelberg (2006)

36. Yang, U.M.: On long-range interpolation operators for aggressive coarsening. Numerical
Linear Algebra with Applications 17(2-3), 453–472 (2010)

 LATEST PREPRINTS

 No. Author: Title

 2016-16 A. Hyder
 Conformally Euclidean metrics on Rn with arbitrary total Q-curvature

 2016-17 G. Mancini, L. Martinazzi
 The Moser-Trudinger inequality and its extremals on a disk via energy
 estimates

 2016-18 R. N. Gantner, M. D. Peters
 Higher order quasi-Monte Carlo for Bayesian shape inversion

 2016-19 C. Urech
 Remarks on the degree growth of birational transformations

 2016-20 S. Dahlke, H. Harbrecht, M. Utzinger, M. Weimar
 Adaptive wavelet BEM for boundary integral equations: Theory and
 numerical experiments

 2016-21 A. Hyder, S. Iula, L. Martinazzi

Large blow-up sets for the prescribed Q-curvature equation in the Euclidean
space

 2016-22 P. Habegger
 The norm of Gaussian periods

 2016-23 P. Habegger
 Diophantine approximations on definable sets

 2016-24 F. Amoroso, D. Masser
 Lower bounds for the height in Galois extensions

 2016-25 W. D. Brownawell, D. W. Masser
 Zero estimates with moving targets

 2016-26 H. Derksen, D. Masser
 Linear equations over multiplicative groups, recurrences, and mixing III

 2016-27 D. Bertrand, D. Masser, A. Pillay, U. Zannier
 Relative Manin-Mumford for semi-abelian surfaces

 2016-28 L. Capuano, D. Masser, J. Pila, U. Zannier
 Rational points on Grassmannians and unlikely intersections in tori

 2016-29 C. Nobili, F. Otto
 Limitations of the background field method applied to Rayleigh-Bénard
 convection
 __

 Preprints are available under https://math.unibas.ch/research/publications

 LATEST PREPRINTS

 No. Author: Title

 2016-30 W. D. Brownawell, D. W. Masser
 Unlikely intersections for curves in additive groups over positive
 characteristic

 2016-31 M. Dambrine, H. Harbrecht, M. D. Peters, B. Puig
 On Bernoulli's free boundary problem with a random boundary

 2016-32 H. Harbrecht, J. Tausch
 A fast sparse grid based space-time boundary element method for the
 nonstationary heat equation

 2016-33 S. Iula
 A note on the Moser-Trudinger inequality in Sobolev-Slobodeckij spaces in
 dimension one

 2016-34 C. Bürli, H. Harbrecht, P. Odermatt, S. Sayasone, N. Chitnis
 Mathematical analysis of the transmission dynamics of the liver fluke,
 Opisthorchis viverrini

 2017-01 J. Dölz and T. Gerig, M. Lüthi, H. Harbrecht and T. Vetter
 Efficient computation of low-rank Gaussian process models for surface and
 image registration

 2017-02 M. J. Grote, M. Mehlin, S. A. Sauter
 Convergence analysis of energy conserving explicit local time-stepping
 methods for the wave equation

 2017-03 Y. Bilu, F. Luca, D. Masser
 Collinear CM-points

 2017-04 P. Zaspel
 Ensemble Kalman filters for reliability estimation in perfusion inference

 2017-05 J. Dölz and H. Harbrecht
 Hierarchical Matrix Approximation for the Uncertainty Quantification of
 Potentials on Random Domains

2017-06 P. Zaspel
Analysis and parallelization strategies for Ruge-Stüben AMG on many-core
processor

 __

 Preprints are available under https://math.unibas.ch/research/publications

