Algorithmische Mathematik:
Graphen & Anwendungen

Friihli ter 2018 N
P Zarsz)ellrlllgnsselmi(sa(l%;lykov X Universitat
' ' /<IN Basel
ﬁbungsblatt 4. zu bearbeiten bis Dienstag, 27.3.2018, 14:00 Uhr.

Aufgabe 1. (Zusammenhang)
Sei G = (V, E) ein ungerichteter Graph. Fiir alle () # X C V definieren wir die Hilfsgrofe

(X)) ={(z,w) e E:z e X,weV\X}.
Zeigen Sie folgende Aquivalenz:
VO #X CV:§X)# 0 < G zusammenhingend.

(4 Punkte)
Aufgabe 2. (Topologische Ordnung)

Sei G = (V, E) ein gerichteter Graph. Wir speichern G mit Adjazenzlisten, wobei zu
jedem Knoten v € V' zwei Listen gefithrt werden

o Adjazenzliste der Knoten w € post(v),
o Adjazenzliste der Knoten r € pre(v).

Zeigen Sie, dass mithilfe dieser Datenstruktur in linearer Zeit O (|V|+ |E|) entweder
eine topologische Ordnung oder ein Kreis in G gefunden werden kann.

Bemerkung. Die Definition der topologischen Ordnung fiir einen gerichteten Graphen
finden Sie in der Aufgabe 3 auf dem 3. Blatt.

(4 Punkte)
Aufgabe 3. (Tiefensuche/Breitensuche)
Gegeben sei der Graph G = (V, E) aus Abbildung

a) Geben Sie die Besuchsreihenfolge der Knoten an, wenn im Graphen G aus Abbil-
dung [1] eine Tiefensuche beginnend im Knoten ve mit Algorithmus 2.1 aus der Vor-
lesung durchgefiihrt wird. Skizzieren Sie zudem den DFS-Baum.

b) Geben Sie die Besuchsreihenfolge der Knoten an, wenn im Graphen aus Abbildung
eine Breitensuche beginnend im Knoten v; mit Algorithmus 2.1 aus der Vorlesung
durchgefiihrt wird. Skizzieren Sie zudem den BFS-Baum.

Aufgabe 4. (Tiefensuche/Breitensuche)

Implementieren Sie Algorithmen zur Tiefensuche bzw. Breitensuche ausgehend von Al-
gorithmus [I] Testen Sie Thre Implementierung an dem Graphen aus Abbildung [1] mit
Startknoten vq. Plotten Sie die resultierenden DFS- und BFS-Baume.

Bemerkung. Bei der Tiefensuche wird in der Zeile [3| derjenige Knoten v € @ aus-
gewihlt, der zuletzt zu @ hinzugefiigt wurde. In diesem Fall bezeichnet man die Imple-
mentierung fiir @ als einen LIFO-Stack (last in first out). Eine mégliche Umsetzung in
Matlab ist

<
iy
=4
w

vﬁk_.mk%
e

<
1\
=4
N

-4
w
<
=}

() @—©
— & -

Abbildung 1: Graph G und Adjazenzliste.

<
ot
<
=)

4
>
<
NI

TTTETTT
TT1T1 11711

>4
ot

: % Hinzufiigen von v

Q= [Q’U]

W N =

... % @ wird nicht verdndert
4: % Wihle w als das letzte Element in @ und entferne es aus @
5w = Q [end]
6: Q=QI[L:end—1].
Bei der Breitensuche wird in der Zeile [3| derjenige Knoten v €) ausgewihlt, der zuerst
zu () hinzugefiigt wurde. In diesem Fall bezeichnet man die Implementierung fiir) als
eine FIFO-Warteschlange (first in first out). Eine mogliche Implementierung in Matlab
sieht wie folt aus

1: % Hinzufiigen von v

2 Q= [Q? U]

3 ... % @ wird nicht verdndert
4: % Wihle w als das erste Element in @ und entferne es aus Q

5w = Q1]

6: Q=QI[2:end].

Algorithmus 1 (Graphendurchmusterung)

Input: Graph G = (V, E) und Startknoten s € V'
Output: gerichteter Baum G’ = (R, T) mit Wurzel s und R = {s} Upost*(s), T C F

R« {s},Q <« {s}, T« 0
while Q # () do
Wihle v € Q
if post(v)N(V\R) # 0 then
Wihle w € post(v) N (V \ R)
R+ RU{w},Q+ QU{w}, T+ TU{e}
else
Q«+— Q\{v}
end if
end while
: return (R, T)

— =
= o

