
1

Algorithmische Mathematik:

Graphen & Anwendungen

Frühlingssemester 2018
P. Zaspel und I. Kalmykov

Übungsblatt 4. zu bearbeiten bis Dienstag, 27.3.2018, 14:00 Uhr.

Aufgabe 1. (Zusammenhang)

Sei G = (V,E) ein ungerichteter Graph. Für alle ∅ 6= X (V definieren wir die Hilfsgröße

δ(X) := {(x,w) ∈ E : x ∈ X,w ∈ V \X} .

Zeigen Sie folgende Äquivalenz:

∀ ∅ 6= X (V : δ(X) 6= ∅ ⇐⇒ G zusammenhängend.

(4 Punkte)

Aufgabe 2. (Topologische Ordnung)

Sei G = (V,E) ein gerichteter Graph. Wir speichern G mit Adjazenzlisten, wobei zu
jedem Knoten v ∈ V zwei Listen geführt werden

• Adjazenzliste der Knoten w ∈ post(v),

• Adjazenzliste der Knoten r ∈ pre(v).

Zeigen Sie, dass mithilfe dieser Datenstruktur in linearer Zeit O (|V |+ |E|) entweder
eine topologische Ordnung oder ein Kreis in G gefunden werden kann.
Bemerkung. Die Definition der topologischen Ordnung für einen gerichteten Graphen
finden Sie in der Aufgabe 3 auf dem 3. Blatt.

(4 Punkte)

Aufgabe 3. (Tiefensuche/Breitensuche)

Gegeben sei der Graph G = (V,E) aus Abbildung 1.

a) Geben Sie die Besuchsreihenfolge der Knoten an, wenn im Graphen G aus Abbil-
dung 1 eine Tiefensuche beginnend im Knoten v2 mit Algorithmus 2.1 aus der Vor-
lesung durchgeführt wird. Skizzieren Sie zudem den DFS-Baum.

b) Geben Sie die Besuchsreihenfolge der Knoten an, wenn im Graphen aus Abbildung 1
eine Breitensuche beginnend im Knoten v1 mit Algorithmus 2.1 aus der Vorlesung
durchgeführt wird. Skizzieren Sie zudem den BFS-Baum.

Aufgabe 4. (Tiefensuche/Breitensuche)

Implementieren Sie Algorithmen zur Tiefensuche bzw. Breitensuche ausgehend von Al-
gorithmus 1. Testen Sie Ihre Implementierung an dem Graphen aus Abbildung 1 mit
Startknoten v1. Plotten Sie die resultierenden DFS- und BFS-Bäume.

Bemerkung. Bei der Tiefensuche wird in der Zeile 3 derjenige Knoten v ∈ Q aus-
gewählt, der zuletzt zu Q hinzugefügt wurde. In diesem Fall bezeichnet man die Imple-
mentierung für Q als einen LIFO-Stack (last in first out). Eine mögliche Umsetzung in
Matlab ist

2

v1

v2

v3v4

v5

v6

v7

v1

v2

v3

v4

v5

v6

v7

v3 v6 v2

v4 v3

v6

v5

v6

v7

v5

Abbildung 1: Graph G und Adjazenzliste.

1: % Hinzufügen von v
2: Q = [Q, v]
3: . . . % Q wird nicht verändert
4: % Wähle w als das letzte Element in Q und entferne es aus Q
5: w = Q [end]
6: Q = Q [1 : end− 1].

Bei der Breitensuche wird in der Zeile 3 derjenige Knoten v ∈ Q ausgewählt, der zuerst
zu Q hinzugefügt wurde. In diesem Fall bezeichnet man die Implementierung für Q als
eine FIFO-Warteschlange (first in first out). Eine mögliche Implementierung in Matlab
sieht wie folt aus

1: % Hinzufügen von v
2: Q = [Q, v]
3: . . . % Q wird nicht verändert
4: % Wähle w als das erste Element in Q und entferne es aus Q
5: w = Q [1]
6: Q = Q [2 : end].

Algorithmus 1 (Graphendurchmusterung)

Input : Graph G = (V,E) und Startknoten s ∈ V
Output : gerichteter Baum G′ = (R, T) mit Wurzel s und R = {s} ∪ post?(s), T ⊆ E

1: R← {s} , Q← {s} , T ← ∅
2: while Q 6= ∅ do
3: Wähle v ∈ Q
4: if post(v) ∩ (V \R) 6= ∅ then
5: Wähle w ∈ post(v) ∩ (V \R)
6: R← R ∪ {w} , Q← Q ∪ {w} , T ← T ∪ {e}
7: else
8: Q← Q \ {v}
9: end if

10: end while
11: return (R, T)

