
1

Algorithmische Mathematik:

Graphen & Anwendungen

Frühlingssemester 2018
P. Zaspel und I. Kalmykov

Übungsblatt 8. zu bearbeiten bis Dienstag, 24.4.2018, 14:00 Uhr.

Aufgabe 1. (Minimaler Schnitt)

Sei N = (G, c, s, t) ein Netzwerk mit G = (V,E). Ein Schnitt (S,T ) von N ist eine
(disjunkte) Zerlegung

V = S ⊍ T

der Knotenmenge V, so dass s ∈ S und t ∈ T . Die Kapazität eines Schnittes (S,T ) ist
gegeben durch

c(S,T ) = ∑
e−∈S,e+∈T

c(e).

Ein Schnitt (S,T ) ist minimal, wenn gilt

c(S,T ) ≤ c(S′, T ′) ∀Schnitte (S′, T ′) von N.

Bestimmen Sie zu dem Netzwerk N = (G, c, s, t) aus Abbildung 1 durch Vergleichen aller
möglichen Schnitte (S,T ) den Schnitt mit der minimalen Kapazität.

1 2

3 4

s t

3

4

8

7

1

4

2

5

6 6

6

Abbildung 1: Netzwerk für Aufgabe 1

(4 Punkte)

Aufgabe 2. (PageRank-Vektor)

Analog zu der Vorlesung betrachte wir den Webgraphen W = (V,E) aus Abbildung 2
(d.h. ohne die Gewichte) mit V - Menge von Webseiten, E - Links zwischen verschiedenen
Webseiten in V . Stellen Sie die zu W zugehörige Google-Matrix G auf und bestimmen
Sie den PageRank-Vektor πG.

(4 Punkte)



2

Aufgabe 3. (Floyd-Warshall)

Implementieren Sie den Algorithmus von Floyd-Warshall zur Berechnung der kürzesten
Wege für alle Knotenpaare s, t ∈ V in einem gewichteten gerichteten Graphen G =

(V,E, γ) mit konservativen Gewichten γ. Testen Sie Ihre Implementierung an dem Gra-
phen aus Abbildung 2.

1

2 5

3 4

3 −4

8

7

1
4

2

−5

6

Abbildung 2: Graph für die Aufgaben 2 und 3

Algorithmus (Floyd-Warshall)

Input : gerichteter, gewichteter Graph G = (V,E, γ), V = {1, . . . , n}, γ konservativ.
Output : l∶V × V → R, p∶V × V → V in Matrixform [lij]

n
i,j=1, [pij]

n
i,j=1,

mit l(i, j) = lij und p(i, j) = pij , lij - kürzeste Weglänge von i nach j,
(pij , j) - letzte Kante auf dem kürzesten Weg von i nach j.
Falls j /∈ post⋆(i), ist lij = ∞.

1: ∀(i, j) ∈ E ∶ lij ← γ((i, j))
2: ∀(i, j) ∈ (V × V ) ∖E, i ≠ j ∶ lij ←∞

3: ∀i ∈ V ∶ lii ← 0
4: ∀i, j ∈ V ∶ pij ← i
5: for k = 1, . . . , n do
6: for i = 1, . . . , n mit i ≠ k do
7: for j = 1, . . . , n mit j ≠ k do
8: if lij > lik + lkj then
9: lij ← lik + lkj

10: pij ← pkj
11: end if
12: end for
13: end for
14: end for
15: return [lij]

n
i,j=1, [pij]

n
i,j=1

(4 Punkte)


