Skript zur Vorlesung
im
FS 2025

Helmut Harbrecht, Michael Multerer & Marc Schmidlin

Version vom 5. Juni 2025

INFORMATIONEN ...

zu den Ubungen

Auf den Ubungsblittern kommen Theorie- und Programmieraufgaben vor. Die Ausgabe und
Abgabe der Ubungsblitter findet jeweils am Montag statt. Fiir die Theorieaufgaben gelten
folgende Regeln:

* Die Losungen sind handschriftlich (Papier oder Tablet) zu schreiben.

* Die Abgaben erfolgen dabei entweder physisch an der Spiegelgasse 1 oder digital iiber
ADAM durch jeweils ein PDF-File pro Ubungsblattserie. Abgegebene PDF-Files miissen
direkt A4-Papier druckbar sein.

Fiir die Programmieraufgaben gelten folgende Regeln:

* Die Losungen sind in MATLAB zu programmieren.

* Die Abgabe der Codes erfolgt dabei immer digital tiber ADAM durch jeweils ein
ZIP-File pro Ubungsblattserie. Die ZIP-Files enthalten dabei jeweils alle notwendi-
gen Sourcecode-Files. Falls in den Programmieraufgaben Fragen zu beantworten sind,
werden allfillige Antworten mit den Theorieaufgaben abgegeben.

Die Riickgabe der korrigierten Abgaben erfolgt physisch in der Ubungsstunde.

zu der Leistungsiiberpriifung

Die Vorlesung Algorithmische Mathematik: Graphen und Anwendungen wird als eine kombinierte
Veranstaltung “Vorlesung mit Ubung” (6KP) mit lehrveranstaltungs-begleitender Leistungs-
tiberpriifung gehalten, welche wie folgt angedacht ist:

e In den Ubungsblitter sind 50% der Punkte, von den abzugebenden Ubungsaufgaben, zu
erreichen, um die Zulassung fiir die miindliche Priifung zu erhalten.

* Es ist keine schriftliche Priifung vorgesehen.

* Die miindliche Priifung (Dauer 30min) wird benotet (Skala 1-6 0,5). Die miindlichen
Priifungen finden vom 04-06.06.2025 statt.

Wenn Sie die Zulassung fiir die miindliche Priifung erhalten, wird die Veranstaltung fiir
Sie mit der Note der miindlichen Priifung benotet. Haben Sie jedoch die Zulassung fiir die
miindliche Priifung nicht erhalten, diirfen Sie nicht an der miindlichen Priifung teilnehmen
und die Veranstaltung wird fiir Sie mit einer ungeniigenden Note bewertet.

VORWORT

Diese Mitschrift kann und soll nicht ganz den Wortlaut der Vorlesung wiedergeben. Sie soll
das Nacharbeiten des Inhalts der Vorlesung erleichtern.

Literatur zur Vorlesung:

* H. Harbrecht und M. Multerer: Algorithmische Mathematik: Graphen, Numerik und Proba-
bilistik, Springer Spektrum

* N. Blum: Algorithmen und Datenstrukturen, Oldenbourg-Verlag

* B. Korte und]. Vygen: Combinatorial Optimization: Theory and Algorithms, Springer-Verlag

INHALTSVERZEICHNIS

Grundlagen 5
1.1 Graphen 5
1.2 Digraphen 8
1.3 Implementation von Graphen & Digraphen 12
Etwas Graphentheorie 16
21 Zusammenhang Lo 16
22 Rundweg 19
23 Zyklus 21
Graphendurchmusterung 24
Kiirzeste- Wege-Probleme 30
Netzwerkflussprobleme 38
Bipartites Matching 48

GRUNDLAGEN

1.1 Graphen

Definition 1.1 Ein Graph ist ein Paar G = (V, E), bestehend aus endlicher Menge V von
Knoten (vertices) und einer endlichen Menge von ungeordneten Paaren {v, w} C V,

Ec{XcV:I|X|=2},

den Kanten (edges). Eine Kante e = {v, w} € E steht fiir eine Verbindungen zwischen den
verschiedenen Knoten v und w, da {v, w} = {w, v} gilt, ist dieser Verbindung keine Richtung
zugeordnet; sprich die Kante e ist ungerichtet.

Achtung: 'Wie zumindest in einigen Bereichen in der mathematischen Literatur nicht uniib-
lich, kann die Terminologie in der Graphentheorie variieren. Dabei kann der gleiche Term, je
nach Quelle, verschiedene (aber eben auch ihnliche) Bedeutungen annehmen und, umgekehrt
verschiedene Terme exakt die gleiche Bedeutung haben. In der Literatur wird zum Beispiel,
was hier als Graph bezeichnt wird, auch ungerichteter Graph genannt.

Beispiel 1.2 Graph G = ({v, w, X, y}, {{v, wh, {w, x}, {v, x}, {x, y}}):

Definition 1.3 Sei G = (V, E) ein Graph. Ein Weg in G ist eine Knotenfolge
T = Vp,V1,...,0p

mit 7 > 1 und {v;,v;11} € E, i = 0,1,...,r — 1. Wir sprechen von einem Weg, der von v nach
w fithrt, wenn der Anfangsknoten vy = v und der Endknoten v, = w ist. Die Liinge || von
7 ist r, das heisst, die Anzahl der Kanten, die in 7 durchlaufen werden. Ein Knoten w heisst
von einem Knoten v erreichbar, falls ein Weg 7 = vy, vy, ..., v, in G existiert, so dass v = vy und
W =0y

1 GRUNDLAGEN

Beachte: 1In der Literatur wird ein Weg auch Pfad genannt.

Beispiel 1.4 Beispiele fiir Wege in dem Graphen von Beispiel 1.2 sind

* m; =v,w (Linge 1),

* w2 =v,w,x (Linge 2),

* 13 = v, W, X,Y,x,y (Linge 5) und

e 4 = x,0,w,x,) (Linge 4). L]

Definition 1.5 Sei G = (V, E) ein Graph und ein Weg
T =00, V1, ..., Up

mit 7 > 1 gegeben, dann nennen wir den Weg 7 einen Rundweg, falls vy = v, gilt.

Definition 1.6 Sei G = (V, E) ein Graph und ein Weg
T = Vg, V1, ..., Uy
mit r > 1 gegeben. Der Weg 7 heisst einfach, falls gilt:
* Ug, V1, ..., U, sind paarweise verschieden

* oder 7 ist ein Rundweg und vy, vy, ..., ,—; sind paarweise verschieden.

Beispiel 1.7 Der Graph aus Beispiel 1.2 besitzt die einfachen Rundwege 7; = v, w, x, v und
2 = X, Y, x. Dementgegen ist 73 = v, w, X, y, X, v ein Rundweg, welcher nicht einfach ist. ¢

Definition 1.8 Essei G = (V, E) ein Graph und v € V. Wir definieren:

* die Menge der (direkten) Nachbarn von v

post(v) :={w eV : {v,w} € E},

* die Menge aller von v erreichbaren Knoten
post™(v) :={w €V : es existiert ein Weg von v nach w}.

Beispiel 1.9 Fiir den Graphen aus Beispiel 1.2 ist

post(x) = {v, w, y}, post™(x) = {v, w, x, y}. -

Definition 1.10 Essei G = (V, E) ein Graph und v € V. Der Grad von v ist gegeben durch

deg(v) := | post(v)|.

1.1 Graphen

Beachte: Insbesondere gilt

> deg(v) = 2[E|.

veV

Definition 1.11 Essei G = (V, E) ein Graph. Ein Graph G’ = (V’, E) heisst Teilgraph von
G, falls V/ C V und E’ C E gelten.

Beachte: Da G’ selber ein Graph sein muss, gilt
ECEn{XCV' :|X|=2}

Beispiel 1.12 Der Graph rechts ist ein Teilgraph des Graphs von Beispiel 1.2, der links

keiner:
o ; ®

)

Definition 1.13 Essei G = (V, E) ein Graph. Fiir eine Knotenteilmenge V’ C V definieren
wir den von V” induzierten Teilgraphen von G, durch G[V’] = (V/, E’) mit

E =En{XcV' :|X|=2}.

Beachte: Offensichtlich ist jeder induzierter Teilgraph immer ein Teilgraph.

Beispiel 1.14 Der von {v, x, y} induzierte Teilgraph des Graphs von Beispiel 1.2 ist:

L)

Definition 1.15 Esseien G = (V,E) und G’ = (V’, E’) zwei Graphen. Die Graphen G und
G’ heissen isomorph, falls es eine Abbildung ¢ : V — V’ gibt, wobei

* ¢ bijektiv ist und
« B/ = {{p(v), p(w)} : {v,w} € E } erfille ist.

Eine solche Abbildung ¢ nennen wir einen Graphenisomorphismus von G und G’.

1 GRUNDLAGEN

Grundlegend am Graphenisomorphismus ist, dass er die Graphenstruktur des einen Graphen
exakt auf den anderen abbildet. Das heisst wenn man nur die Graphenstruktur betrachtet
kann man zwei isomorphe Graphen nicht unterscheiden: in dem Sinne sie sind also lediglich
unterschiedliche Beschreibungen der gleichen abstrakten Graphenstrukur.

Beispiel 1.16 Der Graph G = ({v, w, X, y}, {{v, wh {w, x}, {v, x}, {x, y}}) ist isomorph zu
dem Graphen G’ = ({b.d, a,c}, {{a,b}.{b,d}.{a, c}. {a.d} }). *

Um zu tiberpriifen, ob zwei Graphen isomorph sind, muss man einen Isomorphismus zwischen
den Graphen finden. A priori kommt gemiss Definition jede bijektive Abbildung zwischen V/
und V’ potenziell in Frage. Folgende Aussage schrinkt die potenziellen bijektiven Abbildung
¢ : V — V’ fiir einen allfilligen Graphenisomorphismus weiter ein.

Satz 1.17 Seien G = (V,E) und G’ = (V',E") zwei isomorphe Graphen. Dann erfiillt jeder
Graphenisomorphismus ¢ : 'V — V’

deg(v) = deg (¢(v))
fiirallev € V.

Beweis. Trivial. '

1.2 Digraphen

Definition 1.18 Ein Digraph ist ein Paar G = (V, E), bestehend aus einer endlicher Menge
V von Knoten (vertices) und einer endlichen Menge von geordneten Paaren (v, w) € V xV,

EQ{(v,w)EVxV : viw},

den Kanten (edges). Eine Kante e = (v, w) € E steht fiir eine Verbindungen zwischen den
verschiedenen Knoten v und w, da (v, w) # (w,v) gilt, ist dieser Verbindung eine Richtung
zugeordnet; sprich sie ist gerichtet. Wir nennen v den Anfangsknoten und w den Endknoten der
Kante e.

Beachte: In der Literatur wird ein Digraph auch gerichteter Graph genannt.

Beispiel 1.19 Digraph G = ({v,w, x, y} {0, w), (w, x), (v, x), (x,), (y, x)}):

1.2 Digraphen

Bemerkung In Digraphen werden manchmal auch Kanten der Form (v, v) zugelassen. Man
spricht dann von Schleifen. ¢

Definition 1.20 Sei G = (V, E) ein Digraph. Ein &g in G ist eine Knotenfolge

T = V9,V1,...,0p

mitr > 1 und (v;,v+1) € E,i = 0,1,...,r — 1. Wir sprechen von einem Weg, der von v nach
w fithrt, wenn der Anfangsknoten vy = v und der Endknoten v, = w ist. Die Linge || von
7 ist r, das heisst, die Anzahl der Kanten, die in 7 durchlaufen werden. Ein Knoten w heisst
von einem Knoten v erreichbar, falls ein Weg 7 = vy, vy, ..., v, in G existiert, so dass v = vy und
w =0,

Beispiel 1.21 Beispiele fiir Wege in dem Digraphen von Beispiel 1.19 sind

* m; =v,w (Linge 1),
* 1, =v,w,x (Linge 2) und
* 3 =0,w,x,Y,X,y (Linge 5). %

Definition 1.22 Sei G = (V, E) ein Digraph und ein Weg
T = Vg, V1, ...,Ur

mit 7 > 1 gegeben, dann nennen wir den Weg 7 einen Rundweg, falls vy = v, gilt.

Definition 1.23 Sei G = (V, E) ein Digraph und ein Weg
T =0, U1, ..., Ur
mit r > 1 gegeben. Der Weg 7 heisst einfach, falls gilt:
* Ug, Uy, ..., U, sind paarweise verschieden

* oder 7 ist ein Rundweg und vy, vy, ..., U,—1 sind paarweise verschieden.

Beispiel 1.24 Der Digraph aus Beispiel 1.19 besitzt als einzigen einfachen Rundweg den
Rundweg 7 = x, y, x respektive mit y als Anfangsknoten 77 = y, x, y. In dem wir den Rund-
weg 71 mehrmals aneinander hingen kénnen wir die weiteren Rundwege 7, = y, x, y, x, ¥,
T3 = ¥,X,Y,X,Y,X,Y etc. generieren. Diese sind aber jeweils per definition nicht einfach.
Weiter gibt es keinen Rundweg, der die Knoten v oder w enthilt. 2]

Definition 1.25 Essei G = (V, E) ein Digraph und v € V. Wir definieren:

* die Menge der (direkten) Nachfolger von v

post(v) :=={w eV : (v,w) € E},

1 GRUNDLAGEN

* die Menge der (direkten) Vorginger von v
pre(v) ={w eV : (w,v) € E},
* die Menge aller von v erreichbaren Knoten

post™(v) :={w €V : es existiert ein Weg von v nach w},

* die Menge aller Knoten, die v erreichen kdnnen,

pre*(v) :=={w eV : v € post*(w)}.

Ein Knoten w € post(v) U pre(v) ist ein Nachbar von v.

Beachte: post(v) und pre(v) kénnen véllig verschieden sein, ebenso post™(v) und pre*(v).

Beispiel 1.26 Fiir den Digraphen aus Beispiel 1.19 ist

post(v) = {w, x}, post*(v) = {w, x, y}, pre(v) = pre*(v) = @

und

post(y) = {x}, post’(y) = {x,y}. *
Definition 1.27 Essei G = (V,E) ein Digraph und v € V. Der Eingangsgrad von v ist
gegeben durch

indeg(v) = | pre(u)|
und der Ausgangsgrad durch

outdeg(v) := |post(v)|.
Schliesslich definieren wir den Grad von v vermittels

deg(v) = indeg(v) + outdeg(v).

Beachte: Es gilt zwingend:

Z outdeg(v) = Z indeg(v) = |E|.

veV veV

Definition 1.28 Essei G = (V, E) ein Digraph. Ein Digraph G’ = (V’, E’) heisst Teildigraph
von G, falls V/ C V und E’ C E gelten.

10

1.2 Digraphen

Beachte: Da G’ selber ein Digraph sein muss, gilt
E'CEn {(v,w)eV’xV’ : v;tw}.

Beispiel 1.29 Der Digraph rechts ist ein Teildigraph des Digraphs von Beispiel 1.19, der
links keiner:

£

Definition 1.30 Essei G = (V, E) ein Digraph. Fiir eine Knotenteilmenge V/ C V definie-
ren wir den von V” induzierten Teildigraphen von G, durch G[V’] = (V/, E’) mit

E =En{(@w) eV xV :v=w}.

Beachte: Offensichtlich ist jeder induzierter Teildigraph immer ein Teildigraph.
Beispiel 1.31 Der von {v, x, y} induzierte Teildigraph des Digraphs von Beispiel 1.19 ist:

L)

Definition 1.32 Esseien G = (V,E) und G’ = (V’, E”) zwei Digraphen. Die Digraphen G
und G’ heissen isomorph, falls es eine Abbildung ¢ : V — V” gibt, wobei

* ¢ bijektiv ist und
e« E' = {(¢(v),¢(w)) :(v,w) € E} erfiillt ist.

Eine solche Abbildung ¢ nennen wir einen Digraphenisomorphismus von G und G’.

Satz 1.33 Seien G = (V,E) und G’ = (V', E’) zwei isomorphe Digraphen. Dann erfiillt jeder
Digraphenisomorphismus ¢ : V. — V’

indeg(v) = indeg (¢(v)), outdeg(v) = outdeg (¢(v))
fiirallev € V.

Beweis. Trivial. o

11

1 GRUNDLAGEN

Definition 1.34 Essei G = (V, E) ein Digraph. Dann ist der von G induzierte Graph G’
gegeben durch G’ = (V, E’) mit

E = {{v, w} : (v,w) € E}.

Beispiel 1.35 Der von dem Digraph von Beispiel 1.19 induzierte Graph ist genau der Graph
von Beispiel 1.2. &
Definition 1.36 Essei G = (V, E) ein Graph. Dann ist der von G induzierte Digraph G’
gegeben durch G’ = (V, E’) mit

o= {(v, w) : {v,w} € E}.

Beispiel 1.37 Der von dem Graph von Beispiel 1.2 induzierte Digraph ist nicht der Digraph
von Beispiel 1.19. Der Digraph von Beispiel 1.19 ist lediglich ein echter Teildigraph. -

1.3 Implementation von Graphen & Digraphen

Die einfachste Art Digraphen im Rechner zu speichern ist die Verwendung von Adjazenzma-
trizen.

Definition 1.38 Ein Digraph G = (V,E) mit V = {1, 2, ..., n} kann durch eine Adjazenzma-
trix oder Nachbarschaftsmatrix A = [a; ;]7 ;= € R™" mit

0, sonst,

{1, falls (i, j) € E,
al-,j =

dargestellt werden.

Definition 1.39 Ein Graph G = (V,E) mitV = {1, 2, ..., n} kann durch die Adjazenzmatrix
des durch G induzierten Digraphen dargestellt werden.

Beispiel 1.40 Der Digraph G

1.3 Implementation von Graphen & Digraphen

und sein induzierten Graphen G’ besitzen die Adjazenzmatrizen

01100 01100
00100 10100
A=[0 0 0 1 1/, A=|1 10 1 1]. o
00000 00100
00100 00100

Bemerkung Bei Graphen ist A stets symmetrisch, das heisst es gilt a;; = a;; fiir alle
1<i,j<n. ¢

Die Adjazenzmatrix besitzt immer den Speicherplatzbedarf |V|?, unabhingig von der Anzahl |E|
der Kanten. Platzefhizienter ist die Darstellung von Digraphen G = (V, E) durch Adjazenzlisten:

Definition 1.41 Die Adjazenzliste oder Nachbarschaftsliste zu einem Knoten v € V enthilt
einen Knoten w € V genau dann, wenn w € post(v) gilt.

Beispiel 1.42 Die Adjazenzlisten zum Digraphen aus Beispiel 1.40 werden wie folgt darge-
stellt:

BT
Sk
b

Adjazenzlisten kénnen gespeichert werden als einfach verkettete Listen mit Elementen der Form

AEEEE

)

struct node
{ unsigned int number;
struct node *next;

¥

Sind A und B vom Typ struct node, so enthilt A.number beziehungsweise B.number die
Nummer des Knotens, wihrend die Zuweisung

A.next = &B;

B als Nachfolger von A definiert. Anstelle von B kann man dann auch A. next schreiben. Das
Ende der Liste wird durch

13

1 GRUNDLAGEN

B.next = NULL;

markiert. Merken muss man sich jeweils den Anfang der Liste, auch Listenkopf (head) genannt.
Dies geschieht meist durch ein Feld der Linge |V.

Fiir Digraphen haben Adjazenzlisten den Seicherplatzbedarf [V| + |E|. Fiir Graphen ist der
Platzbedarf |V| + 2|E|, da jede Kante in zwei Adjazenzlisten vorkommt.

Bemerkung Eine weitere Méglichkeit ist es, jede Adjazenzliste statt als einfach verkette
Liste direkt als Feld zu speichern. Fiir einen Knoten v € V muss das Feld dann jeweils die Linge
outdeg(v) haben. Beispielsweise wuerden die Adjazenzlisten zum Digraphen aus Beispiel 1.40
dann wie folgt dargestellt werden:

HuyEINEl

)
B

B
B

ElnEl

In MATLAB kann man diese Variante umsetzen in dem man die Adjazenzlisten als Vektoren in
ein cell array der Linge V| speichert. ¢

Unter der Annahme, dass der maximale Ausgangsgrad eines Digraphen nicht zu gross ist,
kann man anstatt den einfach verketteten Listen oder den Vektoren, die Adjazenzliste auch
als Spalten in eine rechteckige Matrix speichern. Dabei hat die Matrix dann |V| Spalten und
max,cy outdeg(v) Reihen. Um die Adjazenzlisten alle gleich lang zu machen ergéinzt man sie
mit Nullen. Fiir den Digraphen aus Beispiel 1.40 erhilt man dann:

2 3 40 3
3050 0]

Wihrend wir diese einfache Variante in den Uebungen benutzen werden, ist es auch angebracht
zu bemerken, dass es auch rafhiniertere Darstellungen von Digraphen gibt, welche insbesondere
auch fiir die Speicherung von diinnvernetzen Digraphen gebriulich sind:

Bemerkung * Beim coordinate list (COO) Format speichert man in zwei Felder der
Linge |E| jeweils den Anfangsknoten in dem einen Feld und den Endknoten in dem

14

1.3 Implementation von Graphen & Digraphen

anderen Feld an der gleichen Stelle und dies fiir alle Kanten. Fiir den Digraphen aus
Beispiel 1.40 hat man zum Beispiel:

IEENEE
2] [3] [4] [3] [3] [5]

Ein Nachteil dieser Darstellung ist, dass man jeweils Suchen muss, um herauszufinden,
ob eine Kante im Graph existiert oder nicht.

* Um das COO Format zu verbessern kann man die Reihenfolge sortieren. Dabei méchte
man die Reihenfolge so wihlen, dass die Anfangsknoten aufsteigend sortiert sind, und
die Endknoten zum gleichen Anfangsknoten auch aufsteigend sortiert sind. Fiir den
Digraphen aus Beispiel 1.40 hat man zum Beispiel:

]] (2] 5] [=] [5]
(2] [3] (3] [] [5] [

* Im sortierten COO Format sieht man, dass die Sortierung der Anfangsknoten eine
Redundanz offenbart. Es ist nicht nétig die Anfangsknoten als Feld zu merken, sondern
es reicht sich fiir jeden Knoten zu merken, wo der potenziell erste Eintrag in dem
Endknotenfeld ist. Dies ergibt genau das compressed sparse row (CSR) Format. Fiir den
Digraphen aus Beispiel 1.40 hat man zum Beispiel:

1] (3] [« [¢] [¢]
2] [3) 3] (4] [5) 3]

Der Vorteil dieses Formats ist, dass es sehr speicherefhizient ist und die Existenz von
Kanten auch efhizient bestimmt werden kann. Ein Nachteil ist, dass das Einfiigen oder
Lschen von Kanten generell inefhizient ist. ¢

Bemerkung Leicht modifiziert eignen sich die Formate COO und CSR wie auch andere,
um diinn besetzte Matrizen effizient abzuspeichern. Die Indices jedes Nichtnull-Eintrages
wird als Kante in einem Digraphen verstanden, wobei nun der Kante der Werst des Eintrages
zugeordnet wird. ¢

15

ETwAs GRAPHENTHEORIE

2.1 Zusammenhang

Definition 2.1 SeiG = (V, E) ein Graph und C C V. C heisst zusammenhingend, falls je zwei
Knoten v,w € C, v # w, voneinander erreichbar sind, das heisst, falls gilt w € post™(v) (oder
dquivalent v € post*(w)). C heisst Zusammenhangskomponente von G, falls C eine nicht-leere
maximale zusammenhingende Knotenmenge ist. Maximalitit bedeutet hier, dass C in keiner
anderen zusammenhingenden Menge C’ C V echt enthalten ist (also C # C’). Der Graph G
heisst zusammenhingend, falls V zusammenhingend ist.

Beispiel 2.2
* Ein zusammenhingender Graph ist:
/N N

* Ein unzusammenhingender Graph mit drei Zusammenhangskomponenten ist:

A7 N

Offenbar sind die Zusammenhangskomponenten eines Graphs die Aquivalenzklassen der

Knotenmenge V unter der Erreichbarkeits-Aquivalenzrelation =", wobei

v=w: < {v}Upost’(v) = {w}U post*(w).

Insbesondere zerfillt G in paarweise disjunkte Zusammenhangskomponenten Cy,C, ..., C,
mit

r r
V= UC;’, E = UEi>
i=1 i=1
wobei E; .= EN{X CC; : |X|=2}.

16

2.1 Zusammenhang

Satz 2.3 Sei G = (V,E) ein Graph mit n = |V| > 1 Knoten sowie m = |E| Kanten, dann gilt:
Aus G zusammenhéngend folgt m > n — 1.

Beweis. Wir beweisen die Aussage durch Induktion nach n. Firn =1folgtm=0=n—1;
im Fall n = 2 ist G zusammenhingend genau dann, wenn m = 1 = n — 1. Wir nehmen nun
an, dass n > 3 und G zusammenhingend ist. Wihle v € V, so dass

deg(v) = n’lel‘l}l deg(w) =: k.

Es gilt k > 0, denn sonst wire v ein isolierter Knoten, was im Widerpruch zu G zusammen-
hingend steht. Im Fall k > 2 folgt

2m:2|E|=Zdeg(w)2n~k22~n
wevivk—“

und folglichm >n >n—1.

Fiir k = 1 ergibt sich die Aussage wie folgt: Es sei G’ = (V/,E’) der induzierte Graph,
der durch Streichen des Knotens v sowie der ausgehenden Kante entsteht. Mit G ist auch G’
zusammenhingend und nach Induktionsvoraussetzung folgt wegen |V’| = n—1und |[E’| = m—1

m—-1=E|>mh-1)—-1=n-2,

das heisst m >n — 1. 'y

Definition 2.4 Sei G = (V, E) ein Digraph und C C V. Dann heisst C zusammenhingend,
falls C in dem von G induzierten Graphen zusammenhingend ist.

Satz 2.5 Sei G = (V,E) ein Digraph mit n = |V| > 1 Knoten sowie m = |E| Kanten, dann gilt:
Aus G zusammenhéngend folgt m > n — 1.

Beweis. Trivial. o

Definition 2.6 Ein Digraph G = (V, E) heisst stark zusammenhingend, falls fiir jedes Paar
von Knoten v, w € V mitv # w gilt v € post*(w) und w € post*(v), das heisst, es gibt einen
Weg von v nach w und einen Weg von w nach v. Die starken Zusammenhangskomponenten sind
die Kontenmengen der maximalen stark zusammenhingenden Teildigraphen.

Beispiel 2.7 Der Digraph

17

2 ETwAS GRAPHENTHEORIE

ist stark zusammenhingend. Hingegen besteht der nicht stark zusammenhingender Digraph

O .

aus den starken Zusammenhangskomponenten {v}, {w}, {x, y}. *

Hinsichtlich der starken Zusammenhangskomponenten ist es oft niitzlich, den so genannten
kondensierten Digraphen zu betrachten. Dieser fasst die Knotenmengen der starken Zusammen-
hangskomponenten zu einzelnen Knoten zusammen.

Definition 2.8 Fiir einen Digraphen G = (V, E) seien die starken Zusammenhangskompo-
nenten gegeben durch

G = (Vi En(V;x V) firi=1,2,..,p
mit V1, V5, ..., V, C V. Der Digraph G* = (V*, E*) mit
V' ={Vi, V... Vp} und E* = {(V;,V)) €V'xV" :i% jund En(V;ixV)) =0}
heisst kondensierter Digraph zu G.

Beispiel 2.9 Der Digraph

hat den kondensierten Digraph

o

bestehend aus den starken Zusammenhangskomponenten {v}, {w}, {x, y}. -

18

2.2 Rundweg
2.2 Rundweg

Definition 2.10 Ein Eulerscher Rundweg in einem Graphen oder Digraphen G = (V, E) ist ein
Rundweg, der jede Kante e € E genau einmal enthilt. Ist G ein Graph, so nennen wir G Eulersch,
falls der Grad jedes Knotens gerade ist. Ein Digraph ist Eulersch, falls indeg(v) = outdeg(v)
fur alle v € V gilt.

Basierend auf dieser Definition haben wir den folgenden berithmten Satz, der Leonhard Euler
zugeschrieben wird.

Satz 2.11 Ein zusammenhingender Graph oder Digraph G = (V, E) besitzt genau dann einen
Eulerschen Rundweg, wenn er Eulersch ist.

Beweis. Die Bedingung ist notwendig, da ein Knoten v € V, der k-mal in einem Eulerschen
Rundweg vorkommt (oder k + 1 mal, wenn es sich um den Anfangs- und Endknoten handelt),
im gerichteten Fall

indeg(v) = outdeg(v) =k
und im ungerichteten Fall
deg(v) = 2k

erfiillen muss.

Dass die Bedingung auch hinreichend ist, sicht man wie folgt ein: Sei
T = Vg, V1, ...,Ur

der lingste Weg, in dem jede Kante aus E hochstens einmal vorkommt. Insbesondere muss in
diesem Weg jede Kante enthalten sein, die v, verlisst. Das bedeutet aber sofort vy = v, wegen
der Bedingung an den Knotengrad. Angenommen 7 enthilt nicht alle Kanten, das heisst, es
gibt eine Kante e = (w1, wy) € E oder e = {wy, wy} € E, sodass e # (v;, v;4+1) beziechungsweise
e # {v;,vi41} fiiralle i = 0, ...,r — 1. Da G zusammenhingend ist, muss nun entweder w; oder
wy in 7 enthalten sein. Ist nun beispielsweise w; = v; in 7 enthalten, so ist

f[= Vi, Uit15 -5 Up, U1, ... Uj—1, Uj, W2

ein lingerer Weg, in dem jede Kante genau einmal vorkommt. o

19

2 ETwAS GRAPHENTHEORIE

Zu Zeiten Eulers floss durch die Stadt Konigsberg der Fluss Pregel. In diesem Fluss gab es
eine Insel, hinter der sich der Fluss teilte. Die vier resultierenden Landstiicke waren durch
insgesamt sieben Briicken verbunden. Hieraus ergab sich die Fragestellung, ob es moglich wire
einen Rundweg zu finden, der jede Briicke nur genau einmal passiert. Die vorliegend Situation
ist im vorangestellten Multigraphen (hierin sind auch parallele Kanten zugelassen) schematisch
dargestellt. Der soeben bewiesene Satz sagt nun aus, dass in der vorliegenden Konfiguration
kein solcher Rundweg existiert.

Satz 2.12 Sei G = (V, E) ein Graph oder Digraph und

JT = Vg, V15 ...,Up
mit r > 1 ein Weg. Wenn 1t nicht einfach ist, dann kann 7t aus einem einfachen Weg gewonnen werden,
indem wiederholt einfache Rundwege eingefiigt werden. Insbesondere kann daher jeder nicht einfache
Rundweg aus einfachen Rundwegen zusammengesetzt werden.
Beweis. Es ist einfach einzusehen, dass jeder Weg der Linge < 2 einfach sein muss. Daher
reicht es per Induktion zu zeigen, dass ein nicht einfacher Weg aus einem Weg und einem
Rundweg zusammengestzt werden kann, welche beide notwendigerweise eine echt kleinere
Linge aufweisen. Sei also

JT = Vg, V15 ...,Up

mit 7 > 3 ein nicht einfacher Weg. Dann existieren 0 < i < j < r, sodass v; = v; und

insbesondere auch (i, j) # (0, r) gelten. Da wir keine Schleifen in Graphen und Digraphen
erlauben, muss aber insbesondere auch j > i+ 1 gelten.

* Isti > 0, so besteht 7 aus dem Weg
TT =005 s Vis Vg1 oee > Uy
und dem Rundweg
P =Ui...,0j.
* Andernfalls gelten i = 0 und j # r. Dann besteht 77 aus dem Weg
T = 00,Vjt1s..e5Up
und dem Rundweg

P = l)(),...,l)j.

Da in beiden Fillen die Linge von 7 und p echt kleiner als die Linge von 7 ist, sind wir
fertig. o

20

2.3 Zyklus

Beachte: Ein nicht einfacher Weg ist im Allgemeinen nicht eindeutig aus einem einfachen
Weg und einfachen Rundwegen zusammengesetzt.

Beispiel 2.13 Der Rundweg vy, vs, v3, Us, U3, Us, Us, U, U1 ldsst isch einerseits durch die Zu-
sammensetzung der einfachen Rundwege v1, s, v3, Vg, U1 und vs, v2, Us, U4, Vg generieren, aber
auch durch vy, vs5, v4, Vg, v1 und vs, v3, Vg, U2, Us. *

2.3 Zyklus

Definition 2.14 Ein einfacher Rundweg heisst genau dann pathologisch, wenn er Linge 2 hat
und er in einem Graphen ist. Ein Rundweg in einem Graphen oder Digraphen heisst patholo-
gisch, wenn jede Art den Rundweg aus einfachen Rundwegen zusammenzusetzen, mindestens
einen pathologischen einfachen Rundweg bendtigt. Wir nennen einen Rundweg, der nicht
pathologisch ist, Zyklus.

Beachte: 1In der Literatur wird statt Zyklus auch Kreis benutzt. Per Definition ist klar, dass
pathologische Rundweg nur in Graphen aber nicht in Digraphen vorkommen kénnen.

Bemerkung Offensichtlich bedeutet diese Definition also:

(i) jeder nicht pathologische einfache Rundweg ist ein Zyklus,

(ii) sind 71 = vo,v1, ..., 0, und T3 = Wy, Wy, ..., W, Zyklen mit v; = wy = wy, so ist auch
JT =V, U15...,0i—1, W0, W1, ... , Wp, Uj+1,Uij+2, ..., Uy
ein Zyklus,
(iii) nur die durch (i) und (ii) generierbaren Rundwege sind Zyklen. ¢
Beispiel 2.15

* Der Digraph

besitzt die einfachen Zyklen
T =X,Y,X, Ty =0V, W, X, 0,
und die nicht einfachen Zyklen

77:3:x:y,xayax: 7T4:U,W,x,y,x,l}.

21

2 ETwAS GRAPHENTHEORIE

N

besitzt den (einfachen) Zyklus 7; = v, w, x, v. Dementgegen sind die zwei Rundwege
7y = X, y,x und 73 = v, W, X, y, X, 0 keine Zyklen! L]

* Der Graph

Definition 2.16 Ein Graph oder Digraph G heisst azyklisch oder zyklenfrei, falls es keine
Zyklen in G gibt. Ein azyklischer und zusammenhingender Graph ist ein Baum.

Q\; o ©
* Azyklischer Graph:
O< |

Satz 2.18 Sei G = (V, E) ein Graph mit n Knoten. Dann sind folgende Aussagen dquivalent:

Beispiel 2.17

* Azyklischer Digraph:

1. G ist ein Baum.

2. G hat n — 1 Kanten und ist zusammenhdngend.

22

2.3 Zyklus

3. G hat n — 1 Kanten und ist azyklisch.
4. G ist azyklisch und das Hinzufiigen einer beliebigen Kante erzeugt einen Zyklus.

5. G ist zusammenhingend und das Entfernen einer Kante erzeugt einen unzusammenhdingenden

Graphen.

6. Jedes Paar von verschiedenen Knoten in G ist durch genau einen einfachen Weg miteinander
verbunden.

Beweis.

1 = 6: Dies folgt aus der Tatsache, dass die Vereinigung zweier disjunkter einfacher Wege
mit gleichen Anfangs- und Endpunkten ein Zyklus ist.

6 = 5: G ist zusammenhiingend gemiss Voraussetzung. Das Entfernen der Kante {v, w} macht
w unerreichbar von v.

5 = 4: G ist azyklisch, denn sonst kann eine Kante entfernt werden, so dass G weiterhin zu-
sammenhingend ist. Da es in G stets einen Weg von v nach w gibt, liefert das Hinzufiigen
einer Kante {v, w} einen Zyklus.

4 = 3 = 2: Die Behauptung folgt, falls fiir einen azyklischen Graphen gilt
n=m+p, (2.1)

wobeim = |E| und p die Anzahl der Zusammenhangskomponenten ist. Da (2.1) klar ist
fiir m = 0, nehmen wir an, (2.1) gilt fiir ein |E| = m. Fiigen wir eine zusitzliche Kante
hinzu, dies bedeutet |[E| = m + 1, so muss sich p um eins reduzieren, denn sonst wiirde
ein Zyklus entstehen.

2 = 1: Wir zerstdren Zyklen aus G durch Entfernen von Kanten. Haben wir etwa k Kanten
entfernt, so folgt aus (2.1)

n—1—-k+p=n,
—_—

Kanten =1

das heisst k = 0. '

23

GRAPHENDURCHMUSTERUNG

Hiufig muss ein Graph oder Digraph durchmustert werden. Populire Graphendurchmus-
terungsmethoden sind die Tiefensuche und die Breitensuche. Beide lassen sich auf folgenden
Algorithmus zuriickfiihren, der alle von einem Startknoten s erreichbaren Knoten durchsucht.
Der Algorithmus sowie die drei nachfolgenden Sitze sind nur fiir Graphen aufgefiihrt, sie
gelten mit den iiblichen Modifikationen aber auch fiir Digraphen.

Algorithmus 3.1 (algorithmische Suche)
input: Graph G = (V, E) und Startknoten s € V
output: azyklischer Graph G’ = (R,T) mit R = {s} U post*(s) und T C E

® Initialisierung: R := {s}, Q :={s}, T = @.
@ Falls Q = @ dann stop, sonst wihle v € Q.

® Wihle w € VNRmite = {v, w} € E. Falls kein solches w existiert, dann setze Q := Q\{v}
und gehe nach @.

@ Setze R :=RU{w}, Q := QU {w}, T :=T U {e} und gehe nach @.

Je nachdem, wie die Menge Q verwaltet wird, ergeben sich verschiedene Resultate. Wir
unterscheiden:

Definition 3.2 Bei der Tiefensuche oder Depth-First-Search (DFS) wird derjenige Knoten v €
Q ausgewihlt, der zuletzt zu Q hinzugefiigt wurde (Stack-Speicherung). Bei der Breitensuche
oder Breadth-First-Search (BFS) wird derjenige Knoten v € Q ausgewihlt, der zuerst zu Q
hinzugefiigt wurde (Queue-Speicherung).

Satz 3.3 Algorithmus 3.1 liefert einen azyklischen Graphen G* = (R, T) mit R = {s} U post*(s)
und T CE.

Beweis. Zu jedem Zeitpunkt des Algorithmus ist (R, T') zusammenhingend. Insbesondere
ist (R, T) azyklisch, denn eine neue Kante e = {v, w} verbindet stets Knotenv € Q € R und
weVN\R.

Angenommen, am Ende existiert ein von s erreichbarer Knoten w € V' \ R. Dann gibt es einen
einfachen s-w-Weg 7 = s,v1, ..., Uy, W in G und weiter eine Kante {x, y} € E aus 7 mit x € R
und y ¢ R. Da x € R ist, muss irgendwann bei Ausfithrung des Algorithmus x € Q gelten. Der
Algorithmus terminiert jedoch nicht, bevor x aus Q entfernt ist. Dies geschieht aber nur, falls
{x,y} ¢ E gilt. A

24

3 GRAPHENDURCHMUSTERUNG

Satz 3.4 Die Ausfiihrung von “wihle v € Q” und “wihle w € V. \ R mit e = {v, w} € E” sei in
O(1) durchfiihrbar. Dann besitzt Algorithmus 3.1 die Komplexitit O([V| + |E|).

Beweis. Jeder Knoten v € V wird héchstens (| post(v)| + 1)-mal und jede Kante e € E
héchstens einmal betrachtet. o
Bemerkung In der Regel gehen wir davon aus, dass der betrachtete Graph G = (V, E)
zusammenhingend ist. Das bedeutet

V| -1 < |E| < VP

Somit ist die Laufzeit der Graphendurchmusterung immer O(|E). ¢
Beispiel 3.5 Der Graph G = (V, E) sei

<
—

U3

<
[\

<
(8]

o
o

<
Ny

<
[\

TT?TT
TITTT
TTITT

<
(3

-

und s = v;. Bei der Tiefensuche ergibt sich die Besuchsreihenfolge vy, v3, v4, U5, v3 und somit
der Baum

<
(]

U2

o

()
o o
)

Die Breitensuche liefert die Besuchsreihenfolge vy, v, U3, v4, U5, das heisst den Baum

25

3 GRAPHENDURCHMUSTERUNG

Satz 3.6 Seien G = (V,E) ein Graph, s,v € V und
distg(s,v) = min{|7| : & = s,uy,..., u,, v Weg in G},

wobei wir distg(s,v) = oo setzen, falls kein s-v-Weg existiert. Dann enthilt der BFS-Graph
G’ = (R, T) zum Startknoten s € V einen kiirzesten Weg zu jedem v € post*(s). Dies bedeutet, der
einfache Weg m = s,uy, ..., up, v in G erfiillt || = dists(s, v).

Beweis. Zuerst bemerken wir, dass 7 eindeutig bestimmt ist, da G’ = (R, T) azyklisch ist. Wir
modifizieren nun Algorithmus 3.1 wie folgt: In @ setzen wir £(s) := O und in @ £(w) := £(v)+1.
Dann gilt offenbar zu jedem Zeitpunkt

{(v) = distgy(s,v) fiirallev € R.
Weiterhin gibt es fiir kein v € Q, das in @ ausgewihlt wird, ein w € R mit

f(w) > f(v) + 1. (3.1)
Angenommen, der Algorithmus bricht ab und es existiert ein Knoten w € V mit

distg(s, w) < distg (s, w). (3.2)

Falls es mehr als einen solchen Knoten gibt, so wihlen wir denjenigen mit dem kleinsten
Abstand distg(s, w). Sei & = s, uy, ..., Uy, v, w ein kiirzester Weg in G. Dann gilt distg(s,v) =
dists/(s,v), da sonst v ein Knoten mit kleinerem Abstand wire, der (3.2) erfiillt. Ausserdem
gilt {v, w} € E. Weiter ist

A(w) = distg (s, w) > distg(s, w) = distg(s,v) + 1 = distg(s,v) + 1
=€)+ 1.
Gemiss (3.1) gilt w € R zu dem Zeitpunkt, zu dem v € Q entfernt wird. Dies widerspricht
jedoch ®, denn {v, w} € E. o
Bemerkung Gemiss Satz 3.4 berechnet der obige Algorithmus die Werte der Distanzen

dists/(s,v) = distg(s, v) fiir alle v € R in Komplexitit O(|[V| + |E|). ¢

Nachfolgender, auf der Tiefensuche basierender Algorithmus bestimmt die starken Zusam-
menhangskomponenten eines Digraphen.

Algorithmus 3.7 (Bestimmung starker Zusammenhangskomponenten)
input: Digraph G = (V,E)
output: eine Funktion comp : V — N, die die Zugehorigkeit zu einer starken
Zusammenhangskomponente kennzeichnet

@ setze R =@, N =0

@ fiirallev € V:
fallsv ¢ R, dann visiti(v)

26

3 GRAPHENDURCHMUSTERUNG

® setze R =9, K =0

@ firalle j=|V|,[V|—1,..., 1
falls ;=1(j) ¢ R, dann setze K := K + 1 und visit2 (t_l(j))

Hilfsprogramm visit1(v):
@ setze R := R U {v}
@ fiir alle w € V \ R mit (v, w) € E: visiti(w)

® setze N =N +1,1(v) :=Nund i '(N) :==v

Hilfsprogramm visit2(v):
@ setze R := RU {v}
@ fiir alle w € V \ R mit (w,v) € E: visit2(w)

® setze comp(v) = K

Beispiel 3.8 Gegeben sei der Digraph

@DJEEIA!@@

Dann ergibt sich in @ fiir die erste Tiefensuche visitl die Besuchsreihenfolge a, g,b,d, e, f.
Als einziger Knoten ist nur noch ¢ nicht in R. Die Tiefensuche fiir ¢ bricht somit sofort ab und
er bekommt die Nummer 7.

3 GRAPHENDURCHMUSTERUNG

Die Tiefensuche visit2 ist eine Tiefensuche im inversen Digraphen G™! := (V, E™!), wobei
E™' = {(w,v) : (v,w) € E}. In @ startet die erste Tiefensuche visit2 mit c, da i(c) = 7,
kann aber keine weiteren Knoten erreichen. Folglich wird nun die Tiefensuche fiir a gestartet,
da i(a) = 6. Es kdnnen b, f, g erreicht werden. Schliesslich wird e von d aus erreicht. Damit
ergeben sich die starken Zusammenhangskomponenten {c}, {a,b, f, g}, {d, e}. *

Satz 3.9 Algorithmus 3.7 identifiziert die starken Zusammenhangskomponenten in linearem Aufwand
O(|[V| + |E]).

Beweis. Der Aufwand ergibt sich analog zu Satz 3.4.

Seien nun v, w € V zwei Knoten derselben starken Zusammenhangskomponente, das heisst, in
G gibt es einen Weg von v nach w und umgekehrt. Somit gibt es in G™! ebenfalls einen Weg
von v nach w und umgekehrt. Die Tiefensuche visit2 markiert somit beide Knoten als zur
selben Zusammenhangskomponente gehdrig, also comp(v) = comp(w).

Es verbleibt zu zeigen, dass zwei Knoten v, w € V mit comp(v) = comp(w) auch zur selben
starken Zusammenhangskomponente gehéren. Dazu sei r(v) beziechungsweise r(w) derjenige
von v respektive w erreichbare Knoten mit dem héchsten i-Wert. Wegen comp(v) = comp(w)
liegen beide Knoten im selben durch visit2 erzeugten DFS-Baum. Dessen Startknoten r
erfillt r = r(v) = r(w). Da r von v erreichbar ist und r einen héheren (-Wert erhalten hat,
muss 7 vor v zu R hinzugefiigt worden sein bei der Tiefensuche visitl. Daher erhilt der
entsprechende von visitl erzeugte DFS-Baum einen r-v-Weg, das heisst, v ist auch von r
erreichbar. Analog ist auch w von r erreichbar. Zusammengefasst ist v von w erreichbar und
umgekehrt, was zu zeigen war. o

Fiir azyklische Digraphen bestimmt Algorithmus 3.7 eine spezielle Sortierung der Knoten.
Diese werden wir im folgenden bendtigen.

Definition 3.10 Essei G = (V, E) ein Digraph. Eine Numerierung
V ={v1,00,...,0n}

der Knoten heisst topologische Ordnung, falls fiir alle Kanten (v;,v;) € E gilt i < j.

28

3 GRAPHENDURCHMUSTERUNG

Lemma 3.11 Der Digraph G = (V, E) besitzt eine topologische Ordnung genau dann, wenn er
azyklisch ist.

Beweis. Ubung, 2

Satz 3.12 Zu einem Digraphen G = (V, E) bestimmt Algorithmus 3.7 eine topologische Ordnung
des kondensierten Digraphen G* = (V*, E*) in linearem Aufwand O(|V| + |E|).

Beweis. SeienV;,V; CV die Knotenmengen zweier starker Zusammenhangskomponenten
mit comp(v;) = i, comp(v;) = j fiir alle v; € V;, v; € V;. Ohne Beschrinkung der Allgemein-
heit gelte i < j. Wir zeigen, dass in G keine Kanten e = (vj,v;) € E existieren mit v; € V,
vj € Vj.

Angenommen eine solche Kante existiert. Alle Knoten aus V; werden in der Tiefensuche
visit2 vor den Knoten aus V; zu R hinzugefiigt. Insbesondere gilt v; € R und v; ¢ R beim

tiberpriifen der Kante e = (v}, ;). Dies bedeutet jedoch, dass v; zu R hinzugefiigt wird, bevor
K erhsht wird, was comp(v;) # comp(v;) widerspricht. o

Korollar 3.13 Der kondensierte Digraph G* = (V*, E*) zu einem Digraphen G = (V,E) ist
zyklenfrei.

Beweis. Dies folgt sofort aus Lemma 3.11. o

Korollar 3.14 Algorithmus 3.7 bestimmt eine topologische Ordnung des Digraphen G = (V,E) in
linearem Aufwand O(|V| + |E|), falls diese existiert. Gibt es eine solche Ordnung nicht, so erfihrt man
dies ebenfalls in linearem Aufwand.

Beweis. Da eine topologische Ordnung nur dann existiert, wenn der Digraph azyklisch ist,
ergibt sich eine topologische Ordnung genau dann, wenn alle starken Zusammenhangskompo-
nenten einknotig sind, das heisst G = G*. A

29

KURZESTE-WEGE-PROBLEME

Definition 4.1 Sei G = (V, E) ein Digraph. Eine Gewichtsfunktion, manchmal auch Kosten-
funktion genannt, fiir die Kanten von G ist eine Abbildung w : E — R. Ist 7 = vy, vy, ..., Uy ein
Weg in G, dann wird der Wert

r—1

w(rm) = Z (v, Viy1)

i=0

die Weglinge von 7 beziiglich w genannt. Das Tripel G = (V, E, w) heisst gewichteter Digraph.

Definition 4.2 Sei G = (V, E, w) ein gewichteter Digraph und v, w € V. Ein kiirzester Weg
von v nach w in G beziiglich ist ein v-w-Weg 7 mit w(r) < w(x’) fiir jeden v-w-Weg /.
Die kiirzeste Weglinge (v, w) von v nach w ist definiert durch

5(0,) {min{a)(ﬂ) : 7 ist Weg von v nach w}, falls ein solcher Weg existiert,
v, W) =
oo, sonst.

Beispiel 4.3 Gegeben sei der gewichtete Digraph G = (V, E, w):

Ein kiirzester Weg von v nach x ist 7 = v, y, x. Seine Weglinge ist () = 2 + 2 = 4 und ist
kiirzer als w(v, x) = 6. Zum Knoten u gibt es von v zwei kiirzeste Wege, nimlich 7; = v, w,u
und 7 = v, y,t, u mit 0(1y) = w(12) = (v, u) = 4. %

Man unterscheidet verschiedene Varianten des kiirzeste-Wege-Problems. Gegeben sei stets ein
gewichteter Digraph G = (V, E, 0).

30

4 KORzESTE-WEGE-PROBLEME

1. Einzelpaar-kiirzeste-Wege-Problem (single pair shortest path problem): Gesucht ist fiir
v, w € V ein kiirzester Weg von v nach w.

2. Einzelquelle-kiirzeste-Wege-Problem (single source shortest path problem): Fiirv € V
berechne einen kiirzesten Weg zu allen w € post*(v).

3. Alle-Paare-kiirzeste-Wege-Problem (all pair shortest path problem): Finde fiir jedes Paar
v, w € V einen kiirzesten Weg von v nach w.

Natiirlich kann das erste Problem durch das zweite geldst werden. Es ist auch kein asymptotisch
besseres Verfahren bekannt. Aus diesem Grund werden wir gleich dieses allgemeine Problem
betrachten.

Negative Gewichte sind gemiss Definition 4.1 zugelassen. Problematisch sind jedoch (einfache)
Zyklen mit negativer Weglinge wie folgendes Beispiel zeigt:

Beispiel 4.4 Gegeben sei folgender gewichtete Digraph G = (V, E, w):

In diesem Digraphen gibt es keine kiirzesten Wege, denn mit zum Beispiel

w(,x,y) = —4,
(v, x,y,0,%,y) = =5,
(v, x,y,0,x,y,0,x,y) = —6,

kénnen beliebig kurze Wege generiert werden. -

Lemma4.5 Sei G = (V,E,) ein gewichteter Digraph. Falls es in G keine Zyklen mit negativer
Weglinge gibt, dann gibt e fiir je zwei Knoten v, w € V mit w € post™(v) einen kiirzesten Weg 7t mit

O, w) = w(r) > —oo.

Beweis. Da es keine negativen Zyklen gibt, gentigt es alle einfachen Wege von v nach w zu
betrachten. Weil |V| und |E| endlich sind, sind dies nur endlich viele, woraus die Behauptung
folgt. o

Lemma 4.6 Sei G = (V,E, w) ein gewichteter Digraph ohne negative Zyklen. Weiter sei nun
T = V0, V1, ..., Ur—1, Uy €in kiirzester Weg von vy nach v,. Dann ist fiir alle 0 < i < j < r der Teilweg
TTij = Vi, Vig1, ..., Vj von 7T ein kiirzester Weg von v; nach v;.

31

4 KORzESTE-WEGE-PROBLEME

Beweis. Angenommen, es existiert ein kiirzester Weg 7/ ; von v; nach v mit w(r] 1) < (i).
/

Dann erfiillt der zusammengesetzte Weg 7 = 1, 77,

7j, die Abschitzung

0(R) = 0(my) + o)) + o(r;,)
< w(my) + ol j) + o(rj,)

= w(r).
Dies ist ein Widerspruch zur Voraussetzung, dass 7 ein kiirzester Weg von vy nach v, ist.

Korollar 4.7 Seien G = (V,E,) ein gewichteter Digraph ohne negative Zyklen und m =
V0, V1, ... , Uy ein kiirzester Weg von vy nach vy. Dann gilt

8(vo, vr) = 8(vo, vr—1) + W(vy—_1,0y).

Beweis. Gemiss Lemma 4.6 ist 7 = vy, vq, ..., U,—; ein kiirzester Weg von vy nach v,_1, das
heisst w(r”) = 5(vg, v,—1). Dies bedeutet

5(vo, vy) = () = w(”/) + @(Vy—1,). A
Einzelquelle-kiirzeste-Wege-Problem im Fall nicht-negativer Gewichte:

Algorithmus 4.8 (Dijkstra)
input: Ein gewichteter Digraph G = (V, E,) mit nicht-negativen
Gewichten und ein Startknoten s € V.
output: Kiirzeste Wege von s zu allen v € V samt Weglinge #(v). Genauer ist £(v)
die Linge eines kiirzesten s-v-Wegs, der aus einem kiirzesten s-p(v)-Weg
und der Kante (p(v), v) besteht. Fiir v ¢ post*(s) ist £(v) = oo und p(v)
undefiniert.

@ setze £(s) := 0 und £(v) := oo fiirallev € V \ {s}, setze R := @
@ finde u € V \ R mit #(u) = min,eyg £(v)
® setze R := RU {u}

@ fiir allev € V \ R mit (u,v) € E:
falls £(v) > #(u) + w(u,v), dann
setze {(v) = Au) + w(u,v) und p(v) :==u

® falls R # V gehe nach @

32

4 KORzESTE-WEGE-PROBLEME

Beispiel 4.9 Gegeben sei folgender gewichtete Digraph G = (V, E, w):

Ausgehend vom Startknoten ist die Arbeitsweise dieses Algorithmus wie folgt:

Iteration | a b ¢ d e |u &u) pu)
0 0 00 00 00 o |aqa 0 —
1 — 1 4 o oo|b 1 a
2 — — 4 2 oo|d 2 b
3 - - 3 - 5 |c 3 d
4 - — — — 4 e 4 c £

Satz 4.10 (Dijkstra) Der Algorithmus von Dijkstra arbeitet korrekt, wobei seine Laufzeit O(n*)
mit n = |V| ist.

Beweis. Der Ubersichtlichkeit halber schreiben wir den Iterationsindex als Suffix an alle Va-
riablen des Dijkstra-Algorithmus. Wir beweisen, dass folgende Aussagen bei jeder Ausfithrung
von @ gelten:

(a) Fiir alle v € R® und alle y € VN RW gilt A0 () < AO(y).

(b) Fiir alle v € R® ist £9(v) die kiirzeste Weglinge von s nach v. Ist £9(v) < co und
v # s, dann existiert ein kiirzester Weg von s nach v mit Knoten aus R® und letzter
Kante (p(k)(v), v).

(c) Fiir alle v € V \ R® ist A9(v) die kiirzeste Weglinge von s nach v im aus den Knoten
R% y {v} bestehenden Teildigraphen von G. Ist £O() < oo, dann ist p®(v) € R® und

Ow) = O (pP W) + w(pP),v).

Da diese Aussagen fiir k = 0 gelten, das heisst, nach Austiithrung von @, zeigen wir, dass ®
und @ die Aussagen erhalten, das heisst, wir zeigen den Induktionsschritt k — k + 1. Dazu sei
k > 0 beliebig und u der in @ ausgewihlte Knoten.

Fiir beliebige v € R® und y € V \ R® gilt wegen (a)

NW@:W@SW@:g%ﬂmKMW@.

33

4 KORzESTE-WEGE-PROBLEME

Folglich gilt (a) auch nach ® und ®, da R&*Y = R® y {u}.

Um zu zeigen, dass (b) nach @ gilt, miissen wir nur den Knoten u betrachten. Da (c) fiir

k gilt, geniigt es zu zeigen, dass in G kein Weg 7 von s nach u existiert mit einem Knoten
y € VNR®D und w(r) < £0(u) = £4+D(w),

Angenommen, es gibt einen solchen Weg 7, etwa

T =8,01seeesUrs Y 3Upils-ees U, Ue
e
eR® ¢r®

Da (c) fiir k gilt, ist f(k)(y) = «w(s,v1,..., U, y), und es folgt wegen der Nicht-Negativitit der
Gewichte

W(s,01,..., 0, y) < () < O,
Dies bedeutet £9(y) < £O(w), was £°(u) = min gy g® £9)(x) widerspricht.
Nun zeigen wir, dass ® und @ auch Aussage (c) erhalten. Falls fiir ein v € V \ R&*D in @
p(kH)(v) =u, D 0) = D) + w(u, v)
gesetzt wird, muss ein Weg von s nach v existieren im von den Knoten R&*U{v} aufgespannten
Teildigraphen G’(v) von G mit Linge £54D(4) + w(u, v) und letzter Kante (u, v).

Angenommen, es existiert ein v € V \ R**D und ein Weg 7 von s nach v in G’(v) mit
w(r) < A4D(). Der Knoten u muss in 7 enthalten sein, da nur u zu R**Y hinzugefiigt
worden ist und sich sonst ein Widerspruch zu (c) vor Ausfithrung von ® und @ ergiibe (denn
L&D (1) ist hochstens kleiner als £9(v) geworden).

Sei x der Vorginger von v in 7. Wegen x € R® ¢ R&*+D folgt aus (a)
{’(k+1)(x) < {’(k+1)(u)

und aus @
D) < () + w(x,v) < V(W) + o(x,v) < ().

Hierin gilt die letzte Ungleichung, da 7 den Knoten u enthilt und die Kante (x,v). Die
Ungleichung

D) < w(r)
widerspricht jedoch unserer Annahme.

Folglich gelten zu jedem Zeitpunkt k die Aussagen (a)—(c), insbesondere gilt (b) bei Abbruch
des Algorithmus, das heisst, der Algorithmus arbeitet korrekt.

Die Aufwandsabschitzung ist offensichtlich: Es werden n = |V| Iterationen ausgefiihrt, die
jeweils einen Aufwand O(n) haben. o

Bemerkung Mit Hilfe so genannter Fibonacci Heaps lisst sich der Aufwand des Algorithmus
von Dijkstra auf O(m + nlogn) reduzieren. Hierbei gilt m = |E| und n = |V|. ¢

Im Falle von Digraphen mit negativen Gewichten, aber ohne negativen Zyklen, muss folgender
teurerer Algorithmus verwendet werden. Er ist der schnellste bisher bekannte Algorithmus fiir
dieses Problem.

34

4 KORzESTE-WEGE-PROBLEME

Algorithmus 4.11 (Moore-Bellman-Ford)
input: Ein gewichteter Digraph G = (V, E, w) ohne negative Zyklen
und ein Startknoten s € V.
output: Kiirzeste Wege von s zu allen v € V samt Weglinge #(v). Genauer ist £(v)
die Linge eines kiirzesten s-v-Wegs, der aus einem kiirzesten s-p(v)-Weg
und der Kante (p(v), v) besteht. Fiir v ¢ post*(s) ist #(v) = co und p(v)
undefiniert.

@ setze £(s) := 0 und £(v) := oo fiirallev € V \ {s}

@ furallek=1,2,...,n—1:
fiir jede Kante (u,v) € E:
falls #(v) > #(u) + w(u,v), dann
setze £(v) = Hu) + w(u,v) und p(v) == u

Satz 4.12 (Moore-Bellman-Ford) Der Moore-Bellman-Ford-Algorithmus arbeitet korrekt, wobei
seine Laufzeit O(m - n) ist mit m = |E| und n = |V|.

Beweis. Die Aufwandsabschitzung ist offensichtlich.

Zu jedem Zeitpunkt des Algorithmus bezeichne

R:={veV : fv) <o},
F:={uv)€E :u=pQ)}

dann zeigen wir:
(a) €(v) > &u)+ w(u,v) fir alle (u,v) € F,
(b) der Digraph (R, F) ist azyklisch,

(c) der Digraph (R, F) ist ein gerichteter Baum mit Wurzel s, das heisst, jeder Knoten v € R
ist von s aus iiber genau einen Weg erreichbar.

Wenn in @ p(v) := u gesetzt wird, dann gilt gerade
{(v) = d(u) + w(u,v).

Da #(u) danach hochstens verkleinert wird, folgt Aussage (a).

Um (b) zu zeigen, nehmen wir an, dass zu einem Zeitpunkt ein Zyklus
T =100,015.5Ur—1,Up, Vg = Uy
entsteht durch Setzen von p(v,) := v,—1. Dann galt aber zuvor

(vy) = U(vy) > lvr—1) + W(Vr-1,0,)

35

4 KORzESTE-WEGE-PROBLEME

und gemiiss (a)
;) 2 ;1) + 0i-1,v), i=1,2,...,r =1

Aufsummieren ergibt

r r—1 r

Z (vi-1,0;) = (Z (Vi-1,0;)) + 0(vr-1,0r) < Z (f(Ui) - f(UH)) =0,

i=1 i=1 S / b 7 =1
<H(v;)—0(v;—1) <H(vy)—(v,-1)

das heisst, der Zyklus ist negativ, was der Voraussetzung widerspricht.
Schliesslich folgt aus x € R\ {s} auch p(x) € R, dies ist die Aussage (c).

Gemiss (a)—(c) ist also zu jedem Zeitpunkt #(y) mindestens die Linge des (eindeutigen) s-y-
Wegs im Digraphen (R, F). Wir zeigen nun, dass nach k Iterationen #(y) auch héchstens die
Linge eines kiirzesten s-y-Wegs in G mit hochstens k Kanten ist. Da fiir k = 1 die Aussage
klar ist, nehmen wir an, sie gilt auch nach Iteration k — 1. Nun sei

][:*95015"'>Urax’y5 rgk_z

ein kiirzester s-y-Weg in G mit hochstens k Kanten. Dann ist 7” = s, vy, ..., Uy, X ein kiirzester
s-x-Weg mit hochstens k — 1 Kanten. Nach Induktionsannahme folgt £(x) < w(z”) und somit

{(y) < Ux) + o(x,y) < (") + w(x, y) = ().

Da kein Weg in (R, F) mehr als n — 1 Kanten besitzt, impliziert dies die Korrektheit des
Algorithmus. o

Wir betrachten schliesslich einen Algorithmus zur Losung des Alle-Paare-kiirzeste-Wege-
Problems. Ohne Einschrinkung der Allgemeinheit sei dabei die Knotenmenge V = {1, 2, ..., n}.

Algorithmus 4.13 (Floyd-Warshall)
input: Ein gewichteter Digraph G = (V,E, w) mit V = {1, 2, ..., n} ohne
negative Zyklen.
output: Matrizen [j]i<i j<n und [p; j]1<i j<n mit der kiirzesten Weglinge ¢; j von i nach
Jj und der letzten Kante (p; j, j) eines i- j-Wegs, falls ein solcher existiert.

@ setze 4 = w(i, j) firalle (i, j) € E
setze £ = oo fiiralle (i, j) € (V x V)N Emiti # j
setze £;; '=O0firallei eV
setze p;j = iftrallei, jeV

@ fiiralle j =1,2,...,n:
firallei =1,2,...,nmiti # j:
fiuralle k =1,2,...,n mit k # j:
falls £;x > ¢ + €, dann
setze fi =i+ €jpund pix 1= pjk

36

4 KORzESTE-WEGE-PROBLEME

Satz 4.14 (Floyd-Warshall) Der Algorithmus von Floyd und Warshall arbeitet korrekt, wobei seine
Laufzeit O(n®) mit n = |V| ist.

Beweis. Die Aussage zur Laufzeit ist klar. Wir schreiben wieder den Iterationsindex j als

Sufhix an alle Variablen und zeigen: Nach jj dusseren Iterationen ist {’l(],?) die Linge eines
kiirzesten i-k-Wegs bestehend nur aus den Zwischenknoten v € {1,..., jo} und mit Endkante
(pl(jf), k). Diese Aussage beweisen wir mit vollstindiger Induktion iiber jo.

Fiir jo = 0 gilt sie gemiiss @ und fiir j, = n impliziert sie die Korrektheit des Algorithmus.
Wir nehmen an, dass obige Aussage gilt fiir ein jy € {0, 1,...,n — 1}, das heisst, fiir alle i, k € V

ist l’f],?) die Linge eines kiirzesten i-k-Wegs bestehend nur aus Zwischenknoten v € {1, ..., jo}.

o+
Es verbleibt daher zu zeigen, dass dann die entsprechenden Wege

In der (jo + 1)-ten Iteration wird l’l(J,S) durch {’SJ]‘;)H + l’i.j(’)l . ersetzt, falls dieser Wert kleiner ist.

Ty =0, Ug,yeen s Up,y Jo + 1,
Ty = jo + 1’01’ ""vSsk

keine gemeinsamen inneren Knoten haben.

Angenommen beide Wege haben den gemeinsamen Knoten u,, = v, dann ist
= 0,Up, s Up, Ugits e s Us, K

ein Weg von i nach k, bestehend nur aus Knoten v € {1,..., jo}. Wegen
W(Up, Ups1,s ..o Up, Jo + 1,01,...,09) >0

ist
{’IU,S) < ow(r) < w(r Um) < if}:))Jrl +)

j0+1,k’

was ein Widerspruch zu fl(J,g) > ZZ(JJ(I))H + &)

ALk ist.)

37

NETZWERKFLUSSPROBLEME

Motivation: In den Seehifen Aj, Ay, ..., A, liegen ry,1,,...,7, Tonnen Bananen zum Ver-
schiffen bereit. In den Zielhifen By, By, ..., By besteht die Nachfrage nach dy, d, ..., d; Tonnen.
Die Kapazitit der Schifffahrtslinie von Hafen A; nach Hafen B; ist maximal c(A;, B)).

Es stellen sich die folgenden Fragen:
1. Ist es moglich, alle Anforderungen zu befriedigen?
2. Falls nein, wie viele Bananen kénnen maximal zu den Zielhifen gebracht werden?

3. Von wo nach wo sollen wieviele Bananen verschifft werden?

Zur Lésung konstruieren wir einen Digraphen G = (V, E) mit
V = {Al,Az,...,Ap,Bl,Bz, ...,Bq}, E = {(Ai,Bj) :1<i < P, 1<] < q}

Der Kante (A;, B;) ordnen wir die Kapazitit c(A;, B;) zu. Um Angebots- und Nachfragemen-
gen zu modellieren, fithren wir zwei weitere Knoten s, t und Kanten (s, A;) beziehungsweise
(Bj, t) mit Kapazitit c(s, A;) = r; beziehungsweise ¢(B;,) = d; ein.

38

5 NETZWERKFLUSSPROBLEME

Zur Beantwortung der drei Fragen l6sen wir folgendes Problem: Was ist der maximale Fluss
von s nach t in G und wie sieht dieser aus? Dabei ist der Fluss auf einer Kante durch ihre
Kapazitit beschrinkt. Des Weiteren muss der gesamte Fluss, der einen Knoten A; oder B;
betritt, diesen auch wieder verlassen.

Definition 5.1 Ein Netzwerk ist ein Tupel N = (V, E, c, s,t) bestehend aus
* einem Digraphen G = (V, E),
* einer Kapazititsfunktion c : E — R,
o einer Quelle s € V mit pre(s) = @,
e einer Senke t € V mit post(t) = @.

Ein Fluss f : E — Ry ist eine Funktion, die folgende Bedingungen erfiillt:
1. Kapazititsbedingung:

f(,w) <c(v,w) fiiralle (v,w) € E,
2. Kirchhoffsches Gesetz:

> fwvy= > f,w) firalleveV \{s1.

uepre(v) wepost(v)
Der Wert des Flusses ist

flow(f) = Z f(s,w).

wepost(s)

Definition 5.2 Der maximale Fluss eines Netzwerkes N ist gegeben durch
MaxFlow(N) := max{flow(f) : f ist Fluss fiir N}.
Eine Flussfunktion f fiir N wird optimal genannt, falls

flow(f) = MaxFlow(N).

Definition 5.3 Ein Schnitt fiir ein Netzwerk N = (V, E, ¢, s,t) ist eine Knotenmenge S C 'V
mit s € Sund ¢ ¢ S. Die Kapazitit eines Schnitts ist gegeben durch

cap(S) = Z c(v, w).
vES
wepost(v)\S
Die minimale Schnittkapazitit von N ist

MinCut(N) := min{cap(S) : S ist Schnitt fiir N}.

39

5 NETZWERKFLUSSPROBLEME

Lemma 5.4 Sei S ein Schnitt eines Netzwerkes N = (V, E, ¢, s,t), dann gilt fiir jeden Fluss f

@) flow(f)= D fow- Y f@v),

vES vES
wepost(v)\S uepre(v)\S

(i) flow(f) < cap(S).
Beweis. Aussage (i) folgt aus dem Kirchhoffschen Gesetz
flow(f)=), f(sw)

wepost(s)

=Z< > few -), f(u,v)>
V€S \ wepost(v) wepre(v)

= Y fow- > fuv)
veS VES

wepost(v)\S uepre(V)\S

+ > few- Y f(uv)
veS vES

wepost(v)nS uepre(v)nS

=0
Da 0 < f(e) < c(e) fiir alle e € E, folgt weiter

@)
flow(f)< Y, fow< Y, cvw)=cap(s),
vES vES
wepost(v)\S wepost(v)\S

dies ist Aussage (ii). o

Satz 5.5 (Max-Flow-Min-Cut-Theorem) Sei N = (V,E,c,s,t) ein Netzwerk, dann gilt
MinCut(N) = MaxFlow(N).

Beweis. Aus Lemma 5.4 folgt MaxFlow(N) < MinCut(N). Daher geniigt es zu zeigen, dass
ein Schnitt S existiert mit MaxFlow(N) = cap(S). Hierzu geben wir eine Prozedur an, die fiir
einen gegebenen Fluss f mit flow(f) = MaxFlow(N) einen Schnitt S mit cap(S) = flow(f)
konstruiert.

Wir starten mit S = {s}. In jedem Schritt erweitern wir S um einen Knoten y € V \ S, der
bendtigt wird, damit die Behauptung tiberhaupt erfiillt sein kann:

@ setze S := {s}
@ solange x € S, y € V \ S existieren mit

c(x,y) > f(x,y), falls (x,y) € E,
f(y,x) >0, falls (y,x) € E,

setze S := S U {y}.

40

5 NETZWERKFLUSSPROBLEME

Wir zeigen zunichst, dass S stets ein Schnitt fiir N ist, das heisst, es gilt stets t € S.

Angenommen, es gilt t € S, dann gibt es einen Knoten v,_; € S, der dafiir verantwort-
lich ist, dass t = v, zu S hinzugenommen wurde, das heisst, c(v,—1,v,) > f(vy—1,0,) oder
f(vy,v,—1) > 0. Genauso gibt es einen Knoten v,_, € S, der dafiir verantwortlich ist, dass v,_;
hinzugenommen worden ist, usw. Folglich existiert ein ungerichteter Weg

T =10y,01,...,0, UVi€Sfuralle0<i<r,

wobei vy = s. Setzen wir fiirallei = 0,1,...,r — 1
c(e) — f(e), fallse = (v;,vi41) € Eund e™! = (viy1,v;) ¢ E,
g =14 fle™h), fallse = (v;,v;41) € Eund e™! = (vi31,v;) € E, (5.1)

max{c(e) — f(e), fle”H}falls e = (v;,v;41) € Eund e™' = (vi41,0;) € E,
so folgt nach Konstruktion stets &; > 0. Wir setzen

€ := min & > 0. (5.2)
0<i<r

und fithren einen Widerspruch herbei, indem wir nun einen Fluss f* konstruieren mit
flow(f*) = MaxFlow(N) + ¢.
Hierzu definieren wir f* fiir alle 0 < i < r wie folgt:
f(e) == fle) +e, fallse= (v;,vi11) € Eunde ' = (v;y1,0;) ¢ E,
fe™) = f(e")—e, fallse = (v;,0:11) ¢ Eund e™' = (v331,v;) € E.
Gilte = (v;,v;41) € Eund e™! = (v;41,v;) € E, so erhchen wir f(e) um ¢ falls c(e) — f(e) >
f(e™1), ansonsten verringern wir f(e™!) um e.

(5.1), (5.2) garantieren, dass f* die Kapazititsbedingung nicht verletzt. Das Kirchhoffsche
Gesetz bleibt beim Ubergang f +— f* erhalten, da es nur folgende vier Moglichkeiten der
Flussinderung pro Knoten v; gibt:

te N e —& N te
< A

te N ¢ —& N ¢
< N\

Also ist f* ein Fluss. Weiter gilt
flow(f*) = Z f*(s,v)

vepost(s)

=Y

uepre(t)

= Y f@)+ ff @t
uepre(t)\v,_1} m

= flow(f) +¢,

41

5 NETZWERKFLUSSPROBLEME

was ein Widerspruch zu flow(f) = MaxFlow(N) ist. Damit ist S ein Schnitt in N und gemiss
Konstruktion gilt fiiralle x € S, y € V\ S dass f(x,y) = c(x, y) bezichungsweise f(y,x) = 0.
Damit folgt flow(f) = cap(S). o

Der im Beweis des Max-Flow-Min-Cut-Theorems konstruierte Weg 7 heisst augmentierter
Weg.

Definition 5.6 Sei f ein Fluss im Netzwerk N = (V, E, ¢, s,t). Eine Kante e = (x,y) € E
heisst Vorwirtskante, falls f(e) < c(e). Eine Kante e = (x,y) mit e™! = (y,x) € E heisst
Riickwirtskante, falls f(e™') > 0. Der Restdigraph fiir f ist der Digraph G’ = (V, E’) mit

E' ={(x,y) € VxV : (x,y) ist Vorwirts- oder Riickwirtskante}.

Die Grossen c(e) — f(e) beziehungsweise f(e™!) heissen Restkapazititen. Ein augmentierter Weg
T = Vg, V1, ..., Uy ist ein Weg im Restdigraphen mit vy = s und v, = t.

Beispiel 5.7 Gegeben sei folgendes Netzwerk mit Fluss/Kapazititen:

Der Restdigraph ist

wobei Vorwirtskanten durch durchgezogene und Riickwirtskanten durch gestrichelte Pfeile
markiert sind. %

Im Fall, dass der Fluss f nicht maximal ist, kann mit Hilfe eines augmentierten Weges der
Fluss vergréssert werden. Somit erhalten wir folgenden Algorithmus:

42

5 NETZWERKFLUSSPROBLEME

Algorithmus 5.8 (Ford-Fulkerson)
input: Netzwerk N = (V,E,c,s,t)
output: Fluss f mit flow(f) = MaxFlow(N)

@ Setze f(e) = 0 fiiralle e € E.
@ Suche einen augmentierten Weg 7 von s nach ¢. Falls keiner existiert, dann stop.

® Berechne ¢ gemiss (5.1), (5.2). Augmentiere f um ¢ und gehe nach @.

Ford und Fulkerson haben anhand eines Beispiels gezeigt, dass bei irrationalen Kapazititen der
Algorithmus méglicherweise nicht terminiert. Im Fall ganzzahliger Kapazititen ist dies jedoch
nicht der Fall.

Satz 5.9 (Integral-Flow-Theorem) Sei N = (V,E,c,s,t) ein Netzwerk mit ganzzahligen
Kapazititen. Dann terminiert der Ford-Fulkerson-Algorithmus nach maximal), c(e) Augmentie-
rungsschritten mit einem ganzzahligen maximalen Fluss.

Beweis. Da alle Kapazititen ganzzahlig sind und wir mit dem Nullfluss starten, ist wihrend
der Durchfiithrung des Algorithmus flow(f) stets ganzzahlig. Da ein Augmentierungsschritt
die Grosse des Flusses mindesten um 1 erhéht, ergibt sich die Behauptung. o

Auch bei ganzzahligen Kapazititen kann der Ford-Fulkerson-Algorithmus viele Augmentie-
rungsschritte bendtigen:

Beispiel 5.10 Wie betrachten das Netzwerk

Offensichtlich gilt MaxFlow(N) = 2M. Starten wir mit dem Nullfluss und augmentieren
stets entlang eines s-t-Wegs der Linge 3, erhoht sich flow(f) jeweils nur um ¢ = 1. Folglich
werden 2M Schritte benétigt. o

Das Beispiel zeigt, dass bei willkiirlicher Wahl des augmentierenden Wegs (also Wege von
s nach t im Restdigraphen) die Anzahl der Augmentierungsschritte sehr gross sein kann.
Polynomielle Laufzeitbeschrinkung im Ford-Fulkerson-Algorithmus kann durch die Wahl
eines kiirzesten augmentierten Weg erreicht werden. Hierbei bezieht sich die Linge auf die
Anzahl der Kanten.

43

5 NETZWERKFLUSSPROBLEME

Algorithmus 5.11 (Edmonds-Karp)
input: Netzwerk N = (V,E,c,s,t)
output: Fluss f mit flow(f) = MaxFlow(N)

® Setze f(e) =0 fiirallee € E.

@ Suche einen kiirzesten augmentierten Weg 7 von s nach ¢. Falls keiner existiert, dann
stop.

® Berechne ¢ gemiiss (5.1), (5.2). Augmentiere f um ¢ und gehe nach @.

Bemerkung Schritt @ kann durch eine Breitensuche im Restdigraphen realisiert werden,

vergleiche Satz 3.6. ¢

Beispiel 5.12 Wir illustrieren den Edmonds-Karp-Algorithmus anhand des folgenden
konkreten Beispiels.
Netzwerk mit aktuellem Fluss:

Restdigraph und kiirzester augmentierter Weg:

5/5

2/2

44

5 NETZWERKFLUSSPROBLEME

Um die Korrektheit des Algorithmus von Edmonds und Karp zu zeigen, werden wir folgendes
Lemma benétigen:

Lemma 5.13 Sei (fo, 1), (fi, 1), (f2, 72), ... die von Algorithmus 5.11 erzeugte Folge von
Flussfunktionen f; und zugehérigen kiirzesten augmentierten Wegen 7; im Restdigraphen von f;. Dann
gelten die folgenden Aussagen:

1. Fiir alle i gilt |rr;| < |7izq].
2. Kommt e = (v,w) in m; und e~ = (w,v) in 7r; vor mit i < j, so gilt
il + 2 < |mjl.

Beweis. Es sei £(x, y) die Linge eines kiirzesten Wegs von x nach y im Restdigraphen von
f;i- Insbesondere gilt also |7;| = £;(s, t). Wir zeigen zuerst, dass fiir alle v € V gilt

[H-l(ss l)) > fi(s3 l)). (53)

Falls £;11(s,v) = oo, dann ist die Ungleichung trivialerweise erfiillt. Wir kdnnen also annehmen,
dass v von s im Restdigraphen von fi;; erreichbar ist, das heisst #1(s,v) = r < oo. Sei
T = $,01,02, ..., U, ein kiirzester Weg von s nach v = v, im Restdigraphen von f;1. Wir zeigen,
dass dann gilt

{’i(s, vj+l) < [,'(S, l)j) +1, 1<j<r. (54)

Falls (v, vj4+1) eine Kante im Restdigraphen von f; ist, gilt (5.4) offensichtlich. Ist (v;,vj4+1)
keine Kante im Restdigraphen von f;, dann muss sich der Flusswert der inversen Kante
(vj+1,v;) im Augmentierungsschritt f; = fi;1 verindert haben. Andernfalls kénnte (v;,vj41)
im Restdigraphen von fi;1 nicht vertreten sein. Folglich liegt die Kante (vj11,v;) auf dem Weg
;. Da 7; ein kiirzester Weg von s nach ¢ ist und v;,; unmittelbar vor v; in 7r; vorkommt, ergibt
sich

ti(s,vj11) = 4(s,vj) — 1,
das heisst, es gilt ebenfalls (5.4).
Aus (5.4) folgt dann (5.3), denn

t(s,v) = ti(s,v,)

(5.4)
< b(s,v-1) +1

(5.4)
< (s, vp—2) + 2

(5.4)
< tb(s,v)+r—1

(5.4)
< tb(s,s)+r

= ti11(s,0).

45

5 NETZWERKFLUSSPROBLEME

Insbesondere liefert die Wahl v =t Aussage 1.

Analog zu (5.3) zeigt man, dass auch
(v, t) > (v, 1) (5.5)

gilt fir allev € V.

Seinune = (v, w) bzw. e™' = (w,v) eine Kante im Weg 7; bzw. 7; mit i < j, das heisst
i =8, ..., 0, W, ..., I, Tj=S8 ..., W,0,...,1L.

Da beide jeweils kiirzeste Wege im entsprechenden Restdigraphen sind, gilt

@) |mil = &(s,0) + (v, 1),
(ii) |7le = f}'(s, W) +1+ fj(l), t),

(i) &(s,w) = t(s,v) + 1,
wihrend (5.3) und (5.5) wegen i < j implizieren
(iv) £i(s,w) > ti(s,w), ¢i(v,t) > bi(v,t).

Kombination der Beziehungen (i)—(iv) liefert Aussage 2:

|7 @ (s, w)+1+¢(v,t)

(iv)
> (s, w) + 1+ 4(v,t)
WD o (5,0) +2 + 60, 1)

9l + 2. a

Satz 5.14 (Edmonds-Karp) Unabhingig von den Kapazititen terminiert Algorithmus 5.11 nach
hichstens (n - m) /2 Augmentierungsschritten, wobei n = [V| und m = |E| ist.

Beweis. Sei (fo, o), (fi, 1), (f2, 72), ... die von Algorithmus 5.11 erzeugte Folge von Fluss-
funktionen f; und zugehorigen kiirzesten Wegen 7; im Restdigraphen von f;. In jedem Aug-

mentierungsschritt wird mindestens eine Kante e = (v, w) des Wegs 7; voll ausgeschopft, das
heisst, dass eine Flussverinderung um die Restkapazitit stattfindet:

* Ist e eine Vorwirtskante im Restdigraphen von f;, so ist fi11(e) = c(e).

e Ist e eine Riickwirtskante im Restdigraphen von f;, so ist fi11(e™!) = 0.

46

5 NETZWERKFLUSSPROBLEME

In keinem der beiden Fille ist e eine Kante im Restdigraphen von fi11. Bevor dieselbe Kante
in einem spiteren Augmentierungsschritt fi > fi4+1 in mx vorkommt und wieder voll ausge-
schopft wird, muss die inverse Kante e~ = (w,v) im Weg 7; miti < j < k vorgekommen
sein. Aus Lemma 5.13 folgt

Il < Iyl — 2 <] — .

Wird also e in den Wegen 7;,, 71;,, 7Ti,., ..., 7;, voll ausgeschdpft, dann existiert eine Indexfolge
Jos jis ---» je—1 derart, dass

e iy < Jo<ip <1 < <ipq < Je1 <y
e ¢! = (w,v) kommt in Tjos Tjys e » jp—1 VOL,
* 1< m| < mjpl =2 < my| =4 < mjy | =6 < o <y | — 4L

Da kiirzeste Wege stets einfach sind, ist ;. stets ein einfacher Weg im Restdigraphen von f;,
und es folgt

|7'[i€| <n.

Hieraus folgt jedoch, dass jede Kante e € E U E~! hochstens n/4-mal voll ausgeschopft werden
kann, das heisst, £ < n/4. Da nur |E U E™!| < 2|E| Kanten vorhanden sind, werden maximal

m-n

n
2m-— =
4 2
Augmentierungsschritte durchgefiihrt. A

Bemerkung Wir haben soeben die Existenz einer Losung des Netzwerkflussproblems
gezeigt! ¢

Korollar 5.15 Der Aufwand des Edmonds-Karp-Algorithmus ist O(m®n), wobei n = |V| und
m = |E|.

Beweis. Gemiss Satz 5.14 bendtigen wir héchstens (m - n)/2 Augmentierungsschritte. Da
hierzu jeweils eine Breitensuche benétigt wird, die den Aufwand O(m) besitzt, ergibt sich das
Behauptete. »

47

BIPARTITES MATCHING

Definition 6.1 SeiG = (V, E) ein Graph. Ein Matching von G ist eine Kantenmenge M C E,
so dass jeder Knoten von G hdchstens auf einer Kante von M liegt, das heisst, wenn fiir alle
Kanten e = {v,w}, e/ = {x, y} € M gilt

exe = {win{x,y}=02.

Ein Matching M heisst maximal, wenn [M| > |M’| fiir alle Matchings M” von G.

Wir wollen uns im folgenden darauf beschrinken, ein maximales Matching in einem bipartiten
Graphen zu suchen.

Definition 6.2 Ein Graph G = (V, E) heisst bipartit oder zweigeteilt, falls nichtleere Knoten-
mengen V und Vp existieren, so dass

() V=VLUVg VLNnVg =9,
(ii) fiir jede Kante {v, w} € E ist

{fo,w}nVp =@, {v,win Vg #@.

Die Mengen Vi, Vg heissen (Bi-) Partition.

Viele Anwendungen fiihren auf die Bestimmung eines maximalen Matchings in einem biparti-
ten Graphen. Wir betrachten exemplarisch das sogenannte “Heiratsproblem”.

Beispiel 6.3 Vier Frauen V; = {A, B,C, D} haben unter vier Minnern Vg = {1,2,3,4}
diejenigen ausgewihlt, die sie sich als Ehepartner wiinschen, und umgekehrt. Eine Heirats-
agentur soll anhand dieser Information potentielle Paare bilden. Gesucht ist folglich eine
Paarbildung, bei der nur Wunschpaare zulissig sind und die Zahl der Heiratsvermittlungen
maximal ist. Wir erhalten beispielsweise den Graphen

48

6 BIPARTITES MATCHING

wobei die Kanten fiir Wunschpaare stehen. Ein maximales Matching ist

M = {{A 2},{B,4},{C,3}{D, 1} }. -
Wir fithren das Matchingprobem auf ein dquivalentes Flussproblem zuriick.

Definition 6.4 SeiG = (V, E) ein bipartiter Graph mit Partition V = V;UVg. Wir definieren
das zugehorige Netzwerk Ng = (V U {s,t}, E/, ¢, s, t) gemiiss:

e 5,1 ¢Vunds #t,
« B/ =EUu{(s,0) : veVi}u{w,t) : we Vgl
e c(e) =1fiirallee € E’.

Hierbei ist E = {(v, w) €V xVg : {v,w} €E } eine Orientierung fiir G, die nur die Kanten
von Vi, nach V enthilt. Eine 0-1-Flussfunktion fiir Ng ist eine Flussfunktion f fiir Ng mit
f(e) €{0,1} furalle e € E’.

Satz 6.5 Sei G = (V,E) ein bipartiter Graph mit Partition V = Vi U Vg, dann gilt:
(i) Zu jedem Matching M gibt es eine 0-1-Flussfunktion fyr fiir Ng mit flow(far) = [M].
(ii) Zu jeder 0-1-Flussfunktion f fiir Ng gibt es ein Matching My fiir G mit flow(f) = |Mg|.
Beweis. (i) Sei fy definiert gemiss

fu(s,v) = fu(w,t) =1, fallsv € Vi, w € Vg, {v,w} € M,

0, sonst.

fM(l), W) = {

Da aufgrund der Matchingbedingungen jeder Knoten auf héchstens einer Kante von E liegt,
erfiillt fys das Kirchhoftsche Gesetz. Folglich ist fys eine 0-1-Flusstunktion, insbesondere gilt
flow(fyr) = [M].

49

6 BIPARTITES MATCHING

(ii) Definiere

My = {{v,w}EE D flo,w) = 1}.

Das Kirchhoffsche Gesetz fiir f entspricht der Matchingeigenschaft von My und offensichtlich
gilt flow(f) = [M|. A

Beispiel 6.6 Fiir das Heiratsproblem aus Beispiel 6.3 sind N und fys gegeben durch:

Hierin entsprechen dicke Pfeile fy/(v, w) = 1, diinne Pfeile fis(v, w) = 0. -

Korollar 6.7 Fiir G wie zuvor gilt
MaxFlow(Ng) = max{|M| : M ist Matching fiir G}.

Eine maximale 0-1-Flussfunktion fiir Ng kann mit dem Ford-Fulkerson-Algorithmus in Laufzeit
O(n - m) bestimmt werden, wobei m = |E| und n = |V|.

Beweis. Die ersten Aussagen folgen sofort aus Satz 6.5. Die Aussage hinsichtlich der Lauf-
zeit folgt aus der Tatsache, dass die Anzahl der Flusserhhungsschritte beschrinkt ist durch
MaxFlow(Ng) und

MaxFlow(Ng) < Z c(s,v) = Z c(s,v) =|Vi| < n. o
| S——

vEpost(s) veVy T

Bemerkung Die Suche nach augmentierten Wegen kann mit einer Tiefen- oder Breitensu-
che in Laufzeit O(m) durchgefiihrt werden. ¢

Definition 6.8 SeiG = (V, E) ein bipartiter Graph mit Partition V = V7 uVg und |Vz| < [Vg|.
Ein Matching M heisst perfekt, falls |M| = |V | gilt.

50

6 BIPARTITES MATCHING

Satz 6.9 (Heiratssatz von Hall) Sei G = (V, E) ein bipartiter Graph mit Partition V. =V U Vg
und [Vi| < |Vg|. Dann existiert ein perfektes Matching genau dann, wenn

| post(W)| > [W| fiir alle W C V.
Hierbei gilt post(W) := Uyew post(w).

Beweis. “=" Ist M perfekt und W C Vi, so enthilt M fiir alle w € W genau eine Kante
{w, wy} € E. Die Knoten wyy liegen also in post(W) und sind paarweise verschieden, dies
bedeutet

| post(W)] > W],

“«<" Sei | post(W)| > [W] fiir alle W C V;. Seien Ng das zum Matchingproblem gehérige
Netzwerk und f eine maximale 0-1-Flussfunktion. Gilt

flow(f) = [Vil,

so ist das entsprechende Matching gemiss Korollar 6.7 perfekt.

Sei S; die Menge aller von s erreichbaren Knoten im Restdigraphen von f. Wegen t ¢ Sy und

cap(Sy) = Z c(v,w)

vES
wepost(u)\Sy
=) fow -), fow
veSy weSp T
wepost(v)\S¢ vepre(w)\Sy
= flow(f)

ist Sy ein Schnitt mit minimaler Schnittkapazitit, vergleiche den Beweis des Max-Flow-Min-
Cut-Theorems. Wir zeigen zunichst, dass

post(V; nSy) C Sy (6.1)

gilt. Sei hierzu v € Sy N Vy beliebig und w € post(v). Angenommen, (6.1) gilt nicht, dann ist
w ¢ Sy. Folglich ist (v, w) keine Kante im Restdigraphen von f. Die Kante (v, w) ist somit
gesittigt, das heisst

fl,w)=1.

Da pre(v) = {s}, folgt aus dem Kirchhoffschen Gesetz, dass f(s,v) = 1. Damit ist auch (s, v)
keine Kante im Restdigraphen. Der Knoten v kann also im Restdigraphen nur iiber eine
Riickwirtskante von der Quelle s erreicht werden. Daher gibt es ein u € post(v) N Sy mit

flo,u) =1.

Es gibt folglich zwei direkte Nachfolger von v mit
f,w) = f(v,u) =1.

51

6 BIPARTITES MATCHING

Dies widerspricht aber dem Kirchhoffschen Gesetz, da (s, v) die einzige zu v fithrende Kante

1st.

Damit gilt (6.1) und es folgt fiir alle Kanten (u,v) in Ng mit u € Sy undv € V\ Sy, dassu = s

oder v = t ist. Dies impliziert

cap(Sy) = Z c(u,v)

uESf _
vepost(u)\S¢ -

=[{(s,v) : (s,v) € E' und v ¢ Sf}|
+ [{(v,1) : (v,t) € E' und v € Sy}
=|VL\Sf|+|SfﬂVR|

| SR
(6.1)
2 post(VLnSys)
> [Vp N\ S¢| + | post(V, n'Sy)|.

Nach Voraussetzung ist | post(W)| > |[W/|, insbesondere
[post(Vi, 0 $7)| > [V, 0 S5,
und wir erhalten

flow(f) = cap(Sy)
> [V \ Sf| + | post(Vz n Sf)|
> |VL AN Sf| + |VL N Sf|
= [VLl.
Andererseits gilt offensichtlich auch flow(f) < V7| und somit flow(f) = [Vy|.
Beispiel 6.10 Beim bipartiten Graphen

ist das Hallsche Kriterium erfiillt, denn A, B, C haben jeweils mindestens einen Nachfolger,

{A, B}, {B, C}, {A, C} mindestens zwei Nachfolger und {A, B, C} drei Nachfolger.

Zum bipartiten Graphen

52

existiert kein perfektes Matching, denn {B, C} hat nur einen Nachfolger.

Der Heiratssatz von Hall liefert kein zufriedenstellendes algorithmisches Kriterium fiir die
Existenz eines perfekten Matchings, da alle Teilmengen W C V| betrachtet werden miissen.
Allerdings erméglicht er diesen Nachweis in Graphen, in denen alle Knoten denselben Grad

6 BIPARTITES MATCHING

haben. Solche Graphen heissen auch regulr.

Satz 6.11 Sei G = (V, E) ein bipartiter Graph mit Partition V = Vi, U Vg und |Vi| < |[Vg|. Gilt
| post(v)| = k > 0 fiir alle v € V, so existiert ein perfektes Matching.

Beweis. Seien W C V; und

E; = {{v,w}eE : U€W},
E, = {{v,w}eE : prost(W)}.

Aus E; C E; folgt

kW[= |E1| < [Ez| = k| post(W),

das heisst [W| < | post(W)|. Satz 6.9 liefert dann die Behauptung.

Beispiel 6.12 Der bipartite Graph

erfiillt | post(v)| = 2 fiir alle Knoten v € V. Ein perfektes Matching ist zum Beipiel

M = {{A3},{B,1},{C,4}{D, 2} }.

53

INDEX

0-1-Flussfunktion, 49 -wert, 39
maximaler, 39

Adjazenz optimaler, 39

-liste, 13

-matrix, 12 Gewichtsfunktion, 30
algorithmische Suche, 24 Grad, 6, 10
Algorithmus Ausgangs-, 10

algorithmische Suche, 24 Eingangs-, 10

Breitensuche, 24 Graph, 5

Tiefensuche, 24 azyklischer, 22

von Dijkstra, 32 bipartiter, 48

von Edmonds und Karp, 44 Eulersch, 19

von Floyd und Warshall, 36 gerichteter, 8

von Ford und Fulkerson, 43 induzierter Teil-, 7

von Moore, Bellman und Ford, 35 regulirer, 53

zur Bestimmung starker Zusammenhangs- stark zusammenhingender, 17

komponenten, 26 Teil-, 7
Anfangsknoten, 8 ungerichteter, 5
zusammenhingender, 16

Baum, 22 zweigeteilter, 48

gerichteter, 35 zyklenfreier, 22
Bipartition, 48 Graphenisomorphismus, 7
Breadth-First-Search (BFS), 24
Breitensuche, 24 Heiratssatz von Hall, 51
Depth—First—Search (DFS), 24 Integral—Flow—Theorem, 43
Digraph, 8 isomorph, 7, 11

Eulersch, 19 Isomorphismus

gewichteter, 30 Digraphen-, 11

induzierter Teil-, 11 Graphen-, 7

kondensierter, 18

Teil-, 10 Kante, 5, 8

Kapazitit, 39

Digraphenisomorphismus, 11
gtap P eines Schnitts, 39

Dijkstra-Algorithmus, 32

Rest-, 42
Endknoten, 8 Kapazitits

-bedingung, 39
Floyd-Warshall-Algorithmus, 36 -funktion, 39
Fluss, 39 Kirchhoffsches Gesetz, 39

54

Knoten, 5, 8
Anfangs-, 8
End-, 8
erreichbarer, 5, 9
Nachbar-, 6, 10
Nachfolger-, 9
Vorginger-, 10

Komponente
Zusammenhangs-, 16

Kostenfunktion, 30

Kreis, 21

Liste
Adjazenz-, 13
einfach verkettete, 13
Nachbarschafts-, 13
Listenkopf, 14

Matching, 48

maximales, 48

perfektes, 50
Matrix

Adjazenz-, 12

Nachbarschafts-, 12
Max-Flow-Min-Cut-Theorem, 40
Moore-Bellman-Ford-Algorithmus, 35

Nachbar
-knoten, 6, 10
-schaftsliste, 13
-schaftsmatrix, 12
Nachfolger
-knoten, 9
Netzwerk, 39

Ordnung
topologische, 28
Orientierung, 49

Partition, 48
Pfad, 6

Quelle, 39

Riickwirts
-kante, 42
Restdigraph, 42

INDEX

Restkapazitit, 42

Rundweg, 6, 9
Eulerscher, 19
einfacher, 6, 9
pathologischer, 21

Satz
von Hall, 51
Schleife, 9
Schnitt, 39
Schnittkapazitit, 39
minimale, 39
Senke, 39

Teil

-digraph, 10

-graph, 7
Tiefensuche, 24
topologische Ordnung, 28

Vorginger

-knoten, 10

Vorwirts

-kante, 42

Weg, 5,9

einfacher, 6, 9
kiirzester, 30
Linge eines, 5, 9
von v nach w, 5,9

Weglinge, 5, 9, 30

55

kiirzeste, 30

Zusammenhang, 16
starker, 17
Zusammenhangskomponente, 16
starke, 17
Zyklus, 21

