
Algorithmische Mathematik
Graphen & Anwendungen

Skript zur Vorlesung
im

FS 2025

Helmut Harbrecht, Michael Multerer & Marc Schmidlin

Version vom 5. Juni 2025

Informationen ...

zu den Übungen

Auf den Übungsblättern kommen Theorie- und Programmieraufgaben vor. Die Ausgabe und
Abgabe der Übungsblätter findet jeweils am Montag statt. Für die Theorieaufgaben gelten
folgende Regeln:

• Die Lösungen sind handschriftlich (Papier oder Tablet) zu schreiben.
• Die Abgaben erfolgen dabei entweder physisch an der Spiegelgasse 1 oder digital über

ADAM durch jeweils ein PDF-File pro Übungsblattserie. Abgegebene PDF-Files müssen
direkt A4-Papier druckbar sein.

Für die Programmieraufgaben gelten folgende Regeln:

• Die Lösungen sind in MATLAB zu programmieren.
• Die Abgabe der Codes erfolgt dabei immer digital über ADAM durch jeweils ein

ZIP-File pro Übungsblattserie. Die ZIP-Files enthalten dabei jeweils alle notwendi-
gen Sourcecode-Files. Falls in den Programmieraufgaben Fragen zu beantworten sind,
werden allfällige Antworten mit den Theorieaufgaben abgegeben.

Die Rückgabe der korrigierten Abgaben erfolgt physisch in der Übungsstunde.

zu der Leistungsüberprüfung

Die Vorlesung Algorithmische Mathematik: Graphen und Anwendungen wird als eine kombinierte
Veranstaltung “Vorlesung mit Übung” (6KP) mit lehrveranstaltungs-begleitender Leistungs-
überprüfung gehalten, welche wie folgt angedacht ist:

• In den Übungsblätter sind 50% der Punkte, von den abzugebenden Übungsaufgaben, zu
erreichen, um die Zulassung für die mündliche Prüfung zu erhalten.

• Es ist keine schriftliche Prüfung vorgesehen.
• Die mündliche Prüfung (Dauer 30min) wird benotet (Skala 1-6 0,5). Die mündlichen

Prüfungen finden vom 04-06.06.2025 statt.

Wenn Sie die Zulassung für die mündliche Prüfung erhalten, wird die Veranstaltung für
Sie mit der Note der mündlichen Prüfung benotet. Haben Sie jedoch die Zulassung für die
mündliche Prüfung nicht erhalten, dürfen Sie nicht an der mündlichen Prüfung teilnehmen
und die Veranstaltung wird für Sie mit einer ungenügenden Note bewertet.

2

Vorwort

Diese Mitschrift kann und soll nicht ganz den Wortlaut der Vorlesung wiedergeben. Sie soll
das Nacharbeiten des Inhalts der Vorlesung erleichtern.

Literatur zur Vorlesung:

• H. Harbrecht und M. Multerer: Algorithmische Mathematik: Graphen, Numerik und Proba-
bilistik, Springer Spektrum

• N. Blum: Algorithmen und Datenstrukturen, Oldenbourg-Verlag

• B. Korte und J. Vygen:Combinatorial Optimization: Theory and Algorithms, Springer-Verlag

3

Inhaltsverzeichnis

1 Grundlagen 5

1.1 Graphen . 5

1.2 Digraphen . 8

1.3 Implementation von Graphen & Digraphen 12

2 Etwas Graphentheorie 16

2.1 Zusammenhang . 16

2.2 Rundweg . 19

2.3 Zyklus . 21

3 Graphendurchmusterung 24

4 Kürzeste-Wege-Probleme 30

5 Netzwerkflussprobleme 38

6 Bipartites Matching 48

4

1
Grundlagen

1.1 Graphen

Definition 1.1 Ein Graph ist ein Paar G = (V , E), bestehend aus endlicher Menge V von
Knoten (vertices) und einer endlichen Menge von ungeordneten Paaren {v, w} ⊆ V ,

E ⊆
{
X ⊆ V ∶ |X | = 2

}
,

den Kanten (edges). Eine Kante e = {v, w} ∈ E steht für eine Verbindungen zwischen den
verschiedenen Knoten v und w, da {v, w} = {w, v} gilt, ist dieser Verbindung keine Richtung
zugeordnet; sprich die Kante e ist ungerichtet.

Achtung: Wie zumindest in einigen Bereichen in der mathematischen Literatur nicht unüb-
lich, kann die Terminologie in der Graphentheorie variieren. Dabei kann der gleiche Term, je
nach Quelle, verschiedene (aber eben auch ähnliche) Bedeutungen annehmen und, umgekehrt
verschiedene Terme exakt die gleiche Bedeutung haben. In der Literatur wird zum Beispiel,
was hier als Graph bezeichnt wird, auch ungerichteter Graph genannt.

Beispiel 1.2 Graph G = ({v, w, x, y},
{
{v, w}, {w, x}, {v, x}, {x, y}

}
):

v

w x

y

♣

Definition 1.3 Sei G = (V , E) ein Graph. Ein Weg in G ist eine Knotenfolge

� = v0, v1, … , vr

mit r ≥ 1 und {vi, vi+1} ∈ E, i = 0, 1, … , r − 1. Wir sprechen von einem Weg, der von v nach
w führt, wenn der Anfangsknoten v0 = v und der Endknoten vr = w ist. Die Länge |�| von
� ist r , das heisst, die Anzahl der Kanten, die in � durchlaufen werden. Ein Knoten w heisst
von einem Knoten v erreichbar, falls ein Weg � = v0, v1, … , vr in G existiert, so dass v = v0 und
w = vr .

5

1 Grundlagen

Beachte: In der Literatur wird ein Weg auch Pfad genannt.

Beispiel 1.4 Beispiele für Wege in dem Graphen von Beispiel 1.2 sind

• �1 = v, w (Länge 1),
• �2 = v, w, x (Länge 2),
• �3 = v, w, x, y, x, y (Länge 5) und
• �4 = x, v, w, x, y (Länge 4). ♣

Definition 1.5 Sei G = (V , E) ein Graph und ein Weg

� = v0, v1, … , vr

mit r ≥ 1 gegeben, dann nennen wir den Weg � einen Rundweg, falls v0 = vr gilt.

Definition 1.6 Sei G = (V , E) ein Graph und ein Weg

� = v0, v1, … , vr

mit r ≥ 1 gegeben. Der Weg � heisst einfach, falls gilt:

• v0, v1, … , vr sind paarweise verschieden

• oder � ist ein Rundweg und v0, v1, … , vr−1 sind paarweise verschieden.

Beispiel 1.7 Der Graph aus Beispiel 1.2 besitzt die einfachen Rundwege �1 = v, w, x, v und
�2 = x, y, x . Dementgegen ist �3 = v, w, x, y, x, v ein Rundweg, welcher nicht einfach ist. ♣

Definition 1.8 Es sei G = (V , E) ein Graph und v ∈ V . Wir definieren:

• die Menge der (direkten) Nachbarn von v

post(v) ∶= {w ∈ V ∶ {v, w} ∈ E},

• die Menge aller von v erreichbaren Knoten

post⋆(v) ∶= {w ∈ V ∶ es existiert ein Weg von v nach w}.

Beispiel 1.9 Für den Graphen aus Beispiel 1.2 ist

post(x) = {v, w, y}, post⋆(x) = {v, w, x, y}. ♣

Definition 1.10 Es sei G = (V , E) ein Graph und v ∈ V . Der Grad von v ist gegeben durch

deg(v) ∶= | post(v)|.

6

1.1 Graphen

Beachte: Insbesondere gilt

∑
v∈V

deg(v) = 2|E|.

Definition 1.11 Es sei G = (V , E) ein Graph. Ein Graph G′ = (V ′, E′) heisst Teilgraph von
G, falls V ′ ⊆ V und E′ ⊆ E gelten.

Beachte: Da G′ selber ein Graph sein muss, gilt

E′ ⊆ E ∩ {X ⊆ V ′ ∶ |X | = 2}.

Beispiel 1.12 Der Graph rechts ist ein Teilgraph des Graphs von Beispiel 1.2, der links
keiner:

v

x

y v

x

y

♣

Definition 1.13 Es sei G = (V , E) ein Graph. Für eine Knotenteilmenge V ′ ⊆ V definieren
wir den von V ′ induzierten Teilgraphen von G, durch G[V ′] = (V ′, E′) mit

E′ ∶= E ∩
{
X ⊆ V ′ ∶ |X | = 2

}
.

Beachte: Offensichtlich ist jeder induzierter Teilgraph immer ein Teilgraph.

Beispiel 1.14 Der von {v, x, y} induzierte Teilgraph des Graphs von Beispiel 1.2 ist:

v

x

y

♣

Definition 1.15 Es seien G = (V , E) und G′ = (V ′, E′) zwei Graphen. Die Graphen G und
G′ heissen isomorph, falls es eine Abbildung �∶ V → V ′ gibt, wobei

• � bijektiv ist und

• E′ =
{
{�(v), �(w)} ∶ {v, w} ∈ E

}
erfüllt ist.

Eine solche Abbildung � nennen wir einen Graphenisomorphismus von G und G′.

7

1 Grundlagen

Grundlegend am Graphenisomorphismus ist, dass er die Graphenstruktur des einen Graphen
exakt auf den anderen abbildet. Das heisst wenn man nur die Graphenstruktur betrachtet
kann man zwei isomorphe Graphen nicht unterscheiden: in dem Sinne sie sind also lediglich
unterschiedliche Beschreibungen der gleichen abstrakten Graphenstrukur.

Beispiel 1.16 Der Graph G = ({v, w, x, y},
{
{v, w}, {w, x}, {v, x}, {x, y}

}
) ist isomorph zu

dem Graphen G′ = ({b, d, a, c},
{
{a, b}, {b, d}, {a, c}, {a, d}

}
). ♣

Um zu überprüfen, ob zwei Graphen isomorph sind, muss man einen Isomorphismus zwischen
den Graphen finden. A priori kommt gemäss Definition jede bijektive Abbildung zwischen V
und V ′ potenziell in Frage. Folgende Aussage schränkt die potenziellen bijektiven Abbildung
�∶ V → V ′ für einen allfälligen Graphenisomorphismus weiter ein.

Satz 1.17 Seien G = (V , E) und G′ = (V ′, E′) zwei isomorphe Graphen. Dann erfüllt jeder
Graphenisomorphismus �∶ V → V ′

deg(v) = deg (�(v))

für alle v ∈ V .

Beweis. Trivial. ♠

1.2 Digraphen

Definition 1.18 Ein Digraph ist ein Paar G = (V , E), bestehend aus einer endlicher Menge
V von Knoten (vertices) und einer endlichen Menge von geordneten Paaren (v, w) ∈ V × V ,

E ⊆
{
(v, w) ∈ V × V ∶ v ≠ w

}
,

den Kanten (edges). Eine Kante e = (v, w) ∈ E steht für eine Verbindungen zwischen den
verschiedenen Knoten v und w, da (v, w) ≠ (w, v) gilt, ist dieser Verbindung eine Richtung
zugeordnet; sprich sie ist gerichtet. Wir nennen v den Anfangsknoten und w den Endknoten der
Kante e.

Beachte: In der Literatur wird ein Digraph auch gerichteter Graph genannt.

Beispiel 1.19 Digraph G = ({v, w, x, y}, {(v, w), (w, x), (v, x), (x, y), (y, x)}):

v

w x

y

♣

8

1.2 Digraphen

Bemerkung In Digraphen werden manchmal auch Kanten der Form (v, v) zugelassen. Man
spricht dann von Schleifen. �

Definition 1.20 Sei G = (V , E) ein Digraph. Ein Weg in G ist eine Knotenfolge

� = v0, v1, … , vr

mit r ≥ 1 und (vi, vi+1) ∈ E, i = 0, 1, … , r − 1. Wir sprechen von einem Weg, der von v nach
w führt, wenn der Anfangsknoten v0 = v und der Endknoten vr = w ist. Die Länge |�| von
� ist r , das heisst, die Anzahl der Kanten, die in � durchlaufen werden. Ein Knoten w heisst
von einem Knoten v erreichbar, falls ein Weg � = v0, v1, … , vr in G existiert, so dass v = v0 und
w = vr .

Beispiel 1.21 Beispiele für Wege in dem Digraphen von Beispiel 1.19 sind

• �1 = v, w (Länge 1),
• �2 = v, w, x (Länge 2) und
• �3 = v, w, x, y, x, y (Länge 5). ♣

Definition 1.22 Sei G = (V , E) ein Digraph und ein Weg

� = v0, v1, … , vr

mit r ≥ 1 gegeben, dann nennen wir den Weg � einen Rundweg, falls v0 = vr gilt.

Definition 1.23 Sei G = (V , E) ein Digraph und ein Weg

� = v0, v1, … , vr

mit r ≥ 1 gegeben. Der Weg � heisst einfach, falls gilt:

• v0, v1, … , vr sind paarweise verschieden

• oder � ist ein Rundweg und v0, v1, … , vr−1 sind paarweise verschieden.

Beispiel 1.24 Der Digraph aus Beispiel 1.19 besitzt als einzigen einfachen Rundweg den
Rundweg �1 = x, y, x respektive mit y als Anfangsknoten �1 = y, x, y. In dem wir den Rund-
weg �1 mehrmals aneinander hängen können wir die weiteren Rundwege �2 = y, x, y, x, y,
�3 = y, x, y, x, y, x, y etc. generieren. Diese sind aber jeweils per definition nicht einfach.
Weiter gibt es keinen Rundweg, der die Knoten v oder w enthält. ♣

Definition 1.25 Es sei G = (V , E) ein Digraph und v ∈ V . Wir definieren:

• die Menge der (direkten) Nachfolger von v

post(v) ∶= {w ∈ V ∶ (v, w) ∈ E},

9

1 Grundlagen

• die Menge der (direkten) Vorgänger von v

pre(v) ∶= {w ∈ V ∶ (w, v) ∈ E},

• die Menge aller von v erreichbaren Knoten

post⋆(v) ∶= {w ∈ V ∶ es existiert ein Weg von v nach w},

• die Menge aller Knoten, die v erreichen können,

pre⋆(v) ∶= {w ∈ V ∶ v ∈ post⋆(w)}.

Ein Knoten w ∈ post(v) ∪ pre(v) ist ein Nachbar von v.

Beachte: post(v) und pre(v) können völlig verschieden sein, ebenso post⋆(v) und pre⋆(v).

Beispiel 1.26 Für den Digraphen aus Beispiel 1.19 ist

post(v) = {w, x}, post⋆(v) = {w, x, y}, pre(v) = pre⋆(v) = ∅

und

post(y) = {x}, post⋆(y) = {x, y}. ♣

Definition 1.27 Es sei G = (V , E) ein Digraph und v ∈ V . Der Eingangsgrad von v ist
gegeben durch

indeg(v) ∶= | pre(v)|

und der Ausgangsgrad durch

outdeg(v) ∶= | post(v)|.

Schliesslich definieren wir den Grad von v vermittels

deg(v) ∶= indeg(v) + outdeg(v).

Beachte: Es gilt zwingend:

∑
v∈V

outdeg(v) = ∑
v∈V

indeg(v) = |E|.

Definition 1.28 Es sei G = (V , E) ein Digraph. Ein Digraph G′ = (V ′, E′) heisst Teildigraph
von G, falls V ′ ⊆ V und E′ ⊆ E gelten.

10

1.2 Digraphen

Beachte: Da G′ selber ein Digraph sein muss, gilt

E′ ⊆ E ∩
{
(v, w) ∈ V ′ × V ′ ∶ v ≠ w

}
.

Beispiel 1.29 Der Digraph rechts ist ein Teildigraph des Digraphs von Beispiel 1.19, der
links keiner:

v

x

y v

x

y

♣

Definition 1.30 Es sei G = (V , E) ein Digraph. Für eine Knotenteilmenge V ′ ⊆ V definie-
ren wir den von V ′ induzierten Teildigraphen von G, durch G[V ′] = (V ′, E′) mit

E′ ∶= E ∩
{
(v, w) ∈ V ′ × V ′ ∶ v ≠ w

}
.

Beachte: Offensichtlich ist jeder induzierter Teildigraph immer ein Teildigraph.

Beispiel 1.31 Der von {v, x, y} induzierte Teildigraph des Digraphs von Beispiel 1.19 ist:

v

x

y

♣

Definition 1.32 Es seien G = (V , E) und G′ = (V ′, E′) zwei Digraphen. Die Digraphen G
und G′ heissen isomorph, falls es eine Abbildung �∶ V → V ′ gibt, wobei

• � bijektiv ist und

• E′ =
{
(�(v), �(w)) ∶ (v, w) ∈ E

}
erfüllt ist.

Eine solche Abbildung � nennen wir einen Digraphenisomorphismus von G und G′.

Satz 1.33 Seien G = (V , E) und G′ = (V ′, E′) zwei isomorphe Digraphen. Dann erfüllt jeder
Digraphenisomorphismus �∶ V → V ′

indeg(v) = indeg (�(v)), outdeg(v) = outdeg (�(v))

für alle v ∈ V .

Beweis. Trivial. ♠

11

1 Grundlagen

Definition 1.34 Es sei G = (V , E) ein Digraph. Dann ist der von G induzierte Graph G′

gegeben durch G′ = (V , E′) mit

E′ ∶=
{
{v, w} ∶ (v, w) ∈ E}.

Beispiel 1.35 Der von dem Digraph von Beispiel 1.19 induzierte Graph ist genau der Graph
von Beispiel 1.2. ♣

Definition 1.36 Es sei G = (V , E) ein Graph. Dann ist der von G induzierte Digraph G′

gegeben durch G′ = (V , E′) mit

E′ ∶=
{
(v, w) ∶ {v, w} ∈ E}.

Beispiel 1.37 Der von dem Graph von Beispiel 1.2 induzierte Digraph ist nicht der Digraph
von Beispiel 1.19. Der Digraph von Beispiel 1.19 ist lediglich ein echter Teildigraph. ♣

1.3 Implementation von Graphen & Digraphen

Die einfachste Art Digraphen im Rechner zu speichern ist die Verwendung von Adjazenzma-
trizen.

Definition 1.38 Ein Digraph G = (V , E) mit V = {1, 2, … , n} kann durch eine Adjazenzma-
trix oder Nachbarschaftsmatrix A = [ai,j]ni,j=1 ∈ Rn×n mit

ai,j =

{
1, falls (i, j) ∈ E,
0, sonst,

dargestellt werden.

Definition 1.39 Ein Graph G = (V , E)mit V = {1, 2, … , n} kann durch die Adjazenzmatrix
des durch G induzierten Digraphen dargestellt werden.

Beispiel 1.40 Der Digraph G

1

2 3 4

5

12

1.3 Implementation von Graphen & Digraphen

und sein induzierten Graphen G′ besitzen die Adjazenzmatrizen

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 0
0 0 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, A′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
0 0 1 0 0
0 0 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. ♣

Bemerkung Bei Graphen ist A stets symmetrisch, das heisst es gilt ai,j = aj ,i für alle
1 ≤ i, j ≤ n. �

Die Adjazenzmatrix besitzt immer den Speicherplatzbedarf |V |2, unabhängig von der Anzahl |E|
der Kanten. Platzeffizienter ist die Darstellung von Digraphen G = (V , E) durch Adjazenzlisten:

Definition 1.41 Die Adjazenzliste oder Nachbarschaftsliste zu einem Knoten v ∈ V enthält
einen Knoten w ∈ V genau dann, wenn w ∈ post(v) gilt.

Beispiel 1.42 Die Adjazenzlisten zum Digraphen aus Beispiel 1.40 werden wie folgt darge-
stellt:

1

2

3

4

5

2 3

3

4 5

3
♣

Adjazenzlisten können gespeichert werden als einfach verkettete Listen mit Elementen der Form

struct node

{ unsigned int number;

struct node *next;

};

Sind A und B vom Typ struct node, so enthält A.number beziehungsweise B.number die
Nummer des Knotens, während die Zuweisung

A.next = &B;

B als Nachfolger von A definiert. Anstelle von B kann man dann auch A.next schreiben. Das
Ende der Liste wird durch

13

1 Grundlagen

B.next = NULL;

markiert. Merken muss man sich jeweils den Anfang der Liste, auch Listenkopf (head) genannt.
Dies geschieht meist durch ein Feld der Länge |V |.

Für Digraphen haben Adjazenzlisten den Seicherplatzbedarf |V | + |E|. Für Graphen ist der
Platzbedarf |V | + 2|E|, da jede Kante in zwei Adjazenzlisten vorkommt.

Bemerkung Eine weitere Möglichkeit ist es, jede Adjazenzliste statt als einfach verkette
Liste direkt als Feld zu speichern. Für einen Knoten v ∈ V muss das Feld dann jeweils die Länge
outdeg(v) haben. Beispielsweise wuerden die Adjazenzlisten zum Digraphen aus Beispiel 1.40
dann wie folgt dargestellt werden:

1

2

3

4

5

2 3

3

4 5

3

In MATLAB kann man diese Variante umsetzen in dem man die Adjazenzlisten als Vektoren in
ein cell array der Länge |V | speichert. �

Unter der Annahme, dass der maximale Ausgangsgrad eines Digraphen nicht zu gross ist,
kann man anstatt den einfach verketteten Listen oder den Vektoren, die Adjazenzliste auch
als Spalten in eine rechteckige Matrix speichern. Dabei hat die Matrix dann |V | Spalten und
maxv∈V outdeg(v) Reihen. Um die Adjazenzlisten alle gleich lang zu machen ergänzt man sie
mit Nullen. Für den Digraphen aus Beispiel 1.40 erhält man dann:

[
2 3 4 0 3
3 0 5 0 0] .

Während wir diese einfache Variante in den Uebungen benutzen werden, ist es auch angebracht
zu bemerken, dass es auch raffiniertere Darstellungen von Digraphen gibt, welche insbesondere
auch für die Speicherung von dünnvernetzen Digraphen gebräulich sind:

Bemerkung • Beim coordinate list (COO) Format speichert man in zwei Felder der
Länge |E| jeweils den Anfangsknoten in dem einen Feld und den Endknoten in dem

14

1.3 Implementation von Graphen & Digraphen

anderen Feld an der gleichen Stelle und dies für alle Kanten. Für den Digraphen aus
Beispiel 1.40 hat man zum Beispiel:

1 2 3 5 1 3

2 3 4 3 3 5

Ein Nachteil dieser Darstellung ist, dass man jeweils Suchen muss, um herauszufinden,
ob eine Kante im Graph existiert oder nicht.

• Um das COO Format zu verbessern kann man die Reihenfolge sortieren. Dabei möchte
man die Reihenfolge so wählen, dass die Anfangsknoten aufsteigend sortiert sind, und
die Endknoten zum gleichen Anfangsknoten auch aufsteigend sortiert sind. Für den
Digraphen aus Beispiel 1.40 hat man zum Beispiel:

1 1 2 3 3 5

2 3 3 4 5 3

• Im sortierten COO Format sieht man, dass die Sortierung der Anfangsknoten eine
Redundanz offenbart. Es ist nicht nötig die Anfangsknoten als Feld zu merken, sondern
es reicht sich für jeden Knoten zu merken, wo der potenziell erste Eintrag in dem
Endknotenfeld ist. Dies ergibt genau das compressed sparse row (CSR) Format. Für den
Digraphen aus Beispiel 1.40 hat man zum Beispiel:

1 3 4 6 6

2 3 3 4 5 3

Der Vorteil dieses Formats ist, dass es sehr speichereffizient ist und die Existenz von
Kanten auch effizient bestimmt werden kann. Ein Nachteil ist, dass das Einfügen oder
Löschen von Kanten generell ineffizient ist. �

Bemerkung Leicht modifiziert eignen sich die Formate COO und CSR wie auch andere,
um dünn besetzte Matrizen effizient abzuspeichern. Die Indices jedes Nichtnull-Eintrages
wird als Kante in einem Digraphen verstanden, wobei nun der Kante der Werst des Eintrages
zugeordnet wird. �

15

2
Etwas Graphentheorie

2.1 Zusammenhang

Definition 2.1 Sei G = (V , E) ein Graph und C ⊆ V . C heisst zusammenhängend, falls je zwei
Knoten v, w ∈ C, v ≠ w, voneinander erreichbar sind, das heisst, falls gilt w ∈ post⋆(v) (oder
äquivalent v ∈ post⋆(w)). C heisst Zusammenhangskomponente von G, falls C eine nicht-leere
maximale zusammenhängende Knotenmenge ist. Maximalität bedeutet hier, dass C in keiner
anderen zusammenhängenden Menge C′ ⊂ V echt enthalten ist (also C ≠ C′). Der Graph G
heisst zusammenhängend, falls V zusammenhängend ist.

Beispiel 2.2

• Ein zusammenhängender Graph ist:

• Ein unzusammenhängender Graph mit drei Zusammenhangskomponenten ist:

♣

Offenbar sind die Zusammenhangskomponenten eines Graphs die Äquivalenzklassen der
Knotenmenge V unter der Erreichbarkeits-Äquivalenzrelation “≡”, wobei

v ≡ w ∶ ⟺ {v} ∪ post⋆(v) = {w} ∪ post⋆(w).

Insbesondere zerfällt G in paarweise disjunkte Zusammenhangskomponenten C1, C2, … , Cr
mit

V =
r
⋃
i=1

Ci, E =
r
⋃
i=1

Ei,

wobei Ei ∶= E ∩ {X ⊆ Ci ∶ |X | = 2}.

16

2.1 Zusammenhang

Satz 2.3 Sei G = (V , E) ein Graph mit n = |V | ≥ 1 Knoten sowie m = |E| Kanten, dann gilt:
Aus G zusammenhängend folgt m ≥ n − 1.

Beweis. Wir beweisen die Aussage durch Induktion nach n. Für n = 1 folgt m = 0 = n − 1;
im Fall n = 2 ist G zusammenhängend genau dann, wenn m = 1 = n − 1. Wir nehmen nun
an, dass n ≥ 3 und G zusammenhängend ist. Wähle v ∈ V , so dass

deg(v) = min
w∈V

deg(w) =∶k.

Es gilt k > 0, denn sonst wäre v ein isolierter Knoten, was im Widerpruch zu G zusammen-
hängend steht. Im Fall k ≥ 2 folgt

2m = 2|E| = ∑
w∈V

deg(w)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

≥k

≥ n ⋅ k ≥ 2 ⋅ n

und folglich m ≥ n ≥ n − 1.

Für k = 1 ergibt sich die Aussage wie folgt: Es sei G′ = (V ′, E′) der induzierte Graph,
der durch Streichen des Knotens v sowie der ausgehenden Kante entsteht. Mit G ist auch G′

zusammenhängend und nach Induktionsvoraussetzung folgt wegen |V ′| = n−1 und |E′| = m−1

m − 1 = |E′| ≥ (n − 1) − 1 = n − 2,

das heisst m ≥ n − 1. ♠

Definition 2.4 Sei G = (V , E) ein Digraph und C ⊆ V . Dann heisst C zusammenhängend,
falls C in dem von G induzierten Graphen zusammenhängend ist.

Satz 2.5 Sei G = (V , E) ein Digraph mit n = |V | ≥ 1 Knoten sowie m = |E| Kanten, dann gilt:
Aus G zusammenhängend folgt m ≥ n − 1.

Beweis. Trivial. ♠

Definition 2.6 Ein Digraph G = (V , E) heisst stark zusammenhängend, falls für jedes Paar
von Knoten v, w ∈ V mit v ≠ w gilt v ∈ post⋆(w) und w ∈ post⋆(v), das heisst, es gibt einen
Weg von v nach w und einen Weg von w nach v. Die starken Zusammenhangskomponenten sind
die Kontenmengen der maximalen stark zusammenhängenden Teildigraphen.

Beispiel 2.7 Der Digraph

v

w x

y

17

2 Etwas Graphentheorie

ist stark zusammenhängend. Hingegen besteht der nicht stark zusammenhängender Digraph

v

w x

y

aus den starken Zusammenhangskomponenten {v}, {w}, {x, y}. ♣

Hinsichtlich der starken Zusammenhangskomponenten ist es oft nützlich, den so genannten
kondensierten Digraphen zu betrachten. Dieser fasst die Knotenmengen der starken Zusammen-
hangskomponenten zu einzelnen Knoten zusammen.

Definition 2.8 Für einen Digraphen G = (V , E) seien die starken Zusammenhangskompo-
nenten gegeben durch

Gi ∶= (Vi, E ∩ (Vi × Vi)) für i = 1, 2, … , p

mit V1, V2, … , Vp ⊆ V . Der Digraph G⋆ = (V ⋆, E⋆) mit

V ⋆ ∶= {V1, V2, … , Vp} und E⋆ ∶=
{
(Vi, Vj) ∈ V ⋆ × V ⋆ ∶ i ≠ j und E ∩ (Vi × Vj) ≠ ∅

}

heisst kondensierter Digraph zu G.

Beispiel 2.9 Der Digraph

v

w x

y

hat den kondensierten Digraph

{v}

{w}

{x, y}

bestehend aus den starken Zusammenhangskomponenten {v}, {w}, {x, y}. ♣

18

2.2 Rundweg

2.2 Rundweg

Definition 2.10 EinEulerscher Rundweg in einemGraphen oderDigraphenG = (V , E) ist ein
Rundweg, der jede Kante e ∈ E genau einmal enthält. IstG ein Graph, so nennen wirG Eulersch,
falls der Grad jedes Knotens gerade ist. Ein Digraph ist Eulersch, falls indeg(v) = outdeg(v)
für alle v ∈ V gilt.

Basierend auf dieser Definition haben wir den folgenden berühmten Satz, der Leonhard Euler
zugeschrieben wird.

Satz 2.11 Ein zusammenhängender Graph oder Digraph G = (V , E) besitzt genau dann einen
Eulerschen Rundweg, wenn er Eulersch ist.

Beweis. Die Bedingung ist notwendig, da ein Knoten v ∈ V , der k-mal in einem Eulerschen
Rundweg vorkommt (oder k + 1 mal, wenn es sich um den Anfangs- und Endknoten handelt),
im gerichteten Fall

indeg(v) = outdeg(v) = k

und im ungerichteten Fall

deg(v) = 2k

erfüllen muss.

Dass die Bedingung auch hinreichend ist, sieht man wie folgt ein: Sei

� = v0, v1, … , vr

der längste Weg, in dem jede Kante aus E höchstens einmal vorkommt. Insbesondere muss in
diesem Weg jede Kante enthalten sein, die vr verlässt. Das bedeutet aber sofort v0 = vr wegen
der Bedingung an den Knotengrad. Angenommen � enthält nicht alle Kanten, das heisst, es
gibt eine Kante e = (w1, w2) ∈ E oder e = {w1, w2} ∈ E, sodass e ≠ (vi, vi+1) beziehungsweise
e ≠ {vi, vi+1} für alle i = 0, … , r − 1. Da G zusammenhängend ist, muss nun entweder w1 oder
w2 in � enthalten sein. Ist nun beispielsweise w1 = vi in � enthalten, so ist

�̃ = vi, vi+1, … , vr , v1, … vi−1, vi, w2

ein längerer Weg, in dem jede Kante genau einmal vorkommt. ♠

Insel

19

2 Etwas Graphentheorie

Zu Zeiten Eulers floss durch die Stadt Königsberg der Fluss Pregel. In diesem Fluss gab es
eine Insel, hinter der sich der Fluss teilte. Die vier resultierenden Landstücke waren durch
insgesamt sieben Brücken verbunden. Hieraus ergab sich die Fragestellung, ob es möglich wäre
einen Rundweg zu finden, der jede Brücke nur genau einmal passiert. Die vorliegend Situation
ist im vorangestellten Multigraphen (hierin sind auch parallele Kanten zugelassen) schematisch
dargestellt. Der soeben bewiesene Satz sagt nun aus, dass in der vorliegenden Konfiguration
kein solcher Rundweg existiert.

Satz 2.12 Sei G = (V , E) ein Graph oder Digraph und

� = v0, v1, … , vr

mit r ≥ 1 ein Weg. Wenn � nicht einfach ist, dann kann � aus einem einfachen Weg gewonnen werden,
indem wiederholt einfache Rundwege eingefügt werden. Insbesondere kann daher jeder nicht einfache
Rundweg aus einfachen Rundwegen zusammengesetzt werden.

Beweis. Es ist einfach einzusehen, dass jeder Weg der Länge ≤ 2 einfach sein muss. Daher
reicht es per Induktion zu zeigen, dass ein nicht einfacher Weg aus einem Weg und einem
Rundweg zusammengestzt werden kann, welche beide notwendigerweise eine echt kleinere
Länge aufweisen. Sei also

� = v0, v1, … , vr

mit r ≥ 3 ein nicht einfacher Weg. Dann existieren 0 ≤ i < j ≤ r , sodass vi = vj und
insbesondere auch (i, j) ≠ (0, r) gelten. Da wir keine Schleifen in Graphen und Digraphen
erlauben, muss aber insbesondere auch j > i + 1 gelten.

• Ist i > 0, so besteht � aus dem Weg

�̃ = v0, … , vi, vj+1, … , vr

und dem Rundweg

� = vi, … , vj .

• Andernfalls gelten i = 0 und j ≠ r . Dann besteht � aus dem Weg

�̃ = v0, vj+1, … , vr

und dem Rundweg

� = v0, … , vj .

Da in beiden Fällen die Länge von �̃ und � echt kleiner als die Länge von � ist, sind wir
fertig. ♠

20

2.3 Zyklus

Beachte: Ein nicht einfacher Weg ist im Allgemeinen nicht eindeutig aus einem einfachen
Weg und einfachen Rundwegen zusammengesetzt.

Beispiel 2.13 Der Rundweg v1, v5, v3, v6, v2, v5, v4, v6, v1 lässt isch einerseits durch die Zu-
sammensetzung der einfachen Rundwege v1, v5, v3, v6, v1 und v6, v2, v5, v4, v6 generieren, aber
auch durch v1, v5, v4, v6, v1 und v5, v3, v6, v2, v5. ♣

2.3 Zyklus

Definition 2.14 Ein einfacher Rundweg heisst genau dann pathologisch, wenn er Länge 2 hat
und er in einem Graphen ist. Ein Rundweg in einem Graphen oder Digraphen heisst patholo-
gisch, wenn jede Art den Rundweg aus einfachen Rundwegen zusammenzusetzen, mindestens
einen pathologischen einfachen Rundweg benötigt. Wir nennen einen Rundweg, der nicht
pathologisch ist, Zyklus.

Beachte: In der Literatur wird statt Zyklus auch Kreis benutzt. Per Definition ist klar, dass
pathologische Rundweg nur in Graphen aber nicht in Digraphen vorkommen können.

Bemerkung Offensichtlich bedeutet diese Definition also:

(i) jeder nicht pathologische einfache Rundweg ist ein Zyklus,

(ii) sind �1 = v0, v1, … , vr und �2 = w0, w1, … , w� Zyklen mit vi = w0 = w�, so ist auch

� = v0, v1, … , vi−1, w0, w1, … , w�, vi+1, vi+2, … , vr

ein Zyklus,

(iii) nur die durch (i) und (ii) generierbaren Rundwege sind Zyklen. �

Beispiel 2.15

• Der Digraph

v

w x

y

besitzt die einfachen Zyklen

�1 = x, y, x, �2 = v, w, x, v,

und die nicht einfachen Zyklen

�3 = x, y, x, y, x, �4 = v, w, x, y, x, v.

21

2 Etwas Graphentheorie

• Der Graph

v

w x

y

besitzt den (einfachen) Zyklus �1 = v, w, x, v. Dementgegen sind die zwei Rundwege
�2 = x, y, x und �3 = v, w, x, y, x, v keine Zyklen! ♣

Definition 2.16 Ein Graph oder Digraph G heisst azyklisch oder zyklenfrei, falls es keine
Zyklen in G gibt. Ein azyklischer und zusammenhängender Graph ist ein Baum.

Beispiel 2.17

• Azyklischer Digraph:

• Azyklischer Graph:

♣

Satz 2.18 Sei G = (V , E) ein Graph mit n Knoten. Dann sind folgende Aussagen äquivalent:

1. G ist ein Baum.

2. G hat n − 1 Kanten und ist zusammenhängend.

22

2.3 Zyklus

3. G hat n − 1 Kanten und ist azyklisch.

4. G ist azyklisch und das Hinzufügen einer beliebigen Kante erzeugt einen Zyklus.

5. G ist zusammenhängend und das Entfernen einer Kante erzeugt einen unzusammenhängenden
Graphen.

6. Jedes Paar von verschiedenen Knoten in G ist durch genau einen einfachen Weg miteinander
verbunden.

Beweis.

1 ⇒ 6: Dies folgt aus der Tatsache, dass die Vereinigung zweier disjunkter einfacher Wege
mit gleichen Anfangs- und Endpunkten ein Zyklus ist.

6 ⇒ 5: G ist zusammenhängend gemäss Voraussetzung. Das Entfernen der Kante {v, w} macht
w unerreichbar von v.

5 ⇒ 4: G ist azyklisch, denn sonst kann eine Kante entfernt werden, so dass G weiterhin zu-
sammenhängend ist. Da es in G stets einen Weg von v nachw gibt, liefert das Hinzufügen
einer Kante {v, w} einen Zyklus.

4 ⇒ 3 ⇒ 2: Die Behauptung folgt, falls für einen azyklischen Graphen gilt

n = m + p, (2.1)

wobei m = |E| und p die Anzahl der Zusammenhangskomponenten ist. Da (2.1) klar ist
für m = 0, nehmen wir an, (2.1) gilt für ein |E| = m. Fügen wir eine zusätzliche Kante
hinzu, dies bedeutet |E| = m + 1, so muss sich p um eins reduzieren, denn sonst würde
ein Zyklus entstehen.

2 ⇒ 1: Wir zerstören Zyklen aus G durch Entfernen von Kanten. Haben wir etwa k Kanten
entfernt, so folgt aus (2.1)

n − 1 − k⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Kanten

+ p
⏟⏟⏟
=1

= n,

das heisst k = 0. ♠

23

3
Graphendurchmusterung

Häufig muss ein Graph oder Digraph durchmustert werden. Populäre Graphendurchmus-
terungsmethoden sind die Tiefensuche und die Breitensuche. Beide lassen sich auf folgenden
Algorithmus zurückführen, der alle von einem Startknoten s erreichbaren Knoten durchsucht.
Der Algorithmus sowie die drei nachfolgenden Sätze sind nur für Graphen aufgeführt, sie
gelten mit den üblichen Modifikationen aber auch für Digraphen.

Algorithmus 3.1 (algorithmische Suche)
input: Graph G = (V , E) und Startknoten s ∈ V
output: azyklischer Graph G′ = (R, T) mit R = {s} ∪ post⋆(s) und T ⊆ E

À Initialisierung: R ∶= {s}, Q ∶= {s}, T = ∅.

Á Falls Q = ∅ dann stop, sonst wähle v ∈ Q.

Â Wählew ∈ V ⧵Rmit e = {v, w} ∈ E. Falls kein solchesw existiert, dann setzeQ ∶= Q⧵{v}
und gehe nach Á.

Ã Setze R ∶= R ∪ {w}, Q ∶= Q ∪ {w}, T ∶= T ∪ {e} und gehe nach Á.

Je nachdem, wie die Menge Q verwaltet wird, ergeben sich verschiedene Resultate. Wir
unterscheiden:

Definition 3.2 Bei der Tiefensuche oder Depth-First-Search (DFS) wird derjenige Knoten v ∈
Q ausgewählt, der zuletzt zu Q hinzugefügt wurde (Stack-Speicherung). Bei der Breitensuche
oder Breadth-First-Search (BFS) wird derjenige Knoten v ∈ Q ausgewählt, der zuerst zu Q
hinzugefügt wurde (Queue-Speicherung).

Satz 3.3 Algorithmus 3.1 liefert einen azyklischen Graphen G′ = (R, T) mit R = {s} ∪ post⋆(s)
und T ⊆ E.

Beweis. Zu jedem Zeitpunkt des Algorithmus ist (R, T) zusammenhängend. Insbesondere
ist (R, T) azyklisch, denn eine neue Kante e = {v, w} verbindet stets Knoten v ∈ Q ⊆ R und
w ∈ V ⧵ R.
Angenommen, am Ende existiert ein von s erreichbarer Knoten w ∈ V ⧵ R. Dann gibt es einen
einfachen s-w-Weg � = s, v1, … , vr , w in G und weiter eine Kante {x, y} ∈ E aus � mit x ∈ R
und y ∉ R. Da x ∈ R ist, muss irgendwann bei Ausführung des Algorithmus x ∈ Q gelten. Der
Algorithmus terminiert jedoch nicht, bevor x aus Q entfernt ist. Dies geschieht aber nur, falls
{x, y} ∉ E gilt. ♠

24

3 Graphendurchmusterung

Satz 3.4 Die Ausführung von “wähle v ∈ Q” und “wähle w ∈ V ⧵ R mit e = {v, w} ∈ E” sei in
O(1) durchführbar. Dann besitzt Algorithmus 3.1 die Komplexität O(|V | + |E|).

Beweis. Jeder Knoten v ∈ V wird höchstens (| post(v)| + 1)-mal und jede Kante e ∈ E
höchstens einmal betrachtet. ♠

Bemerkung In der Regel gehen wir davon aus, dass der betrachtete Graph G = (V , E)
zusammenhängend ist. Das bedeutet

|V | − 1 ≤ |E| ≤ |V |2.

Somit ist die Laufzeit der Graphendurchmusterung immer O(|E|). �

Beispiel 3.5 Der Graph G = (V , E) sei

v1

v2 v3

v4 v5

v1

v2

v3

v4

v5

v2 v3

v4 v5 v3 v1

v1 v2 v5

v2 v5

v4 v2 v3

und s = v1. Bei der Tiefensuche ergibt sich die Besuchsreihenfolge v1, v2, v4, v5, v3 und somit
der Baum

v1 v2

v3

v4 v5

Die Breitensuche liefert die Besuchsreihenfolge v1, v2, v3, v4, v5, das heisst den Baum

v1

v2 v3

v4 v5 ♣

25

3 Graphendurchmusterung

Satz 3.6 Seien G = (V , E) ein Graph, s, v ∈ V und

distG(s, v) ∶= min{|�| ∶ � = s, u1, … , ur , v Weg in G},

wobei wir distG(s, v) ∶= ∞ setzen, falls kein s-v-Weg existiert. Dann enthält der BFS-Graph
G′ = (R, T) zum Startknoten s ∈ V einen kürzesten Weg zu jedem v ∈ post⋆(s). Dies bedeutet, der
einfache Weg � = s, u1, … , ur , v in G′ erfüllt |�| = distG(s, v).

Beweis. Zuerst bemerken wir, dass � eindeutig bestimmt ist, da G′ = (R, T) azyklisch ist. Wir
modifizieren nunAlgorithmus 3.1wie folgt: In À setzenwir �(s) ∶= 0 und in Ã �(w) ∶= �(v)+1.
Dann gilt offenbar zu jedem Zeitpunkt

�(v) = dist(R,T)(s, v) für alle v ∈ R.

Weiterhin gibt es für kein v ∈ Q, das in Á ausgewählt wird, ein w ∈ R mit

�(w) > �(v) + 1. (3.1)

Angenommen, der Algorithmus bricht ab und es existiert ein Knoten w ∈ V mit

distG(s, w) < distG′(s, w). (3.2)

Falls es mehr als einen solchen Knoten gibt, so wählen wir denjenigen mit dem kleinsten
Abstand distG(s, w). Sei � = s, u1, … , ur , v, w ein kürzester Weg in G. Dann gilt distG(s, v) =
distG′(s, v), da sonst v ein Knoten mit kleinerem Abstand wäre, der (3.2) erfüllt. Ausserdem
gilt {v, w} ∈ E. Weiter ist

�(w) = distG′(s, w) > distG(s, w) = distG(s, v) + 1 = distG′(s, v) + 1
= �(v) + 1.

Gemäss (3.1) gilt w ∉ R zu dem Zeitpunkt, zu dem v ∈ Q entfernt wird. Dies widerspricht
jedoch Â, denn {v, w} ∈ E. ♠

Bemerkung Gemäss Satz 3.4 berechnet der obige Algorithmus die Werte der Distanzen
distG′(s, v) = distG(s, v) für alle v ∈ R in Komplexität O(|V | + |E|). �

Nachfolgender, auf der Tiefensuche basierender Algorithmus bestimmt die starken Zusam-
menhangskomponenten eines Digraphen.

Algorithmus 3.7 (Bestimmung starker Zusammenhangskomponenten)
input: Digraph G = (V , E)
output: eine Funktion comp ∶ V → N, die die Zugehörigkeit zu einer starken

Zusammenhangskomponente kennzeichnet

À setze R ∶= ∅, N ∶= 0

Á für alle v ∈ V :
falls v ∉ R, dann visit1(v)

26

3 Graphendurchmusterung

Â setze R ∶= ∅, K ∶= 0

Ã für alle j = |V |, |V | − 1, … , 1:
falls �−1(j) ∉ R, dann setze K ∶= K + 1 und visit2(�−1(j))

Hilfsprogramm visit1(v):

À setze R ∶= R ∪ {v}

Á für alle w ∈ V ⧵ R mit (v, w) ∈ E: visit1(w)

Â setze N ∶= N + 1, �(v) ∶= N und �−1(N) ∶= v

Hilfsprogramm visit2(v):

À setze R ∶= R ∪ {v}

Á für alle w ∈ V ⧵ R mit (w, v) ∈ E: visit2(w)

Â setze comp(v) ∶= K

Beispiel 3.8 Gegeben sei der Digraph

c

g d

f e

a

b

a

b

c

d

e

f

g

g

a

d g

e

d

a e

b d e f

Dann ergibt sich in Á für die erste Tiefensuche visit1 die Besuchsreihenfolge a, g, b, d, e, f .
Als einziger Knoten ist nur noch c nicht in R. Die Tiefensuche für c bricht somit sofort ab und
er bekommt die Nummer 7.

27

3 Graphendurchmusterung

7

5 3

4 2

6

1 1

2 3

2 3

2

2

Die Tiefensuche visit2 ist eine Tiefensuche im inversen Digraphen G−1 ∶= (V , E−1), wobei
E−1 ∶= {(w, v) ∶ (v, w) ∈ E}. In Ã startet die erste Tiefensuche visit2 mit c, da �(c) = 7,
kann aber keine weiteren Knoten erreichen. Folglich wird nun die Tiefensuche für a gestartet,
da �(a) = 6. Es können b, f , g erreicht werden. Schliesslich wird e von d aus erreicht. Damit
ergeben sich die starken Zusammenhangskomponenten {c}, {a, b, f , g}, {d, e}. ♣

Satz 3.9 Algorithmus 3.7 identifiziert die starken Zusammenhangskomponenten in linearem Aufwand
O(|V | + |E|).

Beweis. Der Aufwand ergibt sich analog zu Satz 3.4.

Seien nun v, w ∈ V zwei Knoten derselben starken Zusammenhangskomponente, das heisst, in
G gibt es einen Weg von v nach w und umgekehrt. Somit gibt es in G−1 ebenfalls einen Weg
von v nach w und umgekehrt. Die Tiefensuche visit2 markiert somit beide Knoten als zur
selben Zusammenhangskomponente gehörig, also comp(v) = comp(w).

Es verbleibt zu zeigen, dass zwei Knoten v, w ∈ V mit comp(v) = comp(w) auch zur selben
starken Zusammenhangskomponente gehören. Dazu sei r(v) beziehungsweise r(w) derjenige
von v respektivew erreichbare Knotenmit dem höchsten �-Wert.Wegen comp(v) = comp(w)
liegen beide Knoten im selben durch visit2 erzeugten DFS-Baum. Dessen Startknoten r
erfüllt r = r(v) = r(w). Da r von v erreichbar ist und r einen höheren �-Wert erhalten hat,
muss r vor v zu R hinzugefügt worden sein bei der Tiefensuche visit1. Daher erhält der
entsprechende von visit1 erzeugte DFS-Baum einen r-v-Weg, das heisst, v ist auch von r
erreichbar. Analog ist auch w von r erreichbar. Zusammengefasst ist v von w erreichbar und
umgekehrt, was zu zeigen war. ♠

Für azyklische Digraphen bestimmt Algorithmus 3.7 eine spezielle Sortierung der Knoten.
Diese werden wir im folgenden benötigen.

Definition 3.10 Es sei G = (V , E) ein Digraph. Eine Numerierung

V = {v1, v2, … , vn}

der Knoten heisst topologische Ordnung, falls für alle Kanten (vi, vj) ∈ E gilt i < j .

28

3 Graphendurchmusterung

Lemma 3.11 Der Digraph G = (V , E) besitzt eine topologische Ordnung genau dann, wenn er
azyklisch ist.

Beweis. Übung. ♠

Satz 3.12 Zu einem Digraphen G = (V , E) bestimmt Algorithmus 3.7 eine topologische Ordnung
des kondensierten Digraphen G⋆ = (V ⋆, E⋆) in linearem Aufwand O(|V | + |E|).

Beweis. Seien Vi, Vj ⊆ V die Knotenmengen zweier starker Zusammenhangskomponenten
mit comp(vi) = i, comp(vj) = j für alle vi ∈ Vi, vj ∈ Vj . Ohne Beschränkung der Allgemein-
heit gelte i < j . Wir zeigen, dass in G keine Kanten e = (vj , vi) ∈ E existieren mit vi ∈ Vi,
vj ∈ Vj .

Angenommen eine solche Kante existiert. Alle Knoten aus Vi werden in der Tiefensuche
visit2 vor den Knoten aus Vj zu R hinzugefügt. Insbesondere gilt vi ∈ R und vj ∉ R beim
überprüfen der Kante e = (vj , vi). Dies bedeutet jedoch, dass vj zu R hinzugefügt wird, bevor
K erhöht wird, was comp(vi) ≠ comp(vj) widerspricht. ♠

Korollar 3.13 Der kondensierte Digraph G⋆ = (V ⋆, E⋆) zu einem Digraphen G = (V , E) ist
zyklenfrei.

Beweis. Dies folgt sofort aus Lemma 3.11. ♠

Korollar 3.14 Algorithmus 3.7 bestimmt eine topologische Ordnung des Digraphen G = (V , E) in
linearem Aufwand O(|V | + |E|), falls diese existiert. Gibt es eine solche Ordnung nicht, so erfährt man
dies ebenfalls in linearem Aufwand.

Beweis. Da eine topologische Ordnung nur dann existiert, wenn der Digraph azyklisch ist,
ergibt sich eine topologische Ordnung genau dann, wenn alle starken Zusammenhangskompo-
nenten einknotig sind, das heisst G = G⋆. ♠

29

4
Kürzeste-Wege-Probleme

Definition 4.1 Sei G = (V , E) ein Digraph. Eine Gewichtsfunktion, manchmal auch Kosten-
funktion genannt, für die Kanten von G ist eine Abbildung !∶ E → R. Ist � = v0, v1, … , vr ein
Weg in G, dann wird der Wert

!(�) =
r−1
∑
i=0

!(vi, vi+1)

die Weglänge von � bezüglich w genannt. Das Tripel G = (V , E, !) heisst gewichteter Digraph.

Definition 4.2 Sei G = (V , E, !) ein gewichteter Digraph und v, w ∈ V . Ein kürzester Weg
von v nach w in G bezüglich ! ist ein v-w-Weg � mit !(�) ≤ !(�′) für jeden v-w-Weg �′.
Die kürzeste Weglänge �(v, w) von v nach w ist definiert durch

�(v, w) ∶=

{
min{!(�) ∶ � ist Weg von v nach w}, falls ein solcher Weg existiert,
∞, sonst.

Beispiel 4.3 Gegeben sei der gewichtete Digraph G = (V , E, !):

x

v

y

w

t

u

6 2

2

2

1

5
2

3

0

Ein kürzester Weg von v nach x ist � = v, y, x . Seine Weglänge ist !(�) = 2 + 2 = 4 und ist
kürzer als !(v, x) = 6. Zum Knoten u gibt es von v zwei kürzeste Wege, nämlich �1 = v, w, u
und �2 = v, y, t, u mit !(�1) = !(�2) = �(v, u) = 4. ♣

Man unterscheidet verschiedene Varianten des kürzeste-Wege-Problems. Gegeben sei stets ein
gewichteter Digraph G = (V , E, !).

30

4 Kürzeste-Wege-Probleme

1. Einzelpaar-kürzeste-Wege-Problem (single pair shortest path problem): Gesucht ist für
v, w ∈ V ein kürzester Weg von v nach w.

2. Einzelquelle-kürzeste-Wege-Problem (single source shortest path problem): Für v ∈ V
berechne einen kürzesten Weg zu allen w ∈ post⋆(v).

3. Alle-Paare-kürzeste-Wege-Problem (all pair shortest path problem): Finde für jedes Paar
v, w ∈ V einen kürzesten Weg von v nach w.

Natürlich kann das erste Problem durch das zweite gelöst werden. Es ist auch kein asymptotisch
besseres Verfahren bekannt. Aus diesem Grund werden wir gleich dieses allgemeine Problem
betrachten.

Negative Gewichte sind gemäss Definition 4.1 zugelassen. Problematisch sind jedoch (einfache)
Zyklen mit negativer Weglänge wie folgendes Beispiel zeigt:

Beispiel 4.4 Gegeben sei folgender gewichtete Digraph G = (V , E, !):

x

v

y

1

−5

3

In diesem Digraphen gibt es keine kürzesten Wege, denn mit zum Beispiel

!(v, x, y) = −4,
!(v, x, y, v, x, y) = −5,

!(v, x, y, v, x, y, v, x, y) = −6,
⋮

können beliebig kurze Wege generiert werden. ♣

Lemma 4.5 Sei G = (V , E, !) ein gewichteter Digraph. Falls es in G keine Zyklen mit negativer
Weglänge gibt, dann gibt es für je zwei Knoten v, w ∈ V mit w ∈ post⋆(v) einen kürzesten Weg � mit

�(v, w) = !(�) > −∞.

Beweis. Da es keine negativen Zyklen gibt, genügt es alle einfachen Wege von v nach w zu
betrachten. Weil |V | und |E| endlich sind, sind dies nur endlich viele, woraus die Behauptung
folgt. ♠

Lemma 4.6 Sei G = (V , E, !) ein gewichteter Digraph ohne negative Zyklen. Weiter sei nun
� = v0, v1, … , vr−1, vr ein kürzester Weg von v0 nach vr . Dann ist für alle 0 ≤ i < j ≤ r der Teilweg
�i,j = vi, vi+1, … , vj von � ein kürzester Weg von vi nach vj .

31

4 Kürzeste-Wege-Probleme

Beweis. Angenommen, es existiert ein kürzester Weg �′
i,j von vi nach vj mit!(�′

i,j) < !(�i,j).
Dann erfüllt der zusammengesetzte Weg �̂ = �1,i, �′

i,j , �j ,r die Abschätzung

!(�̂) = !(�1,i) + !(�′
i,j) + !(�j ,r)

< !(�1,i) + !(�i,j) + !(�j ,r)
= !(�).

Dies ist ein Widerspruch zur Voraussetzung, dass � ein kürzester Weg von v0 nach vr ist. ♠

Korollar 4.7 Seien G = (V , E, !) ein gewichteter Digraph ohne negative Zyklen und � =
v0, v1, … , vr ein kürzester Weg von v0 nach vr . Dann gilt

�(v0, vr) = �(v0, vr−1) + !(vr−1, vr).

Beweis. Gemäss Lemma 4.6 ist �′ = v0, v1, … , vr−1 ein kürzester Weg von v0 nach vr−1, das
heisst !(�′) = �(v0, vr−1). Dies bedeutet

�(v0, vr) = !(�) = !(�′) + !(vr−1, vr). ♠

Einzelquelle-kürzeste-Wege-Problem im Fall nicht-negativer Gewichte:

Algorithmus 4.8 (Dijkstra)
input: Ein gewichteter Digraph G = (V , E, !) mit nicht-negativen

Gewichten und ein Startknoten s ∈ V .
output: Kürzeste Wege von s zu allen v ∈ V samt Weglänge �(v). Genauer ist �(v)

die Länge eines kürzesten s-v-Wegs, der aus einem kürzesten s-p(v)-Weg
und der Kante (p(v), v) besteht. Für v ∉ post⋆(s) ist �(v) = ∞ und p(v)
undefiniert.

À setze �(s) ∶= 0 und �(v) ∶= ∞ für alle v ∈ V ⧵ {s}, setze R ∶= ∅

Á finde u ∈ V ⧵ R mit �(u) = minv∈V⧵R �(v)

Â setze R ∶= R ∪ {u}

Ã für alle v ∈ V ⧵ R mit (u, v) ∈ E:
falls �(v) > �(u) + !(u, v), dann

setze �(v) ∶= �(u) + !(u, v) und p(v) ∶= u

Ä falls R ≠ V gehe nach Á

32

4 Kürzeste-Wege-Probleme

Beispiel 4.9 Gegeben sei folgender gewichtete Digraph G = (V , E, !):

a

b c

d e

1 4

1 1

3

1

Ausgehend vom Startknoten ist die Arbeitsweise dieses Algorithmus wie folgt:

Iteration a b c d e u �(u) p(u)
0 0 ∞ ∞ ∞ ∞ a 0 —
1 — 1 4 ∞ ∞ b 1 a
2 — — 4 2 ∞ d 2 b
3 — — 3 — 5 c 3 d
4 — — — — 4 e 4 c ♣

Satz 4.10 (Dijkstra) Der Algorithmus von Dijkstra arbeitet korrekt, wobei seine Laufzeit O(n2)
mit n = |V | ist.

Beweis. Der Übersichtlichkeit halber schreiben wir den Iterationsindex als Suffix an alle Va-
riablen des Dijkstra-Algorithmus. Wir beweisen, dass folgende Aussagen bei jeder Ausführung
von Á gelten:

(a) Für alle v ∈ R(k) und alle y ∈ V ⧵ R(k) gilt �(k)(v) ≤ �(k)(y).

(b) Für alle v ∈ R(k) ist �(k)(v) die kürzeste Weglänge von s nach v. Ist �(k)(v) < ∞ und
v ≠ s, dann existiert ein kürzester Weg von s nach v mit Knoten aus R(k) und letzter
Kante (p(k)(v), v).

(c) Für alle v ∈ V ⧵ R(k) ist �(k)(v) die kürzeste Weglänge von s nach v im aus den Knoten
R(k) ∪ {v} bestehenden Teildigraphen von G. Ist �(k)(v) < ∞, dann ist p(k)(v) ∈ R(k) und

�(k)(v) = �(k)(p(k)(v)) + !(p(k)(v), v).

Da diese Aussagen für k = 0 gelten, das heisst, nach Ausführung von À, zeigen wir, dass Â

und Ã die Aussagen erhalten, das heisst, wir zeigen den Induktionsschritt k ↦ k + 1. Dazu sei
k ≥ 0 beliebig und u der in Á ausgewählte Knoten.

Für beliebige v ∈ R(k) und y ∈ V ⧵ R(k) gilt wegen (a)

�(k+1)(v) = �(k)(v) ≤ �(k)(u) = min
x∈V⧵R(k)

�(k)(x) ≤ �(k+1)(y).

33

4 Kürzeste-Wege-Probleme

Folglich gilt (a) auch nach Â und Ã, da R(k+1) = R(k) ∪ {u}.
Um zu zeigen, dass (b) nach Ã gilt, müssen wir nur den Knoten u betrachten. Da (c) für
k gilt, genügt es zu zeigen, dass in G kein Weg � von s nach u existiert mit einem Knoten
y ∈ V ⧵ R(k+1) und !(�) < �(k)(u) = �(k+1)(u).
Angenommen, es gibt einen solchen Weg �, etwa

� = s, v1, … , vr ,⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∈R(k)

y
⏟⏟⏟
∉R(k)

, vr+1, … , vr+m, u.

Da (c) für k gilt, ist �(k)(y) = !(s, v1, … , vr , y), und es folgt wegen der Nicht-Negativität der
Gewichte

!(s, v1, … , vr , y) ≤ !(�) < �(k)(u).

Dies bedeutet �(k)(y) < �(k)(u), was �(k)(u) = minx∈V⧵R(k) �(k)(x) widerspricht.

Nun zeigen wir, dass Â und Ã auch Aussage (c) erhalten. Falls für ein v ∈ V ⧵ R(k+1) in Ã

p(k+1)(v) ∶= u, �(k+1)(v) ∶= �(k+1)(u) + !(u, v)

gesetzt wird, muss einWeg von s nach v existieren im von denKnotenR(k+1)∪{v} aufgespannten
Teildigraphen G′(v) von G mit Länge �(k+1)(u) + !(u, v) und letzter Kante (u, v).
Angenommen, es existiert ein v ∈ V ⧵ R(k+1) und ein Weg � von s nach v in G′(v) mit
!(�) < �(k+1)(v). Der Knoten u muss in � enthalten sein, da nur u zu R(k+1) hinzugefügt
worden ist und sich sonst ein Widerspruch zu (c) vor Ausführung von Â und Ã ergäbe (denn
�(k+1)(v) ist höchstens kleiner als �(k)(v) geworden).
Sei x der Vorgänger von v in �. Wegen x ∈ R(k) ⊂ R(k+1) folgt aus (a)

�(k+1)(x) ≤ �(k+1)(u)

und aus Ã

�(k+1)(v) ≤ �(k+1)(x) + !(x, v) ≤ �(k+1)(u) + !(x, v) ≤ !(�).

Hierin gilt die letzte Ungleichung, da � den Knoten u enthält und die Kante (x, v). Die
Ungleichung

�(k+1)(v) ≤ !(�)

widerspricht jedoch unserer Annahme.
Folglich gelten zu jedem Zeitpunkt k die Aussagen (a)–(c), insbesondere gilt (b) bei Abbruch
des Algorithmus, das heisst, der Algorithmus arbeitet korrekt.
Die Aufwandsabschätzung ist offensichtlich: Es werden n = |V | Iterationen ausgeführt, die
jeweils einen Aufwand O(n) haben. ♠

Bemerkung Mit Hilfe so genannter Fibonacci Heaps lässt sich der Aufwand des Algorithmus
von Dijkstra auf O(m + n log n) reduzieren. Hierbei gilt m = |E| und n = |V |. �

Im Falle von Digraphen mit negativen Gewichten, aber ohne negativen Zyklen, muss folgender
teurerer Algorithmus verwendet werden. Er ist der schnellste bisher bekannte Algorithmus für
dieses Problem.

34

4 Kürzeste-Wege-Probleme

Algorithmus 4.11 (Moore-Bellman-Ford)
input: Ein gewichteter Digraph G = (V , E, !) ohne negative Zyklen

und ein Startknoten s ∈ V .
output: Kürzeste Wege von s zu allen v ∈ V samt Weglänge �(v). Genauer ist �(v)

die Länge eines kürzesten s-v-Wegs, der aus einem kürzesten s-p(v)-Weg
und der Kante (p(v), v) besteht. Für v ∉ post⋆(s) ist �(v) = ∞ und p(v)
undefiniert.

À setze �(s) ∶= 0 und �(v) ∶= ∞ für alle v ∈ V ⧵ {s}

Á für alle k = 1, 2, … , n − 1:
für jede Kante (u, v) ∈ E:

falls �(v) > �(u) + !(u, v), dann
setze �(v) ∶= �(u) + !(u, v) und p(v) ∶= u

Satz 4.12 (Moore-Bellman-Ford) Der Moore-Bellman-Ford-Algorithmus arbeitet korrekt, wobei
seine Laufzeit O(m ⋅ n) ist mit m = |E| und n = |V |.

Beweis. Die Aufwandsabschätzung ist offensichtlich.

Zu jedem Zeitpunkt des Algorithmus bezeichne

R ∶= {v ∈ V ∶ �(v) < ∞},
F ∶= {(u, v) ∈ E ∶ u = p(v)},

dann zeigen wir:

(a) �(v) ≥ �(u) + w(u, v) für alle (u, v) ∈ F ,

(b) der Digraph (R, F) ist azyklisch,

(c) der Digraph (R, F) ist ein gerichteter Baum mit Wurzel s, das heisst, jeder Knoten v ∈ R
ist von s aus über genau einen Weg erreichbar.

Wenn in Á p(v) ∶= u gesetzt wird, dann gilt gerade

�(v) = �(u) + !(u, v).

Da �(u) danach höchstens verkleinert wird, folgt Aussage (a).

Um (b) zu zeigen, nehmen wir an, dass zu einem Zeitpunkt ein Zyklus

� = v0, v1, … , vr−1, vr , v0 = vr

entsteht durch Setzen von p(vr) ∶= vr−1. Dann galt aber zuvor

�(v0) = �(vr) > �(vr−1) + !(vr−1, vr)

35

4 Kürzeste-Wege-Probleme

und gemäss (a)

�(vi) ≥ �(vi−1) + !(vi−1, vi), i = 1, 2, … , r − 1.

Aufsummieren ergibt

r
∑
i=1

!(vi−1, vi) = (

r−1
∑
i=1

!(vi−1, vi)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤�(vi)−�(vi−1)

) + !(vr−1, vr)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
<�(vr)−�(vr−1)

<
r
∑
i=1

(�(vi) − �(vi−1)) = 0,

das heisst, der Zyklus ist negativ, was der Voraussetzung widerspricht.

Schliesslich folgt aus x ∈ R ⧵ {s} auch p(x) ∈ R, dies ist die Aussage (c).

Gemäss (a)–(c) ist also zu jedem Zeitpunkt �(y) mindestens die Länge des (eindeutigen) s-y-
Wegs im Digraphen (R, F). Wir zeigen nun, dass nach k Iterationen �(y) auch höchstens die
Länge eines kürzesten s-y-Wegs in G mit höchstens k Kanten ist. Da für k = 1 die Aussage
klar ist, nehmen wir an, sie gilt auch nach Iteration k − 1. Nun sei

� = s, v1, … , vr , x, y, r ≤ k − 2

ein kürzester s-y-Weg in G mit höchstens k Kanten. Dann ist �′ = s, v1, … , vr , x ein kürzester
s-x-Weg mit höchstens k − 1 Kanten. Nach Induktionsannahme folgt �(x) ≤ !(�′) und somit

�(y) ≤ �(x) + !(x, y) ≤ !(�′) + !(x, y) = !(�).

Da kein Weg in (R, F) mehr als n − 1 Kanten besitzt, impliziert dies die Korrektheit des
Algorithmus. ♠

Wir betrachten schliesslich einen Algorithmus zur Lösung des Alle-Paare-kürzeste-Wege-
Problems. Ohne Einschränkung der Allgemeinheit sei dabei die Knotenmenge V = {1, 2, … , n}.

Algorithmus 4.13 (Floyd-Warshall)
input: Ein gewichteter Digraph G = (V , E, !) mit V = {1, 2, … , n} ohne

negative Zyklen.
output: Matrizen [�i,j]1≤i,j≤n und [pi,j]1≤i,j≤n mit der kürzesten Weglänge �i,j von i nach

j und der letzten Kante (pi,j , j) eines i-j-Wegs, falls ein solcher existiert.

À setze �i,j ∶= !(i, j) für alle (i, j) ∈ E
setze �i,j ∶= ∞ für alle (i, j) ∈ (V × V) ⧵ E mit i ≠ j
setze �i,i ∶= 0 für alle i ∈ V
setze pi,j ∶= i für alle i, j ∈ V

Á für alle j = 1, 2, … , n:
für alle i = 1, 2, … , n mit i ≠ j :

für alle k = 1, 2, … , n mit k ≠ j :
falls �i,k > �i,j + �j ,k, dann

setze �i,k ∶= �i,j + �j ,k und pi,k ∶= pj ,k

36

4 Kürzeste-Wege-Probleme

Satz 4.14 (Floyd-Warshall) Der Algorithmus von Floyd und Warshall arbeitet korrekt, wobei seine
Laufzeit O(n3) mit n = |V | ist.

Beweis. Die Aussage zur Laufzeit ist klar. Wir schreiben wieder den Iterationsindex j als
Suffix an alle Variablen und zeigen: Nach j0 äusseren Iterationen ist �(j0)i,k die Länge eines
kürzesten i-k-Wegs bestehend nur aus den Zwischenknoten v ∈ {1, … , j0} und mit Endkante
(p(j0)i,k , k). Diese Aussage beweisen wir mit vollständiger Induktion über j0.

Für j0 = 0 gilt sie gemäss À und für j0 = n impliziert sie die Korrektheit des Algorithmus.
Wir nehmen an, dass obige Aussage gilt für ein j0 ∈ {0, 1, … , n − 1}, das heisst, für alle i, k ∈ V
ist �(j0)i,k die Länge eines kürzesten i-k-Wegs bestehend nur aus Zwischenknoten v ∈ {1, … , j0}.

In der (j0 + 1)-ten Iteration wird �(j0)i,k durch �(j0)i,j0+1 + �(j0)j0+1,k ersetzt, falls dieser Wert kleiner ist.
Es verbleibt daher zu zeigen, dass dann die entsprechenden Wege

�1 = i, u1, … , ur , j0 + 1,
�2 = j0 + 1, v1, … , vs , k

keine gemeinsamen inneren Knoten haben.

Angenommen beide Wege haben den gemeinsamen Knoten up = vq , dann ist

� = i, u1, … , up, vq+1, … , vs , k

ein Weg von i nach k, bestehend nur aus Knoten v ∈ {1, … , j0}. Wegen

!(up, up+1, … , ur , j0 + 1, v1, … , vq) ≥ 0

ist

�(j0)i,k ≤ !(�) ≤ !(�1 ∪ �2) ≤ �(j0)i,j0+1 + �(j0)j0+1,k,

was ein Widerspruch zu �(j0)i,k > �(j0)i,j0+1 + �(j0)j0+1,k ist. ♠

37

5
Netzwerkflussprobleme

Motivation: In den Seehäfen A1, A2, … , Ap liegen r1, r2, … , rp Tonnen Bananen zum Ver-
schiffen bereit. In den Zielhäfen B1, B2, … , Bq besteht die Nachfrage nach d1, d2, … , dq Tonnen.
Die Kapazität der Schifffahrtslinie von Hafen Ai nach Hafen Bj ist maximal c(Ai, Bj).
Es stellen sich die folgenden Fragen:

1. Ist es möglich, alle Anforderungen zu befriedigen?

2. Falls nein, wie viele Bananen können maximal zu den Zielhäfen gebracht werden?

3. Von wo nach wo sollen wieviele Bananen verschifft werden?

Zur Lösung konstruieren wir einen Digraphen G = (V , E) mit

V = {A1, A2, … , Ap, B1, B2, … , Bq}, E = {(Ai, Bj) ∶ 1 ≤ i ≤ p, 1 ≤ j ≤ q}.

Der Kante (Ai, Bj) ordnen wir die Kapazität c(Ai, Bj) zu. Um Angebots- und Nachfragemen-
gen zu modellieren, führen wir zwei weitere Knoten s, t und Kanten (s, Ai) beziehungsweise
(Bj , t) mit Kapazität c(s, Ai) = ri beziehungsweise c(Bj , t) = dj ein.

s

A1

A2

A3

A4

A5

B1

B2

B3

B4

B5

B6

t

r1

r2

r3

r4

r5

d1

d2

d3

d4

d5

d6

c(A1, B1)

c(A1 , B2)
c(A1 , B3)
c(A2 , B3)

c(A3, B3)

c(A3 , B4)

c(A4 , B5)

c(A5, B5)

c(A5 , B6)

38

5 Netzwerkflussprobleme

Zur Beantwortung der drei Fragen lösen wir folgendes Problem: Was ist der maximale Fluss
von s nach t in G und wie sieht dieser aus? Dabei ist der Fluss auf einer Kante durch ihre
Kapazität beschränkt. Des Weiteren muss der gesamte Fluss, der einen Knoten Ai oder Bj
betritt, diesen auch wieder verlassen.

Definition 5.1 Ein Netzwerk ist ein Tupel N = (V , E, c, s, t) bestehend aus

• einem Digraphen G = (V , E),

• einer Kapazitätsfunktion c ∶ E → R≥0,

• einer Quelle s ∈ V mit pre(s) = ∅,

• einer Senke t ∈ V mit post(t) = ∅.

Ein Fluss f ∶ E → R≥0 ist eine Funktion, die folgende Bedingungen erfüllt:

1. Kapazitätsbedingung:

f (v, w) ≤ c(v, w) für alle (v, w) ∈ E,

2. Kirchhoffsches Gesetz:

∑
u∈pre(v)

f (u, v) = ∑
w∈post(v)

f (v, w) für alle v ∈ V ⧵ {s, t}.

Der Wert des Flusses ist

flow(f) = ∑
w∈post(s)

f (s, w).

Definition 5.2 Der maximale Fluss eines Netzwerkes N ist gegeben durch

MaxFlow(N) ∶= max{flow(f) ∶ f ist Fluss für N}.

Eine Flussfunktion f für N wird optimal genannt, falls

flow(f) = MaxFlow(N).

Definition 5.3 Ein Schnitt für ein Netzwerk N = (V , E, c, s, t) ist eine Knotenmenge S ⊆ V
mit s ∈ S und t ∉ S. Die Kapazität eines Schnitts ist gegeben durch

cap(S) = ∑
v∈S

w∈post(v)⧵S

c(v, w).

Die minimale Schnittkapazität von N ist

MinCut(N) ∶= min{cap(S) ∶ S ist Schnitt für N}.

39

5 Netzwerkflussprobleme

Lemma 5.4 Sei S ein Schnitt eines Netzwerkes N = (V , E, c, s, t), dann gilt für jeden Fluss f

(i) flow(f) = ∑
v∈S

w∈post(v)⧵S

f (v, w) − ∑
v∈S

u∈pre(v)⧵S

f (u, v),

(ii) flow(f) ≤ cap(S).

Beweis. Aussage (i) folgt aus dem Kirchhoffschen Gesetz

flow(f) = ∑
w∈post(s)

f (s, w)

= ∑
v∈S

(∑
w∈post(v)

f (v, w) − ∑
w∈pre(v)

f (u, v))

= ∑
v∈S

w∈post(v)⧵S

f (v, w) − ∑
v∈S

u∈pre(v)⧵S

f (u, v)

+ ∑
v∈S

w∈post(v)∩S

f (v, w) − ∑
v∈S

u∈pre(v)∩S

f (u, v)

⏟⏞⏞⏟⏞⏞⏟
=0

Da 0 ≤ f (e) ≤ c(e) für alle e ∈ E, folgt weiter

flow(f)
(i)
≤ ∑

v∈S
w∈post(v)⧵S

f (v, w) ≤ ∑
v∈S

w∈post(v)⧵S

c(v, w) = cap(S),

dies ist Aussage (ii). ♠

Satz 5.5 (Max-Flow-Min-Cut-Theorem) Sei N = (V , E, c, s, t) ein Netzwerk, dann gilt

MinCut(N) = MaxFlow(N).

Beweis. Aus Lemma 5.4 folgt MaxFlow(N) ≤ MinCut(N). Daher genügt es zu zeigen, dass
ein Schnitt S existiert mitMaxFlow(N) = cap(S). Hierzu geben wir eine Prozedur an, die für
einen gegebenen Fluss f mit flow(f) = MaxFlow(N) einen Schnitt S mit cap(S) = flow(f)
konstruiert.
Wir starten mit S = {s}. In jedem Schritt erweitern wir S um einen Knoten y ∈ V ⧵ S, der
benötigt wird, damit die Behauptung überhaupt erfüllt sein kann:

À setze S ∶= {s}

Á solange x ∈ S, y ∈ V ⧵ S existieren mit

c(x, y) > f (x, y), falls (x, y) ∈ E,
f (y, x) > 0, falls (y, x) ∈ E,

setze S ∶= S ∪ {y}.

40

5 Netzwerkflussprobleme

Wir zeigen zunächst, dass S stets ein Schnitt für N ist, das heisst, es gilt stets t ∉ S.
Angenommen, es gilt t ∈ S, dann gibt es einen Knoten vr−1 ∈ S, der dafür verantwort-
lich ist, dass t = vr zu S hinzugenommen wurde, das heisst, c(vr−1, vr) > f (vr−1, vr) oder
f (vr , vr−1) > 0. Genauso gibt es einen Knoten vr−2 ∈ S, der dafür verantwortlich ist, dass vr−1
hinzugenommen worden ist, usw. Folglich existiert ein ungerichteter Weg

� = v0, v1, … , vr , vi ∈ S für alle 0 ≤ i ≤ r,
wobei v0 = s. Setzen wir für alle i = 0, 1, … , r − 1

"i ∶=

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

c(e) − f (e), falls e = (vi, vi+1) ∈ E und e−1 = (vi+1, vi) ∉ E,
f (e−1), falls e = (vi, vi+1) ∉ E und e−1 = (vi+1, vi) ∈ E,
max{c(e) − f (e), f (e−1)}, falls e = (vi, vi+1) ∈ E und e−1 = (vi+1, vi) ∈ E,

(5.1)

so folgt nach Konstruktion stets "i > 0. Wir setzen

" ∶= min
0≤i<r

"i > 0. (5.2)

und führen einen Widerspruch herbei, indem wir nun einen Fluss f ⋆ konstruieren mit

flow(f ⋆) = MaxFlow(N) + ".
Hierzu definieren wir f ⋆ für alle 0 ≤ i < r wie folgt:

f ⋆(e) ∶= f (e) + ", falls e = (vi, vi+1) ∈ E und e−1 = (vi+1, vi) ∉ E,
f ⋆(e−1) ∶= f (e−1) − ", falls e = (vi, vi+1) ∉ E und e−1 = (vi+1, vi) ∈ E.

Gilt e = (vi, vi+1) ∈ E und e−1 = (vi+1, vi) ∈ E, so erhöhen wir f (e) um " falls c(e) − f (e) >
f (e−1), ansonsten verringern wir f (e−1) um ".
(5.1), (5.2) garantieren, dass f ⋆ die Kapazitätsbedingung nicht verletzt. Das Kirchhoffsche
Gesetz bleibt beim Übergang f ↦ f ⋆ erhalten, da es nur folgende vier Möglichkeiten der
Flussänderung pro Knoten vi gibt:

vi vi

vi vi

+" −" −" −"

+" +" −" +"

Also ist f ⋆ ein Fluss. Weiter gilt

flow(f ⋆) = ∑
v∈post(s)

f ⋆(s, v)

= ∑
u∈pre(t)

f ⋆(u, t)

= ∑
u∈pre(t)⧵{vr−1}

f (u, t) + f ⋆(vr−1, t)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=f (vr−1,t)+"

= flow(f) + ",

41

5 Netzwerkflussprobleme

was ein Widerspruch zu flow(f) = MaxFlow(N) ist. Damit ist S ein Schnitt in N und gemäss
Konstruktion gilt für alle x ∈ S, y ∈ V ⧵S dass f (x, y) = c(x, y) beziehungsweise f (y, x) = 0.
Damit folgt flow(f) = cap(S). ♠

Der im Beweis des Max-Flow-Min-Cut-Theorems konstruierte Weg � heisst augmentierter
Weg.

Definition 5.6 Sei f ein Fluss im Netzwerk N = (V , E, c, s, t). Eine Kante e = (x, y) ∈ E
heisst Vorwärtskante, falls f (e) < c(e). Eine Kante e = (x, y) mit e−1 = (y, x) ∈ E heisst
Rückwärtskante, falls f (e−1) > 0. Der Restdigraph für f ist der Digraph G′ = (V , E′) mit

E′ = {(x, y) ∈ V × V ∶ (x, y) ist Vorwärts- oder Rückwärtskante}.

Die Grössen c(e) − f (e) beziehungsweise f (e−1) heissen Restkapazitäten. Ein augmentierter Weg
� = v0, v1, … , vr ist ein Weg im Restdigraphen mit v0 = s und vr = t.

Beispiel 5.7 Gegeben sei folgendes Netzwerk mit Fluss/Kapazitäten:

s

v

w

t

2/2

0/1

2/3

0/4

Der Restdigraph ist

s

v

w

t

2

1

1

2

4

wobei Vorwärtskanten durch durchgezogene und Rückwärtskanten durch gestrichelte Pfeile
markiert sind. ♣

Im Fall, dass der Fluss f nicht maximal ist, kann mit Hilfe eines augmentierten Weges der
Fluss vergrössert werden. Somit erhalten wir folgenden Algorithmus:

42

5 Netzwerkflussprobleme

Algorithmus 5.8 (Ford-Fulkerson)
input: Netzwerk N = (V , E, c, s, t)
output: Fluss f mit flow(f) = MaxFlow(N)

À Setze f (e) = 0 für alle e ∈ E.

Á Suche einen augmentierten Weg � von s nach t. Falls keiner existiert, dann stop.

Â Berechne " gemäss (5.1), (5.2). Augmentiere f um " und gehe nach Á.

Ford und Fulkerson haben anhand eines Beispiels gezeigt, dass bei irrationalen Kapazitäten der
Algorithmus möglicherweise nicht terminiert. Im Fall ganzzahliger Kapazitäten ist dies jedoch
nicht der Fall.

Satz 5.9 (Integral-Flow-Theorem) Sei N = (V , E, c, s, t) ein Netzwerk mit ganzzahligen
Kapazitäten. Dann terminiert der Ford-Fulkerson-Algorithmus nach maximal∑e∈E c(e) Augmentie-
rungsschritten mit einem ganzzahligen maximalen Fluss.

Beweis. Da alle Kapazitäten ganzzahlig sind und wir mit dem Nullfluss starten, ist während
der Durchführung des Algorithmus flow(f) stets ganzzahlig. Da ein Augmentierungsschritt
die Grösse des Flusses mindesten um 1 erhöht, ergibt sich die Behauptung. ♠

Auch bei ganzzahligen Kapazitäten kann der Ford-Fulkerson-Algorithmus viele Augmentie-
rungsschritte benötigen:

Beispiel 5.10 Wie betrachten das Netzwerk

s

v

w

t

M

M

M

M
1

Offensichtlich gilt MaxFlow(N) = 2M . Starten wir mit dem Nullfluss und augmentieren
stets entlang eines s-t-Wegs der Länge 3, erhöht sich flow(f) jeweils nur um " = 1. Folglich
werden 2M Schritte benötigt. ♣

Das Beispiel zeigt, dass bei willkürlicher Wahl des augmentierenden Wegs (also Wege von
s nach t im Restdigraphen) die Anzahl der Augmentierungsschritte sehr gross sein kann.
Polynomielle Laufzeitbeschränkung im Ford-Fulkerson-Algorithmus kann durch die Wahl
eines kürzesten augmentierten Weg erreicht werden. Hierbei bezieht sich die Länge auf die
Anzahl der Kanten.

43

5 Netzwerkflussprobleme

Algorithmus 5.11 (Edmonds-Karp)
input: Netzwerk N = (V , E, c, s, t)
output: Fluss f mit flow(f) = MaxFlow(N)

À Setze f (e) = 0 für alle e ∈ E.

Á Suche einen kürzesten augmentierten Weg � von s nach t. Falls keiner existiert, dann
stop.

Â Berechne " gemäss (5.1), (5.2). Augmentiere f um " und gehe nach Á.

Bemerkung Schritt Á kann durch eine Breitensuche im Restdigraphen realisiert werden,
vergleiche Satz 3.6. �

Beispiel 5.12 Wir illustrieren den Edmonds-Karp-Algorithmus anhand des folgenden
konkreten Beispiels.

Netzwerk mit aktuellem Fluss: Restdigraph und kürzester augmentierter Weg:

s

v2

v1 v3

t

0/5

0/2

0/80/4

0/7 0/12

0/2
s

v2

v1 v3

t

s

v2

v1 v3

t

2/5

0/2

0/80/4

0/7 0/12

2/2
s

v2

v1 v3

t

s

v2

v1 v3

t

2/5

2/2

0/80/4

2/7 2/12

2/2
s

v2

v1 v3

t

s

v2

v1 v3

t

5/5

2/2

3/80/4

2/7 5/12

2/2
s

v2

v1 v3

t

♣

44

5 Netzwerkflussprobleme

Um die Korrektheit des Algorithmus von Edmonds und Karp zu zeigen, werden wir folgendes
Lemma benötigen:

Lemma 5.13 Sei (f0, �0), (f1, �1), (f2, �2), … die von Algorithmus 5.11 erzeugte Folge von
Flussfunktionen fi und zugehörigen kürzesten augmentierten Wegen �i im Restdigraphen von fi. Dann
gelten die folgenden Aussagen:

1. Für alle i gilt |�i| ≤ |�i+1|.

2. Kommt e = (v, w) in �i und e−1 = (w, v) in �j vor mit i < j , so gilt

|�i| + 2 ≤ |�j |.

Beweis. Es sei �i(x, y) die Länge eines kürzesten Wegs von x nach y im Restdigraphen von
fi. Insbesondere gilt also |�i| = �i(s, t). Wir zeigen zuerst, dass für alle v ∈ V gilt

�i+1(s, v) ≥ �i(s, v). (5.3)

Falls �i+1(s, v) = ∞, dann ist die Ungleichung trivialerweise erfüllt.Wir können also annehmen,
dass v von s im Restdigraphen von fi+1 erreichbar ist, das heisst �i+1(s, v) = r < ∞. Sei
� = s, v1, v2, … , vr ein kürzester Weg von s nach v = vr im Restdigraphen von fi+1. Wir zeigen,
dass dann gilt

�i(s, vj+1) ≤ �i(s, vj) + 1, 1 ≤ j < r. (5.4)

Falls (vj , vj+1) eine Kante im Restdigraphen von fi ist, gilt (5.4) offensichtlich. Ist (vj , vj+1)
keine Kante im Restdigraphen von fi, dann muss sich der Flusswert der inversen Kante
(vj+1, vj) im Augmentierungsschritt fi ↦ fi+1 verändert haben. Andernfalls könnte (vj , vj+1)
im Restdigraphen von fi+1 nicht vertreten sein. Folglich liegt die Kante (vj+1, vj) auf dem Weg
�i. Da �i ein kürzester Weg von s nach t ist und vj+1 unmittelbar vor vj in �i vorkommt, ergibt
sich

�i(s, vj+1) = �i(s, vj) − 1,

das heisst, es gilt ebenfalls (5.4).

Aus (5.4) folgt dann (5.3), denn

�i(s, v) = �i(s, vr)
(5.4)
≤ �i(s, vr−1) + 1

(5.4)
≤ �i(s, vr−2) + 2
⋮

(5.4)
≤ �i(s, v1) + r − 1

(5.4)
≤ �i(s, s) + r
= �i+1(s, v).

45

5 Netzwerkflussprobleme

Insbesondere liefert die Wahl v = t Aussage 1.

Analog zu (5.3) zeigt man, dass auch

�i+1(v, t) ≥ �i(v, t) (5.5)

gilt für alle v ∈ V .

Sei nun e = (v, w) bzw. e−1 = (w, v) eine Kante im Weg �i bzw. �j mit i < j , das heisst

�i = s, … , v, w, … , t, �j = s, … , w, v, … , t.

Da beide jeweils kürzeste Wege im entsprechenden Restdigraphen sind, gilt

(i) |�i| = �i(s, v) + �i(v, t),

(ii) |�j | = �j(s, w) + 1 + �j(v, t),

(iii) �i(s, w) = �i(s, v) + 1,

während (5.3) und (5.5) wegen i < j implizieren

(iv) �j(s, w) ≥ �i(s, w), �j(v, t) ≥ �i(v, t).

Kombination der Beziehungen (i)–(iv) liefert Aussage 2:

|�j |
(ii)
= �j(s, w) + 1 + �j(v, t)
(iv)
≥ �i(s, w) + 1 + �i(v, t)
(iii)
= �i(s, v) + 2 + �i(v, t)
(i)
= |�i| + 2. ♠

Satz 5.14 (Edmonds-Karp) Unabhängig von den Kapazitäten terminiert Algorithmus 5.11 nach
höchstens (n ⋅ m)/2 Augmentierungsschritten, wobei n = |V | und m = |E| ist.

Beweis. Sei (f0, �0), (f1, �1), (f2, �2), … die von Algorithmus 5.11 erzeugte Folge von Fluss-
funktionen fi und zugehörigen kürzesten Wegen �i im Restdigraphen von fi. In jedem Aug-
mentierungsschritt wird mindestens eine Kante e = (v, w) des Wegs �i voll ausgeschöpft, das
heisst, dass eine Flussveränderung um die Restkapazität stattfindet:

• Ist e eine Vorwärtskante im Restdigraphen von fi, so ist fi+1(e) = c(e).

• Ist e eine Rückwärtskante im Restdigraphen von fi, so ist fi+1(e−1) = 0.

46

5 Netzwerkflussprobleme

In keinem der beiden Fälle ist e eine Kante im Restdigraphen von fi+1. Bevor dieselbe Kante
in einem späteren Augmentierungsschritt fk ↦ fk+1 in �k vorkommt und wieder voll ausge-
schöpft wird, muss die inverse Kante e−1 = (w, v) im Weg �j mit i < j < k vorgekommen
sein. Aus Lemma 5.13 folgt

|�i| ≤ |�j | − 2 ≤ |�k | − 4.

Wird also e in den Wegen �i0 , �i1 , �i2 , … , �i� voll ausgeschöpft, dann existiert eine Indexfolge
j0, j1, … , j�−1 derart, dass

• i0 < j0 < i1 < j1 < ⋯ < i�−1 < j�−1 < i�,

• e−1 = (w, v) kommt in �j0 , �j1 , … , �j�−1 vor,

• 1 ≤ |�i0 | ≤ |�j0 | − 2 ≤ |�i1 | − 4 ≤ |�j1 | − 6 ≤ ⋯ ≤ |�i� | − 4�.

Da kürzeste Wege stets einfach sind, ist �ik stets ein einfacher Weg im Restdigraphen von fik
und es folgt

|�i� | < n.

Hieraus folgt jedoch, dass jede Kante e ∈ E ∪ E−1 höchstens n/4-mal voll ausgeschöpft werden
kann, das heisst, � < n/4. Da nur |E ∪ E−1| ≤ 2|E| Kanten vorhanden sind, werden maximal

2m ⋅
n
4
=

m ⋅ n
2

Augmentierungsschritte durchgeführt. ♠

Bemerkung Wir haben soeben die Existenz einer Lösung des Netzwerkflussproblems
gezeigt! �

Korollar 5.15 Der Aufwand des Edmonds-Karp-Algorithmus ist O(m2n), wobei n = |V | und
m = |E|.

Beweis. Gemäss Satz 5.14 benötigen wir höchstens (m ⋅ n)/2 Augmentierungsschritte. Da
hierzu jeweils eine Breitensuche benötigt wird, die den Aufwand O(m) besitzt, ergibt sich das
Behauptete. ♠

47

6
Bipartites Matching

Definition 6.1 Sei G = (V , E) ein Graph. EinMatching von G ist eine KantenmengeM ⊆ E,
so dass jeder Knoten von G höchstens auf einer Kante von M liegt, das heisst, wenn für alle
Kanten e = {v, w}, e′ = {x, y} ∈ M gilt

e ≠ e′ ⇒ {v, w} ∩ {x, y} = ∅.

Ein Matching M heisst maximal, wenn |M| ≥ |M ′| für alle Matchings M ′ von G.

Wir wollen uns im folgenden darauf beschränken, ein maximales Matching in einem bipartiten
Graphen zu suchen.

Definition 6.2 Ein Graph G = (V , E) heisst bipartit oder zweigeteilt, falls nichtleere Knoten-
mengen VL und VR existieren, so dass

(i) V = VL ∪ VR, VL ∩ VR = ∅,

(ii) für jede Kante {v, w} ∈ E ist

{v, w} ∩ VL ≠ ∅, {v, w} ∩ VR ≠ ∅.

Die Mengen VL, VR heissen (Bi-) Partition.

Viele Anwendungen führen auf die Bestimmung eines maximalen Matchings in einem biparti-
ten Graphen. Wir betrachten exemplarisch das sogenannte “Heiratsproblem”.

Beispiel 6.3 Vier Frauen VL = {A, B, C, D} haben unter vier Männern VR = {1, 2, 3, 4}
diejenigen ausgewählt, die sie sich als Ehepartner wünschen, und umgekehrt. Eine Heirats-
agentur soll anhand dieser Information potentielle Paare bilden. Gesucht ist folglich eine
Paarbildung, bei der nur Wunschpaare zulässig sind und die Zahl der Heiratsvermittlungen
maximal ist. Wir erhalten beispielsweise den Graphen

48

6 Bipartites Matching

A

B

C

D

1

2

3

4

wobei die Kanten für Wunschpaare stehen. Ein maximales Matching ist

M =
{
{A, 2}, {B, 4}, {C, 3}, {D, 1}

}
. ♣

Wir führen das Matchingprobem auf ein äquivalentes Flussproblem zurück.

Definition 6.4 SeiG = (V , E) ein bipartiter Graphmit Partition V = VL∪VR.Wir definieren
das zugehörige Netzwerk NG = (V ∪ {s, t}, E′, c, s, t) gemäss:

• s, t ∉ V und s ≠ t,

• E′ = E⃗ ∪ {(s, v) ∶ v ∈ VL} ∪ {(w, t) ∶ w ∈ VR},

• c(e) = 1 für alle e ∈ E′.

Hierbei ist E⃗ ∶=
{
(v, w) ∈ VL × VR ∶ {v, w} ∈ E

}
eine Orientierung für G, die nur die Kanten

von VL nach VR enthält. Eine 0-1-Flussfunktion für NG ist eine Flussfunktion f für NG mit
f (e) ∈ {0, 1} für alle e ∈ E′.

Satz 6.5 Sei G = (V , E) ein bipartiter Graph mit Partition V = VL ∪ VR, dann gilt:

(i) Zu jedem Matching M gibt es eine 0-1-Flussfunktion fM für NG mit flow(fM) = |M|.

(ii) Zu jeder 0-1-Flussfunktion f für NG gibt es ein Matching Mf für G mit flow(f) = |Mf |.

Beweis. (i) Sei fM definiert gemäss

fM(v, w) ∶=

{
fM(s, v) = fM(w, t) = 1, falls v ∈ VL, w ∈ VR, {v, w} ∈ M,
0, sonst.

Da aufgrund der Matchingbedingungen jeder Knoten auf höchstens einer Kante von E liegt,
erfüllt fM das Kirchhoffsche Gesetz. Folglich ist fM eine 0-1-Flussfunktion, insbesondere gilt
flow(fM) = |M|.

49

6 Bipartites Matching

(ii) Definiere

Mf ∶=
{
{v, w} ∈ E ∶ f (v, w) = 1

}
.

Das Kirchhoffsche Gesetz für f entspricht der Matchingeigenschaft vonMf und offensichtlich
gilt flow(f) = |Mf |. ♠

Beispiel 6.6 Für das Heiratsproblem aus Beispiel 6.3 sind NG und fM gegeben durch:

A

B

C

D

1

2

3

4

s t

Hierin entsprechen dicke Pfeile fM(v, w) = 1, dünne Pfeile fM(v, w) = 0. ♣

Korollar 6.7 Für G wie zuvor gilt

MaxFlow(NG) = max{|M| ∶ M ist Matching für G}.

Eine maximale 0-1-Flussfunktion für NG kann mit dem Ford-Fulkerson-Algorithmus in Laufzeit
O(n ⋅ m) bestimmt werden, wobei m = |E| und n = |V |.

Beweis. Die ersten Aussagen folgen sofort aus Satz 6.5. Die Aussage hinsichtlich der Lauf-
zeit folgt aus der Tatsache, dass die Anzahl der Flusserhöhungsschritte beschränkt ist durch
MaxFlow(NG) und

MaxFlow(NG) ≤ ∑
v∈post(s)

c(s, v) = ∑
v∈VL

c(s, v)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=1

= |VL| ≤ n. ♠

Bemerkung Die Suche nach augmentierten Wegen kann mit einer Tiefen- oder Breitensu-
che in Laufzeit O(m) durchgeführt werden. �

Definition 6.8 SeiG = (V , E) ein bipartiter Graphmit Partition V = VL∪VR und |VL| ≤ |VR|.
Ein Matching M heisst perfekt, falls |M| = |VL| gilt.

50

6 Bipartites Matching

Satz 6.9 (Heiratssatz von Hall) Sei G = (V , E) ein bipartiter Graph mit Partition V = VL ∪ VR
und |VL| ≤ |VR|. Dann existiert ein perfektes Matching genau dann, wenn

| post(W)| ≥ |W | für alle W ⊆ VL.

Hierbei gilt post(W) ∶= ∪w∈W post(w).

Beweis. “⇒” Ist M perfekt und W ⊆ VL, so enthält M für alle w ∈ W genau eine Kante
{w, wM } ∈ E. Die Knoten wM liegen also in post(W) und sind paarweise verschieden, dies
bedeutet

| post(W)| ≥ |W |.

“⇐” Sei | post(W)| ≥ |W | für alle W ⊆ VL. Seien NG das zum Matchingproblem gehörige
Netzwerk und f eine maximale 0-1-Flussfunktion. Gilt

flow(f) = |VL|,

so ist das entsprechende Matching gemäss Korollar 6.7 perfekt.

Sei Sf die Menge aller von s erreichbaren Knoten im Restdigraphen von f . Wegen t ∉ Sf und

cap(Sf) = ∑
v∈Sf

w∈post(v)⧵Sf

c(v, w)

= ∑
v∈Sf

w∈post(v)⧵Sf

f (v, w) − ∑
w∈Sf

v∈pre(w)⧵Sf

f (v, w)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=0

= flow(f)

ist Sf ein Schnitt mit minimaler Schnittkapazität, vergleiche den Beweis des Max-Flow-Min-
Cut-Theorems. Wir zeigen zunächst, dass

post(VL ∩ Sf) ⊆ Sf (6.1)

gilt. Sei hierzu v ∈ Sf ∩ VL beliebig und w ∈ post(v). Angenommen, (6.1) gilt nicht, dann ist
w ∉ Sf . Folglich ist (v, w) keine Kante im Restdigraphen von f . Die Kante (v, w) ist somit
gesättigt, das heisst

f (v, w) = 1.

Da pre(v) = {s}, folgt aus dem Kirchhoffschen Gesetz, dass f (s, v) = 1. Damit ist auch (s, v)
keine Kante im Restdigraphen. Der Knoten v kann also im Restdigraphen nur über eine
Rückwärtskante von der Quelle s erreicht werden. Daher gibt es ein u ∈ post(v) ∩ Sf mit

f (v, u) = 1.

Es gibt folglich zwei direkte Nachfolger von v mit

f (v, w) = f (v, u) = 1.

51

6 Bipartites Matching

Dies widerspricht aber dem Kirchhoffschen Gesetz, da (s, v) die einzige zu v führende Kante
ist.

Damit gilt (6.1) und es folgt für alle Kanten (u, v) in NG mit u ∈ Sf und v ∈ V ⧵ Sf , dass u = s
oder v = t ist. Dies impliziert

cap(Sf) = ∑
u∈Sf

v∈post(u)⧵Sf

c(u, v)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=1

= |{(s, v) ∶ (s, v) ∈ E′ und v ∉ Sf }|
+ |{(v, t) ∶ (v, t) ∈ E′ und v ∈ Sf }|

= |VL ⧵ Sf | + | Sf ∩ VR
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

(6.1)
⊇ post(VL∩Sf)

|

≥ |VL ⧵ Sf | + | post(VL ∩ Sf)|.

Nach Voraussetzung ist | post(W)| ≥ |W |, insbesondere

| post(VL ∩ Sf)| ≥ |VL ∩ Sf |,

und wir erhalten

flow(f) = cap(Sf)
≥ |VL ⧵ Sf | + | post(VL ∩ Sf)|
≥ |VL ⧵ Sf | + |VL ∩ Sf |
= |VL|.

Andererseits gilt offensichtlich auch flow(f) ≤ |VL| und somit flow(f) = |VL|. ♠

Beispiel 6.10 Beim bipartiten Graphen

A

B

C

1

2

3

ist das Hallsche Kriterium erfüllt, denn A, B, C haben jeweils mindestens einen Nachfolger,
{A, B}, {B, C}, {A, C} mindestens zwei Nachfolger und {A, B, C} drei Nachfolger.

Zum bipartiten Graphen

52

6 Bipartites Matching

A

B

C

1

2

3

existiert kein perfektes Matching, denn {B, C} hat nur einen Nachfolger. ♣

Der Heiratssatz von Hall liefert kein zufriedenstellendes algorithmisches Kriterium für die
Existenz eines perfekten Matchings, da alle Teilmengen W ⊆ VL betrachtet werden müssen.
Allerdings ermöglicht er diesen Nachweis in Graphen, in denen alle Knoten denselben Grad
haben. Solche Graphen heissen auch regulär.

Satz 6.11 Sei G = (V , E) ein bipartiter Graph mit Partition V = VL ∪ VR und |VL| ≤ |VR|. Gilt
| post(v)| = k > 0 für alle v ∈ V , so existiert ein perfektes Matching.

Beweis. Seien W ⊆ VL und

E1 ∶=
{
{v, w} ∈ E ∶ v ∈ W

}
,

E2 ∶=
{
{v, w} ∈ E ∶ w ∈ post(W)

}
.

Aus E1 ⊆ E2 folgt

k|W | = |E1| ≤ |E2| = k| post(W)|,

das heisst |W | ≤ | post(W)|. Satz 6.9 liefert dann die Behauptung. ♠

Beispiel 6.12 Der bipartite Graph

A

B

C

D

1

2

3

4

erfüllt | post(v)| = 2 für alle Knoten v ∈ V . Ein perfektes Matching ist zum Beipiel

M =
{
{A, 3}, {B, 1}, {C, 4}, {D, 2}

}
. ♣

53

Index
0-1-Flussfunktion, 49

Adjazenz
-liste, 13
-matrix, 12

algorithmische Suche, 24
Algorithmus

algorithmische Suche, 24
Breitensuche, 24
Tiefensuche, 24
von Dijkstra, 32
von Edmonds und Karp, 44
von Floyd und Warshall, 36
von Ford und Fulkerson, 43
von Moore, Bellman und Ford, 35
zur Bestimmung starker Zusammenhangs-

komponenten, 26
Anfangsknoten, 8

Baum, 22
gerichteter, 35

Bipartition, 48
Breadth-First-Search (BFS), 24
Breitensuche, 24

Depth-First-Search (DFS), 24
Digraph, 8

Eulersch, 19
gewichteter, 30
induzierter Teil-, 11
kondensierter, 18
Teil-, 10

Digraphenisomorphismus, 11
Dijkstra-Algorithmus, 32

Endknoten, 8

Floyd-Warshall-Algorithmus, 36
Fluss, 39

-wert, 39
maximaler, 39
optimaler, 39

Gewichtsfunktion, 30
Grad, 6, 10

Ausgangs-, 10
Eingangs-, 10

Graph, 5
azyklischer, 22
bipartiter, 48
Eulersch, 19
gerichteter, 8
induzierter Teil-, 7
regulärer, 53
stark zusammenhängender, 17
Teil-, 7
ungerichteter, 5
zusammenhängender, 16
zweigeteilter, 48
zyklenfreier, 22

Graphenisomorphismus, 7

Heiratssatz von Hall, 51

Integral-Flow-Theorem, 43
isomorph, 7, 11
Isomorphismus

Digraphen-, 11
Graphen-, 7

Kante, 5, 8
Kapazität, 39

eines Schnitts, 39
Rest-, 42

Kapazitäts
-bedingung, 39
-funktion, 39

Kirchhoffsches Gesetz, 39

54

INDEX

Knoten, 5, 8
Anfangs-, 8
End-, 8
erreichbarer, 5, 9
Nachbar-, 6, 10
Nachfolger-, 9
Vorgänger-, 10

Komponente
Zusammenhangs-, 16

Kostenfunktion, 30
Kreis, 21

Liste
Adjazenz-, 13
einfach verkettete, 13
Nachbarschafts-, 13

Listenkopf, 14

Matching, 48
maximales, 48
perfektes, 50

Matrix
Adjazenz-, 12
Nachbarschafts-, 12

Max-Flow-Min-Cut-Theorem, 40
Moore-Bellman-Ford-Algorithmus, 35

Nachbar
-knoten, 6, 10
-schaftsliste, 13
-schaftsmatrix, 12

Nachfolger
-knoten, 9

Netzwerk, 39

Ordnung
topologische, 28

Orientierung, 49

Partition, 48
Pfad, 6

Quelle, 39

Rückwärts
-kante, 42

Restdigraph, 42

Restkapazität, 42
Rundweg, 6, 9

Eulerscher, 19
einfacher, 6, 9
pathologischer, 21

Satz
von Hall, 51

Schleife, 9
Schnitt, 39
Schnittkapazität, 39

minimale, 39
Senke, 39

Teil
-digraph, 10
-graph, 7

Tiefensuche, 24
topologische Ordnung, 28

Vorgänger
-knoten, 10

Vorwärts
-kante, 42

Weg, 5, 9
einfacher, 6, 9
kürzester, 30
Länge eines, 5, 9
von v nach w, 5, 9

Weglänge, 5, 9, 30
kürzeste, 30

Zusammenhang, 16
starker, 17

Zusammenhangskomponente, 16
starke, 17

Zyklus, 21

55

