Due: Monday, 27.10.2025, 12:00.

Exercise Sheet 5.

Exercise 1 (Schur decomposition II). Using Schur's decomposition, prove the spectral theorem: A matrix $A \in \mathbb{C}^{n \times n}$ is normal if and only if there exists a unitary matrix $Q \in \mathbb{C}^{n \times n}$, such that $Q^*AQ = D$ is a diagonal matrix.

Hint. Consider Schur's decomposition. Is R normal? Is D also normal?

Exercise 2 (Householder-Deflation). Take a diagonalizable matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}$. Suppose that the largest eigenvalues λ_1 and its corresponding eigenvector \mathbf{v}_1 have been determined with the help of the power method.

(a) Determine a vector $\mathbf{u} \in \mathbb{R}^n$ such that for the associated Householder transformation $\mathbf{Q}_{\mathbf{u}}$ and a $\sigma \neq 0$ the relationship

$$\mathbf{Q}_{\mathbf{u}}\mathbf{v}_{1}=\sigma\mathbf{e}_{1}$$

holds.

(b) Show that A can be transformed into a block structure by

$$Q_u A Q_u = \begin{bmatrix} \lambda_1 & b^{\mathsf{T}} \\ \mathbf{0} & A_1 \end{bmatrix},$$

where $\mathbf{A}_1 \in \mathbb{R}^{(n-1)\times(n-1)}$ and $\mathbf{b} \in \mathbb{R}^{n-1}$.

(c) Show that the matrix A_1 has the eigenvalues $\lambda_2, \dots, \lambda_n$.

The power method then can be applied again to the smaller matrix A_1 yielding the next eigenvalue λ_2 and associated eigenvector \mathbf{v}_2 . Hence this *Householder-Deflation* method can be applied successively to determine all eigenpairs of the matrix \mathbf{A} .

Exercise 3 (Orthonormal polynomials and tridiagonal matrices). Let $(p_n)_{n\geq 0}$ be a sequence of real orthonormal polynomials defined by the three-term recursion

$$\lambda p_n(\lambda) = \beta_n p_{n-1}(\lambda) + \alpha_{n+1} p_n(\lambda) + \beta_{n+1} p_{n+1}(\lambda), \qquad n \ge 0,$$

with $p_{-1} = 0$, $p_0 = 1$ and $\beta_n > 0$. Show that, for $n \ge 1$, the roots of p_n are the eigenvalues of the following tridiagonal matrix

$$\mathbf{T}_{n} = \begin{bmatrix} \alpha_{1} & \beta_{1} & & & & 0 \\ \beta_{1} & \alpha_{2} & \beta_{2} & & & & \\ & \ddots & \ddots & \ddots & & \\ & & \beta_{n-2} & \alpha_{n-1} & \beta_{n-1} \\ 0 & & & \beta_{n-1} & \alpha_{n} \end{bmatrix}.$$

What are the corresponding eigenvectors?

Exercise 4 (Krylov subspaces). For a matrix $A \in \mathbb{R}^{n \times n}$ and a vector $\mathbf{v} \in \mathbb{R}^n$ let the Krylov subspaces \mathcal{K}_k be defined as

$$\mathcal{K}_k(\mathbf{A}, \mathbf{v}) := \text{span}\left\{\mathbf{v}, \mathbf{A}\mathbf{v}, \dots, \mathbf{A}^{k-1}\mathbf{v}\right\}, \quad k = 1, 2, \dots$$

(a) Let Π_m for $m \in \mathbb{N}$ be the space of all real polynomials of degree deg $\leq m$. Show

$$\mathcal{K}_k(\mathbf{A}, \mathbf{v}) = \left\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} = p(\mathbf{A})\mathbf{v} \text{ with } p \in \Pi_{k-1} \right\} \text{ for all } k \geq 1.$$

(b) For $\mathbf{v} \in \mathbb{R}^n$, we define

$$m = \min \{ k \in \mathbb{N} : \text{ there exists } p \in \Pi_k \setminus \{0\} \text{ with } p(\mathbf{A})\mathbf{v} = \mathbf{0} \}$$

as the degree of \mathbf{v} with respect to \mathbf{A} . The corresponding polynomial $p \in \Pi_m$, that satisfies $p(\mathbf{A})\mathbf{v} = \mathbf{0}$, is called the minimal polynomial of \mathbf{v} with respect to \mathbf{A} .

Let $\ell \leq k$ be the degree of the minimal polynomial of v with respect to A. Show

$$\mathcal{K}_k(\mathbf{A}, \mathbf{v}) = \mathcal{K}_\ell(\mathbf{A}, \mathbf{v})$$
 for all $k \ge \ell$.

(c) Let A be a non-zero real symmetric $n \times n$ matrix and define μ as the number of distinct eigenvalues of A. Moreover, let ℓ be the degree of the minimal polynomial of \mathbf{v} with respect to A. Show

$$\ell \leq \mu$$
.

Hint. Use the idea of Cayley-Hamilton theorem.