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Exercise 1 (Tridiagonal matrices). Consider the tridiagonal matrix D ∈ Rn×n given by
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Show that, the eigenvalues of D are
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, for k = 1,… , n.

Furthermore, show that the corresponding eigenvectors v1, … , vn fulfil
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, for i, k = 1, … , n,

where [vk]i denotes the i-th entry of vk.

Exercise 2 (Lanczos algorithm). The matrix
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is given. Apply the Lanczos algorithm on the matrix A with starting vectors z1 = [1, 0, 0]ᵀ

and z2 = 1
2
[
√
2, −1, 1]ᵀ and explain the observed behavior.

Exercise 3 (Lucky break in the Arnoldi iteration). Consider the Arnoldi algorithm forA ∈ Rn×n

invertible and an arbitrary z ∈ Rn ⧵ {0}. Show that in the case ℎm+1,m = 0, i.e. when the
Arnoldi algorithm has ended, the m-th step gives x = A−1z ∈ Km(A, z).

Exercise 4 (Linear least squares problem).

Consider the matrix

A =
1

5 [
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2 2 −4 −1]

T

.

(a) Derive the singular value decomposition of A.

(b) Derive the pseudoinverse A+ with the help of the singular value decomposition as well
as with the equality A+ = (ATA)−1AT.

(c) Use A+, to solve the linear least squares problem defined by A and b = [1, 2, 3, 4]T.


