Due: Monday, 10.11.2025, 12:00.

Exercise Sheet 7.

Exercise 1 (Computation of the singular value decomposition).

Let $A \in \mathbb{R}^{n \times n}$. Consider a sequence of matrices $A = A_0, A_1, A_2, ...$, where A_{k+1} is derived from A_k by applying an orthogonal transformation P_k , $A_{k+1} = P_k A_k$, and, for an even integer k, the matrices are of the form

$$\mathbf{A}_{k} = \begin{bmatrix} a_{k,1} & b_{k,1} & 0 \\ & a_{k,2} & \ddots & \\ & & \ddots & b_{k,n-1} \\ 0 & & & a_{k,n} \end{bmatrix} \quad \text{and} \quad \mathbf{A}_{k+1} = \begin{bmatrix} a_{k+1,1} & & 0 \\ b_{k+1,1} & \ddots & & \\ & \ddots & a_{k+1,n-1} & \\ 0 & & b_{k+1,n-1} & a_{k+1,n} \end{bmatrix}.$$

Show that:

- (a) There exists orthogonal matrices $Q_1, Q_2 \in \mathbb{R}^{n \times n}$ such that $Q_1 A Q_2 = \tilde{A}$, where \tilde{A} is a bidiagonal matrix.
- (b) The limit $\lim_{k\to\infty} b_{k,j} = 0$ holds for all j = 1, ..., n-1.
- (c) There exists an integer $K \in \mathbb{N}$, such that $a_{k,1} \ge a_{k,2} \ge \cdots \ge a_{k,n}$ holds for all k > K.

Exercise 2 (Estimates of singular values).

Let $A \in \mathbb{R}^{m \times n}$. Prove the following inequalities, where σ_{max} and σ_{min} are the biggest and smallest singular values, respectively.

(a) For a matrix $\mathbf{E} \in \mathbb{R}^{m \times n}$,

$$\sigma_{\max}(\mathbf{A} + \mathbf{E}) \le \sigma_{\max}(\mathbf{A}) + \|\mathbf{E}\|_2$$
 and $\sigma_{\min}(\mathbf{A} + \mathbf{E}) \ge \sigma_{\min}(\mathbf{A}) - \|\mathbf{E}\|_2$.

(b) For $\mathbf{z} \in \mathbb{R}^m$ let $[\mathbf{A} \mid \mathbf{z}] \in \mathbb{R}^{m \times (n+1)}$ be the matrix defined by adding the column \mathbf{z} to the matrix \mathbf{A} . Show that

$$\sigma_{\max}([\mathbf{A} | \mathbf{z}]) \ge \sigma_{\max}(\mathbf{A})$$
 and $\sigma_{\min}([\mathbf{A} | \mathbf{z}]) \le \sigma_{\min}(\mathbf{A})$.

Exercise 3 (Eckart-Young-Mirsky theorem).

Let the matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ be defined by its singular value decomposition $(\{\sigma_i\}_{i=1}^r, \{\mathbf{u}_i\}_{i=1}^m, \{\mathbf{v}_i\}_{i=1}^n)$. We consider the following low rank approximation of \mathbf{A} :

$$\mathbf{A}_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T, \quad 1 \le k < r.$$

Show the following statements:

- (a) It holds $||A A_k||_2 = \sigma_{k+1}$.
- (b) For every matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ with rank $(\mathbf{B}) = k$, there exists a vector $\mathbf{z} \in \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{k+1}\}$, $\mathbf{z} \neq \mathbf{0}$, such that $\mathbf{B}\mathbf{z} = \mathbf{0}$.

(c) Among the matrices $\mathbf{B} \in \mathbb{R}^{m \times n}$ with rank at most k, \mathbf{A}_k is the best low rank approximation of \mathbf{A} with respect to the $\|\cdot\|_2$ -Norm:

$$\min_{\substack{\mathbf{B} \in \mathbb{R}^{m \times n}, \\ \mathrm{rank}(\mathbf{B}) \le k}} \|\mathbf{A} - \mathbf{B}\|_2 = \|\mathbf{A} - \mathbf{A}_k\|_2.$$

Hint. Estimate $\|\mathbf{A} - \mathbf{B}\|_2$ using question (b) and compare it with question (a).

Exercise 4 (Lower semi-continuity of the rank function).

A function $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ is called *lower semi-continous* at $\mathbf{A}_0 \in \mathbb{R}^{m \times n}$ if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$f(\mathbf{A}) \ge f(\mathbf{A}_0) - \varepsilon$$

holds for all matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $d(\mathbf{A}, \mathbf{A}_0) \leq \delta$, where $d(\cdot, \cdot)$ is a distance function. We call f upper semi-continous at $\mathbf{A}_0 \in \mathbb{R}^{m \times n}$ if -f is lower semi-continous at \mathbf{A}_0 . In this exercise, use the distance function induced by the matrix 2-norm, i.e. $d(\mathbf{A}, \mathbf{B}) = \|\mathbf{A} - \mathbf{B}\|_2$.

(a) Prove that the rank function $A \mapsto \operatorname{rank}(A)$ is lower semi-continuous at every matrix $A_0 \in \mathbb{R}^{m \times n}$.

Hint. Use the Eckart-Young-Mirsky theorem to prove a contradiction.

(b) Construct an example to show that in general, the rank of a matrix is not upper semi-continuous.