

Exercise Sheet 7.

Due: Monday, 10.11.2025, 12:00.

Exercise 1 (Computation of the singular value decomposition). Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. Consider a sequence of matrices $\mathbf{A} = \mathbf{A}_0, \mathbf{A}_1, \mathbf{A}_2, \dots$, where \mathbf{A}_{k+1} is derived from \mathbf{A}_k by applying an orthogonal transformation \mathbf{P}_k , $\mathbf{A}_{k+1} = \mathbf{P}_k \mathbf{A}_k$, and, for an even integer k , the matrices are of the form

$$\mathbf{A}_k = \begin{bmatrix} a_{k,1} & b_{k,1} & & 0 \\ & a_{k,2} & \ddots & \\ & & \ddots & b_{k,n-1} \\ 0 & & & a_{k,n} \end{bmatrix} \quad \text{and} \quad \mathbf{A}_{k+1} = \begin{bmatrix} a_{k+1,1} & & & 0 \\ b_{k+1,1} & \ddots & & \\ & \ddots & a_{k+1,n-1} & \\ 0 & & b_{k+1,n-1} & a_{k+1,n} \end{bmatrix}.$$

Show that:

- There exists orthogonal matrices $\mathbf{Q}_1, \mathbf{Q}_2 \in \mathbb{R}^{n \times n}$ such that $\mathbf{Q}_1 \mathbf{A} \mathbf{Q}_2 = \tilde{\mathbf{A}}$, where $\tilde{\mathbf{A}}$ is a bidiagonal matrix.
- The limit $\lim_{k \rightarrow \infty} b_{k,j} = 0$ holds for all $j = 1, \dots, n-1$.
- There exists an integer $K \in \mathbb{N}$, such that $a_{k,1} \geq a_{k,2} \geq \dots \geq a_{k,n}$ holds for all $k > K$.

Exercise 2 (Estimates of singular values). Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Prove the following inequalities, where σ_{\max} and σ_{\min} are the biggest and smallest singular values, respectively.

- For a matrix $\mathbf{E} \in \mathbb{R}^{m \times n}$,

$$\sigma_{\max}(\mathbf{A} + \mathbf{E}) \leq \sigma_{\max}(\mathbf{A}) + \|\mathbf{E}\|_2 \quad \text{and} \quad \sigma_{\min}(\mathbf{A} + \mathbf{E}) \geq \sigma_{\min}(\mathbf{A}) - \|\mathbf{E}\|_2.$$

- For $\mathbf{z} \in \mathbb{R}^m$ let $[\mathbf{A} | \mathbf{z}] \in \mathbb{R}^{m \times (n+1)}$ be the matrix defined by adding the column \mathbf{z} to the matrix \mathbf{A} . Show that

$$\sigma_{\max}([\mathbf{A} | \mathbf{z}]) \geq \sigma_{\max}(\mathbf{A}) \quad \text{and} \quad \sigma_{\min}([\mathbf{A} | \mathbf{z}]) \leq \sigma_{\min}(\mathbf{A}).$$

Exercise 3 (Eckart-Young-Mirsky theorem). Let the matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ be defined by its singular value decomposition $(\{\sigma_i\}_{i=1}^r, \{\mathbf{u}_i\}_{i=1}^m, \{\mathbf{v}_i\}_{i=1}^n)$. Consider the following low rank approximations of \mathbf{A}

$$\mathbf{A}_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T,$$

where $1 \leq k < r$. Show the following statements:

- It holds $\|\mathbf{A} - \mathbf{A}_k\|_2 = \sigma_{k+1}$.
- For every matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ with $\text{rank}(\mathbf{B}) = k$, there exists a vector $\mathbf{z} \in \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{k+1}\}$, $\mathbf{z} \neq \mathbf{0}$, such that $\mathbf{Bz} = \mathbf{0}$.

(c) Show that, among all matrices $\mathbf{B} \in \mathbb{R}^{m \times n}$ with rank at most equal to k , \mathbf{A}_k is the best approximation of \mathbf{A} with respect to the $\|\cdot\|_2$ -Norm:

$$\min_{\substack{\mathbf{B} \in \mathbb{R}^{m \times n}, \\ \text{rank}(\mathbf{B}) \leq k}} \|\mathbf{A} - \mathbf{B}\|_2 = \|\mathbf{A} - \mathbf{A}_k\|_2.$$

Hint. Estimate $\|\mathbf{A} - \mathbf{B}\|_2$ using question (b) and compare it with question (a).

Exercise 4 (Lower semi-continuity of the rank function). A function $f : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is called *lower semi-continuous* at $\mathbf{A}_0 \in \mathbb{R}^{m \times n}$ if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$f(\mathbf{A}) \geq f(\mathbf{A}_0) - \varepsilon$$

holds for all matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $d(\mathbf{A}, \mathbf{A}_0) \leq \delta$, where $d(\cdot, \cdot)$ is a distance function. We call f *upper semi-continuous* at $\mathbf{A}_0 \in \mathbb{R}^{m \times n}$ if $-f$ is lower semi-continuous at \mathbf{A}_0 . In this exercise, use the distance function induced by the matrix 2-norm, i.e. $d(\mathbf{A}, \mathbf{B}) = \|\mathbf{A} - \mathbf{B}\|_2$.

(a) Prove that the rank function $\mathbf{A} \mapsto \text{rank}(\mathbf{A})$ is lower semi-continuous at every matrix $\mathbf{A}_0 \in \mathbb{R}^{m \times n}$.

Hint. Use the Eckart-Young-Mirsky theorem to prove a contradiction.

(b) Construct an example to show that in general, the rank of a matrix is not upper semi-continuous.