

Exercise Sheet 9.

Due: Monday, 24.11.2025, 12:00.

Exercise 1 (Gauss-Newton algorithm). Let $F: \mathbb{R} \to \mathbb{R}^2$ be the function given by

$$F(x) = \begin{bmatrix} x+1 \\ \lambda x^2 + x - 1 \end{bmatrix}, \quad \lambda \in \mathbb{R},$$

and define the non-linear least-squares problem

$$\phi(x) = ||F(x)||_2^2 \to \min. \tag{1}$$

- (a) Show that the function $\phi(x)$ for $\lambda < 1$ has a local minimum at $x^* = 0$. Show also that when $\lambda < 7/16$ then x^* even is the only local minimum.
- (b) Formulate the Gauss-Newton method for the problem (1). Prove that when $\lambda < -1$ then $x^* = 0$ is a repulsive fixed point of the Gauss-Newton method, i.e. there exists a $\delta > 0$, such that $|x_{k+1} 0| > |x_k 0|$ holds for all x_k with $0 < |x_k 0| < \delta$.
- (c) For $|\lambda|$ < 1, the Gauss-Newton method is convergent. What is the asymptotic convergence in this case?

Exercise 2 (Levenberg-Marquardt algorithm). Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$, $b \in \mathbb{R}^m$ and $\lambda > 0$. Furthermore, let **d** be the solution of

$$(\mathbf{A}^{\mathsf{T}}\mathbf{A} + \lambda \mathbf{I}) \mathbf{d} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$$

and g be the solution of

$$(\mathbf{A}^{\mathsf{T}}\mathbf{A} + \lambda \mathbf{I}) \mathbf{g} = \mathbf{d}.$$

(a) Show that d and g, respectively, are the solutions of the linear least-squares problems

$$\min_{\mathbf{v} \in \mathbb{R}^n} \left\| \begin{bmatrix} \mathbf{A} \\ \sqrt{\lambda} \mathbf{I} \end{bmatrix} \mathbf{v} - \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix} \right\|_2 \quad \text{and} \quad \min_{\mathbf{w} \in \mathbb{R}^n} \left\| \begin{bmatrix} \mathbf{A} \\ \sqrt{\lambda} \mathbf{I} \end{bmatrix} \mathbf{w} - \begin{bmatrix} \mathbf{0} \\ \mathbf{d}/\sqrt{\lambda} \end{bmatrix} \right\|_2.$$
 (2)

(b) Let the QR-decomposition of A be defined as A = QR. Describe a method that solves the linear least squares problems (2) using n(n + 1)/2 Givens rotations.

Hint. Use the fact that a linear least squares problem can be solved using the QR decomposition.

Exercise 3 (Hebden algorithm).

(a) Let $I \subset \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$ be a differentiable, strictly monotonically increasing, and concave function with a unique zero $x^* \in I$. Show that the Newton method for finding the zeros converges monotonically to x^* for all initial values $x_0 \in I$ with $x_0 \le x^*$.

Hint. Use the following property on differentiable concave functions:

$$f(y) \le f(x) + f'(x)[y - x]$$
 for all $x, y \in I$.

(b) Consider the equation

$$r(x) := \sum_{i=1}^{n} \frac{z_i^2}{(d_i + x)^2} = \rho \tag{3}$$

with z_i and d_i positive for all $i=1,\ldots,n$ and $\rho>0$. Furthermore, assume that $d_i>d_{i+1}$ for all $i=1,\ldots,n-1$ and $r(0)>\rho$. To solve the equation (3) using the Hebden method, the Newton method for finding the roots is applied to the transformed equation.

$$g(x) = \frac{1}{\sqrt{r(x)}} - \frac{1}{\sqrt{\rho}} = 0.$$

Show that the Hebden method converges for the initial value $x_0 = 0$.

Hint. Study the function g(x) to use part (a).

Exercise 4 (Trust-Region algorithm). Let $F(\mathbf{x}) := \frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{A}\mathbf{x} + \mathbf{b}^\mathsf{T}\mathbf{x}$ with $\mathbf{b} \in \mathbb{R}^n$ and a symmetric positive definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$. For F and the trust region radius $\Delta > 0$, the trust region problem is:

$$\min\left\{F(\mathbf{x}): \|\mathbf{x}\|_2 \leq \Delta\right\}.$$

Let \mathbf{x}^* be the corresponding optimal solution. Consider the following conditions:

(i)
$$\lambda^* \ge 0$$
, $\|\mathbf{x}^*\|_2 \le \Delta$, $\lambda^*(\Delta - \|\mathbf{x}^*\|_2) = 0$,

(ii)
$$(\mathbf{A} + \lambda^* \mathbf{I}) \mathbf{x}^* = -\mathbf{b}$$
,

(iii) $A + \lambda^* I$ is positive semi-definite.

Show that:

- (a) If $\|\mathbf{x}^{\star}\|_{2} < \Delta$ holds, then \mathbf{x}^{\star} and $\lambda^{\star} = 0$ satisfy the conditions (i)-(iii).
- (b) Let $\|\mathbf{x}^{\star}\|_{2} = \Delta$ and $\mathbf{v} \in \mathbb{R}^{n}$ with $\|\mathbf{v} + \mathbf{x}^{\star}\|_{2} \leq \Delta$. Then $(\mathbf{b} + \mathbf{A}\mathbf{x}^{\star})^{\mathsf{T}}\mathbf{v} \geq 0$ holds.