

Exercise Sheet 11.

Due: Monday, 08.12.2025, 12:00.

Exercise 1 (Optimization methods under affine transformation). Let $F : \mathbb{R}^n \rightarrow \mathbb{R}$ be twice continuously differentiable. Furthermore, consider a $\mathbf{x} \in \mathbb{R}^n$, such that $\nabla^2 F(\mathbf{x})$ is positive definite. Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ be an invertible matrix and $\mathbf{v} \in \mathbb{R}^n$ an arbitrary vector. The new iterate $\mathbf{x}^+ = \mathbf{x} + \mathbf{d}$ is calculated as follows:

- i. Transform to a new “y” coordinate system: $\mathbf{x} = \mathbf{x}(\mathbf{y}) := \mathbf{M}\mathbf{y} + \mathbf{v}$.
- ii. Take a gradient step in the “y” coordinate system: $\mathbf{y}^+ = \mathbf{y} - \nabla_y F(\mathbf{x}(\mathbf{y}))$.
- iii. Transform back to the “x” coordinate system: $\mathbf{x}^+ = \mathbf{x}(\mathbf{y}^+)$.

(a) Give a formula for \mathbf{d} which depends only on \mathbf{M} and $\nabla F(\mathbf{x})$.

(b) How \mathbf{M} should be chosen so that \mathbf{d} is a gradient step at the point \mathbf{x} ? For which \mathbf{M} does \mathbf{d} correspond to a Newton step at the point \mathbf{x} ?

Exercise 2 (Optimization of a quadratic function). We consider the iteration

$$x_{k+1} = x_k + \alpha_k p_k$$

with $x_0 = 2$ to minimize $f(x) = x^2$ and want to investigate the behavior of the sequence $\{x_k\}$ for $k \rightarrow \infty$.

(a) Show that for $p_k = (-1)^{k+1}$ and $\alpha_k = 2 + 3/2^{k+1}$, $x_k = (-1)^k + (-1/2)^k$ holds.

(b) Show that for $p_k = -1$ and $\alpha_k = 1/2^{k+1}$, $x_k = 1 + 1/2^k$ holds.

Exercise 3 (Sherman–Morrison–Woodbury formula). Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an invertible matrix and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ arbitrary vectors. Show that:

(a) If $\mathbf{v}^\top \mathbf{A}^{-1} \mathbf{u} = -1$, then $(\mathbf{A} + \mathbf{u}\mathbf{v}^\top)$ is singular.

(b) If $\mathbf{v}^\top \mathbf{A}^{-1} \mathbf{u} \neq -1$, then

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^\top)^{-1} = \mathbf{A}^{-1} - \frac{1}{1 + \mathbf{v}^\top \mathbf{A}^{-1} \mathbf{u}} \mathbf{A}^{-1} \mathbf{u} \mathbf{v}^\top \mathbf{A}^{-1}.$$