
Iterative Verfahren der Numerik
Dr. M. Schmidlin HS 2025

Programmierblatt 3. Besprechungswoche: 01.12. – 05.12.2025

Optimierungsprobleme treten in zahlreichen Anwendungen auf, seien sie wissenschaftlicher,
technischer oder wirtschaftlicher Natur. Viele Probleme aus der Physik lassen sich auf Ener-
gieminimierungsprobleme zurückführen, während Finanzdienstleister an der Maximierung
eines Ertrages interessiert sind.Weiter sind Optimierungsverfahren notwendig in bildgebenden
Verfahren, welche in der Medizin und der Geologie aber zum Beispiel auch zur Qualitäts-
kontrolle in der Produktion verwendet werden, und sind auch ein grundlegender Baustein im
Maschinellen Lernen. Aus mathematischer Sicht spielt es dabei keine Rolle, ob eine Funktion
minimiert oder maximiert wird, da das Minimieren einer Funktion f ∶ Rn

→ R äquivalent
zum Maximieren der Funktion g = −f ist.

Wir werden auf diesem Programmierblatt verschiedene Algorithmen betrachten und ihr
Verhalten anhand von bekannten Testfunktionen beleuchten. Beispielsweise ist die skalierte
Rosenbrock-Funktion

fR(z) = s[(a − z1)
2
+ b(z2 − z

2

1
)
2

] (1)

mit s, a, b > 0, anspruchsvoll zu minimieren, da deren globales Minimum x = [1, 1]
ᵀ in einem

schmalen, parabolischen Bereich liegt, was die Minimierung besonders anspruchsvoll macht.
Andererseits ist auch die skalierte Ackley-Funktion

fA(z) = s
[
a − a exp

(
−b

√

z
2

1
+ z

2

2

2 )
+ e − exp

(

cos(cz1) + cos(cz2)

2 )]
(2)

mit s, a, b, c > 0, anspruchsvoll zu minimieren, da die Funktion neben dem eigentlichen,
globalen Minimum x = [0, 0]

ᵀ viele weitere lokale Minima aufweist.

Abstiegsverfahren

Ausgehend von einem Startpunkt x0 versuchen wir, die Funktion iterativ zu minimieren,
wobei wir eine Folge Iterierter (xk)k erhalten, welche der Rekursion

xk+1 = xk + �kdk, k = 0, 1, …

genügen. Dabei sind �k > 0 Schrittweiten und dk sinnvoll gewählte Suchrichtungen. Hierbei
soll dk stets eine Abstiegsrichtung sein, was heisst, dass wir für alle k ≥ 0 die Bedingung
f
′
(xk)dk < 0 fordern.

Klassische Armijo-Liniensuche

In den Abstiegsverfahren muss zu dem Punkt xk und einer gegebenen Suchrichtung dk die
Schrittweite

�k ≈ argmin

t∈R
f (xk + tdk)

näherungsweise berechnet werden. Ausgehend von �k = 1 halbiert man �k so lange, bis

f (xk + �kdk) ≤ f (xk) + ��kf
′
(xk)dk



gilt; dabei ist � ∈ (0, 1) ein fest gewählter Parameter, der steuert, ob der effektive Abstieg

f (xk + �kdk) − f (xk)

mindestens dem von der Linearisierung erwartetem Abstieg

�kf
′
(xk)dk < 0

bis auf den Faktor � erreicht oder gar übertrifft.

Aufgabe 1. Schreiben Sie Funktionen

function xs = gradientDescent(f, Df, x0, tol, maxIter, sigma)

function xs = quasiNewtonBFGS(f, Df, x0, tol, maxIter, sigma)

function xs = nonlinearcgPR(f, Df, x0, tol, maxIter, sigma)

welche die Minimierungsalgorithmen aus dem Skript implementieren. Die Funktionen im-
plementieren Sie gemäss den Algorithmen des Skripts, sprich gradientDescent ist analog zu
Algorithmus 3.2, quasiNewtonBFGS gemäss Algorithmus 4.10 und nonlinearcgPR gemäss
Algorithmus 4.13 zu implementieren.

Für die Liniensuche benutzen Sie jeweils die klassiche Armijo-Liniensuche. Die Funktionen
sollen maximal maxIter Iterierte berechnen und jeweils abbrechen, wenn die 2-Norm des
Gradienten kleiner als tol wird. Vermeiden Sie weiter die Funktion f und deren Ableitung
am gleichen Punkt mehrmals auszuwerten, indem Sie stattdessen die aktuellen, notwendigen
Auswertungen speichern. Die Funktions handles f und Df sollen den Auswertungspunkt
als Spaltenvektor erhalten und den Funktionswert als Skalar respektive die Ableitung als
Zeilenvektor ausgeben. Der Gradient in Ihrer Implementirung soll dann der Spaltenvektor
sein, der durch transponieren aus der Ableitung hervorgeht.

Aufgabe 2.Nutzen Sie die Funktionen aus der Aufgabe 1, um die klassische Rosenbrock-
Funktion (1) mit s = 1, a = 1, b = 100 zu minimieren. Als Parameter benutzen Sie � = 0.3,
tol = 1e − 6 und maxIter = 5000. Als Startwert verwenden Sie den Punkt

x0 =

1

10 [

−3

10]
.

Stellen Sie in Subplots sowohl die Konturlinien der Rosenbrock-Funktion1 als auch die Pfade
der Optimierungsfunktionen gemäss Abbildung graphisch dar. Geben Sie auch die Anzahl der
benötigten Iterationen an.

−1 −0.5 0 0.5 1

0

0.5

1

x1

x
2

Gradientenverfahren (1′430)

−1 −0.5 0 0.5 1

0

0.5

1

x1

x
2

BFGS (30)

1Nutzen Sie hierfür den Matlab-Befehl contour um die Konturlinien von 3

√

f zu zeichnen.



−1 −0.5 0 0.5 1

0

0.5

1

x1

x
2

Polak-Ribière (38)

Aufgabe 3.Wiederholen Sie Aufgabe 2, wobei Sie anstatt s = 1 neu die Skalierung der
Rosenbrockfuntion auf s = 2

−10 setzen.

−1 −0.5 0 0.5 1

0

0.5

1

x1

x
2

Gradientenverfahren (> 5
′
000)

−1 −0.5 0 0.5 1

0

0.5

1

x1

x
2

BFGS (32)

−1 −0.5 0 0.5 1

0

0.5

1

x1

x
2

Polak-Ribière (> 5
′
000)

Modifizierte Armijo-Liniensuche

Die klassische Armijo-Liniensuche kann in der Praxis zu Problemen führen, da sie maximal
die Schrittweite 1 erlaubt. Je nach Wahl der Abstiegsrichtung kann es aber sein, dass man



Schrittweiten signifikant grösser als 1 wählen sollte, damit man nicht zuviele kleine Schritte
macht. Aufgabe 3 legt nahe, dass dies insbesondere bei dem Gradientenverfahren und den
nichtlinearen CG-Verfahren die Konvergenz signifikant beeinträchtigen kann; aufgrund der
(approximativen) Hess’schen Information sind dementgegen (Quasi-)Newtonverfahren dies-
bezüglich stabiler. Umgekehrt kann es aber auch sein, dass die Wahl der Abstiegsrichtung
und dem � bedingen, dass sämtliche Schrittweiten signifikant kleiner als 1 gewählt werden
müssen. In diesem Fall wird die klassische Armijo-Liniensuche also für jede Iterierte diese
kleinere Schrittweite ausgehend von 1 neu ermitteln, was viele Funktionsauswertungen von f
bedingen kann.

Um solche Probleme zu vermeiden, kann man die Armijo-Liniensuche mit verschiedenen
Heuristiken modifizieren. Wir werden uns auf die folgende Modifikation beschränken:

1. Die erste Schrittweite �0 wird ausgehend von �0 = 1 ermittelt.
2. Alle folgenden Schrittweiten werden ausgehend von der verdoppelten, vorherigen

Schrittweite besstimmt; sprich man startet die Liniensuche mit �k = 2�k−1 für k ∈ N+.

Aufgabe 4. Schreiben Sie Funktionen

function xs = gradientDescentMod(f, Df, x0, tol, maxIter, sigma)

function xs = nonlinearcgPRMod(f, Df, x0, tol, maxIter, sigma)

ausgehend von denen in Aufgabe 1, welche die klassischen Armijo-Liniensuche mit der
modifizierten ersetzen.

Aufgabe 5.Wiederholen Sie Aufgabe 3 mit den modifizierten Funktionen von Aufgabe 4.

−1 −0.5 0 0.5 1

0

0.5

1

x1

x
2

Gradientenverfahren (4′843)

−1 −0.5 0 0.5 1

0

0.5

1

x1

x
2

Polak-Ribière (149)

Globalisierungsstrategie

Ein Nachteil von Abstiegsverfahren ist, dass sie bei kritischen Stellen der Funktion gefangen
werden können. Während man beim zufälligen Erreichen von einem lokalen Maximum oder
Sattelpunkt, den Algorithmus mit einer kleinen zufälligen Störung neu starten kann und
dadurch mit hoher Wahrscheinlichkeit einen weiteren Abstieg erreichen wird können, ist dies
beim Erreichen eines lokalen Minimums nicht der Fall.

Aufgabe 6. Nutzen Sie die Funktion quasiNewtonBFGS aus der Aufgabe 1, um die klassische
Ackley-Funktion (2) mit s = 1, a = 20, b = 0.05 und c = 2� zu minimieren. Als Parameter



benutzen Sie � = 0.3, tol = 1e − 6 und maxIter = 1000. Als Startwert verwenden Sie die
Punkte

x0 =
[

−0.48

0.56 ]
und x0 =

[

−0.48

0.57 ]
.

Stellen Sie in Subplots sowohl die Konturlinien der Ackley-Funktion2 als auch die Pfade der
zwei Startwerte gemäss Abbildung graphisch dar. Geben Sie auch die Anzahl der benötigten
Iterationen an.

−1 −0.5 0 0.5

0

0.5

1

x1

x
2

Startwert 1 (47)

−1 −0.5 0 0.5

0

0.5

1

x1

x
2

Startwert 2 (10)

Wie in Aufgabe 6 klar ersichtlich, kann eine kleine Änderung in dem Startwert dazu führen,
dass nicht das globale Minimum, sondern nur ein lokales gefunden wird. Ziel einer Globali-
sierungsstrategie ist es, ein Abstiegsverfahren so anzuwenden oder anzupassen, dass es bessere
Chancen hat, das globale Minimum, oder zumindest bessere lokale Minima, zu finden. Im
Allgemeinen basieren solche Strategien auf Heuristiken und machen insbesondere Gebrauch
von Zufallszahlen, damit die Funktion hoffentlich für eine grössere Spanne an Argumenten
untersucht wird.

Aufgabe 7. Laden Sie die Datei prog03evolutionary.zip herunter. Darin finden Sie die
MATLAB Funktion evolutionaryBFGS und das MATLAB Skript main7, welche ausgehend
von der Funktion quasiNewtonBFGS den Versuch einer Globalisierungsstrategie und deren
Anwendung darstellt. Überlegen Sie sich, wie die Globalisierungsstrategie in der Funktion
evolutionaryBFGS aussieht, und führen Sie das Skript main7 mehrmals aus.

2Nutzen Sie hier den Matlab-Befehl contour um die Konturlinien von
√

f zu zeichnen.


