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Informationen ...

zu den Übungen

Die Übungen bestehen aus wöchentlichen Übungsblättern mit Theorieaufgaben, die in
den Übungsstunden besprochen werden, und drei Programmierblättern (in MATLAB),
welche abgenommen werden.
Für die Übungsblätter mit den Theorieaufgaben gibt es keine verpflichtende Abgabe.
Die Theorieaufgaben können zur Korrektur freiwillig physisch an der Spiegelgasse 1 in
dem entsprechenden Fach abgegeben werden; jeweils montags bis 12:00. Die Rückgabe
der korrigierten Abgaben erfolgt dann physisch in der Übungsstunde, weswegen Sie
jeweils den Tutor der besuchten Übungsstunde auf Ihren Abgaben vermerken sollen.
Die Programmierblätter müssen verpflichtend erfolgreich bearbeitet, auf ADAM abge-
geben und vorgezeigt werden. Die Abnahmen geschehen dabei in den drei Wochen:
06.10–10.10, 03.11–07.11 und 01.12–05.12.

zu den Leistungsüberprüfungen

Die Vorlesung Iterative Verfahren der Numerik ist eine Hauptvorlesung und wird somit
mit einem Examen in der Form einer mündlichen Prüfung geprüft. Diese mündlichen
Prüfungen werden im Zeitrahmen 09.–13.02.2026 stattfinden.
Die Übungen Iterative Verfahren der Numerik sind Übungen mit lehrveranstaltungs-
begleitender Leistungsüberprüfung. Diese Leistungsüberprüfung besteht aus den zwei
Elementen:

• Dem erfolgreichen Bearbeiten und Vorzeigen der Programmierblättern (s.o.).
• Dem Bestehen einer schriftlichen Klausur am 10.12.2025 um 14:15–16:00.
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Vorwort

Zur Mitschri� vom HS 2023

Diese Mitschrift kann und soll nicht ganz denWortlaut der Vorlesung wiedergeben. Sie
soll als Lernhilfe dienen und das Nacharbeiten des Inhalts der Vorlesung erleichtern.
Neben den unten genannten Büchern, diente mir speziell auch das Vorlesungsskript
Numerik nichtlinearer Optimierung von Gerhard Starke (Uni Hannover) als fruchtbare
Quelle.

Helmut Harbrecht

Zur Mitschri� vom HS 2025

Diese Variante der ursprünglichen Mitschrift vom HS 2023 wurde hauptsächlich neu
gesetzt, um ein A5-formatiges Skript aus einem A4-formatigen zu erstellen. Dabei
wurden auch die Grafiken überarbeitet und weitere, kleine Änderungen vorgenom-
men, sowie gefundene Typos eliminiert. Daher sind beide Mitschriften inhaltlich fast
deckungsgleich.

Marc Schmidlin

Literatur zur Vorlesung:

— M. Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissen-
schaftlichen Rechnens, Teubner-Verlag

— C. Geiger und C. Kanzow: Numerische Verfahren zur Lösung unrestringierter Opti-
mierungsaufgaben, Springer-Verlag

— C. Geiger und C. Kanzow: Theorie und Numerik restringierter Optimierungsaufgaben,
Springer-Verlag

— F. Jarre und J. Stoer: Optimierung, Springer-Verlag
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6 1 Eigenwerte

1
Eigenwerte

Erinnerung: IstA ∈ Kn×n, dann ist p(�) = det(A−�I) ein (komplexwertiges) Polynom
über C vom Grad n. Jede der n Nullstellen von p ist ein Eigenwert von A, das heißt,
zu einer solchen Nullstelle � gibt es einen Eigenvektor 0 ≠ x ∈ Cn mit Ax = �x;
umgekehrt ist auch jeder Eigenwert eine Nullstelle von p. Die Menge aller Eigenwerte
nennt man das Spektrum �(A) von A. Aus � ∈ �(A) folgt � ∈ �(A

⋆
).

Eigenwerte sind selbst bei reellen Matrizen im allgemeinen nicht reell. Ist aberA ∈ Rn×n

und � ∈ �(A), so ist auch � ∈ �(A), denn aus Ax = �x folgt

Ax = Ax = �x = �x.

1.1 Eigenwerteinschließungen

Die Eigenwertgleichung Ax = �x ist nichtlinear bezüglich der gemeinsamen Unbe-
kannten (�, x). Daher sind die meisten numerischen Verfahren zur Berechnung von
�(A) iterativ und manchmal auch nur lokal konvergent. Aus diesem Grund ist die
folgende Sammlung relativ einfacher Ergebnisse über die Lage der Eigenwerte einer
Matrix von Bedeutung.

Satz 1.1 (Gerschgorin) Sei A = [ai,j ] ∈ Kn×n und � ein beliebiger Eigenwert von A. Dann
gilt

� ∈

n

⋃

i=1

Ki =

n

⋃

i=1

{

z ∈ C ∶ |z − ai,i| ≤

n

∑

j=1

j≠i

|ai,j |

}

. (1.1)
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Beweis. Sei Ax = �xmit x ≠ 0. Dann existiert ein xi mit |xj | ≤ |xi| für j ≠ i. Folglich
ist

�xi = [Ax]i =

n

∑

j=1

ai,jxj

und weiter

|� − ai,i| =

|
|
|
|

n

∑

j=1

j≠i

ai,j

xj

xi

|
|
|
|

≤

n

∑

j=1

j≠i

|ai,j |

|
|
|
|

xj

xi

|
|
|
|

⏟⏞⏟⏞⏟

≤1

≤

n

∑

j=1

j≠i

|ai,j |.

Also ist � ∈ Ki ⊂ ⋃
n

j=1
Kj . ♠

Wegen � ∈ �(A
⋆
) gilt entsprechend

� ∈

n

⋃

i=1

{

z ∈ C ∶ |z − ai,i| ≤

n

∑

j=1

j≠i

|aj ,i|

}

beziehungsweise

� ∈

n

⋃

i=1

K̃i ∶=

n

⋃

i=1

{

z ∈ C ∶ |z − ai,i| ≤

n

∑

j=1

j≠i

|aj ,i|

}

. (1.2)

Dies ist der Satz von Gerschgorin angewendet auf A⋆.

Ist A eine beliebige (n × n)-Matrix, dann ist (A + A
⋆
)/2 hermitesch und (A − A

⋆
)/2

schiefhermitesch, dies bedeutet

(

1

2

(A − A
⋆
)
)

⋆

= −

1

2

(A − A
⋆
).

Offensichtlich gilt

A =

1

2

(A + A
⋆
) +

1

2

(A − A
⋆
).
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Definition 1.2 Unter demWertebereich einer Matrix A ∈ Kn×n versteht man die
Menge aller Rayleigh-�otienten x

⋆
Ax/(x

⋆
x) mit x ∈ Cn

⧵ {0}:

W(A) =

{

x
⋆
Ax

x
⋆
x

∶ x ∈ Cn
⧵ {0}

}

⊂ C.

Lemma 1.3

1. W(A) ist zusammenhägend.

2. Ist A hermitesch, dann ist W(A) das reelle Intervall [�min, �max].

3. Ist A schiefhermitesch, dann istW(A) ein rein imaginäres Intervall, nämlich die konvexe
Hülle aller Eigenwerte.

Beweis. 1. Sei �0 ≠ �1 ∈ W(A) mit

�0 =

x
⋆

0
Ax0

x
⋆

0
x0

, �1 =

x
⋆

1
Ax1

x
⋆

1
x1

, x0, x1 ∈ Cn
⧵ {0}.

Offensichtlich ist x0 ≠ �x1, da sonst �0 = �1. Für t ∈ [0, 1] ist

�t ∶=

x
⋆

t
Axt

x
⋆

t
xt

∈ W(A) mit xt ∶= x0 + t(x1 − x0) ∈ [x0, x1] ∌ 0

eine stetige Kurve, die �0 mit �1 verbindet.

2. Ist die Matrix A hermitesch, dann sind alle Eigenwerte reell und es gilt

min
x∈Cn

x
⋆
Ax = �min‖x‖

2

2
, max

x∈Cn

x
⋆
Ax = �max‖x‖

2

2
.

Hieraus ergibt sich die Behauptung.

3. Wegen A⋆
= −A ist iA hermitesch:

(iA)
⋆
= iA

⋆
= −iA

⋆
= iA.

Da W(iA) = iW(A) und �(iA) = i�(A) ist, folgt die Behauptung aus der
zweiten Aussage. ♠

Klar: Es gilt immer �(A) ⊂ W(A).



1.1 Eigenwerteinschließungen 9

Satz 1.4 (Bendixson) Sei A ∈ Kn×n beliebig. Dann liegt das Spektrum von A in dem
Rechteck

�(A) ⊂ R ∶= W
(

1

2

(A + A
⋆
)
)
+W

(

1

2

(A − A
⋆
)
)
.

Beweis. Wir zeigen

W(A) ⊂ W
(

1

2

(A + A
⋆
)
)
+W

(

1

2

(A − A
⋆
)
)
.

Sei x ∈ Cn
⧵ {0}, dann folgt

x
⋆
Ax

x
⋆
x

=

x
⋆

[
1

2
(A + A

⋆
) +

1

2
(A − A

⋆
)]x

x
⋆
x

=

1

2

x
⋆
(A + A

⋆
)x

x
⋆
x

+

1

2

x
⋆
(A − A

⋆
)x

x
⋆
x

∈ W
(

1

2

(A + A
⋆
)
)
+W

(

1

2

(A − A
⋆
)
)
. ♠

Beispiel 1.5 Für die Matrix

A =

[

4 0 3

0 −1 1

1 1 0
]

ergeben sich nach (1.1) beziehungsweise (1.2) die folgenden Einschließungen:

Gerschgorin für A

-4 -2 0 2 4 6
-4

-2

0

2

4

Gerschgorin für A⋆

-4 -2 0 2 4 6
-4

-2

0

2

4
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Der symmetrische und schiefsymmetrische Anteil von A ist

H =

1

2

(A + A
⋆
) =

[

4 0 2

0 −1 1

2 1 0
]

, S =

1

2

(A − A
⋆
) =

[

0 0 1

0 0 0

−1 0 0
]

.

Zur Anwendung des Satzes von Bendixson schließen wir die Spektren von H und S

wieder mit dem Satz von Gerschgorin ein, was auf das Rechteck

R = [−3, 6] + [−i, i]

führt. Das Spektrum von A muss im Schnitt aller drei Einschlussmengen liegen:

Einschlussmengen mit Bendixson

-4 -2 0 2 4 6
-4

-2

0

2

4

Schnitt & Spektrum

-4 -2 0 2 4 6
-4

-2

0

2

4

Tatsächlich ist das Spektrum �(A) = {−1.7878, 0.1198, 4.6679}. ♣

1.2 Kondition des Eigenwertproblems

Betrachte

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −a0

1 0 −a1

1 0 −a2

⋱ ⋱ ⋮

1 0 −an−2

1 −an−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
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Entwickelt man die Determinante nach der letzten Spalte, so gilt
(−1)

n
det(A − �I) = �

n
+ an−1�

n−1
+ … + a1� + a0 =∶ p(�).

Definition 1.6 Die Matrix A heißt Frobenius-Begleitmatrix von p(�). Die Eigen-
werte von A sind die Nullstellen von p.

Das spezielle Polynom p0(�) = (� − a)
n hat die n-fache Nullstelle ̂� = a, während

p"(�) = (� − a)
n
+ " für " > 0 die Nullstellen

�k = a − "
1/n
e
i2�k/n

, k = 0, 1, … , n − 1,

besitzt. Die zugehörigen Frobenius-Begleitmatrizen unterscheiden sich nur um " in
der∞, 1, 2 und der Frobeniusnorm-Norm, denn es gilt

�A = A0 − A" =

⎡

⎢

⎢

⎢

⎣

0 ⋯ 0 "

0 ⋯ 0 0

⋮ ⋮ ⋮

0 ⋯ 0 0

⎤

⎥

⎥

⎥

⎦

.

Allerdings haben die Eigenwerte der Begleitmatrizen den Abstand

|��| = |
̂
� − �k | = "

1/n
. (1.3)

Für a ≠ 0 folgt daher

|��|

|�|

=

"
1/n

|a|

=

‖A‖

|a|

"
1/n

"

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

→ ∞ für " → 0

‖�A‖

‖A‖

,

dies bedeutet, die Kondition des Eigenwertproblems kann ohne Zusatzvoraussetzungen
an die Matrix A beliebig groß werden.
Man kann jedoch zeigen, dass die Eigenwerte stetig von den Einträgen der Matrix
abhängen. Der gefundene Exponent 1/n in (1.3) ist schlimmstmöglich.

Definition 1.7 Eine Matrix A heißt diagonalisierbar, falls es eine Basis aus Eigen-
vektoren gibt. Sind (�1, v1), (�2, v2), … , (�n, vn) die Eigenpaare, dann gilt

A = VDV
−1
, V = [v1, v2, … , vn], D = diag(�1, �2, … , �n).

Beachte: In der Regel ist eineMatrix nicht diagonalisierbar. Dann tretenHauptvektoren
und Jordan-Kästchen auf.
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Satz 1.8 (Bauer und Fike) Sei A = VDV
−1 diagonalisierbar und � ein Eigenwert von

A + E. Dann existiert ein Eigenwert �i von A mit

|� − �i| ≤ cond(V)‖E‖.

Hiebei bezeichne ‖ ⋅ ‖ entweder die 1, 2 oder∞-Norm und cond(V) die entsprechende Konditi-
onszahl von V.

Beweis. Falls � ∈ �(A) ist die Behauptung trivial. Andernfalls existiert (�I − A)
−1,

und wir wählen einen Eigenvektor v von A + E zum Eigenwert �. Wir erhalten

Ev = (A + E − A)v = (�I − A)v,

und daher

(�I − A)
−1
Ev = v.

Folglich ist

1 ≤
‖
‖
(�I − A)

−1
E
‖
‖
=
‖
‖
V(�I − D)

−1
V
−1
E
‖
‖

≤ ‖V‖
‖
‖
(�I − D)

−1‖
‖
‖
‖
V
−1‖
‖
‖E‖ = ‖E‖ cond(V)

n

max
i=1

{|� − �i|
−1
}. ♠

Definition 1.9 Eine Matrix A heißt normal, falls gilt AA⋆
= A

⋆
A. Insbesondere

sind normale Matrizen diagonalisierbar mit V−1
= V

⋆.

Bemerkung Hermitesche Matrizen sind normal. �

Korollar 1.10 Sei E eine beliebige Matrix. Ist A normal und � ein Eigenwert von A + E,
dann existiert ein �i ∈ �(A) mit

|� − �i| ≤ ‖E‖2.

Beweis. Falls A normal ist, ist V unitär und daher cond2(V) = 1. ♠

Die “normweise Konditionszahl” des einzelnen Eigenwerts ist also über cond(V)
bestimmt worden, wobei V die Eigenvektormatrix bezeichnet. Eine lokalere Aussage
lässt sich durch Differenzieren bestimmen:
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Lemma 1.11 Sei A ∈ Kn×n und �i ein einfacher Eigenwert zum Rechtseigenvektor vi, das
heißt, Avi = �ivi, und Linkseigenvektor ui, das heißt, u⋆i A = u

⋆

i
�i. Dann besitzt die Matrix

A + "C für genügend kleines |"| > 0 einen einfachen Eigenwert �(") und es gilt

�(") = �i + "

u
⋆

i
Cvi

u
⋆

i
vi

+ O("
2
), " → 0. (1.4)

Beweis. Da der Eigenwert �i einfach ist, folgt aus der Jordanschen Normalform

A = T
[

�i 0

0 B]
T
−1 mit vi = �Te1, ui = �T

−⋆
e1, �, � ≠ 0, (1.5)

dies bedeutet,

u
⋆

i
vi = ��e

⋆

1
T
−1
Te1 = �� ≠ 0. (1.6)

Wir betrachten nun die analytische Funktion

F ∶ Cn+1
× C → Cn+1

, F(v, �, ") =
[

(A + "C − �I)v

v
⋆

i
v − 1 ]

,

für die offensichtlich gilt

F(vi, �i, 0) = 0, M ∶=

)F

)(v, �)

(vi, �i, 0) =
[

A − �iI −vi

v
⋆

i
0 ]

.

Wir zeigen zunächst, dass die MatrixM ∈ C(n+1)×(n+1) invertierbar ist. Dies folgt, wenn
das Gleichungssystem

M
[

v

�]
=
[

Av − �iv − �vi

v
⋆

i
v ]

= 0

nur die Lösung v = 0 und � = 0 besitzt. Multiplizieren wir die erste Gleichung von
links mit u⋆

i
, dann folgt

u
⋆

i
Av

⏟⏞⏞⏞⏟⏞⏞⏞⏟

=�iu
⋆

i
v

−�iu
⋆

i
v − �u

⋆

i
vi = −�u

⋆

i
vi = 0,

was wegen (1.6) � = 0 impliziert und weiter Av = �iv. Folglich ist v ein Vielfaches
von vi und wegen der zweiten Gleichung gilt v = 0.
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DaM invertierbar ist, kann nach dem Satz über implizite Funktionen F = 0 in einer
Umgebung von (vi, �i, 0) eindeutig aufgelöst werden. Für hinreichend kleines " gibt es
demnach eindeutige analyische Funktionen v(") und �(") mit

v(0) = vi, �(0) = �i, und (A + "C − �(")I)v(") = 0, v
⋆

i
v(") = 1.

Offensichtlich ist v(") nicht Null und somit ein Eigenvektor von A+ "C. Differenziert
man (A + "C − �(")I)v(") = 0 nach " und setzt " = 0, dann ergibt sich

(C − �
′
(0)I)vi + (A − �iI)v

′
(0) = 0.

Multiplikation von links mit u⋆
i
liefert

u
⋆

i
Cvi − �

′
(0)u

⋆

i
vi = 0

und daraus �′(0) wie behauptet. ♠

Korollar 1.12 Sei A ∈ Kn×n und �i ein einfacher Eigenwert zum Rechtseigenvektor vi und
Linkseigenvektor ui. Dann ist die Kondition der Berechnung dieses Eigenwerts

�abs(�i) =
1

|
|
cos (∢(ui, vi))

|
|

, �rel(�i) =
‖A‖2

|
|
�i cos (∢(ui, vi))

|
|

.

Beweis. Aus (1.4) ergibt sich für die absolute Kondition

�abs(�i) = sup

C∈Kn×n

‖C‖2=1

u
⋆

i
Cvi

u
⋆

i
vi

=

‖ui‖2‖vi‖2

‖ui‖2‖vi‖2
|
|
cos (∢(ui, vi))

|
|

=

1

|
|
cos (∢(ui, vi))

|
|

,

woraus für die relative Kondition folgt

�rel(�i) =
‖A‖2

|
|
�i cos (∢(ui, vi))

|
|

. ♠

Bemerkung Die Kondition wird demnach groß, wenn u
⋆

i
vi ≈ 0. Bei normalen

Matrizen fallen Rechts- und Linkseigenvektor zusammen, weshalb sich hier �abs(�i) = 1

ergibt. Offensichtlich ist dann auch die relative Kondition durch

�rel(�i) =
�| max |

|�i|

.

gegben und damit fast 1 für betragsmässig grosse Eigenwerte; kann aber für betragsmässig
kleine Eigenwerte gross werden. �
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1.3 Potenzmethode

Als konstruktives Verfahren zur näherungsweisen Bestimmung einzelner Eigenwerte
und Eigenvektoren betrachten wir die Potenzmethode oder von Mises-Verfahren. Um die
Ideen des Verfahrens so klar wie möglich herauszustellen, beschränken wir uns grund-
sätzlich im folgenden auf reelle, diagonalisierbare Matrizen A ≠ 0 mit n betragsmäßig
verschiedenen Eigenwerten

|�1| > |�2| > … > |�n| ≥ 0 (beachte: alle �i ∈ R).

Alle Ergebnisse können mit entsprechendem technischen Aufwand auf den allgemeinen
Fall übertragen werden. Sind v1, v2, … , vn mit ‖vi‖ = 1 die zugehörigen Eigenvektoren
von A, dann gibt es für jeden Vektor x ∈ Rn eine Entwicklung

x =

n

∑

i=1

�ivi, (1.7)

und folglich ist

A
k
x =

n

∑

i=1

�
k

i
�ivi. (1.8)

Die Potenzmethode beruht nun auf der asymptotischen Identität

A
k
x ≈ �

k

1
�1v1.

Algorithmus 1.13 (von Mises-Potenzmethode)
input: Matrix A ∈ Kn×n und Startvektor x ∈ Kn

output: Folge von Iterierten {zk}k≥0
À Initialisierung: setze z0 ∶= x und k ∶= 0

Á berechne

z̃k+1 ∶= Azk , zk+1 ∶=

z̃k+1

‖̃zk+1‖

(1.9)

Â erhöhe k ∶= k + 1 und gehe nach Á

Die Potenzmethode besitzt die folgenden Eigenschaften:
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Satz 1.14 Ist �1 ≠ 0 in (1.7), dann gilt mit q ∶= |�2/�1| < 1:

1. Es ist

‖̃zk‖ = |�1| + O(q
k
), k → ∞.

2. Ist �1 > 0, dann gilt

‖zk − sign(�1)v1‖ = O(q
k
), k → ∞.

3. Ist �1 < 0, dann gilt

‖(−1)
k+1

zk − sign(�1)v1‖ = O(q
k
), k → ∞.

Beweis. Aus (1.8) folgt

A
k
x = �

k

1
�1
(
v1 +

n

∑

i=2

[

�i

�1 ]

k

�i

�1

vi

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶wk

)
(1.10)

mit

‖wk‖ ≤ q
k

n

∑

i=2

|
|
|
|

�i

�1

|
|
|
|

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=∶C

= Cq
k
.

Damit ist

zk+1 =

A
k
x

‖A
k
x‖

= sign(�
k

1
�1)

v1 + wk

‖v1 + wk‖

. (1.11)

Wegen

1 − Cq
k
≤ ‖v1‖ − ‖wk‖ ≤ ‖v1 + wk‖ ≤ ‖v1‖ + ‖wk‖ ≤ 1 + Cq

k

folgt also

zk = sign(�
k−1

1
�1) v1 + O(q

k
), k → ∞,

und
z̃k+1 = Azk = �1 sign(�

k−1

1
�1) v1 + O(q

k
), k → ∞.

Hiervon lassen sich die Eigenschaften 1–3 leicht ablesen. ♠
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Bemerkungen

1. Die Normierung z̃k ↦ zk in (1.9) ist notwendig, um overflow/underflow zu
vermeiden. Die Wahl der Norm ist dabei unerheblich.

2. Aus Eigenschaft 1 ergibt sich |�1|, aus dem Vorzeichenverhalten von zk das Vor-
zeichen von �1: alternieren die Vorzeichen von zk , dann folgt �1 < 0, ansonsten
ist �1 > 0.

3. Die Voraussetzung �1 ≠ 0 kann natürlich nicht a priori überprüft werden. Wegen
Rundungsfehlereinflüssen wird jedoch in der Regel eine Komponente von zk

längs v1 im Verlauf der Iteration eingeschleppt. �

Varianten: Die Potenzmethode kann in dieser Form nur verwendet werden, um �1 zu
bestimmen. Zur Berechnung anderer Eigenwerte von A kann man jedoch A zunächst
geeignet transformieren:

1. Gilt �n ≠ 0, so kann man A−1 statt A in (1.9) verwenden. Dies ist dann die inverse
Iteration. Da A−1 die Eigenwerte

|�
−1

n
| > |�

−1

n−1
| > … > |�

−1

1
|

mit den gleichen Eigenvektoren besitzt, approximiert die inverse Iteration |�−1
n
|

und den entsprechenden Eigenvektor vn.

2. Bei der gebrochenen Iteration von Wielandt verwendet man (A − �I)
−1 statt A in

(1.9), � ∉ �(A). Die Matrix (A − �I)
−1 besitzt die Eigenwerte {(�j − �)

−1
}
n

j=1

und die gebrochene Iteration approximiert den Eigenvektor zu �i ∈ �(A), der
am nächsten zu � liegt.

Bemerkungen

1. Bei beiden Varianten muss ein lineares Gleichungssystem pro Schritt gelöst wer-
den!

2. Ist �i der nächste Eigenwert zu �, dann konvergiert die gebrochene Iteration
umso schneller, je näher � ist, da der Konvergenzfaktor

q = max
j≠i

|�j − �|
−1

|�i − �|
−1

= max
j≠i

|�i − �|

|�j − �|

dann am kleinsten ist. �
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Ist A = A
ᵀ reell symmetrisch (oder aber auch A = A

⋆ komplex hermitesch) und
‖ ⋅ ‖ = ‖ ⋅ ‖2, dann kann man die Näherung ‖̃zk‖ ≈ |�1| verbessern, indem man statt dessen
die Näherung

�1 ≈

z
⋆

k
Azk

z
⋆

k
zk

⏟⏞⏞⏟⏞⏞⏟

=1

= z
⋆

k
Azk = z

⋆

k
z̃k+1 (1.12)

verwendet.

Satz 1.15 Ist A = A
⋆, dann gilt

|
|
�1 − z

⋆

k
z̃k+1

|
|
= O(q

2k
), k → ∞.

Beweis. Der Beweis verwendet, dass wk aus (1.10) senkrecht auf v1 steht. Mit


k ∶= sign(�
k−1

1
�1) ‖v1 + wk−1‖2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥1

−1

folgt aus (1.11) nämlich

(�1I − A)zk = 
k(�1I − A)wk−1 ⟂ v1.

In Anbetracht von z⋆
k
= 
kv

⋆

1
+ 
kw

⋆

k−1
und |
k | ≤ 1 bedeutet dies

|z
⋆

k
(�1I − A)zk
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⟂v1

| = 

2

k
|w

⋆

k−1
(�1I − A)wk−1| ≤ ‖�1I − A‖2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤2‖A‖

‖wk−1‖
2

2
.

Wegen

�1 − z
⋆

k
z̃k+1 = �1z

⋆

k
zk − z

⋆

k
z̃k+1 = z

⋆

k
(�1zk − z̃k+1) = z

⋆

k
(�1I − A)zk

ergibt sich daher

|�1 − z
⋆

k
z̃k+1| ≤ 2‖A‖2‖wk−1‖

2

2
= O(q

2k
), k → ∞. ♠
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Entsprechend kann man für “innere” Eigenwerte verfahren:

Algorithmus 1.16 (Rayleigh-�otient-Iteration)
input: Matrix A ∈ Kn×n und Näherungseigenpaar (�0, z0) mit ‖z0‖2 = 1

(bestimmt etwa durch Potenzmethode)
output: Folge von Iterierten {(�k , zk)}k>0
À setze k ∶= 0

Á berechne

�k+1 ∶= z
⋆

k
Azk , z̃k+1 ∶= (�k+1I − A)

−1
zk , zk+1 ∶=

z̃k+1

‖̃zk+1‖2

Â erhöhe k ∶= k + 1 und gehe nach Á

Bemerkung Die Iteration bricht man ab, wenn ‖̃zk+1‖2 sehr groß wird, was ein
Zeichen dafür ist, dass �k+1I − A fast singulär ist. �

Nach obiger Konvergenzdiskussion wird man vermuten, dass die Konvergenz die-
ses Algorithmus superlinear ist. Tatsächlich ist die Konvergenz sogar lokal kubisch,
vorausgesetzt es gilt A = A

⋆.

Satz 1.17 Sei A = A
⋆ und (�0, z0) eine hinreichend gute Näherung an ein Eigenpaar (�, v)

von A (‖v‖2 = ‖z0‖2 = 1). Dann konvergiert �k aus der Rayleigh-Quotient-Iteration lokal
kubisch gegen �, das heißt, es existiert ein C > 0 mit

|� − �k+1| ≤ C|� − �k |
3
, k = 0, 1, 2, … .

Beweis. Im weiteren bezeichne ̂� denjenigen Eigenwert von A, der am nächsten an �
ist. Ferner zerlegen wir

zk−1 = xk−1 + yk−1 mit Axk−1 = �xk−1, xk−1 ⟂ yk−1 (1.13)

in seinen Anteil xk−1 im Eigenraum zu � und den Anteil yk−1 in den anderen Eigen-
räumen. Wir präzisieren die “Nähebedingung” wie folgt:

‖yk−1‖2 ≤

1

2

‖zk−1‖2 =

1

2

, (1.14)

|� − �k | ≤

1

3

|� −
̂
�| =

1

3

min

̃
�∈�(A)⧵{�}

|� −
̃
�|. (1.15)
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In diesem Fall gilt für jedes ̃� ∈ �(A) ⧵ {�}

|�k −
̃
�| = |�k − � + � −

̃
�| ≥ |� −

̃
�| − |� − �k | ≥

2

3

|� −
̃
�|. (1.16)

Es gilt

|� − �k+1| = |� − z
⋆

k
Azk | = |z

⋆

k
(�I − A)zk | =

|̃z
⋆

k
(�I − A)̃zk |

‖̃zk‖
2

2

, (1.17)

und Einsetzen von z̃k = (�kI − A)
−1
zk−1 ergibt

|� − �k+1| =

|
|
|
|

z
⋆

k−1
(�kI − A)

−2
(�I − A)zk−1

z
⋆

k−1
(�kI − A)

−2
zk−1

|
|
|
|

. (1.18)

Wegen (1.13) gilt auch (�kI − A)
−2
xk−1 = (�k − �)

−2
xk−1 ⟂ yk−1, und daher folgt

z
⋆

k−1
(�kI − A)

−2
zk−1 =

1

(�k − �)
2
‖xk−1‖

2

2
+ y

⋆

k−1
(�kI − A)

−2
yk−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0

≥

1

(�k − �)
2
‖xk−1‖

2

2

(1.14)
≥

1

4(�k − �)
2
.

Andererseits ist

|z
⋆

k−1
(�kI − A)

−2
(�I − A)zk−1| = |z

⋆

k−1
(�kI − A)

−2
(�I − A)yk−1|

Ortho-
gonalität
= |y

⋆

k−1
(�kI − A)

−2
(�I − A)yk−1|

≤ max

̃
�∈�(A)⧵{�}

1

(�k −
̃
�)

2

|y
⋆

k−1
(�I − A)yk−1|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=|z
⋆

k−1
(�I−A)zk−1 |, da (�I−A)xk−1=0

(1.16)
≤

(

3

2)

2

1

(� −
̂
�)

2

|z
⋆

k−1
(�I − A)zk−1|

(1.17)
=

9

4

1

(� −
̂
�)

2

|� − �k |.

Im Hinblick auf (1.18) ergibt sich daher

|� − �k+1| ≤

9

4

|� − �k |

(� −
̂
�)

2

⋅ 4(� − �k)
2
= 9

1

(� −
̂
�)

2

|� − �k |
3
,

dies ist die kubische Konvergenzrate.
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Wir müssen nur noch zeigen, dass die Iterierte (�k+1, zk) wieder den Abschätzungen
(1.14) und (1.15) genügt. Die Bedingung (1.15) folgt aus

|� − �k+1| ≤

9

(� −
̂
�)

2

(� −
̂
�)

2

9

|� − �k | = |� − �k |

(1.15)
≤

1

3

|� −
̂
�|.

Ferner folgt (1.14) aus

z̃k = (�kI − A)
−1
zk−1 =

1

�k − �

xk−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=x̃k

+ (�kI − A)
−1
yk−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=ỹk

,

da wegen

‖ỹk‖2 = ‖(�kI − A)
−1
yk−1‖2

(1.16)
≤

3

2

1

|� −
̂
�|

‖yk−1‖2

(1.15)
≤

1

2

1

|� − �k |

‖yk−1‖2

der Anteil von ‖yk‖2 an ‖zk‖2 sogar noch kleiner ist als der von ‖yk−1‖2 an ‖zk−1‖2. ♠

Bemerkung Die Rayleigh-Quotient-Iteration kann auch bei nichtsymmetrischen
Matrizen eingesetzt werden. Die Konvergenz ist dann lokal quadratisch. �

1.4 QR-Zerlegung

Im folgenden sei A ∈ Rm×n, m ≥ n, eine gegebene Matrix mit rangA = n. Die
Grundidee der QR-Zerlegung ist eine Faktorisierung A = QR in eine rechte obere
Dreiecksmatrix R ∈ Rm×n und eine orthogonale Matrix Q ∈ Rm×m.

Definition 1.18 Eine Matrix Q ∈ Rn×n heißt orthogonal, falls

Q
ᵀ
Q = I,

das heißt, falls die Spalten von Q eine Orthonormalbasis bilden.

Eigenscha�en orthogonaler Matrizen:

1. Wegen

‖Qx‖
2

2
= (Qx)

ᵀ
Qx = x

ᵀ
Q

ᵀ
Qx = x

ᵀ
Ix = x

ᵀ
x = ‖x‖

2

2

gilt ‖Qx‖2 = ‖x‖2 für alle x ∈ Rn.
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2. Es gilt cond2(Q) = 1, da

‖Q‖2 = max

‖x‖2=1

‖Qx‖2 = 1 und ‖Q
−1
‖2 = ‖Q

ᵀ
‖2 = ‖Q‖2 = 1.

3. Mit P,Q ∈ Rn×n orthogonal ist auch PQ orthogonal, da

(PQ)
ᵀ
PQ = Q

ᵀ
P
ᵀ
PQ = Q

ᵀ
IQ = Q

ᵀ
Q = I.

Definition 1.19 Sei v ∈ Rn
⧵ {0}. Die Matrix

P = I −

2

‖v‖
2

2

vv
ᵀ
∈ Rn×n

heißt Householder-Transformation.

Lemma 1.20 P ist eine symmetrische, orthogonale Matrix und es gilt

Pv = −v und Pw = w

für alle w ∈ Rn mit w ⟂ v.

Beweis. Aus der Definition von P folgt unmittelbar, dass P symmetrisch ist. Weiter
gilt

P
ᵀ
P = P

2
=
(
I −

2

‖v‖
2

2

vv
ᵀ

)(
I −

2

‖v‖
2

2

vv
ᵀ

)

= I −

4

‖v‖
2

2

vv
ᵀ
+

4

‖v‖
4

2

v v
ᵀ
v

⏟⏞⏟⏞⏟

=‖v‖
2

2

v
ᵀ

= I −

4

‖v‖
2

2

vv
ᵀ
+

4

‖v‖
2

2

vv
ᵀ
= I.

Außerdem ergibt sich für den Vektor v aus der Definition von P

Pv = Iv −

2

‖v‖
2

2

v v
ᵀ
v

⏟⏞⏟⏞⏟

=‖v‖
2

2

= v − 2v = −v

und für beliebiges w ⟂ v

Pw = Iw −

2

‖v‖
2

2

v v
ᵀ
w

⏟⏞⏞⏟⏞⏞⏟

=0

= w. ♠
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0

v

Pv

x

Px

w = Pw

Householder-Transformationen sind Spiegelungen!

Eine QR-Zerlegung kann erzeugt werden, indem man schrittweise die Matrix A durch
Multiplikation mit geeigneten Householder-Transformationen Q1, Q2, … , Qn auf rech-
te obere Dreicksgestalt bringt. Das nächste Lemma erlaubt uns, solche Householder-
Transformationen zu konstruieren, indem es für jedes x ∈ Rn

⧵ {0} eine Householder-
Transformation Q angibt, so dass

Qx = �e1 mit � ∈ R ⧵ {0}.

Lemma 1.21 Gegeben sei x ∈ Rn
⧵ {0}. Für x ∉ span{e1} und

v = x + �e1 mit � = ±

{

sign(x1)‖x‖2, falls x1 ≠ 0,

‖x‖2, falls x1 = 0,

(1.19)

oder x ∈ span{e1} mit � = sign(x1)‖x‖2 gilt

(
I −

2

‖v‖
2

2

vv
ᵀ

)
x = −�e1.

Beweis. In beiden Fällen, x ∉ span{e1} oder x ∈ span{e1}, ist v ≠ 0. Weiter gilt
‖x + �e1‖

2

2
= ‖x‖

2

2
+ 2�x

ᵀ
e1 + �

2
= 2(x + �e1)

ᵀ
x.

Daraus erhält man
2v

ᵀ
x = 2(x + �e1)

ᵀ
x = ‖x + �e1‖

2

2
= ‖v‖

2

2
,

was zusammen mit (1.19) die Darstellung
2

‖v‖
2

2

v(v
ᵀ
x) = x + �e1

liefert. Dies impliziert die Behauptung. ♠
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Bemerkung Damit im Fall x ∉ span{e1}mit x1 ≠ 0 bei der Berechnung von v keine
Auslöschung auftritt, wählen wir � mit dem oberen Vorzeichen, das heißt

v = x +

x1

|x1|

‖x‖2e1, ‖v‖
2

2
= 2‖x‖

2

2
+ 2|x1|‖x‖2. (1.20)

�

Satz 1.22 Sei A ∈ Rm×n mit rang(A) = n (also m ≥ n). Dann existiert eine orthogonale
Matrix Q ∈ Rm×m und eine obere Dreiecksmatrix R ∈ Rm×n mit

A = Q ⋅ R = Q ⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⋆ ⋯ ⋆

⋱ ⋮

⋆

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

n

⌉

n

⌋

⌉

m − n

⌋

.

Beweis. Wir bestimmen die gesuchte Zerlegung, indem wir in jedem Schritt eine
Householder-Transformation an A heranmultiplizieren, um sukzessive die Spalten von
1 bis n von R zu erhalten:

QnQn−1 ⋯Q1A = R. (1.21)

Wegen der Symmetrie der Qi, 1 ≤ i < n, ist Q dann gegeben durch

Q = Q1Q2 ⋯Qn.

Im ersten Schritt setzen wir A1 ∶= A und x = a1 (erste Spalte von A1) und bestimmen
die Householder-Transformation Q1 ∈ Rm×m gemäß (1.20). Es folgt

Q1a1 = r1,1e1 mit |r1,1| = ‖a1‖2 ≠ 0,

beziehungsweise

Q1A1 =

⎡

⎢

⎢

⎣

r1,1 r1

0 A2

⎤

⎥

⎥

⎦

, A2 ∈ R(m−1)×(n−1)
, r

ᵀ
1
∈ Rn−1

.
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Im nächsten Schritt setzen wir x = a2 ∈ Rm−1 (erste Spalte von A2) und wählen
wiederum die Householder-Matrix Q̃2 ∈ R(m−1)×(m−1) gemäß (1.20). Wir erhalten

Q̃2A2 =

⎡

⎢

⎢

⎣

r2,2 r2

0 A3

⎤

⎥

⎥

⎦

, |r2,2| = ‖a2‖2 ≠ 0, A3 ∈ R(m−2)×(n−2)
, r

ᵀ
2
∈ Rn−2

,

beziehungsweise

⎡

⎢

⎢

⎣

1 0

0 Q̃2

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶Q2

Q1A =

[

r1,1 r1

0 Q̃2A2
]

=

⎡

⎢

⎢

⎢

⎢

⎣

r1,1 r1

r2,2 r2

0 0 A3

⎤

⎥

⎥

⎥

⎥

⎦

.

Die erste Zeile r1 verändert sich nicht mehr. Die Matrix Q2 kann ebenfalls als (m × m)-
Householder-Transformation aufgefasst werden mit v = [

0

ṽ ]
.

Auf dieseWeise erhalten wir sukzessive die gewünschte Zerlegung (1.21). Man beachte,
dass |ri,i| = ‖ai‖2 (1 ≤ i ≤ n) immer von Null verschieden ist, da ansonsten Ai und damit
auch A einen Rangdefekt hätte. ♠

Bemerkungen

1. Bei der Implementierung ist darauf zu achten, dass Householder-Transforma-
tionen P niemals explizit gebildet werden, denn sonst kostet die Berechnung P ⋅ A
m

2
nMultiplikationen. Besser ist

PA = A −

2

‖v‖
2

2

v v
ᵀ
A

⏟⏞⏞⏟⏞⏞⏟

=w
ᵀ

= A −

2

‖v‖
2

2

vw
ᵀ
, w = A

ᵀ
v

mitO(mn)Multiplikationen. Wenn man P später verwenden will, speichert man
den Vektor v ab.

2. Die während der QR-Zerlegung anfallenden Vektoren

vi = [0, … , 0, 1, vi,i+1, … , vi,m]
ᵀ

lassen sich analog zur LR-Zerlegung wieder in der freiwerdenden linken unteren
Dreiecksmatrix von A speichern. Die Matrix Q ist dann wie folgt gegeben

Q =

n

∏

i=1

(
I −

2

‖vi‖
2

2

viv
ᵀ
i
)
. �
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Algorithmus 1.23
input: Matrix A ∈ Rm×n

output: Zerlegung A = QR mit einer orthogonalen Matrix Q ∈ Rm×m und einer
rechten oberen Dreiecksmatrix R ∈ Rm×n

À Initialisierung: setze A1 ∶= A und i ∶= 1

Á mit Hilfe der ersten Spalte x von Ai berechne

vi ∶= x +

x1

|x1|

‖x‖2e1

Â setze gemäß (1.20)

�i ∶=

2

‖v‖
2

2

=

1

‖x‖
2

2
+ |x1|‖x‖2

Ã berechne wi ∶= �iA
ᵀ
i
vi

Ä ersetze Ai durch Ai − viw
ᵀ
i

Å erhalte Ai+1 aus Ai durch Streichen der ersten Zeile und Spalte

Æ falls i < n erhöhe i ∶= i + 1 und gehe nach Á

Aufwand: Wir bilanzieren den Aufwand im i-ten Schritt. Wie man leicht einsieht
benutzt der i-te Schritt:

vi: m − i + 3Multiplikationen
�i: 2Multiplikationen
wi: (m − i + 2)(n − i + 1)Multiplikationen
Ai: (m − i)(n − i + 1)Multiplikationen

≈ 2(m − i + 1)(n − i + 1)Multiplikationen

Es ist weiter einfach einzusehen, dass pro Addition auch mindestens eine Multiplikation
stattfindet, und auch, dass jeweils im i-ten Schritt nur eine skalare Inverse berechnet
werdenmuss.Wir beschränken uns daher auf den Gesamtaufwand derMultiplikationen.



1.4 QR-Zerlegung 27

Für den Gesamtaufwand ergibt sich daher nun

2

n

∑

i=1

(m − i + 1)(n − i + 1)
j∶=n−i+1

= 2

n

∑

j=1

j(m − n + j)

= 2

n

∑

j=1

j
2
+ 2(m − n)

n

∑

j=1

j

=

2

3

n
3
+ (m − n)n

2
+ O(mn)

= mn
2
−

1

3

n
3
+ O(mn),

dies bedeutet dass der Aufwand etwa doppelt so hoch ist wie bei der LR-Zerlegung.
Die QR-Zerlegung kann wie die LR-Zerlegung zur Lösung eines nichtsingulären
linearen Gleichungssystems Ax = b (also m = n) verwendet werden. Dies geschieht in
folgender Weise: Zerlege A = QR, und löse QRx = b durch Rückwärtssubstitution

Rx = Q
ᵀ
b

⏟⏞⏞⏟⏞⏞⏟

O(n
2
)Operationen

.

Bemerkung Die QR-Zerlegung gehört zu den “stabilsten” Algorithmen in der nu-
merischen linearen Algebra. Der Grund dafür ist, dass Orthogonaltransformationen
keine Fehlerverstärkung bringen, da cond2(Q) = 1. Die abschließende Rückwärtssub-
stitution hat die gleiche Kondition wie das Ausgangsproblem, da wegen ‖Qx‖2 = ‖x‖2

folgt

‖A‖2‖A
−1
‖2 =

(
max

‖x‖2=1

‖Ax‖2
)(

max

‖x‖2

‖A
−1
x‖2

)

=
(
max

‖x‖2=1

‖QRx‖2
)(

max

‖x‖2=1

‖R
−1
Q

ᵀ
x‖2

)

=
(
max

‖x‖2=1

‖Rx‖2
)(

max

‖y‖2=1

‖R
−1
y‖2

)

= ‖R‖2‖R
−1
‖2,

das heißt
cond2(R) = cond2(A). �

Beispiel 1.24 Gesucht ist die QR-Zerlegung von

A = A1 =

[

1 −11/2

−2 0

2 −1
]

.



28 1 Eigenwerte

Die erste Spalte von A ist

a1 =

[

1

−2

2
]

, ‖a1‖2 =

√

1 + 4 + 4 = 3.

Also ist

v1 = a1 + sign(a1,1)‖a1‖2e1 =

[

1

−2

2
]

+ 3

[

1

0

0
]

=

[

4

−2

2
]

.

Somit folgt

�1 =

1

‖a1‖
2

2
+ |a1,1|‖a1‖2

=

1

12

woraus sich

w1 = �A
ᵀ
1
v1 =

1

12 [

1 −2 2

−11/2 0 −1] [

4

−2

2
]

=
[

1

−2]

ergibt. Dies bedeutet

Q1A1 = A1 − v1w
ᵀ
1
=

[

1 −11/2

−2 0

2 −1
]

−

[

4 −8

−2 4

2 −4
]

=

[

−3 5/2

0 −4

0 3
]

.

Die erste Spalte stimmt dabeimit−�e1 überein, sowar dieHouseholder-Transformation
schließlich konstruiert. Sie ist übrigens gegeben durch

Q1 = I − �v1v
ᵀ
1
=

1

3 [

−1 2 −2

2 2 1

−2 1 2
]

.

Nun ist

A2 = a2 =
[

−4

3 ]
, ‖a2‖2 =

√

16 + 9 = 5.

Mit

v2 = a2 + sign(a2,1)‖a2‖2e1 =
[

−4

3 ]
− 5

[

1

0]
=
[

−9

3 ]
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und

�2 =

1

‖a2‖
2

2
+ |a2,1|‖a2‖2

=

1

45

folgt

w2 = �A
ᵀ
2
v2 =

1

45
[−4 3]

[

−9

3 ]
= [1] .

Damit ergibt sich

Q̃2A2 = A2 − v2w
ᵀ
2
=
[

−4

3 ]
−
[

−9

3 ]
=
[

5

0]
.

Dabei hat die Matrix Q2 die Form

Q2 =

[

1 0

0 I − �v2v
ᵀ
2

]

=

1

5 [

5 0 0

0 −4 3

0 3 4
]

.

Für Q erhalten wir schließlich

Q = Q1Q2 =

1

15 [

−1 2 −2

2 2 −1

−2 1 2
] [

5 0 0

0 −4 3

0 3 4
]

=

1

15 [

−5 −14 −2

10 −5 10

−10 2 11
]

,

während R gegeben ist durch

R =

[

−3 5/2

0 5

0 0
]

. ♣

Bemerkung Algorithmus 1.23 bricht zusammen, wenn rang(A) = p < n. In diesem
Fall muss man Spalten von A permutieren (ähnlich zur Pivotsuche) und erhält eine
Faktorisierung der Art

Q
ᵀ
AP =

[

R1 R2

0 0 ]

mit einer Permutationsmatrix P ∈ Rn×n, einer oberen Dreiecksmatrix R1 ∈ Rp×p, und
einer eventuell vollbesetzten Matrix R2 ∈ Rp×(n−p). �



30 1 Eigenwerte

1.5 QR-Verfahren

Das QR-Verfahren ist das in der Praxis eingesetzte Verfahren, wenn alle Eigenwerte
benötigt werden. Das Verfahren an sich ist sehr einfach:

Algorithmus 1.25 (QR-Verfahren)
input: Matrix A ∈ Kn×n

output: Folge von Iterierten {Ak}k≥0

À setze A0 ∶= A und k ∶= 0

Á berechne die QR-Zerlegung

Ak = QkRk (1.22)

und setze

Ak+1 ∶= RkQk (1.23)

Â erhöhe k ∶= k + 1 und gehe nach Á

Lemma 1.26 Die Matrizen Ak aus Algorithmus 1.25 besitzen folgende Eigenschaften:

1. Ak+1 = Q
ᵀ
k
AkQk

2. Ak+1 = (Q0Q1 ⋯Qk)
ᵀ
A(Q0Q1 ⋯Qk)

3. Ak+1
= (Q0Q1 ⋯Qk)(RkRk−1 ⋯R0)

Beweis.

1. Mit (1.22) und (1.23) ergibt sich

Ak+1 = RkQk = Q
ᵀ
k
QkRkQk = Q

ᵀ
k
(QkRk)Qk = Q

ᵀ
k
AkQk .

2. Die Behauptung ergibt sich sofort aus der ersten Aussage wegen A0 = A.

3. Für k = 0 entspricht die Aussage genau (1.22). Der Induktionsschritt k ↦ k + 1

folgt nun aus

Qk+1Rk+1 = Ak+1 = (Q0Q1 ⋯Qk)
ᵀ
A(Q0Q1 ⋯Qk)
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zusammen mit der Induktionsannahme

(Q0 ⋯Qk Qk+1)(Rk+1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=Ak+1

Rk ⋯R0) = A (Q0Q1 ⋯Qk)(RkRk−1 ⋯R0)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=A
k+1

= A
k+2

.

♠

Bemerkungen

1. Wegen der ersten Aussage von Lemma 1.26 sind alle Matrizen Ak ähnlich zuein-
ander und besitzen daher dieselben Eigenwerte.

2. Anstelle der QR-Zerlegung kann man auch eine LR-Zerlegung verwenden: be-
rechne in (1.22) die LR-Zerlegung Ak = LkRk und setze in (1.23) Ak+1 ∶= RkLk .
Dies ist das LR-Verfahren, das jedoch instabil ist. �

Die Konvergenz des QR-Verfahrens zeigen wir nur für den einfachen Fall, dass A
diagonalisierbar ist mit betragsmäßig verschiedenen Eigenwerten.

Satz 1.27 Sei A = VDV
−1

∈ Rn×n reell diagonalisierbar mit betragsmäßig verschiedenen
Eigenwerten

|�1| > |�2| > … > |�n| > 0, D = diag(�1, �2, … , �n)

und V = [v1, v2, … , vn] die zugehörige Eigenvektormatrix. Existiert eine LR-Zerlegung
von V

−1, dann sind die Matrizen Ak asymptotisch rechte, obere Dreiecksmatrizen und ihr
Diagonalanteil diag(Ak) konvergiert für k → ∞ mindestens linear gegen D.

Beweis. Die dritte Aussage aus Lemma 1.26 liefert die QR-Zerlegung von Ak ,

A
k
= (Q0Q1 ⋯Qk−1)(Rk−1Rk−2 ⋯R0).

Andererseits ist wegen der Existenz der LR-Zerlegung von V−1
= LU

A
k
= (VDV

−1
)
k
= VD

k
V
−1

= VD
k
LU = (VD

k
LD

−k

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶Bk

)D
k
U = BkD

k
U. (1.24)

Die Matrix Bk ist regulär und besitzt eine QR-Zerlegung Bk = PkSk mit einer inver-
tierbaren oberen Dreiecksmatrix Sk. Damit ist

A
k
= Pk( SkD

k
U

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

rechte, obere
Dreiecksmatrix

)
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eine weitere QR-Zerlegung von Ak . Wegen der Eindeutigkeit der QR-Zerlegung folgt

Q0Q1 ⋯Qk−1 = PkT
ᵀ
k
, Rk−1Rk−2 ⋯R0 = TkSkD

k
U (1.25)

für eine Diagonalmatrix Tk mit den Einträgen ±1. Wegen

Qk = (Q0Q1 ⋯Qk−1)
−1
(Q0Q1 ⋯Qk)

(1.25)
= TkP

ᵀ
k
Pk+1T

ᵀ
k+1

und

Rk = (RkRk−1 ⋯R0)(Rk−1Rk−2 ⋯R0)
−1

(1.25)
= Tk+1Sk+1D

k+1
UU

−1
D

−k
S
−1

k
T
ᵀ
k

= Tk+1Sk+1DS
−1

k
T
ᵀ
k

ergibt sich aus (1.22)

Ak = QkRk = TkP
ᵀ
k
Pk+1T

ᵀ
k+1

Tk+1Sk+1DS
−1

k
T
ᵀ
k

= TkSk S
−1

k
P
ᵀ
k

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=B
−1

k

Pk+1Sk+1
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=Bk+1

DS
−1

k
T
ᵀ
k

= TkSkB
−1

k
Bk+1DS

−1

k
T
ᵀ
k
. (1.26)

Bezeichnen wir mit �i,j die Einträge von L, dann ist insbesondere �i,i = 1 und aus der
Anordnung der Eigenwerte in D ergibt sich

[D
k
LD

−k
]i,j = �

k

i
�i,j�

−k

j
=

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

0, falls i < j,

1, falls i = j,

O
(

|
|

�i

�j

|
|

k

)
, falls i > j.

(1.27)

Setzen wir q ∶= maxi>j {|�i/�j |} < 1, so folgt (vgl. (1.24)) hieraus

Bk = VD
k
LD

−k
= V + Ek mit ‖Ek‖2 = O(q

k
), k → ∞.

Demzufolge erhalten wir

B
−1

k
Bk+1 = (V + Ek)

−1
(V + Ek+1) = I + Fk mit ‖Fk‖2 = O(q

k
), k → ∞

und eingesetzt in (1.26) ergibt sich

Ak = TkSkDS
−1

k
T
ᵀ
k
+ TkSkFkDS

−1

k
T
ᵀ
k
.
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Da Pk und Tk orthogonale Matrizen sind, lässt sich der zweite Term abschätzen gemäß

‖TkSkFkDS
−1

k
T
ᵀ
k
‖2 ≤ ‖Tk‖2

⏟⏞⏞⏞⏟⏞⏞⏞⏟

=1

‖Sk‖2
⏟⏞⏞⏟⏞⏞⏟

=‖P
ᵀ
k
Bk‖2=‖Bk‖2

‖Fk‖2 ‖D‖2
⏟⏞⏞⏟⏞⏞⏟

=|�1 |

‖S
−1

k
‖2

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=‖B
−1

k
Pk‖2=‖B

−1

k
‖2

‖T
ᵀ
k
‖2

⏟⏞⏞⏞⏟⏞⏞⏞⏟

=1

≤ cond2(Bk)|�1|‖Fk‖2 = O(q
k
).

Die Matrix Ak konvergiert also wegen

‖Ak − TkSkDS
−1

k
T
ᵀ
k
‖2 = ‖TkSkFkDS

−1

k
T
ᵀ
k
‖2 = O(q

k
), k → ∞

mindestens linear gegen eine obere Dreiecksmatrix und es gilt

diag (Ak − TkSkDS
−1

k
T
ᵀ
k )

= diag(Ak) − Tk diag(Sk)D diag(Sk)
−1
T
ᵀ
k

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=D

= diag(Ak) − D → 0. ♠

1.6 Implementierung des QR-Verfahrens

Reduktion auf Hessenberg-Form: Für beliebige Matrizen A ∈ Rn×n wäre das QR-
Verfahren viel zu aufwendig (O(n

3
)Operationen pro Iteration). Statt dessen transfor-

miert man A zunächst auf obere Hessenberg-Form.

Definition 1.28 Eine Matrix H = [ℎi,j ]
n

i,j=1
besitzt obere Hessenberg-Form, wenn

ℎi,j = 0 für j < i − 1, das heißt

H =

⎡

⎢

⎢

⎢

⎢

⎣

ℎ1,1 ℎ1,2 . . . . . . . . . . . ℎ1,n

ℎ2,1 ℎ2,2 ℎ2,n

0 ℎ3,2 ℎ3,3 ℎ3,n

⋮ ⋱ ⋱ ⋱ ⋮

0 … 0 ℎn,n−1 ℎn,n

⎤

⎥

⎥

⎥

⎥

⎦

.

Ziel ist es also, zunächst A durch Ähnlichkeitstransformationen auf obere Hessenberg-
Form zu bringen. Dazu gehen wir wie in Abschnitt 1.4 bei der QR-Zerlegung vor:
Wähle Householder-Spiegelungen P1, P2, … , Pn−2 und bilde

A ↦ Pn−2Pn−3 ⋯P1AP1P2 ⋯Pn−2
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gemäß dem folgenden Schema:

A =

⎡

⎢

⎢

⎢

⎢

⎣

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

⎤

⎥

⎥

⎥

⎥

⎦

⟶
P1 ⋅

⎡

⎢

⎢

⎢

⎢

⎣

× × × × ×

+ + + + +

0 + + + +

0 + + + +

0 + + + +

⎤

⎥

⎥

⎥

⎥

⎦

⟶
⋅P1

⎡

⎢

⎢

⎢

⎢

⎣

× + + + +

× + + + +

0 + + + +

0 + + + +

0 + + + +

⎤

⎥

⎥

⎥

⎥

⎦

⟶
P2 ⋅

⎡

⎢

⎢

⎢

⎢

⎣

× × × × ×

× × × × ×

0 + + + +

0 0 + + +

0 0 + + +

⎤

⎥

⎥

⎥

⎥

⎦

⟶
⋅P2

⎡

⎢

⎢

⎢

⎢

⎣

× × + + +

× × + + +

0 × + + +

0 0 + + +

0 0 + + +

⎤

⎥

⎥

⎥

⎥

⎦

⟶
P3 ⋅

⎡

⎢

⎢

⎢

⎢

⎣

× × × × ×

× × × × ×

0 × × × ×

0 0 + + +

0 0 0 + +

⎤

⎥

⎥

⎥

⎥

⎦

⟶
⋅P3

⎡

⎢

⎢

⎢

⎢

⎣

× × × + +

× × × + +

0 × × + +

0 0 × + +

0 0 0 + +

⎤

⎥

⎥

⎥

⎥

⎦

Allgemein gilt im i-ten Schritt

Ai =
[

Hi ?
0 c ? ]

,

wobei Hi ∈ Ri×i eine obere Hessenberg-Matrix und c ∈ Rn−i ein Vektor ist. Die
Householder-Spiegelung Pi ist nun so zu wählen, dass der Vektor c auf �ei+1 abgebildet
wird, dies bedeutet

PiAi =
[

I 0

0 I − �vv
⋆

] [

Hi ?
0 c ? ]

=
[

Hi ?
0 �ei+1 ? ]

.

Der Aufwand zur Reduktion einerMatrixA ∈ Rn×n auf obere Hessenberg-Form beträgt

n−1

∑

i=1

2(i
2
+ in) ≈

2

3

n
3
+ n

3
= O(n

3
).

QR-Zerlegung einer Hessenberg-Matrix: Für Hessenberg-Matrizen lässt sich die QR-
Zerlegung besonders effizient mit sogenannten Givens-Rotationen berechnen.
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Definition 1.29 Eine Matrix G = G(i, j , �) mit

G =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

⋱

1

c s

1

⋱

1

−s c

1

⋱

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

← i

← j

mit

c = cos(�), s = sin(�)

heißt Givens-Rotation.

Givens-Rotationen sind orthogonale Matrizen (alle Zeilen sind paarweise zueinan-
der senkrecht) und die Operation G(i, j , �)A ersetzt die Zeilen i und j von A durch
Linearkombinationen

c[ai,1, ai,2, … , ai,n] + s[aj ,1, aj ,2, … , aj ,n]

beziehungsweise

−s[ai,1, ai,2, … , ai,n] + c[aj ,1, aj ,2, … , aj ,n],

während AG(i, j , �) die Spalten i und j von A durch entsprechende Linearkombinatio-
nen ersetzt.
Man kann daher eine Givens-Rotation so wählen, dass ein Element von A zu 0 transfor-
miert wird. Soll etwa aj ,k zu 0 gesetzt werden, dann liefert der Ansatz

−sai,k + caj ,k

!

= 0

die Lösung

c =

ai,k
√

a
2

i,k
+ a

2

j,k

, s =

aj ,k
√

a
2

i,k
+ a

2

j,k

.
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Numerisch stabiler ist es im Fall |ai,k | ≥ |aj ,k | die Rechnung

t = aj ,k/ai,k , c =

1

√

1 + t
2

, s =

t

√

1 + t
2

und entsprechend im Fall |ai,k | < |aj ,k |

t = ai,k/aj ,k , c =

t

√

1 + t
2

, s =

1

√

1 + t
2

.

Die QR-Zerlegung einer Hessenberg-Matrix A erhalten wir nun durch sukzessives
Anwenden der Givens-Rotationen G(i, i + 1, �i), i = 1, 2, … , n − 1, um jeweils das
(i + 1, i)-Element zu Null zu machen:

R = G(n − 1, n, �n−1)G(n − 2, n − 1, �n−2) …G(1, 2, �1)A.

gemäß dem Schema:

⎡

⎢

⎢

⎢

⎢

⎣

× × × × ×

× × × × ×

0 × × × ×

0 0 × × ×

0 0 0 × ×

⎤

⎥

⎥

⎥

⎥

⎦

⟶
i=1

⎡

⎢

⎢

⎢

⎢

⎣

+ + + + +

0 + + + +

0 × × × ×

0 0 × × ×

0 0 0 × ×

⎤

⎥

⎥

⎥

⎥

⎦

⟶
i=2

⎡

⎢

⎢

⎢

⎢

⎣

× × × × ×

0 + + + +

0 0 + + +

0 0 × × ×

0 0 0 × ×

⎤

⎥

⎥

⎥

⎥

⎦

⟶
i=3

⎡

⎢

⎢

⎢

⎢

⎣

× × × × ×

0 × × × ×

0 0 + + +

0 0 0 + +

0 0 0 × ×

⎤

⎥

⎥

⎥

⎥

⎦

⟶
i=4

⎡

⎢

⎢

⎢

⎢

⎣

× × × × ×

0 × × × ×

0 0 × × ×

0 0 0 + +

0 0 0 0 +

⎤

⎥

⎥

⎥

⎥

⎦

Im Teilschritt (1.23) muss das Produkt der Givens-Rotationen von rechts an Rk heran-
multipliziert werden. Wegen

Qk = (G(n − 1, n, �n−1)G(n − 2, n − 1, �n−2)⋯G(1, 2, �1))

ᵀ

ergibt sich
Ak+1 = RkG(1, 2, �1)

ᵀ
G(2, 3, �2)

ᵀ
⋯G(n − 1, n, �n−1)

ᵀ
.

Die Multiplikation von rechts mit G(i, i + 1, �i) verändert die Spalten i und i + 1.
Offensichtlich besitzt Ak+1 dann wieder Hessenberg-Gestalt.
Als Aufwand für die beiden Teilschritte (1.22) und (1.23) ergeben sich

2

n−1

∑

i=1

4(n − i + 1) = 2

n

∑

i=2

4i ∼ 4n
2
= O(n

2
)

Multiplikationen.
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Shi�s und Deflation: Liegen zwei Eigenwerte �i und �i+1 betragsmäßig dicht bei-
einander, so konvergiert das QR-Verfahren nur sehr langsam. Dies kann mit Hilfe
einer Shift-Strategie verbessert werden. Im Prinzip versucht man, die beiden Eigenwerte
dichter an die Null zu schieben und so den Quotienten |�i/�i+1| zu vergrößern. Dazu
verwendet man für jeden Iterationsschritt k einen Shift-Parameter �k und definiert die
Folge {Ak}k≥0 gemäß dem folgenden Algorithmus:

Algorithmus 1.30 (QR-Verfahren mit Shi�)
input: Matrix A ∈ Kn×n

output: Folge von Iterierten {Ak}k≥0

À setze A0 ∶= A und k ∶= 0

Á berechne die QR-Zerlegung

Ak − �kI = QkRk

und setze

Ak+1 ∶= RkQk + �kI

Â erhöhe k ∶= k + 1 und gehe nach Á

Für das QR-Verfahren mit Shift bleiben die ersten beiden Aussagen von Lemma 1.26
erhalten, während die dritte nun lautet

k

∏

�=0

(A − ��I) = (Q0Q1 ⋯Qk)(RkRk−1 ⋯R0).

Ferner ist die für i > j in (1.27) beschriebene Konvergenzgeschwindigkeit nun durch
den Faktor

O
(

|
|
|
|

�i − �0

�j − �0

|
|
|
|

⋅

|
|
|
|

�i − �1

�j − �1

|
|
|
|

⋯

|
|
|
|

�i − �k−1

�j − �k−1

|
|
|
|
)

bestimmt.
In der Praxis bietet sich die Wahl �k = a

(k)

n,n
zur Konvergenzbeschleunigung an. Als

noch erfolgreicher hat sich erwiesen, denjenigen Eigenwert von

[

a
(k)

n−1,n−1
a
(k)

n−1,n

a
(k)

n,n−1
a
(k)

n,n
]
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als Shift-Parameter zuwählen, der am nächsten an a(k)
n,n

liegt. In beiden Fällen konvergiert
a
(k)

n,n
sehr schnell gegen den exakten Eigenwert und a(k)

n,n−1
gegen Null, dies bedeutet

Ak →

⎡

⎢

⎢

⎢

⎢

⎣

⋆ ⋆ … ⋆ ⋆

⋆ ⋆ … ⋆ ⋆

⋱ ⋱ ⋮ ⋮

⋆ ⋆ ⋆

0 … 0 0 �n

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

⋆

B ⋮

⋆

0 … 0 �n

⎤

⎥

⎥

⎥

⎦

.

AbdiesemZeitpunkt reicht es aus, nur noch das kleinereTeilproblemmit derHessenberg-
Matrix B zu betrachten. Diese Reduktion wird Deflation genannt.
Das QR-Verfahren mit Shift konvergiert in der Regel quadratisch, im Falle symmetri-
scher Matrizen sogar kubisch. Insgesamt benötigt man daher O(n) Iterationen, so dass
der Gesamtaufaufwand des QR-Verfahrens kubisch ist.

Eigenvektoren: Gemäß Lemma 1.26 liefert das QR-Verfahren asymptotisch die Fakto-
risierung

A = Q
ᵀ
RQ, Q orthogonal, R obere Dreiecksmatrix,

wobei die Diagonaleinträge ri,i der Marix R genau den Eigenwerten �i entsprechen.
Sind vi die Eigenvektoren von R, so ergeben sich die entsprechenden Eigenvektoren
von A gemäß Q

ᵀ
vi. Dabei bestimmt man die Eigenvektoren vi dadurch, dass man

v
(i)

i
= 1 und v(i)

j
= 0 für j > i setzt, und v(i)

j
für j < i durch Rückwärtssubstitution aus

dem Gleichungssystem (R − �iI)vi = 0 bildet.

1.7 Lanczos-Verfahren

Ist A ∈ Rn×n eine symmetrische Matrix, dann sind die extremalen Eigenwerte genau
die Extremalwerte des Rayleigh-Quotienten

�max = max

x∈Rn
⧵{0}

x
ᵀ
Ax

x
ᵀ
x

, �min = min

x∈Rn
⧵{0}

x
ᵀ
Ax

x
ᵀ
x

.

Anstelle einer Maximierung beziehungsweise Minimierung des Rayleigh-Quotienten
über dem ganzen Rn wollen wir diese nur über dem Krylov-Raum

Kk(A, z) = span{z, Az, … , A
k−1

z}
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durchführen. Dazu wählen wir eine Orthonormalbasis {w1, w2, … ,wk} von Kk(A, z)

und setzen
Wk = [ w1 w2 … wk ] ∈ Rn×k

.

Dann gilt

�max ≥ �
(k)

max
= max

x∈Kk(A,z)⧵{0}

x
ᵀ
Ax

x
ᵀ
x

= max

y∈Rk
⧵{0}

y
ᵀ
W

ᵀ
k
AWky

y
ᵀ
W

ᵀ
k
Wk

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=I

y

= max

y∈Rk
⧵{0}

y
ᵀ
W

ᵀ
k
AWky

y
ᵀ
y

und analog

�min ≤ �
(k)

min
= min

y∈Rk
⧵{0}

y
ᵀ
W

ᵀ
k
AWky

y
ᵀ
y

.

Dabei sind �(k)
max

beziehungsweise �(k)
min

genau die extremalen Eigenwerte der (k × k)-
MatrixWᵀ

k
AWk.

Satz 1.31 Sei A ∈ Rn×n eine symmetrische Matrix mit absteigend sortierten Eigenwerten
�1 ≥ �2 ≥ ⋯ ≥ �n und v1, v2, … , vn die zugehörigen orthonormalen Eigenvektoren. Seien
weiter �(k)

1
≥ �

(k)

2
≥ ⋯ ≥ �

(k)

k
die Eigenwerte vonWᵀ

k
AWk. Dann gilt

�1 ≥ �
(k)

1
≥ �1 −

(�1 − �n) tan
2
(�1)

T
2

k−1
(1 + 2�1)

,

wobei Tk−1 ∈ �k−1 das k-te Tschebyscheff-Polynom bezeichnet und

�1 =

�1 − �2

�2 − �n

, cos(�1) =

|v
ᵀ
1
z|

‖z‖2

gilt.

Beweis. Sei ohne Beschränkung der Allgemeinheit ‖z‖2 = 1. Da
Kk(A, z) = span{p(A)z ∶ p ∈ �k−1}

gilt

�
(k)

1
= max

x∈Kk(A,z)⧵{0}

x
ᵀ
Ax

x
ᵀ
x

= max
0≠p∈�k−1

(p(A)z)

ᵀ
Ap(A)z

(p(A)z)

ᵀ
p(A)z

.
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Stellen wir z bezüglich der Orthonormalbasis v1, v2, … , vn dar,

z =

n

∑

i=1

(v
ᵀ
i
z)vi =

n

∑

i=1

�ivi,

so folgt

(p(A)z)

ᵀ
Ap(A)z =

n

∑

i=1

|�i|
2
p
2
(�i)�i, (p(A)z)

ᵀ
p(A)z =

n

∑

i=1

|�i|
2
p
2
(�i).

Wir erhalten

max
0≠p∈�k−1

(p(A)z)

ᵀ
Ap(A)z

(p(A)z)

ᵀ
p(A)z

= �1 + max
0≠p∈�k−1

∑
n

i=2
|�i|

2
p
2
(�i)(�i − �1)

∑
n

i=1
|�i|

2
p
2
(�i)

≥ �1 + (�n − �1) min
0≠p∈�k−1

∑
n

i=2
|�i|

2
p
2
(�i)

|�1|
2
p
2
(�1) + ∑

n

i=2
|�i|

2
p
2
(�i)

.

Um eine möglichst scharfe Abschätzung zu erhalten, müssen wir ein Polynom p ∈ �k−1

einsetzen, das innerhalb des Intervalls [�n, �2] möglichst klein ist. Wir wählen das
transformierte Tschebyscheff-Polynom

p(�) ∶= Tk−1
(
1 + 2

� − �2

�2 − �n)

mit der Eigenschaft |p(�i)| ≤ 1 für i = 2, 3, … , n. Damit gilt dann wegen
n

∑

i=1

|�i|
2
= ‖z‖

2

2
= 1,

dass

�
(k)

1
≥ �1 + (�n − �1)

1 − |�1|
2

|�1|
2
T
2

k−1
(1 + 2�1)

und die Behauptung folgt aus der Tatsache, dass

1 − |�1|
2

|�1|
2

=

1 − cos
2
(�1)

cos
2
(�1)

= tan
2
(�1). ♠

Ein analoges Resultat erhalten wir für den kleinsten Eigenwert, indem wir Satz 1.31
auf −A anwenden.
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Korollar 1.32 Unter den Voraussetzungen von Satz 1.31 gilt

�n ≤ �
(k)

k
≤ �n −

(�1 − �n) tan
2
(�n)

T
2

k−1
(1 + 2�n)

mit �n = (�n−1 − �n)/(�1 − �n−1) und cos(�n) = |v
ᵀ
n
z|/‖z‖2.

Bemerkungen

1. Da der Krylov-Raum Kk(A, z) den Vektor Ak−1
z enthält, ist durch den betrags-

größten Eigenwert vonWᵀ
k
AWk eine bessere Näherung an den betragsgrößten

Eigenwert von A gegeben als durch den entsprechenden Rayleigh-Quotienten
des Vektors zk−1 = A

k−1
z0/‖A

k−1
z0‖2 der Potenzmethode, siehe (1.12).

2. Auch die anderen Eigenwerte von W
ᵀ
k
AWk können als Näherungen an die

Eigenwerte von A herangezogen werden: Mit wachsendem k fällt der j-kleinste
Eigenwert von W

ᵀ
k
AWk monoton von oben gegen den j-kleinsten Eigenwert

vonA, während der j-größte Eigenwert vonWᵀ
k
AWk monoton von unten gegen

den j-größten Eigenwert von A wächst.

3. Ist u1 der Eigenvektor vonWᵀ
k
AWk zum Eigenwert �(k)

1
, dann ist gemäß Kon-

struktionWku1 eine Näherung an den Eigenvektor zum größten Eigenwert �1
von A. Entsprechendes gilt für die anderen Eigenpaare. �

Die Orthonormalbasis von Kk(A, z) bildet man billig mit dem Lanzcos-Prozess:

Algorithmus 1.33 (Lanczos-Prozess)
input: Matrix A ∈ Rn×n und Startvektor z ∈ Rn

output: Orthonormalbasis {wk}k≥1

À Initialisierung: setze w0 ∶= 0, u1 ∶= z und k ∶= 1

Á berechne
�k−1 ∶= ‖uk‖2 (1.28)

wk ∶=

uk

�k−1

, falls �k−1 ≠ 0 (1.29)

�k ∶= w
ᵀ
k
Awk (1.30)

uk+1 ∶= (A − �kI)wk − �k−1wk−1 (1.31)

Â erhöhe k ∶= k + 1 und gehe nach Á
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Satz 1.34 Die durch Algorithmus 1.33 gebildete Folge {wi}
k

i=1
ist eine Orthonormalbasis des

Krylov-Raums Kk(A, z).

Beweis. Wir beweisen die Aussage mittels vollständiger Induktion über k. Für k = 1 ist
die Aussage offensichtlich. Sei also {wi}

k

i=1
ist eine Orthonormalbasis des Krylov-Raums

Kk(A, z). Dann folgt aus Algorithmus 1.33, dass
uk+1 = Awk + pk mit pk ∈ Kk(A, z) und Awk ∈ Kk+1(A, z). (1.32)

Folglich ist wk+1 ∈ Kk+1(A, z) mit ‖wk+1‖2 = 1.
Wir zeigen nun, dass gilt wk+1 ⟂ Kk(A, z). Für 1 ≤ i < k − 1 ergibt sich

w
ᵀ
i
uk+1

(1.31)
= w

ᵀ
i
(A − �kI)wk − �k−1 w

ᵀ
i
wk−1

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=0

= ((A − �kI)wi

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∈Ki+1(A,z)=span{w1 ,…,wi+1}

)

ᵀ
wk = 0.

Ferner gilt

w
ᵀ
k−1

uk+1

(1.31)
= w

ᵀ
k−1

Awk − �k w
ᵀ
k−1

wk

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=0

−�k−1 w
ᵀ
k−1

wk−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=1

(1.32)
= (uk −pk−1

⏟⏞⏞⏟⏞⏞⏟

∈Kk−1(A,z)⟂wk

)
ᵀ
wk − �k−1 = u

ᵀ
k
wk − �k−1

(1.28)
= 0,

sowie

w
ᵀ
k
uk+1

(1.31)
= w

ᵀ
k
(A − �kI)wk − �k−1 w

ᵀ
k
wk−1

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=0

= w
ᵀ
k
Awk − �k

(1.30)
= 0.

Also ist uk+1 ⟂ Kk(A, z), und der Induktionsschritt vollständig k ↦ k+1 bewiesen. ♠

Bemerkung Der Lanczos-Prozess bricht zusammmen, falls sich in (1.29) �k = 0

ergibt. Dies ist genau dann der Fall, wenn
Awk = �kwk + �k−1wk−1 ∈ Kk(A, z),

dies bedeutet Kk+1(A, z) ⊂ Kk(A, z). Somit ist Kk(A, z) ein invarianter Unterraum
der Matrix A und alle Eigenwerte von W

ᵀ
k
AWk sind auch Eigenwerte von A. Um

weiter Eigenwerte von A zu bestimmen, muss der Lanczos-Prozess mit einem anderen
Startvektor neu gestartet werden. �

Der Lanczos-Prozess ist nur unwesentlich teurer als die Potenzmethode, zumal wenn
A deutlich mehr als n Elemente ≠ 0 enthält. Die Eigenwertberechnung vonWᵀ

k
AWk

benötigt nur O(k
2
)Operationen, daWᵀ

k
AWk eine Tridiagonalmatrix ist:
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Proposition 1.35 Es ist

Tk ∶= W
ᵀ
k
AWk =

⎡

⎢

⎢

⎢

⎣

�1 �1 0

�1 �2 ⋱

⋱ ⋱ �k−1

0 �k−1 �k

⎤

⎥

⎥

⎥

⎦

mit �i, �i wie in Algorithmus 1.33.

Beweis. Der (i, j)-Eintrag von Tk ist wᵀ
i
Awj . Damit folgen sofort die Diagonalele-

mente �i und die Nullelemente, da Awj ∈ Kj+1(A, z), und damit

w
ᵀ
i
Awj = 0 für i > j + 1.

Der Fall i < j − 1 ergibt sich dann automatisch wegen der Symmetrie von Tk. Die
Nebendiagonalelemente berechnet man wie folgt:

[Tk]i+1,i = w
ᵀ
i+1

Awi

(1.32)
= w

ᵀ
i+1

(ui+1 − pi) = w
ᵀ
i+1

ui+1

(1.29)
= �i. ♠

Die Eigenwerte von Tk lassen sich dann sehr schnell mit dem QR-Verfahren ermitteln.
IstA nicht symmetrisch, dann kannman den Lanczos-Prozess nicht verwenden. Stattdes-
sen benötigt man den Arnoldi-Prozess, einer stabilen Variante des Gram-Schmidtschen
Verfahrens zur Orthogonalisierung des Krylov-Raums Kk(A, z). Er basiert auf der
Hessenberg-Reduktion Q

ᵀ
AQ = H. Setzen wir Q = [q1, q2, … , qn] und vergleichen

AQ = QH, dann folgt

Aq
k
=

k+1

∑

i=1

ℎi,kqi, 1 ≤ k ≤ n − 1.

Auflösen nach dem letzten Term der Summe ergibt

ℎk+1,kqk+1 = Aq
k
−

k

∑

i=1

ℎi,kqi = rk ,

wobei ℎi,k = q
ᵀ
i
Aq

k
für alle i = 1, 2, … , k. Falls rk ≠ 0, dann folgt

qk+1 =

1

ℎk+1,k

rk , ℎk+1,k = ‖rk‖2.

Diese Gleichungen führen auf den Arnoldi-Prozess:



44 1 Eigenwerte

Algorithmus 1.36 (Arnoldi-Prozess)
input: Matrix A ∈ Rn×n und Startvektor z ∈ Rn

output: Orthonormalbasis {wk}k≥1

À Initialisierung: setze w1 ∶= z/‖z‖2 und k ∶= 1

Á berechne

rk ∶= Awk

ℎ1,k ∶= w
ᵀ
1
rk , … , ℎk,k ∶= w

ᵀ
k
rk

rk ∶= rk −

k

∑

i=1

ℎi,kwi

ℎk+1,k ∶= ‖rk‖2

wk+1 ∶=

1

ℎk+1,k

rk , falls ℎk+1,k ≠ 0

Â erhöhe k ∶= k + 1 und gehe nach Á

Anschließend berechnet man mit dem QR-Verfahren die Eigenwerte der oberen Hess-
enberg-MatrixWᵀ

k
AWk.
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2
Lineare Ausgleichsprobleme

2.1 Normalengleichungen revisited

Im folgenden sei A ∈ Rm×n und b ∈ Rm. Gesucht ist ein Vektor x ∈ Rn mit

Ax ≈ b.

Da wir m Gleichungen für n Unbekannte haben, ist das lineare Gleichungssystem im
allgemeinen nicht — oder nicht eindeutig — lösbar. Ist m > n, dann nennen wir das
lineare Gleichungssystem überbestimmt, ist m < n, dann nennen wir es unterbestimmt.
Überbestimmte Probleme treten häufig in den Anwendungen auf, wenn es darum geht,
Modellparameter an Messdaten anzupassen.

Da wir für m ≠ n die m Gleichungen im allgemeinen nicht alle exakt erfüllen können,
suchen wir nun nach Vektoren x ∈ Rn, für die das Residuum

r = b − Ax (2.1)

möglichst klein ist.

Definition 2.1 Für eine Matrix A ∈ Rm×n und ein b ∈ Rm heißt das Problem

‖b − Ax‖2 → min (2.2)

ein lineares Ausgleichsproblem. Eine Lösung x ∈ Rn des Ausgleichsproblems heißt
Ausgleichslösung oder kleinste-�adrate-Lösung.

Bemerkung Der Lösungsbegriff in (2.2) ist eine Verallgemeinerung der klassischen
Lösung. Ist nämlichm = n und ist x ∈ Rn eine klassische Lösung, das heißt, giltAx = b,
dann ist offensichtlich x ebenfalls eine Lösung von (2.2). �
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Satz 2.2 Die Lösungen von (2.2) sind genau die Lösungen der Gaußschen Normalen-
gleichungen

A
ᵀ
Ax = A

ᵀ
b, (2.3)

insbesondere existiert eine Lösung x. Ist z eine weitere Lösung, so giltAx = Az. Das Residuum
(2.1) ist eindeutig bestimmt und genügt der Gleichung Aᵀ

r = 0.

Beweis. Betrachte das Funktional

�(x) = ‖b − Ax‖
2

2
= b

ᵀ
b − 2x

ᵀ
A

ᵀ
b + x

ᵀ
A

ᵀ
Ax ≥ 0.

Da das Funktional stetig und nach unten beschränkt ist, gibt es ein Minimum. Dieses
Minimum von � erfüllt

∇�(x) = −2A
ᵀ
b + 2A

ᵀ
Ax

!

= 0.

Dies ist genau dann der Fall, wenn x den Normalengleichungen (2.3) genügt. Insbeson-
dere gilt dann Aᵀ

(b − Ax) = A
ᵀ
r = 0. Außerdem folgt �(z) = �(x) für jede weitere

Lösung z der Normalengleichungen. Wegen

�(z) = ‖(b − Ax) + (Ax − Az)‖
2

2
= �(x) + 2(b − Ax

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=r

)
ᵀ
A(x − z) + ‖Ax − Az‖

2

2

ergibt sich schließlich ‖Ax − Az‖
2

2
= 0. ♠

Bemerkung Aus Aᵀ
r = 0 folgt, dass das Residuum senkrecht auf den Spalten von

A steht. Das Residuum r ist folglich Normale zum von den Spalten der Matrix A

aufgespannten Raum. Daher erklärt sich die Bezeichnung Normalengleichungen. �

Satz 2.3 Die Matrix Aᵀ
A ∈ Rn×n ist symmetrisch und positiv semidefinit. Darüber hinaus

istAᵀ
A genau dann positiv definit, wenn der Kern vonA trivial ist, das heißt, wenn kern(A) =

{0}. Dies ist genau dann der Fall, wenn die Spalten von A linear unabhängig sind.

Beweis. Offensichtlich ist Aᵀ
A symmetrisch und wegen

x
ᵀ
A

ᵀ
Ax = ‖Ax‖

2

2
≥ 0 für alle x ∈ Rn

auch positiv semidefinit. Ist kernA = {0}, so gilt Gleichheit (“=”) nur im Falle x = 0,
das heißt, Aᵀ

A ist positiv definit. ♠
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2.2 Singulärwertzerlegung und Pseudoinverse

Offensichtlich spielt dieMatrixAᵀ
A eine große Rolle beim linearen Ausgleichsproblem.

Im folgenden seien �1, �2, … , �p die von Null verschiedenen Eigenwerte von Aᵀ
A

�1 ≥ �2 ≥ ⋯ ≥ �p > �p+1 = ⋯ = �n = 0, (p ≤ n)

und v1, v2, … , vn zugehörige orthonormale Eigenvektoren. Bezeichnen wir ferner mit

ui ∶=

1

√

�i

Avi, i = 1, 2… , p, (2.4)

so folgt für alle 1 ≤ i, j ≤ p dass

u
ᵀ
i
uj =

1

√

�i

1

√

�j

(Avi)
ᵀ
(Avj ) =

1

√

�i

√

�j

v
ᵀ
i
(A

ᵀ
Avj ) =

�j
√

�i

√

�j

v
ᵀ
i
vj = �i,j .

Die Vektoren {ui}pi=1 bilden folglich eine Orthonormalbasis von img(A) und können
durch weitere m − p Vektoren up+1, … , un zu einer von Rm ergänzt werden.

Es gilt wegen (2.4)

A
ᵀ
ui =

1

√

�i

A
ᵀ
Avi =

√

�ivi, i = 1, 2, … , p,

während weiter

A
ᵀ
ui = 0, i = p + 1,… ,m

gilt, da {up+1, … , um} ⊂ img(A)
⟂
= kern(A

ᵀ
).

Wir fassen zusammen:

Satz 2.4 Zu jeder Matrix A ∈ Rm×n existiert eine Singulärwertzerlegung (SVD =
singular value decomposition), das ist ein Tripel ({�i}

p

i=1
, {ui}

m

i=1
, {vi}

n

i=1
) mit

�1 ≥ �2 ≥ ⋯ ≥ �p > 0,

ui ∈ Rm
, u

ᵀ
i
uj = �i,j , i, j = 1, 2, … ,m,

vi ∈ Rn
, v

ᵀ
i
vj = �i,j , i, j = 1, 2, … , n,
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und

Avi = �iui, A
ᵀ
ui = �ivi, i = 1, 2, … , p,

Avk = 0, A
ᵀ
u� = 0, k, � > p.

Ferner sind �2

i
entsprechend ihrer Vielfachheit genau die von Null verschiedenen Eigenwerte von

A
ᵀ
A.

In Matrixnotation lässt sich Satz 2.4 kürzer schreiben. Wir setzen

U ∶= [u1, u2, … , um] ∈ Rm×m
, V ∶= [v1, v2, … , vn] ∈ Rn×n

,

Σ ∶=

⎡

⎢

⎢

⎢

⎣

�1

⋱ 0

�p

0 0

⎤

⎥

⎥

⎥

⎦

∈ Rm×n

und erhalten

A = UΣV
ᵀ
, A

ᵀ
= VΣᵀ

U
ᵀ
. (2.5)

Dabei sind die Matrizen U und V orthogonal.
Alternativ zu (2.5) gelten die Summendarstellungen

A =

p

∑

i=1

�iuiv
ᵀ
i
, A

ᵀ
=

p

∑

i=1

�iviu
ᵀ
i
.

Definition 2.5 Sei UΣV
ᵀ die Singulärwertzerlegung von A und

Σ+
∶=

⎡

⎢

⎢

⎢

⎣

�
−1

1

⋱ 0

�
−1

p

0 0

⎤

⎥

⎥

⎥

⎦

∈ Rn×m
.

Dann heißt die Matrix

A
+
= VΣ+

U
ᵀ
∈ Rn×m

Pseudoinverse oderMoore-Penrose-Inverse von A.
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Auch für die Pseudoinverse gilt eine ensprechende Summendarstellung

A
+
=

p

∑

i=1

1

�i

viu
ᵀ
i
, (2.6)

aus der sofort folgt

kern(A
+
) = kern(A

ᵀ
) = img(A)

⟂
, img(A

+
) = img(A

ᵀ
) = kern(A)

⟂
. (2.7)

Beispiel 2.6 Für die Matrix

A =

⎡

⎢

⎢

⎢

⎣

1 1

1 1

1 1

1 1

⎤

⎥

⎥

⎥

⎦

gilt

img(A) = span

{

[1, 1, 1, 1]
ᵀ
}

kern(A) = span

{

[−1, 1]
ᵀ
}

.

Hieraus folgt

img(A
+
) = kern(A)

⟂
= span

{

[1, 1]
ᵀ
}

und daher

A
+
=
[

� � 
 �

� � 
 �]
.

Da für alle umit [1, 1, 1, 1]ᵀ ⟂ u gilt A+
u = 0 ergibt sich zwangsläufig � = � = 
 = �,

das heißt,

A
+
= �

[

1 1 1 1

1 1 1 1]
.

Der Parameter � berechnet sich wie folgt: Es ist p = 1 und

v1 =

1

√

2 [

1

1]
, u1 =

1

2

⎡

⎢

⎢

⎢

⎣

1

1

1

1

⎤

⎥

⎥

⎥

⎦

, Av1 =

√

2

⎡

⎢

⎢

⎢

⎣

1

1

1

1

⎤

⎥

⎥

⎥

⎦

= 2

√

2u1,
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dies bedeutet, �1 = 2

√

2. Wegen

�

2 [

4

4]
= A

+
u1

!
=

1

2

√

2

v1 =

1

4 [

1

1]

ergibt sich � = 1/8. ♣

Der Name “Pseudoinverse” beruht auf folgendem Resultat:

Satz 2.7 Die PseudoinverseA+ vonA ∈ Rm×n ist die eindeutige Lösung der vier Gleichungen

(i) AXA = A (iii) (AX)
ᵀ
= AX

(ii) XAX = X (iv) (XA)
ᵀ
= XA

Beweis. Wir weisen zunächst nach, dass die Pseudoinverse X = A
+ alle vier Gleichun-

gen erfüllt. Wegen

ΣΣ+
=

⎡

⎢

⎢

⎢

⎣

�1

⋱ 0

�p

0 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

�
−1

1

⋱ 0

�
−1

p

0 0

⎤

⎥

⎥

⎥

⎦

=
[

I 0

0 0 ]
∈ Rm×m (2.8)

folgen die ersten beiden Gleichungen

AA
+
A = UΣV

ᵀ
VΣ+

U
ᵀ
UΣV

ᵀ
= UΣΣ+ΣV

ᵀ
= UΣV

ᵀ
= A,

A
+
AA

+
= V

ᵀΣ+
UU

ᵀΣV
ᵀ
VΣU

ᵀ
= V

ᵀΣ+ΣΣ+
U

ᵀ
= VΣ+

U
ᵀ
= A

+
.

Weiter ist AA+
= UΣΣ+

U
ᵀ und somit wegen (2.8) symmetrisch. Entsprechend ist

auch A
+
A symmetrisch, womit auch die beiden letzten Gleichungen gezeigt sind.

Es verbleibt noch zu zeigen, dass die vier Gleichungen nur die eine Lösung X = A
+

haben. Wegen (i) ist

0 = AXAvi − Avi = A(X Avi
⏟⏞⏟⏞⏟

=�iui

−vi), i = 1, 2, … , p.

Dies bedeutet, dass

Xui =

1

�i

vi + wi für ein wi ∈ kern(A).
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Wegen wi ∈ kern(A) ⊂ kern(XA) und (iv) folgt für jedes i = 1, 2, … , p

0 = (XAwi)
ᵀ

(

1

�i

vi
)

= w
ᵀ
i
XA

(

1

�i

vi
)

= w
ᵀ
i
Xui = w

ᵀ
i
(

1

�i

vi + wi

)

=

1

�i

w
ᵀ
i
vi

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=0, da
v
i
⟂span{v

p+1
,…,vn}=kern(A)

+w
ᵀ
i
wi = ‖wi‖

2
.

Dies bedeutet wi = 0 und daher

Xui =

1

�i

vi, i = 1, 2, … , p. (2.9)

Hieraus folgt die Inklusion

img(AX) ⊃ span{AXui ∶ i = 1, 2, … , p} = span{Avi ∶ i = 1, 2, … , p}

= span{ui ∶ i = 1, 2, … , p} = img(A).

Da andererseits trivialerweise img(AX) ⊂ img(A) ist, ergibt dies

img(AX) = img(A).

Aus (iii) folgt damit

kern(AX) = img(AX)
⟂
= img(A)

⟂
= span{ui ∶ i = p + 1,… ,m}.

Demnach ist

AXui = 0 bzw. Xui = wi ∈ kern(A), i = p + 1,… ,m.

Gleichung (ii) impliziert jedoch wi = 0, denn

wi = Xui = XAXui = XAwi = 0, i = p + 1,… ,m. (2.10)

Ein Vergleich von (2.6) mit (2.9) und (2.10) zeigt, dass X und A+ übereinstimmen, also
A
+ die einzige Lösung der Gleichungen (i)–(iv) ist. ♠

Bemerkung IstA invertierbar, dann istA+
= A

−1 wegen Gleichung (i) bzw. (ii). �

Den Zusammenhang zwischen Pseudoinverse und linearem Ausgleichsproblem be-
schreibt der folgende Satz.
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Satz 2.8 Der Vektor A+
b ist die eindeutige Lösung des linearen Ausgleichsproblems (2.2)

mit minimaler ‖ ⋅ ‖2-Norm.

Beweis. Nach Satz 2.7 (i) ist

AA
+
b − b ∈ kern(A

+
)

(2.7)
= img(A)

⟂
= kern(A

ᵀ
).

Also erfüllt A+
b die Normalengleichungen (2.3)

A
ᵀ
A(A

+
b) = A

ᵀ
b

und ist daher eine Lösung des linearen Ausgleichsproblems.
Ist z eine zweite Lösung der Normalengleichungen, dann gilt gemäß Satz 2.2

w ∶= A
+
b − z ∈ kern(A).

Da A+
b ∈ img(A

+
)

(2.7)
= kern(A)

⟂ haben wir z = A
+
b − w orthogonal zerlegt, und

nach dem Satz des Pythagoras gilt
‖z‖

2

2
= ‖A

+
b‖

2

2
+ ‖w‖

2

2
≥ ‖A

+
b‖

2

2
. ♠

Korollar 2.9 Hat A ∈ Rm×n vollen Rang rang(A) = n ≤ m, dann gilt

A
+
= (A

ᵀ
A)

−1
A

ᵀ
.

Beispiel 2.10 (Fortsetzung von Beispiel 2.6) Zu lösen sei das lineare Ausgleichsproblem
‖Ax − b‖2 → min mit

A =

⎡

⎢

⎢

⎢

⎣

1 1

1 1

1 1

1 1

⎤

⎥

⎥

⎥

⎦

, b =

⎡

⎢

⎢

⎢

⎣

2

0

0

−1

⎤

⎥

⎥

⎥

⎦

.

Die Lösung x mit minimaler Euklidnorm ist

x = A
+
b =

1

8 [

1 1 1 1

1 1 1 1]

⎡

⎢

⎢

⎢

⎣

2

0

0

−1

⎤

⎥

⎥

⎥

⎦

=

1

8 [

1

1]
.

Alle anderen Lösungen haben wegen kern(A) = [1, −1]
ᵀ die Form

x =

1

8 [

1

1]
+ �

[

1

−1]
, � ∈ R. ♣
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2.3 CG- und CGLS-Verfahren

Es sei A ∈ Rn×n eine symmetrische, positive definite Matrix und b ∈ Rn. Das Verfahren
der konjugierten Gradienten oder CG-Verfahren zur Lösung des linearen Gleichungssystems
Ax = b geht davon aus, dass die Lösung x eindeutiges Minimum �(x) = 0 des
Funktionals

�(z) =

1

2

(b − Az)
ᵀ
A
−1
(b − Az) =

1

2

z
ᵀ
Az − z

ᵀ
b +

1

2

b
ᵀ
A
−1
b ≥ 0

ist.
Ausgehend von einer Startnäherung z wollen wir � in die Richtung d minimieren

�(z + �d) = �(z) +

�
2

2

d
ᵀ
Ad − �d

ᵀ
(b − Az) → min

�∈R
.

Aus

)�(z + �d)

)�

= �d
ᵀ
Ad − d

ᵀ
(b − Az)

!

= 0

folgt daher

� =

d
ᵀ
(b − Az)

d
ᵀ
Ad

. (2.11)

Lemma 2.11 Angenommen die Vektoren d0, d1, … , dk seien A-konjugiert, das heißt, es
gelte dᵀ

i
Adj = 0 für alle i ≠ j . Ist

xk = arg min

z∈x0+span{d0 ,d1 ,…,dk−1}

�(z)

und setzt man

xk+1 = xk + �kdk , �k =

d
ᵀ
k
rk

d
ᵀ
k
Adk

, rk = b − Axk , (2.12)

so folgt

xk+1 = arg min

z∈x0+span{d0 ,d1 ,…,dk}

�(z).
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Beweis. Die A-Konjugiertheit der Vektoren {d�} impliziert dᵀ
k
A(x� − x0) = 0 für alle

0 ≤ � ≤ k. Daher folgt

�(xk + �dk) = �(xk) +

�
2

2

d
ᵀ
k
Adk − �d

ᵀ
k
(b − Axk)

= �(xk) +

�
2

2

d
ᵀ
k
Adk − �d

ᵀ
k
(b − Ax0)

= �(xk) + '(�),

das heißt, das Minimierungsproblem entkoppelt. Da nach Voraussetzung xk das Funk-
tional � über x0 + span{d0, d1 … , dk−1} minimiert, wird das eindeutige Minimum
angenommen, wenn '(�) minimal ist. Dies ist aber nach (2.11) genau dann der Fall,
wenn

�k =

d
ᵀ
k
(b − Axk)

d
ᵀ
k
Adk

=

d
ᵀ
k
(b − Ax0)

d
ᵀ
k
Adk

. (2.13)

♠

Die Idee des CG-Verfahrens ist es nun, ausgehend von einer Startnäherung x0, sukzes-
sive über die konjugierten Richtungen dk zu minimieren. Die Folge der Residuen

r0 = b − Ax0, rk+1 = b − Axk+1

(2.12)
= rk − �kAdk , k ≥ 0, (2.14)

erfüllt dann für alle � < k

d
ᵀ
�
rk = d

ᵀ
�
(b − Axk) = d

ᵀ
�
(
b − Ax0 −

k−1

∑

i=0

�iAdi
)

= d
ᵀ
�
(b − Ax0) − ��d

ᵀ
�
Ad�

(2.13)
= 0. (2.15)

Da die Richtungen dk paarweise A-konjugiert und folglich linear unabhängig sind,
ergibt sich rn = 0, das heißt, das CG-Verfahren liefert die Lösung A−1

b nach höchstens
n Schritten. Zu beantworten bleibt daher nur die Frage, wie die Suchrichtungen dk
geschickt gewählt werden können.

Lemma 2.12 Für beliebiges d0 = r0 erzeugt die Rekursion

rk+1 = rk − �kAdk , dk+1 = rk+1 − �kdk , �k =

d
ᵀ
k
Ark+1

d
ᵀ
k
Adk

(2.16)
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solange eine Folge nichtverschwindender A-konjugierter Vektoren d0, d1, … , dk+1 bis rk+1 = 0

ist.

Beweis. Sei

Kk(A, r0) ∶= span{r0, Ar0, … , A
k−1

r0}.

Wir zeigen zunächst induktiv, dass stets gilt

Kk(A, r0) = span{r0, r1, … , rk−1} = span{d0, d1, … , dk−1}.

Da für k = 1 die Aussage klar ist, nehmen wir an, sie gilt für ein k ≥ 1. Dann folgt

rk

(2.16)
= rk−1

⏟⏞⏟⏞⏟

∈Kk(A,r0)

−�k−1 Adk−1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

∈Kk+1(A,r0)

∈ Kk+1(A, r0).

Gemäß (2.15) ist rk ⟂ span{d0, d1, … , dk−1} = Kk(A, r0), dies bedeutet

Kk(A, r0) ⊊ span{r0, r1, … , rk} ⊂ Kk+1(A, r0).

Da die Dimension von Kk+1(A, r0) höchstens um 1 höher ist als die von Kk(A, r0),
muss gelten

Kk+1(A, r0) = span{r0, r1, … , rk}.

Aus rk = dk − �k−1dk−1 folgt

span{d0, d1, … , dk} = span{d0, d1, … , dk−1, rk}

= span{r0, r1, … , rk−1, rk} = Kk+1(A, r0).

Insbesondere muss aus Dimensionsgründen dk ≠ 0 sein.
Es verbleibt die A-Konjugiertheit zu zeigen: Angenommen, d0, d1, … , dk sind A-
konjugiert. Der Induktionsschritt folgt dann aus

d
ᵀ
k
Adk+1

(2.16)
= d

ᵀ
k
A(rk+1 − �kdk)

(2.16)
= d

ᵀ
k
Ark+1 −

d
ᵀ
k
Ark+1

d
ᵀ
k
Adk

d
ᵀ
k
Adk = 0

und für alle � < k

d
ᵀ
�
Adk+1

(2.16)
= d

ᵀ
�
Ark+1 −

d
ᵀ
k
Ark+1

d
ᵀ
k
Adk

d
ᵀ
�
Adk

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=0

= (Ad�)
ᵀ
rk+1 = 0

wegen Ad� ∈ Kk+1(A, r0) ⟂ rk+1. ♠
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Um den CG-Algorithmus endgültig zu formulieren, bemerken wir zunächst, dass gilt

�k

(2.13)
=

d
ᵀ
k
rk

d
ᵀ
k
Adk

(2.16)
=

(rk − �k−1dk−1)
ᵀ
rk

d
ᵀ
k
Adk

(2.15)
=

‖rk‖
2

2

d
ᵀ
k
Adk

. (2.17)

Wegen rk ⊂ Kk+1(A, r0) ⟂ rk+1 folgt ferner

d
ᵀ
k
Ark+1 = (Adk)

ᵀ
rk+1

(2.16)
=

1

�k

(rk − rk+1)
ᵀ
rk+1

(2.17)
= −

d
ᵀ
k
Adk

‖rk‖
2

2

‖rk+1‖
2

2

und damit

�k =

d
ᵀ
k
Ark+1

d
ᵀ
k
Adk

= −

‖rk+1‖
2

2

‖rk‖
2

2

. (2.18)

Kombination von (2.12) und (2.16)–(2.18) liefert schließlich:

Algorithmus 2.13 (CG-Verfahren)
input: Matrix A ∈ Rn×n, rechte Seite b ∈ Rn und Startnäherung x0 ∈ Rn

output: Folge von Iterierten {xk}k>0
À Initialisierung: setze d0 = r0 ∶= b − Ax0 und k ∶= 0

Á berechne

�k ∶=

‖rk‖
2

2

d
ᵀ
k
Adk

xk+1 ∶= xk + �kdk

rk+1 ∶= rk − �kAdk

�k ∶=

‖rk+1‖
2

2

‖rk‖
2

2

dk+1 ∶= rk+1 + �kdk

Â falls ‖rk+1‖2 > " erhöhe k ∶= k + 1 und gehe nach Á

Das CG-Verfahren wird generell als Iterationsverfahren verwendet, das heißt, man
bricht die Iteration ab, falls die Residuennorm ‖rk‖2 kleiner als eine Fehlertoleranz " ist.
Pro Iterationsschritt wird nur eine Matrix-Vektor-Multiplikation benötigt. Allerdings
hängt die Konvergenz des Verfahrens stark von der Kondition der Matrix ab.
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Satz 2.14 Die Iterierten {xk} des CG-Verfahrens genügen bezüglich der Energienorm

‖x‖A ∶=

√

⟨x, x⟩A =

√

x
ᵀ
Ax

der Fehlerabschätzung

‖x − xk‖A ≤ 2
(

√

cond2 A − 1

√

cond2 A + 1)

k

‖x − x0‖A.

Beweis. Wegen rk = b − Axk = A(x − xk) folgt
‖x − xk‖

2

A
= (b − Axk)

ᵀ
A
−1
(b − Axk)

= min

z∈x0+Kk(A,r0)

‖x − z‖
2

A

= min

c∈Rk

‖x − x0 − c1r0 − c2Ar0 − ⋯ − ckA
k−1

r0‖
2

A

= min

c∈Rk

‖(x − x0) − c1A(x − x0) − c2A
2
(x − x0) − ⋯ − ckA

k
(x − x0)‖

2

A

= min

c∈Rk

‖(I − c1A − c2A
2
− ⋯ − ckA

k

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=p(A)

)(x − x0)‖
2

A

= min

p∈�k∶p(0)=1

‖p(A)(x − x0)‖
2

A
.

Da A ∈ Rn×n symmetrisch und positiv definit ist, existieren n Eigenwerte 0 < �1 ≤

�2 ≤ ⋯ ≤ �n und zugehörige orthonormale Eigenvektoren {vi}ni=1. Hiermit ergibt sich

x − x0 =

n

∑

i=1

v
ᵀ
i
(x − x0)vi =

n

∑

i=1


ivi

und

‖x − x0‖
2

A
=

n

∑

i,j=1


i
jv
ᵀ
i
Avj =

n

∑

i=1

|
i|
2
�i.

Für ein beliebiges Polynom p folgt daher

‖p(A)(x − x0)‖
2

A
=

‖
‖
‖
‖
‖

n

∑

i=1


ip(A)vi

‖
‖
‖
‖
‖

2

A

=

‖
‖
‖
‖
‖

n

∑

i=1


ip(�i)vi

‖
‖
‖
‖
‖

2

A

=

n

∑

i=1

|
i|
2
|p(�i)|

2
�i

≤
(

n

max
i=1

|p(�i)|
2

)

n

∑

i=1

|
i|
2
�i =

n

max
i=1

|p(�i)|
2
‖x − x0‖

2

A
.
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Wir werden nun ein spezielles Polynom q ∈ {p ∈ �k ∶ p(0) = 1} angeben, für
das sich die gewünschte Fehlerabschätzung ergibt. Dazu wählen wir das (k + 1)-te
Tschebyscheff-Polynom

Tk(t) =

{

cos(k arccos t), |t| ≤ 1

1

2

{

(t +

√

t
2
− 1)

k
+ (t +

√

t
2
− 1)

−k

}

, |t| > 1

und setzen

q(�) =

Tk((�n + �1 − 2�)/(�n − �1))

Tk((�n + �1)/(�n − �1))

.

Wegen

� ∈ [�1, �n] ⟺

�n + �1 − 2�

�n − �1

∈ [−1, 1]

undmax|t|≤1 |Tk(t)| = 1 folgt daher

n

max
i=1

|q(�i)| =

1

Tk((�n + �1)/(�n − �1))

=

2

c
k
+ c

−k

mit

c =

�n + �1

�n − �1

+

√

(

�n + �1

�n − �1)

2

− 1 =

√

�n

�1

+ 1

√

�n

�1

− 1

=

√

cond2 A + 1

√

cond2 A − 1

.

Zusammengefasst haben wir damit schließlich gezeigt, dass

‖x − xk‖A ≤

n

max
i=1

|p(�i)|‖x − x0‖A ≤

2c
−k

1 + c
−2k

‖x − x0‖A ≤ 2c
−k
‖x − x0‖A. ♠

Bemerkung Aus der Approximationstheorie ist bekannt, dass das im obigen Beweis
verwendete Polynom auf die kleinstmögliche obere Schranke führt. �

Wir wollen das CG-Verfahren nun dazu verwenden, die Normalengleichungen

A
ᵀ
Ax = A

ᵀ
b

zu lösen im Falle rechteckigerMatrizenA ∈ Rm×n mitm ≥ n = rang(A). Allerdings soll
das explizite Ausmultiplizieren der MatrixAᵀ

A vermieden werden, da deren Kondition
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wesentlich schlechter ist als die von A. Zudem ist mit der Matrix A nicht notwendig
auch A

ᵀ
A dünnbesetzt.

Es bezeichne rk = b − Axk das Residuum und

sk = A
ᵀ
b − A

ᵀ
Axk = A

ᵀ
rk

das Residuum der Normalengleichungen. Die Berechnung von sk+1 geschieht dann im
Algorithmus am besten in zwei Schritten

rk+1 ∶= rk − �kAdk , sk+1 = A
ᵀ
rk+1.

Benutzt man ferner

�k =

‖sk‖
2

2

d
ᵀ
k
(A

ᵀ
A)dk

=

‖sk‖
2

2

‖Adk‖
2

2

,

so kann die explizite Multiplikation Aᵀ
A vollständig vermieden werden:

Algorithmus 2.15 (CGLS-Verfahren)
input: Matrix A ∈ Rm×n, rechte Seite b ∈ Rm und Startnäherung x0 ∈ Rn

output: Folge von Iterierten {xk}k>0
À Initialisierung: setze r0 = b − Ax0, d0 = s0 ∶= A

ᵀ
r0 und k ∶= 0

Á berechne

�k ∶=

‖sk‖
2

2

‖Adk‖
2

2

xk+1 ∶= xk + �kdk

rk+1 ∶= rk − �kAdk

sk+1 ∶= A
ᵀ
rk+1

�k ∶=

‖sk+1‖
2

2

‖sk‖
2

2

dk+1 ∶= sk+1 + �kdk

Â falls ‖sk+1‖2 > " erhöhe k ∶= k + 1 und gehe nach Á
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Proposition 2.16 Die k-te Iterierte xk des CGLS-Verfahrens liegt im verschobenen Krylov-
Raum

x0 + Kk(A
ᵀ
A,A

ᵀ
r0) = x0 + span{A

ᵀ
r0, (A

ᵀ
A)A

ᵀ
r0, … , (A

ᵀ
A)

k−1
A

ᵀ
r0}.

Unter allen diesen Elementen z dieses affinen Raums minimiert xk die Residuennorm ‖b−Az‖2.

Beweis. Gemäß der Konstruktion des CG-Verfahrens minimiert die Iterierte xk das
Funktional

�(z) = (A
ᵀ
b − A

ᵀ
Az)

ᵀ
(A

ᵀ
A)

−1
(A

ᵀ
b − A

ᵀ
Az)

= (b − Az)
ᵀ
A(A

ᵀ
A)

−1
A

ᵀ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=I

(b − Az)

= ‖b − Az‖
2

2

unter allen Elementen z ∈ x0 + Kk(A
ᵀ
A,A

ᵀ
r0). ♠

Bemerkung Man kann das CGLS-Verfahren sogar auf beliebige Matrizen A ∈ Rm×n

anwenden, insbesondere auf Matrizen ohne vollen Rang, falls man einen Startvektor
x0 ∈ img(A

ᵀ
A) = kern(A

ᵀ
A)

⟂ wählt, beispielsweise x0 = 0. Da

A
ᵀ
r0 = A

ᵀ
(b − Ax0) ∈ img(A

ᵀ
A) ⟂ kern(A

ᵀ
A),

gilt für die Iterierten stets

xk ∈ x0 + Kk(A
ᵀ
A,A

ᵀ
r0) ∈ img(A

ᵀ
A) ⟂ kern(A

ᵀ
A).

Mit anderen Worten, man iteriert nur orthogonal zum Kern von A
ᵀ
A. Daher folgt

insbesondere, dass xk auch stets die Lösung mit der kleinsten Euklid-Norm ist. �
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3
Nichtlineare

Ausgleichsprobleme

3.1 Gradientenverfahren

Ein nichtlineares Ausgleichsproblem liegt vor, falls zu gegebenen Daten und Funktionen

y =

⎡

⎢

⎢

⎢

⎣

y1

y2

⋮

ym

⎤

⎥

⎥

⎥

⎦

∈ Rm
, f(z) =

⎡

⎢

⎢

⎢

⎣

f1(z1, z2, … , zn)

f2(z1, z2, … , zn)

⋮

fm(z1, z2, … , xn)

⎤

⎥

⎥

⎥

⎦

∶ Rn
→ Rm

dasjenige x = [x1, x2, … , xn]
ᵀ gesucht wird, das die Minimierungsaufgabe

�(z) ∶=

1

2

‖y − f(z)‖
2

2
=

1

2

m

∑

i=1

|yi − fi(z1, z2, … , zn)|
2
→ min

z∈Rn

(3.1)

löst.
Nichtlineare Ausgleichsprobleme können im allgemeinen nur iterativ gelöst werden.
Da hierzu Gradienteninformationen benötigt wird, setzen wir f als stetig differenzierbar
voraus. Die Ableitung f′ sei zusätzlich sogar Lipschitz-stetig.
Zunächst wollen wir das Gradientenverfahren betrachten, das auch Verfahren des steilsten
Abstiegs genannt wird. Die Idee dabei ist, die Iterierte xk in Richtung des Antigradienten

−∇�(xk) = (f
′
(xk))

ᵀ
(y − f(xk)), f

′
(xk) =

⎡

⎢

⎢

⎢

⎢

⎣

)f1

)z1

(xk)
)f1

)z2

(xk) …
)f1

)zn

(xk)

)f2

)z1

(xk)
)f2

)z2

(xk) …
)f2

)zn

(xk)

⋮ ⋮ ⋮

)fm

)z1

(xk)
)fm

)z2

(xk) …
)fm

)zn

(xk)

⎤

⎥

⎥

⎥

⎥

⎦
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so aufzudatieren

xk+1 = xk − �k∇�(xk), �k > 0,

dass �(xk+1) < �(xk) ist. Dass dies im Fall ∇�(xk) ≠ 0 immer möglich ist, zeigt uns das
nächste Lemma.

Lemma 3.1 Vorausgesetzt es ist �′(xk) ≠ 0, dann gibt es ein � > 0, so dass die Funktion

'(�) = �(xk − �∇�(xk))

für alle 0 ≤ � ≤ � streng monoton fällt. Insbesondere gilt

�(xk − �∇�(xk)) < '(0) = �(xk).

Beweis. Die Funktion ' ist stetig differenzierbar und es gilt

'
′
(0) =

d

d�

�(xk − �∇�(xk))

|
|
|�=0

= −‖∇�(xk)‖
2

2
< 0.

Aus Stetigkeitsgründen folgt die Existenz eines � > 0 mit '′(�) < 0 für alle 0 ≤ � ≤ �

und damit die Behauptung. ♠

Algorithmus 3.2 (Gradientenverfahren)
input: Funktion � ∶ Rn

→ R und Startnäherung x0 ∈ Rn

output: Folge von Iterierten {xk}k>0

À Initialisierung: wähle � ∈ (0, 1) und setze k ∶= 1

Á berechne den Gradienten ∇�(xk) und setze �k ∶= 1

Â solange

�(xk − �k∇�(xk)) > �(xk) − ��k‖∇�(xk)‖
2

2
(3.2)

setze �k ∶= �k/2

Ã setze xk+1 ∶= xk − �k∇�(xk)

Ä erhöhe k ∶= k + 1 und gehe nach Á
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Bemerkung Man beachte die modifizierte Abbruchbedingung der Liniensuche in
(3.2), die nicht nur �(xk+1) < �(xk) garantiert, sondern die Armijo-Goldstein-Bedingung

�(xk − �k∇�(xk)) ≤ �(xk) − ��k‖∇�(xk)‖
2

2
. (3.3)

Dass die Liniensuche mit einem �k > 0 abbricht, folgt aus

�(xk−�∇�(xk)) = '(�) = '(0)+�'
′
(0)+O(�

2
) = �(xk)−�‖∇�(xk)‖

2

2
+O(�

2
).

�

Satz 3.3 Es sei D ⊂ Rn eine offene Menge, in der f stetig differenzierbar und f′ zudem
Lipschitz-stetig ist. Ferner sei neben x0 auch die gesamte Niveaumenge {z ∈ Rn

∶ �(z) ≤

�(x0)} in D enthalten. Dann gilt für die Iterierten {xk}k≥0 aus Algorithmus 3.2

∇�(xk) → 0, k → ∞.

Beweis. Da D die gesamte Niveaumenge enthält, ist sichergestellt, dass die Iterierten
{xk}k≥0 alle inD enthalten ist. NachKonstruktion ist dann die Folge {�(xk)}k≥0 monoton
fallend und nach unten beschränkt. Daher folgt aus der Armijo-Goldstein-Bedingung
(3.3), dass

�(x0) ≥ �(x1) + ��0‖∇�(x0)‖
2

2
≥ ⋯ ≥ �(xk+1) + �

k

∑

�=0

��‖∇�(x�)‖
2

2
≥ 0.

Da die Reihe auf der rechten Seite notwendigerweise für k → ∞ konvergent ist, folgt

�k‖∇�(xk)‖
2

2
→ 0, k → ∞. (3.4)

Es verbleibt zu zeigen, dass �k > " für ein " > 0.
Für festes k ist aufgrund von Algorithmus 3.2 �k = 1 oder die Armijo-Goldstein-
Bedingung ist für 2�k verletzt:

2��k‖∇�(xk)‖
2

2
> �(xk) − �(xk − 2�k∇�(xk)) = 2�k‖∇�(xk)‖

2

2
− R2(xk , 2�k)

mit dem Taylor-Restglied

R2(xk , 2�k) = 2�k
(
‖∇�(xk)‖

2

2
− �

′

(xk − �∇�(xk))∇�(xk))
, � ∈ (0, 2�k).

Da f′ Lipschitz-stetig ist, ist das Taylor-Restglied R2(xk , 2�k) durch 
�2k ‖∇�(xk)‖22 für
ein geeignetes 
 > 0 beschränkt. Daher ist


�
2

k
‖∇�(xk)‖

2

2
> 2�k‖∇�(xk)‖

2

2
− 2��k‖∇�(xk)‖

2

2
= 2�k(1 − �)‖∇�(xk)‖

2

2
,
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dies bedeutet

�k >

2(1 − �)




=∶ " > 0.

Somit bleibt �k für alle k ≥ 0 größer alsmin{1, "} und daher folgt die Behauptung aus
(3.4). ♠

Beachte: Satz 3.3 besagt nicht, dass die Folge {xk}k≥0 selber konvergiert. Selbst wenn
die Folge {xk}k≥0 konvergiert, braucht der Grenzwert darüber hinaus kein Minimum
von � zu sein.
Beispiel 3.4 Gegeben sei die Funktion f(� , �) = [�, �

2
− 1, �(�

2
− 1)]

ᵀ und der
Datenvektor y = 0. Wir betrachten das nichtlineare Ausgleichsproblem

�(�, �) = ‖y − f(� , �)‖
2

2
= �

2
+ (�

2
− 1)

2
+ �

2
(�

2
− 1)

2
→ min .

Das Minimum von � ist 0 und wird offensichtlich für � = 0 und � = ±1 angenommen.
Hat eine Iterierte xk von Algorithmus 3.2 die Form xk = [�k , 0]

ᵀ, dann gilt

∇�(xk) =
[

2� + 2�(�
2
− 1)

2

2�(�
2
− 1)(1 + �

2
)]

|
|
|
|(� ,�)=(�k ,0)

=
[

4�k

0 ]
.

Daher hat die nächste Iterierte zwangsläufig wieder die Form xk+1 = [�k+1, 0]
ᵀ und

nach Satz 3.3 konvergiert ∇�(xk) = [4�k , 0]
ᵀ gegen Null. Deshalb streben auch �k und

xk gegen Null für k → ∞. Dennoch ist [0, 0]ᵀ lediglich ein Sattelpunkt von �, da
�(0, �) für � = 0 ein lokales Maximum aufweist. ♣

3.2 Gauß-Newton-Verfahren

Natürlich kann man das nichtlineare Ausgleichsproblem (3.1) auch mit dem Newton-
Verfahren für die Gleichung

∇�(z) = −(f
′
(z))

ᵀ
(y − f(z))

!

= 0

lösen, was der Iteration

xk+1 = xk − (�
′′
(xk))

−1

∇�(xk), k = 0, 1, 2, …



3.2 Gauß-Newton-Verfahren 65

entspricht. Hierzu wird jedoch neben dem Gradienten ∇� auch die Hesse-Matrix
benötigt, das ist

�
′′
(z) = (f

′
(z))

ᵀ
f
′
(z) − (y − f(z))

ᵀ
f
′′
(z).

In der Praxis will man die Berechnung des Tensors f′′(z) ∈ Rm×(n×n) jedoch vermeiden.
Daher vernachlässigt man den Term (y − f(z))

ᵀ
f
′′
(z) und erhält das Gauß-Newton-

Verfahren.

Zu dessen Herleitung linearisieren wir die Funktion f

f(z + h) = f(z) + f
′
(z)h + o(‖h‖2).

Ist nun xk eine Näherungslösung des Ausgleichsproblems (3.1), so erwartet man, dass
die Optimallösung xk+1 = xk + dk des linearisierten Problems

min

h∈Rn

‖y − f(xk) − f
′
(xk)h‖

2

2
= ‖rk − f

′
(xk)dk‖

2

2
, rk = y − f(xk)

eine bessere Lösung des Ausgleichsproblems ist. Gemäß Definition muss das Update dk
die Normalengleichungen

(f
′
(xk))

ᵀ
f
′
(xk)dk = (f

′
(xk))

ᵀ
rk

lösen. Dies führt auf folgenden Algorithmus:

Algorithmus 3.5 (Gauß-Newton-Verfahren)
input: Funktion f ∶ Rn

→ Rm, Datenvektor y ∈ Rm und Startnäherung x0 ∈ Rn

output: Folge von Iterierten {xk}k>0
À Initialisierung: setze k = 0

Á löse die Normalengleichungen

(f
′
(xk))

ᵀ
f
′
(xk)dk = (f

′
(xk))

ᵀ
(y − f(xk)) (3.5)

Â setze xk+1 ∶= xk + dk

Ã erhöhe k ∶= k + 1 und gehe nach Á
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Satz 3.6 Sei D ⊂ Rn offen und f ∶ D → Rm eine stetig differenzierbare Abbildung. Das
Minimierungsproblem (3.1) habe eine Lösung x ∈ D mit rang (f′(x)) = n ≤ m. Sei � > 0

der kleinste Eigenwert von (f′(x))
ᵀ
f
′
(x). Ferner gelte die Lipschitz-Bedingung

‖f
′
(z) − f

′
(x)‖2 ≤ �‖z − x‖2 (3.6)

und

‖
‖(
f
′
(z) − f

′
(x))

ᵀ
(y − f(x))

‖
‖2
≤ �‖z − x‖2 (3.7)

mit � < � für alle z aus einer Umgebung von x. Dann existiert ein " > 0, so dass für jeden
Startvektor x0 ∈ B"(x) die Folge der Iterierten {xk}k≥0 mindestens linear gegen x konvergiert.

Beweis. Nach Voraussetzung gibt es ein "1 > 0, so dass (3.6) und (3.7) für alle z ∈

B"1
(x) gelten. Aus Stetigkeitsgründen folgt außerdem die Existenz von 
 > 0, so dass

‖f
′
(z)‖2 ≤ 
 für alle z ∈ B"1

(x).

Wegen rang (f′(x)) = n ist die Matrix (f′(x))
ᵀ
f
′
(x) regulär mit

‖
‖
‖
‖
((

f
′
(x))

ᵀ
f
′
(x)

)

−1‖
‖
‖
‖2

=

1

�

. (3.8)

Daher gibt es zu beliebigem � > 1 ein "2 > 0 derart, dass (f′(z))
ᵀ
f
′
(z) regulär ist und

‖
‖
‖
‖
(
f
′
(z))

ᵀ
f
′
(z)

)

−1‖
‖
‖
‖2

≤

�

�

für alle z ∈ B"2
(x). (3.9)

Wir wählen � > 1 derart, dass zusätzlich gilt

� <

�

�

. (3.10)

Weiter gibt es ein "3 > 0, so dass für jedes xk ∈ B"3(x) folgt

‖f(x) − f(xk) − f
′
(xk)(xk − x)‖2

=

‖
‖
‖
‖
∫

1

0

f
′

(x + t(xk − x))(xk − x) dt − f
′
(xk)(xk − x)

‖
‖
‖
‖2

=

‖
‖
‖
‖
∫

1

0
(
f
′

(x + t(xk − x)) − f
′
(xk)

)
(xk − x) dt

‖
‖
‖
‖2



3.2 Gauß-Newton-Verfahren 67

und damit
‖f(x) − f(xk) − f

′
(xk)(xk − x)‖2

≤
∫

1

0

‖
‖
f
′

(x + t(xk − x)) − f
′
(xk)

‖
‖2
dt ‖xk − x‖2

≤ �
∫

1

0

‖(t − 1)(xk − x)‖2 dt ‖xk − x‖2 =

�

2

‖xk − x‖
2

2
.

Wir setzen nun

" ∶= min

{

"1, "2, "3,

� − ��

�
�

}

> 0.

Aus (3.5) folgt für xk ∈ B"(x) dann
xk+1 − x = xk + dk − x

=
((

f
′
(xk))

ᵀ
f
′
(xk)

)

−1

[(
f
′
(xk))

ᵀ
(y − f(xk))

− (f
′
(xk))

ᵀ
f
′
(xk)(x − xk)

]

=
((

f
′
(xk))

ᵀ
f
′
(xk)

)

−1

[(
f
′
(xk))

ᵀ
(y − f(x))

+ (f
′
(xk))

ᵀ
(f(x) − f(xk) − f

′
(xk)(x − xk))]

.

Hieraus ergibt sich mit (3.8) und (3.9)

‖xk+1 − x‖2 ≤

‖
‖
‖
‖
((

f
′
(xk))

ᵀ
f
′
(xk)

)

−1‖
‖
‖
‖2
[

‖
‖(
f
′
(xk))

ᵀ
(y − f(x))

‖
‖2

+ ‖f
′
(xk)‖2‖f(x) − f(xk) − f

′
(xk)(x − xk)‖2

]

≤

�

�[

‖
‖(
f
′
(xk))

ᵀ
(y − f(x))

‖
‖2
+

�


2

‖xk − x‖
2

2
]
. (3.11)

Wegen 0 = ∇�(x) = −(f
′
(x))

ᵀ
(y − f(x)) erhalten wir aufgrund von (3.7)

‖
‖(
f
′
(xk))

ᵀ
(y − f(x))

‖
‖2
=
‖
‖(
f
′
(xk) − f

′
(x))

ᵀ
(y − f(x))

‖
‖2
≤ �‖xk − x‖2,

dies bedeutet,

‖xk+1 − x‖2 ≤

�

�[
� +

�


2

‖xk − x‖2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤"≤(�−��)/(�
�)

]
‖xk − x‖2 ≤

[

��

�

+

� − ��

2�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=(�+��)/(2�)

]
‖xk − x‖2.
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Wegen (3.10) ist die Konstante (� + ��)/(2�) < 1, das heißt, alle Iterierten {xk}k≥0

liegen in B"(x) und konvergieren mindestens linear gegen x. ♠

Bemerkung Die Voraussetzung (3.7) besagt im Prinzip, dass das Residuum

r(x) = y − f(x)

klein genug sein soll. Dies sieht man insbesondere, wenn man sie durch die stärkere
Bedingung

‖y − f(x)‖2 <

�

�

ersetzt. Dann folgt nämlich (3.7):

‖
‖(
f
′
(z) − f

′
(x))

ᵀ
(y − f(x))

‖
‖2
≤ ‖f

′
(z) − f

′
(x)‖2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤�‖z−x‖2

‖y − f(x)‖2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

<�/�

< �‖z − x‖2. �

Korollar 3.7 Zusätzlich zu den Voraussetzungen aus Satz 3.6 gelte f(x) = y. Dann
existiert ein " > 0, so dass für jeden Startvektor x0 ∈ B"(x) die Folge der Iterierten {xk}k≥0
quadratisch gegen x konvergiert.

Beweis. Aus Satz 3.6 folgt die lineare Konvergenz der Iterierten {xk}k≥0 gegen x. Zum
Nachweis der quadratischen Konvergenz bemerken wir, dass aufgrund der Vorausset-
zung (3.7) mit � = 0 gilt. Daher folgt aus (3.11)

‖xk+1 − x‖2 ≤

�

�

�


2

‖xk − x‖
2

2
. ♠

3.3 Levenberg-Marquardt-Verfahren

Das Levenberg-Marquardt-Verfahren ist ein Trust-Region-Verfahren, also ein Verfahren,
bei dem der Linearisierung nur im Bereich ‖dk‖2 ≤ � vertraut wird. Demnach wollen
wir das restringierte Optimierungsproblem

min

h∈Rn
∶‖h‖2≤�

 (h) = min

h∈Rn
∶‖h‖2≤�

1

2

‖rk − f
′
(xk)h‖

2

2
, (3.12)

lösen, um die Iterierte dann mit der Lösung dk aufzudatieren: xk+1 = xk + dk.
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Da die Menge B�(0) kompakt ist, existiert ein Minimum dk . Es treten dabei zwei Fälle
auf:

1. Das Minimum dk liegt im Inneren der Kugel B�(0) und erfüllt

∇ (dk) = (f
′
(xk))

ᵀ
(f

′
(xk)dk − rk) = 0. (3.13)

2. Das Minimum liegt auf dem Rand, erfüllt also ‖h‖2 = �. In diesem Fall muss
die Höhenlinie von  in dk genau den Kreis )B�(0) tangieren, das heißt, der
Gradient ∇ (dk) zeigt in Richtung des Nullpunkts:

∇ (dk) = (f
′
(xk))

ᵀ
(f

′
(xk)dk − rk) = −�kdk für ein �k ≥ 0. (3.14)

Da die Gleichung (3.13) als Grenzfall �k = 0 von (3.14) angesehen werden kann,
erhalten wir:

Lemma 3.8 Die Lösung dk des restringierten Problems (3.12) genügt der Gleichung

((
f
′
(xk))

ᵀ
f
′
(xk) + �kI

)
dk = (f

′
(xk))

ᵀ
rk (3.15)

für ein �k ≥ 0. Dabei ist der Wert �k genau dann positiv, wenn ‖dk‖2 = � > 0 gilt.

Der Vorteil des regularisierten Systems (3.15) liegt darin, dass es stets eindeutig lösbar
ist, sofern �k > 0 ist. Die zugehörige Lösung

dk =
((

f
′
(xk))

ᵀ
f
′
(xk)+�kI

)

−1

(f
′
(xk))

ᵀ
rk = −

((
f
′
(xk))

ᵀ
f
′
(xk)+�kI

)

−1

∇�(xk)

erfüllt offenbar die Abstiegsbedingung dᵀ
k
∇�(xk) < 0, es sei denn, der Punkt xk ist

stationär.
Bemerkung Ist �k = 0, dann ergibt sich ein Gauß-Newton-Schritt, während dk für
�k → ∞ der Richtung des steilsten Abstiegs entspricht. �

Wir müssen uns noch ein Kriterium überlegen, wie wir �wählen. Eine neue Näherung
xk+1 = xk +dk können wir anhand der Armijo-Goldstein-Bedingung (vergleiche (3.3))
bewerten:

� =

�(xk + dk) − �(xk)

d
ᵀ
k
∇�(xk)

=

1

2

‖y − f(xk)‖
2

2
− ‖y − f(xk + dk)‖

2

2

d
ᵀ
k (
f
′
(xk))

ᵀ
(y − f(xk))

.
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Wir wählen zwei Toleranzgrenzen 0 < �
−
< �

+
< 1 und akzeptieren den Iterations-

schritt, wenn � > �
− gilt. Dann war der Trust-Region-Radius � geeignet gewählt. Ist

� > �
+, so können wir � sogar vergrößern. Ist hingegen � ≤ �

−, dann verwerfen wir
den Iterationsschritt und verkleinern �. Damit erhalten wir schließlich den folgenden
Algorithmus:

Algorithmus 3.9 (Levenberg-Marquardt-Verfahren)
input: Funktion f ∶ Rn

→ Rm, Datenvektor y ∈ Rm und Startnäherung x0 ∈ Rn

output: Folge von Iterierten {xk}k>0

À Initialisierung: wähle 0 < �
−
< �

+
< 1 und setze �0 ∶= 1 und k ∶= 0

Á bestimme die Lösung dk des restringierten Optimierungsproblems (3.12)

Â berechne

�k =

1

2

‖y − f(xk)‖
2

2
− ‖y − f(xk + dk)‖

2

2

d
ᵀ
k (
f
′
(xk))

ᵀ
(y − f(xk))

(3.16)

Ã falls �k > �
− setze xk+1 ∶= xk + dk , sonst setze �k ∶= �k/2 und gehe nach Á

Ä falls �k > �
+ setze �k+1 ∶= 2�k , sonst setze �k+1 ∶= �k

Å erhöhe k ∶= k + 1 und gehe nach Á

Satz 3.10 Es sei D ⊂ Rn eine kompakte Menge, in der f stetig differenzierbar und f′ zudem
Lipschitz-stetig ist. Ferner sei neben x0 auch die gesamte Niveaumenge {z ∈ Rn

∶ �(z) ≤

�(x0)} in D enthalten. Dann gilt für die Iterierten {xk}k≥0 aus Algorithmus 3.9

∇�(xk) → 0, k → ∞.

Beweis. (i) Zunächst beweisen wir eine obere Schranke für den Lagrange-Parameter
�k aus (3.15). Dazu nehmen wir ohne Beschränkung der Allgemeinheit an, dass �k > 0

und daher ‖dk‖2 = �k ist. Aus (3.15) folgt

d
ᵀ
k((

f
′
(xk))

ᵀ
f
′
(xk) + �kI

)
dk = d

ᵀ
k (
f
′
(xk))

ᵀ
rk ≤ ‖dk‖2

‖
‖(
f
′
(xk))

ᵀ
rk
‖
‖2
.

Da (f′(xk))
ᵀ
f
′
(xk) positiv semidefinit ist, kann die linke Seite nach unten durch �k
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abgeschätzt werden, so dass folgt

�k ≤

‖
‖(
f
′
(xk))

ᵀ
rk
‖
‖2

�k

=

‖∇�(xk)‖2

�k

. (3.17)

(ii) Als nächstes leiten wir eine untere Schranke für den Nenner �k in (3.16) her. Im
Fall �k > 0 ist (f′(xk))

ᵀ
f
′
(xk) + �kI positiv definit, weshalb eine Cholesky-Zerlegung

LL
ᵀ existiert. Dabei gilt

‖L
ᵀ
L‖2 = ‖LL

ᵀ
‖2 =

‖
‖(
f
′
(xk))

ᵀ
f
′
(xk) + �kI

‖
‖2
= ‖f

′
(xk)‖

2

2

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

≤ c für alle z ∈ D

+�k

(3.17)
≤ c +

‖∇�(xk)‖2

�k

.

Setzen wir w = L
−1
∇�(xk), so folgt unter Beachtung von (3.15) hieraus

�k = (∇�(xk))

ᵀ
(LL

ᵀ
)
−1
∇�(xk) = w

ᵀ
w

‖∇�(xk)‖
2

2

(∇�(xk))

ᵀ
∇�(xk)

=

‖w‖
2

2
‖∇�(xk)‖

2

2

w
ᵀ
L
ᵀ
Lw

≥

‖w‖
2

2
‖∇�(xk)‖

2

2

‖w‖
2

2(c + ‖∇�(xk)‖2/�k)

≥

‖∇�(xk)‖2

1 + c

min{�k , ‖∇�(xk)‖2}. (3.18)

Im Fall �k = 0 folgt

�k = r
ᵀ
k
f
′
(xk)(f

′
(xk))

+

rk = ‖Pkrk‖
2

2
,

wobei Pk = f
′
(xk)(f

′
(xk))

+ den Orthogonalprojektor auf img (f
′
(xk)) bezeichnet.

Wegen img (f
′
(xk)) = kern

((
f
′
(xk))

ᵀ

)

⟂

folgt daher

‖∇�(xk)‖
2

2
=
‖
‖(
f
′
(xk))

ᵀ
rk
‖
‖

2

2
=
‖
‖(
f
′
(xk))

ᵀ
Pkrk

‖
‖

2

2
≤
‖
‖(
f
′
(xk))

ᵀ
‖
‖

2

2
‖Pkrk‖

2

2
≤ c�k ,

das heißt, (3.18) ist auch im Fall �k = 0 gültig.
(iii)Wir beweisen nun, dass die rechte Seite von (3.18) gegen Null konvergiert. Bei
erfolgreichem Iterationsschritt ist �k > �

− und aus (3.16) und (3.18) folgt

�(xk) − �(xk+1) > �
−
�k ≥

�
−
‖∇�(xk)‖2

1 + c

min{�k , ‖∇�(xk)‖2}. (3.19)

Da nach Konstruktion {�(xk)}k≥0 eine monoton fallende, nach unten beschränkte Folge
ist, muss gelten

min{�k , ‖∇�(xk)‖2} → 0, k → ∞. (3.20)
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(iv) Als nächstes zeigen wir, dass ‖∇�(xk)‖2 für eine Teilfolge {kn}n∈N gegen Null kon-
vergiert für kn → ∞. Angenommen, die Behauptung gilt nicht, dann folgt

‖∇�(xk)‖2 ≥ " > 0 für alle k ≥ K(").

Aus (3.20) ergibt sich damit unmittelbar

�k → 0, k → ∞. (3.21)

Taylor-Entwicklung von �k liefert jedoch

�k =

�(xk+1) − �(xk)

d
ᵀ
k
∇�(xk)

=

d
ᵀ
k
∇�(xk) + O(‖dk‖

2

2
)

d
ᵀ
k
∇�(xk)

= 1 + O
(

�
2

k

�k )

(3.18)
= 1 + O

(

�k

‖∇�(xk)‖2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥">0

)
= 1 + O(�k), k → ∞.

Demnach existiert ein M(") ≥ K("), so dass �k > �
+ für alle k ≥ M("). Ab dem

M(")-ten Schritt wird folglich �k in jedem Schritt von Algorithmus 3.9 verdoppelt,
was jedoch imWiderspruch zu (3.21) steht.
(v)Wir beweisen nun die Aussage des Satzes. Dazu nehmen wir an, dass eine Teilfolge
von {‖∇�(xk)‖2}k≥0 nicht gegen Null konvergiert. Nach Aussage (iv) existiert dann ein
" > 0 und zwei Indizes � < m, so dass

‖∇�(x�)‖2 ≥ 2", ‖∇�(xm)‖2 ≤ ", ‖∇�(xk)‖2 > ", k = � + 1,… ,m − 1.

Da {�(xk)}k≥0 eine Cauchy-Folge ist, kann � dabei so groß gewählt werden, dass

�(x�) − �(xm) <

"
2
�
−

(1 + c)L

, (3.22)

wobei L > 1 eine Lipschitz-Konstante von∇� inD bezeichne.Wegen ‖xk+1−xk‖2 ≤ �k

folgt aus (3.19) dass

�(xk) − �(xk+1) ≥

"�
−

1 + c

min{‖xk+1 − xk‖2, "}, k = �, � + 1, … ,m − 1.

Summation ergibt

"�
−

1 + c

m−1

∑

k=�

min{‖xk+1 − xk‖2, "} ≤ �(x�) − �(xm)

(3.22)
<

"
2
�
−

(1 + c)L

,
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was wegen L > 1 nur erfüllt sein kann, wenn

min{‖xk+1 − xk‖2, "} = ‖xk+1 − xk‖2, k = �, � + 1, … ,m − 1,

und insgesamt

m−1

∑

k=�

‖xk+1 − xk‖2 <

"

L

gilt. Dies ergibt

‖∇�(xm) − ∇�(x�)‖2 ≤ L‖xm − x�‖2 ≤ L

m−1

∑

k=�

‖xk+1 − xk‖2 < "

im Widerspruch zur Annahme. Damit ist der Satz bewiesen. ♠

Wir kommen nun zur Implementierung. Um das restringierte Minimierungsproblem
(3.12) zu lösen, berechnen wir zunächst die Lösung dk bezüglich des unrestringierten
Minimierungsproblems und akzeptieren den Schritt, falls ‖dk‖2 ≤ �k. Ist hingegen
‖dk‖2 > �k, so wissen wir, dass das Minimum von (3.12) auf dem Rand liegt. Wir
suchen dann dasjenige Tupel (�k , dk), das (3.15) und ‖dk‖2 = �k löst.

Es bezeichne z1 ≥ ⋯ ≥ zn ≥ 0 die Eigenwerte von (f
′
(xk))

ᵀ
f
′
(xk) und {vi}

n

i=1
die

zugehörigen orthonormalen Eigenvektoren. Entwickeln wir die rechte Seite von (3.15)
in diese Eigenbasis

(f
′
(xk))

ᵀ
rk =

n

∑

i=1

�ivi,

dann folgt

dk(�k) =
((

f
′
(xk))

ᵀ
f
′
(xk) + �kI

)

−1
n

∑

i=1

�ivi =

n

∑

i=1

�i

zi + �k

vi.

Die Forderung ‖dk(�k)‖2 = �k führt auf die nichtlineare Gleichung

r(�k) ∶=

n

∑

i=1

|�i|
2

|zi + �k |
2

!

= �
2

k
.
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Diese kann mit dem Hebden-Verfahren gelöst werden, einem Newton-Verfahren für die
Gleichung

1

√

r(�)

−

1

�k

!

= 0.

Ausgehend vom Startwert �(0) = 0 konvergiert die zugehörige Iteration

�
(i+1)

= �
(i)
+ 2

r
3/2

(�
(i)
)

r
′
(�

(i)
) (

r
−1/2

(�
(i)
) −

1

�k)
, i = 0, 1, 2, … .

sehr schnell gegen die Lösung �k. Die explizite Spektralzerlegung kann vermieden
werden, indem man r(�) = ‖dk(�)‖

2

2
und

r
′
(�) = −2r

ᵀ
k
f
′
(xk)

((
f
′
(xk))

ᵀ
f
′
(xk) + �I

)

−3

(f
′
(xk))

ᵀ
rk = −2dk(�)

ᵀ
g(�)

mit
((

f
′
(xk))

ᵀ
f
′
(xk) + �I

)
g(�) = dk(�)

benutzt.
Für jede Hebden-Iterierte sind zwei Gleichungssysteme mit derselben Systemmatrix zu
lösen. Diese entsprechen genau den Normalengleichungen zu den Ausgleichsproblemen

‖
‖
‖
‖
[

f
′
(xk)
√

�I ]
dk(�) −

[

rk

0 ]

‖
‖
‖
‖

2

2

→ min,

‖
‖
‖
‖
[

f
′
(xk)
√

�I ]
g(�) −

[

0

dk(�)/

√

�]

‖
‖
‖
‖

2

2

→ min .

Verwendet man die QR-ZerlegungQR = f
′
(xk), so können letztere durch Anwendung

von jeweils n(n + 1)/2 Givens-Rotationen effizient gelöst werden.
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4
Nichtlineare Optimierung

4.1 Einführung

Optimierungsaufgaben treten in zahlreichen Anwendungsproblemen in den Natur-
und Ingenieurwissenschaften, der Wirtschaft oder der Industrie auf. Beispielsweise
versuchen Transportunternehmen, die Fahrt- oder Flugkosten zu minimieren und
dabei sicherzustellen, dass alle Aufträge ausgeführt werden. Ebenso führt die numeri-
sche Simulation vieler physikalischer Vorgänge in den Naturwissenschaften auf Opti-
mierungsprobleme, da das zugrundeliegende mathematische Modell oftmals auf dem
Prinzip der Energieminimierung beruht.
Unter einem endlichdimensionalen Minimierungsproblem wird die folgende Aufgabe
verstanden: Gegeben sei eine Zielfunktion f ∶ Rn

→ R. Gesucht ist ein Punkt x⋆ ∈ Rn,
so dass

f (x
⋆
) ≤ f (x) für alle x ∈ Rn

.

Dabei ist es ausreichend, sich nur mit Minimierungsproblemen zu beschäftigen, da ein
Maximierungsproblem für f immer einem Minimierungsproblem für −f entspricht.

Definition 4.1 Es sei f ∶ Rn
→ R. Ein Punkt x⋆ ∈ Rn heißt globales Minimum,

falls gilt

f (x
⋆
) ≤ f (x) für alle x ∈ Rn

.

Das Minimum ist ein lokales Minimum, wenn es eine Umgebung U ⊂ Rn von x
⋆

gibt, so dass

f (x
⋆
) ≤ f (x) für alle x ∈ U .

Das Minimim heißt strikt, wenn im Fall x ≠ x
⋆ jeweils die strenge Ungleichung

f (x
⋆
) < f (x) gilt.
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In der Regel ist es mit vertretbarem Aufwand nur möglich, ein lokales Minimum von f
in einer Umgebung eines Startwertes x0 zu bestimmen.

4.2 Optimalitätskriterien

Um ein lokales Minimum numerisch zu finden, versucht man iterativ die Gleichung
∇f (x) = 0 zu lösen.

Definition 4.2 Seien U ⊂ Rn eine offene Menge und f ∶ U → R eine stetig
differenzierbare Funktion. Ein Punkt x⋆ ∈ U heißt stationärer Punkt, falls gilt

∇f (x
⋆
) = 0.

Wir wiederholen einige bekannte Eigenschaften lokaler Minima aus der Analysis:

Satz 4.3 (notwendige Bedingung 1. Ordnung) Ist x⋆ ein lokales Minimum von f und ist
f stetig differenzierbar in einer Umgebung von x⋆, dann gilt ∇f (x⋆) = 0. Der Punkt x⋆ ist
also ein stationärer Punkt.

Satz 4.4 (notwendige Bedingung 2. Ordnung) Ist x⋆ ein lokales Minimum von f und ist
die Hesse-Matrix ∇2

f stetig in einer Umgebung von x⋆, dann gilt ∇f (x⋆) = 0 und ∇2
f (x

⋆
)

ist eine positiv semidefinite Matrix.

Satz 4.5 (hinreichende Bedingung 2. Ordnung) Die Hesse-Matrix ∇2
f sei stetig in einer

Umgebung von x⋆ mit ∇f (x⋆) = 0. Ist ∇2
f (x

⋆
) eine positiv definite Matrix, dann ist x⋆ ein

striktes lokales Minimum.

4.3 Konvexität

Wir wenden uns einem wichtigen und in der Praxis oft auftretenden Spezialfall zu, bei
dem wir mit einem lokalen zugleich ein globales Minimum gefunden haben. Dazu sei
angemerkt, dass eineMengeD ⊂ Rn konvex ist, falls aus x, y ∈ D auch �x+(1−�)y ∈ D

folgt für alle � ∈ (0, 1).
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Definition 4.6 Es sei D ⊂ Rn eine konvexe Menge. Die Funktion f ∶ D → R heißt
konvex aufD, wenn für alle � ∈ (0, 1) und alle x, y ∈ D gilt

f (�x + (1 − �)y) ≤ �f (x) + (1 − �)f (y).

Gilt für x ≠ y sogar stets die strikte Ungleichung, dann heißt die Funktion strikt
konvex. Gibt es ein � > 0, so dass

f (�x + (1 − �)y) + ��(1 − �)‖x − y‖
2

2
≤ �f (x) + (1 − �)f (y)

für alle � ∈ (0, 1) und alle x, y ∈ D, dann heißt die Funktion f gleichmäßig konvex.

Beispiele 4.7

1. Die Gerade f (x) ∶= x ist konvex auf R, aber nicht strikt konvex.

2. Die Exponentialfunktion f (x) ∶= exp(x) ist strikt konvex aufR, dort aber nicht
gleichmäßig konvex.

3. Die Parabel f (x) ∶= x
2 ist gleichmäßig konvex auf R. Hingegen ist die sehr

ähnlich aussehende Funktion f (x) ∶= x
4 zwar strikt konvex auf R, aber nicht

gleichmäßig konvex. ♣

f

x y�x + (1 − �)y

f (x)

f (y)

f (�x + (1 − �)y)

�f (x) + (1 − �)f (y)

Bei einer eindimensionalen konvexen Funktion liegt die Verbindungslinie zweier
Punkte oberhalb des Graphen.
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Bemerkung Sei f ∶ Rn
→ R eine quadratische Funktion, das heißt

f (x) =

1

2

x
ᵀ
Ax + b

ᵀ
x + c

mit einer symmetrischen MatrixA ∈ Rn×n, b ∈ Rn und c ∈ R. Die Funktion f ist genau
dann konvex, wenn A positiv semidefinit ist. Ist die Matrix A sogar positiv definit, so
ist f sogar gleichmäßig konvex. �

Satz 4.8 Seien D ⊂ Rn eine offene und konvexe Menge und f ∶ D → R stetig differenzier-
bar. Die Funktion f ist genau dann konvex auf D, wenn für alle x, y ∈ D gilt

f (x) − f (y) ≥ ∇f (y)
ᵀ
(x − y). (4.1)

Ist diese Ungleichung strikt für alle x ≠ y, dann ist f sogar strikt konvex. Die Funktion f ist
genau dann gleichmäßig konvex, wenn ein � > 0 existiert, so dass

f (x) − f (y) ≥ ∇f (y)
ᵀ
(x − y) + �‖x − y‖

2

2
(4.2)

für alle x, y ∈ D.

Beweis. Es gelte zuächst (4.2). Für x, y ∈ D und beliebiges � ∈ (0, 1) ergibt sich dann
mit z ∶= �x + (1 − �)y

f (x) − f (z) ≥ ∇f (z)
ᵀ
(x − z) + �‖x − z‖

2

2
,

f (y) − f (z) ≥ ∇f (z)
ᵀ
(y − z) + �‖y − z‖

2

2
.

Multipliziert man diese Gleichungen mit � beziehungsweise 1 − � und addiert sie
anschließend, dann folgt

�f (x) + (1 − �)f (y) − f (�x + (1 − �)y) ≥ ��(1 − �)‖x − y‖
2

2
,

das heißt, f ist gleichmäßig konvex.
Sei f nun als gleichmäßig konvex auf D vorausgesetzt. Für alle x, y ∈ D und � ∈ (0, 1)

gilt dann mit einem � > 0

f (y + �(x − y)) = f (�x + (1 − �)y)

≤ �f (x) + (1 − �)f (y) − ��(1 − �)‖x − y‖
2

2

und daher
f (y + �(x − y)) − f (y)

�

≤ f (x) − f (y) − �(1 − �)‖x − y‖
2

2
.
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Aufgrund der stetigen Differenzierbarkeit von f folgt somit für � → 0+

∇f (y)
ᵀ
(x − y) ≤ f (x) − f (y) − �‖x − y‖

2

2
,

dies bedeutet, es gilt (4.2). Da der soeben geführte Beweis auch im Fall � = 0 seine
Gültigkeit behält, folgt die Äquivalenz von (4.1) zur Konvexität von f .
Es verbleibt zu zeigen, dass die strikte Konvexität von f die strikte Ungleichung

f (x) − f (y) > ∇f (y)
ᵀ
(x − y)

für alle x, y ∈ D mit x ≠ y impliziert. Als strikt konvexe Funktion ist f insbesondere
konvex, das heißt, es gilt (4.1). Für

z ∶=

1

2

(x + y) =

1

2

x +
(
1 −

1

2)
y

ergibt sich daher

∇f (y)
ᵀ
(x − y) = 2∇f (y)

ᵀ
(z − y) ≤ 2

{

f (z) − f (y)

}

. (4.3)

Ist x ≠ y, dann folgt wegen der strikten Konvexität

f (z) <

1

2

f (x) +

1

2

f (y).

Dies eingesetzt in (4.3) liefert die Behauptung

∇f (y)
ᵀ
(x − y) < f (x) − f (y). ♠

Satz 4.9 Die Funktion f ∶ D ⊂ Rn
→ R sei konvex. Dann ist jedes lokale Minimum x

⋆

auch ein globales Minimum von f . Ist f zusätzlich differenzierbar, so ist jeder stationäre Punkt
x
⋆ ein globales Minimum.

Beweis. Angenommen, der Punkt x⋆ ist ein lokales, aber kein globales Minimum.
Dann gibt es einen Punkt y⋆ ∈ D mit f (y⋆) < f (x

⋆
). Für alle

x = �x
⋆
+ (1 − �)y

⋆
, � ∈ (0, 1) (4.4)

gilt aufgrund der Konvexität

f (x) ≤ �f (x
⋆
) + (1 − �)f (y

⋆
) < f (x

⋆
).



80 4 Nichtlineare Optimierung

Da in jeder Umgebung von x⋆ Punkte der Form (4.4) liegen, steht dies imWiderspruch
zur Annahme, dass x⋆ ein lokales Minimum ist. Folglich ist jedes lokale Minimum auch
ein globales Minimum.
Wir zeigen nun die zweite Aussage. Dazu sei f differenzierbar vorausgesetzt und x⋆
ein stationärer Punkt. Wir führen den Beweis wieder per Widerspruch und nehmen
an, dass x⋆ kein lokales Minimum ist. Dann können wir ein y⋆ wie oben wählen und
erhalten aufgrund der Konvexität gemäß (4.1)

∇f (x
⋆
)
ᵀ
(y

⋆
− x

⋆
) ≤ f (y

⋆
) − f (x

⋆
) < 0.

Deshalb ist ∇f (x⋆) ≠ 0 und folglich ist x⋆ kein stationärer Punkt. ♠

4.4 �asi-Newton-Verfahren

Im folgenden setzen wir stets voraus, dass f ∶ D ⊂ Rn
→ R stetig differenzierbar ist.

Beim Gradientenverfahren ist die Idee, die Iterierte xk in Richtung des Antigradienten
−∇f (xk) aufzudatieren

xk+1 ∶= xk − �k∇f (xk),

so dass f (xk+1) < f (xk) ist. Dieses Vorgehen haben wir bereits in Abschnitt 3.1 unter-
sucht. Viel besser als das Gradientenverfahren, welches nur mit linearer Rate konvergiert
(falls es überhaupt gegen ein Minimum konvergiert), ist das Newton-Verfahren, da dies
im Fall der Konvergenz quadratisch konvergiert.
BeimNewton-Verfahren ist das Update xk+1 ∶= xk+dk durch die Newton-Gleichung
∇
2
f (xk)dk = −∇f (xk) gegeben. Da das Berechnen der Hesse-Matrix und das Lösen

dieses Gleichungssystems oftmals zu teuer ist, versucht man, (∇2
f (xk))

−1 durch einfach
zu berechnende Matrizen Hk zu ersetzen und die Suchrichtung

dk ∶= −Hk∇f (xk)

zu benutzen. Man spricht von einem Quasi-Newton-Verfahren, wenn für alle k ≥ 0 die
Matrix Hk+1 der Quasi-Newton-Gleichung

Hk+1

{

∇f (xk+1) − ∇f (xk)

}

= xk+1 − xk (4.5)

genügt. Diese Bedingung stellt sicher, dass sich Hk+1 in der Richtung xk+1 − xk ähnlich
wie die Newton-Matrix (∇2

f (xk))

−1 verhält, für die gilt

∇f (xk+1) − ∇f (xk) = ∇
2
f (xk)(xk+1 − xk) + O(‖xk+1 − xk‖

2

2
).
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Für eine quadratische Funktion q(x) = 1

2
x
ᵀ
Ax + b

ᵀ
x + c mit positiv definiter Matrix

A gilt (4.5) wegen ∇q(x) = Ax + b sogar exakt. Ferner erscheint es sinnvoll, als Hk

nur symmetrische und positiv definite Matrizen zu wählen. Dies garantiert, dass für
∇f (xk) ≠ 0 die Richtung dk = −Hk∇f (xk) eine Abstiegsrichtung von f wird

∇f (xk)
ᵀ
dk = −∇f (xk)

ᵀ
Hk∇f (xk) < 0.

Beide Forderungen lassen sich erfüllen: Mit den Abkürzungen

pk = xk+1 − xk , qk = ∇f (xk+1) − ∇f (xk)

und frei wählbaren Parametern


k > 0, �k ≥ 0

ist Hk+1 rekursiv gegeben durch

Hk+1 ∶= �(Hk , pk , qk , 
k , �k),

�(H, p, q, 
, �) ∶= 
H +
(
1 + 
�

q
ᵀ
Hq

p
ᵀ
q )

pp
ᵀ

p
ᵀ
q

−


1 − �

q
ᵀ
Hq

Hqq
ᵀ
H −


�

p
ᵀ
q

(pq
ᵀ
H + Hqp

ᵀ
). (4.6)

Die Update-Funktion � ist nur für pᵀq ≠ 0 und qᵀHq ≠ 0 erklärt. Man beachte, dass
manHk+1 ausHk dadurch erhält, dass man zur Matrix 
kHk eine Korrekturmatrix vom
Rang ≤ 2 addiert:

rang(Hk+1 − 
kHk) ≤ 2.

Man nennt dieses Verfahren daher auch Rang-2-Verfahren.

Folgende Spezialfälle sind in (4.6) enthalten:

1. 
k ≡ 1, �k ≡ 0: Verfahren von Davidon, Fletcher und Powell (DFP-Verfahren).

2. 
k ≡ 1, �k ≡ 1: Rang-2-Verfahren von Broyden, Fletcher, Goldfarb und Shanno
(BFGS-Verfahren).

3. 
k ≡ 1, �k = p
ᵀ
k
qk/(p

ᵀ
k
qk − p

ᵀ
k
Hkqk): symmetrisches Rang-1-Verfahren von Broyden.
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Letzteres Verfahren ist nur für pᵀ
k
qk ≠ p

ᵀ
k
Hkqk definiert; �k < 0 ist möglich: in diesem

Fall kann Hk+1 auch indefinit werden, auch wenn Hk positiv definit ist (vergleiche
Satz 4.11). Setzt man den gewählten Wert in (4.6) ein, erhält man für Hk eine Rekursi-
onformel, die den Namen Rang-1-Verfahren erklärt:

Hk+1 ∶= Hk +

zkz
ᵀ
k

�k

, zk ∶= pk − Hkqk , �k ∶= p
ᵀ
k
qk − q

ᵀ
k
Hkqk .

Algorithmus 4.10 (�asi-Newton-Verfahren)
input: Funktion f ∶ Rn

→ R und Startnäherung x0 ∈ Rn

output: Folge von Iterierten {xk}k∈N
À Initialisierung: setze H0 ∶= I und k ∶= 0

Á berechne die Quasi-Newton-Richtung dk = −Hk∇f (xk)

Â löse

�k ≈ argmin

�∈R
f (xk + �dk)

Ã setze xk+1 ∶= xk + �kdk , pk ∶= xk+1 − xk und qk ∶= ∇f (xk+1) − ∇f (xk)

Ä wähle 
k > 0, �k ≥ 0 und berechne Hk+1 ∶= �(Hk , pk , qk , 
k , �k) gemäß (4.6)

Å erhöhe k ∶= k + 1 und gehe nach Á

Das Verfahren ist eindeutig durch die Wahl der Parameter 
k , �k und die Minimierung
in Schritt Â fixiert. Die Minimierung xk ↦ xk+1 und ihre Qualität kann man mit Hilfe
eines Parameters �k beschreiben, der durch

∇f (xk+1)
ᵀ
dk = �k∇f (xk)

ᵀ
dk = −�k∇f (xk)

ᵀ
Hk∇f (xk)

definiert ist. Falls dk eine Abstiegsrichtung ist, das heißt ∇f (xk)ᵀdk < 0, dann ist �k
eindeutig bestimmt. Bei exakter Liniensuche ist �k = 0 wegen

∇f (xk+1)
ᵀ
dk = '

′

k
(�k) = 0, wobei 'k(�) ∶= f (xk + �dk).

Wir setzen für das folgende

�k < 1 (4.7)
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voraus. Falls ∇f (xk) ≠ 0 und Hk positiv definit ist, folgt aus (4.7) �k > 0 und deshalb

q
ᵀ
k
pk = �k{∇f (xk+1) − ∇f (xk)}

ᵀ
dk

= �k(�k − 1)∇f (xk)
ᵀ
dk

= −�k(�k − 1)∇f (xk)
ᵀ
Hk∇f (xk)

> 0,

also auch qk ≠ 0 und qᵀ
k
Hkqk > 0. Die MatrixHk+1 ist damit durch (4.6) wohldefiniert.

Die Forderung (4.7) kann nur dann nicht erfüllt werden, wenn

'
′

k
(�) = ∇f (xk + �dk)

ᵀ
dk ≤ ∇f (xk)

ᵀ
dk = '

′

k
(0) < 0

für alle � ≥ 0 gilt. Dann ist aber

f (xk + �dk) − f (xk) = ∫

�

0

'
′

k
(t) dt ≤ �∇f (xk)

ᵀ
dk < 0 für alle � ≥ 0,

so dass f (xk + �dk) für � → ∞ nicht nach unten beschränkt ist. Die Forderung (4.7)
bedeutet also keine wesentliche Einschränkung. Damit ist bereits der erste Teil des
folgenden Satzes gezeigt, der besagt, dass das Quasi-Newton-Verfahren 4.10 unsere
oben aufgestellten Forderungen erfüllt.

Satz 4.11 Falls im Quasi-Newton-Verfahren 4.10 die MatrixHk für ein k ≥ 0 positiv definit
ist, ∇f (xk) ≠ 0 und �k < 1 ist, dann ist für alle 
k > 0, �k ≥ 0 die Matrix

Hk+1 ∶= �(Hk , pk , qk , 
k , �k)

wohldefiniert und wieder positiv definit. Insbesondere erfüllt sie die Quasi-Newton-Gleichung

Hk+1qk = pk .

Beweis. Die Wohldefiniertheit von Hk+1 haben wir bereits gezeigt, so dass wir nur
noch die positive Definitheit nachweisen müssen. Seien y ∈ Rn

⧵ {0} ein beliebiger
Vektor und Hk = LL

ᵀ die Cholesky-Zerlegung von Hk. Mit Hilfe der Vektoren

u ∶= L
ᵀ
y, v ∶= L

ᵀ
qk
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lässt sich y
ᵀ
Hk+1y wegen (4.6) so schreiben:

y
ᵀ
Hk+1y = 
ku

ᵀ
u +

(
1 + 
k�k

v
ᵀ
v

p
ᵀ
k
qk)

(p
ᵀ
k
y)

2

p
ᵀ
k
qk

− 
k

1 − �k

v
ᵀ
v

(u
ᵀ
v)

2
−

2
k�k

p
ᵀ
k
qk

(p
ᵀ
k
y)(u

ᵀ
v)

= 
k
(
u
ᵀ
u −

(u
ᵀ
v)

2

v
ᵀ
v )

+

(p
ᵀ
k
y)

2

p
ᵀ
k
qk

+ 
k�k
(

√

v
ᵀ
v

p
ᵀ
k
y

p
ᵀ
k
qk

−

u
ᵀ
v

√

v
ᵀ
v)

2

≥ 
k
(
u
ᵀ
u −

(u
ᵀ
v)

2

v
ᵀ
v )

+

(p
ᵀ
k
y)

2

p
ᵀ
k
qk

.

Die Cauchy-Schwarzsche Ungleichung ergibt

u
ᵀ
u −

(u
ᵀ
v)

2

v
ᵀ
v

≥ 0,

mit Gleichheit genau dann, wenn u = �v für ein � ≠ 0 (wegen y ≠ 0). Für u ≠ �v

ist also yHk+1y > 0. Für u = �v folgt aus der Nichtsingularität von Hk und L auch
0 ≠ y = �qk , so dass

yHk+1y ≥

(p
ᵀ
k
y)

2

p
ᵀ
k
qk

= �
2
p
ᵀ
k
qk > 0.

Da y ∈ Rn
⧵ {0} beliebig war, muss Hk+1 positiv definit sein.

Die Quasi-Newton-Gleichung Hk+1qk = pk verifiziert man schließlich sofort mittels
(4.6). ♠

Ein wesentliches Resultat ist, dass das Quasi-Newton-Verfahren im Fall einer quadrati-
schen Funktion f ∶ Rn

→ R das Minimum nach höchstens n Schritten liefert, sofern
die Minimierung in Â stets exakt ist. Da sich jede genügend oft differenzierbare Funk-
tion f in der Nähe ihres Minimums beliebig genau durch eine quadratische Funktion
approximieren lässt, lässt diese Eigenschaft vermuten, dass das Verfahren auch bei der
Anwendung auf nichtquadratische Funktionen rasch konvergiert.

Satz 4.12 Sei

f (x) =

1

2

x
ᵀ
Ax + b

ᵀ
x + c
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eine quadratische Funktion mit einer positiv definiten Matrix A ∈ Rn×n. Wendet man das
Quasi-Newton-Verfahren 4.10 zur Minimierung von f mit den Startwerten x0 und H0 an,
wobei man die Minimierungen in Â exakt durchführt, so liefert das Verfahren Folgen {xk}k≥0,
{Hk}k≥0, {∇f (xk)}k≥0, {pk}k≥0 und {qk}k≥0 mit den Eigenschaften:

(i.) Es gibt ein kleinstes m ≤ n mit xm = x
⋆
= −A

−1
b, das heißt, xm ist das eindeutige

Minimum von f , insbesondere gilt also ∇f (xm) = 0.

(ii.) Es ist pᵀ
k
qk > 0 und pᵀ

k
q� = p

ᵀ
k
Ap

�
= 0 für alle 0 ≤ k ≠ � < m. Die Vektoren pk

sind demnach A-konjugiert.

(iii.) Es gilt pᵀ
k
∇f (x�) = 0 für alle 0 ≤ k < � ≤ m.

(iv.) Es ist H�qk = 
k,�pk für alle 0 ≤ k < � ≤ m mit


k,� ∶=

{


k
k+1 ⋯
�−1, für k < � − 1,

1, für k = � − 1.

(v.) Falls m = n, so gilt zusätzlich

Hm = Hn = PDP
−1
A
−1
,

wobei

D = diag(
0,n, 
1,n, … , 
n−1,n), P = [p0, p1, … , pn−1].

Für 
k ≡ 1 folgt Hn = A
−1.

Beweis. Wir zeigen zunächst induktiv, dass die Bedigungen (ii.)–(iv.) für ein beliebiges
m ≥ 0 gelten, falls für alle j < mHj positiv definit und ∇f (xj ) ≠ 0 ist. Da die Aussagen
für m = 0 trivialerweise erfüllt sind, können wir annehmen, dass sie für ein beliebiges
m ≥ 0 gelten. Der Induktionsschritt m ↦ m + 1 ergibt sich nun wie folgt.
Da Hm positiv definit ist, folgt aus ∇f (xm) ≠ 0 sofort dm = −Hm∇f (xm) ≠ 0 und
∇f (xm)

ᵀ
Hm∇f (xm) > 0. Weil exakt minimiert wird, ist �m die Nullstelle von

0 = ∇f (xm+1)
ᵀ
dm =

{

∇f (xm) + �mAdm

}ᵀ
dm, �m =

∇f (xm)
ᵀ
Hm∇f (xm)

d
ᵀ
mAdm

,

also pm = �mdm und

∇f (xm+1)
ᵀ
pm = �m∇f (xm+1)

ᵀ
dm = 0. (4.8)
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Deshalb gilt

p
ᵀ
m
qm = �md

ᵀ
m

{

∇f (xm+1) − ∇f (xm)

}

= −�md
ᵀ
m
∇f (xm)

= �m∇f (xm)
ᵀ
Hm∇f (xm)

> 0

und folglich ist Hm+1 nach Satz 4.11 positiv definit. Weiter ist für k < m wegen
Ap

k
= qk

p
ᵀ
k
qm = p

ᵀ
k
Ap

m
= q

ᵀ
k
pm = −�mq

ᵀ
k
Hm∇f (xm)

(iv.)

= −�m
k,mp
ᵀ
k
∇f (xm)

(iii.)

= 0. (4.9)

Das ist der Induktionsschritt für Aussage (ii.).
Weiter gilt für k < m

p
ᵀ
k
∇f (xm+1) = p

ᵀ
k
(
∇f (xk+1) +

m

∑

j=k+1

qj
)

= 0

nach dem eben bewiesenen und Aussage (iii.). Zusammen mit (4.8) ergibt dies Aussage
(iii.) für m + 1.
Den Induktionsschritt für Aussage (iv.) sieht man wie folgt ein. Anhand von (4.6)
verifiziert man sofort

Hm+1qm = pm.

Wegen Aussage (ii.) für m + 1 und der Induktionsvoraussetzung hat man ferner für
k < m

p
ᵀ
m
qk

(ii.)

= 0, q
ᵀ
m
Hmqk

(iv.)

= 
k,mq
ᵀ
m
pk

(ii.)

= 0,

so dass für k < m aus (4.6) folgt

Hm+1qk = 
mHmqk

(iv.)

= 
m
k,mpk = 
k,m+1pk .

Der restliche Beweis ist nun einfach. Die Aussagen (ii.)–(iv.) können nur für m ≤ n

richtig sein, da die Vektoren p0, p1, … , pm−1 linear unabhängig sind. Aus 0 = ∑
m−1

�=0
��p�

folgt nämlich durch Multiplikation mit pᵀ
k
A, k = 0, 1, … ,m − 1, wegen Aussage (ii.)

�kp
ᵀ
k
Apk = 0, das heißt, �k = 0.
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Da wir bewiesen haben, dass die Aussagen (ii.)–(iv.) für beliebiges m gelten, solange
∇f (xm) ≠ 0 ist, muss es also einen ersten Index m ≤ n geben mit

∇f (xm) = 0, xm = −A
−1
b,

dies bedeutet, es gilt Aussage (i.).

Für den Fall m = n gilt wegen Aussage (iv.) zusätzlich HnQ = PD für die Matrizen

D = diag(
0,n, 
1,n, … , 
n−1,n), P = [p0, p1, … , pn−1], Q = [q0, q1, … , qn−1].

Wegen AP = Q ergibt sich schließlich wegen der Nichtsingularität der Matrix P die
Beziehung

Hn = PDP
−1
A
−1
,

Damit ist der Satz vollständig bewiesen. ♠

Es stellt sich nun die Frage, wie man die Parameter 
k und �k wählen soll, um ein
möglichst gutes Verfahren zu erhalten. Aussage (v.) aus Satz 4.12 legt die Wahl 
k ≡ 1

nahe, weil dies D = I und folglich limmHm = (∇
2
f (x

⋆
))

−1 vermuten lässt, weshalb
das Verfahren voraussichtlich ähnlich schnell wie ein Newton-Verfahren konvergiert.
Im allgemeinen ist diese Vermutung für nichtquadratische Funktionen aber nur unter
zusätzlichen Vorraussetzungen richtig. Nach praktischen Erfahrungen ist die Wahl


k ≡ 1, �k ≡ 1 (BFGS-Verfahren)

am besten.
Bemerkungen

1. Sowohl das DFP-Verfahren als auch das BFGS-Verfahren konvergieren superline-
ar in der Umgebung eines lokalen Minimus x⋆, falls f ∶ Rn

→ R zweimal stetig
differenzierbar ist und die Hesse-Matrix in der Umgebung von x⋆ Lipschitz-stetig
ist.

2. Eine andere Startmatrix H0 ≠ I ist denkbar, solange sie symmetrisch und positiv
definit ist.

3. In der Praxis macht man gelegentlich Restarts, setzt also Hk ∶= H0, falls k ∈ mZ
mit festem m ∈ N, beispielsweise m = 100.
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4. Gerade bei großen Optimierungsproblemen stellt man die MatrixHk nicht direkt
auf, sondern berechnet sie rekursiv aus den Vektoren {(
k , �k , pk , qk)}k≥0. Damit
auch bei vielen Schritten der Speicherplatz nicht überhand nimmt, speichert man
nur die höchstens letzten m Vektoren. Man erlaubt also ein “Gedächtnis” von m
Updates und ersetzt die unbekannte Matrix Hk−m durch H0. Man spricht von
einem Limited-Memory-Quasi-Newton-Verfahren. �

4.5 Nichtlineares CG-Verfahren

In Anlehnung an das CG-Verfahren aus Abschnitt 2.3 ist das nichtlineare CG-Verfahren
zur Lösung von nichtlinearen Optimierungsproblemen f (x) → min definiert.

Algorithmus 4.13 (Nichtlineares CG-Verfahren)
input: Funktion f ∶ Rn

→ R und Startnäherung x0 ∈ Rn

output: Folge von Iterierten {xk}k∈N

À Initialisierung: setze d0 = −∇f (x0) und k ∶= 0

Á löse

�k ≈ argmin

�∈R
f (xk + �dk)

Â berechne

xk+1 ∶= xk + �kdk

�k ∶=

‖∇f (xk+1)‖
2

2

‖∇f (xk)‖
2

2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Verfahren von Fletcher und Reeves

oder ∇f (xk+1)
ᵀ
{∇f (xk+1) − ∇f (xk)}

‖∇f (xk)‖
2

2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Verfahren von Polak und Ribière
dk+1 ∶= −∇f (xk+1) + �kdk

Ã erhöhe k ∶= k + 1 und gehe nach Á

Bemerkung Ist f (x) = 1

2
x
ᵀ
Ax − b

ᵀ
x + c eine quadratische Funktion, dann fallen

bei exakter Minimierung in Á sowohl das Verfahren von Fletcher und Reeves als auch
das Verfahren von Polak und Ribière mit dem CG-Verfahren zusammen. Ersteres folgt
aus ∇f (xk) = Axk − b = −rk , zweiteres aus ∇f (xk)ᵀ∇f (xk+1) = r

ᵀ
k
rk+1 = 0. �
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Lemma 4.14 Die Funktion f ∶ D ⊂ Rn
→ R sei gleichmäßig konvex. Weiter sei f

differenzierbar mit Lipschitz-stetigem Gradienten:

‖∇f (x) − ∇f (y)‖2 ≤ L‖x − y‖2 für alle x, y ∈ D.

Dann gilt für das Verfahren von Polak und Ribière bei exakter Liniensuche in Á

−d
ᵀ
k
∇f (xk) ≥

�

� + L

‖∇f (xk)‖2‖dk‖2.

Beweis. Bei exakter Liniensuche gilt im k-ten Schritt des Verfahrens von Polak und
Ribière

0 = ∇f (x� + ��d�)
ᵀ
d� = ∇f (x�+1)

ᵀ
d� für alle � ≤ k. (4.10)

Daher können wir den Nenner in

�k =

∇f (xk+1)
ᵀ
{∇f (xk+1) − ∇f (xk)}

‖∇f (xk)‖
2

2

folgendemaßen umformen:

‖∇f (xk)‖
2

2
= (�k−1dk−1 − dk)

ᵀ
∇f (xk)

(4.10)
= −d

ᵀ
k
∇f (xk)

= −

1

�k

(xk+1 − xk)
ᵀ
∇f (xk).

Die gleichmäßigen Konvexität impliziert

−(xk+1 − xk)
ᵀ
∇f (xk) ≥ �‖xk+1 − xk‖

2

2
+ f (xk) − f (xk+1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0

≥ �‖xk+1 − xk‖
2

2
,

das heißt

‖∇f (xk)‖
2

2
≥

1

�k

�‖xk+1 − xk‖
2

2
.

Mit Hilfe der Lipschitz-Bedingung erhalten wir daraus

|�k | ≤

L

�

�k

‖∇f (xk+1)‖2‖xk+1 − xk‖2

‖xk+1 − xk‖
2

2

=

L

�

‖∇f (xk+1)‖2

‖dk‖2

.
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Dies führt auf

‖dk+1‖2 ≤ ‖∇f (xk+1)‖2 + |�k |‖dk‖2 ≤
(
1 +

L

�)
‖∇f (xk+1)‖2,

woraus dann die Behauptung folgt

−

d
ᵀ
k+1

∇f (xk+1)

‖dk+1‖2‖∇f (xk+1)‖2

=

{∇f (xk+1) − �kdk}
ᵀ
∇f (xk+1)

‖dk+1‖2‖∇f (xk+1)‖2

(4.10)
=

‖∇f (xk+1)‖
2

2

‖dk+1‖2‖∇f (xk+1)‖2

≥

�

� + L

. ♠

Bemerkung Die geometrische Interpretation von Lemma 4.14 ist, dass beim Verfah-
ren von Polak und Ribière die Suchrichtung dk und die Richtung des steilsten Abstiegs
−∇f (xk) stets den Winkel � mit cos � > �/(� + L) einschließen. �

Satz 4.15 Die Funktion f ∶ D ⊂ Rn
→ R sei gleichmäßig konvex. Weiter sei f differen-

zierbar mit Lipschitz-stetigem Gradienten:

‖∇f (x) − ∇f (y)‖2 ≤ L‖x − y‖2 für alle x, y ∈ D.

Dann konvergiert das Verfahren von Polak und Ribière mit exakter Liniensuche in Á für beliebige
Startnäherungen x0 ∈ D gegen das eindeutige globale Minimum x

⋆ und es gilt

f (xk+1) − f (x
⋆
) ≤

(
1 −

�
4

L
2
(� + L)

2)

{

f (xk) − f (x
⋆
)

}

, k = 1, 2, … .

Beweis. Aufgrund der Minimierungsbedingung gilt für ein 
 > 0

f (xk+1) ≤ f (xk + 
dk)

= f (xk) + 

∫

1

0

∇f (xk + 
tdk)
ᵀ
dk dt

= f (xk) + 
∇f (xk)
ᵀ
dk + 


∫

1

0

{

∇f (xk + 
tdk) − ∇f (xk)

}ᵀ
dk dt
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und daher

f (xk+1) ≤ f (xk) + 
∇f (xk)
ᵀ
dk + 


∫

1

0

‖∇f (xk + 
tdk) + ∇f (xk)‖2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤t
L‖dk‖2

‖dk‖2 dt

≤ f (xk) + 
∇f (xk)
ᵀ
dk + 


2
L

2

‖dk‖
2

2
.

Für die Wahl


 ∶= −

∇f (xk)
ᵀ
dk

L‖dk‖
2

2

folgern wir mit Lemma 4.14

f (xk+1) − f (x
⋆
) ≤ f (xk) − f (x

⋆
) −

(∇f (xk)
ᵀ
dk)

2

2L‖dk‖
2

2

≤ f (xk) − f (x
⋆
) −

�
2

2L(� + L)
2
‖∇f (xk) − ∇f (x

⋆
)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=0

‖
2

2
.

Aus der gleichmäßigen Konvexität ergibt sich

�‖xk − x
⋆
‖
2

2
≤

{

∇f (xk) − ∇f (x
⋆
)

}ᵀ
(xk − x

⋆
) ≤ ‖∇f (xk) − ∇f (x

⋆
)‖2‖xk − x

⋆
‖2,

während die Lipschitz-Stetigkeit impliziert

f (xk) − f (x
⋆
) =

∫

1

0

∇f (txk + (1 − t)x
⋆

)

ᵀ
(xk − x

⋆
) dt ≤

L

2

‖xk − x
⋆
‖
2

2
.

Setzen wir diese beiden Abschätzungen in die obige ein, so erhalten wir das Behauptete.
♠

Bemerkungen

1. Das Verfahren von Polak und Ribière konvergiert im allgemeinen schneller als
das Verfahren von Fletcher und Reeves.

2. In der Praxis verwendet man Restarts: Wird der Winkel zwischen dem Antigra-
dienten und der Suchrichtung zu groß, etwa

−

∇f (xk)
ᵀ
dk

‖∇f (xk)‖2‖dk‖2

< 


für kleines 
 ∈ (0, 1), dann startet das Verfahren durch einen Gradientenschritt
neu. �
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4.6 Modifiziertes Verfahren von Polak und Ribière

Nichtlineare CG-Verfahren fallen, wie auch das BFGS-Verfahren, im Fall einer konve-
xen quadratischen Funktion mit dem CG-Verfahren zusammen. Allerdings sind die
Quasi-Newton-Verfahren robuster hinsichtlich der Schrittweitensteuerung. Die nicht-
linearen CG-Verfahren funktionieren umso besser, je genauer die Liniensuche in Á
von Algorithmus 4.13 durchgeführt wird. Eine direkt zu implementierende Schrittwei-
tensteuerung stellen wir im folgenden modifizierten Verfahren von Polak und Ribière
vor.

Algorithmus 4.16 (modifiziertes Verfahren von Polak und Ribière)
input: Funktion f ∶ Rn

→ R und Startnäherung x0 ∈ Rn

output: Folge von Iterierten {xk}k∈N

À Initialisierung: wähle � ∈ (0, 1), 0 < 
 < 1 < 
 und setze d0 = −∇f (x0), k ∶= 0

Á setze

�k ∶=

|∇f (xk)
ᵀ
dk |

‖dk‖
2

2

Â berechne

xk+1 ∶= xk + �kdk

�k ∶=

∇f (xk+1)
ᵀ
{∇f (xk+1) − ∇f (xk)}

‖∇f (xk)‖
2

2

dk+1 ∶= −∇f (xk+1) + �kdk

Ã ist eine der Bedingungen

f (xk+1) ≤ f (xk) − ��
2

k
‖dk‖

2

2
(4.11)

−
‖∇f (xk+1)‖
2

2
≤ ∇f (xk+1)

ᵀ
dk+1 ≤ −
‖∇f (xk+1)‖

2

2
(4.12)

verletzt, dann halbiere �k und gehe nach Â

Ä ist ∇f (xk+1) ≠ 0, dann erhöhe k ∶= k + 1 und gehe nach Á

Lemma 4.17 Ist f ∶ Rn
→ R stetig differenzierbar, so ist Algorithmus 4.16 wohldefiniert.
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Beweis. Wir bemerken zunächst, dass stets dk ≠ 0 ist und somit der Faktor �k in
Á existiert. Wäre nämlich dk = 0 für ein k ∈ N0, so würde aus À im Fall k = 0

beziehungsweise aus (4.12) im Fall k > 0 sofort ∇f (xk) = 0 folgen.
Es ist also nur zu zeigen, dass die Liniensuche Á–Ã in jedem Iterationschritt k ∈ N0

erfolgreich ist. Zu diesem Zweck nehmen wir an, dass k ∈ N0 ein fester Iterationsindex
mit ∇f (xk)ᵀdk < 0 ist. Als erstes stellen wir fest, dass die Bedingung (4.11) wegen

f (xk + �dk) = f (xk) + �∇f (xk)
ᵀ
dk + O(�)

nach endlich vielen erfolglosen Schritten der Liniensuche immer erfüllt ist.
Als nächstes zeigen wir, dass die Bedingung (4.12) ebenfalls nach endlich vielen erfolg-
losen Schritten stets erfüllt ist. Denn angenommen, dem ist nicht so. Dann gibt es eine
Teilfolge {k�}�>0, so dass für jedes

y� = xk + 2
−k�

|∇f (xk)
ᵀ
dk |

‖dk‖
2

2

dk , � ∈ N

zumindest eine der beiden Bedingungen

∇f (y�)
ᵀ

{

− ∇f (y�) +

∇f (y�)
ᵀ
{∇f (y�) − ∇f (xk)}

‖∇f (xk)‖
2

2

dk

}

> −
‖∇f (y�)‖
2

2
,

∇f (y�)
ᵀ

{

− ∇f (y�) +

∇f (y�)
ᵀ
{∇f (y�) − ∇f (xk)}

‖∇f (xk)‖
2

2

dk

}

< −
‖∇f (y�)‖
2

2

erfüllt ist. Der Grenzübergang � → ∞ liefert y� → xk und folglich gilt

−‖∇f (xk)‖
2

2
≥ −
‖∇f (xk)‖

2

2
oder − ‖∇f (xk)‖

2

2
≤ −
‖∇f (xk)‖

2

2
.

Aus 0 < 
 < 1 < 
 folgt dann aber ‖∇f (xk)‖2 = 0 im Widerspruch zu unserer
Voraussetzung ∇f (xk)ᵀdk < 0.
Damit ist gezeigt, dass Algorithmus 4.16 wohldefiniert ist, sofern die Abstiegsbedingung
∇f (xk)

ᵀ
dk < 0 für alle k ∈ N0 erfüllt ist. Für k = 0 gilt sie aber nach Definition von

d0 und für k > 0 folgt sie dann aus Bedingung (4.12). ♠

Lemma 4.18 Es sei D ⊂ Rn eine offene, beschränkte und konvexe Menge, in der f stetig
differenzierbar, nach unten beschränkt und ∇f zudem Lipschitz-stetig ist. Ferner sei neben x0
auch die gesamte Niveaumenge N ∶= {x ∈ Rn

∶ f (x) ≤ f (x0)} in D enthalten. Dann gelten
die folgenden Aussagen:
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(i.) Alle Iterierten xk liegen in der Niveaumenge N .

(ii.) Die Folge {f (xk)}k∈N ist konvergent.

(iii.) Es gilt limk→∞ �k‖dk‖2 = 0.

(iv.) Es ist �k‖dk‖22 ≤ 
c
2, wobei c < ∞ eine obere Schranke von ‖∇f (x)‖2 auf der Niveau-

menge N sei.

(v.) Es existiert eine Konstante � > 0 mit

�k ≥ �

|∇f (xk)
ᵀ
dk |

‖dk‖
2

2

für alle k ∈ N0.

Beweis.

(i.) Diese Aussage ergibt sich unmittelbar aus der Bedingung (4.11).

(ii.) Die Folge {f (xk)}k∈N ist streng monoton fallend und aufgrund der Voraussetzung
nach unten beschränkt. Hieraus ergibt sich das Behauptete.

(iii.) Aus (4.11) folgt

��
2

k
‖dk‖

2

2
≤ f (xk) − f (xk+1)

für alle k ∈ N0. Der Grenzübergang k → ∞ liefert daher unter Berücksichtigung
der schon bewiesenen Aussage (ii.) die Behauptung.

(iv.) Aus den Schritten Á–Ã von Algorithmus 4.16 folgt

�k‖dk‖
2

2
≤

|∇f (xk)
ᵀ
dk |

‖dk‖
2

2

‖dk‖
2

2
≤ 
‖∇f (xk)‖

2

2
≤ 
c

2

für alle k ∈ N0.

(v.) Zum Nachweis dieser Aussage führen wir eine Fallunterscheidung durch.
Fall 1: �k = |∇f (xk)

ᵀ
dk |/‖dk‖

2

2
.

Dann ist offensichtlich

�k ≥

|∇f (xk)
ᵀ
dk |

‖dk‖
2

2

. (4.13)
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Fall 2: �k < |∇f (xk)
ᵀ
dk |/‖dk‖

2

2
.

Dann verletzt die Schrittweite 2�k zumindest eine der Bedingungen in Ã. Der
Punkt zk ∶= xk + 2�kdk genügt also (4.11) oder (4.12) nicht. Nach Aussage (iii.)
existiert ein K ∈ N, so dass zk ∈ D für alle k ≥ K . Im folgenden zeigen wir
Aussage (v.) zunächst nur für solche k.
Fall 2A: Der Punkt zk ∈ D verletzt (4.11).
Dann gilt

f (zk) > f (xk) − �(2�k)
2
‖dk‖

2

2
. (4.14)

Aufgrund des Mittelwertsatzes existiert ein ξk auf der Verbindungsstrecke von
xk und zk , so dass

f (zk) = f (xk) + ∇f (ξk)
ᵀ
(zk − xk) = f (xk) + 2�k∇f (ξk)

ᵀ
dk . (4.15)

Aus (4.14) und (4.15) folgt daher

f (xk) + 2�k∇f (xk)
ᵀ
dk + 2�k

{

∇f (ξk)
ᵀ
dk − ∇f (xk)

ᵀ
dk

}

> f (xk) − �(2�k)
2
‖dk‖

2

2
.

Aus der Lipschitz-Stetigkeit von ∇f in D ergibt sich

2�k∇f (xk)
ᵀ
dk + 2�kL ‖ξk − xk‖2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤2�k‖dk‖2

‖dk‖2 > −�(2�k)
2
‖dk‖

2

2
.

Dies liefert unmittelbar

�k ≥

1

2(L + �)

|∇f (xk)
ᵀ
dk |

‖dk‖
2

2

. (4.16)

Fall 2B: Der Punkt zk ∈ D verletzt die linke Ungleichung in (4.12).
Wegen

∇f (zk)
ᵀ

{

− ∇f (zk) +

∇f (zk)
ᵀ
{∇f (zk) − ∇f (xk)}

‖∇f (xk)‖
2

2

dk

}

< −
‖∇f (zk)‖
2

2

ergibt sich mit Hilfe der Cauchy-Schwarzschen Ungleichung

−‖∇f (zk)‖
2

2
− ‖∇f (zk)‖

2

2

‖∇f (zk) − ∇f (xk)‖2

‖∇f (xk)‖
2

2

‖dk‖2 < −
‖∇f (zk)‖
2

2
,
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das heißt, es ist

1 +

‖∇f (zk) − ∇f (xk)‖2

‖∇f (xk)‖
2

2

‖dk‖2 > 
.

Aus der Lipschitz-Stetigkeit von ∇f und der Tatsache, dass die Schrittweite �k
der Bedingung (4.12) genügt, folgt daher nach kurzer Rechnung

�k ≥

(
 − 1)‖∇f (xk)‖
2

2

2L‖dk‖
2

2

≥


 − 1

2
L

|∇f (xk)
ᵀ
dk |

‖dk‖
2

2

. (4.17)

Fall 2C: Der Punkt zk ∈ D verletzt die linke Ungleichung in (4.12). Es ist

∇f (zk)
ᵀ

{

− ∇f (zk) +

∇f (zk)
ᵀ
{∇f (zk) − ∇f (xk)}

‖∇f (xk)‖
2

2

dk

}

> −
‖∇f (zk)‖
2

2
.

Analog zum Fall 2B erhält man hieraus

�k ≥

1 − 


2
L

|∇f (xk)
ᵀ
dk |

‖dk‖
2

2

. (4.18)

Wegen (4.13), (4.16), (4.17), (4.18) folgt Aussage (v.) mit

� ∶= min

{

1,

1

2(L + �)

,


 − 1

2
L

,

1 − 


2
L

}

,

und zwar zunächst für alle k ≥ K . Da nur endlich viele k übrigbleiben, folgt
Aussage (v.) nach eventueller Verkleinerung von � aber auch für alle k ∈ N0. ♠

Satz 4.19 Unter den Voraussetzungen von Lemma 4.18 gilt für die Iterierten {xk}k≥0 des
modifizierten Verfahren von Polak und Ribière

∇f (xk)

k→∞

⟶ 0.

Beweis. Angenommen, die Aussage des Satzes ist falsch. Dann existieren ein " > 0

und eine Teilfolge {xk�}, so dass

‖∇f (xk�−1
)‖2 > "

für alle � ∈ N. Aus der Aufdatierungsvorschrift für dk� und Lemma 4.18 (iv.) folgt dann

‖dk�
‖2 ≤ ‖∇f (xk�

)‖2 +

‖∇f (xk�
)‖2‖∇f (xk�

) − ∇f (xk�−1
)‖2

‖∇f (xk�−1
)‖
2

2

‖dk�−1
‖2 ≤ c + 


Lc
3

"
2
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für alle � ∈ N. Zusammen mit Lemma 4.18 (iii.) ergibt sich hieraus

lim
�→∞

�k�
‖dk�

‖
2

2
= 0

und weiter aus Lemma 4.18 (v.)

lim
�→∞

|∇f (xk�
)
ᵀ
dk�

| = 0.

Die rechte Ungleichung in (4.12) liefert daher

lim
�→∞

‖∇f (xk�
)‖2 = 0.

Weil nach Lemma 4.18 (iii.) gilt

lim
�→∞

‖xk�
− xk�−1

‖2 = lim
�→∞

�k�−1
‖dk�−1

‖2 = 0,

schließen wir

‖∇f (xk�−1
)‖2 ≤ ‖∇f (xk�

) − ∇f (xk�−1
)‖2 + ‖∇f (xk�

)‖2

≤ L‖xk�
− xk�−1

‖2 + ‖∇f (xk�
)‖2

�→∞

⟶ 0.

Dies steht aber im Widerspruch zur Annahme, dass {‖∇f (xk�−1)‖2}�>0 nicht nach Null
konvergiert. ♠

4.7 Projiziertes Gradientenverfahren

Bislang haben wir uns mit gradientenbasierten Verfahren für Optimierungsprobleme
ohne Nebenbedingung beschäftigt. In diesem Abschnitt wollen wir nun die Situation
einer vorgegebenen Nebenbedingung in Betracht ziehen. Dazu seien f ∶ Rn

→ R eine
stetig differenzierbare Funktion und K ⊂ Rn eine abgeschlossene und konvexe Menge.
Wir betrachten folgendes Optimierungsproblem unter Nebenbedingungen

minimiere f (x) unter der Nebenbedingung x ∈ K. (4.19)

Da das Minimum auch auf dem Rand von K liegen kann, lautet im Fall von (4.19) die
notwendige Optimalitätsbedingung für ein Minimum x

⋆
∈ K

∇f (x
⋆
)
ᵀ
(x − x

⋆
) ≥ 0 für alle x ∈ K. (4.20)

Grundlage des projizierten Gradientenverfahrens ist die orthogonale Projektion auf die
zulässige Menge.
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Definition 4.20 Es sei K ⊂ Rn eine abgeschlossene, konvexe Menge. Dann ist die
orthogonale Projektion PK ∶ Rn

→ K definiert durch die Bedingung

‖PK (x) − x‖2 = min
y∈K

‖y − x‖2.

Der Punkt PK (x) ∈ K besitzt also die Eigenschaft, den kürzesten Abstand zu einem
gegebenen Punkt x ∈ Rn zu besitzen.

Die Grundversion des projizierten Gradientenverfahren ist im folgenden Algorithmus
beschrieben:

Algorithmus 4.21 (projiziertes Gradientenverfahren)
input: Funktion f ∶ Rn

→ R, konvexe zulässige Menge K ⊂ Rn und
Startnäherung x0 ∈ K

output: Folge von Iterierten {xk}k∈N

À Initialisierung: wähle � ∈ (0, 1) und setze k ∶= 0

Á berechne den Antigradienten dk ∶= −∇f (xk) und setze �k ∶= 1

Â solange

f (PK (xk + �kdk)) > f (xk) − �d
ᵀ
k (
PK (xk + �kdk) − xk) (4.21)

setze �k ∶= �k/2

Ã setze xk+1 ∶= PK (xk + �kdk)

Ä erhöhe k ∶= k + 1 und gehe nach Á

Für den Fall der Minimierung ohne Nebenbedingungen, das heißt K = Rn, stellt obiger
Algorithmus das klassische Gradientverfahren dar. Insbesondere geht die Bedingung an
die Reduktion des Funktionals über in die Armijo-Goldstein-Bedingung

f (xk+1) ≤ f (xk) − ��k‖∇f (xk)‖
2

2
.

Man kann zeigen, dass für das projizierte Gradientenverfahren ein �k > 0 existiert, für
das die Reduktionsbedingung erfüllt ist.
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Lemma 4.22 Die orthogonale Projektion PK besitzt die folgenden Eigenschaften:

(i.) Es gilt (PK (x) − x)

ᵀ
(PK (x) − y) ≤ 0 für alle x ∈ Rn, y ∈ K .

(ii.) Es gilt (PK (y) − PK (x))

ᵀ
(y − x) ≥ ‖PK (y) − PK (x)‖

2

2
≥ 0 für alle x, y ∈ Rn, das

heißt, PK ist monoton.

(iii.) Es gilt ‖PK (y) − PK (x)‖2 ≤ ‖y − x‖2 für alle x, y ∈ Rn, das heißt, PK ist nicht
expandierend.

Beweis. (i.) Wegen der Konvexität folgt aus y ∈ K auch ŷ ∶= (1 − t)PK (x) + ty ∈ K

für alle t ∈ [0, 1]. Aus

‖ŷ − x‖
2

2
= ‖ŷ − PK (x) + PK (x) − x‖

2

2

= ‖ŷ − PK (x)‖
2

2
+ ‖PK (x) − x‖

2

2
− 2(PK (x) − x)

ᵀ
(PK (x) − ŷ)

folgt aufgrund der Minimierungseigenschaft von PK , dass

‖ŷ − PK (x)‖
2

2
− 2(PK (x) − x)

ᵀ
(PK (x) − ŷ) = ‖ŷ − x‖

2

2
− ‖PK (x) − x‖

2

2
≥ 0.

Einsetzen von PK (x) − ŷ = t(PK (x) − y) führt auf

t
2
‖y − PK (x)‖

2

2
− 2t(PK (x) − x)

ᵀ
(PK (x) − y) ≥ 0,

was für t → 0 die gewünschte Aussage liefert.
(ii.) Die bereits bewiesene Aussage (i.) impliziert

(PK (x) − x)

ᵀ
(PK (x) − PK (y)) ≤ 0,

(PK (y) − y)

ᵀ
(PK (y) − PK (x)) ≤ 0.

Zusammen führt dies auf

(PK (y) − y + x − PK (x))

ᵀ
(PK (y) − PK (x)) ≤ 0,

das ist Aussage (ii.).
(iii.) Diese Aussage folgt sofort aus Aussage (ii.) durch Anwenden der Cauchy-Schwarz-
schen Ungleichung. ♠

Bemerkung Aus der Monotonieeigenschaft (ii.) folgt wegen xk = PK (xk) für die
neue Iterierte xk+1 = PK(xk − �k∇f (xk)) des projizierten Gradientenverfahrens, dass

‖xk+1 − xk‖
2

2
≤ (xk+1 − xk)

ᵀ
(xk − �k∇f (xk) − xk).
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Wir erhalten daher

−∇f (xk)
ᵀ
(xk+1 − xk) ≥

1

�k

‖xk+1 − xk‖
2

2
. (4.22)

Dies bedeutet, dass durch die Abstiegsbedingung (4.21) des Algorithmus 4.21 tatsächlich
f (xk+1) < f (xk) erreicht wird. �

Lemma 4.23 Für beliebige x ∈ Rn und d ∈ Rn ist die Funktion

'(�) ∶=

‖PK (x + �d) − x‖2

�

für alle � > 0 monoton fallend.

Beweis. (i.) Für 0 < � < � setzen wir

u ∶= PK (x + �d) − x, v ∶= PK (x + �d) − x

und erhalten unter Verwendung von Lemma 4.22 (i.)

u
ᵀ
(u − v) = {PK (x + �d) − (x + �d) + �d}

ᵀ
{PK (x + �d) − PK (x + �d)}

≤ �d
ᵀ
{PK (x + �d) − PK (x + �d)}

und analog

v
ᵀ
(v − u) ≤ �d

ᵀ
{PK (x + �d) − PK (x + �d)}.

Zusammen ergibt dies

u
ᵀ
(u − v)

�

≤

v
ᵀ
(u − v)

�

. (4.23)

(ii.) Weiter erhalten wir mit Lemma 4.22 (ii.)

u
ᵀ
(u − v) ≤ �d

ᵀ
{PK (x + �d) − PK (x + �d)}

= −

�

� − �

(�d − �d)
ᵀ
{PK (x + �d) − PK (x + �d)}

≤ −

�

� − �

‖PK (x + �d) − PK (x + �d)‖
2

2

≤ 0.
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Aus der Cauchy-Schwarzschen Ungleichung ergibt sich

u
ᵀ
v(‖u‖2 + ‖v‖2) ≤ ‖u‖2‖v‖2(‖u‖2 + ‖v‖2),

woraus

‖u‖2v
ᵀ
(u − v) = ‖u‖2(u

ᵀ
v − ‖v‖

2

2
) ≤ ‖v‖2(‖u‖

2

2
− u

ᵀ
v) = ‖v‖2u

ᵀ
(u − v) (4.24)

folgt.
(iii.)Wir unterscheiden nun zwei Fälle: Für uᵀ

(u−v) = 0 gilt PK (x+�d) = PK (x+�d)

und somit u = v. Hieraus folgt unmittelbar auch

'(�) =

‖u‖2

�

≥

‖v‖2

�

= '(�).

Für den Fall uᵀ
(u − v) < 0 folgt aus (4.23)

�

�

≥

v
ᵀ
(u − v)

u
ᵀ
(u − v)

und aus (4.24)

‖v‖2 ≤ ‖u‖2

v
ᵀ
(u − v)

u
ᵀ
(u − v)

.

Kombiniert man diese zwei Ungleichungen, so erhält man wieder

'(�) =

‖u‖2

�

≥

‖v‖2

�

= '(�). ♠

Satz 4.24 Die Funktion f ∶ Rn
→ R sei auf K stetig differenzierbar und nach unten

beschränkt. Weiter sei ∇f auf K gleichmäßig stetig. Dann gilt für die Iterierten {xk}k∈N des
projizierten Gradientenverfahrens

lim

k→∞

‖xk+1 − xk‖2

�k

= 0.

Beweis. Wir führen einen Widerspruchsbeweis. Angenommen, es existiert zu jedem
" > 0 eine unendliche Teilfolge {k�}�∈N, so dass

‖xk�+1
− xk�

‖2

�k�

≥ ".
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Dann gilt insbesondere auch

‖xk�+1
− xk�

‖
2

2

�k�

≥ " max{"�k�
, ‖xk�+1

− xk�
‖2}. (4.25)

Da die Folge {f (xk�)}�∈N monoton fallend und nach unten beschränkt ist, folgt aus der
Abstiegsbedingung (4.21) des projizierten Gradientenverfahrens

lim
�→∞

∇f (xk�
)
ᵀ
(xk�+1

− xk�
) = 0,

was wiederum gemäß (4.22)

lim
�→∞

‖xk�+1
− xk�

‖
2

2

�k�

= 0 (4.26)

nach sich zieht. Aufgrund von (4.25) erhalten wir hieraus

lim
�→∞

�k�
= 0 und lim

�→∞

‖xk�+1
− xk�

‖2 = 0.

Für yk�+1 ∶= PK (xk�
+ 2�k�

dk�
) gilt aufgrund der algorithmischen Umsetzung des

projizierten Gradientenverfahrens

f (yk�+1
) > f (xk�

) + �∇f (xk�
)
ᵀ
(yk�+1

− xk�
),

also auch

f (xk�
) − f (yk�+1

) < �∇f (xk�
)
ᵀ
(xk�

− yk�+1
). (4.27)

Aus Lemma 4.23 folgt

‖xk�+1
− xk�

‖
2

2

�k�

≥ ‖xk�+1
− xk�

‖2

‖yk�+1
− xk�

‖2

2�k�

≥ "�k�

‖yk�+1
− xk�

‖2

2�k�

=

"

2

‖yk�+1
− xk�

‖2.

Weiter ergibt sich mit Lemma 4.22 (ii.)

(xk�+1
− xk�

)
ᵀ
{

xk�
− �k�

∇f (xk�
) − xk�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=−�k�
∇f (xk�

)

}

≥ ‖xk�+1
− xk�

‖
2

2
,

(yk�+1
− xk�+1

)
ᵀ
{

xk�
− 2�k�

∇f (xk�
) − (xk�

− �k�
∇f (xk�

))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=−�k�
∇f (xk�

)

}

≥ 0.
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Zusammen führt dies auf

(xk�
− yk�+1

)
ᵀ
∇f (xk�

) ≥ (xk�
− xk�+1

)
ᵀ
∇f (xk�

)

≥

‖xk�+1
− xk�

‖
2

2

�k�

≥

"

2

‖yk�+1
− xk�

‖2.

Speziell ergibt sich wegen (4.26) auch ‖yk�+1 − xk�
‖2 → 0 für � → ∞. Die gleichmäßige

Stetigkeit von ∇f impliziert daher

|
|
|
|

1 −

f (xk�
) − f (yk�+1

)

(xk�
− yk�+1

)
ᵀ
∇f (xk�

)

|
|
|
|

=

O(‖yk�+1 − xk�
‖2)

(xk�
− yk�+1

)
ᵀ
∇f (xk�

)

≤

2

"

O(‖yk�+1 − xk�
‖2)

‖xk�
− yk�+1

‖2

�→∞

⟶ 0.

Dies steht jedoch imWiderspruch zu der aus (4.27) folgenden Abschätzung

f (xk�
) − f (yk�+1

)

(xk�
− yk�+1

)
ᵀ
∇f (xk�

)

< � < 1. ♠

Bemerkung Da �k ≤ 1 ist, folgt aus Satz 4.24 ‖xk+1 − xk‖2 → 0 für k → ∞. �

Definition 4.25 Eine Menge C ⊂ Rn heißt Kegel, wenn aus x ∈ C auch �x ∈ C folgt
für alle � ≥ 0. Der Tangentialkegel TD(x) von der Menge D ⊂ Rn an einen Punkt
x ∈ D ist der kleinste abgeschlossene Kegel, der die Menge

M ∶= {d = y − x ∶ y ∈ D}

enthält.

Bemerkung Es sei x ∈ K und {yk}k∈N ⊂ K ⧵ {x} eine Folge mit limk→∞ yk = x.
Dann ist

d = lim

k→∞

yk − x

‖yk − x‖2

offenbar im Tangentialkegel TK (x) enthalten. Die Richtung d wird Grenzrichtung der
Folge genannt. Umgekehrt gibt es zu jedem d ∈ TK (x) mit ‖d‖2 = 1 eine Folge
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{yk}k∈N ⊂ K derart, dass

d = lim

k→∞

yk − x

‖yk − x‖2

und lim

k→∞

yk = x. (4.28)

Der Tangentialkegel enthält also gerade die Grenzrichtungen von allen Folgen
{yk}k∈N ⊂ K ⧵ {x} mit lim

k→∞

yk = x.

Insbesondere ist der Tangentialkegel konvex, weil K konvex ist. �

Lemma 4.26 Für jeden Punkt x ∈ K erfüllt die orthogonale Projektion PTK (x)( − ∇f (x))

der Richtung des steilsten Abstiegs auf den Tangentialkegel TK (x) die folgenden Eigenschaften:

(i.) Es gilt

∇f (x)
ᵀ
PTK (x)(

− ∇f (x)) = −
‖
‖
PTK (x)(

− ∇f (x))
‖
‖

2

2
.

(ii.) Es ist

min{∇f (x)
ᵀ
d ∶ d ∈ TK (x),

‖
‖
d‖2 ≤ 1} = −‖PTK (x)(

− ∇f (x))
‖
‖2
.

(iii.) Der Punkt x ist genau dann ein stationärer Punkt des Minimierungsproblems mit Neben-
bedingungen (4.19), wenn PTK (x)( − ∇f (x)) = 0.

Beweis. (i.) Nach Definition der Orthogonalprojektion besitzt die Funktion

g(�) ∶=

1

2

‖
‖
�PTK (x)(

− ∇f (x)) + ∇f (x)
‖
‖

2

2

ein Minimum bei � = 1. Daher gilt

g
′
(1) ∶=

‖
‖
PTK (x)(

− ∇f (x))
‖
‖

2

2
+ ∇f (x)

ᵀ
PTK (x)(

− ∇f (x)) = 0.

(ii.) Wegen Aussage (i.) gilt
‖
‖
PTK (x)(

− ∇f (x)) + ∇f (x)
‖
‖

2

2
= ‖∇f (x)‖

2

2
−
‖
‖
PTK (x)(

− ∇f (x))
‖
‖

2

2
.

Für alle d ∈ TK (x)mit ‖d‖2 ≤ ‖
‖
PTK (x)(

−∇f (x))
‖
‖2
gilt nach Definition der orthogonalen

Projektion
‖
‖
PTK (x)(

− ∇f (x)) + ∇f (x)
‖
‖

2

2
≤ ‖d + ∇f (x)‖

2

2

≤
‖
‖
PTK (x)(

− ∇f (x))
‖
‖

2

2
+ 2∇f (x)

ᵀ
d + ‖∇f (x)‖

2

2
.
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Zusammen ergibt dies

∇f (x)
ᵀ
d ≥ −

‖
‖
PTK (x)(

− ∇f (x))
‖
‖

2

2
.

Das Behauptete erhält man, indem man ̂d = d/
‖
‖
PTK (x)(

− ∇f (x))
‖
‖2
setzt.

(iii.) Definitionsgemäß ist x ∈ K genau dann ein stationärer Punkt, wenn

∇f (x)
ᵀ
(y − x) ≥ 0

für alle y ∈ K ist. Dies ist gleichbedeutend damit, dass ∇f (x)ᵀd ≥ 0 für alle d ∈ TK (x)

ist. Aussage (ii.) impliziert, dass dies genau dann der Fall ist, wenn PTK (x)(−∇f (x)) = 0

erfüllt ist. ♠

Bemerkung Ist PTK (x)( − ∇f (x)) ≠ 0, so kann Aussage (ii.) des obigen Lemmas auch
als

min{∇f (x)
ᵀ
d ∶ d ∈ TK (x),

‖
‖
d‖2 = 1} = −‖PTK (x)(

− ∇f (x))
‖
‖2

(4.29)

geschrieben werden, denn das Minimum wird für ‖d‖2 = 1 angenommen. �

Satz 4.27 Die Funktion f ∶ Rn
→ R sei auf K stetig differenzierbar und nach unten

beschränkt. Weiter sei ∇f auf K gleichmäßig stetig. Dann gilt für die Iterierten {xk}k∈N des
projizierten Gradientenverfahrens

lim

k→∞

PTK (xk)(
− ∇f (xk)) = 0.

Beweis. Zu beliebigen " > 0 gibt es nach Lemma 4.26 (ii.) zu jeder Iterierten xk ein
dk ∈ TK (xk) mit ‖dk‖2 = 1, so dass

∇f (xk)
ᵀ
dk ≤ −

‖
‖
PTK (xk)(

− ∇f (xk))
‖
‖2
+ " (4.30)

gilt. Da dk Grenzrichtung einer zulässigen Folge ist, gibt es ein yk ∈ K mit
‖
‖
‖
‖

yk − xk

‖yk − xk‖2

− dk

‖
‖
‖
‖2

≤ ".

Aus Lemma 4.22 (i.) folgt
{

xk+1 − (xk − �k∇f (xk))

}ᵀ
(xk+1 − yk+1)

=

{

PK(xk − �k∇f (xk)) − (xk − �k∇f (xk))

}ᵀ

{

PK(xk − �k∇f (xk)) − yk+1

}

≤ 0,
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was auf

�k∇f (xk)
ᵀ
(xk+1 − yk+1) ≤ ‖xk+1 − xk‖2‖xk+1 − yk+1‖2

beziehungsweise

−

∇f (xk)
ᵀ
(yk+1 − xk+1)

‖xk+1 − yk+1‖2

≤

‖xk+1 − xk‖2

�k

führt. Insgesamt erhalten wir deshalb

−∇f (xk)
ᵀ
dk+1 ≤ ‖∇f (xk)‖2

‖
‖
‖
‖

yk+1 − xk+1

‖yk+1 − xk+1‖2

− dk+1

‖
‖
‖
‖2

−

∇f (xk)
ᵀ
(yk+1 − xk+1)

‖yk+1 − xk+1‖2

≤ "‖∇f (xk)‖2 +

‖xk+1 − xk‖2

�k

.

Die Kombination mit (4.30) ergibt

‖
‖
PTK (xk+1)(

− ∇f (xk+1))
‖
‖2

≤ −∇f (xk+1)
ᵀ
dk+1 + "

≤ −∇f (xk)
ᵀ
dk+1 + ‖∇f (xk+1) − ∇f (xk)‖2 ‖dk+1‖2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=1

+"

≤ "‖∇f (xk)‖2 +

‖xk+1 − xk‖2

�k

+ ‖∇f (xk+1) − ∇f (xk)‖2 + ".

Weil " > 0 beliebig war, folgt hieraus schließlich

lim

k→∞

‖
‖
PTK (xk+1)(

− ∇f (xk+1))
‖
‖2

≤ lim

k→∞

‖xk+1 − xk‖2

�k

+ lim

k→∞

‖∇f (xk+1) − ∇f (xk)‖2 = 0

wobei Satz 4.24 und die gleichmäßige Stetigkeit von ∇f zur Anwendung kommt. ♠

In der Regel folgt aus der Stetigkeit von ∇f nicht, dass auch PTK (x)( − ∇f (x)) stetig ist.
Um sicherzustellen, dass die Iterierten des projizierten Gradientenverfahrens tatsächlich
gegen einen stationären Punkt konvergieren, benötigen wir daher das folgende Resultat.
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Satz 4.28 Die Funktion f ∶ Rn
→ R sei auf K stetig differenzierbar. Dann folgt für jede

Folge {xk}k∈N ⊂ K mit xk → x
⋆
∈ K

‖
‖
PTK (x

⋆
)( − ∇f (x

⋆
))
‖
‖2
≤ lim inf

k→∞

‖
‖
PTK (xk)(

− ∇f (xk))
‖
‖2
.

Beweis. Aus Lemma 4.26 (ii.) folgt für jedes y ∈ K

−∇f (xk)
ᵀ
(y − xk) ≤

‖
‖
PTK (xk)(

− ∇f (xk))
‖
‖2
‖y − xk‖2,

woraus sich für k → ∞ die Ungleichung

−∇f (x
⋆
)
ᵀ
(y − x

⋆
) ≤ lim inf

k→∞

‖
‖
PTK (xk)(

− ∇f (xk))
‖
‖2
‖y − x

⋆
‖2

ergibt. Zu jedem d ∈ TK (x
⋆
) mit ‖d‖2 = 1 lässt sich eine Folge {yk}k∈N aus K derart

finden, dass

d = lim

k→∞

yk − x
⋆

‖yk − x
⋆
‖2

und lim

k→∞

yk = x
⋆
.

Somit erhalten wir

−∇f (x
⋆
)
ᵀ
d ≤ lim inf

k→∞

‖
‖
PTK (xk)(

− ∇f (xk))
‖
‖2

und daraus wegen (4.29) die Behauptung:

‖
‖
PTK (x

⋆
)( − ∇f (x

⋆
))
‖
‖2
= max{−∇f (x

⋆
)
ᵀ
d ∶ d ∈ TK (x

⋆
),
‖
‖
d‖2 = 1}

≤ lim inf

k→∞

‖
‖
PTK (xk)(

− ∇f (xk))
‖
‖2
. ♠

Bemerkung Die Kombination der Sätze 4.24, 4.27 und 4.28 liefert die folgende
Aussage: Ist die zulässige Menge K ⊂ Rn konvex und abgeschlossen und ist die Funktion
f ∶ Rn

→ R aufK stetig differenzierbar mit gleichmäßig stetigemGradienten und nach
unten beschränkt, dann gilt für jeden Häufungspunkt x⋆ ∈ K der Iterierten {xk}k∈N des
projizierten Gradientenverfahrens 4.21

PTK (x
⋆
)( − ∇f (x

⋆
)) = 0.

Gemäß Lemma 4.26 (iii.) bedeutet dies, dass x⋆ ein stationärer Punkt ist. �
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