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INFORMATIONEN ...

zu den Ubungen

Die Ubungen bestehen aus wéchentlichen Ubungsblittern mit Theorieaufgaben, die in
den Ubungsstunden besprochen werden, und drei Programmierblittern (in MATLAB),
welche abgenommen werden.

Fiir die Ubungsblitter mit den Theorieaufgaben gibt es keine verpflichtende Abgabe.
Die Theorieaufgaben kénnen zur Korrektur freiwillig physisch an der Spiegelgasse 1 in
dem entsprechenden Fach abgegeben werden; jeweils montags bis 12:00. Die Riickgabe
der korrigierten Abgaben erfolgt dann physisch in der Ubungsstunde, weswegen Sie
jeweils den Tutor der besuchten Ubungsstunde auf Ihren Abgaben vermerken sollen.

Die Programmierblitter miissen verpflichtend erfolgreich bearbeitet, auf ADAM abge-
geben und vorgezeigt werden. Die Abnahmen geschehen dabei in den drei Wochen:
06.10-10.10, 03.11-07.11 und 01.12-05.12.

zu den Leistungsiiberpriifungen

Die Vorlesung Iterative Verfahren der Numerik ist eine Hauptvorlesung und wird somit
mit einem Examen in der Form einer miindlichen Priifung gepriift. Diese miindlichen
Priifungen werden im Zeitrahmen 09.-13.02.2026 stattfinden.

Die Ubungen Iterative Verfahren der Numerik sind Ubungen mit lehrveranstaltungs-
begleitender Leistungsiiberpriifung. Diese Leistungsiiberpriifung besteht aus den zwei
Elementen:

* Dem erfolgreichen Bearbeiten und Vorzeigen der Programmierblittern (s.o.).
* Dem Bestehen einer schriftlichen Klausur am 10.12.2025 um 14:15-16:00.



VORWORT

Zur Mitschrift vom HS 2023

Diese Mitschrift kann und soll nicht ganz den Wortlaut der Vorlesung wiedergeben. Sie
soll als Lernhilfe dienen und das Nacharbeiten des Inhalts der Vorlesung erleichtern.
Neben den unten genannten Biichern, diente mir speziell auch das Vorlesungsskript
Numerik nichtlinearer Optimierung von Gerhard Starke (Uni Hannover) als fruchtbare

Quelle.
Helmut Harbrecht

Zur Mitschrift vom HS 2025

Diese Variante der urspriinglichen Mitschrift vom HS 2023 wurde hauptsichlich neu
gesetzt, um ein A5-formatiges Skript aus einem A4-formatigen zu erstellen. Dabei
wurden auch die Grafiken iiberarbeitet und weitere, kleine Anderungen vorgenom-
men, sowie gefundene Typos eliminiert. Daher sind beide Mitschriften inhaltlich fast
deckungsgleich.

Marc Schmidlin

Literatur zur Vorlesung:

— M. Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissen-
schaftlichen Rechnens, Teubner-Vetlag

— C. Geiger und C. Kanzow: Numerische Verfahren zur Lisung unrestringierter Opti-
mierungsaufgaben, Springer-Verlag

— C. Geiger und C. Kanzow: Theorie und Numerik restringierter Optimierungsaufgaben,
Springer-Verlag

— F.Jarre und J. Stoer: Optimierung, Springer-Verlag
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6 1 EIGENWERTE

FIGENWERTE

Erinnerung: Ist A € K™", dannist p(1) = det(A—AI) ein (komplexwertiges) Polynom
tiber C vom Grad n. Jede der n Nullstellen von p ist ein Eigenwert von A, das heilt,
zu einer solchen Nullstelle A gibt es einen Eigenvektor 0 # x € C" mit Ax = Ax;
umgekehrt ist auch jeder Eigenwert eine Nullstelle von p. Die Menge aller Eigenwerte

nennt man das Spektrum o(A) von A. Aus A € o(A) folgt A € o(A*).

Eigenwerte sind selbst bei reellen Matrizen im allgemeinen nicht reell. Ist aber A € R™*
und A € g(A), so ist auch A € 6(A), denn aus Ax = Ax folgt

1.1 EigenwerteinschliefSungen

Die Eigenwertgleichung Ax = Ax ist nichtlinear beziiglich der gemeinsamen Unbe-
kannten (4, x). Daher sind die meisten numerischen Verfahren zur Berechnung von
o(A) iterativ und manchmal auch nur lokal konvergent. Aus diesem Grund ist die
folgende Sammlung relativ einfacher Ergebnisse iiber die Lage der Eigenwerte einer
Matrix von Bedeutung.

Satz 1.1 (Gerschgorin)  Sei A = [a; ;] € K" und A ein beliebiger Eigenwert von A. Dann
gilt

n n n

AEUKi:U{ZEC : |z—ai,i|§ Z|ai,j|}. (11)
i=1 1

i= j=1
i
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Beweis. Sei Ax = Ax mit x # 0. Dann existiert ein x; mit |x;| < |x;| fiir j # i. Folglich
ist

n
]z = Z a; jX;
j=1

und weiter
n
A —ayl = Zau Zlal]| Z|ai,j|'
J=1
]:tl ]7’:1 g1 J#i
Alsoist A € K; C U;Ll K;. 7'

Wegen A € o(A*) gilt entsprechend

O{ZGC z—a”|<Z|a],|}
=1 j=1

ji
beziehungsweise
n n n
AEUK,- :=U{ZG(C : |z—a,;,-|§Z|ajy,‘|}. (1.2)
i=1 i=1 =1
j#i

Dies ist der Satz von Gerschgorin angewendet auf A*.

Ist A eine beliebige (n x n)-Matrix, dann ist (A + A*)/2 hermitesch und (A — A*)/2
schiefhermitesch, dies bedeutet

1 * 1
—(A-A" =—(A—-A".
(38-4) =—ja-a)
Offensichtlich gilt

1 1
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Definition 1.2 Unter dem Wertebereich einer Matrix A € K™ versteht man die
Menge aller Rayleigh-Quotienten x*Ax/(x*x) mit x € C" \ {0}:

*

W(A) = {XXAXX : XEC"\{O}} cC.

Lemma 1.3
1. W(A) ist zusammenhdgend.
2. Ist A hermitesch, dann ist W(A) das reelle Intervall [ Amin, Amax ]

3. Ist A schiefhermitesch, dann ist W(A) ein rein imagindres Intervall, nimlich die konvexe
Hiille aller Eigenwerte.

Beweis. 1. Sei & # & € W(A) mit

_ XpAx _ XjAx

5 XO, Xl € (Cn \ {0}.

&

1

* > *
Xy X0 X1X1

Offensichtlich ist Xy # Axy, da sonst & = &;. Fiir t € [0, 1] ist
X Ax

& = e e W(A) mit x; :=xg+t(x; —Xg) € [X0,%1] 20
¢ Xt

eine stetige Kurve, die & mit & verbindet.

2. Ist die Matrix A hermitesch, dann sind alle Eigenwerte reell und es gilt
. * _ . 2 * — 2
E{Ié(g‘lx AX = Amin[x]3, l;}'é%a(x AX = A [X]5-
Hieraus ergibt sich die Behauptung.
3. Wegen A* = —A ist iA hermitesch:
(iA)* = iA* = —iA" = iA.

Da W(iA) = iW(A) und o(iA) = io(A) ist, folgt die Behauptung aus der
zweiten Aussage. A

Klar:  Es gilt immer 0(A) C W(A).
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Satz 1.4 (Bendixson) Sei A € K™ beliebig. Dann liegt das Spektrum von A in dem
Rechteck
1 x 1 "

oc(A)CR := W<2(A+A )) +W<2(A—A )>.

Beweis. Wir zeigen
1 * 1 *

W(A) C W(Z(A+A )) 4 W<2(A—A )).
Seix € C" \ {0}, dann folgt

XAx X' [J(A+AM)+ (A - AY)]x

X*X X*X
_IXM(A+Ax N 1x(A—A")x
2 X*X 2 X*X
1 x 1 *
EW<2(A+A)>+W<2(A—A)>. A
Beispiel 1.5 Fiir die Matrix
4 0 3
A=]0 -1 1
1 1 0

ergeben sich nach (1.1) beziehungsweise (1.2) die folgenden EinschlieBungen:

Gerschgorin fiir A Gerschgorin fiir A*
4 4
2 )l
0 0
) -2
-4 -4
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Der symmetrische und schiefsymmetrische Anteil von A ist

. 4 0 2 . 0 0 1
H=-(A+A)=[0 -1 1|, S=-(A-A")=|0 0 of.
2 2 1 0 2 1.0 0

Zur Anwendung des Satzes von Bendixson schlieBen wir die Spektren von H und S
wieder mit dem Satz von Gerschgorin ein, was auf das Rechteck

R=[-3,6]+[i1i]

fiihrt. Das Spektrum von A muss im Schnitt aller drei Einschlussmengen liegen:

Einschlussmengen mit Bendixson Schnitt & Spektrum
41 | 4l
2r 2r
0f - o}
2t -2r
4} 4}
4 2 0 2 4 6 4 2 0 2 4 6
Tatsichlich ist das Spektrum o(A) = {—1.7878,0.1198, 4.6679}. &

1.2 Kondition des Eigenwertproblems

Betrachte
1 0 —aq
A= 1 0 —as
1 0 —dp—2
1 —0p—1
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Entwickelt man die Determinante nach der letzten Spalte, so gilt

(=1)"det(A —AI) = A" + @, A"+ L+ ad +ap =2 p(A).

Definition 1.6 Die Matrix A heif3t Frobenius-Begleitmatrix von p(1). Die Eigen-
werte von A sind die Nullstellen von p.

Das spezielle Polynom py(4) = (4 — a)" hat die n-fache Nullstelle 2 = a, wihrend
pe(A) = (A —a)* + ¢ fiir € > 0 die Nullstellen
Ak =a— gt/nei2rk/n  p—0.1,....n—1,

besitzt. Die zugehdrigen Frobenius-Begleitmatrizen unterscheiden sich nur um ¢ in
der oo, 1, 2 und der Frobeniusnorm-Norm, denn es gilt

0 ven O £
An=a-a =0 0

Allerdings haben die Eigenwerte der Begleitmatrizen den Abstand
AN = [ = Xl = eV, (1.3)
Fiir a # 0 folgt daher

184 _ et _ Al |aA]
AT T el e Al

—_——
— oofiire >0

dies bedeutet, die Kondition des Eigenwertproblems kann ohne Zusatzvoraussetzungen
an die Matrix A beliebig gro3 werden.

Man kann jedoch zeigen, dass die Eigenwerte stetig von den Eintrigen der Matrix

abhingen. Der gefundene Exponent 1/n in (1.3) ist schlimmstmdglich.

Definition 1.7 Eine Matrix A heil}t diagonalisierbar, falls es eine Basis aus Eigen-
vektoren gibt. Sind (A1, v1), (A2, v2), ..., (A4, v,,) die Eigenpaare, dann gilt

A=VDV,  V=[v,Vy..,Val, D = diag(Ay, s, ..., Ay).

Beachte: Inder Regel ist eine Matrix nicht diagonalisierbar. Dann treten Hauptvektoren
und Jordan-Kistchen auf.
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Satz 1.8 (Bauer und Fike) Sei A = VDV ™! diagonalisierbar und ) ein Eigenwert von
A + E. Dann existiert ein Eigenwert A; von A mit

|A — A < cond(V)|E].

Hiebei bezeichne | - | entweder die 1, 2 oder co-Norm und cond(V) die entsprechende Konditi-
onszahl von V.

Beweis. Falls A € o(A) ist die Behauptung trivial. Andernfalls existiert (A — A)™?,
und wir wihlen einen Eigenvektor v von A + E zum Eigenwert A. Wir erhalten

Ev=(A+E—-A)v=_UI-A)v,
und daher

(AI-A) 'Ev=v.
Folglich ist

1< |(A1-A)'E| = [V(AL-D) 'V 'E|
< IVI|@A1 = D)~ [[V|IE] = [E] cond(V) max{|A — 4|} o

Definition 1.9 Eine Matrix A heit normal, falls gilt AA* = A*A. Insbesondere
sind normale Matrizen diagonalisierbar mit V™! = V*.

Bemerkung Hermitesche Matrizen sind normal. ¢

Korollar 1.10  Sei E eine beliebige Matrix. Ist A normal und A ein Eigenwert von A + E,
dann existiert ein A; € o (A) mit

A = Al < [E]2.
Beweis. Falls A normal ist, ist V unitir und daher cond,(V) = 1. o

Die “normweise Konditionszahl” des einzelnen Eigenwerts ist also iiber cond(V)
bestimmt worden, wobei V die Eigenvektormatrix bezeichnet. Eine lokalere Aussage
lisst sich durch Differenzieren bestimmen:
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Lemma 1.11  Sei A € K™" und A; ein einfacher Eigenwert zum Rechtseigenvektor v;, das
heifit, Av; = A;v;, und Linkseigenvektor w;, das heift, uf A = u} A;. Dann besitzt die Matrix
A + ¢C fiir geniigend kleines |e| > 0 einen einfachen Eigenwert A(¢) und es gilt

Cv:
Ae) = A; + eu’ L +0(%), €—0. (1.4)

g\

Beweis. Da der Eigenwert A; einfach ist, folgt aus der Jordanschen Normalform

A=T [)(L)’ ](;] T' mit v;=aTe;, uw=pT "e;, af#0, (1.5)
dies bedeutet,
uv; = afe;T 'Te, = aff # 0. (1.6)

Wir betrachten nun die analytische Funktion

F: (Cn+1 xC — (Cn+1, F(V,/L E) — (A +fC - /“.I)V )
viv—1
tiir die offensichtlich gilt
A - /1 I —Vij
F(Via/llﬁo) - 0: a( A)(Vbllao) vi 0 ] .

Wir zeigen zunichst, dass die Matrix M € CDx(+1) jpyvertierbar ist. Dies folgt, wenn
das Gleichungssystem

v
nur die Lésung v = 0 und A = 0 besitzt. Multiplizieren wir die erste Gleichung von
links mit u}, dann folgt

Av— v —Av;| 0
viv B

u Av —Auv — Auv; = —Au]v; = 0,
—
=Auf v

was wegen (1.6) A = 0 impliziert und weiter Av = A;v. Folglich ist v ein Vielfaches
von v; und wegen der zweiten Gleichung gilt v = 0.
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Da M invertierbar ist, kann nach dem Satz tiber implizite Funktionen F = 0 in einer
Umgebung von (v;, A;, 0) eindeutig aufgeldst werden. Fiir hinreichend kleines ¢ gibt es
demnach eindeutige analyische Funktionen v(¢) und A(¢) mit

v(0)=v;, A(0)=24;, und (A +eC— A(s)I)V(e) =0, viv(e)=1

Offensichtlich ist v(¢) nicht Null und somit ein Eigenvektor von A + £C. Differenziert
man (A +¢eC — A(e)I)v(s) = 0 nach ¢ und setzt ¢ = 0, dann ergibt sich

(C=XOI)v; + (A —ADV(0) = 0.
Multiplikation von links mit u} liefert
u'Cv; — A'(0)u;v; =0

und daraus 1”(0) wie behauptet. o

Korollar 1.12  Sei A € K™" und A; ein einfacher Eigenwert zum Rechtseigenvektor v; und
Linkseigenvektor w;. Dann ist die Kondition der Berechnung dieses Eigenwerts

1 |A2

Kaps(Ai) = m’ el Ai) = |A; cos («(u;, vi))|

Beweis. Aus (1.4) ergibt sich fiir die absolute Kondition

B u/Cv; il vl _ 1
Kabs(Ai) = Sup * - - ’
e Wi uillvile] cos ((uiv)| - |eos (4w, vi)
=

woraus fiir die relative Kondition folgt

B lAl
K:rcl(Ai) - |Al CcoS (<f(ui’ Vi))‘ . ‘

Bemerkung Die Kondition wird demnach groB, wenn u;v; = 0. Bei normalen
Matrizen fallen Rechts- und Linkseigenvektor zusammen, weshalb sich hier k(1) = 1
ergibt. Offensichtlich ist dann auch die relative Kondition durch

/1| max | .
il

gegben und damit fast 1 fiir betragsmissig grosse Eigenwerte; kann aber fiir betragsmissig
kleine Eigenwerte gross werden. ¢

Krel(Ai) =
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1.3 Potenzmethode

Als konstruktives Verfahren zur niherungsweisen Bestimmung einzelner Eigenwerte
und Eigenvektoren betrachten wir die Potenzmethode oder von Mises-Verfahren. Um die
Ideen des Verfahrens so klar wie méglich herauszustellen, beschrinken wir uns grund-
sitzlich im folgenden auf reelle, diagonalisierbare Matrizen A # 0 mit n betragsmiBig
verschiedenen Eigenwerten

Ml > Aol > .. > A >0 (beachte: alle ; € R).

Alle Ergebnisse konnen mit entsprechendem technischen Aufwand auf den allgemeinen
Fall iibertragen werden. Sind vy, vy, ..., v, mit |v;| = 1 die zugehorigen Eigenvektoren
von A, dann gibt es fiir jeden Vektor x € R" eine Entwicklung

n
x= ) &, (1.7)
i=1
und folglich ist
n
Afx =) Mg, (1.8)
i=1
Die Potenzmethode beruht nun auf der asymptotischen Identitit

AkX = A/lcglvl'

Algorithmus 1.13 (von Mises-Potenzmethode)
input:  Matrix A € K" und Startvektor x € K"
output: Folge von Iterierten {z; }r>o

@ Initialisierung: setze zy :=xund k := 0

@ berechne
~ Zhs1
Zk1 1= Az, Zpy 1= iz - " (1.9)
k+1

® erhdhe k := k + 1 und gehe nach @

Die Potenzmethode besitzt die folgenden Eigenschaften:
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Satz 1.14 It & # 0in (1.7), dann gilt mit q := |Ay/A1] < 1:
1. Esist
2] = 1] + O(g"),  k — co.
2. Ist Ay > 0, dann gilt
|z — sign(&)vi| = O(q"),  k — oo,
3. Ist Ay <0, dann gilt
[(=1)*"z — sign(&)vi] = O(g"), k — eo.

Beweis. Aus (1.8) folgt

‘&
Afx =2 §1(V1 + Z [] érv)

mit

k

nwhfzgzw
i=2

——
=:C

Damit ist
k

A'x Vi + Wi
|A*x]|

= sign(A¥¢))

VA —_—.
ke = [vi + wil

Wegen

1-Cq" < vl = Iwill < vy + Wil < v + [wi < 1+ Cg*
folgt also

z = sign(A¥E) vy + O(qF), k — oo,
und

Zke1 = Az = N4 sign(l’f_lg"l) vy + O(qk), k — oo.

Hiervon lassen sich die Eigenschaften 1-3 leicht ablesen.

1 EIGENWERTE

(1.10)

(1.11)
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Bemerkungen

1. Die Normierung 7z +— 2 in (1.9) ist notwendig, um overflow/underflow zu
vermeiden. Die Wahl der Norm ist dabei unerheblich.

2. Aus Eigenschaft 1 ergibt sich |A,], aus dem Vorzeichenverhalten von z; das Vor-
zeichen von A;: alternieren die Vorzeichen von 7, dann folgt A4; < 0, ansonsten
ist /11 > 0.

3. Die Voraussetzung & # 0 kann natiirlich nicht a priori tiberpriift werden. Wegen
Rundungsfehlereinfliissen wird jedoch in der Regel eine Komponente von zj
lings v; im Verlauf der Iteration eingeschleppt. ¢

Varianten: Die Potenzmethode kann in dieser Form nur verwendet werden, um A; zu
bestimmen. Zur Berechnung anderer Eigenwerte von A kann man jedoch A zunichst
geeignet transformieren:

1. Gilt A, # 0, so kann man A™! statt A in (1.9) verwenden. Dies ist dann die inverse
Iteration. Da A™! die Eigenwerte

> N> > 1A

mit den gleichen Eigenvektoren besitzt, approximiert die inverse Iteration |4, |

und den entsprechenden Eigenvektor v,,.

2. Bei der gebrochenen Iteration von Wielandt verwendet man (A — AI)™! statt A in
(1.9), A ¢ o(A). Die Matrix (A — AI)™! besitzt die Eigenwerte {(1; — 1)~} (=
und die gebrochene Iteration approximiert den Eigenvektor zu A; € o(A), der
am nichsten zu A liegt.

Bemerkungen

1. Bei beiden Varianten muss ein lineares Gleichungssystem pro Schritt geldst wer-
den!

2. Ist A; der nichste Eigenwert zu A, dann konvergiert die gebrochene Iteration
umso schneller, je niher A ist, da der Konvergenzfaktor

A=A 1A — Al
= max ———— = max
1 JF |)L, - M_l JF M] — )L|

dann am kleinsten ist. ¢
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Ist A = AT reell symmetrisch (oder aber auch A = A* komplex hermitesch) und
|| =12, dann kann man die Niherung [Zy| = |A;| verbessern, indem man statt dessen
die Niherung

z; Az
Az ~
A] = Z*Zk = Z]:AZk = Z]:Zk+1 (112)
k
——
=1
verwendet.

Satz 1.15 Ist A = A*, dann gilt
|/11 - z;Ek+1| = (’)(q‘?k), k — oo.

Beweis. Der Beweis verwendet, dass wy aus (1.10) senkrecht auf vy steht. Mit

Yk = Sign(ﬂllc_lgl) ||V1 + “’/{—1”271
—_—

>1
folgt aus (1.11) nimlich
ML= Az = (LI — A)wy—y L vy
In Anbetracht von z;, = y,v] + yrwj_, und [yi| < 1 bedeutet dies

|Z; MI=A)z | = )’1?|W1:_1(/111 - A)wi| < [T = A, ||Wk—1||§-
e [N———
vy <2A]

Wegen
A= Z/ZEkH = /1121sz - ZZEk+1 = ZE(/th —Zky1) = Z]:(/lll - Az,
ergibt sich daher

A = 2%k < 2JAL Wil = 0@@%), k- . A
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Entsprechend kann man fiir “innere” Eigenwerte verfahren:

Algorithmus 1.16 (Rayleigh-Quotient-Iteration)
input:  Matrix A € K™ und Niherungseigenpaar (1, zo) mit ||zo], = 1
(bestimmt etwa durch Potenzmethode)
output: Folge von Iterierten {(uk, zx)}>0

@ setzek :=0
@ berechne
* ~ -1 Ek+1
Hi1 = ZpAzg, Ziyr 1= (el — A) %, Zpq 1=
|er+1||2

® erhohe k :=k + 1 und gehe nach @

Bemerkung Die Iteration bricht man ab, wenn [Zj4[, sehr groB wird, was ein
Zeichen dafiir ist, dass p41I — A fast singulir ist. ¢

Nach obiger Konvergenzdiskussion wird man vermuten, dass die Konvergenz die-
ses Algorithmus superlinear ist. Tatsichlich ist die Konvergenz sogar lokal kubisch,
vorausgesetzt es gilt A = A*.

Satz 1.17  Sei A = A” und (1o, 2o) eine hinreichend gute Niherung an ein Eigenpaar (A, V)
von A (|v]z = |zol2 = 1). Dann konvergiert piy. aus der Rayleigh-Quotient-Iteration lokal
kubisch gegen A, das heifst, es existiert ein C > 0 mit

A= sl SCIA=— P, k=0,1,2,....

Beweis. Im weiteren bezeichne A denjenigen Eigenwert von A, der am nichsten an A
ist. Ferner zerlegen wir

Zj—1 = Xg—1 + Yi-1 mit AXk_1 = Axk—l, Xp—1 L Yk-1 (113)

in seinen Anteil x;_; im Eigenraum zu A und den Anteil yj_; in den anderen Eigen-
riumen. Wir prizisieren die “Nihebedingung” wie folgt:

1

1
Iyi-1l2 < 5||Zk—1||2 = (1.14)

_min A -1l (1.15)

5 5
1
3 Tea (AN

1 ~
A=l < 1A= A=
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In diesem Fall gilt fiir jedes e a(A)\{A}

~ ~ ~ 2 ~
=T = = A+ A= T2 =2 = -l 2 S =T (1.16)
Es gilt
. . 2z (AL — A)zy|
A = prest| = 1A — Zi Aze| = |25 (A — A)ze| = kiz, (1.17)
[Z[5
und Einsetzen von 7 = (gl — A) 'z, ergibt
x I-A)2(A - Az
A — pia] = Za Ul — A) C S : (1.18)

Z;:_l(llkl —A) 2z,
Wegen (1.13) gilt auch (I — A)™?x,—; = (i — A1) "*xx—; L yi—1, und daher folgt

. _ 1
Zk_l(/lkl -A) 2Zk—l = (

mllx;c—llli + Vi Gl = A) Py

>0
(1.14) 1
Ixeal; > ——3.
= Y — 2y

1
>
(e — A)?
Andererseits ist

|z (I — A) (AL = A)zge—y| = |z5_ (] — A) (AL — A)yi|
Ortho-

onahta
T yp Gl — A2 - Ay
1
< max ——— IVi_i (AL = A)yg—1]
TeoaNA} (i — A)? = ’

=|z;_, (AI-A)z_4], da (AI-A)x;_1=0

e /3\* 1
2 () - A

(A -2y
17) 9 1
2 -l
4 (A —A)?
Im Hinblick auf (1.18) ergibt sich daher
9 1A — pul 2 1 3
A= preral < 5 A = ) =9 A= il
Ay (- 2y

dies ist die kubische Konvergenzrate.
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Wir miissen nur noch zeigen, dass die Iterierte (fg+1, Z¢) wieder den Abschitzungen
(1.14) und (1.15) geniigt. Die Bedingung (1.15) folgt aus

9 (A-A)
A-2p 9
Ferner folgt (1.14) aus

(.15 1 ~
|/1—/1k+1|£( A=l = 1A — | < §|/1—/1|-

~ - 1 -
Z = (I = A) 'z = P (el = A) My,

A - -
— =¥k
=X}
da wegen
16) 3 ) 1
= I-A o -
Ikl = Ik ) Yk- 1||2 s 5 M"Yk 1||2 s 5 = |||Yk 1z

der Anteil von |lyk|2 an |zk|2 sogar noch kleiner ist als der von |[yx—1]2 an |zg—1]2. &

Bemerkung Die Rayleigh-Quotient-Iteration kann auch bei nichtsymmetrischen
Matrizen eingesetzt werden. Die Konvergenz ist dann lokal quadratisch. ¢

1.4 QR-Zerlegung

Im folgenden sei A € R™", m > n, eine gegebene Matrix mit rang A = n. Die
Grundidee der QR-Zerlegung ist eine Faktorisierung A = QR in eine rechte obere
Dreiecksmatrix R € R™" und eine orthogonale Matrix Q € R™,

Definition 1.18 Eine Matrix Q € R™" heifit orthogonal, falls
Q7Q =

das heiBt, falls die Spalten von Q eine Orthonormalbasis bilden.

Eigenschaften orthogonaler Matrizen:

1. Wegen

|Qx; = (Qx)TQx = x"QTQx = x"Ix = x"x = [x[;
gilt |Qx|, = x|, fiir alle x € R".
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2. Es gilt cond,(Q) = 1, da
|Ql2 = max [Qx[, =1 und [Q7', = Q7. = Q. = 1.

Ixlo=1
3. Mit P, Q € R™" orthogonal ist auch PQ orthogonal, da
(PQ)TPQ = Q"PTPQ = QTIQ = QTQ =L
Definition 1.19 Seiv € R" \ {0}. Die Matrix
2 X,
P=I-_—vvl e R™
vl

heiBt Householder-Transformation.

Lemma 1.20 P ist eine symmetrische, orthogonale Matrix und es gilt
Pv=-—v und Pw=w

fiir alle w € R" mitw L v.

Beweis. Aus der Definition von P folgt unmittelbar, dass P symmetrisch ist. Weiter

gilt
2 2
PTP =P’ = <I — 2VVT> <I — ZVVT>
vl Ivl

4 4
=I—-—vwT+ —vvivvT

[v13 Ivl; —
=|vl
4 4
=I- 72VVT + 72VVT =L
[vl3 Ivl3

AuBerdem ergibt sich fiir den Vektor v aus der Definition von P

2
Pv=1Iv-— —ZVVTVZV—ZVZ -V
TEAbe
=Ivl2

und fiir beliebiges w L v

2
szlw——zvawzw. '3
vl ——
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Pv

v

Householder-Transformationen sind Spiegelungen!

Eine QR-Zerlegung kann erzeugt werden, indem man schrittweise die Matrix A durch
Multiplikation mit geeigneten Householder-Transformationen Qy, Qo, ..., Q, auf rech-
te obere Dreicksgestalt bringt. Das nichste Lemma erlaubt uns, solche Householder-
Transformationen zu konstruieren, indem es fiir jedes x € R”" \ {0} eine Householder-
Transformation Q angibt, so dass

Qx =ce; mit o€ R\{0}

Lemma 1.21 Gegeben sei x € R" \ {0}. Fiir x ¢ span{e;} und

sign(ey)|x[, falls x; # 0,

Iz falls x; = 0, (1.19)

v=x+o0e, mit az:i:{

oder x € span{e;} mit 0 = sign(x;)|x| gilt

2
[- — v |x=—0e.
Ivl3

Beweis. Inbeiden Fillen, x ¢ span{e;} oder x € span{e,}, ist v # 0. Weiter gilt
Ix + oeq|s = |x]5 + 20xTe; + 0 = 2(x + ge;)Tx.

Daraus erhilt man
2vTx = 2(x + oe)"x = [x + oe[; = |v[;,

was zusammen mit (1.19) die Darstellung

2
—=V(VTX) =x+ o€,
vl

liefert. Dies impliziert die Behauptung. A
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Bemerkung Damitim Fall x ¢ span{e;} mit x; # 0 bei der Berechnung von v keine
Ausléschung auftritt, wihlen wir 0 mit dem oberen Vorzeichen, das heif}t

v=x+—lxler, VI3 = 25 + 2pxllxl. (1.20)

X1
|x1|

¢

Satz 1.22  Sei A € R™" mit rang(A) = n (also m > n). Dann existiert eine orthogonale
Matrix Q € R™™ und eine obere Dreiecksmatrix R € R™" mit

S¢ oo *“l
Pn
A=Q-R=0Q- - * {
0 m-—n
_ |1
n

Beweis. Wir bestimmen die gesuchte Zerlegung, indem wir in jedem Schritt eine
Householder-Transformation an A heranmultiplizieren, um sukzessive die Spalten von
1 bis n von R zu erhalten:

0,Qp-1+ Q1A =R. (1.21)
Wegen der Symmetrie der Q;, 1 < i < n, ist Q dann gegeben durch

Q=0:1Q2-Qn.

Im ersten Schritt setzen wir A; := A und x = a; (erste Spalte von A;) und bestimmen
die Householder-Transformation Q; € R™™ gemil (1.20). Es folgt

Qia; =rpe; mit |ryg| = [asf; # 0,

beziehungsweise

. A eRMDID T e et
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Im nichsten Schritt setzen wir x = a; € R™! (erste Spalte von A;) und wihlen
wiederum die Householder-Matrix Q, € RD*("=1 gem3f (1.20). Wir erhalten

Iao| = Q2] # 0, A3 € R(m—Z)x(n—Z)’ I'T € Rn—Z,
) 2

3

11 Iy

a2 | I

0| 0 |A;

Q.A,

=:Q;

Die erste Zeile r; verindert sich nicht mehr. Die Matrix Q; kann ebenfalls als (m x m)-
Householder-Transformation aufgefasst werden mit v = [ 2].

Auf diese Weise erhalten wir sukzessive die gewiinschte Zerlegung (1.21). Man beachte,

dass |ri;] = [lai]2 (1 < i < n) immer von Null verschieden ist, da ansonsten A; und damit
auch A einen Rangdefekt hitte. o
Bemerkungen

1. Bei der Implementierung ist darauf zu achten, dass Householder-Transforma-
tionen P niemals explizit gebildet werden, denn sonst kostet die Berechnung P - A
m?®n Multiplikationen. Besser ist

2 2
PA=A- —ZVVTA A— —VWT w=ATv
M T T

mit O(mn) Multiplikationen. Wenn man P spiter verwenden will, speichert man
den Vektor v ab.

2. Die wihrend der QR-Zerlegung anfallenden Vektoren
Vi =1[0,...,0, 1,051, 00, Vi) T

lassen sich analog zur LR-Zerlegung wieder in der freiwerdenden linken unteren
Dreiecksmatrix von A speichern. Die Matrix Q ist dann wie folgt gegeben

- 2
o=TT (1= s ) ¢
i=1 !
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Algorithmus 1.23
input:  Matrix A € R™"
output: Zerlegung A = QR mit einer orthogonalen Matrix Q € R™ und einer
rechten oberen Dreiecksmatrix R € R™"

@ Initialisierung: setze A; :=Aundi :=1

@ mit Hilfe der ersten Spalte x von A; berechne

X1
vi i=x+ —|x|.e
|1
® setze gemil (1.20)
2 1

Bi :

TV I + Ballxl

@ berechne w; := f;A]v;
® ersetze A; durch A; — viw]

® erhalte Ay aus A; durch Streichen der ersten Zeile und Spalte

@ fallsi < nerhShei :=i+ 1 und gehe nach @

Aufwand: Wir bilanzieren den Aufwand im i-ten Schritt. Wie man leicht einsieht
benutzt der i-te Schritt:

Vi m — i + 3 Multiplikationen
Bi: 2 Multiplikationen
wi: (m —i+ 2)(n —i+ 1) Multiplikationen
A (m —i)(n — i + 1) Multiplikationen

~ 2(m — i+ 1)(n — i + 1) Multiplikationen

Es ist weiter einfach einzusehen, dass pro Addition auch mindestens eine Multiplikation
stattfindet, und auch, dass jeweils im i-ten Schritt nur eine skalare Inverse berechnet
werden muss. Wir beschrinken uns daher auf den Gesamtaufwand der Multiplikationen.
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Fiir den Gesamtaufwand ergibt sich daher nun

ZZ(m—l+1)(n—l+1) = l+122](m—n+])

i=1 j=1

n n
2) jfF+2m-n))j
j=1 j=1

2
= gnS + (m — n)n® + O(mn)

1
= mn® — §n3 + O(mn),

dies bedeutet dass der Aufwand etwa doppelt so hoch ist wie bei der LR-Zetlegung,.

Die QR-Zerlegung kann wie die LR-Zerlegung zur L3sung eines nichtsinguliren
linearen Gleichungssystems Ax = b (also m = n) verwendet werden. Dies geschieht in
folgender Weise: Zerlege A = QR, und 16se QRx = b durch Riickwirtssubstitution

Rx = Q™b
O(n?) Operationen

Bemerkung Die QR-Zerlegung gehért zu den “stabilsten” Algorithmen in der nu-
merischen linearen Algebra. Der Grund dafiir ist, dass Orthogonaltransformationen
keine Fehlerverstirkung bringen, da cond,(Q) = 1. Die abschlieBende Riickwirtssub-
stitution hat die gleiche Kondition wie das Ausgangsproblem, da wegen [Qx], = x|,
folgt

IALIA . = ( max JAx], ) ( max|A™'xl.)

Ixl= Il

= ((max|QRxl. ) ( max |R"'Q"xl.)

Ixlo=1 Ixl.=1

= (o IR ) max IR0,

Ixl2=1 lyl-=1
= [REIR™ 2,

das heif3t

cond;(R) = cond,(A). ¢
Beispiel 1.24  Gesucht ist die QR-Zerlegung von
1 -11/2
-2 0 .
2 -1

A:A1:
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Die erste Spalte von A ist

1
a; = [_2], "31"2: V1+4+4=3.

2
Also ist
1 1 4
vy = a; + sign(ay)|a].e; = [-2| +3 0| = |-2|.
2 0 2

Somit folgt

~ 1 1
lail} + lavilladl, 12

B

woraus sich

4
1 1 -2 2 1
— T — _ —
wi = fAjvi = o [—11/2 0 —1} ‘ 2} = [—2]
ergibt. Dies bedeutet

1 —11/2] [4 -8 [-3 5/2
QlAlel_VIWI: -2 0 — -2 41 =10 —4

2 -1 2 —4 0 3

Die erste Spalte stimmt dabei mit —oe; iiberein, so war die Householder-Transformation
schlieBlich konstruiert. Sie ist iibrigens gegeben durch

-1 2 -2
1
lel—ﬁvlvfzf 2 2 1.
312 1 2

Nun ist

—4
A2232:[3:|, ||a2||2=\/16+9=5.
Mit

. _4 : _9
vy = a, + sign(ay)|az].e; = [ 3 ] N [0] ) [ . }
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und

1 1
lazl3 + lazillazl, 45

P2 =
folgt

wy = fAlv, = 1 [-4 3] = [1]

ST 3 '

Damit ergibt sich

~ -4 [-9] _ [5]

on-nnot- -1
Dabei hat die Matrix Q, die Form

1 0 1 > 0 0]
QZ = = - 0 —4 3 .
0 [I—pvyv] ]

Fiir Q erhalten wir schlieBlich
1 -1 2 =215 O O 1 -5 —-14 -2
0=00,=—1[2 2 -1||0 -4 3|==]10 -5 10],
Llo 1 2flo 3 4 Bl-10 2 1

wihrend R gegeben ist durch

-3 5/2
R=|0 5.

0 0

Bemerkung Algorithmus 1.23 bricht zusammen, wenn rang(A) = p < n. In diesem
Fall muss man Spalten von A permutieren (ihnlich zur Pivotsuche) und erhilt eine
Faktorisierung der Art

R; R,
T —
QAP—[O 0]

mit einer Permutationsmatrix P € R™" einer oberen Dreiecksmatrix R; € RP*?P, und
einer eventuell vollbesetzten Matrix R, € RPX("=P), ¢
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1.5 QR-Verfahren

Das QR-Verfahren ist das in der Praxis eingesetzte Verfahren, wenn alle Eigenwerte
bendtigt werden. Das Verfahren an sich ist sehr einfach:

Algorithmus 1.25 (QR-Verfahren)
input:  Matrix A € K"
output: Folge von Iterierten {Ay}i>o

@ setze Ay :=Aundk :=0
@ berechne die QR-Zerlegung

Ai = QiR (1.22)
und setze
Ak+1 L= Rka (1.23)

® erhohe k := k + 1 und gehe nach @

Lemma 1.26 Die Matrizen Ay aus Algorithmus 1.25 besitzen folgende Eigenschaften:

1. A1 = QFAQk
2. A1 = (QoQ1 + Q) TA(QQ: -+ Qi)
3. AM = (QoQ: -+ Q) (RiRe—1 -+ Ry)

Beweis.
1. Mit (1.22) und (1.23) ergibt sich
Aji1 = ReQr = QI QiR Qe = QO (QkR)Qk = QA Q.

2. Die Behauptung ergibt sich sofort aus der ersten Aussage wegen A, = A.

3. Fiir k = 0 entspricht die Aussage genau (1.22). Der Induktionsschritt k — k + 1
folgt nun aus

Qr+1Ris1 = Agrr = (QoQ1 ++ Qi) TA(QoQ; -+ Q)
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zusammen mit der Induktionsannahme

(Qo -+ Qk Qks1)(Res1 Ry Ro) = A(QoQ - Qu)(RiRe_y -+ Ry) = AR,
=Ak+1 =Ak+

Bemerkungen

1. Wegen der ersten Aussage von Lemma 1.26 sind alle Matrizen Ay dhnlich zuein-
ander und besitzen daher dieselben Eigenwerte.

2. Anstelle der QR-Zerlegung kann man auch eine LR-Zerlegung verwenden: be-
rechne in (1.22) die LR-Zerlegung Ay = LiRy und setze in (1.23) Agy; 1= RiLy.
Dies ist das LR-Verfahren, das jedoch instabil ist. ¢

Die Konvergenz des QR-Verfahrens zeigen wir nur fiir den einfachen Fall, dass A
diagonalisierbar ist mit betragsmiBig verschiedenen Eigenwerten.

Satz 1.27 Sei A = VDV € R™" reell diagonalisierbar mit betragsmdfig verschiedenen
Eigenwerten

Ml > Aol > o> Ml >0, D = diagQh, Ao, oo, Ay)

und V.= [vy,Va,...,V,] die zugehérige Eigenvektormatrix. Existiert eine LR-Zerlegung
von V71, dann sind die Matrizen Ay asymptotisch rechte, obere Dreiecksmatrizen und ihr
Diagonalanteil diag(Ax) konvergiert fiir k — oo mindestens linear gegen D.

Beweis. Die dritte Aussage aus Lemma 1.26 liefert die QR-Zerlegung von AF,

Af = (QOQ1 Qkfl)(kalefz ~+Ry).
Andererseits ist wegen der Existenz der LR-Zerlegung von V™! = LU
AF = (VDV 1) = yDFV! = VDFLU = (VDFLD)D*U = B,DFU.  (1.24)
—
=:B;

Die Matrix By ist regulir und besitzt eine QR-Zerlegung By = PiSy mit einer inver-
tierbaren oberen Dreiecksmatrix Si. Damit ist

AF = P,(SDFU)
N ——

rechte, obere
Dreiecksmatrix
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eine weitere QR-Zerlegung von A¥. Wegen der Eindeutigkeit der QR-Zerlegung folgt
Q0Q1 Q1 = BT, RiiRiz Ry = Ti$D'U (1.25)

fiir eine Diagonalmatrix Ty mit den Eintrigen +1. Wegen

(1.25)

Q= (Q0Q1 -+ Qk-1)1(QoQ1 - Qi) =" TkP{Pri T],
und
R = (ReRi—t -+ Ro)(Re— Rz -+ Ro) ™

(1.25) A~k a—
= Tps1 Sk DM UUTD RS T]

= TkHSkHDS]:lT]I
ergibt sich aus (1.22)

Ay = QcRe = TkPI Pyt T], Tie1 Skt DS TT

k+1
= TkSk S 'P] Prs1Sk+1 DS T
\ N
=BE1 =B+
= TiSkBy 'Bys1 DS, 'TT. (1.26)
Bezeichnen wir mit £ ; die Eintriige von L, dann ist insbesondere £;; = 1 und aus der

Anordnung der Eigenwerte in D ergibt sich
0, fallsi < j,
[DFLD¥);; = A4 075 = {1, falls i = j, (1.27)
O(|2"). fasi> .
]
Setzen wir ¢ : = max;s;{|A;/A;|} < 1, so folgt (vgl. (1.24)) hieraus
B, = VD'LD* = V+ E, mit [Ef, = OG"), k— o.
Demzufolge erhalten wir
B, "By = (V+E) ' (V+E) =I+F mit [Felo = O(¢"), k—eo
und eingesetzt in (1.26) ergibt sich

A = TkSszlleII + TkSkaDS,ZlT,I.
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Da Py und Ty orthogonale Matrizen sind, lisst sich der zweite Term abschitzen gemil3

ITeSkFDS. ' Tille < ITele  ISel:  [Fel2 Dl IS¢ [Tl
——’ ——rt —— —— N J
=1 =[P Bl.=[Bxl. =l =B Pelo=IB . =1

< condz (BRI [IFelz = O(q").
Die Matrix Ay konvergiert also wegen
|Ax — TeSkDSE ' T] |2 = |TeSkFeDS; ' T] | = O(g"), k — o0
mindestens linear gegen eine obere Dreiecksmatrix und es gilt

diag (Ay — TiSiDS; ' T] ) = diag(Ax) — Tx diag(Si)D diag(Sy) T}
=D
= diag(Ax) —D — 0. o

1.6 Implementierung des QR-Verfahrens

Reduktion auf Hessenberg-Form: Fiir beliebige Matrizen A € R™" wire das QR-
Verfahren viel zu aufwendig (O(n*) Operationen pro Iteration). Statt dessen transfor-
miert man A zunichst auf obere Hessenberg-Form.

Definition 1.28 Eine Matrix H = [hi,j]{szl besitzt obere Hessenberg-Form, wenn
h;; = 0 fiir j <i— 1, das heif3t

hl,l hl,g ........... hl,n

hZ,l h2,2 hzﬂ
H = O hg,g h3)3 h§,n o

0 . 0 hupr hon

Ziel ist es also, zunichst A durch Ahnlichkeitstransformationen auf obere Hessenberg-
Form zu bringen. Dazu gehen wir wie in Abschnitt 1.4 bei der QR-Zerlegung vor:
Wihle Householder-Spiegelungen Py, Py, ..., P,_; und bilde

A Py ,P, 3--PiAPP; - Py
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gemif dem folgenden Schema:

X X X X X [ X X X x X X |+ + + +
X X X x X + + + + + X+ + + +
A=|x x x x x|— |0 + + + +|—]|0|+ + + +
x x ox ox x| o0+ + + + [P lol+ + o+ 4+
X X X o x X | 0 + + + + 0|+ + + +
[ X X X X X x x|+ + +

X X X X X X X |+ 4+ +

— 0 + + + +[—]0 x|+ + +

Plo 0o + + + | ®]o ol+ + +

|0 0 + + + 0o 0|+ + +

[ X X X X X X X X|4+ +

X X X X X X X X |4+ +

— [0 x X x X |—|0 x x|+ +

BP0 0 + £ £ o0 0 x|+ +

[0 0 0 + + 00 0|+ +

Allgemein gilt im i-ten Schritt

Hi*
0|c|*

5

o

wobei H; € R™ eine obere Hessenberg-Matrix und ¢ € R" ein Vektor ist. Die
Householder-Spiegelung P; ist nun so zu wihlen, dass der Vektor ¢ auf oe;,; abgebildet

wird, dies bedeutet

1| o ][Hi*

NP
0|I-pvv’ 0fc|x |~

0 oey | *

PiAi = |:

Der Aufwand zur Reduktion einer Matrix A € R™" auf obere Hessenberg-Form betrigt

n—1
2
Z 2(i* + in) = §n3 +n® = 0.

i=1

QR-Zerlegung einer Hessenberg-Matrix: ~Fiir Hessenberg-Matrizen lisst sich die QR-
Zerlegung besonders effizient mit sogenannten Givens-Rotationen berechnen.
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Definition 1.29 Eine Matrix G = G(i, j, §) mit

[1

¢ = cos(0), s = sin(6)
heiBt Givens-Rotation.

Givens-Rotationen sind orthogonale Matrizen (alle Zeilen sind paarweise zueinan-
der senkrecht) und die Operation G(i, j, 0)A ersetzt die Zeilen i und j von A durch
Linearkombinationen

claii, aiz, ..., ainl +slaji,aj2, ..., a5,]
beziehungsweise
=slai1, @iz, ..., ain] +claji,aja, ..., a5,

wihrend AG(, j, 0) die Spalten i und j von A durch entsprechende Linearkombinatio-
nen ersetzt.

Man kann daher eine Givens-Rotation so wihlen, dass ein Element von A zu 0 transfor-
miert wird. Soll etwa a zu 0 gesetzt werden, dann liefert der Ansatz
!
—sajx +cajr =0
die Lésung

ai k _ djk

_ § = ——.
[ 2 2 [,2 2
a;y +ajy a; + aj,

cC =
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Numerisch stabiler ist es im Fall |a;x| > |a;| die Rechnung
1 t

t=ajr/ai, c= S S
il i+ Ji+22
1

und entsprechend im Fall |a; | < |a; x|
t=aix/ajk. c= ! , s= .
Npwa Npwa
Die QR-Zerlegung einer Hessenberg-Matrix A erhalten wir nun durch sukzessives

Anwenden der Givens-Rotationen G(i,i + 1,6;),i = 1,2,...,n — 1, um jeweils das
(i + 1,i)-Element zu Null zu machen:

R=G(n-1,n60,1)Gn-2,n-1,0,_,)...G(1,2,0,)A.

gemifl dem Schema:

X X X X X [+ + + + + X X X X X
X X X X X o + + + + 0o + + + +
0 X X X X[—] 0 x x %x x|—|[0 0 + + +
00 x x x| 710 0 x x x|%10 0 x x x
0 0 0 x x L0 0 0 x x 0 0 0 x x
[ X X X X X X X X X X

0 x X X X 0 x x x X

—]0 0 + + +|—]0 0 x x X

=100 0 + +|["|00 0 + +

L0 0 0 x x o 0 0 0 +

Im Teilschritt (1.23) muss das Produkt der Givens-Rotationen von rechts an Ry heran-
multipliziert werden. Wegen

Qi = (G(n -1,n,0,1)G(n—-2,n-1,0,_,) - G(1, 2, 91))T
ergibt sich
Ak+1 = RkG(l, 2, QI)TG(Z, 3, 92)T G(n — 1, n, Gn_l)T.

Die Multiplikation von rechts mit G(i,i + 1,0;) verindert die Spalten i und i + 1.
Offensichtlich besitzt Ag;; dann wieder Hessenberg-Gestalt.

Als Aufwand fiir die beiden Teilschritte (1.22) und (1.23) ergeben sich
n—1 n
2) 4n—i+1)=2) 4i~4n* = O(n’)
i=1 i=2

Multiplikationen.
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Shifts und Deflation: Liegen zwei Eigenwerte A; und A;;; betragsmiBig dicht bei-
einander, so konvergiert das QR-Verfahren nur sehr langsam. Dies kann mit Hilfe
einer Shift-Strategie verbessert werden. Im Prinzip versucht man, die beiden Eigenwerte
dichter an die Null zu schieben und so den Quotienten |A;/A;41| zu vergréBern. Dazu
verwendet man fiir jeden Iterationsschritt k einen Shift-Parameter yy und definiert die
Folge {A}i>0 gemiB dem folgenden Algorithmus:

Algorithmus 1.30 (QR-Verfahren mit Shift)
input:  Matrix A € K"
output: Folge von Iterierten {Ay}i>o

@ setze Ay :=Aundk :=0
@ berechne die QR-Zerlegung

Ag — i = QiRy
und setze
Agr = ReQr + el
® erhohe k := k + 1 und gehe nach @

Fiir das QR-Verfahren mit Shift bleiben die ersten beiden Aussagen von Lemma 1.26
erhalten, wihrend die dritte nun lautet

k
[ TA = D) = (QoQ: - Q)RR - Ro).

=0

Ferner ist die fiir i > j in (1.27) beschriebene Konvergenzgeschwindigkeit nun durch

den Faktor
o )
k)

bestimmt.
In der Praxis bietet sich die Wahl i = a{f) zur Konvergenzbeschleunigung an. Als
noch erfolgreicher hat sich erwiesen, denjenigen Eigenwert von

k k

|:a51()k1,n1 aEl)l,n]

k
an,n—l agl,l?l

Ai— Hi—1
/11' — Hk—1

/11'—#1
Aj—

/11'—/10
Aj_ﬂo
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als Shift-Parameter zu wihlen, der am nichsten an agf,z liegt. In beiden Fillen konvergiert

agfg sehr schnell gegen den exakten Eigenwert und agf,z_l gegen Null, dies bedeutet
TR
*x  * x| *
* * *
0 .. 0 0]A,

Ab diesem Zeitpunkt reicht es aus, nur noch das kleinere Teilproblem mit der Hessenberg-
Matrix B zu betrachten. Diese Reduktion wird Deflation genannt.

Das QR-Verfahren mit Shift konvergiert in der Regel quadratisch, im Falle symmetri-
scher Matrizen sogar kubisch. Insgesamt bendtigt man daher O(n) Iterationen, so dass
der Gesamtaufaufwand des QR-Verfahrens kubisch ist.

Eigenvektoren: ~Gemil3 Lemma 1.26 liefert das QR-Verfahren asymptotisch die Fakto-
risierung

A =QTRQ, O orthogonal, R obere Dreiecksmatrix,

wobei die Diagonaleintrige r;; der Marix R genau den Eigenwerten A; entsprechen.
Sind v; die Eigenvektoren von R, so ergeben sich die entsprechenden Eigenvektoren
von A gemill QTv;. Dabei bestimmt man die Eigenvektoren v; dadurch, dass man
vl-(i) =1und v = 0 fur J > isetzt, und o fiur J < i durch Riickwirtssubstitution aus
dem Gleichungssystem (R — 4;I)v; = 0 bildet.

1.7 Lanczos-Verfahren

Ist A € R™" eine symmetrische Matrix, dann sind die extremalen Eigenwerte genau
die Extremalwerte des Rayleigh-Quotienten

xTAx . XTAx
Amax = Mmax , Amin = min .
xeRM{0} XTX xeRM{0} XTX

Anstelle einer Maximierung beziehungsweise Minimierung des Rayleigh-Quotienten
tiber dem ganzen R" wollen wir diese nur tiber dem Krylov-Raum

Ki(A, z) = span{z, Az, ..., Akilz}
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durchfiihren. Dazu wihlen wir eine Orthonormalbasis {wq, W, ..., Wi} von Kr(A, z)
und setzen

W = [ Wi | Wy || Wi ] € R™k,
Dann gilt
T
Amax > ufff;x = max XA

xekr(AzN\{0} XTX
Y WiAWy Y WiAWy
= ax

= max —————=m
yerRio} YTWIWy  yer(o} yTy
—_——
=1
und analog
TW]AW
Amin < yr(]]fi)n = min koK
yeRM\{o} yTy
Dabei sind p&), beziehungsweise px(]]fi)n genau die extremalen Eigenwerte der (k x k)-
Matrix W[ AW,.

Satz 1.31 Sei A € R™" eine symmetrische Matrix mit absteigend sortierten Eigenwerten
M > Ay = > Ay und vy, Vo, ..., V, die zugehdrigen orthonormalen Eigenvektoren. Seien

weiter ygk) > ,ugk) > > y,(ck) die Eigenwerte von W] AWy. Dann gilt

(A4 — Ap) tan®(¢y)
T: (1 +2py)

A Z,ngk) > A -

wobei Ty—y € IT_q das k-te Tschebyscheff-Polynom bezeichnet und

-
pl - AZ—An,

_ vz

000 =,

gilt.

Beweis. Sei ohne Beschrinkung der Allgemeinheit ||z], = 1. Da
Ki(A,z) = span{p(A)z : p € ITy_1}
gilt

O_ . XA _ (p(A)z) Ap(A)z
U xeKi(AoNo} XTX 0#pelly (p(A)z) " p(A)z
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Stellen wir z beziiglich der Orthonormalbasis vy, vs, ..., v, dar,

z= Z(V Z)Vl = Z szl,

i=1

so folgt
(p(A)2) Ap(A)z = 3 IaFp" WA (p(A)2) p(A)z = ) I&p*(R).
Wir erhalten

(p(A)z) "Ap(A)z L IER PP — )

=M+
e (p(Aye) p(AYe e S EFpACh)

Yiss &P p*(A)
2h+ (= 4) ir;énk EPP2(A) + D &P PP (A

Um eine mdoglichst scharfe Abschitzung zu erhalten, miissen wir ein Polynom p € IT,_;
einsetzen, das innerhalb des Intervalls [A,, A;] méglichst klein ist. Wir wihlen das
transformierte Tschebyscheff-Polynom

A=A,
p(A) = (1+2/12_/1n>

mit der Eigenschaft [p(A;)| < 1 firi = 2,3, ..., n. Damit gilt dann wegen

n
YIER = lalE = 1,
i=1

dass

2
® >+, -2 Sl 1
)ul = /11 ( 1)|§1|2T]3:1(1+2p1)

und die Behauptung folgt aus der Tatsache, dass

1— &) _1- cos®(¢1)
315 cos?(¢1)

= tan®(¢,). o

Ein analoges Resultat erhalten wir fiir den kleinsten Eigenwert, indem wir Satz 1.31
auf —A anwenden.
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Korollar 1.32  Unter den Voraussetzungen von Satz 1.31 ilt

(Al - An) tan2(¢n)
TE (1 +2py)

mit Pn = (An—l - An)/()tl - An—l) und COS(¢H) = |V;|;Z|/||Z||2

Bemerkungen

41

1. Da der Krylov-Raum K (A, z) den Vektor A*~'z enthilt, ist durch den betrags-

groBten Eigenwert von W] AW eine bessere Niherung an den betragsgroBten
Eigenwert von A gegeben als durch den entsprechenden Rayleigh-Quotienten
des Vektors zx_, = A1z, /|A*1zy|, der Potenzmethode, siche (1.12).

. Auch die anderen Eigenwerte von W/ AW} kénnen als Niherungen an die
Eigenwerte von A herangezogen werden: Mit wachsendem k fillt der j-kleinste
Eigenwert von W] AW} monoton von oben gegen den j-kleinsten Eigenwert
von A, wihrend der j-groBte Eigenwert von W] AW} monoton von unten gegen
den j-groBten Eigenwert von A wichst.

. Ist uy der Eigenvektor von W] AW zum Eigenwert ,ugk), dann ist gemiB Kon-
struktion Wyu; eine Niherung an den Eigenvektor zum gréBten Eigenwert A4

von A. Entsprechendes gilt fiir die anderen Eigenpaare. ¢
Die Orthonormalbasis von K (A, z) bildet man billig mit dem Lanzcos-Prozess:
Algorithmus 1.33 (Lanczos-Prozess)
input:  Matrix A € R™” und Startvektor z € R"
output: Orthonormalbasis {wy }r>1
@ Initialisierung: setze wy :=0,u; :=zundk :=1
@ berechne
Br-1 = gl (1.28)
u
Wi 1= ——, falls fr_; # 0 (1.29)
Br-1
e 1= WIAW (1.30)
Ui o= (A — o Dwy — B Wiy (1.31)

® erhdhe k := k + 1 und gehe nach @
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Satz 1.34  Die durch Algorithmus 1.33 gebildete Folge {w;}*_, ist eine Orthonormalbasis des
Krylov-Raums Ki(A, z).

Beweis. Wir beweisen die Aussage mittels vollstindiger Induktion tiber k. Fiir k = 1 ist
die Aussage offensichtlich. Sei also {w;}¥_, ist eine Orthonormalbasis des Krylov-Raums
Ki(A, z). Dann folgt aus Algorithmus 1.33, dass

W1 = Awg +pr mit pr € Kk(A,z) und Awy € Kiii(A, z). (1.32)
FOlghCh ist Wiy € ’Ck+1(A, Z) mit ||Wk+1||2 =1.
Wir zeigen nun, dass gilt Wi, L Kr(A, z). Fiir 1 <i < k — 1 ergibt sich

(1.31)
wiue = W (A —agD)wi — frog wiwg_y = ((A - akI)w)ka =0.
N — | S ——
=0 €Ki1(Az)=span{wy,.. . W1}

Ferner gilt

T CEDN T T
Wi Uy = Wi AW — o W Wi —fr 1 Wi Wiy

—— [—
=0 =1
(1.32) (1.28)
= (e —pr)"Wi — S = ulwi — Sy = 0,
——
GICk_l(A,Z)LWk
sowie
(1.31) (1.30)
Wi = WA - aDwi — Sy Wiweo = WAWE —a = 0.
[N

=0
Also ist ugy; L Kr(A, z), und der Induktionsschritt vollstindig k — k+ 1 bewiesen. &

Bemerkung Der Lanczos-Prozess bricht zusammmen, falls sich in (1.29) S = 0
ergibt. Dies ist genau dann der Fall, wenn

Awy = Wi + Pr_1Wi—1 € Ki(A, z),

dies bedeutet Kri1(A,z) C Kr(A, z). Somit ist Kr(A, z) ein invarianter Unterraum
der Matrix A und alle Eigenwerte von W] AW} sind auch Eigenwerte von A. Um
weiter Eigenwerte von A zu bestimmen, muss der Lanczos-Prozess mit einem anderen
Startvektor neu gestartet werden. ¢

Der Lanczos-Prozess ist nur unwesentlich teurer als die Potenzmethode, zumal wenn
A deutlich mehr als n Elemente # 0 enthilt. Die Eigenwertberechnung von W/ AW,
benstigt nur O(k?) Operationen, da W] AW/, eine Tridiagonalmatrix ist:
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Proposition 1.35 Es ist

aq ﬁl 0
. .
T, := WiAW; = | o s
0 .Bkﬂ (043

mit a;, B; wie in Algorithmus 1.33.

Beweis. Der (i, j)-Eintrag von Ty ist w] Aw ;. Damit folgen sofort die Diagonalele-
mente ; und die Nullelemente, da Aw; € K;;1(A, z), und damit

w/Aw; =0 fir i>j+1
Der Fall i < j — 1 ergibt sich dann automatisch wegen der Symmetrie von Ty. Die
Nebendiagonalelemente berechnet man wie folgt:
(132) (129)
[Tilivri = WwiiAW =" wl (Ui —pi) = Wi = B *
Die Eigenwerte von T lassen sich dann sehr schnell mit dem QR-Verfahren ermitteln.

Ist A nicht symmetrisch, dann kann man den Lanczos-Prozess nicht verwenden. Stattdes-
sen bendtigt man den Arnoldi-Prozess, einer stabilen Variante des Gram-Schmidtschen
Verfahrens zur Orthogonalisierung des Krylov-Raums Kx(A, z). Er basiert auf der
Hessenberg-Reduktion QTAQ = H. Setzen wir Q = [q1, qa, ..., q»] und vergleichen
AQ = QH, dann folgt

k+1
Aq =Y hyq, 1<k<n-1

i=1

Auflésen nach dem letzten Term der Summe ergibt

k
hkerkQeer = A — Y. hieq; = 1y,

i=1
wobei hjx = q] Aqy fiiralle i = 1,2, ..., k. Falls 1y # 0, dann folgt
1
Qk+1 = hirk, his1k = Irel2.
k+1,k

Diese Gleichungen fithren auf den Arnoldi-Prozess:
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Algorithmus 1.36 (Arnoldi-Prozess)
input:  Matrix A € R™" und Startvektor z € R"
output: Orthonormalbasis {wy }r>1

@ Initialisierung; setze w; :=z/|z[; und k :=1
® berechne

Iy ‘= AW]c
hig := Witk ..., hgg 2= wirg

k
Ty 1=Tg — Z hixw;
i=1

hk+1,k 6= ||rk||2

1
Wil - = Tk, falls hk+1,k *0
k+1,k

® erhdhe k := k + 1 und gehe nach @

AnschlieBend berechnet man mit dem QR-Verfahren die Eigenwerte der oberen Hess-
enberg-Matrix W AW,.
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LINEARE AUSGLEICHSPROBLEME

2.1 Normalengleichungen revisited

Im folgenden sei A € R™" und b € R™. Gesucht ist ein Vektor x € R" mit
Ax = b.

Da wir m Gleichungen fiir n Unbekannte haben, ist das lineare Gleichungssystem im
allgemeinen nicht — oder nicht eindeutig — 18sbar. Ist m > n, dann nennen wir das
lineare Gleichungssystem iiberbestimmt, ist m < n, dann nennen wir es unterbestimmt.
Uberbestimmte Probleme treten hiufig in den Anwendungen auf, wenn es darum geht,
Modellparameter an Messdaten anzupassen.

Da wir fiir m # n die m Gleichungen im allgemeinen nicht alle exakt erfiillen kénnen,
suchen wir nun nach Vektoren x € R”, fiir die das Residuum

r=b—-Ax (2.1)

moglichst klein ist.

Definition 2.1 Fiir eine Matrix A € R™" und ein b € R™ heiB3t das Problem
|b — Ax|; — min (2.2)

ein lineares Ausgleichsproblem. Eine Losung x € R" des Ausgleichsproblems heif3t
Ausgleichslosung oder kleinste-Quadrate-Lésung.

Bemerkung Der Losungsbegriff in (2.2) ist eine Verallgemeinerung der klassischen
Losung. Ist nimlich m = nund ist x € R" eine klassische Lésung, das heift, gilt Ax = b,
dann ist offensichtlich x ebenfalls eine Lésung von (2.2). ¢
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Satz 2.2 Die Lisungen von (2.2) sind genau die Lisungen der Gauf3schen Normalen-
gleichungen

ATAx = ATh, (2.3)

insbesondere existiert eine Losung X. Ist Z eine weitere Lisung, so gilt Ax = Az. Das Residuum
(2.1) ist eindeutig bestimmt und geniigt der Gleichung ATr = 0.

Beweis. Betrachte das Funktional
#(x) = |b— Ax|2 =bTb — 2xTATb + xTATAx > 0.

Da das Funktional stetig und nach unten beschrinkt ist, gibt es ein Minimum. Dieses
Minimum von ¢ erfiillt

Vé(x) = —2ATb + 2ATAx = 0.

Dies ist genau dann der Fall, wenn x den Normalengleichungen (2.3) gentigt. Insbeson-
dere gilt dann AT(b — Ax) = ATr = 0. AuBlerdem folgt ¢(z) = ¢(x) fiir jede weitere
Losung z der Normalengleichungen. Wegen

$(z) = |(b — Ax) + (Ax — Az)[; = ¢(x) + 2(b — AX)TA(x — 2) + [Ax — Az];
"
ergibt sich schlieBlich [Ax — Az|3 = 0. o

Bemerkung Aus ATr = 0 folgt, dass das Residuum senkrecht auf den Spalten von
A steht. Das Residuum r ist folglich Normale zum von den Spalten der Matrix A
aufgespannten Raum. Daher erklirt sich die Bezeichnung Normalengleichungen. ¢

Satz 2.3 Die Matrix ATA € R™" ist symmetrisch und positiv semidefinit. Dariiber hinaus
ist ATA genau dann positiv definit, wenn der Kern von A trivial ist, das heif$t, wenn kern(A) =
{0}. Dies ist genau dann der Fall, wenn die Spalten von A linear unabhingig sind.

Beweis. Offensichtlich ist ATA symmetrisch und wegen
xTATAx = |Ax|5 >0 fiir alle x € R”

auch positiv semidefinit. Ist kern A = {0}, so gilt Gleichheit (“=") nur im Falle x = 0,
das heiBt, ATA ist positiv definit. 'y
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2.2 Singuldrwertzerlegung und Pseudoinverse

Offensichtlich spielt die Matrix AT A eine groB3e Rolle beim linearen Ausgleichsproblem.
Im folgenden seien A4, A3, ..., A, die von Null verschiedenen Eigenwerte von ATA

)LlZ)Lg2--'2/1p>/1p+1=---:)tn=0, (pgn)

und vy, vy, ..., v, zugehdrige orthonormale Eigenvektoren. Bezeichnen wir ferner mit

1
—Av;,  i=1,2..p, (2.4)

N

so folgt fiiralle 1 < i, j < p dass

u =

(Avl) (Av;) = VvI(ATAv)) =

1 A
ulu; = e ———— L_vlv; =6
T \F JAj \/Z\//lj \/)Tixlflj ' :

Die Vektoren {u;}?_; bilden folglich eine Orthonormalbasis von img(A) und kénnen
durch weitere m — p Vektoren Uy, ..., U, zu einer von R™ erginzt werden.

Es gilt wegen (2.4)

1
ATlli = \/TATAV,‘ = \/IV,‘, i=1,2,... s P
i
wihrend weiter
ATui:0, i:p+1,...,m
gilt, da {u,41, ..., up} C img(A)" = kern(AT).

Wir fassen zusammen:

Satz 2.4 Zu jeder Matrix A € R™" existiert eine Singularwertzerlegung (SVD =
singular value decomposition), das ist ein Tripel ({3, {u ™, {vil ) mit

012032 20p>0,

m T — Co.

u; € R™, u/u; = 6;, L,j=1,2,...,m,
n T — TR p—

v; € R", ViV =90, i,j=1,2,...,n,
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und

Avi=on;,  ATwi=ovi, i=12..,p,
Avi =0, ATu, =0, k, > p.

Ferner sind a7 entsprechend ihrer Vielfachheit genau die von Null verschiedenen Eigenwerte von
ATA.

In Matrixnotation lisst sich Satz 2.4 kiirzer schreiben. Wir setzen

U:= [ul,uz,...,um] ER™™, V := [Vl,Vz,--.,Vn] € R™,

01
3= O |ermn
Op
0 I
und erhalten
A=UXVT AT=VXTUT. (2.5)

Dabei sind die Matrizen U und V orthogonal.

Alternativ zu (2.5) gelten die Summendarstellungen

P P
_ T T — T
A= Z owv;, AT = Z oV, .
i=1 i=1

Definition 2.5 Sei UX'VT die Singulirwertzerlegung von A und
ot

0
ST = -1 € R™™,

Dann heiBt die Matrix
At = VXtUT e R

Pseudoinverse oder Moore-Penrose-Inverse von A.
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Auch fiir die Pseudoinverse gilt eine ensprechende Summendarstellung
51
At = Z —vu], (2.6)
i=1 9i
aus der sofort folgt

kern(A*) = kern(AT) = img(A)", img(A*) = img(AT) = kern(A)". (2.7)

Beispiel 2.6 Fiir die Matrix

>
I
— e

1
1
1
1

gilt

img(A) = span{[l, 1,1, 1]T} kern(A) = span{[—l, 1]7 }
Hieraus folgt

img(A*) = kern(A)" = span { [1, 1]T}
und daher

v+ _|la B é
A‘[aﬁ?&}'

Da fiir alle umit [1,1,1,1]7 L u gilt A*u = 0 ergibt sich zwangsliufiga = f =y = 6,
das heiBt,

Der Parameter « berechnet sich wie folgt: Es ist p = 1 und

1 1

1 ]1 111 1
Vl—ﬁ[l, W=l AVl—ﬁl—z\Elh,

1 1
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dies bedeutet, o; = 2/2. Wegen

a |4 1 111
— = A+u = —vVv, = —
2 |4 T2 T4 [1}
ergibt sich @ = 1/8. &

Der Name “Pseudoinverse” beruht auf folgendem Resultat:

Satz 2.7 Die Pseudoinverse A* von A € R™" ist die eindeutige Lisung der vier Gleichungen

() AXA=A (i) (AX)T = AX
(i) XAX =X (i) (XA)T = XA

Beweis. Wir weisen zunichst nach, dass die Pseudoinverse X = A™ alle vier Gleichun-
gen erfiillt. Wegen

01 0

0 0 10
+ _ _ mxm
X3y = ) ;1 = |: 010 ] e R (28)

0 I 0 IC

folgen die ersten beiden Gleichungen

AATA = UXVTVITUTUXVT = UXX*XVT = UXVT = A,
ATAAT =VIXTUUTEVTVIUT = VI Y XHUT = VIHUT = A*.

Weiter ist AA* = UX X*UT und somit wegen (2.8) symmetrisch. Entsprechend ist
auch A™A symmetrisch, womit auch die beiden letzten Gleichungen gezeigt sind.

Es verbleibt noch zu zeigen, dass die vier Gleichungen nur die eine Lésung X = A"
haben. Wegen (i) ist

0 = AXAv; — Ayv; :A(XAVi —V,'), i= 1,2,...,P.
Nt

=0oiu;

Dies bedeutet, dass

1
Xu; = —v;+w; fiirein w; € kern(A).
O
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Wegen w; € kern(A) C kern(XA) und (iv) folgt fiir jedes i = 1,2,..., p

1 1 1
0= (XAwW))T <Vi> = WJXA(Vi> =w/Xu; = w/ (Vi + wi>
o

i [} Oj
1T T 2
= —wivi 4 wiw; = |wif”
;,_/
=0, da

Vi Lspan{v‘Hl ,-»Vn}=kern(A)

Dies bedeutet w; = 0 und daher

Xlli = —V;, i= 1,2,... > p- (29)

i
Hieraus folgt die Inklusion

img(AX) D span{AXu; : i =1,2,...,p} =span{Av; : i =1,2,..., p}
=spanfy; : i =1,2,..., p} = img(A).

Da andererseits trivialerweise img(AX) C img(A) ist, ergibt dies
img(AX) = img(A).
Aus (iii) folgt damit
kern(AX) = img(AX)" = img(A)" = span{u; : i=p +1,...,m}.
Demnach ist
AXu; =0 bzw. Xu;=w; €kern(A), i=p+1,....,m
Gleichung (ii) impliziert jedoch w; = 0, denn
w; = Xu; = XAXy; = XAw; =0, i=p+1,...,m (2.10)

Ein Vergleich von (2.6) mit (2.9) und (2.10) zeigt, dass X und A* iibereinstimmen, also
A" die einzige Losung der Gleichungen (i)—(iv) ist. o
Bemerkung Ist A invertierbar, dannist A" = A™! wegen Gleichung (i) bzw. (ii). ¢

Den Zusammenhang zwischen Pseudoinverse und linearem Ausgleichsproblem be-
schreibt der folgende Satz.
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Satz 2.8 Der Vektor A*b ist die eindeutige Losung des linearen Ausgleichsproblems (2.2)
mit minimaler | - |,-Norm.

Beweis. Nach Satz 2.7 (i) ist

AA™b —b € kern(A™) e img(A)" = kern(AT).
Also erfiillt A™b die Normalengleichungen (2.3)
ATA(A"b) = AT
und ist daher eine Losung des linearen Ausgleichsproblems.
Ist z eine zweite Lésung der Normalengleichungen, dann gilt gemif Satz 2.2

w := A'b — z € kern(A).

Da A*b € img(A™) e kern(A)* haben wir z = A™b — w orthogonal zerlegt, und
nach dem Satz des Pythagoras gilt

lzl3 = [A"bI3 + [wl; > |JA*bI3. o
Korollar 2.9 Hat A € R™" vollen Rang rang(A) = n < m, dann gilt

At =(ATA)'AT.
Beispiel 2.10 (Fortsetzung von Beispiel 2.6) Zul6sen sei das lineare Ausgleichsproblem

|Ax — b|, — min mit

2
0
A= ,b—0

[ U W W Y

1
1
1
1 -1

Die Losung X mit minimaler Euklidnorm ist

2
1111 1)flo]| 1[1
_ K — J—
X_Ab_g[l 11 1} 0 ‘SH'
-1

Alle anderen Lésungen haben wegen kern(A) = [1, 1] die Form

1
X=-
8

1
1

1

+a 1

, a€eR. K3
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2.3 CG- und CGLS-Verfahren

Es sei A € R™" eine symmetrische, positive definite Matrix und b € R". Das Verfahren
der konjugierten Gradienten oder CG-Verfahren zur Losung des linearen Gleichungssystems
Ax = b geht davon aus, dass die Losung x eindeutiges Minimum ¢(x) = 0 des
Funktionals

1 1 1
¢(z) = E(b —Az)TA (b - Az) = EZTAZ —zb + EbTA_lb >0

ist.

Ausgehend von einer Startniherung z wollen wir ¢ in die Richtung d minimieren

2
d(z+ ad) = ¢(z) + %dTAd —ad™(b — Az) — meiﬂgl.

Aus
99z +ad) | irAd—di(b—Az) L0
da
folgt daher
_d'(b-Az)
=T aAd @1)

Lemma 2.11  Angenommen die Vektoren do, dy, ..., dy seien A-konjugiert, das heifit, es
gelte dTAd; = 0 fiir alle i # j. Ist

Xp = ar min (z)
& z€xo+span{do,d;,....dx_1} (]S

und setzt man

+and dir b—A (2.12)
X =X o s A = s Iy = D — AX, :
k+1 k T oxdi k dTAd, k k
so folgt
X = ar min Z).
kit gzexﬁspan{do,dl,‘..,dk} ¢( )
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Beweis. Die A-Konjugiertheit der Vektoren {d} impliziert d{ A(x, — x,) = 0 fiir alle
0 < ¢ < k. Daher folgt

2
d(xi + ady) = Pp(x) + %d,IAdk — adl (b - Ax;)

= $(xe) + O;Zd,IAdk — ad] (b — Ax)
= ¢p(xx) + p(a),

das heif3t, das Minimierungsproblem entkoppelt. Da nach Voraussetzung x; das Funk-
tional ¢ tiber xg + span{dy, d; ..., ds—1} minimiert, wird das eindeutige Minimum
angenommen, wenn ¢(«) minimal ist. Dies ist aber nach (2.11) genau dann der Fall,
wenn

_di(b-Ax;) dl(b- Ax)

= = 2.13
P dTAd, dTAd, (2.13)

o

Die Idee des CG-Verfahrens ist es nun, ausgehend von einer Startniherung x,, sukzes-
sive iiber die konjugierten Richtungen d; zu minimieren. Die Folge der Residuen

ro = b — Ax,, Iip1 = b — AXpyq (ZéZ) . — o Adg, k>0, (2.14)

erfiillt dann fiir alle £ < k

k-1
dlr, =dl(b— Ax;) = d] (b ~Axo— ). aiAdi)
i=0
= dI(b - Axo) — adTAd, 27 0, (2.15)
Da die Richtungen dj paarweise A-konjugiert und folglich linear unabhingig sind,
ergibt sich r,, = 0, das heiBt, das CG-Verfahren liefert die Lésung A~'b nach héchstens
n Schritten. Zu beantworten bleibt daher nur die Frage, wie die Suchrichtungen dj
geschickt gewihlt werden kénnen.

Lemma 2.12  Fiir beliebiges dy = 1 erzeugt die Rekursion

dfArg iy
T =TI, — Ad s d =T = d s = k
k1 = T — apAdy k1 = Tky1 — Prdi Pr dTAd,

(2.16)
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solange eine Folge nichtverschwindender A-konjugierter Vektoren dg, dy, ..., dg+q bis Tpey = 0
ist.

Beweis. Sei
Ki(A, 1) := span{ry, Ary, ... ,Akilro}.
Wir zeigen zunichst induktiv, dass stets gilt
Ki(A, 19) = spanirg, 1y, ..., Tx—1} = span{dy, dy, ..., dx_1 }.
Da fiir k = 1 die Aussage klar ist, nehmen wir an, sie gilt fiir ein k > 1. Dann folgt

(2.16)

rp = T~ Adig € Kiya(A o).
—— —
€Kr(A.ro) €Rrs1(Asro)

GemiB (2.15) ist r L span{dy,d;, ..., di—1} = Kir(A, 1¢), dies bedeutet
’Ck(A: rO) g Span{r()’ ry,..., rk} C ’Ck+1(A: rO)'

Da die Dimension von Ki.1(A, 1) hochstens um 1 hoher ist als die von Kr(A, rp),
muss gelten

Ki+1(A,19) = span{rg, 1y, ..., It}
Aus 1 = di — Pr—1di_; folgt
span{dy, d;, ..., dy} = span{dy, d;, ..., dx_1, ¢}
= span{rg, 1, ..., Tk—1, Ix} = Ki+1(A, 19).
Insbesondere muss aus Dimensionsgriinden di # 0 sein.

Es verbleibt die A-Konjugiertheit zu zeigen: Angenommen, dy, d, ..., d; sind A-
konjugiert. Der Induktionsschritt folgt dann aus

d/A
dTAd s 2 QT A - frdy) 27 df Ay - a Arfl dTAd; = 0
und fiir alle £ < k
d'A
d}Adk.H (2 L) d Al‘k+1 ke Tl d}Adk = (Ad()Tl'k_H =0

diad, 278
=0

wegen Ad, € Ki1(A,1g) L 1peq. 7'
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Um den CG-Algorithmus endgiiltig zu formulieren, bemerken wir zunichst, dass gilt

@13 At @i6) (tp — fr-1di-)Tre @15) el

= = . 2.17
T dTAdy dTAd, dTAd, 217)
Wegen 1y C Ky41(A, 1) L 1)1 folgt ferner
16 1 @17y dfAdg
d;IArkH =(Ad)re; = —(p —Tp) T = —%Ilrkﬂllﬁ
o i3
und damit
d{ Arg Irii113
B = S0 = TR (2.18)
dkAdk ”rknz

Kombination von (2.12) und (2.16)—(2.18) liefert schlieBlich:

Algorithmus 2.13 (CG-Verfahren)

input:
output:

Matrix A € R™", rechte Seite b € R” und Startniherung x, € R"
Folge von Iterierten {X }r>o

@ Initialisierung: setze dy =1y :=b — Axound k :=0

® berechne

o Il
"7 dTAd,

Xpt1 1= Xg + ody

Trpp 1= T — o Ady
I3
Br =
171

diy1 = Tpyr + Prdi

® falls |rg4q]2 > € erhdhe k := k + 1 und gehe nach @

Das CG-Verfahren wird generell als Iterationsverfahren verwendet, das heil3t, man
bricht die Iteration ab, falls die Residuennorm |r |, kleiner als eine Fehlertoleranz ¢ ist.
Pro Iterationsschritt wird nur eine Matrix-Vektor-Multiplikation bendtigt. Allerdings
hingt die Konvergenz des Verfahrens stark von der Kondition der Matrix ab.
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Satz 2.14  Die Iterierten {Xi} des CG-Verfahrens geniigen beziiglich der Energienorm

[xla := J(x.x)a = VXTAX

der Fehlerabschéitzung
b-xds < 2( SRRV
X—X —— | [x—Xoa.
kA = Jeond, A + 1 olA

Beweis. Wegenri =b — Ax; = A(x — x) folgt
Ix — xili = (b — Ax)TAT' (b — Axy)

. 2
= min X—z
2€x0+K1(A1rg) " ”A
=min |X — Xg — 1Ty — CRATy — - — ckAk_1r0||i
ceRF
= min (= x0) — 1 AG — x0) — A%Gx —x0) — = — AR Gx = o)}
C
= min |(I - ¢;A — A> — - — qA")(x — xo)
ceRF J
=p(A)
= min A)(x — xp)%.
pell =1 Ip(AX( ola

Da A € R™" symmetrisch und positiv definit ist, existieren n Eigenwerte 0 < A; <
Ay < -+ < A, und zugehdrige orthonormale Eigenvektoren {v;}! ;. Hiermit ergibt sich

n n
— T —
X=X = ZV,- (x = xo)v; = Z)’iVi
i=1

i=1

und

I —xolly = 35 vy AV; = 3 InfA
i,j=1 i=1
Fiir ein beliebiges Polynom p folgt daher

2 2

[p(A)(x = x0)lz =

> vip(A)v,
i=1

Z Yip(Ai)vi
i=1

= 3 WPIp A,
i=1

A A

1 2 S 2y _ N 2 2
< ((mix|p()?) D2 s = i p Al ol
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Wir werden nun ein spezielles Polynom q € {p € ITy : p(0) = 1} angeben, fiir
das sich die gewiinschte Fehlerabschitzung ergibt. Dazu wihlen wir das (k + 1)-te
Tschebyscheff-Polynom

Tut) = cos(k arccost), [t <1
T e+ VES D R+ NE- D), > 1
und setzen
) = Tk((/ln + A —240) /(A — /11))
K Te((hn + 200/ G — 20))
Wegen
An -2
Aelinn] # e[-11]
n — /1

und maxy<; |Ti(#)| = 1 folgt daher

1 2
Te((n + 1)/ — Ay)) cEr e

max [¢(2,)] =

+1 _ Jcond; A+ 1
1 ~ Jeond, A—1"

LAt dath 2_1_
_An_/ll /ln_/ll B

M??ﬁ

Zusammengefasst haben wir damit schlieBlich gezeigt, dass
—k

2c k
X —Xola < 2¢[x —xo[a. M

n
Ix — xila < max|p(A)lx — xola < ——¢
i=1 1+c¢

Bemerkung Aus der Approximationstheorie ist bekannt, dass das im obigen Beweis
verwendete Polynom auf die kleinstmégliche obere Schranke fiihrt. ¢

Wir wollen das CG-Verfahren nun dazu verwenden, die Normalengleichungen
ATAx=ATb

zu l6sen im Falle rechteckiger Matrizen A € R™" mitm > n = rang(A). Allerdings soll
das explizite Ausmultiplizieren der Matrix ATA vermieden werden, da deren Kondition



2.3 CG- und CGLS-Verfahren 59

wesentlich schlechter ist als die von A. Zudem ist mit der Matrix A nicht notwendig
auch ATA diinnbesetzt.

Es bezeichne rpy = b — Ax; das Residuum und
Sk = ATb — ATAXk = ATI‘k

das Residuum der Normalengleichungen. Die Berechnung von si; geschieht dann im
Algorithmus am besten in zwei Schritten

i1 1= I — o Ady, Skr1 = ATrpyq.
Benutzt man ferner

Ikl Il

T dAI(ATA)Y, A

Ak
so kann die explizite Multiplikation ATA vollstindig vermieden werden:

Algorithmus 2.15 (CGLS-Verfahren)
input:  Matrix A € R™", rechte Seite b € R™ und Startniherung x, € R"
output:  Folge von Iterierten {X }r>o

@ Initialisierung: setze ro = b — Axg,dy = sp := ATround k :=0

@ berechne
oo s
|Ad|3
Xpt1 1= Xg + ody

Trpp 1= T — o Adg
Ski1 1= ATrryq
Isk+113
Br =
skl
dii1 1= Spy1 + Prdy

® falls |sk41]2 > € erhdhe k := k + 1 und gehe nach @
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Proposition 2.16  Die k-te Iterierte X des CGLS-Verfahrens liegt im verschobenen Krylov-
Raum

Xo + Ki(ATA, ATrg) = X0 + spanfATry, (ATA)ATr, ..., (ATA) 'ATr}.
Unter allen diesen Elementen z dieses affinen Raums minimiert Xy die Residuennorm |b— Az|s.

Beweis. GemiB der Konstruktion des CG-Verfahrens minimiert die Iterierte x; das
Funktional

¢(z) = (ATb — ATAz)T(ATA) '(ATh — ATAz)
=(b—-Az)TA(ATA) 'AT(b — Az)
——
=1
= [b— Azl
unter allen Elementen z € xy + K (ATA, ATry). o

Bemerkung Man kann das CGLS-Verfahren sogar auf beliebige Matrizen A € R™"
anwenden, insbesondere auf Matrizen ohne vollen Rang, falls man einen Startvektor
%o € img(ATA) = kern(ATA)" wihlt, beispielsweise xg = 0. Da

ATry = AT(b — Axp) € img(ATA) L kern(ATA),
gilt fiir die Iterierten stets
Xk € Xo + Kp(ATA,ATry) € img(ATA) L kern(ATA).

Mit anderen Worten, man iteriert nur orthogonal zum Kern von ATA. Daher folgt
insbesondere, dass x;, auch stets die Lésung mit der kleinsten Euklid-Norm ist. ¢
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NICHTLINEARE
AUSGLEICHSPROBLEME

3.1 Gradientenverfahren

Ein nichtlineares Ausgleichsproblem liegt vor, falls zu gegebenen Daten und Funktionen

b fi(z1, 22,005 20)
y=|%|erm, g =|PE )| g g

ym fm(215227""xn)

dasjenige x = [x1, X3, ..., X, |7 gesucht wird, das die Minimierungsaufgabe

Rn

4) = Sy~ @l = 5 Y i~ fiz1,2 . 20 — min 6.

16st.

Nichtlineare Ausgleichsprobleme kénnen im allgemeinen nur iterativ geldst werden.
Da hierzu Gradienteninformationen benétigt wird, setzen wir f als stetig differenzierbar
voraus. Die Ableitung f’ sei zusitzlich sogar Lipschitz-stetig.

Zunichst wollen wir das Gradientenverfahren betrachten, das auch Verfahren des steilsten
Abstiegs genannt wird. Die Idee dabei ist, die Iterierte X in Richtung des Antigradienten
L) L) o L)

By o8 o
000 = (1) (y ~ ), ) = | 0% 5 () e 500

E) Ee) . )

9z 9z, Iz,
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so aufzudatieren
Xir1 = Xk — i VP(X),  ax >0,

dass P(Xg+1) < P(x) ist. Dass dies im Fall Vep(xx) # 0 immer méglich ist, zeigt uns das
nichste Lemma.

Lemma 3.1 TVorausgesetzt es ist ¢'(Xx) # 0, dann gibt es ein & > 0, so dass die Funktion

o(a) = ¢(xi — aVe(xr))

fiir alle 0 < a < § streng monoton fillt. Insbesondere gilt
¢ (xx — 6VP(x1)) < 9(0) = p(x).

Beweis. Die Funktion ¢ ist stetig differenzierbar und es gilt

00 = - g~ a¥hix0)|_ = 17408 <.

a=

Aus Stetigkeitsgriinden folgt die Existenz eines § > 0 mit ¢’(a) < O fiiralle 0 < < 6
und damit die Behauptung. o

Algorithmus 3.2 (Gradientenverfahren)
input:  Funktion ¢ : R" — R und Startniherung x, € R”
output: Folge von Iterierten {X }r>o

@ Initialisierung: wihle o € (0,1) und setze k : =1
@ berechne den Gradienten Ve (xy) und setze o := 1

® solange
¢ (xk — axVe(xi)) > P(xi) — T Vep(xi0l5 (3:2)

setze o 1= Qi /2
@ setze Xpyq 1= X — angzS(xk)

® erhdhe k := k + 1 und gehe nach @
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Bemerkung Man beachte die modifizierte Abbruchbedingung der Liniensuche in
(3.2), die nicht nur ¢(Xx+1) < P(xx) garantiert, sondern die Armijo-Goldstein-Bedingung

¢ (xk — axVp(xi)) < p(x) — ol Vh(xil3. (3.3)

Dass die Liniensuche mit einem o, > 0 abbricht, folgt aus
¢ (xc—aVg(xi)) = p(@) = p(0) +ag’(0)+0(a) = $(x) — alVp(x)l +O(a?).
¢

Satz 3.3 Essei D C R" eine offene Menge, in der £ stetig differenzierbar und £’ zudem
Lipschitz-stetig ist. Ferner sei neben Xo auch die gesamte Niveaumenge {z € R" : ¢(z) <
$(x0)} in D enthalten. Dann gilt fiir die Iterierten {Xy }x>o aus Algorithmus 3.2

Vo(xx) > 0, k — oo.

Beweis. Da D die gesamte Niveaumenge enthilt, ist sichergestellt, dass die Iterierten
{Xk }k>0 alle in D enthalten ist. Nach Konstruktion ist dann die Folge {(Xx)}x>0 monoton
fallend und nach unten beschrinkt. Daher folgt aus der Armijo-Goldstein-Bedingung
(3.3), dass

k
B(x0) > $(x1) + oa|VPGRE = -+ = (1) + 0 Y alVg(xI > o.

=0
Da die Reihe auf der rechten Seite notwendigerweise fiir k — oo konvergent ist, folgt
[Vl = 0, k — co. (3.4)
Es verbleibt zu zeigen, dass a > ¢ fiir ein e > 0.

Fiir festes k ist aufgrund von Algorithmus 3.2 @ = 1 oder die Armijo-Goldstein-
Bedingung ist fiir 2ay verletzt:

200 Vp(xl} > ¢x) = ¢ (xi — 20V (x0)) = 20Vl — R, 201
mit dem Taylor-Restglied
Raix, 20) = 20 (IVGeo)I; = ¢ (1 — £V V(x) ). £ € (0, 200).

Da f” Lipschitz-stetig ist, ist das Taylor-Restglied Ry(x, 2ax) durch ya?[V(x)|5 fiir
ein geeignetes y > 0 beschrinkt. Daher ist

yag Vool > 2Vl — 20l V(xil; = 2ar(1 = DIVH(xL,
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dies bedeutet

21-o0
o > ( )=:£>O.
Y

Somit bleibt oy fiir alle k > 0 groBer als min{1, ¢} und daher folgt die Behauptung aus
(3.4). a

Beachte: Satz 3.3 besagt nicht, dass die Folge {Xt}x>o selber konvergiert. Selbst wenn
die Folge {xx}i>0 konvergiert, braucht der Grenzwert dariiber hinaus kein Minimum
von ¢ zu sein.

Beispiel 3.4 Gegeben sei die Funktion f(£,7) = [&,7% — 1,E(* — 1)]7 und der
Datenvektor y = 0. Wir betrachten das nichtlineare Ausgleichsproblem

&) =y —£E =&+ (@ - 1)* + (" — 1)* > min.

Das Minimum von ¢ ist 0 und wird offensichtlich fiir £ = 0 und # = £1 angenommen.
Hat eine Iterierte X von Algorithmus 3.2 die Form x; = [&,0]7, dann gilt

en=@o L0

Daher hat die nichste Iterierte zwangsliufig wieder die Form X1 = [&1,0]7 und
nach Satz 3.3 konvergiert Vg (xx) = [4&k, 0]T gegen Null. Deshalb streben auch & und
X, gegen Null fiir k — oco. Dennoch ist [0, 0] lediglich ein Sattelpunkt von ¢, da
#(0,n) fiir n = 0 ein lokales Maximum aufweist. &

28 + 28(n* — 1)

VOGR) = lantr 1)1 +£2)

3.2 Gauf3-Newton-Verfahren

Natiirlich kann man das nichtlineare Ausgleichsproblem (3.1) auch mit dem Newton-
Verfahren fiir die Gleichung

Vg(z) = -(f(2)" (y - £(2)) = 0

16sen, was der Iteration

Xpr1 = Xg — (¢,/(Xk))7lv¢(xk), k=0,1,2,...
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entspricht. Hierzu wird jedoch neben dem Gradienten V¢ auch die Hesse-Matrix
benétigt, das ist

¢"(2) = (f(2) ' (2) - (y - £(2)) " (2).

In der Praxis will man die Berechnung des Tensors f”/(z) € R™ ™" jedoch vermeiden.
Daher vernachlissigt man den Term (y - f(z))Tf’ ’(z) und erhilt das Gauf3-Newton-
Verfahren.

Zu dessen Herleitung linearisieren wir die Funktion f

f(z +h) = f(z) + f'(z)h + o(|h],).

Ist nun x; eine Niherungslésung des Ausgleichsproblems (3.1), so erwartet man, dass
die Optimalldsung X1 = X + di des linearisierten Problems

min |y — £(x) — F'Gaohl; = re — ' (xdily, 1=y —f(xi)

eine bessere Losung des Ausgleichsproblems ist. Gemi Definition muss das Update dj
die Normalengleichungen

(F () " (xo)de = (F/(xx)) "1

16sen. Dies fiihrt auf folgenden Algorithmus:

Algorithmus 3.5 (Gauf3-Newton-Verfahren)
input:  Funktion f : R” —» R™, Datenvektor y € R™ und Startniherung x, € R"
output: Folge von Iterierten {X }r>o

@ Initialisierung: setze k = 0

@ 16se die Normalengleichungen
(F () " (xo)de = (F(x) " (y — £(x0)) (3.5)

® setze Xp41 = Xx +di

@ erhohe k := k + 1 und gehe nach @
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Satz3.6 Sei D C R" offen und £ : D — R™ eine stetig differenzierbare Abbildung. Das
Minimierungsproblem (3.1) habe eine Losung x € D mit rang (f'(x)) = n < m. Sei A > 0
der kleinste Eigenwert von (£’ (X))Tf’(x). Ferner gelte die Lipschitz-Bedingung

IF'(z) — £l < allz — x| (3.6)
und
|(F(2) - )" (y - £x))], < Blz - xl (3.7)

mit f < A fiir alle z aus einer Umgebung von X. Dann existiert ein € > 0, so dass fiir jeden
Startvektor Xy € B.(x) die Folge der Iterierten {Xy }r>0 mindestens linear gegen x konvergiert.

Beweis. Nach Voraussetzung gibt es ein &; > 0, so dass (3.6) und (3.7) fiir alle z €
B, (x) gelten. Aus Stetigkeitsgriinden folgt auBerdem die Existenz von y > 0, so dass

If'(z)|. <y furalle ze€ B, (x).
Wegen rang (f’ (x)) = n ist die Matrix (f’(x)) Tf/(x) regulir mit

ey

2

Daher gibt es zu beliebigem § > 1 ein &5 > 0 derart, dass (f’ (z))Tf/ (z) regulir ist und

(ro)rw)”

< % fiiralle z € B, (x). (3.9)
2

Wir wihlen § > 1 derart, dass zusitzlich gilt
A

o< —. 3.10
< 5 (3.10)

Weiter gibt es ein €5 > 0, so dass fiir jedes x; € B,,(x) folgt
1£C) — £(xi) — £ (x) (e = )2
1
= H / £ (x + t(xx — %)) (xe — %) dt — £ (%) (xx — X)
0

2

Al (f’(x +H(xe — X)) — f’(xk)>(xk —x)dt

2
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und damit

If(x) — f(xi) — £ (x) (X — %)
< / ||f'(x +t(xp — X)) - f’(xk)“2 dt |xx — x|,
0

1
a
< a/ ICt = DGk =)l dt e —xl2 = - i - x[3-
0

Wir setzen nun
. A—Bo
£ 1=minj &y, &, €3, > 0.
o

Aus (3.5) folgt fiir X € B.(x) dann

Xpp1 — X=X, +dg — x
= (o)) [(F60) (3~ £6x0)
~ (F/(x0) F o) (x — x|
= (o) P o) [(F00)" (v~ £60)
+ (£000)) (660 = £00) = £ (x)(x = x0)) |
Hieraus ergibt sich mit (3.8) und (3.9)
<(f’(xk))Tf’(xk)>_l

1 e LI G) — £(x) — /(i) (x — xk)nz]

Ixs1 — x|z <

(@) - e,

|(£60)" (3 = £G0)], + = e - xn%]. (3.11)

>J\C>o

Wegen 0 = Vi(x) = —(f’ (x))T (y - f(x)) erhalten wir aufgrund von (3.7)
[(£'60) T (y = £60)], = | (£ Gx0) = £60) T (y = £0) ], < Bl = .

dies bedeutet,

a o) )L o)
A N [ P Y F el L PR
2 — A
_,_/

<e<(A-p8)/(ayd) —O+59)/(2h)
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Wegen (3.10) ist die Konstante (1 + 5)/(24) < 1, das heiB, alle Iterierten {Xt}x>0
liegen in B.(x) und konvergieren mindestens linear gegen x. a

Bemerkung Die Voraussetzung (3.7) besagt im Prinzip, dass das Residuum

r(0) = y — f(x)

klein genug sein soll. Dies siecht man insbesondere, wenn man sie durch die stirkere
Bedingung

A
ly — GOl <
a
ersetzt. Dann folgt nimlich (3.7):

[(F(2) = ()" (v = £00) [, < If'(2) = GOl ly = £(0ll2 < Az — x>~ ¢

<alz—x|. <A/a

Korollar 3.7 Zusitzlich zu den Voraussetzungen aus Satz 3.6 gelte f(x) = y. Dann
existiert ein € > 0, so dass fiir jeden Startvektor Xy € B.(x) die Folge der Iterierten {Xi }ko
quadratisch gegen x konvergiert.

Beweis. Aus Satz 3.6 folgt die lineare Konvergenz der Iterierten {Xy }r>0 gegen X. Zum
Nachweis der quadratischen Konvergenz bemerken wir, dass aufgrund der Vorausset-
zung (3.7) mit f = 0 gilt. Daher folgt aus (3.11)

Sa
Ixks1 — x|z < X*"Xk — x5 »

3.3 Levenberg-Marquardt-Verfahren

Das Levenberg-Marquardt-Verfahren ist ein Trust-Region-Verfahren, also ein Verfahren,
bei dem der Linearisierung nur im Bereich |dx[, < A vertraut wird. Demnach wollen
wir das restringierte Optimierungsproblem

Y(h) = *Ilrk — f'(xhl;, (3.12)

heR" : HhH2<A heRn: Mhllz <A 2

16sen, um die Iterierte dann mit der Lésung dy aufzudatieren: Xg4; = xi + dy.
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Da die Menge BA(0) kompakt ist, existiert ein Minimum dy. Es treten dabei zwei Fille
auf:

1. Das Minimum d liegt im Inneren der Kugel B4(0) und erfiillt
Vip(de) = (F(x)) " (F'(x)di — 1) = 0. (3.13)

2. Das Minimum liegt auf dem Rand, erfiillt also |h||; = A. In diesem Fall muss
die Hohenlinie von ¢ in djy genau den Kreis dBA(0) tangieren, das heif3t, der
Gradient Vi/(dy) zeigt in Richtung des Nullpunkts:

Vi(de) = (F(x0) " (F(x)dx — 1) = —Akdy fiirein A > 0. (3.14)

Da die Gleichung (3.13) als Grenzfall Ay = 0 von (3.14) angesehen werden kann,
erhalten wir:

Lemma 3.8 Die Lisung dy. des restringierten Problems (3.12) geniigt der Gleichung

((f’(xk))Tfl(Xk) + A]J)dk = (f’(xk))Trk (3.15)
fiir ein A > 0. Dabei ist der Wert Ay genau dann positiv, wenn |di|, = A > 0 gilt.

Der Vorteil des regularisierten Systems (3.15) liegt darin, dass es stets eindeutig 16sbar
ist, sofern A > 0 ist. Die zugehorige Losung

= ((£600) G+ 241 (8600) e = —((F000) G+ 241 00

erfiillt offenbar die Abstiegsbedingung d[Vé(xx) < 0, es sei denn, der Punkt xj ist
stationdr.

Bemerkung Ist Ax = 0, dann ergibt sich ein GauB3-Newton-Schritt, wihrend dy fiir
Ak — oo der Richtung des steilsten Abstiegs entspricht. ¢

Wir miissen uns noch ein Kriterium iiberlegen, wie wir A wihlen. Eine neue Niherung
Xj+1 = X + dy kdnnen wir anhand der Armijo-Goldstein-Bedingung (vergleiche (3.3))
bewerten:

_ ¢+ d) — ¢ _ 1y — FGIE — ly — £ + dl3
dfVe(xi) 2 Al (Fex) (v - f(x)
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Wir wihlen zwei Toleranzgrenzen 0 < y~ < p* < 1 und akzeptieren den Iterations-
schritt, wenn g > p~ gilt. Dann war der Trust-Region-Radius A geeignet gewihlt. Ist
u > pt, so kdnnen wir A sogar vergréBern. Ist hingegen p < p~, dann verwerfen wir
den Iterationsschritt und verkleinern A. Damit erhalten wir schlieBlich den folgenden
Algorithmus:

Algorithmus 3.9 (Levenberg-Marquardt-Verfahren)
input:  Funktion f : R” —» R™, Datenvektor y € R™ und Startniherung x, € R"
output: Folge von Iterierten {Xy }r>o

® Initialisierung: wihle 0 < g~ < p* < 1 und setze Ay :=1lundk :=0
@ bestimme die Lésung di des restringierten Optimierungsproblems (3.12)
® berechne

1y - fxol2 — |y — £ :
uk:illy Gl = ly = £Gu + di)ll; (3.16)

2 A (Fex) (v - )

@ falls . > p~ setze Xp4q := Xy + dg, sonst setze Ay := A /2 und gehe nach @
® falls g > p* setze Agyq 1= 24y, sonst setze Agyq 1= Ay
® erhdhe k := k + 1 und gehe nach @

Satz 3.10 Essei D C R" eine kompakte Menge, in der f stetig differenzierbar und £ zudem
Lipschitz-stetig ist. Ferner sei neben Xo auch die gesamte Niveaumenge {z € R" : ¢(z) <
$(x0)} in D enthalten. Dann gilt fiir die Iterierten {Xy }x>o aus Algorithmus 3.9

Vo(xx) > 0, k — oo.

Beweis. (i) Zunichst beweisen wir eine obere Schranke fiir den Lagrange-Parameter
Ak aus (3.15). Dazu nehmen wir ohne Beschrinkung der Allgemeinheit an, dass Ay > 0
und daher |di]; = Ay ist. Aus (3.15) folgt

d,:((f’(xk))Tf’(xk) + Akl)dk = df (£'(x)) e < el (£ (xe)) "]

Da (f’ (xk))Tf’ (xx) positiv semidefinit ist, kann die linke Seite nach unten durch A
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abgeschitzt werden, so dass folgt

2 < G0 0y WGl
Ay Ay

(3.17)

(i) Als nichstes leiten wir eine untere Schranke fiir den Nenner v in (3.16) her. Im
Fall A > 0 ist (f’ (Xk))Tf' (xk) + Akl positiv definit, weshalb eine Cholesky-Zerlegung
LLT existiert. Dabei gilt

, , (3.17) Vo(x
7L = I = (7050 0+ A, = I Gl 4 € e 20k,
(N — k
<cfirallezeD

Setzen wir w = L™'V¢(x;), so folgt unter Beachtung von (3.15) hieraus

_ NV (LLTY Ve(x) = wT IVoxl; IwlsIVexol;
vi = (Vo(x0)) ' (LLT) 'Ve(xi) = w W(v¢(xk))Tv¢(xk) Rl

IWBIVGOOR etk
> WR(c+ [Wgolan) > tre mmidelVeookl o (318)

Im Fall A = 0 folgt
v = 1 () (F/(x) "1 = [Perel2,

wobei Py = f/(xk)(f/(xk))+ den Orthogonalprojektor auf img (f’(xk)) bezeichnet.
L
Wegen img (f’(xk)) = kern ((f’(xk))T) folgt daher

IVoxOI2 = | (£(x0) e = | () "Prerfs < |(Fx0)) T [oIPerel? < ewi,
das heiBt, (3.18) ist auch im Fall A, = 0 giiltig.

(iii) Wir beweisen nun, dass die rechte Seite von (3.18) gegen Null konvergiert. Bei
erfolgreichem Iterationsschritt ist g > p~ und aus (3.16) und (3.18) folgt

min{Ay, [Vé(xi)lz}- (3.19)

P(xk) — P(Xper1) > pvie 2 %ﬁf’:‘)"z

Da nach Konstruktion {¢(x¢)}k>o eine monoton fallende, nach unten beschrinkte Folge
ist, muss gelten

min{A, [Vo(xi)[2} = 0, k — oo. (3.20)
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(iv) Als nichstes zeigen wir, dass |[Vp(xy)|, fiir eine Teilfolge {k,}nen gegen Null kon-
vergiert fiir k, — co. Angenommen, die Behauptung gilt nicht, dann folgt

IVo(xp)l, > e >0 firalle k> K(e).
Aus (3.20) ergibt sich damit unmittelbar

A =0, k — oo (3.21)
Taylor-Entwicklung von i liefert jedoch

P(xir1) — pO) _ diVe(xe) + O(de3)

e =

dive(x) d]V(xy)
A2\ (.18) < Ay >
=1+0( =) "="1+0 —=— ) =1+ 0(A), k- .
<vk> Tz (40)
—_———
>e>0

Demnach existiert ein M(¢) > K(¢), so dass y > p* fiir alle k > M(e). Ab dem
M(¢e)-ten Schritt wird folglich Ay in jedem Schritt von Algorithmus 3.9 verdoppelt,
was jedoch im Widerspruch zu (3.21) steht.

(v) Wir beweisen nun die Aussage des Satzes. Dazu nehmen wir an, dass eine Teilfolge
von {|V@(xx)|2}k>0 nicht gegen Null konvergiert. Nach Aussage (iv) existiert dann ein
& > 0 und zwei Indizes £ < m, so dass

IVpxolz = 2¢,  IVo(xml2 <&, IVl >e, k=t+1,...m—1

Da {¢(x¢)}k>0 eine Cauchy-Folge ist, kann ¢ dabei so grol gewihlt werden, dass

2 —

$ox) = 90 < 4 (322)

wobei L > 1 eine Lipschitz-Konstante von V¢ in D bezeichne. Wegen [xj1 —Xk |2 < Ak
folgt aus (3.19) dass

Pxe) = P(Kir) 2 1 — mln{IIXk+1 =Xkl el k=tf+1,..,m—1.

Summation ergibt

_ml 2,,—

el €} < B(x0) — Pxm) < (ffc)L,

1+
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was wegen L > 1 nur erfiillt sein kann, wenn

min{|Xey1 — Xelz, €} = [Xes —Xkle, k=£66+1,...

und insgesamt

m—1
£

Ixe1 — Xl < —
k=¢ L
gilt. Dies ergibt

m—1

,m—1,

IVo(xm) — Vo(x)lz2 < Llxm — X2 < L Z IXpsr — xxkl2 < e

k=t

im Widerspruch zur Annahme. Damit ist der Satz bewiesen.

Wir kommen nun zur Implementierung. Um das restringierte Minimierungsproblem
(3.12) zu 16sen, berechnen wir zunichst die Losung dj beziiglich des unrestringierten
Minimierungsproblems und akzeptieren den Schritt, falls [di|, < A. Ist hingegen

73

o

|dilz > A, so wissen wir, dass das Minimum von (3.12) auf dem Rand liegt. Wir

suchen dann dasjenige Tupel (A, di), das (3.15) und [di[, = Ak 16st.

Es bezeichne z; > - > z, > 0 die Eigenwerte von (f’(xk))Tf’(Xk) und {v;}, die

zugehorigen orthonormalen Eigenvektoren. Entwickeln wir die rechte Seite von (3.15)

in diese Eigenbasis
(F'(x0) g = Z &vi,
i=1
dann folgt

) = ((FGo0) )+ 2a1) Y v = Z

Die Forderung || dx(Ax)|2 = A fiithrt auf die nichtlineare Gleichung

|§1 !
)= Z|zl+7tk|2 -

Z,+/1k
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Diese kann mit dem Hebden-Verfahren geldst werden, einem Newton-Verfahren fiir die
Gleichung

1 1

NZARE

Ausgehend vom Startwert A9 = 0 konvergiert die zugehdrige Iteration

3/2(/1(i)) ) 1
(+1) — @) “1/2090G)y _ _— :
A =AY +2 RT510)) <r A" Ak), i=0,1,2,....

sehr schnell gegen die Losung Ai. Die explizite Spektralzerlegung kann vermieden
werden, indem man r(4) = |dg(1)[% und

/() = =218 e ((F/6e0) 600 + 1) (FG0)) i = ~2d4(A)"g)
mit ( (F'(x) "F (xi) + }Ll)g(A) - d:(D)

benutzt.

Fiir jede Hebden-Iterierte sind zwei Gleichungssysteme mit derselben Systemmatrix zu
16sen. Diese entsprechen genau den Normalengleichungen zu den Ausgleichsproblemen

H[f/(Xk)] d"w_[ } [f,(Xk)] 84~ [d W/Vi }

Verwendet man die QR-Zerlegung QR = f/(x;), so kénnen letztere durch Anwendung
von jeweils n(n + 1) /2 Givens-Rotationen effizient geldst werden.

2 2

— min.

— min, ‘

2
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NICHTLINEARE OPTIMIERUNG

4.1 Einfiihrung

Optimierungsaufgaben treten in zahlreichen Anwendungsproblemen in den Natur-
und Ingenieurwissenschaften, der Wirtschaft oder der Industrie auf. Beispielsweise
versuchen Transportunternechmen, die Fahrt- oder Flugkosten zu minimieren und
dabei sicherzustellen, dass alle Auftrige ausgefiihrt werden. Ebenso fiihrt die numeri-
sche Simulation vieler physikalischer Vorgiinge in den Naturwissenschaften auf Opti-
mierungsprobleme, da das zugrundeliegende mathematische Modell oftmals auf dem
Prinzip der Energieminimierung beruht.

Unter einem endlichdimensionalen Minimierungsproblem wird die folgende Aufgabe
verstanden: Gegeben sei eine Zielfunktion f : R" — R. Gesucht ist ein Punkt x* € R",
so dass

f(x*) < f(x) furalle x € R".
Dabei ist es ausreichend, sich nur mit Minimierungsproblemen zu beschiftigen, da ein
Maximierungsproblem fiir f immer einem Minimierungsproblem fiir — f entspricht.
Definition 4.1 Essei f : R"” — R. Ein Punkt x* € R" heif3it globales Minimum,
falls gilt

f(x*) < f(x) fiiralle x € R".

Das Minimum ist ein lokales Minimum, wenn es eine Umgebung U C R" von x*
gibt, so dass

f&x") < f(x) furallexeU.

Das Minimim heift strikt, wenn im Fall x # x* jeweils die strenge Ungleichung

f&) < f) gile.
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In der Regel ist es mit vertretbarem Aufwand nur méglich, ein lokales Minimum von f
in einer Umgebung eines Startwertes X, zu bestimmen.

4.2 Optimalitdtskriterien

Um ein lokales Minimum numerisch zu finden, versucht man iterativ die Gleichung
Vf(x) = 0 zu 16sen.

Definition 4.2 Seien U C R” eine offene Menge und f : U — R cine stetig
differenzierbare Funktion. Ein Punkt x* € U heil}t stationirer Punkt, falls gilt

Vf(x")=0.
Wir wiederholen einige bekannte Eigenschaften lokaler Minima aus der Analysis:

Satz 4.3 (notwendige Bedingung 1. Ordnung) Ist X* ein lokales Minimum von f und ist
f stetig differenzierbar in einer Umgebung von X*, dann gilt V f(x*) = 0. Der Punkt xX* ist
also ein stationdrer Punkt.

Satz 4.4 (notwendige Bedingung 2. Ordnung) Ist X* ein lokales Minimum von f und ist
die Hesse-Matrix I f stetig in einer Umgebung von x*, dann gilt V f(x*) = 0 und V? f(x*)
ist eine positiv semidefinite Matrix.

Satz 4.5 (hinreichende Bedingung 2. Ordnung) Die Hesse-Matrix V2 f sei stetig in einer
Umgebung von x* mit V f(x*) = 0. Ist V2 f(x*) eine positiv definite Matrix, dann ist X* ein
striktes lokales Minimum.

4.3 Konvexitdt

Wir wenden uns einem wichtigen und in der Praxis oft auftretenden Spezialfall zu, bei
dem wir mit einem lokalen zugleich ein globales Minimum gefunden haben. Dazu sei
angemerkt, dass eine Menge D C R" konvex ist, falls aus x, y € D auch Ax+(1-A)y € D
folgt fiir alle A € (0,1).
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Definition 4.6 Essei D C R” eine konvexe Menge. Die Funktion f : D — R heif3t
konvex auf D, wenn fiir alle A € (0,1) und alle x,y € D gilt

f(Ax+ 1= Dy) <A+ 1= DfE)-

Gilt fiir x # y sogar stets die strikte Ungleichung, dann hei3t die Funktion strikt
konvex. Gibt es ein p > 0, so dass

FAx+ @ = Dy) +pA1 - Dlx -yl < Afx) + (1 - Df(y)
fiir alle A € (0,1) und alle x,y € D, dann heif}t die Funktion f gleichmiflig konvex.

Beispiele 4.7

1. Die Gerade f(x) := x ist konvex auf R, aber nicht strikt konvex.

2. Die Exponentialfunktion f(x) := exp(x) ist strikt konvex auf R, dort aber nicht
gleichmiBig konvex.

3. Die Parabel f(x) := x? ist gleichmiBig konvex auf R. Hingegen ist die sehr
ihnlich aussehende Funktion f(x) := x* zwar strikt konvex auf R, aber nicht
gleichmiBig konvex. L]

f)

Af()+A=-Df»)

f(x)
fAx +(1-Dy)

x Ax+ (1 -y y

Bei einer eindimensionalen konvexen Funktion liegt die Verbindungslinie zweier
Punkte oberhalb des Graphen.
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Bemerkung Sei f : R" — R eine quadratische Funktion, das heiBt
1
f(x) = EXTAX +bTx+c

mit einer symmetrischen Matrix A € R™" b € R" und ¢ € R. Die Funktion f ist genau
dann konvex, wenn A positiv semidefinit ist. Ist die Matrix A sogar positiv definit, so
ist f sogar gleichmiBig konvex. ¢

Satz 4.8 Seien D C R" eine offene und konvexe Menge und f : D — R stetig differenzier-
bar. Die Funktion f ist genau dann konvex auf D, wenn fiir alle X,y € D gilt

f&® - f(y) 2 Vf(y) (x-y). (4.1)

Ist diese Ungleichung strikt fiir alle x =y, dann ist f sogar strikt konvex. Die Funktion f ist
genau dann gleichmafig konvex, wenn ein i > 0 existiert, so dass

f&® - f(y) 2 V() (x—y)+ plx -yl (4.2)

fiir alle x,y € D.

Beweis. Es gelte zuichst (4.2). Fiir X,y € D und beliebiges A € (0, 1) ergibt sich dann
mitz := Ax+ (1 - )y

fx) = f(2) > Vf(2)"(x — z) + plx — z[3,
fy) = f(2) > Vf@)(y —2) + ply — 2%

Multipliziert man diese Gleichungen mit A beziehungsweise 1 — A und addiert sie
anschlieend, dann folgt

AfG)+ (1= Df(y) = f(Ax+ 1= Dy) = pA = Dlx ~ I3,

das heiBit, f ist gleichmiBig konvex.

Sei f nun als gleichmiBig konvex auf D vorausgesetzt. Fiir alle x,y € D und A € (0,1)
gilt dann mit einem p > 0

fly+Ax-y) = f(x+(1-Dy)
<A + (1= D) f(y) — pA1 = Vlx -y
und daher

fly+Ax-y) - f(y)
1

< f) = f() — (1 = Dlx -yl
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Aufgrund der stetigen Differenzierbarkeit von f folgt somit fiir A — 0+

VIy)Tx-y) < fx) - f(y) - plx -y,

dies bedeutet, es gilt (4.2). Da der soeben gefiithrte Beweis auch im Fall y = 0 seine
Giiltigkeit behilt, folgt die Aquivalenz von (4.1) zur Konvexitit von f.

Es verbleibt zu zeigen, dass die strikte Konvexitit von f die strikte Ungleichung

f-fy>Vfy)x-y)

fiir alle x, y € D mit x # y impliziert. Als strikt konvexe Funktion ist f insbesondere
konvex, das heil3t, es gilt (4.1). Fiir

1(+) 1 +( 1
Z:=— =- -
ZX y ZX 2 y

ergibt sich daher

VIyT(x—y) =2V (y) (z—y) < 2{ f(z) - f(y)}. (4.3)

Ist x # y, dann folgt wegen der strikten Konvexitit
1 1
@ < S F60+ )

Dies eingesetzt in (4.3) liefert die Behauptung

VIy)Tx-y) < fx) - f(y) o

Satz 4.9 Die Funktion f : D C R" — R sei konvex. Dann ist jedes lokale Minimum x*
auch ein globales Minimum von f. Ist f zusétzlich differenzierbar, so ist jeder stationére Punkt
X" ein globales Minimum.

Beweis. Angenommen, der Punkt x* ist ein lokales, aber kein globales Minimum.
Dann gibt es einen Punkt y* € D mit f(y*) < f(x*). Fiir alle

x=Ax"+(1-Ay", 1€(0,1) (4.4
gilt aufgrund der Konvexitit

F <A+ A -V < f(x).
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Da in jeder Umgebung von x* Punkte der Form (4.4) liegen, steht dies im Widerspruch
zur Annahme, dass x* ein lokales Minimum ist. Folglich ist jedes lokale Minimum auch
ein globales Minimum.

Wir zeigen nun die zweite Aussage. Dazu sei f differenzierbar vorausgesetzt und x*
ein stationirer Punkt. Wir fithren den Beweis wieder per Widerspruch und nehmen
an, dass x* kein lokales Minimum ist. Dann kénnen wir ein y* wie oben wihlen und
erhalten aufgrund der Konvexitit gemil (4.1)

VI - x) < fy) - fx) <0,
Deshalb ist Vf(x*) # 0 und folglich ist x* kein stationirer Punkt. o

4.4  Quasi-Newton-Verfahren

Im folgenden setzen wir stets voraus, dass f : D C R" — R stetig differenzierbar ist.
Beim Gradientenverfahren ist die Idee, die Iterierte x4 in Richtung des Antigradienten
—V f(xx) aufzudatieren

Xir1 = Xe — oV f(Xp),

so dass f(Xx11) < f(xx) ist. Dieses Vorgehen haben wir bereits in Abschnitt 3.1 unter-
sucht. Viel besser als das Gradientenverfahren, welches nur mit linearer Rate konvergiert
(falls es tiberhaupt gegen ein Minimum konvergiert), ist das Newton-Verfahren, da dies
im Fall der Konvergenz quadratisch konvergiert.

Beim Newton-Verfahren ist das Update X1 : = Xi +di durch die Newton-Gleichung
V2 f(x;)dx = —V f(x;) gegeben. Da das Berechnen der Hesse-Matrix und das Lésen

. . . -1 .
dieses Gleichungssystems oftmals zu teuer ist, versucht man, (V2 f (Xk)) durch einfach
zu berechnende Matrizen Hy, zu ersetzen und die Suchrichtung

dk = —Hka(Xk)

zu benutzen. Man spricht von einem Quasi-Newton-Verfahren, wenn fiir alle k > 0 die
Matrix Hy1 der Quasi-Newton-Gleichung

Hk+1{vf(xk+1) - Vf(xk)} = Xp+1 — Xk (4.5)

geniigt. Diese Bedingung stellt sicher, dass sich Hy; in der Richtung Xj4+; — Xx dhnlich
wie die Newton-Matrix (VZ f (Xk))_l verhilt, fiir die gilt

Vf(xk1) = VFxr) = V2 F ) K1 — k) + O(xxsr — xJ)-
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Fiir eine quadratische Funktion g(x) = $xTAx + bTx + ¢ mit positiv definiter Matrix
A gilt (4.5) wegen Vg(x) = Ax + b sogar exakt. Ferner erscheint es sinnvoll, als Hy
nur symmetrische und positiv definite Matrizen zu wihlen. Dies garantiert, dass fiir
Vf(xx) # 0 die Richtung dy = —H;V f(x¢) eine Abstiegsrichtung von f wird

Vx)Tde = =V f(x) THRV f(xx) < 0.

Beide Forderungen lassen sich erfiillen: Mit den Abkiirzungen
Pk = Xks1 — Xk, Qe = V. (Xer1) — V(x5

und frei wihlbaren Parametern
Ye>0, vg20

ist Hy41 rekursiv gegeben durch

Hk+1 L= @(Hka pks qks Yk: Vk)a

q"Hq \ pp’
@(H,p,q,y,v) :=yH + (1 +yv>
P’q /p'q

1—v 1%
gH quqTH - Ii/Tq(quH +Hgp"). (4.6)

Die Update-Funktion @ ist nur fiir pTq # 0 und qTHq # 0 erklirt. Man beachte, dass
man Hy aus Hy dadurch erhilt, dass man zur Matrix yHy eine Korrekturmatrix vom
Rang < 2 addiert:

rang(Hyy1 — yHy) < 2.
Man nennt dieses Verfahren daher auch Rang-2-Verfahren.
Folgende Spezialfille sind in (4.6) enthalten:
1. ¥x = 1, V¢ = 0: Verfahren von Davidon, Fletcher und Powell (DFP-Verfahren).

2. ¥k = 1, v¢ = 1: Rang-2-Verfahren von Broyden, Fletcher, Goldfarb und Shanno
(BFGS-Verfahren).

3. ¥k = 1, vi = pLq/(Pf qx — pLHkQk): symmetrisches Rang-1-Verfahren von Broyden.
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Letzteres Verfahren ist nur fiir p{ qx # p] Hiq definiert; vi < 0 ist mdglich: in diesem
Fall kann Hy auch indefinit werden, auch wenn Hy positiv definit ist (vergleiche
Satz 4.11). Setzt man den gewihlten Wert in (4.6) ein, erhilt man fiir Hy eine Rekursi-
onformel, die den Namen Rang-1-Verfahren erklirt:

L zcz] N . SR
Hy -—Hk+7k, zx = pr — HeQr, o = prar — qHiqr.

Algorithmus 4.10 (Quasi-Newton-Verfahren)
input:  Funktion f : R” — R und Startniherung x, € R"
output: Folge von Iterierten {Xj }ken

@ Initialisierung: setze Hy :=Tund k :=0
@ berechne die Quasi-Newton-Richtung dy = —H;V f(xx)
® lsse

o = argmin f(x; + ady)
a€R

@ setze Xp1 1= Xk + dy, Pr 1= Xpy1 — Xk und Qg 1= Vi (Xgr1) — VI (xx)
® wihle y > 0, ¢ > 0 und berechne Hiy1 : = ®(Hg, pr, Qk Vi Vi) gemil (4.6)
® erhdhe k := k + 1 und gehe nach @

Das Verfahren ist eindeutig durch die Wahl der Parameter yy, vy und die Minimierung
in Schritt ® fixiert. Die Minimierung X — Xy und ihre Qualitit kann man mit Hilfe
eines Parameters oy beschreiben, der durch

Vf(Xks1)Tdi = 0k Vf(xi)Tdy = =03V f (x1) THV f (%)

definiert ist. Falls dy eine Abstiegsrichtung ist, das heiBt V f(x;)Tdy < 0, dann ist oy
eindeutig bestimmt. Bei exakter Liniensuche ist o3 = 0 wegen

Vf(x1)Tdi = i) =0, wobei  gr(e) 1= f(xx + ady).
Wir setzen fiir das folgende

or < 1 (4.7)
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voraus. Falls V f(x;) # 0 und Hy positiv definit ist, folgt aus (4.7) ax > 0 und deshalb

Qi Pr = oV f(Xer1) — VF(xx)}Tdg
= ai(ox — 1)Vf(Xk)Tdk
= —ag(or — DV f(x) THLV f (1)
>0,

also auch q¢ # 0 und q{Hiqx > 0. Die Matrix Hy.; ist damit durch (4.6) wohldefiniert.

Die Forderung (4.7) kann nur dann nicht erfiillt werden, wenn
(p,’c(a) = Vf(Xk + adi)Tdg < Vf(Xk)Tdk = (pi(()) <0

fiir alle @ > 0 gilt. Dann ist aber

Pl + ad) — F(xe) = / (D) dt < @V f(x)Tde < 0 fir alle & > 0,
0

so dass f(x¢ + ady) fiir @ — oo nicht nach unten beschrinkt ist. Die Forderung (4.7)
bedeutet also keine wesentliche Einschrinkung. Damit ist bereits der erste Teil des
folgenden Satzes gezeigt, der besagt, dass das Quasi-Newton-Verfahren 4.10 unsere
oben aufgestellten Forderungen erfiillt.

Satz 4.11  Falls im Quasi-Newton-Verfahren 4.10 die Matrix Hy, fiir ein k > 0 positiv definit
ist, Vf(xx) # 0 und oy < 1 ist, dann ist fiir alle yp > 0, v > 0 die Matrix
Hii1 1= @(H, Pr, Qks Yi» Vi)
wohldefiniert und wieder positiv definit. Insbesondere erfiillt sie die Quasi-Newton-Gleichung
Hp1qk = Pr-
Beweis. Die Wohldefiniertheit von H; haben wir bereits gezeigt, so dass wir nur

noch die positive Definitheit nachweisen miissen. Seien 'y € R" \ {0} ein beliebiger
Vektor und Hy, = LLT die Cholesky-Zerlegung von Hy. Mit Hilfe der Vektoren

u:=LTy, v:=LTq
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lisst sich yTHy.1y wegen (4.6) so schreiben:

viv  (ply)*
V' Hiy =yu’u + <1 + VeV )
" Pidx /) Prdk
LTV a gy ARVE T
oy @I = S )™

_Yk<uT (uTV)2> +(p;£y)2 < mpky u'v )2

viv Pr 9k Pidk VTV
T+ )2 2

2 Yk (uTu— (Tv) ) ®.y) .

viv Pi gk
Die Cauchy-Schwarzsche Ungleichung ergibt
T+ )2
I CIA
viv

mit Gleichheit genau dann, wenn u = Av fiir ein 4 # 0 (wegeny # 0). Fiiru # Av
ist also yHy41y > 0. Fiir u = Av folgt aus der Nichtsingularitit von Hy und L auch
0 # y = Aqy, so dass

= A*plqx > 0.

(piy)
JHy > PV
k

Day € R" \ {0} beliebig war, muss H; positiv definit sein.

Die Quasi-Newton-Gleichung Hy11qx = p verifiziert man schlieBlich sofort mittels
(4.6). a

Ein wesentliches Resultat ist, dass das Quasi-Newton-Verfahren im Fall einer quadrati-
schen Funktion f : R® — R das Minimum nach héchstens n Schritten liefert, sofern
die Minimierung in ® stets exakt ist. Da sich jede gentigend oft differenzierbare Funk-
tion f in der Nihe ihres Minimums beliebig genau durch eine quadratische Funktion
approximieren lisst, lisst diese Eigenschaft vermuten, dass das Verfahren auch bei der
Anwendung auf nichtquadratische Funktionen rasch konvergiert.

Satz 4.12  Sei

fx) = xTAx +bTx+c
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eine quadratische Funktion mit einer positiv definiten Matrix A € R™". Wendet man das
Quasi-Newton-Verfahren 4.10 zur Minimierung von f mit den Startwerten xo und Hy an,
wobei man die Minimierungen in ® exakt durchfiihrt, so liefert das Verfahren Folgen {X}k>o0,

{Hi b0, IV (Xi) b0, 1Pk ko und {qitiso mit den Eigenschaften:

(i.) Es gibt ein kleinstes m < n mit X, = x* = —A~'b, das heift, X, ist das eindeutige
Minimum von f, insbesondere gilt also V f(x,,) = 0.

(ii.) Esist p{qx > 0 und p{q, = p{Ap, = 0 fiir alle 0 < k # £ < m. Die Vektoren py
sind demnach A-konjugiert.

(iii.) Es gilt p{V f(x¢) = 0 fiiralle 0 < k < £ < m.
(iv.) Es ist Hoq = yiPx fiir alle 0 < k < £ < m mit

VRV Ve fiirk < £—1,
L O firk=t-1.

(v.) Falls m = n, so gilt zusétzlich
H, =H, =PDP'A™},
wobei

D = diag(}’o,n, }’l,n, eees Yn—l,n)a P = [pOa pl: eees Pn—l]-
Fiiryr = 1 folgt H, = A~

Beweis. Wir zeigen zunichst induktiv, dass die Bedigungen (ii.)—(iv.) fiir ein beliebiges
m > 0 gelten, falls fiir alle j < m H; positiv definit und V f(x;) # 0 ist. Da die Aussagen
fiir m = 0 trivialerweise erfiillt sind, kénnen wir annehmen, dass sie fiir ein beliebiges
m > 0 gelten. Der Induktionsschritt m — m + 1 ergibt sich nun wie folgt.

Da H,, positiv definit ist, folgt aus Vf(x,,) # 0 sofort d,, = —H,,Vf(x,,) # 0 und
Vf (%) THp,V f(Xm) > 0. Weil exakt minimiert wird, ist @, die Nullstelle von

_ V() TH,V f(x)
- drAd,, ’

0= vf(xm+1)Tdm = {vf(xm) + amAdm}Tdma m

also pyy = @, d;, und

vf(xm+1)Tpm = O{me(Xm+1)Tdm =0. (48)
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Deshalb gilt
Prdm = amd;‘l;z{vf(xm+1) - Vf(xm)}
= —and}V f(xm)
= O(me(Xm)THme(Xm)
>0

und folglich ist Hy,41 nach Satz 4.11 positiv definit. Weiter ist fiir k < m wegen
AP = Q

(iv)) (iii.)
PLqm = PLAP,, = Q[ Pm = —mq  HnV f(X) = —mYkmPLVf (X)) = 0. (4.9)

Das ist der Induktionsschritt fiir Aussage (ii.).

Weiter gilt fiir k < m
PV f () = p] (Vf(xk+1) .S qj) — 0
Jj=k+1

nach dem eben bewiesenen und Aussage (iii.). Zusammen mit (4.8) ergibt dies Aussage
(ii.) fiir m + 1.

Den Induktionsschritt fiir Aussage (iv.) sieht man wie folgt ein. Anhand von (4.6)
verifiziert man sofort

Hm+1 qm = Pm-

Wegen Aussage (ii.) fiir m + 1 und der Induktionsvoraussetzung hat man ferner fiir
k<m

(ii.) (iv.) (ii.)
PLak = 0, qLH.Qk = YimQLPk = O,

so dass fiir k < m aus (4.6) folgt
- () —
Hni1Qk = ymHnQk = YmYkmPk = Yem+1Pk-

Der restliche Beweis ist nun einfach. Die Aussagen (ii.)—(iv.) kénnen nur fiir m < n
richtig sein, da die Vektoren pg, p1, ..., pm_1 linear unabhingigsind. Aus 0 = Y.7' A,p,
folgt nimlich durch Multiplikation mit p,IA, k=0,1,...,m — 1, wegen Aussage (ii.)
Akp]IAPk = 0, das heiB3t, A = 0.
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Da wir bewiesen haben, dass die Aussagen (ii.)—(iv.) fiir beliebiges m gelten, solange
Vf(xm) # 0 ist, muss es also einen ersten Index m < n geben mit

Vixm) =0, Xp,= —A"1p,

dies bedeutet, es gilt Aussage (i.).

Fiir den Fall m = n gilt wegen Aussage (iv.) zusitzlich H,Q = PD fiir die Matrizen

D = diag(}/o,n: )/l,ns cees Yn—l,n)a P = [PO: p17 eees Pn—l], Q = [qu qla cees qn—l]'

Wegen AP = Q ergibt sich schlieBlich wegen der Nichtsingularitit der Matrix P die
Beziehung

H, =PDP'A™,
Damit ist der Satz vollstindig bewiesen. o

Es stellt sich nun die Frage, wie man die Parameter y; und v wihlen soll, um ein
mdoglichst gutes Verfahren zu erhalten. Aussage (v.) aus Satz 4.12 legt die Wahly, =1
nahe, weil dies D = I und folglich lim,, H,, = (VZ f ()(*))_1 vermuten lisst, weshalb
das Verfahren voraussichtlich dhnlich schnell wie ein Newton-Verfahren konvergiert.
Im allgemeinen ist diese Vermutung fiir nichtquadratische Funktionen aber nur unter
zusitzlichen Vorraussetzungen richtig. Nach praktischen Erfahrungen ist die Wahl

k=1, vr=1 (BFGS-Verfahren)

am besten.

Bemerkungen

1. Sowohl das DFP-Verfahren als auch das BEGS-Verfahren konvergieren superline-
ar in der Umgebung eines lokalen Minimus x*, falls f : R" — R zweimal stetig
differenzierbar ist und die Hesse-Matrix in der Umgebung von x* Lipschitz-stetig
ist.

2. Eine andere Startmatrix Hy # Iist denkbar, solange sie symmetrisch und positiv
definit ist.

3. In der Praxis macht man gelegentlich Restarts, setzt also Hy := Hy, falls k € mZ
mit festem m € N, beispielsweise m = 100.
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4. Gerade bei gro3en Optimierungsproblemen stellt man die Matrix Hy nicht direkt
auf, sondern berechnet sie rekursiv aus den Vektoren {(yk, Vi, Pk> Qi )}k>0- Damit
auch bei vielen Schritten der Speicherplatz nicht tiberhand nimmt, speichert man
nur die hdchstens letzten m Vektoren. Man erlaubt also ein “Gedichtnis” von m
Updates und ersetzt die unbekannte Matrix Hy_,,, durch Hy. Man spricht von
einem Limited-Memory-Quasi-Newton-Verfahren. ¢

4.5 Nichtlineares CG-Verfahren

In Anlehnung an das CG-Verfahren aus Abschnitt 2.3 ist das nichtlineare CG-Verfahren
zur Losung von nichtlinearen Optimierungsproblemen f(x) — min definiert.

Algorithmus 4.13 (Nichtlineares CG-Verfahren)
input:  Funktion f : R” — R und Startniherung x, € R"
output:  Folge von Iterierten {Xy }ken

@ Initialisierung: setze dy = =V f(%x¢) und k :=0
@ lose

o ~ argmin f(x; + ady)
a€R

® berechne

Xip1 0= Xk + ogdy

_ ”vf(karl)"% d vf(XkH)T{vf(XkH) - vf(Xk)}

ﬂk = oder
IV f(xl3 IV f(xl3
- -
Verfahren von Fletcher und Reeves Verfahren von Polak und Ribiére

dist 1= =V f(Xer1) + Prdi
@ erhshe k := k + 1 und gehe nach @

Bemerkung Ist f(x) = %XTAX —bTx + ¢ eine quadratische Funktion, dann fallen
bei exakter Minimierung in @ sowohl das Verfahren von Fletcher und Reeves als auch
das Verfahren von Polak und Ribiére mit dem CG-Verfahren zusammen. Ersteres folgt
aus Vf(xr) = Axg — b = —1y, zweiteres aus V f (%) TV f(Xk11) = 11511 = 0. ¢
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Lemma 4.14 Die Funktion f : D C R" — R sei gleichmafig konvex. Weiter sei f
differenzierbar mit Lipschitz-stetigem Gradienten:

IVf(x) =Vl < Lix—yl. fiir allex,y € D.

Dann gilt fiir das Verfahren von Polak und Ribiére bei exakter Liniensuche in @

U
L) > L1
Beweis. Bei exakter Liniensuche gilt im k-ten Schritt des Verfahrens von Polak und
Ribiére
0= Vf(X[ + a[d[)Td[ = Vf(X[Jrl)Td[ fiir alle £ < k. (410)

Daher kénnen wir den Nenner in

_ V(K1) ™V f (Xper1) — VI (x)}
IV f(xoll3

folgendemaBen umformen:

V&I, = (Be-1dis — dO)™V (i)
(4.10)

=" —d{Vf(x)

= —i(Xk_H — Xk)va(Xk)'
(243

Pr

Die gleichmiBigen Konvexitit impliziert

—(Xk1 — X))V F(xi) > plxirs — xel3 + Fxe) — f(Keer1) > plxiss — x5,
—
>0

das heiB3t
2 1 2
IVf(xlz > ;kﬂ||xk+1 — Xi5-

Mit Hilfe der Lipschitz-Bedingung erhalten wir daraus

L ||Vf(Xk+1)||2||Xk+1 — Xkl _ L ||Vf(xk+1)||2
Bil < —a 3 ==
p IXes1 — xll3 g dele
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Dies fiihrt auf

L
lderls < 19 fGeeslo + Belldels < <1 ; u)nmxkﬂ)uz,

woraus dann die Behauptung folgt

GV Ga) Y Bken) — Bedid TV f (Risn)
ldksal2IV f (ks )2 ldksal2lV f (ks )2
@10 IVFGee)l
Mkl Vf Goies )l

> F -
pu+L

Bemerkung Die geometrische Interpretation von Lemma 4.14 ist, dass beim Verfah-
ten von Polak und Ribiére die Suchrichtung dy und die Richtung des steilsten Abstiegs
—V f(x) stets den Winkel 8 mit cos @ > p1/(u + L) einschlieBen. ¢

Satz 4.15 Die Funktion f : D C R" — R sei gleichmdfig konvex. Weiter sei f differen-
zierbar mit Lipschitz-stetigem Gradienten:

IVf&) = Vil < Lix—yl: firallex,y € D.

Dann konvergiert das Verfahren von Polak und Ribiére mit exakter Liniensuche in @ fiir beliebige
Startniherungen Xo € D gegen das eindeutige globale Minimum x* und es gilt

. Iy . _
fr) — f(X) < <1_LZ(;1+L)2){f(Xk)_f(X )}, k=1,2,...

Beweis. Aufgrund der Minimierungsbedingung gilt fiir einy > 0

Fxks1) < f(xp +ydy)
= f(xp) + }’/0 VF(xx + ytdi)Tdy dt

= f(x) + YV (x)Tdy + }’/0 {Vf(xi +ytdi) = Vf(x) } dic dt
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und daher

F &) < f(x0) +yVf(x)Tdie +y A IV Gxic + ytdi) + VOl iz dt

<tyL|dgl.
< FO) + Y VFC) Ay + 1Al
Fiir die Wahl
L Vf(x)Tdk
Lidgl3
folgern wir mit Lemma 4.14
7d,.)?
1)~ ) < ) = o) = LT
< J00) = [0 = 5pe 196 = A I

=0
Aus der gleichmiBigen Konvexitit ergibt sich
plxe = x5 < {VF i) = V() } o = x7) < IVFGa) = V) ol = x|z,

wihrend die Lipschitz-Stetigkeit impliziert

fox) = £6) = [ 9+ = 0x) s =x)d < Sl =xTE

Setzen wir diese beiden Abschitzungen in die obige ein, so erhalten wir das Behauptete.
L3

Bemerkungen

1. Das Verfahren von Polak und Ribiére konvergiert im allgemeinen schneller als
das Verfahren von Fletcher und Reeves.

2. In der Praxis verwendet man Restarts: Wird der Winkel zwischen dem Antigra-
dienten und der Suchrichtung zu groB, etwa

Vf(xp)Tdk
IV f (xll2Idill2

fiir kleines y € (0, 1), dann startet das Verfahren durch einen Gradientenschritt
neu. ¢
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4.6 Modifiziertes Verfahren von Polak und Ribiére

Nichtlineare CG-Verfahren fallen, wie auch das BFGS-Verfahren, im Fall einer konve-
xen quadratischen Funktion mit dem CG-Verfahren zusammen. Allerdings sind die
Quasi-Newton-Verfahren robuster hinsichtlich der Schrittweitensteuerung. Die nicht-
linearen CG-Verfahren funktionieren umso besser, je genauer die Liniensuche in @
von Algorithmus 4.13 durchgefiihrt wird. Eine direkt zu implementierende Schrittwei-
tensteuerung stellen wir im folgenden modifizierten Verfahren von Polak und Ribiére
vor.

Algorithmus 4.16 (modifiziertes Verfahren von Polak und Ribiere)
input:  Funktion f : R” — R und Startniherung x, € R"
output: Folge von Iterierten {Xj }ken

@ Initialisierung: wihle o € (0,1),0 <y <1 <y undsetze dy = =V f(xo), k := 0
@ setze

(GO
IdiJ3

® berechne

Xis1 = Xk + ogdy
B = Vf (ke ) TV f (k1) = Vi (x0)}
7 FGel
dk+1 = —Vf(Xk+1) + ﬁkdk

@ ist eine der Bedingungen

1) < f(xi) — oo |dil3 (4.11)
—7||Vf(xk+1)||§ SV f(x41)Tdiss < _K”vf(xk+1)||§ (4.12)

verletzt, dann halbiere ) und gehe nach ®

® ist Vf(Xxt1) # 0, dann erhdhe k := k + 1 und gehe nach @

Lemma4.17 Ist f : R" — R stetig differenzierbar, so ist Algorithmus 4.16 wohldefiniert.
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Beweis. Wir bemerken zunichst, dass stets dp # 0 ist und somit der Faktor ¢ in
@ existiert. Wire nimlich di = 0 fiir ein k € Ny, so wiirde aus @ im Fall k = 0
beziehungsweise aus (4.12) im Fall k > 0 sofort V f(x;) = 0 folgen.

Es ist also nur zu zeigen, dass die Liniensuche @—® in jedem Iterationschritt k € Ny
erfolgreich ist. Zu diesem Zweck nehmen wir an, dass k € N ein fester Iterationsindex
mit V f(x;)Tdg < 0 ist. Als erstes stellen wir fest, dass die Bedingung (4.11) wegen

F&i + adi) = f(xi) + oV f(xp)Tdg + o(a)
nach endlich vielen erfolglosen Schritten der Liniensuche immer erfiillt ist.

Als nichstes zeigen wir, dass die Bedingung (4.12) ebenfalls nach endlich vielen erfolg-
losen Schritten stets erfiillt ist. Denn angenommen, dem ist nicht so. Dann gibt es eine
Teilfolge {k¢}ro, so dass fiir jedes

e, IV f(xi)Tdy |

v» tEN
|l

Ve =Xi +2

zumindest eine der beiden Bedingungen

VGV y) ~ Vb
IV f (x5

Vi)™ {Vf(ye) — Vf(xe)} d
IV f (x5

erfiillt ist. Der Grenziibergang £ — oo liefert y, — x; und folglich gilt
—IVfGOI, 2 —y VGOl oder  —IVf&xI; < —FIVF L.

Aus 0 < y < 1 < y folgt dann aber [Vf(x¢)[. = 0 im Widerspruch zu unserer
Voraussetzung V f (x;)7dy < 0.

w(ym{ vy + k} > VoL,

vf (yf)T{ —Vflyo) + k} <TIVFyol

Damit ist gezeigt, dass Algorithmus 4.16 wohldefiniert ist, sofern die Abstiegsbedingung
Vf(xx)Tdi < 0 fiir alle k € Ny erfiillt ist. Fiir k = 0 gilt sie aber nach Definition von
dy und fiir k > 0 folgt sie dann aus Bedingung (4.12). o

Lemma4.18 Essei D C R" eine offene, beschrinkte und konvexe Menge, in der f stetig
differenzierbar, nach unten beschrinkt und V f zudem Lipschitz-stetig ist. Ferner sei neben X,
auch die gesamte Niveaumenge N : = {x € R" : f(x) < f(X0)} in D enthalten. Dann gelten
die folgenden Aussagen:
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(i.) Alle Iterierten Xy liegen in der Niveaumenge N.
(ii.) Die Folge { f(Xx)}ken ist konvergent.
(iii.) Es gilt limg o0 O{k"dk"z =0.

(iv.) Es ist ai|di]3 < yc?, wobei ¢ < oo eine obere Schranke von |V f(x)|; auf der Niveau-
menge N sei.

(v.) Es existiert eine Konstante 6 > 0 mit

IV f (x)Tdi|

o >0
Ikl

fiir alle k € Ny.

Beweis.

(i.) Diese Aussage ergibt sich unmittelbar aus der Bedingung (4.11).

(ii.) Die Folge { f(Xk)}ken ist streng monoton fallend und aufgrund der Voraussetzung
nach unten beschrinkt. Hieraus ergibt sich das Behauptete.

(iii.) Aus (4.11) folgt
oapldil; < fG) = f(xkar)

fiir alle k € Ny. Der Grenziibergang k — oo liefert daher unter Beriicksichtigung
der schon bewiesenen Aussage (ii.) die Behauptung.

(iv.) Aus den Schritten @—® von Algorithmus 4.16 folgt

IV (i) T |

Ofk”dk“% < "dk"2
2

ldil; < 7IVFGol; < 7e?

fiir alle k € N,.

(v.) Zum Nachweis dieser Aussage fiithren wir eine Fallunterscheidung durch.
Fall 1: o = [V f ()T | /1 diel-
Dann ist offensichtlich

Vf (xi) T dil

2> 413
N PN (4.13)
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Fall 2: o < |V £(x)Td|/[di.

Dann verletzt die Schrittweite 2a; zumindest eine der Bedingungen in @. Der
Punkt z; := x¢ + 2axdy geniigt also (4.11) oder (4.12) nicht. Nach Aussage (iii.)
existiert ein K € N, so dass zx € D fiir alle k > K. Im folgenden zeigen wir
Aussage (v.) zunichst nur fiir solche k.

Fall 2A: Der Punkt z; € D verletzt (4.11).
Dann gilt

() > fxi) — oo )?|di - (4.14)

Aufgrund des Mittelwertsatzes existiert ein & auf der Verbindungsstrecke von
Xy und zg, so dass

(@) = f&xi) + V(€T (zk —xi) = f(xi) + 20,V f(§)Tde.  (4.15)
Aus (4.14) und (4.15) folgt daher

Fxi) + 200V (i) Ty + 200 { V(&) Tdi — VF (x)Tdc }
> f(xx) — 02 [de -

Aus der Lipschitz-Stetigkeit von V f in D ergibt sich

204V f(x)Tdk + 20, L & — xkl2 [dilz > —o(205)° | dic]3-
[—
<20 | di]

Dies liefert unmittelbar

1 [Vf(xi)Tdgl

20+0) Il (4.16)

ax 2

Fall 2B: Der Punkt z; € D verletzt die linke Ungleichung in (4.12).
‘Wegen

Vf(zi)™{V f(zi) — Vf(x)} d
IV f(xi)l

ergibt sich mit Hilfe der Cauchy-Schwarzschen Ungleichung

_ 2 2V f(z) = VF(xp)l2
IVf(zolz = 1V (zo)lz VOl

Vf(Zk)T{ —Vf(z) + k} < —VIVf(zol;

ldil> < 71V £ (20l
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das heifB3t, es ist

IVf(ze) = Vil
IV £ ol

Aus der Lipschitz-Stetigkeit von V f und der Tatsache, dass die Schrittweite oy

der Bedingung (4.12) geniigt, folgt daher nach kurzer Rechnung

T — DIVFxOl; Sr-1 IV f (i) T
2L| d3 T2yl |del3

1+

Idil, > 7.

o 2> (4.17)

Fall 2C: Der Punkt z; € D verletzt die linke Ungleichung in (4.12). Es ist
VIV f(z) - Vf(xi}
2
IV f Gl
Analog zum Fall 2B erhilt man hieraus

L=y |Vf(xe)Tdy
2L |del3

Vf(Zk)T{ —Vf(z) + k} > —yIVf (ol

(4.18)

Wegen (4.13), (4.16), (4.17), (4.18) folgt Aussage (v.) mit

. 1 y—11-y
"2(L+0) 2yL’ 2yL )’

0 ::min{

und zwar zunichst fiir alle k > K. Da nur endlich viele k tibrigbleiben, folgt
Aussage (v.) nach eventueller Verkleinerung von 8 aber auch fiir alle k € Np. &

Satz 4.19  Unter den Voraussetzungen von Lemma 4.18 gilt fiir die Iterierten {Xy }x>o des
modifizierten Verfahren von Polak und Ribiére

V() =S o.

Beweis. Angenommen, die Aussage des Satzes ist falsch. Dann existieren ein ¢ > 0
und eine Teilfolge {x,}, so dass

IVf(i-1l2 > €

fiir alle £ € N. Aus der Aufdatierungsvorschrift fiir di, und Lemma 4.18 (iv.) folgt dann

IV Gl Vf Ck) = V.f Okl L
4 i . d ) S e
IV £ G-I el < c+7—

ldel2 < IV Gl +
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fiir alle £ € N. Zusammen mit Lemma 4.18 (iii.) ergibt sich hieraus

lim oy [dy, [ = 0
f—00

und weiter aus Lemma 4.18 (v.)
lim [V (x)Tdg| = 0.

Die rechte Ungleichung in (4.12) liefert daher
tim |9£ e )l = 0.

Weil nach Lemma 4.18 (iii.) gilt

lim [x¢, — Xg,—1]2 = lim ag,—1[dg,—1]2 = 0,
f—o00 f—o00

schlieBen wir

IV G-l < IV F&xi) = Vi G-l + IV f (i)l
< Llxk, = Xe-1l2 + IV (xe )l

{—o00
— O

Dies steht aber im Widerspruch zur Annahme, dass {|V f (xx,-1)[2}¢>0 nicht nach Null
konvergiert. Ao

4.7 Projiziertes Gradientenverfahren

Bislang haben wir uns mit gradientenbasierten Verfahren fiir Optimierungsprobleme
ohne Nebenbedingung beschiftigt. In diesem Abschnitt wollen wir nun die Situation
einer vorgegebenen Nebenbedingung in Betracht ziehen. Dazu seien f : R" — R eine
stetig differenzierbare Funktion und K C R" eine abgeschlossene und konvexe Menge.
Wir betrachten folgendes Optimierungsproblem unter Nebenbedingungen

minimiere f(x) unter der Nebenbedingung x € K. (4.19)

Da das Minimum auch auf dem Rand von K liegen kann, lautet im Fall von (4.19) die
notwendige Optimalititsbedingung fiir ein Minimum x* € K

VF(x)T(x—x") > 0 fiiralle x € K. (4.20)

Grundlage des projizierten Gradientenverfahrens ist die orthogonale Projektion auf die
zulissige Menge.
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Definition 4.20 Essei K C R” eine abgeschlossene, konvexe Menge. Dann ist die
orthogonale Projektion Py : R" — K definiert durch die Bedingung

Py (x) — x|, = min |y — x[..
IPx(x) — x| I;lellplly x|

Der Punkt Px(x) € K besitzt also die Eigenschaft, den kiirzesten Abstand zu einem
gegebenen Punkt x € R” zu besitzen.

Die Grundversion des projizierten Gradientenverfahren ist im folgenden Algorithmus
beschrieben:

Algorithmus 4.21 (projiziertes Gradientenverfahren)
input:  Funktion f : R” — R, konvexe zulissige Menge K C R"” und
Startniherung x, € K
output:  Folge von Iterierten {Xj }ken

@ Initialisierung: wihle o € (0, 1) und setze k := 0

@ berechne den Antigradienten dy := —V f(x;) und setze ) :=1
® solange
f(PK(Xk F akdk)) > f(Xk) - O'd].cr (PK(Xk aF (Xkdk) - Xk) (4.21)

setze o = Qi /2
@ setze Xpy1 = Pr(xx + apdy)

® erhdhe k := k + 1 und gehe nach @

Fiir den Fall der Minimierung ohne Nebenbedingungen, das heiit K = R", stellt obiger
Algorithmus das klassische Gradientverfahren dar. Insbesondere geht die Bedingung an
die Reduktion des Funktionals iiber in die Armijo-Goldstein-Bedingung

fGan) < f&x) = ol VOl

Man kann zeigen, dass fiir das projizierte Gradientenverfahren ein o > 0 existiert, fiir
das die Reduktionsbedingung erfiillt ist.
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Lemma 4.22  Die orthogonale Projektion Pk besitzt die folgenden Eigenschaften:
(i.) Es gilt (PK(X) - x)T (PK(x) — y) <O0firallex e R",y € K.

(ii.) Es gilt (Px(y) — Px(x))"(y — %) > [Px(y) — Px(®)I% > 0 fiir alle x,y € R", das
heift, P ist monoton.

(iii.) Es gilt |Px(y) — Px(x)|2 < |y — x| fiir alle x,y € R", das heifit, Pg ist nicht
expandierend.

Beweis. (i.) Wegen der Konvexitit folgt ausy € K auchy := (1 —t)Px(x) + ty € K
fur alle t € [0, 1]. Aus

[y =I5 = Iy = Px(x) + P(x) — xl
= [y = Pl + IPx(x) = xl = 2(Px () = %) (Px(x) — 7)
folgt aufgrund der Minimierungseigenschaft von P, dass
15 = Px(l; — 2(Px(x) = x) " (Pe(x) = §) = IF = xI; - [Px(x) — xI3 > 0.
Einsetzen von Pg(x) — y = t(PK(X) - y) fithrt auf

t*ly = Px()l; - 2t (Px(x) — x) " (Px(x) ~y) > 0.
was fiir t — 0 die gewiinschte Aussage liefert.
(ii.) Die bereits bewiesene Aussage (i.) impliziert

(Pr(x) - X)T (Px(x) — Px(y)) <0,

(Px(y) —y)" (Px(y) — Px(x)) <.
Zusammen fiihrt dies auf

(Px(y)—y+x— PK(X))T (Px(y) — Px(x)) <0,
das ist Aussage (ii.).

(iii.) Diese Aussage folgt sofort aus Aussage (ii.) durch Anwenden der Cauchy-Schwarz-
schen Ungleichung. o

Bemerkung Aus der Monotonieeigenschaft (ii.) folgt wegen x; = Px(xy) fiir die
neue Iterierte Xgq = Px (xk —oVf (xk)) des projizierten Gradientenverfahrens, dass

I — Xell5 < (Rer — %) T (ke — oV F(x5) — X ).
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Wir erhalten daher
1
—Vf(xk)T(Xkﬂ —Xi) > ;k||xk+1 - Xk";- (4.22)

Dies bedeutet, dass durch die Abstiegsbedingung (4.21) des Algorithmus 4.21 tatsichlich
f(Xk+1) < f(xg) erreicht wird. ¢
Lemma 4.23  Fiir beliebige x € R" und d € R" ist die Funktion

o - PPl ad) —xls

o

fiir alle & > 0 monoton fallend.

Beweis. (i.) Fiir 0 < a < f3 setzen wir
u:=Px(x+ad)—x, v:=Pg(x+pd)—x

und erhalten unter Verwendung von Lemma 4.22 (i.)

u(u—v) = {Px(x+ ad) — (x + ad) + ad}T{Px(x + ad) — Px(x + d)}
< ad™{Pg(x + ad) — Px(x + fd)}

und analog
vi(v—u) < fdT{Px(x + fd) — Px(x + ad)}.
Zusammen ergibt dies

uT(u—v) < vi(u—v)

s ST (4.23)

(ii.) Weiter erhalten wir mit Lemma 4.22 (ii.)

u'(u —v) < ad™{Px(x + ad) — Px(x + fd)}
o

=5 a(ad — f)T{Px(x + fd) — Px(x + ad)}
< -2 |Px(x + d) — Py(x + ad)|?
f—a

<0.
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Aus der Cauchy-Schwarzschen Ungleichung ergibt sich
uTv(ulz + [vl2) < ul[vlz(lulz + [vl2),
woraus
[ulovT(u = v) = [ulo(u™v = vI3) < [Vlz(ful; —u™v) = [vl;u™(w—-v) (4.24)

folgt.
(iii.) Wir unterscheiden nun zwei Fille: Fiir uT(u—v) = 0 gilt Py (x+ad) = Px(x+fd)

und somit u = v. Hieraus folgt unmittelbar auch

o) = 2 > I i)

Fiir den Fall u™(u — v) < 0 folgt aus (4.23)
p_vi—v)

a uT(u—v)
und aus (4.24)

vi(u—v)
uT(u—v)

Kombiniert man diese zwei Ungleichungen, so erhilt man wieder

[vlz < lul

[ulz v

o= "0 2 T = p(h). A

Satz 4.24 Die Funktion f : R" — R sei auf K stetig differenzierbar und nach unten
beschrinkt. Weiter sei V f auf K gleichmdfig stetig. Dann gilt fiir die Iterierten {Xy }ren des
projizierten Gradientenverfahrens

1i Ik1 — Xkl
m ——
k—oco [04%

= 0.
Beweis. 'Wir fiithren einen Widerspruchsbeweis. Angenommen, es existiert zu jedem
¢ > 0 eine unendliche Teilfolge {k/}sen, so dass

”Xk(+1 — Xk, ”2
Q.

> €

t
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Dann gilt insbesondere auch

||Xk(+1 - Xk(”%
B > e max{ea,, [Xi,+1 — Xk, l2}- (4.25)
ke

Da die Folge { f(x,)}sen monoton fallend und nach unten beschrinkt ist, folgt aus der
Abstiegsbedingung (4.21) des projizierten Gradientenverfahrens

}gg V f (xk, )T (Xkep+1 — Xx,) = 0,
was wiederum gemil (4.22)

lim ”karl - inllg
f—o00 (Zk

=0 (4.26)

£

nach sich zieht. Aufgrund von (4.25) erhalten wir hieraus
}im ar, =0 und {hm Ixx,+1 — Xk, |2 = 0.

Fir yi,41 = Prx(xx, + 2ak,dx,) gilt aufgrund der algorithmischen Umsetzung des
projizierten Gradientenverfahrens

Fre1) > f&x,) + oV F(xk)T(Yk1 — Xk,

also auch

F&k) = f(yrer1) < oV f (%) Xk, = Yiep1)- (4.27)
Aus Lemma 4.23 folgt

%41 — X, I3 k1 — Xl
e nd > ||Xk[+1 - ng”ziﬁ -
ak[ 20(]([
||Yk 1= X[z £
>eop, " = — — Xt llo.
2 ey, T =y =i

Weiter ergibt sich mit Lemma 4.22 (ii.)

1 — %) T Xk, — e, V(i) = Xk, } 2 [Xiepr — X 5,

=—ay,V f (Xx,)
ko1 = Xer)T{ Xk, — 200,V f(x0,) — (x5, — o, Vf(x1,)) } > 0.

=—ay,V f(xx,)
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Zusammen fiihrt dies auf

Xk, = Vi 1) TV (k) > (X, = Xiepr1) TV f(Xk,)
||Xk(+1 - Xh”%

Qk,

£
> 5||Yk(+1 = Xk, |-

Speziell ergibt sich wegen (4.26) auch |yx,+1 — X, |2 — 0 fiir £ — 0. Die gleichmiBige
Stetigkeit von V f impliziert daher

o fGk) = fre) |- olyken — X l2)
(k= V)TV Gk )| Rk, = Yre) TV f (k)
2 o(lykee1 — X, l2)
T xk = el

{—o0
— 0

Dies steht jedoch im Widerspruch zu der aus (4.27) folgenden Abschitzung

f(Xk() - f(Yk;H)
Xk, = Yi+1)TVf(xk,)

Bemerkung Da o < 1 ist, folgt aus Satz 4.24 |x)11 — Xk[2 — 0 fiir k — oo, ¢

<o <1 )

Definition 4.25 Eine Menge C C R" heil}t Kegel, wenn aus x € C auch Ax € C folgt
fiir alle A > 0. Der Tangentialkegel Tp(x) von der Menge D C R" an einen Punkt
x € D ist der kleinste abgeschlossene Kegel, der die Menge

M:={d=y—x:yeD}
enthilt.

Bemerkung Essei x € K und {yxlen C K \ {x} eine Folge mit limy_,. yx = Xx.
Dann ist

d = lim Ve~ X
k=0 [y — X[z

offenbar im Tangentialkegel Tk (x) enthalten. Die Richtung d wird Grenzrichtung der
Folge genannt. Umgekehrt gibt es zu jedem d € Ti(x) mit |d|, = 1 eine Folge



104 4 NICHTLINEARE OPTIMIERUNG

{¥i}ken C K derart, dass

d=lim Y£— X
koo [y — x|z

Der Tangentialkegel enthilt also gerade die Grenzrichtungen von allen Folgen

und ]lim Vi = X. (4.28)

{Vitken C K\ {x} mit %im Vi = X.
Insbesondere ist der Tangentialkegel konvex, weil K konvex ist. ¢

Lemma 4.26  Fiir jeden Punkt x € K erfiillt die orthogonale Projektion Pr, ) ( — Vf(x))
der Richtung des steilsten Abstiegs auf den Tangentialkegel T (x) die folgenden Eigenschaften:

(i.) Es gilt
Vf(X)TPTK(x)( - Vf(X)) = _||PTK(X)( - Vf(X)) ”2
(ii.) Es ist

min{Vf(x)7d : d € Tx(x), |d||2 <1}= —||PTK(X)( - Vf(x))"2

(iii.) Der Punkt X ist genau dann ein stationdrer Punkt des Minimierungsproblems mit Neben-
bedingungen (4.19), wenn PTK(X)( — Vf(x)) = 0.

Beweis. (i.) Nach Definition der Orthogonalprojektion besitzt die Funktion

£ = S APr o~ V() + VGO
ein Minimum bei A = 1. Daher gilt

&) = [Pr (= V@), + V() Prw (- V() =o.
(ii.) Wegen Aussage (i.) gilt

[Prico (= V1 G0) + VFGOf; = VSOl = [Proco (= VfGO)

Fiiralle d € Tx(x) mit||d|, < ||PTK(X) ( —Vf (X)) ||2 gilt nach Definition der orthogonalen
Projektion

[Preco (= VA®) + VA, < Id+ V|2
< Preco (= V)2 + 29 f)Td + [VFOI2.
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Zusammen ergibt dies
Vf(OTd 2 ~[Pro( ~ V).

Das Behauptete erhilt man, indem man d= d/ ||PTK(X)( —-Vf (x)) ”2 setzt.

(iii.) Definitionsgemil ist x € K genau dann ein stationirer Punkt, wenn
V()T (y %) > 0

fiir alle y € K ist. Dies ist gleichbedeutend damit, dass V f(x)Td > 0 fiir alle d € Tx(x)
ist. Aussage (ii.) impliziert, dass dies genau dann der Fall ist, wenn PTK(X)( —Vf (x)) =0
erfiillt ist. A

Bemerkung Ist PTK(X)( - Vf(x)) # 0, so kann Aussage (ii.) des obigen Lemmas auch
als

= —|Pro (- V)], (4.29)

geschrieben werden, denn das Minimum wird fiir |d|, = 1 angenommen. ¢

Satz 4.27 Die Funktion f : R" — R sei auf K stetig differenzierbar und nach unten
beschrinkt. Weiter sei V f auf K gleichmdfig stetig. Dann gilt fiir die Iterierten {Xy }ren des
projizierten Gradientenverfahrens

I}l_glo Pro (= Vf(x0)) = 0.

Beweis. Zu beliebigen & > 0 gibt es nach Lemma 4.26 (ii.) zu jeder Iterierten xi ein
d; € Tx(x¢) mit |dg|, = 1, so dass

Vx0T dk < ~[Proo (= V)|, + ¢ (4.30)

gilt. Da d. Grenzrichtung einer zulissigen Folge ist, gibt es ein y; € K mit

<e.

H Vi — Xk
lye —xel2

Aus Lemma 4.22 (i.) folgt
{ %1 — (xx — eV f(xi)) } (Kieot — yier1)
= {Px(xx — axVf(x0)) — (% — aVf(x0)) }'
{Px (3 — eV f(xx)) = yrs1 } <0,

2
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was auf
oV (%) T (Kpr1 = Y1) < [Xerr — Xelz X1 = Yol
beziehungsweise

_Vf(xk)T(ka — Xk41) I%k+1 — X2

”Xk+1 - Yk+1||2 (043

fiihrt. Insgesamt erhalten wir deshalb

Vir1 — Xk41 V)T (Vi1 — Xks1)
V() Tder < [VFx)I2 T T dy | — U i
||Yk+1 - Xk+1||2 2 ||Yk+1 - Xk+1||2
||Xk+1 - Xk”z

< eVl +

Die Kombination mit (4.30) ergibt

||PTK(Xk+l)( - vf(xk+1)) ||2
<V (xps1)Tdps + €
< V&) i + IV es) = V&2 [diesalz +e
———
=1

IXk+1 — X2
< eVl + ————— . + [V (%ks1) = V]2 + &
k

Weil ¢ > 0 beliebig war, folgt hieraus schlieflich

lim [Pr, ) (= V(i)

X, — X
< lim ” k+1 k||2

k—oo

+ lim |V () ~ VS0l = 0
wobei Satz 4.24 und die gleichmiBige Stetigkeit von V f zur Anwendung kommt. &

In der Regel folgt aus der Stetigkeit von V f nicht, dass auch PTK(X)( -Vf (X)) stetig ist.
Um sicherzustellen, dass die Iterierten des projizierten Gradientenverfahrens tatsichlich
gegen einen stationiren Punkt konvergieren, bendtigen wir daher das folgende Resultat.
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Satz 4.28 Die Funktion f : R" — R sei auf K stetig differenzierbar. Dann folgt fiir jede
Folge {Xidken C K mitx > x* €K

[Pricery (= V)], < liminf [Pr ) (= VF(x0))

Beweis. Aus Lemma 4.26 (ii.) folgt fiir jedes y € K
—Vf(x)T(y = x¢) < [Prec (= V&) |,y — xxle
woraus sich fiir k — oo die Ungleichung

~VFGENy ~x) < limin [Py e ( — V£ Ga) Ly — Xl

ergibt. Zu jedem d € Tx(x*) mit |d|, = 1 lisst sich eine Folge {y}ren aus K derart
finden, dass

d=1lim Y*~*_ und lim Vi =X
koo [y — x*2 k—vca

Somit erhalten wir
~Vf(x)Td < liminf [Pr, ) (— V£ x0)

und daraus wegen (4.29) die Behauptung:

[P (= VFxD)|, = max{-Vf(x")Td : d € Tx(x"), |dl. = 1}
< llilllol;lf ”PTK(Xk)( - Vf(xk)) “2 o

Bemerkung Die Kombination der Sitze 4.24, 4.27 und 4.28 liefert die folgende
Aussage: Ist die zulissige Menge K C R” konvex und abgeschlossen und ist die Funktion
f + R" - RaufK stetig differenzierbar mit gleichmiBig stetigem Gradienten und nach
unten beschrinkt, dann gilt fiir jeden Hiufungspunkt x* € K der Iterierten {X Jxen des
projizierten Gradientenverfahrens 4.21

Prey (= V(X)) = 0.

Gemil Lemma 4.26 (iii.) bedeutet dies, dass x* ein stationirer Punkt ist. ¢
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