Aufgabenblatt 10

Wenn Sie sich für das Niveau A der Übungen entschieden haben, brauchen Sie nur die ersten drei Aufgaben zu bearbeiten.

Aufgabe 1. (Kettenregel) Sei $f(x,y,z) = ye^x - \ln(z^2)$ für $x,y,z \in \mathbb{R}$, z > 0, und $\gamma(t) = (\ln(t^2+1), \arctan(t^2), e^t)$ für $t \in \mathbb{R}$. Berechnen Sie die Ableitung von $f \circ \gamma$ auf zwei Arten, einerseits mit der Kettenregel und andererseits, indem Sie $f \circ \gamma$ explizit als Funktion von t schreiben und direkt nach t ableiten. (3 Punkte)

Aufgabe 2. (Lokale Extrema) Berechnen Sie für die folgenden Funktionen jeweils die kritischen Punkte und entscheiden Sie anhand der Hessematrix, ob es sich um lokale Maxima, Minima oder Sattelpunkte handelt.

(a)
$$f(x,y) = -x^3 + \frac{3}{2}x^2 - y^2$$
 für $x, y \in \mathbb{R}$.

(b)
$$f(x,y) = \cos(\pi \cdot xy) + (x+1)^2$$
 für $-2 < x, y < 2$.

(c)
$$f(x,y) = (x^2y - x - 1)^2 + (x^2 - 1)^2$$
 für $x, y \in \mathbb{R}$. (6 Punkte)

Aufgabe 3. (Optimale Verpackung) Ein Obsthändler bestellt Kisten zu je 16/3 Liter für die Verpackung von Erdbeeren. Nehmen wir an, die Herstellungskosten einer Kiste der Breite x, der Länge y und der Höhe z betragen

$$f(x, y, z) = xy + 2xz + 2yz + (3/2)(x^2 + y^2 + 2z^2).$$

Wie muss der Hersteller die Werte x,y,z wählen, damit die Herstellungskosten möglichst gering sind?

Hinweis: Eliminieren Sie zunächst z mithilfe der Volumenangabe. (5 Punkte)

Aufgabe 4. (Taylorentwicklung) Die Taylorentwicklung zweiten Grades einer zweimal stetig partiell differenzierbaren Funktion $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ an einer Stelle $p \in D$ ist definiert als:

$$f(p+tv) = f(p) + t\langle \nabla(f)(p), v \rangle + \frac{t^2}{2} v^T H_f(p) v + t^2 R(v) ,$$

wobei v = (x, y) ein Richtungsvektor der Länge 1, t ein genügend kleiner reeller Parameter und R(v) der Restterm ist. Berechnen Sie die Taylorentwicklung um den Nullpunkt der folgenden Funktionen:

(a)
$$f(x,y) = 4 + (x^2 + 1)y - (x + y)^2$$
; (b) $f(x,y) = x e^{-(x^2 + y^2)}$. (3 Punkte)

Aufgabe 5. (Zweite Ableitungen) Rechnen Sie nach, dass die Funktion, definiert durch

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

im Nullpunkt zweimal partiell differenzierbar ist, aber $\partial_x \partial_y f(0,0) \neq \partial_y \partial_x f(0,0)$ ist. Welche der zweiten Ableitungen ist im Nullpunkt nicht stetig? (3 Punkte)

Abgabe: Ausnahmsweise Mittwoch, den 9. Mai 2018, bis 17 Uhr im Fachbereich Mathematik an der Spiegelgasse 1.