Aufgabenblatt 11

Aufgabe 1. (Fouriertransformation) Die Laplacegleichung für die obere Halbebene lautet $\partial_x^2 u(x,y) + \partial_y^2 u(x,y) = 0$ $(x,y \in \mathbb{R}, y > 0)$. Sei $f \in \mathcal{L}^1(\mathbb{R})$ vorgegeben. Bestimmen Sie mithilfe der Fouriertransformation bezüglich der Variablen x eine Lösung u dieser Gleichung, die ausserdem folgende Randbedingungen erfüllt:

$$u(x,0) = f(x)$$
 für alle $x \in \mathbb{R}$ und $\lim_{|(x,y)| \to \infty} u(x,y) = 0$. (4 Punkte)

Aufgabe 2. (Potenzreihenansatz) Sei $\nu \geq 0$ vorgegeben. Bestimmen Sie eine analytische Lösung J_{ν} der Differentialgleichung

$$f''(x) + \frac{1}{x}f'(x) + (1 - \frac{\nu^2}{x^2})f(x) = 0 \quad (x > 0),$$

die in der Nähe von x=0 beschränkt bleibt, indem Sie den Potenzreihenansatz $f(x)=x^{\nu}(1+\sum_{k=1}^{\infty}a_kx^k)$ verwenden, und für die Koeffizienten a_k rekursive Bedingungen herleiten. Finden Sie dann eine explizite Beschreibung der a_k und überprüfen Sie, dass der Konvergenzradius Ihrer Reihe ∞ ist. (4 Punkte)

Aufgabe 3. (Nullstellen von Fundamentallösungen) Seien a < b gegeben und $f \in C^2([a,b],\mathbb{R})$ eine Lösung einer homogenen linearen Differentialgleichung zweiter Ordnung, wobei f nicht überall verschwinden soll. Begründen Sie, dass dann alle Nullstellen von f einfach sind (d.h. ist $f(x_0) = 0$, so ist $f'(x_0) \neq 0$) und sich nirgends häufen. (3 Punkte)

Aufgabe 4. (Nullstellenvergleichssatz) Für $u, v \in C^2([a, b], \mathbb{R})$ gelte

$$u''(x) = q(x) u(x)$$
 und $v''(x) = q_0(x) v(x)$ $\forall x \in [a, b]$.

Dabei seien q, q_0 stetige Funktionen auf [a, b] mit $q(x) < q_0(x)$ für alle x. Seien weiter $\alpha < \beta$ zwei aufeinanderfolgende Nullstellen von v, also $v(x) \neq 0$ für alle $x \in (\alpha, \beta)$. Beweisen Sie: u hat eine Nullstelle zwischen α und β .

Hinweis: Untersuchen Sie das Vorzeichen von W = uv' - u'v auf $[\alpha, \beta]$. (4 Punkte)

Aufgabe 5. (Besselfunktionen) Bezeichne J_{ν} die ν -te Besselfunktion (siehe Aufgabe 2).

(a) Rechnen Sie nach, dass die Funktion $u(x) = \sqrt{x} J_{\nu}(x)$ (für x > 0) folgende Differentialgleichung löst:

$$u''(x) = \left(\frac{\nu^2 - \frac{1}{4}}{x^2} - 1\right) u(x).$$

(b) Zeigen Sie mithilfe der in Aufgabe 3 und 4 formulierten Aussagen, dass die Besselfunktionen die in Bemerkung 4.4.1 aufgezählten Eigenschaften haben. (5 Punkte)

Abgabe: Donnerstag, den 17. Mai 2018, bis 12.30 Uhr im Fachbereich Mathematik an der Spiegelgasse 1.