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Kapitel 1

Differentialgleichungen

Viele verschiedene Phénomene lassen sich mathematisch durch sogenannte Differen-
tialgleichungen beschreiben, so zum Beispiel das Wachstum von Populationen, der
radioaktive Zerfall, die Bewegung von Massenpunkten oder Schwingungsvorgénge.
Schauen wir uns einige einfache Beispiele genauer an:

e Nehmen wir an, die Anzahl Geburten zum Zeitpunkt ¢ in einer bestimmten
Population sei proportional zur Anzahl der vorhandenen Individuen p(¢). Dann
ist also die Wachstumsrate %p(t) proportional zu p(t). Wenn wir alle iibrigen
Einfliisse auf die Population vernachlédssigen, konnen wir das Verhalten der
Funktion p(t) durch die Gleichung

p(t) = Ap(t)

beschreiben, wobei die Konstante A > 0 die Geburtenrate ist. Die Losung
dieser Gleichung lautet
p(t)=c-eM Vt>0.

Hier gibt ¢ = p(0) die Grosse der Population zum Zeitpunkt ¢ = 0 an. Man
spricht hier von exponentiellem Wachstum der Population.

e Beziehen wir auch die Sterberate p > 0 in das Populationsmodell mit ein,
kommen wir auf die Differentialgleichung

p(t) = (A= wp(t).
Die Losung dieser Gleichung lautet
p(t) = p(0) e Mt vt >0,

In diesem Modell kann die Population also nur dann stabil bleiben, wenn die
Geburtenrate und die Sterberate miteinander iibereinstimmen. Ist die Gebur-
tenrate grosser, gibt es ein exponentielles Wachstum, ist die Sterberate grosser,
nimmt die Population exponentiell ab.

e Der Zerfall von radioaktivem Material wird durch eine Gleichung von folgen-
dem Typ beschrieben:

P(t) = =Ap(t) (t=0).

Dabei gibt ¢(t) die Menge des Materials zum Zeitpunkt ¢ und A > 0 die
Zerfallsrate an. Die Gleichung bedeutet, dass in jedem beliebigen Moment der
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durch X\ festgelegte Anteil des zu diesem Zeitpunkt vorhandenen Materials
zerfillt.

Die Losung der Gleichung lautet
o) =c-e™ (13 0),
wobei ¢ = p(0) die Ausgangsmenge des Materials zum Zeitpunkt ¢t = 0 angibt.

Die Newtonsche Bewegungsgleichung fiir einen Massenpunkt der Masse m lau-
tet “Kraft=Masse mal Beschleunigung”

Ft)y=m-a(t)=m-s"(t) (teR),

wobei die Beschleunigung a durch die zweite Ableitung der Wegfunktion s(t)
nach der Zeit gegeben ist. Hier wird also die zweite Ableitung der Funktion s
durch die auf den Massenpunkt einwirkende Kraft F' festgelegt. Es handelt sich
deshalb um eine Differentialgleichung zweiter Ordnung fiir die Wegfunktion s.

Eine ungeddmpfte harmonische Schwingung wird durch folgende Gleichung
beschrieben:

p(t) = —MNp(t) (tER).

Die allgemeine Losung lautet
o(t) = ¢y sin(At) + co cos(At)  (c1,co € R fest, t € R).
Manchmal wird diese Funktion auch in der Form
o(t) = csin(M +w) (c,w € R fest, t € R)

geschrieben. Der Parameter A\ gibt die Frequenz der Schwingung und w die
Phasenverschiebung an.

Die Losungen der angegebenen Differentialgleichungen sind durch die Differen-
tialgleichung allein nicht eindeutig festgelegt, es treten jeweils weitere Konstanten
auf, wie zum Beispiel der Anfangswert der Funktion p oder der Funktion .

Schauen wir uns noch einmal die Newtonsche Bewegungsgleichung an und zwar

fiir einen Massenpunkt der Masse m, der sich im freien Fall auf die Erde zu bewegt.
Gibt s(t) die Hohe des Massenpunktes iiber der Erde an, so gilt

F=mg=ms"(t),

wobei ¢ die Erdbeschleunigungskonstante ist. Diese Differentialgleichung kénnen wir
direkt durch Integration l6sen. Wir erhalten zunéchst

/0 gdt = gt = s(t) — $(0) .
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Jetzt integrieren wir nochmals und erhalten

L[mﬁ:%ﬁ:Al@ﬁ—wmzxw—ﬂ»qmw

Also gilt:
1
s(t) = 5th +5(0)t + s(0) .

Bei der zweimaligen Integration sind zwei Konstanten aufgetreten, namlich die An-
fangsgeschwindigkeit $(0) und die Anfangshohe s(0).

Wir werden uns jetzt erst eingehender mit Differentialgleichungen erster Ordnung
beschéftigen. Darunter versteht man Gleichungen, in denen nur die erste Ableitung
der gesuchten Funktion vorkommt, wie zum Beispiel bei der Gleichung, die das
exponentielle Wachstum beschreibt. Im néchsten Paragraphen wird eine Losungs-
methode vorgestellt, die sich auf einen bestimmten Typ von Gleichung anwenden
lasst. Anschliessend wird die allgemeine Situation diskutiert.

1.1 TRENNUNG DER VARIABLEN BEI DGL ERSTER ORDNUNG

Kommen wir zuerst wieder auf das eingangs genannte Beispiel zuriick, ndmlich die
Differentialgleichung
p'(t) = Mp(t) fiir alle t € R.

Hier ist A # 0 eine vorgegebene Konstante und ¢ steht fiir die Zeit. Nehmen wir weiter
an, der Wert der gesuchten Funktion p zum Zeitpunkt ¢ = 0, also p(0) = ¢ > 0, sei
ebenfalls vorgegeben. Um die Losung p(t) zu ermitteln, gehen wir folgendermassen
vor. Unter der Annahme, dass p(t) > 0 ist, konnen wir durch p(t) teilen

) _
p(t)

und dann beide Seiten iiber ¢ integrieren. Mit der Substitutionsregel folgt durch

Substitution y = p(t):
/p(t)dt:/@:/mt.
p(t) y

In(y) = At + ¢y,

wobei c; eine Integrationskonstante ist. Wir erhalten

Dies ist gleichwertig zu

y=p(t) =" et

Der Vergleich mit dem Anfangswert liefert p(0) = e = ¢. Also lautet die gesuchte
Losung der Differentialgleichung wie bereits in der Einleitung behauptet:

p(t) =ceM firallet e R.

Ist ¢ # 0, so nimmt diese Funktion nie den Wert Null an, unsere Arbeitshypothese
wird dadurch also im Nachhinein gerechtfertigt.
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Wenn wir annehmen, dass y = p(t) < 0 und insbesondere p(0) = ¢ < 0 ist, dann
bekommen wir

d
?y =In(ly|) = In(—y) = /)\dt =X+ .

Daraus folgt

y=p(t) = —e¥ e

Der Vergleich mit dem Anfangswert liefert diesmal p(0) = —e®* = ¢. Wiederum ist

also
p(t) =ceM fiirallet € R.

Lautet schliesslich die Anfangsbedingung p(0) = ¢ = 0, so ist die Nullfunktion,
gegeben durch p(t) = 0 fiir alle ¢ eine dazu passende Losung. Auch diese Losung
wird durch dieselbe Formel beschrieben.

Hier nun noch ein weiteres Beispiel:

1.1.1 BEISPIEL
p'(t) =tp(t) fiiralleteR.

Nehmen wir wiederum an, der Anfangswert p(0) = ¢ > 0 sei vorgegeben. Wiederum
teilen wir durch p(t) und erhalten

Wir integrieren beide Seiten iiber ¢, und durch Substitution y = p(t) folgt nun:
/
/p@)dt:/@:/tdt.
p(t) Y

t2

hl(y) = 5 _'_Cla

wobei ¢; eine Integrationskonstante ist. Wir erhalten

Dies ist gleichwertig zu

t2
y=p(t) = exp(3) - €.
Der Vergleich mit dem Anfangswert liefert wiederum p(0) = e = ¢. Also lautet die

gesuchte Losung der Differentialgleichung diesmal:

t2
p(t) =c exp(a) fir allet € R.

Man kann sich die Trennung der Variablen iibrigens durch folgende Schreibweise
erleichtern, die durch die Substitutionsregel gerechtfertigt wird. Dazu schreiben wir
die eben behandelte Differentialgleichung so:

y_dy _

= =ty.
Y dt Y
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Wir formen dies um in % = tdt. Die entstehenden Ausdriicke nennt man Differen-
tialformen. Nun integrieren wir beide Seiten und erhalten wie eben

d
/—y:/tdt.
)

Wir wenden diese Schreibweise nun auf ein weiteres Beispiel an.

Auf dhnliche Art kann man jede Differentialgleichung von folgendem Typ losen:

Dabei stehen a und b fiir vorgegebene stetige Funktionen in einer Variablen und
p ist die gesuchte Funktion in der Variablen t. Das bedeutet, die rechte Seite der
Differentialgleichung ist ein Produkt aus einem Faktor, der nur von ¢, und einem
Faktor, der nur von y = p(t) abhingt. Weil die Substitution y = p(t) bei dem
Losungsverfahren eine Rolle spielt, schreibt man eine solche Differentialgleichung
auch héufig in der Form

Y =af(t) - bly).

Fiir die Bestimmung der Losung machen wir wieder einige Annahmen. Es be-
zeichnen I, J offene Intervalle, auf denen die Funktionen a bzw. b definiert seien. Der
Anfangswert der gesuchten Funktion p zum Zeitpunkt ¢ = ¢35 € I sei vorgegeben,
und zwar p(ty) = yo € J. Weiter nehmen wir an, dass b(y) # 0 fiir alle y € J. Dann
konnen wir die Differentialgleichung durch b(y) teilen und erhalten:

Hier hiangt die linke Seite explizit nur noch von y und die rechte Seite nur von ¢ ab.
Wiederum integrieren wir beide Seiten iiber ¢ und die Substitution y = p(t) liefert:

y / p'(t)dt / dy /
dt = = [ =% = [ a(t)dt.
/ b(y) b(p(t)) b(y)
Ist also A: 1 — R eine Stammfunktion von a¢ und B:J — R eine Stammfunktion
von %, so folgt:

Bly) = A1) + C

wobei C' eine Integrationskonstante ist. Gelingt es jetzt noch, diese Gleichung nach
y aufzulosen, so hat man eine explizite Beschreibung der Losung gefunden. Die
Integrationskonstante C' wird durch die Anfangsbedingung festgelegt:

B(yo) = A(to) + C'.
1.1.2 BrIspiEL Die Differentialgleichung

d
y’:d—g:2t~ey mit y(—1)=0
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formen wir um in % = 2t dt, integrieren beide Seiten und erhalten:

/eydy:—ey:/Qtdt:t2+c.

Die Anfangsbedingung ist erfiillt, wenn ¢ = —2. Die Losung lautet also:
y(t) = —In(2 —t*), t*<2.

Die Losungsfunktion ist definiert auf dem offenen Intervall (—v/2,v/2).

1.2 WACHSTUMSPROZESSE MIT SATTIGUNG

Der Prozess der Zellteilung wird zwar im Anfangsstadium durch das exponentielle
Wachstum gut modelliert, im weiteren Verlauf treten aber andere Effekte hinzu. Die
Zellen beginnen zu interagieren und behindern sich gegenseitig bei der Teilung. Dies
wird in der sogenannten logistischen Differentialgleichung beriicksichtigt:

P(t) = Ap(t) —ap(t)*.

Hier bezeichnet p(t) die Anzahl Zellen zum Zeitpunkt ¢ und A und « sind positive
Konstanten. Dabei gibt A die Teilungsrate an und die Konstante « ist ein Mass fiir
den Grad an gegenseitiger Behinderung der Zellen. Zur Abkiirzung nennen wir das
Verhiéltnis der Konstanten « := A/a. Dann lautet die Differentialgleichung

P(t) = ap(t)(y —p(t)) .

Aus dieser Gestalt konnen wir ohne Rechnung bereits einiges ablesen. Es gibt sicher
die konstante Losung p(t) = + fiir alle ¢, in diesem Fall befindet sich die Population
der Zellen im Gleichgewicht.

Nehmen wir jetzt an p(t) # v und p(t) > 0 fiir alle ¢ > 0. Der Startwert zum
Zeitpunkt ¢t = 0 sei p(0) = po. Dann gibt es folgende Moglichkeiten:

1. Ist pg < 7, dann ist p/(t) > 0 und damit p streng monoton wachsend.
2. Ist pp > =, dann ist p'(t) < 0 und damit p streng monoton fallend.

Es wird sich gleich herausstellen, dass in beiden Féllen die Losungsfunktion p(t) fiir
t — oo gegen den Sattigungswert v konvergiert.

Dazu bestimmen wir jetzt explizit die Losung fiir den Fall, dass 0 < y < ~ ist.
Wir schreiben die Gleichung wieder in Kurzform mit y = p(t)

,_dy

y=—=ayly—y).
Trennung der Variablen liefert zunéchst
d
Y _adt.

y(v —v)
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Zerlegen wir die linke Seite in Partialbriiche, erhalten wir

1/1 1
—(—+—) dy = avdt
Y\y Y-y

1 1
/(—+—) dy:/fyadt:/Adt.
y -y

Daraus folgt, wegen der Annahme, dass 0 < y < 7 ist:

und schliesslich

In(y) —In(y —y) = In <L> = M + ¢ fiir eine Konstante ¢; € R,
Y-y

und nach Einfithrung geeigneter neuer Konstanten c, bzw. c3:

At Y v
coe po— und daraus y = p(t) "

Vergleich mit der Anfangsbedingung liefert jetzt py = ﬁ, also c3 = plo — 1. Das

gesuchte logistische Wachstum ist also beschrieben durch die Funktion

_ g
o At (2
Le (L —1)

p(t) (t=0),

und es gilt
Jim p(t) =
Man kann nachrechnen, dass die Losung fiir den Fall y > ~ dieselbe Gestalt hat.

Die Funktion p(t) konvergiert also in jedem Fall gegen die Gleichgewichtslage, un-
abhéngig davon, ob der Startwert p(0) = po grosser oder kleiner als v war.

Nun zum Vergleich ein anderes Modell fiir einen biologischen Wachstumspro-
zess, bei dem ebenfalls eine Sattigung eintritt. Die folgende Differentialgleichung
von Gompertz modelliert das Wachstum eines Tumors in tierischem Gewebe:

Yy =Xy (a—1In(y)).

Hier gibt die Funktion y = p(t) die Grosse des Tumors in Abhéngigkeit von der
Zeit t an und A, « sind positive Konstanten. Fiir den Startwert y(0) = yo > 0 muss
sinnvollerweise gelten In(yy) < a.

Wir kénnen diese Differentialgleichung auf eine einfachere Form zuriickfiihren,
wenn wir eine Variablentransformation machen. Genauer fithren wir die neue Varia-
ble u = In(y) ein. Nach der Kettenregel gilt

du 1 dy ¥y

dat  y()ydt oy’
Also nimmt die Gompertzsche Differentialgleichung, ausgedriickt in der Variablen
u, folgende Gestalt an:

d
d—;b:)v(a—u).
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Nehmen wir, entsprechend der Voraussetzung iiber den Startwert an, dass u =
In(y) < o, dann liefert Trennung der Variablen und Integration beider Seiten hier

d
/ “ :—ln(a—u):/kdt:)\t—i-cl.

a—1u

Daraus folgt
u(t) = o —ce™.

Also lautet die Losung der urspriinglichen Differentialgleichung
y(t) = exp(a —ce™) Vt,

und Vergleich mit der Anfangsbedingung liefert ¢ = o« — In(yp) > 0. Daraus kénnen
wir ablesen, dass die Funktion y(¢) streng monoton wachsend ist und fiir ¢ — oo
gegen e konvergiert.

1.3 EINDEUTIGKEIT VON LOSUNGEN

Eine Differentialgleichung heisst erster Ordnung, wenn nur die erste Ableitung der
gesuchten Funktion darin vorkommt. Man schreibt eine solche Gleichung haufig in
der Form

y' =g(z,y),
wobei y hier einerseits fiir die gesuchte Funktion, andererseits aber auch fiir den
Funktionswert an der Stelle = steht, und g eine Funktion in zwei Variablen bezeich-
net. Unter einer Ldsung dieser Differentialgleichung versteht man eine differenzier-
bare Funktion ¢: I — R, definiert auf einem gewissen Definitionsintervall I, mit

O'(z) = g(z,o(x)) fiir allex € I.

1.3.1 BEISPIEL Die Losungen der Differentialgleichung

v =gley) =2 (40

sind die linearen Funktionen der Form ¢(z) = ¢z (fiir x > 0 oder z < 0), wobei
¢ € R konstant ist. Die Graphen sind dieser Funktionen sind geradlinig, und sie
filllen die Ebene (ohne die y-Achse) vollstédndig aus.

1.3.2 BEISPIEL Wir betrachten jetzt die Gleichung
x
/

y==, W70.

Trennung der Variablen liefert:
Y y=—x.

Durch Integration erhalten wir daraus mit der Substitutionsregel

1 1
/?/'y'dx:/ydyz5922—/xdx:—§x2+c.
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Die Differentialgleichung hat also zu jedem r > 0 zwei Losungen der Form
of(x)=Vvr2—22 ze(-rr) und ¢, (v)=-Vr2—22 z€(-rr).

Die Graphen dieser Funktionen sind offenbar Halbkreisbogen um den Nullpunkt.
(Die Punkte auf der z-Achse liegen nicht im Definitionsbereich der Differential-
gleichung.) Das Definitionsintervall der Losung ist hier jeweils das offene Intervall
(—r,7), und durch jeden Punkt der Koordinatenebene (ausser den Punkten auf der
x-Achse) geht genau eine Losungskurve.

Die allgemeine Losung einer Differentialgleichung erster Ordnung enthélt, wie
schon erwahnt, einen freien Parameter. Um die Losung eindeutig festzulegen, kann
man zusétzlich zur Differentialgleichung noch eine Anfangsbedingung stellen.

1.3.3 DEFINITION Man sagt, eine Funktion : I — R sei eine Losung des Anfangs-
wertproblems (AWP)

v =g(y),  yl@) =10,
(wobei xy € I, yo € R vorgegeben und g wie oben eine Funktion in zwei Variablen
ist,) falls
O'(x) =g(z,p(x)) firallex el und @(zg)=yo.

Es gilt der folgende Existenz- und Eindeutigkeitssatz, den ich an dieser Stelle
noch nicht beweisen werde:

1.3.4 SaTz Erfiillt g gewisse Bedingungen (ist zum Beispiel g stetig und stetig nach
y differenzierbar), so hat das AWP

v =g(z,y),  ylxo) =wo

fiir jedes Paar (xg,%) aus dem Definitionsbereich D C R? von g eine eindeutig
bestimmte Losung ¢:1 — R mit maximalem Definitionsintervall I. Das Intervall
I kann aber von (zg,yo) abhidngen. Das bedeutet: Durch jeden Punkt (xg,yo) im
ebenen Gebiet D geht genau eine maximale Losungskurve der Differentialgleichung.

Das folgende Beispiel zeigt, dass es tatsédchlich notig ist, gewisse Bedingungen
an g zu stellen.

1.3.5 BEISPIEL Die Differentialgleichung

y' =2/ly|

hat zu jedem Parameter ¢ € R Teillssungen ¢ (z) = (z—¢)? fiir z > c und ¢ (z) =
—(z — ¢)? fiir # < ¢. Ausserdem gibt es noch die triviale Losung (x) = 0 fiir alle x.
Der Graph von ¢ entsteht aus dem Graphen von ¢F durch Parallelverschiebung um
c langs der z-Achse. Aus diesen Teilen kann man neue Losungen zusammensetzen.
Genauer gibt es zu jeder Wahl von Zahlen ¢; < ¢y eine Losung, ndmlich

o (x) firz <c
()001,02<x> = 0 fiir 1 <zx<cy
ot (r) firz>c
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Zum Beispiel gehen durch den Punkt (¢, 0) die Losungskurven zu ¢, fiir alle ¢; > c.
Entsprechend gibt es durch jeden Punkt (¢, yo) sogar unendlich viele Losungen. Das
entsprechende Anfangswertproblem ist also weit entfernt davon, eindeutig losbar zu
sein!

Die Funktion g héngt hier von = nicht explizit ab, sie lautet g(z,y) = 24/|y|.
Da die Tangente an die Wurzelfunktion im Nullpunkt unendliche Steigung hat, ist
g bei y = 0 nicht nach y differenzierbar.



