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Kapitel 1

Differentialgleichungen

Viele verschiedene Phänomene lassen sich mathematisch durch sogenannte Differen-
tialgleichungen beschreiben, so zum Beispiel das Wachstum von Populationen, der
radioaktive Zerfall, die Bewegung von Massenpunkten oder Schwingungsvorgänge.
Schauen wir uns einige einfache Beispiele genauer an:

• Nehmen wir an, die Anzahl Geburten zum Zeitpunkt t in einer bestimmten
Population sei proportional zur Anzahl der vorhandenen Individuen p(t). Dann
ist also die Wachstumsrate d

dt
p(t) proportional zu p(t). Wenn wir alle übrigen

Einflüsse auf die Population vernachlässigen, können wir das Verhalten der
Funktion p(t) durch die Gleichung

p′(t) = λp(t)

beschreiben, wobei die Konstante λ > 0 die Geburtenrate ist. Die Lösung
dieser Gleichung lautet

p(t) = c · eλt ∀t ≥ 0 .

Hier gibt c = p(0) die Grösse der Population zum Zeitpunkt t = 0 an. Man
spricht hier von exponentiellem Wachstum der Population.

• Beziehen wir auch die Sterberate µ > 0 in das Populationsmodell mit ein,
kommen wir auf die Differentialgleichung

p′(t) = (λ− µ)p(t) .

Die Lösung dieser Gleichung lautet

p(t) = p(0) e(λ−µ)t ∀t ≥ 0 .

In diesem Modell kann die Population also nur dann stabil bleiben, wenn die
Geburtenrate und die Sterberate miteinander übereinstimmen. Ist die Gebur-
tenrate grösser, gibt es ein exponentielles Wachstum, ist die Sterberate grösser,
nimmt die Population exponentiell ab.

• Der Zerfall von radioaktivem Material wird durch eine Gleichung von folgen-
dem Typ beschrieben:

ϕ′(t) = −λϕ(t) (t ≥ 0).

Dabei gibt ϕ(t) die Menge des Materials zum Zeitpunkt t und λ > 0 die
Zerfallsrate an. Die Gleichung bedeutet, dass in jedem beliebigen Moment der
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durch λ festgelegte Anteil des zu diesem Zeitpunkt vorhandenen Materials
zerfällt.

Die Lösung der Gleichung lautet

ϕ(t) = c · e−λt (t ≥ 0),

wobei c = ϕ(0) die Ausgangsmenge des Materials zum Zeitpunkt t = 0 angibt.

• Die Newtonsche Bewegungsgleichung für einen Massenpunkt der Masse m lau-
tet “Kraft=Masse mal Beschleunigung”

F (t) = m · a(t) = m · s′′(t) (t ∈ R) ,

wobei die Beschleunigung a durch die zweite Ableitung der Wegfunktion s(t)
nach der Zeit gegeben ist. Hier wird also die zweite Ableitung der Funktion s
durch die auf den Massenpunkt einwirkende Kraft F festgelegt. Es handelt sich
deshalb um eine Differentialgleichung zweiter Ordnung für die Wegfunktion s.

• Eine ungedämpfte harmonische Schwingung wird durch folgende Gleichung
beschrieben:

ϕ′′(t) = −λ2ϕ(t) (t ∈ R) .

Die allgemeine Lösung lautet

ϕ(t) = c1 sin(λt) + c2 cos(λt) (c1, c2 ∈ R fest, t ∈ R).

Manchmal wird diese Funktion auch in der Form

ϕ(t) = c sin(λt+ ω) (c, ω ∈ R fest, t ∈ R)

geschrieben. Der Parameter λ gibt die Frequenz der Schwingung und ω die
Phasenverschiebung an.

Die Lösungen der angegebenen Differentialgleichungen sind durch die Differen-
tialgleichung allein nicht eindeutig festgelegt, es treten jeweils weitere Konstanten
auf, wie zum Beispiel der Anfangswert der Funktion p oder der Funktion ϕ.

Schauen wir uns noch einmal die Newtonsche Bewegungsgleichung an und zwar
für einen Massenpunkt der Masse m, der sich im freien Fall auf die Erde zu bewegt.
Gibt s(t) die Höhe des Massenpunktes über der Erde an, so gilt

F = mg = ms′′(t) ,

wobei g die Erdbeschleunigungskonstante ist. Diese Differentialgleichung können wir
direkt durch Integration lösen. Wir erhalten zunächst

∫ t

0

g dt = gt = ṡ(t)− ṡ(0) .
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Jetzt integrieren wir nochmals und erhalten
∫ t

0

gt dt =
1

2
gt2 =

∫ t

0

ṡ(t)dt− ṡ(0)t = s(t)− s(0)− ṡ(0)t .

Also gilt:

s(t) =
1

2
gt2 + ṡ(0)t+ s(0) .

Bei der zweimaligen Integration sind zwei Konstanten aufgetreten, nämlich die An-
fangsgeschwindigkeit ṡ(0) und die Anfangshöhe s(0).

Wir werden uns jetzt erst eingehender mit Differentialgleichungen erster Ordnung
beschäftigen. Darunter versteht man Gleichungen, in denen nur die erste Ableitung
der gesuchten Funktion vorkommt, wie zum Beispiel bei der Gleichung, die das
exponentielle Wachstum beschreibt. Im nächsten Paragraphen wird eine Lösungs-
methode vorgestellt, die sich auf einen bestimmten Typ von Gleichung anwenden
lässt. Anschliessend wird die allgemeine Situation diskutiert.

1.1 Trennung der Variablen bei DGL erster Ordnung

Kommen wir zuerst wieder auf das eingangs genannte Beispiel zurück, nämlich die
Differentialgleichung

p′(t) = λp(t) für alle t ∈ R .

Hier ist λ 6= 0 eine vorgegebene Konstante und t steht für die Zeit. Nehmen wir weiter
an, der Wert der gesuchten Funktion p zum Zeitpunkt t = 0, also p(0) = c > 0, sei
ebenfalls vorgegeben. Um die Lösung p(t) zu ermitteln, gehen wir folgendermassen
vor. Unter der Annahme, dass p(t) > 0 ist, können wir durch p(t) teilen

p′(t)

p(t)
= λ

und dann beide Seiten über t integrieren. Mit der Substitutionsregel folgt durch
Substitution y = p(t):

∫

p′(t)

p(t)
dt =

∫

dy

y
=

∫

λ dt .

Dies ist gleichwertig zu
ln(y) = λt+ c1 ,

wobei c1 eine Integrationskonstante ist. Wir erhalten

y = p(t) = eλt · ec1 .

Der Vergleich mit dem Anfangswert liefert p(0) = ec1 = c. Also lautet die gesuchte
Lösung der Differentialgleichung wie bereits in der Einleitung behauptet:

p(t) = c eλt für alle t ∈ R .

Ist c 6= 0, so nimmt diese Funktion nie den Wert Null an, unsere Arbeitshypothese
wird dadurch also im Nachhinein gerechtfertigt.
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Wenn wir annehmen, dass y = p(t) < 0 und insbesondere p(0) = c < 0 ist, dann
bekommen wir

∫

dy

y
= ln(|y|) = ln(−y) =

∫

λ dt = λt+ c1 .

Daraus folgt
y = p(t) = −eλt · ec1 .

Der Vergleich mit dem Anfangswert liefert diesmal p(0) = −ec1 = c. Wiederum ist
also

p(t) = c eλt für alle t ∈ R .

Lautet schliesslich die Anfangsbedingung p(0) = c = 0, so ist die Nullfunktion,
gegeben durch p(t) = 0 für alle t eine dazu passende Lösung. Auch diese Lösung
wird durch dieselbe Formel beschrieben.

Hier nun noch ein weiteres Beispiel:

1.1.1 Beispiel

p′(t) = t p(t) für alle t ∈ R .

Nehmen wir wiederum an, der Anfangswert p(0) = c > 0 sei vorgegeben. Wiederum
teilen wir durch p(t) und erhalten

p′(t)

p(t)
= t .

Wir integrieren beide Seiten über t, und durch Substitution y = p(t) folgt nun:

∫

p′(t)

p(t)
dt =

∫

dy

y
=

∫

t dt .

Dies ist gleichwertig zu

ln(y) =
t2

2
+ c1 ,

wobei c1 eine Integrationskonstante ist. Wir erhalten

y = p(t) = exp(
t2

2
) · ec1 .

Der Vergleich mit dem Anfangswert liefert wiederum p(0) = ec1 = c. Also lautet die
gesuchte Lösung der Differentialgleichung diesmal:

p(t) = c exp(
t2

2
) für alle t ∈ R .

Man kann sich die Trennung der Variablen übrigens durch folgende Schreibweise
erleichtern, die durch die Substitutionsregel gerechtfertigt wird. Dazu schreiben wir
die eben behandelte Differentialgleichung so:

y′ =
dy

dt
= ty .
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Wir formen dies um in dy

y
= tdt. Die entstehenden Ausdrücke nennt man Differen-

tialformen. Nun integrieren wir beide Seiten und erhalten wie eben

∫

dy

y
=

∫

t dt .

Wir wenden diese Schreibweise nun auf ein weiteres Beispiel an.

Auf ähnliche Art kann man jede Differentialgleichung von folgendem Typ lösen:

p′(t) = a(t) · b(p(t)) .

Dabei stehen a und b für vorgegebene stetige Funktionen in einer Variablen und
p ist die gesuchte Funktion in der Variablen t. Das bedeutet, die rechte Seite der
Differentialgleichung ist ein Produkt aus einem Faktor, der nur von t, und einem
Faktor, der nur von y = p(t) abhängt. Weil die Substitution y = p(t) bei dem
Lösungsverfahren eine Rolle spielt, schreibt man eine solche Differentialgleichung
auch häufig in der Form

y′ = a(t) · b(y) .
Für die Bestimmung der Lösung machen wir wieder einige Annahmen. Es be-

zeichnen I, J offene Intervalle, auf denen die Funktionen a bzw. b definiert seien. Der
Anfangswert der gesuchten Funktion p zum Zeitpunkt t = t0 ∈ I sei vorgegeben,
und zwar p(t0) = y0 ∈ J . Weiter nehmen wir an, dass b(y) 6= 0 für alle y ∈ J . Dann
können wir die Differentialgleichung durch b(y) teilen und erhalten:

y′

b(y)
=

p′(t)

b(p(t))
= a(t) .

Hier hängt die linke Seite explizit nur noch von y und die rechte Seite nur von t ab.
Wiederum integrieren wir beide Seiten über t und die Substitution y = p(t) liefert:

∫

y′

b(y)
dt =

∫

p′(t) dt

b(p(t))
=

∫

dy

b(y)
=

∫

a(t)dt .

Ist also A: I → R eine Stammfunktion von a und B: J → R eine Stammfunktion
von 1

b
, so folgt:

B(y) = A(t) + C ,

wobei C eine Integrationskonstante ist. Gelingt es jetzt noch, diese Gleichung nach
y aufzulösen, so hat man eine explizite Beschreibung der Lösung gefunden. Die
Integrationskonstante C wird durch die Anfangsbedingung festgelegt:

B(y0) = A(t0) + C .

1.1.2 Beispiel Die Differentialgleichung

y′ =
dy

dt
= 2t · ey mit y(−1) = 0
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formen wir um in dy

ey
= 2t dt, integrieren beide Seiten und erhalten:

∫

e−y dy = −e−y =

∫

2t dt = t2 + c .

Die Anfangsbedingung ist erfüllt, wenn c = −2. Die Lösung lautet also:

y(t) = − ln(2− t2), t2 < 2 .

Die Lösungsfunktion ist definiert auf dem offenen Intervall (−
√
2,
√
2).

1.2 Wachstumsprozesse mit Sättigung

Der Prozess der Zellteilung wird zwar im Anfangsstadium durch das exponentielle
Wachstum gut modelliert, im weiteren Verlauf treten aber andere Effekte hinzu. Die
Zellen beginnen zu interagieren und behindern sich gegenseitig bei der Teilung. Dies
wird in der sogenannten logistischen Differentialgleichung berücksichtigt:

p′(t) = λp(t)− αp(t)2 .

Hier bezeichnet p(t) die Anzahl Zellen zum Zeitpunkt t und λ und α sind positive
Konstanten. Dabei gibt λ die Teilungsrate an und die Konstante α ist ein Mass für
den Grad an gegenseitiger Behinderung der Zellen. Zur Abkürzung nennen wir das
Verhältnis der Konstanten γ := λ/α. Dann lautet die Differentialgleichung

p′(t) = αp(t)(γ − p(t)) .

Aus dieser Gestalt können wir ohne Rechnung bereits einiges ablesen. Es gibt sicher
die konstante Lösung p(t) = γ für alle t, in diesem Fall befindet sich die Population
der Zellen im Gleichgewicht.

Nehmen wir jetzt an p(t) 6= γ und p(t) > 0 für alle t ≥ 0. Der Startwert zum
Zeitpunkt t = 0 sei p(0) = p0. Dann gibt es folgende Möglichkeiten:

1. Ist p0 < γ, dann ist p′(t) > 0 und damit p streng monoton wachsend.

2. Ist p0 > γ, dann ist p′(t) < 0 und damit p streng monoton fallend.

Es wird sich gleich herausstellen, dass in beiden Fällen die Lösungsfunktion p(t) für
t → ∞ gegen den Sättigungswert γ konvergiert.

Dazu bestimmen wir jetzt explizit die Lösung für den Fall, dass 0 < y < γ ist.
Wir schreiben die Gleichung wieder in Kurzform mit y = p(t)

y′ =
dy

dt
= αy(γ − y) .

Trennung der Variablen liefert zunächst

dy

y(γ − y)
= α dt .
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Zerlegen wir die linke Seite in Partialbrüche, erhalten wir

1

γ

(

1

y
+

1

γ − y

)

dy = α dt ,

und schliesslich
∫

(

1

y
+

1

γ − y

)

dy =

∫

γα dt =

∫

λ dt .

Daraus folgt, wegen der Annahme, dass 0 < y < γ ist:

ln(y)− ln(γ − y) = ln

(

y

γ − y

)

= λt+ c1 für eine Konstante c1 ∈ R ,

und nach Einführung geeigneter neuer Konstanten c2 bzw. c3:

c2e
λt =

y

γ − y
und daraus y = p(t) =

γ

1 + c3e−λt
.

Vergleich mit der Anfangsbedingung liefert jetzt p0 = γ

c3+1
, also c3 = γ

p0
− 1. Das

gesuchte logistische Wachstum ist also beschrieben durch die Funktion

p(t) =
γ

1 + e−λt ( γ

p0
− 1)

(t ≥ 0) ,

und es gilt
lim
t→∞

p(t) = γ .

Man kann nachrechnen, dass die Lösung für den Fall y > γ dieselbe Gestalt hat.
Die Funktion p(t) konvergiert also in jedem Fall gegen die Gleichgewichtslage, un-
abhängig davon, ob der Startwert p(0) = p0 grösser oder kleiner als γ war.

Nun zum Vergleich ein anderes Modell für einen biologischen Wachstumspro-
zess, bei dem ebenfalls eine Sättigung eintritt. Die folgende Differentialgleichung

von Gompertz modelliert das Wachstum eines Tumors in tierischem Gewebe:

y′ = λ · y · (α− ln(y)) .

Hier gibt die Funktion y = p(t) die Grösse des Tumors in Abhängigkeit von der
Zeit t an und λ, α sind positive Konstanten. Für den Startwert y(0) = y0 > 0 muss
sinnvollerweise gelten ln(y0) < α.

Wir können diese Differentialgleichung auf eine einfachere Form zurückführen,
wenn wir eine Variablentransformation machen. Genauer führen wir die neue Varia-
ble u = ln(y) ein. Nach der Kettenregel gilt

du

dt
=

1

y(t)

dy

dt
=

y′

y
.

Also nimmt die Gompertzsche Differentialgleichung, ausgedrückt in der Variablen
u, folgende Gestalt an:

du

dt
= λ · (α− u) .
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Nehmen wir, entsprechend der Voraussetzung über den Startwert an, dass u =
ln(y) < α, dann liefert Trennung der Variablen und Integration beider Seiten hier

∫

du

α− u
= − ln(α− u) =

∫

λ dt = λt+ c1 .

Daraus folgt
u(t) = α− c e−λt .

Also lautet die Lösung der ursprünglichen Differentialgleichung

y(t) = exp(α− c e−λt) ∀t ,

und Vergleich mit der Anfangsbedingung liefert c = α− ln(y0) > 0. Daraus können
wir ablesen, dass die Funktion y(t) streng monoton wachsend ist und für t → ∞
gegen eα konvergiert.

1.3 Eindeutigkeit von Lösungen

Eine Differentialgleichung heisst erster Ordnung , wenn nur die erste Ableitung der
gesuchten Funktion darin vorkommt. Man schreibt eine solche Gleichung häufig in
der Form

y′ = g(x, y) ,

wobei y hier einerseits für die gesuchte Funktion, andererseits aber auch für den
Funktionswert an der Stelle x steht, und g eine Funktion in zwei Variablen bezeich-
net. Unter einer Lösung dieser Differentialgleichung versteht man eine differenzier-
bare Funktion ϕ: I → R, definiert auf einem gewissen Definitionsintervall I, mit

ϕ′(x) = g(x, ϕ(x)) für alle x ∈ I.

1.3.1 Beispiel Die Lösungen der Differentialgleichung

y′ = g(x, y) =
y

x
(x 6= 0)

sind die linearen Funktionen der Form ϕ(x) = c · x (für x > 0 oder x < 0), wobei
c ∈ R konstant ist. Die Graphen sind dieser Funktionen sind geradlinig, und sie
füllen die Ebene (ohne die y-Achse) vollständig aus.

1.3.2 Beispiel Wir betrachten jetzt die Gleichung

y′ = −x

y
(y 6= 0) .

Trennung der Variablen liefert:
y′ · y = −x .

Durch Integration erhalten wir daraus mit der Substitutionsregel
∫

y · y′ dx =

∫

y dy =
1

2
y2 = −

∫

x dx = −1

2
x2 + c .
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Die Differentialgleichung hat also zu jedem r > 0 zwei Lösungen der Form

ϕ+
r (x) =

√
r2 − x2 x ∈ (−r, r) und ϕ−

r (x) = −
√
r2 − x2 x ∈ (−r, r) .

Die Graphen dieser Funktionen sind offenbar Halbkreisbögen um den Nullpunkt.
(Die Punkte auf der x-Achse liegen nicht im Definitionsbereich der Differential-
gleichung.) Das Definitionsintervall der Lösung ist hier jeweils das offene Intervall
(−r, r), und durch jeden Punkt der Koordinatenebene (ausser den Punkten auf der
x-Achse) geht genau eine Lösungskurve.

Die allgemeine Lösung einer Differentialgleichung erster Ordnung enthält, wie
schon erwähnt, einen freien Parameter. Um die Lösung eindeutig festzulegen, kann
man zusätzlich zur Differentialgleichung noch eine Anfangsbedingung stellen.

1.3.3 Definition Man sagt, eine Funktion ϕ: I → R sei eine Lösung des Anfangs-
wertproblems (AWP)

y′ = g(x, y), y(x0) = y0 ,

(wobei x0 ∈ I, y0 ∈ R vorgegeben und g wie oben eine Funktion in zwei Variablen
ist,) falls

ϕ′(x) = g(x, ϕ(x)) für alle x ∈ I und ϕ(x0) = y0 .

Es gilt der folgende Existenz- und Eindeutigkeitssatz, den ich an dieser Stelle
noch nicht beweisen werde:

1.3.4 Satz Erfüllt g gewisse Bedingungen (ist zum Beispiel g stetig und stetig nach
y differenzierbar), so hat das AWP

y′ = g(x, y), y(x0) = y0

für jedes Paar (x0, y0) aus dem Definitionsbereich D ⊂ R
2 von g eine eindeutig

bestimmte Lösung ϕ: I → R mit maximalem Definitionsintervall I. Das Intervall
I kann aber von (x0, y0) abhängen. Das bedeutet: Durch jeden Punkt (x0, y0) im
ebenen Gebiet D geht genau eine maximale Lösungskurve der Differentialgleichung.

Das folgende Beispiel zeigt, dass es tatsächlich nötig ist, gewisse Bedingungen
an g zu stellen.

1.3.5 Beispiel Die Differentialgleichung

y′ = 2
√

|y|

hat zu jedem Parameter c ∈ R Teillösungen ϕ+
c (x) = (x−c)2 für x > c und ϕ−

c (x) =
−(x− c)2 für x < c. Ausserdem gibt es noch die triviale Lösung ϕ(x) = 0 für alle x.
Der Graph von ϕ±

c entsteht aus dem Graphen von ϕ±

0 durch Parallelverschiebung um
c längs der x-Achse. Aus diesen Teilen kann man neue Lösungen zusammensetzen.
Genauer gibt es zu jeder Wahl von Zahlen c1 < c2 eine Lösung, nämlich

ϕc1,c2(x) :=







ϕ−

c1
(x) für x < c1

0 für c1 ≤ x ≤ c2
ϕ+
c2
(x) für x > c2
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Zum Beispiel gehen durch den Punkt (c, 0) die Lösungskurven zu ϕc,c2 für alle c2 ≥ c.
Entsprechend gibt es durch jeden Punkt (x0, y0) sogar unendlich viele Lösungen. Das
entsprechende Anfangswertproblem ist also weit entfernt davon, eindeutig lösbar zu
sein!

Die Funktion g hängt hier von x nicht explizit ab, sie lautet g(x, y) = 2
√

|y|.
Da die Tangente an die Wurzelfunktion im Nullpunkt unendliche Steigung hat, ist
g bei y = 0 nicht nach y differenzierbar.


