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1.4 LINEARE DIFFERENTIALGLEICHUNGEN ERSTER ORDNUNG

Unter einer linearen Differentialgleichung erster Ordnung versteht man eine Diffe-
rentialgleichung der Form
y' = a(x)y +b(z)
wobei die Koeffizienten a, b: I — R stetige Funktionen in x sind. Ist b(z) = 0 fiir alle
x, so heisst die Differentialgleichung homogen, andernfalls inhomogen.
Ist die Gleichung homogen und die Funktion a integrierbar, so kénnen wir die
Losungen durch Trennung der Variablen bestimmen. Fiir y # 0 erhalten wir aus

y =3 =alz)y

d
In(Jy|) = Y at = /a(:v)d:c =: A(x) + ¢
Yy
Die allgemeine Losung hat also die Form
y=ce™

wobei A eine Stammfunktion zu a bezeichnet und c eine beliebige Konstante ist.
Die Losung zur Anfangsbedingung y(z) = vy ist eindeutig bestimmt und lautet:

y(x) = yo exp(A(z) — A(zo)) fiir alle z € 1.

Das Definitionsintervall jeder Losung stimmt also mit dem Definitionsbereich der
Funktion a iiberein. Fiir yg = 0 erhédlt man einen Ausschnitt der z-Achse als
Losungskurve. Fiir yy > 0 liegt die Losungskurve ganz oberhalb und fiir yo < 0
ganz unterhalb der z-Achse.

1.4.1 BEISPIEL Schauen wir uns das Verhalten des Luftdrucks p(h) in Abhingig-
keit von der Hohe h iiber dem Meeresspiegel an. Die Abnahme des Luftdrucks mit
zunehmender Hohe hdngt mit der Abnahme des Gewichtes der Luftséule {iber einer
Flacheneinheit zusammen. Genauer gilt

p'(h) = —p(h),

wobei p(h) das spezifische Gewicht der Luft in der Hohe h bezeichnet. Weiter ge-
hen wir davon aus, dass die ideale Gasgleichung erfiillt ist. Das bedeutet, dass p
proportional ist zum Verhéltnis von Luftdruck p zu Temperatur 7"

_ph)
p( )—Cl'm

fiir eine Konstante c¢;. Fiir trockene Luft betridgt diese spezielle Gaskonstante ¢; ~
287[%‘;’_’23]. Auch die Temperatur nimmt mit wachsender Hohe ab. Wir wollen anneh-
men, der Temperaturabfall sei proportional zur Hohe, also T'(h) = Ty —coh, wobei Tj
die Temperatur auf Meereshéhe angibt und c; eine weitere Konstante ist. Genauer

nehmen wir an ¢ ~ 1/100[K /m]. Dann erhalten wir folgende Differentialgleichung:

p(h) __~a
T(h) TO — CQh p

p(h) = —e (h).
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Es handelt sich also um eine homogene lineare Differentialgleichung, wobei hier die
Koefhizientenfunktion lautet:

—C1 .. Ty
h)=—— firh —).
a(h) T tir h € |0, 02)

Um die Losung der Differentialgleichung zu bestimmen, miissen wir zunéchst eine
Stammfunktion A fiir die Funktion a finden. Dazu verwenden wir die Substitution
T =Ty — coh und erhalten fiir 0 < h < Z—;’:

h h
—Cldh C1 dT 01 T C1 Cgh
A(h) = h)dh = —_— = — 1 =—In(l--+).
(#) /o alh) /0 Ty—ch cefy, T Il(To) €2 ( To)

Wenn also der Luftdruck auf Meereshohe p(0) = py betrédgt, dann gilt:

)& fir 0 < h < Tp/cs ~ 10075,

coh
p(h) = po - oA — po(1 — ;
0

Die Funktion p ist monoton fallend und konvex, weil £ =~ 3 - 10* ist. Wenn wir
annehmen, dass Ty = 273[K] (also gleich Null Grad Celsms) ist, dann ist der Druck
bei einer Hohe von etwa 27[km] auf Null gefallen.

Betrachten wir nun den inhomogenen Fall. Eine Losung der inhomogenen linea-
ren Differentialgleichung kann man mithilfe der Methode der Variation der Kon-
stanten finden. Dies Verfahren besteht aus den folgenden drei Schritten:

e die allgemeine Losung y = ceA® der zugehorigen homogenen Differentialglei-
chung aufstellen,

e durch den Ansatz y = C(x)e® die allgemeine Losung der inhomogenen Glei-
chung finden,

e die Integrationskonstante so anpassen, dass die Anfangsbedingung erfiillt ist.

1.4.2 BEISPIEL Wir betrachten das Anfangswertproblem
! 3 3 x
Yy =—-y+aie” =2z, y(l)=1.
x

Im ersten Schritt l6sen wir die dazugehorige homogene Gleichung iy’ = %y Dazu
miissen wir eine Stammfunktion der Funktion a(z) = 2 bestimmen. Wir wihlen

Ax) = /j ; dz = 3In(z) = In(z?) .

Also lautet die allgemeine Losung der homogenen Gleichung
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Im zweiten Schritt machen wir den Ansatz der Variation der Konstanten y(z) =
c(z) - 3 und setzen in die inhomogene Gleichung ein. Wir erhalten:

Es folgt

Durch Integration erhalten wir:
y(z) = c(x)r® = (¥ + p 4 ¢1)2®  fiir eine Konstante c;.
Im dritten Schritt wird die Konstante ¢; durch die Anfangsbedingung festgelegt:
y(1)=(e+2+¢)=1.
Also ist ¢y = —e — 1, und die Losung des Anfangswertproblems lautet:

() = (" —e—1)2° +22* fiir v € R.

Das Verfahren funktioniert immer. Es gilt ndmlich folgendes.

1.4.3 SATZ Das Anfangswertproblem

v =a(x) -y+blx) und y(xo)=yo,
wobei a,b:I — R stetige Funktionen und xo € I, yo € R sind, hat auf I eine
eindeutig bestimmte Losung, nidmlich o(z) = (C(z) + yo) €@,

wobei  A(z) := /xa(s)ds und  C(x) = / xb(s)e_A(s)ds.

xo xo

Beweis. Durch Einsetzen kann man tiberpriifen, dass die durch die Formel angegebe-
ne Funktion ¢ eine Losung beschreibt. Nehmen wir jetzt an, die Funktion ¢1: I — R
sei ebenfalls eine Losung desselben Anfangswertproblems. Dann gilt fiir die Differenz
Y = p — 1 folgendes:

U(x) = ¢'(z) — i (x) = a(z)(p(z) — @1(x)) = a(z)¥(z).

Also ist 1 eine Losung der zugehorigen homogenen Differentialgleichung ¢ = a(z)-y,
und zwar zur Anfangsbedingung y(zy) = 0. Nach dem eben Gesagten, ist deshalb
Y(z) = 0 fir alle z, und das bedeutet, die beiden Losungen ¢ und ¢; stimmen
miteinander iiberein.  q.e.d.

Hier nochmals ein Beispiel.
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1.4.4 BEISPIEL Betrachten wir das Anfangsproblem

dy
/:—: —_ ]_:2
y=-_=2 y, y(l)

Die zugehorige homogene Differentialgleichung lautet ¢y’ = —y. Hier ist also
alx)=—=1, zo=1, y=2, blx)==x.
Wir erhalten

A(x):/lx(—l)dx:—x+1 und C(:p):/Ixses_lds:(x—l)ex_l.

Die gesuchte Losung lautet also

o) =((r -1 e +2)e ™ = (z - 1)+ 2",

1.5 LINEARE DIFFERENTIALGLEICHUNGEN ZWEITER ORDNUNG

Eine lineare Differentialgleichung zweiter Ordnung hat die Form
Y +ay(2)y + ao(x)y = b(z),

wobei aq,ag,b: I — R stetige Funktionen auf einem Intervall I C R sind, die nur
von x abhédngen. Entsprechend definiert man lineare Differentialgleichungen héherer
Ordnung. Ist b(z) = 0 fiir alle x, so spricht man von einer homogenen Differential-
gleichung, andernfalls heisst die Gleichung inhomogen. Gleichungen dieses Typs sind
uns bereits begegnet, hier nochmals die entsprechenden Beispiele:

e Die Schwingungsgleichung der ungeddmpften Schwingung lautet
v+ XNy =0 ()0 konstant.)

Dies ist eine homogene lineare Differentialgleichung zweiter Ordnung, und die
Losungen lauten

y(z) = ¢y sin(Ax) 4+ cp cos(Az) fir z € R,
wobei ¢y, co € R beliebig gewéhlte Konstanten sind.
e Die Losungen der homogenen Gleichung
y'=Ny=0 (A#0)

lauten
y(x) = c1e™ + e fiir x € R..

Hier sind wiederum cy, co € R beliebig gewéhlte Konstanten.
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In diesen Beispielen enthilt die allgemeine Losung jeweils zwei frei wahlbare
Konstanten. Diese Konstanten kénnen durch geeignete Anfangsbedingungen festge-
legt werden. Dies ist kein Zufall, sondern ein allgemeines Prinzip. Man kann aus dem
schon erwdhnten Existenz- und Eindeutigkeitssatz fiir “gutartige” Differentialglei-
chungen erster Ordnung die folgende wichtige Aussage herleiten (allerdings werden
wir hier auf die Herleitung verzichten):

1.5.1 SATZ Sei I C R ein Intervall und seien aq,ag,b: I — R stetige Funktionen.
Seien weiter x¢ € I, yo,y1 € R beliebig vorgegeben. Die Differentialgleichung

Y+ a1 (x)y + ao(x)y = b(x)

hat genau eine Losung ¢: I — R, die folgende Anfangsbedingungen erfiillt

80(%) = Yo, SO/(%) =Y

Hier zunéchst einige Beobachtungen zur Menge der Lésungen einer linearen Dif-
ferentialgleichung:

1.5.2 SATz 1. Fiir die Losungen einer homogenen linearen Differentialgleichung
gilt das Superpositionsprinzip, das heisst, sind @1, ps: I — R Losungen der
Differentialgleichung, so auch jede Linearkombination agp; + Bys (a, f € R
Konstanten). Das heisst, die Losungen bilden einen linearen Unterraum im
Vektorraum aller Funktionen auf I.

2. Sind @1, s Losungen einer inhomogenen linearen Differentialgleichung, so ist
die Differenz ¢y — o Losung der zugehérigen homogenen Differentialgleichung.

Beweis. Wir konnen diese Behauptungen direkt nachrechnen.  q.e.d.

1.5.3 DEFINITION Ein Paar von Losungen (¢1, 2) einer homogenen linearen Diffe-
rentialgleichung zweiter Ordnung wird als Fundamentalsystem der Differentialglei-
chung bezeichnet, wenn sich jede andere Losung als Linearkombination von ¢; und
9 schreiben lédsst. Man spricht auch von einem System von Fundamentallésungen.
Dabei handelt es sich eigentlich um eine Basis des Losungsraums.

Wir kénnen die Losungsmengen linearer Differentialgleichungen zweiter Ordnung
folgendermassen beschreiben:

1.5.4 SaTz 1. Jede homogene lineare Differentialgleichung zweiter Ordnung be-
sitzt ein Fundamentalsystem {1, @o}. Das heisst, der Losungsraum ist zwei-
dimensional.

2. Ist ¢, eine spezielle Losung einer auf dem Intervall I definierten inhomogenen
linearen Differentialgleichung zweiter Ordnung

y' + ai(z)y + ao(x)y = b(z)
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und ist {1, po} ein Fundamentalsystem der zugehérigen homogenen Differen-
tialgleichung
Y+ ar(z)y' + ap(x)y =0,

so lautet die allgemeine Losung der inhomogenen Gleichung
y(x) = pp(x) + crp1(z) + capa(x)  (c1,¢2 € R konstant, x € I).
1.5.5 BEISPIEL Die allgemeine Losung der inhomogenen Differentialgleichung

/

2
y'+ Y =6 (z>0)

lautet )
yr) =2 +c1-—+ca-1 (c1,c0 €Rz>0).
T

Hier ist also ¢,(z) = 22, p1(z) = 2, @o(z) = 1.

Beweis des Satzes. Die zweite Behauptung ergibt sich aus der ersten mit Satz 1.5.2.
Es reicht also, die erste Behauptung zu beweisen. Dazu konstruieren wir ein Fun-
damentalsystem der Differentialgleichung mithilfe des Satzes iiber die eindeutige
Losbarkeit der Anfangswertprobleme. Und zwar wihlen wir einen Punkt xy im Defi-
nitionsbereich I der Koeffizientenfunktionen der Differentialgleichung aus. Seien ¢,
und ¢y die Losungen der Differentialgleichung zu den Anfangsbedingungen

e1(z0) =1, ¢i(20) =0 und @a(x0) =0,  @h(xe) =1.

Die Existenz dieser Losungen wird durch den Satz iiber die eindeutige Losbarkeit
der Anfangswertprobleme garantiert.

Ist jetzt ¢ irgendeine Losung der homogenen Differentialgleichung, so konnen
wir ¢ als Linearkombination von ¢; und @9 schreiben. Denn setzen wir ¢; := ()
und ¢y := ¢'(x9), so ist die Funktion ¢;¢1 + co¢o eine Losung der homogenen Dif-
ferentialgleichung, die dieselben Anfangsbedingungen erfiillt wie ¢. Nach dem Ein-
deutigkeitssatz stimmt diese Linearkombination also bereits mit ¢ iiberein.  q.e.d.

Die folgende Beobachtung wird sich als niitzlich erweisen, wenn es darum geht,
die Idee der Variation der Konstanten auf inhomogene lineare Differentialgleichungen
zweiter Ordnung zu iibertragen.

1.5.6 LEMMA Zwei Liosungen ¢, @o: I — R einer homogenen linearen Differenti-

algleichung bilden genau dann ein Fundamentalsystem, wenn die daraus gebildete
Wronski- Determinante nirgends verschwindet:

W) :=' an e ':z (1)) — i (@)pale) 20 VaeT.
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Beweis. Sei xg € I fest gewahlt. Die Losungen ¢, und ¢ bilden genau dann ein
Fundamentalsystem, wenn zu jedem g, y; € R Zahlen «, 8 € R existieren, so dass
o(x) := ap(x)+ Py (z) die entsprechenden Anfangsbedingungen erfiillt, das heisst:

p(ro) = api(ze) + Bpalzo) = o
¢'(ro) = api(ze) + Bey(ze) =

Das bedeutet, dass das Gleichungssystem in den Variablen «, mit der Koeffizi-
p1(z0) p2(wo)

p1(z0)  #h(wo)
wiederum ist dquivalent dazu, dass die Matrix A von Rang 2 ist oder anders gesagt,

dass det A = W(zo) #0. q.e.d.

entenmatrix A = ( ) zu jeder Vorgabe von yg,y; losbar ist. Dies

1 4
1.5.7 BEISPIEL y”+;y/—?y:0 (x #0).

Die Funktionen ¢;(z) = z? und ¢q(x) = 22 erfiillen diese Differentialgleichung
und bilden ein Fundamentalsystem und die entsprechende Wronskideterminante lau-
tet hier: (@) (@) ) )

o1(x)  pa(x x x”
Wi(x) = _
W=|20 G0l =] S

Also ist W (z) # 0 fiir alle zugelassenen z-Werte.

4
-

Fiir lineare Differentialgleichungen zweiter Ordnung gibt es keine allgemeinen
Losungsformeln. Aber wenn die Koeffizientenfunktionen a; und aq konstant sind,
also von x nicht explizit abhédngen, dann kann man konkrete Fundamentalsyste-
me angeben. Das wollen wir jetzt tun. Wir betrachten also eine homogene lineare
Differentialgleichung zweiter Ordnung mit konstanten Koeffizienten:

v +ay +ay =0 (a1,a9 € R konstant.)

Wie die zwei Ausgangsbeispiele zeigen, kénnen die Losungen solcher Gleichungen
sehr verschieden aussehen. Eine einheitliche Beschreibung der Lésungsmengen erhélt
man, wenn man zu komplexwertigen Funktionen iibergeht. Bereits im ersten Seme-
ster haben wir folgendes festgehalten (siche Mathe. Methoden I, Komplexe Zahlen):

1.5.8 BEMERKUNG Sei A € C festgewéhlt. Dann gilt:

d
E(e)‘t) =AM fiir alle t € R.

Zur Bestimmung eines Fundamentalsystems fiir die homogene lineare Differenti-
algleichung mit konstanten Koeffizienten machen wir jetzt den komplexen Ansatz:

y(xr) = e, wobei A € C ist.
Es gilt y/(z) = A\ und y”(x) = A\2e**. Einsetzen in die Differentialgleichung liefert:

(N4 a1\ +ap)e’ =0 fiir alle 2 € R.
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Da die Exponentialfunktion niemals den Wert 0 annimmt, folgt

AN+ ad+ag=0.

Die Funktion y(x) = e’ (z € R) ist also genau dann eine Losung der Differential-
gleichung, wenn \ eine Nullstelle des sogenannten charakteristischen Polynoms

p(\) == N+ a1\ + ag

der Differentialgleichung ist. Daraus ergibt sich folgende Ubersicht:

1.5.9

SATZ 1. Hat das charakteristische Polynom der Differentialgleichung zwei
verschiedene reelle Nullstellen A1, A2, so bilden die Funktionen y,(x) = eM®
und yo(x) = e* (v € R) ein Fundamentalsystem der Gleichung.

Hat das charakteristische Polynom der Differentialgleichung eine doppelte reel-
le Nullstelle \y, das heisst, ist p(\) = A2+a A +ag = (A —\;)?, dann bilden die
Funktionen y,(x) = eM® und ys(x) = 2eM® (v € R) ein Fundamentalsystem
der Gleichung.

Hat das charakteristische Polynom zwei zueinander komplex konjugierte Null-
stellen a i (o, f € R und B # 0), dann fiihrt der Ansatz auf die komplexen
Losungen z)(z) = eM® = elatiB)z = eov . 0187 ynd 2, (1) = e*2® = elomi¥)z =
e . =87 (fiir v € R). Reellwertige Losungen erhalten wir, indem wir jeweils
zum Real- bzw. zum Imaginérteil iibergehen:

y1(x) = Re(z1(z)) = e** - cos(Bx) (z € R) und

yo(x) =Im(z1(z)) = e** - sin(Bz) (r € R).

Wir halten fest, dass in jedem Fall ein Fundamentalsystem existiert, dessen
Wronski-Determinante in keinem Punkt verschwindet.

Beweis. Zu 2.: Uberpriifen wir zuniichst, dass y, tatséchlich die Differentialgleichung

lost:

() = Mz + DeM® yi(x) = (Ao +2X )"

Einsetzen in die Differentialgleichung liefert:

Yy +

Die Wronski-Determinante ist an jeder Stelle x ungleich Null, denn W (x)

q.e.d.

aryh + ag = A2z + 2\ + oy x + ay + apr)e™® = (p(A\)z +p'(M))eM" = 0.

— €2>\11‘ )

Hier nun einige konkrete Anwendungsbeispiele.

1.5.10 BEeispIEL Wir suchen eine Losung des Anfangswertproblems

1
v +y + 7v=0 und y(1) =1,4'(1) =0.
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Das charakteristische Polynom lautet hier: p(\) = A* + \ + i. Dies Polynom hat

eine doppelte Nullstelle bei —%. Also bilden y;(z) = e 2 und ya(z) = ze 2 ein

Fundamentalsystem. Die Anfangsbedingungen fiir y(x) = cie™ 2 +cyze™ 2 sind genau

dann erfiillt, wenn ¢; = ¢y = %e%, und die gesuchte Losung ist y(z) = 1 (1+xz)el=2)/2.

1.5.11 BEISPIEL Losen wir folgendes Anfangswertproblem
y'+2y +5y=0 und y(0)=1,y(0)=—1.

Das charakteristische Polynom p(\) = A\? 4+ 2\ + 5 hat die komplex konjugierten
Nullstellen —1 + 2¢. Hier ist also a« = —1 und g = 2. Die Funktionen

yi(x) = e “cos(2x) und ys(x) =e “sin(2x)

bilden daher ein Fundamentalsystem. Die Anfangsbedingungen fiir y(z) = (¢; cos(2x)+
cosin(2z))e™* fithren auf das lineare Gleichungssystem

y(0)=1 = «
y,(O) =-1 = —c1 + 202

Also lautet die gesuchte Funktion y(x) = e *cos(2z) (x € R). Durch diese
Funktion wird eine geddmpfte Schwingung beschrieben, die Amplitude nimmt ex-
ponentiell mit x ab.

1.5.12 BEISPIEL Das Verhalten einer schwingenden Feder bei Beriicksichtigung der
Reibung ist beschrieben durch die Differentialgleichung;:

y' = =20y -y,

wobei a > 0 ein Mass fiir die Reibung ist und w > 0 die Elastizitit der Feder angibt.
Das charakteristische Polynom der Gleichung lautet

p(\) = A? + 20\ + w?

und hat die Nullstellen —a ++/a? — w?. Stellen wir zusétzlich die Anfangsbedingun-
gen y(0) = yo und 3/(0) = —ayy, dann gibt es folgende drei Moglichkeiten, je nach
Verhiltnis von Reibung zu Elastizitét:

e [st 0 < a < w, dann liegt eine gedampfte Schwingung vor, und zwar ist
y(x) = yoe  “cos(fx), wobei f=+Vw?— a2
e [st a = w, handelt es sich um den aperiodischen Grenzfall, ndmlich

y(x) =yoe ™ — 0.
T—r00
e Ist & > w, ist die Reibung so stark, dass eine Schwingung verhindert wird. In
diesem Fall ist

yoe “cosh(fz), wobei f=+va?—w? < a.
= yo(elTotPr L ela=hry /9 5 0.

T—r00

y()
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Schauen wir uns zu guter Letzt noch den inhomogenen Fall an. Eine inhomogene
lineare Differentialgleichung zweiter Ordnung hat die Gestalt

y' +a(@)y + ao(z)y = b(z)

wobei ay, ag, b: I — R stetige Funktionen sind. Die allgemeine Losung dieser Diffe-
rentialgleichung ist nach Satz 1.5.4 von der Form

y(x) = yp(z) + 1y () + coyp(z) fiir z €1,

wobei ¢y, co Konstanten, y,(z) eine spezielle Losung der inhomogenen Differential-
gleichung auf / und {y;(z), y2(x)} ein Fundamentalsystem der zugehoérigen homoge-
nen Differentialgleichung ist. Wie man ein Fundamentalsystem findet, wurde schon
erklart. Jetzt bleibt noch zu ergénzen, wie man eine spezielle Losung der inhomoge-
nen Gleichung finden kann. In vielen konkreten Féllen fiihrt (bei einiger Erfahrung)
geschicktes Raten am schnellsten zum Ziel. Aber es gibt auch eine Methode, die
ohne Raten funktioniert. Diese Methode beruht auf der Variation der Konstanten,
die wir schon bei der Behandlung der inhomogenen linearen Differentialgleichungen
erster Ordnung eingesetzt hatten.

Dazu nehmen wir an, {y;(x), y2(z)} sei ein Fundamentalsystem der zugehorigen
homogenen Differentialgleichung, und machen den Ansatz

y(x) = w(2)y: () + ua(2)ys() -

Um die Schreibweise zu vereinfachen, lassen wir jetzt die Angabe der Zeiten x weg.
Dann ist nach Produktregel

y' = Uiy + usyz + uryy + usyy
und die zweite Ableitung lautet:
y" = (uhyr + upys)' + Wiy + upys + w4 usys

Einsetzen in die inhomogene Differentialgleichung liefert, wenn wir ein wenig um-
sortieren:

Y+ ary + aoy = (uiyr + ubya)' + ar(uiyr + ugye) + (uiyy + ugys)

+ur (Y] + ary; + aoyr) + w2 (Y + a1ys + agys) = b.

WEeil y; und y, Losungen der entsprechenden homogenen Differentialgleichung sind,
fallen die Ausdriicke in den letzten beiden Klammern weg, und es bleibt die folgende
Bedingung an die Ableitungen von u; und us:

(uhyn + usy2) + ar(uiyr + uhys) + (wiyy + usys) = 0.

Diese Bedingung ist sicher erfiillt, wenn an jeder Stelle = folgende zwei Gleichungen
simultan gelten:

yi(2)ui(x) + ya(z)uy(z) = 0
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Vi(@)ui (z) + gy (@)us(x) = b(x)

Die Determinante der Koeffizienten dieses linearen Gleichungssystems fiir die Un-
bekannten ) (z) und wh(z) stimmt gerade mit der Wronski-Determinante W (z)
iiberein, und wie oben bemerkt, kénnen wir davon ausgehen, dass W (x) # 0 fiir alle
x. Deshalb ist das Gleichungssystem fiir alle x eindeutig l6sbar, und zwar ist:

uy(x) = ——22=2 und  uh(z) =

Durch Integration erhalten wir daraus eine spezielle Losung:

Yp(x) = =11 (2) / %dw + y2(x) / %dw (xel).

Hier sind zwei Beispiele inhomogener Differentialgleichungen, an denen das Ver-
fahren getestet werden soll:

1.5.13 BEISPIEL

1
"ty = , vel=
vty cos(z) v (

“303)
Das charakteristische Polynom der zugehorigen homogenen Gleichung ist p(\) =
A? + 1 mit den Nullstellen +i. Als Fundamentalsystem wihlen wir y;(z) = cos(x)
und yo(x) = sin(z). Dann ist W (z) = 1 fiir alle z.
Die Inhomogenitét der Differentialgleichung ist hier b(x) = ﬁ(x) Die Variation
der Konstanten fiihrt auf:
ba)ya(z)  —sin(a)

(@) = - W(z) - cos(x) und

by (x) _ cos(x) _

w(®) = W(z) cos(x)

Durch Integration wird daraus bei passender Wahl der Integrationskonstanten: u(x) =
In(cos(x)) und uy(x) = x. Die entsprechende spezielle Losung lautet:

Yp(x) = cos(x) - In(cos(r)) + z -sin(x) fir -5 <z < 7.
1.5.14 BEISPIEL Sei jetzt A > 0 eine vorgegebene Frequenz. Die Gleichung
y' + Ny =cos(\x), z€R,

beschreibt eine freie Schwingung (ohne Reibung), angeregt durch eine Cosinus-
schwingung derselben Frequenz. Eine spezielle Losung lautet hier

.
yp(z) = T sin(Ax) .
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Das ist eine Schwingung, deren Amplitude linear mit x wéchst. Fiir x — oo, geht
auch die Amplitude gegen unendlich. Das erklart das Phanomen der Resonanzkata-
strophen.

Man findet diese spezielle Losung am einfachsten, wenn man das beschriebe-
ne Verfahren der Variation der Konstanten hier im Komplexen durchfiihrt. Wir
wissen schon, dass die Funktionen z;(z) = ¢* und z(z) = ¢~** komplexe Funda-
mentallosungen der zugehorigen homogenen Differentialgleichung sind. Die Wronski-

Determinante dazu ist W (x) = —2iX fiir alle z. Die Inhomogenitét ist hier b(x) =
cos(Az) = 3(e* + e7"*). Der Variationsansatz fiihrt deshalb auf
b(x)ze(x) 1 iy
/ . 7)== 2i\x
uy(x) = @) 4i)\(1 +e ) und
b(x)z(x) =1, o
! 2id\x
pum _— = ]_ .
ua() W) e Y

Durch Integration und Einsetzen in den urspriinglichen Ansatz erhalten wir bei
passender Wahl der Integrationskonstanten die angegebene spezielle Losung.

Kehren wir nochmal zuriick zu Beispiel 1.5.5. Hier wurde bemerkt, dass die
Gleichung
2
yv'+-y =6 (x>0)
x
die spezielle Losung ¢,(z) = 2? hat, ohne jedoch zu erkldren, wie man diese Losung

finden kann. Wahlen wir hier das Fundamentalsystem ¢;(z) = 1 und ¢o(z) = 1, so
lautet die entsprechende Wronski-Determinante

Setzt man nun in die obengenannte Losungsformel ein, erhélt man zur entsprechen-
den Anfangsbedingung:

o) = —r(o) [P 4oy g [T

1 [ |
——/ 6x2d:1:+/ 6-—-2?de =22,
x Jo 0 x

wie behauptet.



