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1.4 Lineare Differentialgleichungen erster Ordnung

Unter einer linearen Differentialgleichung erster Ordnung versteht man eine Diffe-
rentialgleichung der Form

y′ = a(x)y + b(x) ,

wobei die Koeffizienten a, b: I → R stetige Funktionen in x sind. Ist b(x) = 0 für alle
x, so heisst die Differentialgleichung homogen, andernfalls inhomogen.

Ist die Gleichung homogen und die Funktion a integrierbar, so können wir die
Lösungen durch Trennung der Variablen bestimmen. Für y 6= 0 erhalten wir aus
y′ = dy

dx
= a(x) y

ln(|y|) =
∫

dy

y
dt =

∫

a(x)dx =: A(x) + c̃ .

Die allgemeine Lösung hat also die Form

y = c eA(x) ,

wobei A eine Stammfunktion zu a bezeichnet und c eine beliebige Konstante ist.
Die Lösung zur Anfangsbedingung y(x0) = y0 ist eindeutig bestimmt und lautet:

y(x) = y0 exp(A(x)−A(x0)) für alle x ∈ I.

Das Definitionsintervall jeder Lösung stimmt also mit dem Definitionsbereich der
Funktion a überein. Für y0 = 0 erhält man einen Ausschnitt der x-Achse als
Lösungskurve. Für y0 > 0 liegt die Lösungskurve ganz oberhalb und für y0 < 0
ganz unterhalb der x-Achse.

1.4.1 Beispiel Schauen wir uns das Verhalten des Luftdrucks p(h) in Abhängig-
keit von der Höhe h über dem Meeresspiegel an. Die Abnahme des Luftdrucks mit
zunehmender Höhe hängt mit der Abnahme des Gewichtes der Luftsäule über einer
Flächeneinheit zusammen. Genauer gilt

p′(h) = −ρ(h) ,

wobei ρ(h) das spezifische Gewicht der Luft in der Höhe h bezeichnet. Weiter ge-
hen wir davon aus, dass die ideale Gasgleichung erfüllt ist. Das bedeutet, dass ρ
proportional ist zum Verhältnis von Luftdruck p zu Temperatur T :

ρ(h) = c1 ·
p(h)

T (h)

für eine Konstante c1. Für trockene Luft beträgt diese spezielle Gaskonstante c1 ≈
287[Pa·m3

kg·K
]. Auch die Temperatur nimmt mit wachsender Höhe ab. Wir wollen anneh-

men, der Temperaturabfall sei proportional zur Höhe, also T (h) = T0−c2h, wobei T0
die Temperatur auf Meereshöhe angibt und c2 eine weitere Konstante ist. Genauer
nehmen wir an c2 ≈ 1/100[K/m]. Dann erhalten wir folgende Differentialgleichung:

p′(h) = −c1
p(h)

T (h)
=

−c1
T0 − c2h

p(h) .
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Es handelt sich also um eine homogene lineare Differentialgleichung, wobei hier die
Koeffizientenfunktion lautet:

a(h) =
−c1

T0 − c2h
für h ∈ [0,

T0
c2
) .

Um die Lösung der Differentialgleichung zu bestimmen, müssen wir zunächst eine
Stammfunktion A für die Funktion a finden. Dazu verwenden wir die Substitution
T = T0 − c2h und erhalten für 0 ≤ h < T0

c2
:

A(h) =

∫ h

0

a(h)dh =

∫ h

0

−c1dh
T0 − c2h

=
c1
c2

∫ T

T0

dT

T
=
c1
c2

ln(
T

T0
) =

c1
c2

ln(1− c2h

T0
) .

Wenn also der Luftdruck auf Meereshöhe p(0) = p0 beträgt, dann gilt:

p(h) = p0 · eA(h) = p0(1−
c2h

T0
)
c1

c2 für 0 ≤ h < T0/c2 ≈ 100T0.

Die Funktion p ist monoton fallend und konvex, weil c1
c2

≈ 3 · 104 ist. Wenn wir
annehmen, dass T0 = 273[K] (also gleich Null Grad Celsius) ist, dann ist der Druck
bei einer Höhe von etwa 27[km] auf Null gefallen.

Betrachten wir nun den inhomogenen Fall. Eine Lösung der inhomogenen linea-
ren Differentialgleichung kann man mithilfe der Methode der Variation der Kon-

stanten finden. Dies Verfahren besteht aus den folgenden drei Schritten:

• die allgemeine Lösung y = c eA(x) der zugehörigen homogenen Differentialglei-
chung aufstellen,

• durch den Ansatz y = C(x)eA(x) die allgemeine Lösung der inhomogenen Glei-
chung finden,

• die Integrationskonstante so anpassen, dass die Anfangsbedingung erfüllt ist.

1.4.2 Beispiel Wir betrachten das Anfangswertproblem

y′ =
3

x
y + x3ex − 2x, y(1) = 1 .

Im ersten Schritt lösen wir die dazugehörige homogene Gleichung y′ = 3
x
y. Dazu

müssen wir eine Stammfunktion der Funktion a(x) = 3
x
bestimmen. Wir wählen

A(x) =

∫ x

1

3

x
dx = 3 ln(x) = ln(x3) .

Also lautet die allgemeine Lösung der homogenen Gleichung

y(x) = c eA(x) = c · x3 .
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Im zweiten Schritt machen wir den Ansatz der Variation der Konstanten y(x) =
c(x) · x3 und setzen in die inhomogene Gleichung ein. Wir erhalten:

y′(x) = c′(x) · x3 + 3c(x)x2 =
3

x
c(x)x3 + x3ex − 2x .

Es folgt

c′(x) = ex − 2

x2
.

Durch Integration erhalten wir:

y(x) = c(x)x3 = (ex +
2

x
+ c1)x

3 für eine Konstante c1.

Im dritten Schritt wird die Konstante c1 durch die Anfangsbedingung festgelegt:

y(1) = (e+ 2 + c1) = 1 .

Also ist c1 = −e− 1, und die Lösung des Anfangswertproblems lautet:

ϕ(x) = (ex − e− 1)x3 + 2x2 für x ∈ R .

Das Verfahren funktioniert immer. Es gilt nämlich folgendes.

1.4.3 Satz Das Anfangswertproblem

y′ = a(x) · y + b(x) und y(x0) = y0 ,

wobei a, b: I → R stetige Funktionen und x0 ∈ I, y0 ∈ R sind, hat auf I eine
eindeutig bestimmte Lösung, nämlich ϕ(x) = (C(x) + y0) e

A(x),

wobei A(x) :=

∫ x

x0

a(s)ds und C(x) =

∫ x

x0

b(s) e−A(s) ds .

Beweis. Durch Einsetzen kann man überprüfen, dass die durch die Formel angegebe-
ne Funktion ϕ eine Lösung beschreibt. Nehmen wir jetzt an, die Funktion ϕ1: I → R

sei ebenfalls eine Lösung desselben Anfangswertproblems. Dann gilt für die Differenz
ψ := ϕ− ϕ1 folgendes:

ψ′(x) = ϕ′(x)− ϕ′

1(x) = a(x)(ϕ(x)− ϕ1(x)) = a(x)ψ(x) .

Also ist ψ eine Lösung der zugehörigen homogenen Differentialgleichung y′ = a(x)·y,
und zwar zur Anfangsbedingung y(x0) = 0. Nach dem eben Gesagten, ist deshalb
ψ(x) = 0 für alle x, und das bedeutet, die beiden Lösungen ϕ und ϕ1 stimmen
miteinander überein. q.e.d.

Hier nochmals ein Beispiel.
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1.4.4 Beispiel Betrachten wir das Anfangsproblem

y′ =
dy

dx
= x− y , y(1) = 2 .

Die zugehörige homogene Differentialgleichung lautet y′ = −y. Hier ist also

a(x) = −1 , x0 = 1 , y0 = 2 , b(x) = x .

Wir erhalten

A(x) =

∫ x

1

(−1) dx = −x+ 1 und C(x) =

∫ x

1

s es−1 ds = (x− 1) ex−1 .

Die gesuchte Lösung lautet also

ϕ(x) = ((x− 1) ex−1 + 2) e1−x = (x− 1) + 2e1−x .

1.5 Lineare Differentialgleichungen zweiter Ordnung

Eine lineare Differentialgleichung zweiter Ordnung hat die Form

y′′ + a1(x)y
′ + a0(x)y = b(x) ,

wobei a1, a0, b: I → R stetige Funktionen auf einem Intervall I ⊂ R sind, die nur
von x abhängen. Entsprechend definiert man lineare Differentialgleichungen höherer
Ordnung. Ist b(x) = 0 für alle x, so spricht man von einer homogenen Differential-
gleichung, andernfalls heisst die Gleichung inhomogen. Gleichungen dieses Typs sind
uns bereits begegnet, hier nochmals die entsprechenden Beispiele:

• Die Schwingungsgleichung der ungedämpften Schwingung lautet

y′′ + λ2y = 0 (λ 6= 0 konstant.)

Dies ist eine homogene lineare Differentialgleichung zweiter Ordnung, und die
Lösungen lauten

y(x) = c1 sin(λx) + c2 cos(λx) für x ∈ R ,

wobei c1, c2 ∈ R beliebig gewählte Konstanten sind.

• Die Lösungen der homogenen Gleichung

y′′ − λ2y = 0 (λ 6= 0)

lauten
y(x) = c1e

λx + c2e
−λx für x ∈ R. .

Hier sind wiederum c1, c2 ∈ R beliebig gewählte Konstanten.
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In diesen Beispielen enthält die allgemeine Lösung jeweils zwei frei wählbare
Konstanten. Diese Konstanten können durch geeignete Anfangsbedingungen festge-
legt werden. Dies ist kein Zufall, sondern ein allgemeines Prinzip. Man kann aus dem
schon erwähnten Existenz- und Eindeutigkeitssatz für “gutartige” Differentialglei-
chungen erster Ordnung die folgende wichtige Aussage herleiten (allerdings werden
wir hier auf die Herleitung verzichten):

1.5.1 Satz Sei I ⊂ R ein Intervall und seien a1, a0, b: I → R stetige Funktionen.
Seien weiter x0 ∈ I, y0, y1 ∈ R beliebig vorgegeben. Die Differentialgleichung

y′′ + a1(x)y
′ + a0(x)y = b(x)

hat genau eine Lösung ϕ: I → R, die folgende Anfangsbedingungen erfüllt

ϕ(x0) = y0, ϕ′(x0) = y1 .

Hier zunächst einige Beobachtungen zur Menge der Lösungen einer linearen Dif-
ferentialgleichung:

1.5.2 Satz 1. Für die Lösungen einer homogenen linearen Differentialgleichung
gilt das Superpositionsprinzip, das heisst, sind ϕ1, ϕ2: I → R Lösungen der
Differentialgleichung, so auch jede Linearkombination αϕ1 + βϕ2 (α, β ∈ R

Konstanten). Das heisst, die Lösungen bilden einen linearen Unterraum im
Vektorraum aller Funktionen auf I.

2. Sind ϕ1, ϕ2 Lösungen einer inhomogenen linearen Differentialgleichung, so ist
die Differenz ϕ1−ϕ2 Lösung der zugehörigen homogenen Differentialgleichung.

Beweis. Wir können diese Behauptungen direkt nachrechnen. q.e.d.

1.5.3 Definition Ein Paar von Lösungen (ϕ1, ϕ2) einer homogenen linearen Diffe-
rentialgleichung zweiter Ordnung wird als Fundamentalsystem der Differentialglei-
chung bezeichnet, wenn sich jede andere Lösung als Linearkombination von ϕ1 und
ϕ2 schreiben lässt. Man spricht auch von einem System von Fundamentallösungen.
Dabei handelt es sich eigentlich um eine Basis des Lösungsraums.

Wir können die Lösungsmengen linearer Differentialgleichungen zweiter Ordnung
folgendermassen beschreiben:

1.5.4 Satz 1. Jede homogene lineare Differentialgleichung zweiter Ordnung be-
sitzt ein Fundamentalsystem {ϕ1, ϕ2}. Das heisst, der Lösungsraum ist zwei-
dimensional.

2. Ist ϕp eine spezielle Lösung einer auf dem Intervall I definierten inhomogenen
linearen Differentialgleichung zweiter Ordnung

y′′ + a1(x)y
′ + a0(x)y = b(x)
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und ist {ϕ1, ϕ2} ein Fundamentalsystem der zugehörigen homogenen Differen-
tialgleichung

y′′ + a1(x)y
′ + a0(x)y = 0 ,

so lautet die allgemeine Lösung der inhomogenen Gleichung

y(x) = ϕp(x) + c1ϕ1(x) + c2ϕ2(x) (c1, c2 ∈ R konstant, x ∈ I).

1.5.5 Beispiel Die allgemeine Lösung der inhomogenen Differentialgleichung

y′′ +
2

x
y′ = 6 (x > 0)

lautet

y(x) = x2 + c1 ·
1

x
+ c2 · 1 (c1, c2 ∈ R, x > 0) .

Hier ist also ϕp(x) = x2, ϕ1(x) =
1
x
, ϕ2(x) = 1.

Beweis des Satzes. Die zweite Behauptung ergibt sich aus der ersten mit Satz 1.5.2.
Es reicht also, die erste Behauptung zu beweisen. Dazu konstruieren wir ein Fun-
damentalsystem der Differentialgleichung mithilfe des Satzes über die eindeutige
Lösbarkeit der Anfangswertprobleme. Und zwar wählen wir einen Punkt x0 im Defi-
nitionsbereich I der Koeffizientenfunktionen der Differentialgleichung aus. Seien ϕ1

und ϕ2 die Lösungen der Differentialgleichung zu den Anfangsbedingungen

ϕ1(x0) = 1, ϕ′

1(x0) = 0 und ϕ2(x0) = 0, ϕ′

2(x0) = 1 .

Die Existenz dieser Lösungen wird durch den Satz über die eindeutige Lösbarkeit
der Anfangswertprobleme garantiert.

Ist jetzt ϕ irgendeine Lösung der homogenen Differentialgleichung, so können
wir ϕ als Linearkombination von ϕ1 und ϕ2 schreiben. Denn setzen wir c1 := ϕ(x0)
und c2 := ϕ′(x0), so ist die Funktion c1ϕ1 + c2ϕ2 eine Lösung der homogenen Dif-
ferentialgleichung, die dieselben Anfangsbedingungen erfüllt wie ϕ. Nach dem Ein-
deutigkeitssatz stimmt diese Linearkombination also bereits mit ϕ überein. q.e.d.

Die folgende Beobachtung wird sich als nützlich erweisen, wenn es darum geht,
die Idee der Variation der Konstanten auf inhomogene lineare Differentialgleichungen
zweiter Ordnung zu übertragen.

1.5.6 Lemma Zwei Lösungen ϕ1, ϕ2: I → R einer homogenen linearen Differenti-
algleichung bilden genau dann ein Fundamentalsystem, wenn die daraus gebildete
Wronski-Determinante nirgends verschwindet:

W (x) :=

∣

∣

∣

∣

ϕ1(x) ϕ2(x)
ϕ′

1(x) ϕ′

2(x)

∣

∣

∣

∣

:= ϕ1(x)ϕ
′

2(x)− ϕ′

1(x)ϕ2(x) 6= 0 ∀x ∈ I .
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Beweis. Sei x0 ∈ I fest gewählt. Die Lösungen ϕ1 und ϕ2 bilden genau dann ein
Fundamentalsystem, wenn zu jedem y0, y1 ∈ R Zahlen α, β ∈ R existieren, so dass
ϕ(x) := αϕ1(x)+βϕ2(x) die entsprechenden Anfangsbedingungen erfüllt, das heisst:

ϕ(x0) = αϕ1(x0) + βϕ2(x0) = y0
ϕ′(x0) = αϕ′

1(x0) + βϕ′

2(x0) = y1

Das bedeutet, dass das Gleichungssystem in den Variablen α, β mit der Koeffizi-

entenmatrix A =

(

ϕ1(x0) ϕ2(x0)
ϕ′

1(x0) ϕ′

2(x0)

)

zu jeder Vorgabe von y0, y1 lösbar ist. Dies

wiederum ist äquivalent dazu, dass die Matrix A von Rang 2 ist oder anders gesagt,
dass detA = W (x0) 6= 0. q.e.d.

1.5.7 Beispiel y′′ +
1

x
y′ − 4

x2
y = 0 (x 6= 0) .

Die Funktionen ϕ1(x) = x2 und ϕ2(x) = x−2 erfüllen diese Differentialgleichung
und bilden ein Fundamentalsystem und die entsprechende Wronskideterminante lau-
tet hier:

W (x) =

∣

∣

∣

∣

ϕ1(x) ϕ2(x)
ϕ′

1(x) ϕ′

2(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

x2 x−2

2x −2x−3

∣

∣

∣

∣

= −4

x
.

Also ist W (x) 6= 0 für alle zugelassenen x-Werte.

Für lineare Differentialgleichungen zweiter Ordnung gibt es keine allgemeinen
Lösungsformeln. Aber wenn die Koeffizientenfunktionen a1 und a0 konstant sind,
also von x nicht explizit abhängen, dann kann man konkrete Fundamentalsyste-
me angeben. Das wollen wir jetzt tun. Wir betrachten also eine homogene lineare
Differentialgleichung zweiter Ordnung mit konstanten Koeffizienten:

y′′ + a1y
′ + a0y = 0 (a1, a0 ∈ R konstant.)

Wie die zwei Ausgangsbeispiele zeigen, können die Lösungen solcher Gleichungen
sehr verschieden aussehen. Eine einheitliche Beschreibung der Lösungsmengen erhält
man, wenn man zu komplexwertigen Funktionen übergeht. Bereits im ersten Seme-
ster haben wir folgendes festgehalten (siehe Mathe. Methoden I, Komplexe Zahlen):

1.5.8 Bemerkung Sei λ ∈ C festgewählt. Dann gilt:

d

dt
(eλt) = λeλt für alle t ∈ R.

Zur Bestimmung eines Fundamentalsystems für die homogene lineare Differenti-
algleichung mit konstanten Koeffizienten machen wir jetzt den komplexen Ansatz:

y(x) = eλx, wobei λ ∈ C ist.

Es gilt y′(x) = λeλx und y′′(x) = λ2eλx. Einsetzen in die Differentialgleichung liefert:

(λ2 + a1λ+ a0)e
λx = 0 für alle x ∈ R.
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Da die Exponentialfunktion niemals den Wert 0 annimmt, folgt

λ2 + a1λ+ a0 = 0 .

Die Funktion y(x) = eλx (x ∈ R) ist also genau dann eine Lösung der Differential-
gleichung, wenn λ eine Nullstelle des sogenannten charakteristischen Polynoms

p(λ) := λ2 + a1λ+ a0

der Differentialgleichung ist. Daraus ergibt sich folgende Übersicht:

1.5.9 Satz 1. Hat das charakteristische Polynom der Differentialgleichung zwei
verschiedene reelle Nullstellen λ1, λ2, so bilden die Funktionen y1(x) = eλ1x

und y2(x) = eλ2x (x ∈ R) ein Fundamentalsystem der Gleichung.

2. Hat das charakteristische Polynom der Differentialgleichung eine doppelte reel-
le Nullstelle λ1, das heisst, ist p(λ) = λ2+a1λ+a0 = (λ−λ1)2, dann bilden die
Funktionen y1(x) = eλ1x und y2(x) = xeλ1x (x ∈ R) ein Fundamentalsystem
der Gleichung.

3. Hat das charakteristische Polynom zwei zueinander komplex konjugierte Null-
stellen α± iβ (α, β ∈ R und β 6= 0), dann führt der Ansatz auf die komplexen
Lösungen z1(x) = eλ1x = e(α+iβ)x = eαx · eiβx und z2(x) = eλ2x = e(α−iβ)x =
eαx · e−iβx (für x ∈ R). Reellwertige Lösungen erhalten wir, indem wir jeweils
zum Real- bzw. zum Imaginärteil übergehen:

y1(x) = Re(z1(x)) = eαx · cos(βx) (x ∈ R) und

y2(x) = Im(z1(x)) = eαx · sin(βx) (x ∈ R) .

Wir halten fest, dass in jedem Fall ein Fundamentalsystem existiert, dessen
Wronski-Determinante in keinem Punkt verschwindet.

Beweis. Zu 2.: Überprüfen wir zunächst, dass y2 tatsächlich die Differentialgleichung
löst:

y′2(x) = (λ1x+ 1)eλ1x y′′2(x) = (λ21x+ 2λ1)e
λ1x .

Einsetzen in die Differentialgleichung liefert:

y′′2 + a1y
′

2 + a0 = (λ21x+ 2λ1 + a1λ1x+ a1 + a0x)e
λ1x = (p(λ1)x+ p′(λ1))e

λ1x = 0 .

Die Wronski-Determinante ist an jeder Stelle x ungleich Null, denn W (x) = e2λ1x .
q.e.d.

Hier nun einige konkrete Anwendungsbeispiele.

1.5.10 Beispiel Wir suchen eine Lösung des Anfangswertproblems

y′′ + y′ +
1

4
y = 0 und y(1) = 1, y′(1) = 0 .
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Das charakteristische Polynom lautet hier: p(λ) = λ2 + λ + 1
4
. Dies Polynom hat

eine doppelte Nullstelle bei −1
2
. Also bilden y1(x) = e−

x

2 und y2(x) = xe−
x

2 ein
Fundamentalsystem. Die Anfangsbedingungen für y(x) = c1e

−
x

2 +c2xe
−

x

2 sind genau

dann erfüllt, wenn c1 = c2 =
1
2
e

1

2 , und die gesuchte Lösung ist y(x) = 1
2
(1+x)e(1−x)/2.

1.5.11 Beispiel Lösen wir folgendes Anfangswertproblem

y′′ + 2y′ + 5y = 0 und y(0) = 1, y′(0) = −1 .

Das charakteristische Polynom p(λ) = λ2 + 2λ + 5 hat die komplex konjugierten
Nullstellen −1± 2i. Hier ist also α = −1 und β = 2. Die Funktionen

y1(x) = e−x cos(2x) und y2(x) = e−x sin(2x)

bilden daher ein Fundamentalsystem. Die Anfangsbedingungen für y(x) = (c1 cos(2x)+
c2 sin(2x))e

−x führen auf das lineare Gleichungssystem

y(0) = 1 = c1
y′(0) = −1 = −c1 + 2c2

Also lautet die gesuchte Funktion y(x) = e−x cos(2x) (x ∈ R). Durch diese
Funktion wird eine gedämpfte Schwingung beschrieben, die Amplitude nimmt ex-
ponentiell mit x ab.

1.5.12 Beispiel Das Verhalten einer schwingenden Feder bei Berücksichtigung der
Reibung ist beschrieben durch die Differentialgleichung:

y′′ = −2αy′ − ω2y ,

wobei α > 0 ein Mass für die Reibung ist und ω > 0 die Elastizität der Feder angibt.
Das charakteristische Polynom der Gleichung lautet

p(λ) = λ2 + 2αλ+ ω2

und hat die Nullstellen −α±
√
α2 − ω2. Stellen wir zusätzlich die Anfangsbedingun-

gen y(0) = y0 und y′(0) = −αy0, dann gibt es folgende drei Möglichkeiten, je nach
Verhältnis von Reibung zu Elastizität:

• Ist 0 < α < ω, dann liegt eine gedämpfte Schwingung vor, und zwar ist

y(x) = y0e
−αx cos(βx) , wobei β =

√
ω2 − α2.

• Ist α = ω, handelt es sich um den aperiodischen Grenzfall, nämlich

y(x) = y0e
−αx −→

x→∞

0 .

• Ist α > ω, ist die Reibung so stark, dass eine Schwingung verhindert wird. In
diesem Fall ist

y(x) = y0e
−αx cosh(βx) , wobei β =

√
α2 − ω2 < α.

= y0(e
(−α+β)x + e(−α−β)x)/2 −→

x→∞

0 .
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Schauen wir uns zu guter Letzt noch den inhomogenen Fall an. Eine inhomogene
lineare Differentialgleichung zweiter Ordnung hat die Gestalt

y′′ + a1(x)y
′ + a0(x)y = b(x) ,

wobei a1, a0, b: I → R stetige Funktionen sind. Die allgemeine Lösung dieser Diffe-
rentialgleichung ist nach Satz 1.5.4 von der Form

y(x) = yp(x) + c1y1(x) + c2y2(x) für x ∈ I ,

wobei c1, c2 Konstanten, yp(x) eine spezielle Lösung der inhomogenen Differential-
gleichung auf I und {y1(x), y2(x)} ein Fundamentalsystem der zugehörigen homoge-
nen Differentialgleichung ist. Wie man ein Fundamentalsystem findet, wurde schon
erklärt. Jetzt bleibt noch zu ergänzen, wie man eine spezielle Lösung der inhomoge-
nen Gleichung finden kann. In vielen konkreten Fällen führt (bei einiger Erfahrung)
geschicktes Raten am schnellsten zum Ziel. Aber es gibt auch eine Methode, die
ohne Raten funktioniert. Diese Methode beruht auf der Variation der Konstanten,
die wir schon bei der Behandlung der inhomogenen linearen Differentialgleichungen
erster Ordnung eingesetzt hatten.

Dazu nehmen wir an, {y1(x), y2(x)} sei ein Fundamentalsystem der zugehörigen
homogenen Differentialgleichung, und machen den Ansatz

y(x) = u1(x)y1(x) + u2(x)y2(x) .

Um die Schreibweise zu vereinfachen, lassen wir jetzt die Angabe der Zeiten x weg.
Dann ist nach Produktregel

y′ = u′1y1 + u′2y2 + u1y
′

1 + u2y
′

2

und die zweite Ableitung lautet:

y′′ = (u′1y1 + u′2y2)
′ + u′1y

′

1 + u′2y
′

2 + u1y
′′

1 + u2y
′′

2 .

Einsetzen in die inhomogene Differentialgleichung liefert, wenn wir ein wenig um-
sortieren:

y′′ + a1y
′ + a0y = (u′1y1 + u′2y2)

′ + a1(u
′

1y1 + u′2y2) + (u′1y
′

1 + u′2y
′

2)

+u1(y
′′

1 + a1y
′

1 + a0y1) + u2(y
′′

2 + a1y
′

2 + a0y2) = b .

Weil y1 und y2 Lösungen der entsprechenden homogenen Differentialgleichung sind,
fallen die Ausdrücke in den letzten beiden Klammern weg, und es bleibt die folgende
Bedingung an die Ableitungen von u1 und u2:

(u′1y1 + u′2y2)
′ + a1(u

′

1y1 + u′2y2) + (u′1y
′

1 + u′2y
′

2) = b .

Diese Bedingung ist sicher erfüllt, wenn an jeder Stelle x folgende zwei Gleichungen
simultan gelten:

y1(x)u
′

1(x) + y2(x)u
′

2(x) = 0
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y′1(x)u
′

1(x) + y′2(x)u
′

2(x) = b(x)

Die Determinante der Koeffizienten dieses linearen Gleichungssystems für die Un-
bekannten u′1(x) und u′2(x) stimmt gerade mit der Wronski-Determinante W (x)
überein, und wie oben bemerkt, können wir davon ausgehen, dass W (x) 6= 0 für alle
x. Deshalb ist das Gleichungssystem für alle x eindeutig lösbar, und zwar ist:

u′1(x) = −b(x)y2(x)
W (x)

und u′2(x) =
b(x)y1(x)

W (x)
.

Durch Integration erhalten wir daraus eine spezielle Lösung:

yp(x) = −y1(x)
∫

b(x)y2(x)

W (x)
dx+ y2(x)

∫

b(x)y1(x)

W (x)
dx (x ∈ I) .

Hier sind zwei Beispiele inhomogener Differentialgleichungen, an denen das Ver-
fahren getestet werden soll:

1.5.13 Beispiel

y′′ + y =
1

cos(x)
, x ∈ I = (−π

2
,
π

2
) .

Das charakteristische Polynom der zugehörigen homogenen Gleichung ist p(λ) =
λ2 + 1 mit den Nullstellen ±i. Als Fundamentalsystem wählen wir y1(x) = cos(x)
und y2(x) = sin(x). Dann ist W (x) = 1 für alle x.

Die Inhomogenität der Differentialgleichung ist hier b(x) = 1
cos(x)

. Die Variation
der Konstanten führt auf:

u′1(x) = −b(x)y2(x)
W (x)

=
− sin(x)

cos(x)
und

u′2(x) =
b(x)y1(x)

W (x)
=

cos(x)

cos(x)
= 1 .

Durch Integration wird daraus bei passender Wahl der Integrationskonstanten: u1(x) =
ln(cos(x)) und u2(x) = x. Die entsprechende spezielle Lösung lautet:

yp(x) = cos(x) · ln(cos(x)) + x · sin(x) für −π
2
< x < π

2
.

1.5.14 Beispiel Sei jetzt λ > 0 eine vorgegebene Frequenz. Die Gleichung

y′′ + λ2y = cos(λx) , x ∈ R,

beschreibt eine freie Schwingung (ohne Reibung), angeregt durch eine Cosinus-
schwingung derselben Frequenz. Eine spezielle Lösung lautet hier

yp(x) =
1

2λ
x sin(λx) .
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Das ist eine Schwingung, deren Amplitude linear mit x wächst. Für x → ∞, geht
auch die Amplitude gegen unendlich. Das erklärt das Phänomen der Resonanzkata-
strophen.

Man findet diese spezielle Lösung am einfachsten, wenn man das beschriebe-
ne Verfahren der Variation der Konstanten hier im Komplexen durchführt. Wir
wissen schon, dass die Funktionen z1(x) = eiλx und z2(x) = e−iλx komplexe Funda-
mentallösungen der zugehörigen homogenen Differentialgleichung sind. Die Wronski-
Determinante dazu ist W (x) = −2iλ für alle x. Die Inhomogenität ist hier b(x) =
cos(λx) = 1

2
(eiλx + e−iλx). Der Variationsansatz führt deshalb auf

u′1(x) = −b(x)z2(x)
W (x)

=
1

4iλ
(1 + e−2iλx) und

u′2(x) =
b(x)z1(x)

W (x)
=

−1

4iλ
(e2iλx + 1) .

Durch Integration und Einsetzen in den ursprünglichen Ansatz erhalten wir bei
passender Wahl der Integrationskonstanten die angegebene spezielle Lösung.

Kehren wir nochmal zurück zu Beispiel 1.5.5. Hier wurde bemerkt, dass die
Gleichung

y′′ +
2

x
y′ = 6 (x > 0)

die spezielle Lösung ϕp(x) = x2 hat, ohne jedoch zu erklären, wie man diese Lösung
finden kann. Wählen wir hier das Fundamentalsystem ϕ1(x) =

1
x
und ϕ2(x) = 1, so

lautet die entsprechende Wronski-Determinante

W (x) =

∣

∣

∣

∣

1
x

1
− 1

x2 0

∣

∣

∣

∣

=
1

x2
.

Setzt man nun in die obengenannte Lösungsformel ein, erhält man zur entsprechen-
den Anfangsbedingung:

ϕp(x) = −ϕ1(x)

∫ x

0

b(x)ϕ2(x)

W (x)
dx+ ϕ2(x)

∫ x

0

b(x)ϕ1(x)

W (x)
dx =

−1

x

∫ x

0

6x2 dx+

∫ x

0

6 · 1
x
· x2 dx = x2 ,

wie behauptet.


