
Kapitel 2

Lineare Algebra II

2.1 Lineare Abbildungen und Matrizen

Die mit der Vektorraumstruktur verträglichen Abbildungen zwischen Vektorräumen
werden als linear bezeichnet. Genauer definiert man:

2.1.1 Definition Eine Abbildung L:V → W zwischen zwei reellen Vektorräumen
V und W heisst linear , wenn für alle v, w ∈ V , λ ∈ R, folgendes gilt:

1. L(v + w) = L(v) + L(w).

2. L(λv) = λL(v).

2.1.2 Bemerkung Für jede lineare Abbildung L:V → W gilt L(0) = 0, das heisst
L bildet den Nullvektor aus V auf den Nullvektor aus W ab.

Beweis. Denn sei v ∈ V gewählt. Dann folgt aus der zweiten Bedingung L(0) =
L(0 · v) = 0 · L(v) = 0. q.e.d.

2.1.3 Beispiele (a) Sämtliche Drehungen des R
2 um den Nullpunkt um einen

beliebigen Winkel α ∈ [0, 2π] sind linear, sie sind sogar längentreu und bilden
Dreiecke auf kongruente Dreiecke ab. Entsprechend ist jede räumliche Drehung
um eine Achse durch den Nullpunkt eine lineare Selbstabbildung von R

3.

(b) Jede Spiegelung des R2 an einer Gerade durch den Nullpunkt ist linear. Aber
die Spiegelungen, deren Spiegelachsen nicht durch den Nullpunkt gehen, sind
nicht linear, weil sie den Nullpunkt nicht festlassen.

(c) Die Projektion p:R3 → R
2, (x, y, z) 7→ (x, y) ist linear, wie man direkt nachrech-

net. Auch jede andere orthogonale Projektion des Raumes auf eine Ebene, wie
sie verwendet werden, um Grundrisse, Aufrisse, Seitenansichten von Gebäuden
zu zeichnen, sind linear.

(d) Ein Zoom, also eine Streckung der Einheiten um einen bestimmten Vergrr-
osserungsfaktor ist linear. Dasselbe gilt für die Reskalierung von Koordinaten
mit unterschiedlichen Faktoren, also im zweidimensionalen zum Beispiel in
x-Richtung um Faktor 2 und in y-Richtung um Faktor 3.

(e) Der Ableitungsoperator D:C1[a, b] → C0[a, b], der einer stetig differenzierbaren
Funktion f auf [a, b] jeweils ihre Ableitung f ′ zuordnet, ist linear.
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(f) Auch der Integraloperator I:C0[a, b] → R, definiert durch I(f) :=
∫ b

a
f(x)dx

für f ∈ C0[a, b], ist linear, weil Integration mit Summenbildung und Skalar-
multiplikation vertauschbar ist.

Drehungen, Spiegelungen und senkrechte Projektionen haben die Eigenschaft,
sämtliche affinen Geraden wieder auf affine Geraden oder Punkte abzubilden. Weil
dies auch für jede beliebige lineare Selbstabbildung des R2 oder R3 gilt, nennt man
diese Abbildungen “linear”. Lineare Abbildungen lassen sich durch Matrizen be-
schreiben. Hier ein erstes Beispiel.

2.1.4 Beispiel Die folgende Abbildung L:R2 → R
3 ist definiert durch die Multi-

plikation von ebenen Vektoren mit einer festgewählten 3× 2-Matrix A:

L(

(

x

y

)

) :=





1 2
−1 1
3 −2



 ·

(

x

y

)

=





x+ 2y
−x+ y

3x− 2y



 .

Man kann leicht nachrechnen, dass diese Abbildung linear ist. Ausserdem ist

L(e1) = L(

(

1
0

)

) =





1
−1
3



 und L(e2) = L(

(

0
1

)

) =





2
1
−2



 .

Wir stellen also fest, dass die Bilder der kanonischen Basisvektoren e1 und e2 mit
den beiden Spalten der Matrix A übereinstimmen.

Allgemeiner gilt folgendes:

2.1.5 Satz Jede Matrix A vom Typ m× n definiert eine lineare Abbildung durch

Multiplikation

LA:R
n → R

m , v 7→ A · v .

Umgekehrt gibt es zu jeder linearen Abbildung L:Rn → R
m eine m×n-Matrix A mit

L = LA. An den Spalten von A können wir die Bilder der kanonischen Basisvektoren

ej ∈ R
n unter L ablesen.

Beweis. Man kann direkt nachrechnen, dass die Multiplikation von Spaltenvektoren
mit einer festen Matrix eine lineare Abbildung liefert.

Sei jetzt umgekehrt eine lineare Abbildung L:Rn → R
m vorgegeben. Um die

entsprechende Matrix zu finden, schreiben wir zunächst die Bilder der kanonischen
Basisvektoren e1, . . . , en des Rn als Spaltenvektoren in R

m auf:

L(e1) =





a11
...

am1



 , . . . , L(en) =





a1n
...

amn



 .

Aus diesen n Spaltenvektoren bilden wir eine Matrix

A :=





a11
...

am1

. . .

a1n
...

amn



 .
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Diese Matrix leistet das Gewünschte, denn es gilt:

L









x1

...
xn







 = L(x1e1 + · · ·+ xnen) = x1L(e1) + · · ·+ xnL(en) = A ·





x1

...
xn





für alle x1, . . . , xn ∈ R. q.e.d.

2.1.6 Folgerung Eine lineare Abbildung L von R
n nach R

m ist durch ihre Wir-

kung auf die kanonischen Basisvektoren bereits eindeutig festgelegt. Zu jeder Wahl

von Vektoren v1, . . . , vn ∈ R
m gibt es auch eine lineare Abbildung, die jeweils ej auf

vj abbildet.

2.1.7 Beispiele (a) Die Matrix zur Drehung Dα des R
2 um den Nullpunkt um

den Winkel α lautet:

(

cosα − sinα
sinα cosα

)

. Das bedeutet, ist v =

(

x

y

)

, so ist

Dα(v) =

(

cosα − sinα
sinα cosα

)

·

(

x

y

)

=

(

x cosα− y sinα
x sinα + y cosα

)

.

(b) Die Spiegelung des R
2 an der Geraden durch den Nullpunkt, die mit der x–

Achse den Winkel α bildet, wird beschrieben durch Multiplikation mit dieser
Matrix:

(

cos(2α) sin(2α)
sin(2α) − cos(2α)

)

.

(c) Die lineare Abbildung L:R2 → R
2 mit L(e1) = 5e1+e2 und L(e2) = e1+2e2 ist

gegeben durch Multiplikation mit der Matrix A =

(

5 1
1 2

)

. Sie hat folgende

Wirkung auf das markierte Einheitsquadrat:

x

y

v

L(v)

e1

e2

b

b
L(e1)

L(e1)

L(e2)
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(d) Die Projektion p:R3 → R
2, (x, y, z) 7→ (x, y) wird durch die folgende Matrix

induziert:
(

1 0 0
0 1 0

)

.

2.1.8 Bemerkung Setzt man zwei lineare Abbildungen L2:V → U und L1:U →
W zusammen, erhält man wieder eine lineare Abbildung, nämlich

L1 ◦ L2:V → W , u 7→ L1(L2(u)) .

Sind die beiden linearen Abbildungen durch Multiplikation mit Matrizen A vom

Typ m× s und B vom Typ s× n gegeben, wie in Satz 2.1.5 beschrieben, so gilt

LA(LB(v)) = A(Bv) = (AB)v ∀v ∈ R
n .

Das heisst, die Zusammensetzung der linearen Abbildungen entspricht der Multipli-

kation der entsprechenden Matrizen.

2.1.9 Beispiel Schauen wir uns an, welchen Effekt es hat, wenn wir die Koordi-
natenebene R

2 zunächst um den Winkel −α drehen, dann an der x-Achse spiegeln
und schliesslich um den Winkel α zurückdrehen. Das Produkt der entsprechenden
Matrizen lautet:

C :=

(

cosα − sinα
sinα cosα

)(

1 0
0 −1

)(

cosα sinα
− sinα cosα

)

=

(

cos(2α) sin(2α)
sin(2α) − cos(2α)

)

.

Die zusammengesetzte Abbildung ist also eine Spiegelung an derjenigen Geraden,
die mit der x-Achse den Winkel α bildet (siehe Beispiel 2.1.7).

2.1.10 Bemerkung Ist A eine invertierbare n×n-Matrix, so ist die lineare Abbil-

dung LA umkehrbar und es gilt

(LA)
−1 = LA−1 .

Die Abbildung A ist genau dann volumentreu, wenn | det(A)| = 1.

Betrachten wir jetzt allgemeiner lineare Abbildungen zwischen abstrakten end-
lichdimensionalen Vektorräumen. Halten wir zunächst folgende Verallgemeinerung
von Folgerung 2.1.6 fest.

2.1.11 Satz Seien V,W Vektorräume und A = (v1, . . . , vn) eine Basis von V . Jede

lineare Abbildung L von V nach W ist durch ihre Wirkung auf v1, . . . , vn bereits

eindeutig festgelegt. Umgekehrt gibt es zu jeder Wahl von n Vektoren ṽ1, . . . , ṽn ∈ W

eine lineare Abbildung L:V → W mit L(vj) = ṽj für alle j.

Beweis. Jeder Vektor v ∈ V lässt sich in eindeutiger Weise als Linearkombination
der Form v = x1v1 + · · ·+ xnvn schreiben. Ist L:V → W eine lineare Abbildung, so
gilt

L(v) = x1L(v1) + · · ·+ xnL(vn) .
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Also ist L(v) durch die Koordinaten xj von v und durch die Bildvektoren L(vj)
bereits eindeutig bestimmt.

Sind umgekehrt n Vektoren ṽ1, . . . , ṽn ∈ W ausgewählt, so wird durch die Vor-
schrift

L(v) := x1ṽ1 + · · ·+ xnṽn

eine lineare Abbildung L:V → W festgelegt. q.e.d.

Jetzt wollen wir eine solche Abbildung L:V → W wiederum als Multiplikation
mit einer Matrix beschreiben. Dazu müssen wir aber zunächst Basen und damit
Koordinatensysteme für beide Vektorräume V und W wählen. Ist A = (v1, . . . , vn)
eine Basis von V und v = x1v1 + · · ·+ xnvn eine Linearkombination, dann sind die
die Zahlen x1, . . . , xn sind die Koordinaten von v bezogen auf die Basis A.

b

b

v

v1

x1v1

x2v2

v2

Den Spaltenvektor, gebildet aus den xj , bezeichnen wir als den Koeffizientenvektor
von v bezüglich der Basis A:

KoeffA(v) :=





x1

...
xn



 .

Auf diese Weise erhalten wir eine bijektive lineare Abbildung von V nach R
n, nämlich

V → R
n; v 7→ KoeffA(v) .

Entsprechend liefert die Wahl einer Basis B = (w1, . . . , wm) von W die bijektive
lineare Abbildung

W → R
m; w 7→ KoeffB(w) .

Setzen wir diese Identifikationen mit der linearen Abbildung L zusammen, erhalten
wir eine lineare Abbildung

L̃:Rn → R
m; KoeffA(v) 7→ v 7→ L(v) 7→ KoeffB(L(v)) .
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Wir wissen bereits, dass diese Abbildung durch Multiplikation mit einer Matrix A

gegeben ist, wobei in den Spalten die Koeffizienten der Bilder L(vj), ausgedrückt in
der Basis B stehen. Wir schreiben dafür

BMA = A .

Damit haben wir folgendes Resultat gefunden:

2.1.12 Satz Sei V ein Vektorraum mit Basis A = (v1, . . . , vn), W ein Vektorraum

mit Basis B = (w1, . . . , wm) und L:V → W eine lineare Abbildung. Schreibt man

die n Bildvektoren L(vj) in Koordinaten bezogen auf die Basis B, und bildet aus

den Koeffizientenvektoren als Spalten eine m× n-Matrix A, so gilt

KoeffB(L(v)) = A ·KoeffA(v) .

Ist V = W , verwendet man üblicherweise dieselbe Basis für Ausgangs- und Bildraum.

2.1.13 Beispiel Sei V die Ebene durch 0, erzeugt von zwei linear unabhängigen
Vektoren v1, v2 in R

3. Die Abbildung L:V → V sei festgelegt durch L(v1) = 2v1 und
L(v2) = v1+v2. Dann wählen wir als BasisA = (v1, v2) und lesen ab KoeffA(L(v1)) =
(

2
0

)

und KoeffA(L(v2)) =

(

1
1

)

. Also wird L bezogen auf die Basis A hier durch

die Matrix

(

2 1
0 1

)

beschrieben.

Wichtige Spezialfälle:

• Sind V = R
n, W = R

m und A und B die kanonischen Basen, erhalten wir die
in Satz 2.1.5 gegebene Beschreibung wieder zurück.

• Ist V = W , wählt man üblicherweise A = B. Die linearen Selbstabbildungen
werden auch als Endomorphismen bezeichnet und entsprechen quadratischen
Matrizen.

2.1.14 Beispiele (a) Sei V = W = R
2 und L die ebene Spiegelung an der Gera-

den g durch den Nullpunkt. Dann wählen wir als Basis einen Vektor v1 6= 0
auf der Geraden g und einen dazu senkrechten Vektor v2 6= 0. Offenbar ist
L(v1) = v1 und L(v2) = −v2. Also wird im dazugehörigen Koordinatensystem

die Spiegelung beschrieben durch die Matrix AMA(L) =

(

1 0
0 −1

)

.

(b) Sei V = W = R
3 und L eine Drehung um die Achse g durch den Nullpunkt

und um den Winkel α. Wir wählen für V eine Basis A = (v1, v2, v3), so dass
v1 in Richtung der Drehachse g zeigt, v2, v3 in der zu g senkrechten Ebene
einen Winkel von 90 Grad bilden und beide dieselbe Länge haben. Bezogen
auf dieses Koordinatensystem lautet die Matrix von L:

AMA(L) =





1 0 0
0 cosα − sinα
0 sinα cosα



 .
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(c) Sei V der Raum der Polynome von Höchstgrad 3 mit der Basis A = (1, x, x2, x3)
und W der Raum der Polynome von Höchstgrad 2 mit Basis B = (1, x, x2).
Die lineare Abbildung L:V → W sei definiert durch die Ableitung L(p) := p′

für p ∈ V . Offenbar ist dann L(1) = 0, L(x) = 1, L(x2) = 2x, L(x3) = 3x2.
Daraus können wir die Matrix von L ablesen. Sie lautet:

BMA(L) =





0 1 0 0
0 0 2 0
0 0 0 3



 .

(d) Seien V,W wie in (c), ausgestattet mit denselben Basen. Betrachten wir jetzt
die lineare Abbildung L:W → V , gegeben durch L(p(x)) = (2x − 1)p(x) für
alle Polynome p in W . Wir berechnen

(2x− 1)(a2x
2 + a1x+ a0)(2x− 1) = (2a2)x

3 + (2a1− a2)x
2 + (2a0 − a1)x− a0 .

Nun können wir die entsprechende Matrix ablesen:

AMB(L) =









−1 0 0
2 −1 0
0 2 −1
0 0 2









.

(e) Sei λ > 0 vorgegeben und bezeichne V den Lösungsraum der Differentialglei-
chung y′′ = −λ2y. Durch Ableiten wird eine lineare Abbildung L:V → V

definiert. Als Basis A von V wählen wir das Fundamentalsystem, gebildet
aus f(x) = cos(λx) und g(x) = sin(λx). Dann ist L(f) = f ′ = −λg und
L(g) = g′ = λf . Also lautet hier die entsprechende Matrix:

AMA(L) =

(

0 λ

−λ 0

)

.


