Kapitel 2
Lineare Algebra II

2.1 LINEARE ABBILDUNGEN UND MATRIZEN

Die mit der Vektorraumstruktur vertréglichen Abbildungen zwischen Vektorrdumen
werden als [inear bezeichnet. Genauer definiert man:

2.1.1 DEFINITION Eine Abbildung L:V — W zwischen zwei reellen Vektorrdumen
V und W heisst linear, wenn fiir alle v,w € V', A € R, folgendes gilt:

1. L(v+w) = L(v) + L(w).
2. L(Mv) = AL(v).

2.1.2 BEMERKUNG Flir jede lineare Abbildung L:V — W gilt L(0) = 0, das heisst
L bildet den Nullvektor aus V auf den Nullvektor aus W ab.

Beweis. Denn sei v € V' gewihlt. Dann folgt aus der zweiten Bedingung L(0) =
L(0-v)=0-L(v)=0. q.ed.

2.1.3 BEISPIELE (a) Sidmtliche Drehungen des R? um den Nullpunkt um einen
beliebigen Winkel « € [0, 27| sind linear, sie sind sogar ldngentreu und bilden
Dreiecke auf kongruente Dreiecke ab. Entsprechend ist jede rdumliche Drehung
um eine Achse durch den Nullpunkt eine lineare Selbstabbildung von R3.

(b) Jede Spiegelung des R? an einer Gerade durch den Nullpunkt ist linear. Aber
die Spiegelungen, deren Spiegelachsen nicht durch den Nullpunkt gehen, sind
nicht linear, weil sie den Nullpunkt nicht festlassen.

(c) Die Projektion p: R® — R?, (z,y, 2) — (z,y) ist linear, wie man direkt nachrech-
net. Auch jede andere orthogonale Projektion des Raumes auf eine Ebene, wie
sie verwendet werden, um Grundrisse, Aufrisse, Seitenansichten von Gebauden
zu zeichnen, sind linear.

(d) Ein Zoom, also eine Streckung der Einheiten um einen bestimmten Vergrr-
osserungsfaktor ist linear. Dasselbe gilt fiir die Reskalierung von Koordinaten
mit unterschiedlichen Faktoren, also im zweidimensionalen zum Beispiel in
z-Richtung um Faktor 2 und in y-Richtung um Faktor 3.

(e) Der Ableitungsoperator D: Ct[a, b] — C°a, b], der einer stetig differenzierbaren
Funktion f auf [a,b] jeweils ihre Ableitung f’ zuordnet, ist linear.
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(f) Auch der Integraloperator I: C°a,b] — R, definiert durch I(f) := fab f(x)dx
fir f € C%a,b], ist linear, weil Integration mit Summenbildung und Skalar-
multiplikation vertauschbar ist.

Drehungen, Spiegelungen und senkrechte Projektionen haben die Eigenschaft,
samtliche affinen Geraden wieder auf affine Geraden oder Punkte abzubilden. Weil
dies auch fiir jede beliebige lineare Selbstabbildung des R? oder R? gilt, nennt man
diese Abbildungen “linear”. Lineare Abbildungen lassen sich durch Matrizen be-
schreiben. Hier ein erstes Beispiel.

2.1.4 BErISPIEL Die folgende Abbildung L:R? — R? ist definiert durch die Multi-
plikation von ebenen Vektoren mit einer festgewihlten 3 x 2-Matrix A:

1 2

. . T+ 2y
L(( )>:: T ( ): “rty
y 3 -2 Y 32 — 2y
Man kann leicht nachrechnen, dass diese Abbildung linear ist. Ausserdem ist

1 2

L@:L((é)): 1) wa L(@:L((?)): v

Wir stellen also fest, dass die Bilder der kanonischen Basisvektoren e; und ey mit
den beiden Spalten der Matrix A iibereinstimmen.

Allgemeiner gilt folgendes:

2.1.5 SATZ Jede Matrix A vom Typ m X n definiert eine lineare Abbildung durch
Multiplikation
LiyR"—R"™, v—A-v.

Umgekehrt gibt es zu jeder linearen Abbildung L: R™ — R™ eine m x n-Matrix A mit
L = L4. An den Spalten von A kénnen wir die Bilder der kanonischen Basisvektoren
e; € R™ unter L ablesen.

Beweis. Man kann direkt nachrechnen, dass die Multiplikation von Spaltenvektoren
mit einer festen Matrix eine lineare Abbildung liefert.

Sei jetzt umgekehrt eine lineare Abbildung L:R"™ — R™ vorgegeben. Um die
entsprechende Matrix zu finden, schreiben wir zunéchst die Bilder der kanonischen

Basisvektoren eq, ..., e, des R™ als Spaltenvektoren in R™ auf:
aiq Q1n
L(ey) = : oo, Liey) = :
Qm1 Qmn,

Aus diesen n Spaltenvektoren bilden wir eine Matrix

a1 Q1n
A :: . .

Am1 Amn
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Diese Matrix leistet das Gewiinschte, denn es gilt:

X1 i
I :L(:L’1€1—|—"'+~Tn€n) :le(€1)+"'+an(€n) =A-

T T

fir alle z1,...,z, € R.  q.e.d.

2.1.6 FOLGERUNG Fine lineare Abbildung L von R™ nach R™ ist durch ihre Wir-
kung auf die kanonischen Basisvektoren bereits eindeutig festgelegt. Zu jeder Wahl
von Vektoren vy, ...,v, € R™ gibt es auch eine lineare Abbildung, die jeweils e; auf

v; abbildet.

2.1.7 BEISPIELE (a) Die Matrix zur Drehung D, des R? um den Nullpunkt um

den Winkel « lautet: ( cosa e ) . Das bedeutet, ist v = (x)’ So ist
sina cosa Y

Da(v) = cosa —sina \ (x) _(zcosa—ysinw
/U sina cosa y) \wsina+ycosa |’

(b) Die Spiegelung des R? an der Geraden durch den Nullpunkt, die mit der z—
Achse den Winkel « bildet, wird beschrieben durch Multiplikation mit dieser

Matrix:
cos(2a)  sin(2a)
sin(2a)  —cos(2a) )
(c) Die lineare Abbildung L: R? — R? mit L(e;) = ey +ep und L(ey) = eg + 2ey ist

gegeben durch Multiplikation mit der Matrix A = (? é) Sie hat folgende

Wirkung auf das markierte Einheitsquadrat:

)

()

€1 T
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(d) Die Projektion p:R?* — R? (x,y,2) — (z,y) wird durch die folgende Matrix

induziert:
1 0 0
01 0/°

2.1.8 BEMERKUNG Setzt man zwei lineare Abbildungen Lo:V — U und L:U —
W zusammen, erhélt man wieder eine lineare Abbildung, ndmlich

LIOLQZV%W, U|—>L1<L2<U))

Sind die beiden linearen Abbildungen durch Multiplikation mit Matrizen A vom
Typ m x s und B vom Typ s x n gegeben, wie in Satz 2.1.5 beschrieben, so gilt

La(Lp(v)) = A(Bv) = (AB)v Vv e R".

Das heisst, die Zusammensetzung der linearen Abbildungen entspricht der Multipli-
kation der entsprechenden Matrizen.

2.1.9 BEISPIEL Schauen wir uns an, welchen Effekt es hat, wenn wir die Koordi-
natenebene R? zunichst um den Winkel —« drehen, dann an der z-Achse spiegeln
und schliesslich um den Winkel o zuriickdrehen. Das Produkt der entsprechenden
Matrizen lautet:

o [ cosa —sina 1 0 cosa  sina\ [ cos(2a)  sin(2a)
" \sina  cosa 0 —1 —sina cosa )\ sin(2a) —cos(2a) )

Die zusammengesetzte Abbildung ist also eine Spiegelung an derjenigen Geraden,
die mit der x-Achse den Winkel « bildet (siche Beispiel 2.1.7).

2.1.10 BEMERKUNG Ist A eine invertierbare n x n-Matrix, so ist die lineare Abbil-
dung L umkehrbar und es gilt

(LA)fl =Ls1.

Die Abbildung A ist genau dann volumentreu, wenn |det(A)| = 1.

Betrachten wir jetzt allgemeiner lineare Abbildungen zwischen abstrakten end-
lichdimensionalen Vektorrdumen. Halten wir zunéchst folgende Verallgemeinerung
von Folgerung 2.1.6 fest.

2.1.11 Sarz Seien V,W Vektorrdume und A = (vy,...,v,) eine Basis von V. Jede
lineare Abbildung L von V nach W ist durch ihre Wirkung auf vy, ...,v, bereits
eindeutig festgelegt. Umgekehrt gibt es zu jeder Wahl von n Vektoren vy, ..., v, € W
eine lineare Abbildung L:V — W mit L(v;) = v; fiir alle j.

Beweis. Jeder Vektor v € V lésst sich in eindeutiger Weise als Linearkombination
der Form v = xyv; + - - - + x,v,, schreiben. Ist L: V' — W eine lineare Abbildung, so
gilt

L(v) =x1L(vy) + -+ 4+ z L(vy,) .
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Also ist L(v) durch die Koordinaten z; von v und durch die Bildvektoren L(v;)
bereits eindeutig bestimmt.
Sind umgekehrt n Vektoren vy, ..., v, € W ausgewihlt, so wird durch die Vor-
schrift
L(v) :== 2101 + - - - + 2,0y

eine lineare Abbildung L:V — W festgelegt.  q.e.d.

Jetzt wollen wir eine solche Abbildung L:V — W wiederum als Multiplikation
mit einer Matrix beschreiben. Dazu miissen wir aber zunichst Basen und damit

Koordinatensysteme fiir beide Vektorrdume V und W wéhlen. Ist A = (vy, ..., v,)
eine Basis von V und v = x1v; + - - - 4+ x,v, eine Linearkombination, dann sind die
die Zahlen x4, ..., x, sind die Koordinaten von v bezogen auf die Basis A.

Den Spaltenvektor, gebildet aus den x;, bezeichnen wir als den Koeffizientenvektor
von v beziiglich der Basis A:

T1
Koeff 4(v) :=
Tn

Auf diese Weise erhalten wir eine bijektive lineare Abbildung von V' nach R™, namlich

V= R" v Koeff 4(v).

Entsprechend liefert die Wahl einer Basis B = (wy,...,w,,) von W die bijektive
lineare Abbildung
W —R™  ww— Koeffg(w).

Setzen wir diese Identifikationen mit der linearen Abbildung L zusammen, erhalten
wir eine lineare Abbildung

L:R" - R™;  Koeff 4(v) — v — L(v) — Koeffz(L(v)) .
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Wir wissen bereits, dass diese Abbildung durch Multiplikation mit einer Matrix A
gegeben ist, wobei in den Spalten die Koeffizienten der Bilder L(v;), ausgedriickt in
der Basis B stehen. Wir schreiben dafiir

sM A= A.
Damit haben wir folgendes Resultat gefunden:

2.1.12 SATZ Sei V ein Vektorraum mit Basis A = (vq,...,v,), W ein Vektorraum
mit Basis B = (w1, ..., wy,) und L:V — W eine lineare Abbildung. Schreibt man
die n Bildvektoren L(v;) in Koordinaten bezogen auf die Basis B, und bildet aus
den Koeffizientenvektoren als Spalten eine m x n-Matrix A, so gilt

Koeffg(L(v)) = A - Koeff 4(v) .
Ist V. = W, verwendet man iiblicherweise dieselbe Basis fiir Ausgangs- und Bildraum.

2.1.13 BEISPIEL Sei V' die Ebene durch 0, erzeugt von zwei linear unabhéngigen
Vektoren vy, vy in R3. Die Abbildung L: V' — V sei festgelegt durch L(v;) = 2v; und
L(vy) = v1+ve. Dann wahlen wir als Basis A = (vy, v2) und lesen ab Koeff 4 (L(v1)) =

((2)) und Koeff 4(L(vy)) = (}) Also wird L bezogen auf die Basis A hier durch

die Matrix <(2) 1) beschrieben.

WICHTIGE SPEZIALFALLE:

e Sind V =R" W =R™ und A und B die kanonischen Basen, erhalten wir die
in Satz 2.1.5 gegebene Beschreibung wieder zuriick.

e Ist V = W, wihlt man tiblicherweise A = B. Die linearen Selbstabbildungen
werden auch als Endomorphismen bezeichnet und entsprechen quadratischen
Matrizen.

2.1.14 BEISPIELE (a) Sei V = W = R? und L die ebene Spiegelung an der Gera-
den g durch den Nullpunkt. Dann wihlen wir als Basis einen Vektor v; # 0
auf der Geraden g und einen dazu senkrechten Vektor vy # 0. Offenbar ist

L(v1) = vy und L(vg) = —vy. Also wird im dazugehorigen Koordinatensystem
die Spiegelung beschrieben durch die Matrix 4M4(L) = ((1) _01 )

(b) Sei V=W = R3? und L eine Drehung um die Achse g durch den Nullpunkt
und um den Winkel ov. Wir wihlen fiir V' eine Basis A = (vy,v9,v3), so dass
vy in Richtung der Drehachse g zeigt, vy, v3 in der zu g senkrechten Ebene
einen Winkel von 90 Grad bilden und beide dieselbe Lénge haben. Bezogen
auf dieses Koordinatensystem lautet die Matrix von L:

1 0 0
AMA(L) =10 cosa —sina
0 sina cosa
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(c) Sei V' der Raum der Polynome von Hochstgrad 3 mit der Basis A = (1, z, 2%, 2?)
und W der Raum der Polynome von Héchstgrad 2 mit Basis B = (1, z, 2?).
Die lineare Abbildung L:V — W sei definiert durch die Ableitung L(p) := p/
fir p € V. Offenbar ist dann L(1) = 0, L(z) = 1, L(2?) = 2z, L(2*) = 32°.
Daraus kénnen wir die Matrix von L ablesen. Sie lautet:

sMa(L) =

o O O

1
0
0

o NN O
w o O

(d) Seien V, W wie in (c), ausgestattet mit denselben Basen. Betrachten wir jetzt
die lineare Abbildung L: W — V, gegeben durch L(p(z)) = (2o — 1)p(zx) fiir
alle Polynome p in W. Wir berechnen

(232‘ — 1)(&21’2 +a1x + (10)(21’ — 1) = (2&2)1‘3 + (2&1 — CLQ)I‘Q + (2&0 — al)x — Qg .

Nun kénnen wir die entsprechende Matrix ablesen:

-1 0 0
2 -1 0
AMB<L) - 0 9 -1
0 0 2

(e) Sei A > 0 vorgegeben und bezeichne V' den Losungsraum der Differentialglei-

chung y” = —A2?y. Durch Ableiten wird eine lineare Abbildung L:V — V
definiert. Als Basis A von V wihlen wir das Fundamentalsystem, gebildet
aus f(z) = cos(Ar) und g(x) = sin(Az). Dann ist L(f) = f' = —Ag und

L(g) = ¢' = \f. Also lautet hier die entsprechende Matrix:

AM4(L) = <_O>\ g\) :



