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5.2 RIEMANNINTEGRAL IN MEHREREN VARIABLEN

Die Idee, die dem Riemannschen Integralbegriff (fiir Funktionen in einer Variablen)
zugrundeliegt, ist die Approximation einer krummlinig begrenzten Fldche mithilfe
geeigneter Rechtecksummen. Diese Idee kann man auch auf reellwertige Funktio-
nen in zwei (oder noch mehr) Variablen tibertragen, und so Volumina von Kérpern
berechnen, die von einer gewolbten Fliche berandet werden, indem man sie durch
geeignete Quadersummen approximiert.

Hier zunéchst einige Vorbereitungen: Unter einem Quader in R™ verstehen wir
ein Produkt von n abgeschlossenen Intervallen der Form

Q: [al,bl] X [CLQ,bQ] X ... X [an,bn] :{<.§L’1,...,.Tn) e R" ‘ a; SSL’]’ Sbj},

wobei a;,b; € R sind. Fiir n = 1 handelt es sich um abgeschlossene Intervalle,
fir n = 2 um Rechtecke und fiir n = 3 um Quader im gewo6hnlichen Sinn. Das
n-dimensionale Volumen des Quaders definieren wir als
Vol (Q) == [ [(b; — ;) -
j=1

Fiir n = 1 gibt diese Grosse die Lénge des Intervalls, fiir n = 2 den Flécheninhalt
des Rechtecks und fiir n = 3 den Rauminhalt des Quaders an. Der Durchmesser ist
folgendermassen definiert

Nach Pythagoras gibt dieser Wert fiir n = 2 die Lange der Diagonale des Rechtecks
und fiir n = 3 die Lénge der Raumdiagonale des Quaders an.

Unter einer Zerlequng Z eines Quaders () verstehen wir eine Wahl von Teilqua-
dern @Q1,...,Qn,, die @) iiberdecken, ohne sich zu iiberlappen. Das heisst, es soll
gelten

Q = Uznlek und Qk N Ql = an N an fiir alle k’, l.
Im eindimensionalen Fall sind die Zerlegungen gerade die Teilungen eines abge-
schlossenen Intervalls in Teilintervalle. Im zweidimensionalen Fall geht es um die
Zerlegung eines Rechtecks in Teilrechtecke. Dabei kann man entweder ein gemein-
sames Raster fiir die Unterteilung in x und y-Richtung wéhlen, oder man wahlt
individuelle Teilrechtecke aus, die insgesamt das gesamte Rechteck pflastern. Als
Mass fiir die Feinheit der Zerlegung verwenden wir den maximalen Durchmesser der
Teilquader:
Z|| == max diam(Qy) -

Sei jetzt f: () — R eine beschrinkte, reellwertige Funktion auf einem Quader @)
und sei Z eine Zerlegung von @ in Teilquader @)1, . . ., @,,. Jede Wahl von Stiitzstellen
& € Qy liefert eine Riemannsumme fiir f, ndmlich

Rz(f) = f(&) Volu(Qx) -

k=1



5.2. Riemannintegral in mehreren Variablen 91

Fiir n = 1 sind dies die bekannten Riemannschen Rechteckflachensummen. Ist n = 2,
so gibt der k-te Summand jeweils den Rauminhalt des Quaders mit Grundflache Q)
und Hohe f(&) an. Die Riemannsumme ist also eine Summe von Quadervolumina.
Ist zusdtzlich f(z,y) > 0 fir alle (z,y) € @, so liegt der Graph von f ganz oberhalb
der z-y-Ebene und berandet einen Korper K mit Grundfliche ). Das Volumen die-
ses Korpers wird offenbar durch die Riemannsummen approximiert, wenn wir die
Zerlegung immer weiter verfeinern. Liefert dieser Prozess einen eindeutig bestimm-
ten Grenzwert, unabhéngig von der Wahl der Zerlegungen und der Stiitzstellen, so
betrachten wir f als integrierbar. Dies gelingt, wenn folgende Bedingung erfiillt ist:

5.2.1 DEFINITION Eine beschrinkte Funktion f:(@Q) — R auf einem Quader () in
R™ ist integrierbar, falls zu jedem ¢ > 0 eine Zerlegung Z von ) in Teilquader
Q1,...,Q,, existiert, so dass

Z(supf —inf f) - Vol,(Qr) <e.
k=1 @ O

Ist dies der Fall, so konvergieren fiir jede Folge (Z;);en von Zerlegungen von ()
mit lim;_, || Z;|| = 0 die entsprechenden Riemannsummen Rz, (f) gegen denselben
Grenzwert (und zwar unabhéngig von der Wahl der Stiitzstellen). Man schreibt dafiir

i Ry, (f) = /Q 3

Um die Dimension zu betonen, schreibt man gelegentlich auch

/Q fx)dz.

5.2.2 SATZ Stetige reellwertige Funktionen auf Quadern in R™ sind integrierbar.

Dies ergibt sich ganz dhnlich wie im eindimensionalen Fall aus der Tatsache, dass
stetige Funktionen auf kompakten Teilmengen (hier Quadern) gleichméssig stetig
und beschrankt sind.

Die folgenden Eigenschaften lassen sich schliessen, indem man entsprechende
Aussagen fiir die jeweiligen Riemannsummen formuliert und iiberpriift.

5.2.3 SATZ Sei () C R™ und seien f,g: ) — R integrierbar. Dann gilt:

e Linearitdt: Auch af + (¢ ist integrierbar fiir alle o, f € R und

/Q(ozf+ﬁg)=a(/Qf)+6(/Qg)-

e Monotonie: Ist f(x) < g(x) fiir alle x € @Q, so ist

e
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e Falls auch |f| integrierbar ist, so gilt

AT

Die tatséchliche Berechnung eines Integrals iiber einen Quader im R™ lésst sich
auf eindimensionale Integrationen zuriickfithren, indem man rekursiv iiber eine Va-
riable nach der anderen integriert. Das ist die Aussage des Satzes von Fubini:

5.2.4 SATZ Sei Q = [a1,b1] X ... X [an, b,] ein Quader in R™ und f: Q) — R stetig.

Dann gilt:
b b b1
/f:/ (/ ( (x)d:pl)d:pQ)...dzpn.
Q an a2 al

Dabei dart die Reihenfolge der Teilintegrationen frei gewahlt werden.

5.2.5 BEISPIEL Sein =2, Q =[1,2] x[0,1] und f(z,y) = zexp(zy) fir (z,y) € Q.

Dann ist
2,1 2 4
[ sty = [ ([ seraye= [ote
Q 1 Jo 1 2

2
/(ex—l)da::eQ—e—l.
1

Integriert man erst iiber  und dann anschliessend iiber y, erhélt man dasselbe
Ergebnis.

y=1
dr =

y=0

Beweis des Satzes von Fubini. Zumindest fiir den Fall n = 2 soll hier die Idee
eines Beweises des Satzes von Fubini skizziert werden. Dazu betrachten wir spezielle
Zerlegungen des Rechtecks () durch Raster in z- und y-Richtung. Ist genauer a; =
rg < 11 < ... < x, = b eine Teilung T, des Intervalls [a1,b] und ay = yo <
Y1 < ... < ys = by eine Teilung T, des Intervalls [as, s, so ergibt sich daraus
eine Zerlegung des Rechtecks @) = [aq,b1] X [ag, bs] in 7 - s Teilrechtecke der Form
(-1, %] X [yk—1,yr]. Wéhlen wir nun als Stiitzstellen dieser Teilrechtecke jeweils
immer die obere rechte Ecke (z;,yx), so lautet die entsprechende Riemannsumme

fiir f:
Rz(f) = Z > @y (@ — 25-0) (e — Ys1) -

Schauen wir uns nun genauer an, was bei der sukzessiven Integration von f zunéchst
iber x und dann iiber y getan wird. Wir definieren g: [as, bs] — R durch

b1
g(y) = [ [flz,y)dz firy € [az, by].

al

Die Riemannsumme von g zur Teilung T}, von [as, be] zu den Stiitzstellen y; lautet

Ry, (9) = 9(ur) (U — yr1) -
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Ausserdem wird der Wert von g an der Stelle y; seinerseits ndherungsweise durch
die Riemannsumme der Funktion z — f(z,y) zur Teilung T, mit Stiitzstellen x;
angegeben:

b1 r
glyr) = [ flo,yp)de ~ Z f@gye) (v — 2-1).

a

Setzen wir dies ein, so erhalten wir

/ 2 9(y)dy ~ Rr,(9) =~ Y > fxg,ue) (@5 — 250) (uk — ys1) = Ra(f).

a2 k=1 j=1
Durch Grenziibergang folgt nun die Behauptung.  q.e.d.

Bisher haben wir ausschliesslich iiber Quader in R™ integriert. Jetzt wollen wir
uns dariiber Gedanken machen, welche anderen Teilmengen als Integrationsbereiche
in Frage kommen. Zum Beispiel konnte man iiber Kreisscheiben oder durch Geraden
begrenzte Flichen in R? oder iiber Kugeln in R? integrieren. Ist S C R™ eine be-
schrankte Teilmenge, so konnen wir einen Quader () in R™ auswéhlen, der S enthélt,
und eine gegebene Funktion f: S — R zu einer Funktion g: ) — R fortsetzen, indem

wir definieren
g(z) == {g(x) falls x € S,
sonst.
Dabei spielt es keine Rolle, ob S offen oder abgeschlossen ist, oder keines von beidem.
Das Integral von f iiber S definieren wir nun folgendermassen:

/ f= / g, falls g iiber @) integrierbar ist.
S Q

Allerdings hat die Fortsetzung g von f jetzt moglicherweise ldngs des Randes der
Teilmenge S Unstetigkeitsstellen. Selbst wenn f auf S stetig ist, kann g also hochgra-
dig unstetig sein. Ob die Funktion g dennoch integrierbar ist, hdangt nun auch davon
ab, wie der Rand der Teilmenge S beschaffen ist. Die Integrierbarkeit ist gewéhrlei-
stet, wenn der Rand eine sogenannte Nullmenge ist. Das bedeutet anschaulich, dass
der Rand nicht zu stark ausgefranst ist.

Dies ist zum Beispiel der Fall, wenn die Menge S ein Normalgebiet ist.

5.2.6 DEFINITION Eine Teilmenge S C R? heisst Normalgebiet (beziiglich y), wenn
es ein Intervall [a,b] C R und stetige Funktionen a:[a,b] — R und S:[a,b] — R
gibt, so dass S = {(z,y) € R? | a < z < b,a(x) < y < B(z)}. Ein Normalgebiet
(beziiglich x) ist entsprechend definiert, wobei die Rollen von x und y vertauscht
sind. Von diesem Typ sind zum Beispiel auch Kreisscheiben oder Ellipsen.

Nehmen wir an, das Normalgebiet S sei in einem Rechteck ) enthalten und
f:@Q — R sei eine stetige Funktion. Dann ist f iiber S integrierbar und es gilt:

/szLb<Af:j)f<x,y>dy>dx.
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5.2.7 BEISPIEL Sei S C R? das Gebiet, das von den Geraden berandet wird, die
durch die Gleichungen y = 0, x = 0 und y = 2 — 2x gegeben sind. Dann ist S ein
Dreieck, enthalten in dem Rechteck @ := [0, 1] x [0, 2]. Sei weiter

flr,y) =14+ (x+ %)2 fir (z,y) € S.

Um das Integral von f iiber S zu bestimmen, wollen wir den Satz von Fubini an-
wenden. Dafiir schreiben wir S in folgender Form:

S={@y0Sr<1,0<y<2-20} ={(a,y) | 0<y<20<a <12},

Nun integrieren wir zuerst iiber y und dann iiber x und erhalten dabei folgendes:

1 2—2z 1 2+ Y 3\ |Y=2—2z
/f:/ (/ (1+(x+%)2)dy) dx:/ (w%) i =
s 0 0 0 y=0
! 2 2 N [
/ R e I §x—:p2—x— :§.
0 3 3 3 6/, 2

Dieser Wert gibt das Volumen des Koérpers an, der nach oben durch den Graphen
von f und nach unten durch das Dreieck S in der z-y-Ebene begrenzt wird. Der
Graph von f sieht aus wie ein Sonnensegel, und der darunter befindliche Bereich ist
sozusagen der beschattete Bereich.

5.3 VOLUMENBERECHNUNGEN

Wir koénnen die Vorbereitungen des letzten Abschnitts nun anwenden, um den
Flicheninhalt einer krummlinig berandeten Teilmenge des R? oder das Volumen
eines Korpers in R? zu definieren. Noch allgemeiner trifft man folgende Vereinba-
rung:

5.3.1 DEFINITION Sei S C R™ eine Teilmenge derart, dass die konstante Funktion
f(z) =1 (fiir alle z € R™) iiber S integrierbar ist. Dann nennt man S messbar und
fasst das Integral der 1-Funktion {iber S als ihr n-dimensionales Volumen auf:

Vol, () :z/ld"a:.
s

Ist zum Beispiel S C R? die Fliche zwischen dem Graphen einer Funktion
f:la,b] — Rsy und der z-Achse, so ldsst sich S als Normalgebiet (beziiglich y)
schreiben:

S={lz,y)[a<z<b 0<y< fla)}.

Nach dem Satz von Fubini gilt daher wie gewiinscht:

VOIQ(S):/SldQ(x,y):/ab(/of(x)ldy)dx:/abf(x)dx.

Entsprechend kann man das Volumen eines dreidimensionalen Kérpers berech-
nen, indem man den Kérper mit parallelen Ebenen schneidet und iiber die dabei ent-
stehenden Querschnittsflachen integriert. Dies ist das sogenannte Cavalieri-Prinzip.
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5.3.2 SATZ Sei @ ein Rechteck in R*, [ = [a,b] C R und sei A C Q x [ C R?
eine messbare Teilmenge. Fiir z € I sei A, := {(z,y) € R? | (x,y,2) € A}. Ist der
Querschnitt A, fiir jedes z € I ebenfalls messbar, so gilt:

b
VOlg(A):/ Voly(A,) dz.

Beweis. Nach Definition ist Volz(A) = [, 1d°(z,y,2) = foIXA' Hier bezeichnet
x4 die sogenannte charakteristische Funktion von A:

xal(z,y,2) = {(1) falls (z,y,2) € A
sonst.

Der Satz von Fubini liefert

/QXIXA:/ab (/Q xa(z,y, z) dQ(x,y)) ds.

Fiir fest gewéhltes z ist xa(x,y, z) = xa,(z,y) fir alle (z,y) € @, und daraus folgt
die Behauptung.  q.e.d.

Hier sind zwei klassische Volumenberechnungen:

5.3.3 BEISPIELE e Um das dreidimensionale Volumen einer Kugel K von Radi-
us R zu bestimmen, wihlen wir das Koordinatensystem so, dass der Nullpunkt
im Zentrum der Kugel ist. Der Schnitt K, der Kugel mit einer Ebene, parallel
zur z-y-Ebene auf Hohe z, ist dann eine Kreisscheibe von Radius v/ R? — 22.
Hier ist also Voly(K,) = 7(R? — 2?), und daraus folgt:

R

Voly (K) = /

R 23 R 4
Voly(K,)dz = / m(R* — 2*)dz = n(R*2 — =)| = -nR®.

R R 3 —R_3

e Sei jetzt P eine Pyramide mit quadratischen Grundriss von Seitenléinge a und
Hohe h. Wir wahlen die Spitze der Pyramide als Nullpunkt des Koordinaten-
systems und lassen die z-Achse senkrecht nach unten zeigen. Der Schnitt P,
der Pyramide mit zur x-y-Ebene parallelen Ebene auf Hohe z ist ein Quadrat,
und fiir deren Seitenléinge = gilt nach dem Strahlensatz:

h

Xz

Daraus folgt # = 72, und wir erhalten

VOlg(P):/ Voly (P, dz-/ —52 2dz = —a2h



