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5.2 Riemannintegral in mehreren Variablen

Die Idee, die dem Riemannschen Integralbegriff (für Funktionen in einer Variablen)
zugrundeliegt, ist die Approximation einer krummlinig begrenzten Fläche mithilfe
geeigneter Rechtecksummen. Diese Idee kann man auch auf reellwertige Funktio-
nen in zwei (oder noch mehr) Variablen übertragen, und so Volumina von Körpern
berechnen, die von einer gewölbten Fläche berandet werden, indem man sie durch
geeignete Quadersummen approximiert.

Hier zunächst einige Vorbereitungen: Unter einem Quader in R
n verstehen wir

ein Produkt von n abgeschlossenen Intervallen der Form

Q = [a1, b1]× [a2, b2]× . . .× [an, bn] = {(x1, . . . , xn) ∈ R
n | aj ≤ xj ≤ bj} ,

wobei aj , bj ∈ R sind. Für n = 1 handelt es sich um abgeschlossene Intervalle,
für n = 2 um Rechtecke und für n = 3 um Quader im gewöhnlichen Sinn. Das
n-dimensionale Volumen des Quaders definieren wir als

Voln(Q) :=

n
∏

j=1

(bj − aj) .

Für n = 1 gibt diese Grösse die Länge des Intervalls, für n = 2 den Flächeninhalt
des Rechtecks und für n = 3 den Rauminhalt des Quaders an. Der Durchmesser ist
folgendermassen definiert

diam(Q) =

√

√

√

√

n
∑

j=1

(bj − aj)2 .

Nach Pythagoras gibt dieser Wert für n = 2 die Länge der Diagonale des Rechtecks
und für n = 3 die Länge der Raumdiagonale des Quaders an.

Unter einer Zerlegung Z eines Quaders Q verstehen wir eine Wahl von Teilqua-
dern Q1, . . . , Qm, die Q überdecken, ohne sich zu überlappen. Das heisst, es soll
gelten

Q = ∪m
k=1Qk und Qk ∩Ql = ∂Qk ∩ ∂Ql für alle k, l.

Im eindimensionalen Fall sind die Zerlegungen gerade die Teilungen eines abge-
schlossenen Intervalls in Teilintervalle. Im zweidimensionalen Fall geht es um die
Zerlegung eines Rechtecks in Teilrechtecke. Dabei kann man entweder ein gemein-
sames Raster für die Unterteilung in x und y-Richtung wählen, oder man wählt
individuelle Teilrechtecke aus, die insgesamt das gesamte Rechteck pflastern. Als
Mass für die Feinheit der Zerlegung verwenden wir den maximalen Durchmesser der
Teilquader:

||Z|| := max
k

diam(Qk) .

Sei jetzt f :Q → R eine beschränkte, reellwertige Funktion auf einem Quader Q
und sei Z eine Zerlegung vonQ in TeilquaderQ1, . . . , Qm. Jede Wahl von Stützstellen
ξk ∈ Qk liefert eine Riemannsumme für f , nämlich

RZ(f) =
m
∑

k=1

f(ξk) Voln(Qk) .
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Für n = 1 sind dies die bekannten Riemannschen Rechteckflächensummen. Ist n = 2,
so gibt der k-te Summand jeweils den Rauminhalt des Quaders mit Grundfläche Qk

und Höhe f(ξk) an. Die Riemannsumme ist also eine Summe von Quadervolumina.
Ist zusätzlich f(x, y) ≥ 0 für alle (x, y) ∈ Q, so liegt der Graph von f ganz oberhalb
der x-y-Ebene und berandet einen Körper K mit Grundfläche Q. Das Volumen die-
ses Körpers wird offenbar durch die Riemannsummen approximiert, wenn wir die
Zerlegung immer weiter verfeinern. Liefert dieser Prozess einen eindeutig bestimm-
ten Grenzwert, unabhängig von der Wahl der Zerlegungen und der Stützstellen, so
betrachten wir f als integrierbar. Dies gelingt, wenn folgende Bedingung erfüllt ist:

5.2.1 Definition Eine beschränkte Funktion f :Q → R auf einem Quader Q in
R

n ist integrierbar , falls zu jedem ǫ > 0 eine Zerlegung Z von Q in Teilquader
Q1, . . . , Qm existiert, so dass

m
∑

k=1

(sup
Qk

f − inf
Qk

f) · Voln(Qk) < ǫ .

Ist dies der Fall, so konvergieren für jede Folge (Zj)j∈N von Zerlegungen von Q

mit limj→∞ ||Zj|| = 0 die entsprechenden Riemannsummen RZj
(f) gegen denselben

Grenzwert (und zwar unabhängig von der Wahl der Stützstellen). Man schreibt dafür

lim
j→∞

RZj
(f) =

∫

Q

f .

Um die Dimension zu betonen, schreibt man gelegentlich auch

∫

Q

f(x) dnx .

5.2.2 Satz Stetige reellwertige Funktionen auf Quadern in R
n sind integrierbar.

Dies ergibt sich ganz ähnlich wie im eindimensionalen Fall aus der Tatsache, dass
stetige Funktionen auf kompakten Teilmengen (hier Quadern) gleichmässig stetig
und beschränkt sind.

Die folgenden Eigenschaften lassen sich schliessen, indem man entsprechende
Aussagen für die jeweiligen Riemannsummen formuliert und überprüft.

5.2.3 Satz Sei Q ⊂ R
n und seien f, g:Q → R integrierbar. Dann gilt:

• Linearität: Auch αf + βg ist integrierbar für alle α, β ∈ R und

∫

Q

(αf + βg) = α(

∫

Q

f) + β(

∫

Q

g) .

• Monotonie: Ist f(x) ≤ g(x) für alle x ∈ Q, so ist

∫

Q

f ≤
∫

Q

g .
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• Falls auch |f | integrierbar ist, so gilt

|
∫

Q

f | ≤
∫

Q

|f | .

Die tatsächliche Berechnung eines Integrals über einen Quader im R
n lässt sich

auf eindimensionale Integrationen zurückführen, indem man rekursiv über eine Va-
riable nach der anderen integriert. Das ist die Aussage des Satzes von Fubini :

5.2.4 Satz Sei Q = [a1, b1]× . . .× [an, bn] ein Quader in R
n und f :Q → R stetig.

Dann gilt:
∫

Q

f =

∫ bn

an

. . .

(
∫ b2

a2

(
∫ b1

a1

f(x) dx1

)

dx2

)

. . . dxn .

Dabei darf die Reihenfolge der Teilintegrationen frei gewählt werden.

5.2.5 Beispiel Sei n = 2, Q = [1, 2]× [0, 1] und f(x, y) = x exp(xy) für (x, y) ∈ Q.
Dann ist

∫

Q

f(x, y) d(x, y) =

∫ 2

1

(

∫ 1

0

xexy dy) dx =

∫ 2

1

x
1

x
exy

∣

∣

∣

y=1

y=0
dx =

∫ 2

1

(ex − 1) dx = e2 − e− 1 .

Integriert man erst über x und dann anschliessend über y, erhält man dasselbe
Ergebnis.

Beweis des Satzes von Fubini. Zumindest für den Fall n = 2 soll hier die Idee
eines Beweises des Satzes von Fubini skizziert werden. Dazu betrachten wir spezielle
Zerlegungen des Rechtecks Q durch Raster in x- und y-Richtung. Ist genauer a1 =
x0 < x1 < . . . < xr = b1 eine Teilung Tx des Intervalls [a1, b1] und a2 = y0 <

y1 < . . . < ys = b2 eine Teilung Ty des Intervalls [a2, b2], so ergibt sich daraus
eine Zerlegung des Rechtecks Q = [a1, b1] × [a2, b2] in r · s Teilrechtecke der Form
[xj−1, xj ] × [yk−1, yk]. Wählen wir nun als Stützstellen dieser Teilrechtecke jeweils
immer die obere rechte Ecke (xj , yk), so lautet die entsprechende Riemannsumme
für f :

RZ(f) =

r
∑

j=1

s
∑

k=1

f(xj , yk)(xj − xj−1)(yk − yk−1) .

Schauen wir uns nun genauer an, was bei der sukzessiven Integration von f zunächst
über x und dann über y getan wird. Wir definieren g: [a2, b2] → R durch

g(y) :=

∫ b1

a1

f(x, y) dx für y ∈ [a2, b2].

Die Riemannsumme von g zur Teilung Ty von [a2, b2] zu den Stützstellen yk lautet

RTy
(g) =

s
∑

k=1

g(yk)(yk − yk−1) .
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Ausserdem wird der Wert von g an der Stelle yk seinerseits näherungsweise durch
die Riemannsumme der Funktion x 7→ f(x, y) zur Teilung Tx mit Stützstellen xj

angegeben:

g(yk) =

∫ b1

a1

f(x, yk) dx ≈
r

∑

j=1

f(xj , yk)(xj − xj−1) .

Setzen wir dies ein, so erhalten wir

∫ b2

a2

g(y) dy ≈ RTy
(g) ≈

s
∑

k=1

r
∑

j=1

f(xj, yk)(xj − xj−1)(yk − yk−1) = RZ(f) .

Durch Grenzübergang folgt nun die Behauptung. q.e.d.

Bisher haben wir ausschliesslich über Quader in R
n integriert. Jetzt wollen wir

uns darüber Gedanken machen, welche anderen Teilmengen als Integrationsbereiche
in Frage kommen. Zum Beispiel könnte man über Kreisscheiben oder durch Geraden
begrenzte Flächen in R

2 oder über Kugeln in R
3 integrieren. Ist S ⊂ R

n eine be-
schränkte Teilmenge, so können wir einen Quader Q in R

n auswählen, der S enthält,
und eine gegebene Funktion f :S → R zu einer Funktion g:Q → R fortsetzen, indem
wir definieren

g(x) :=
{

f(x) falls x ∈ S,
0 sonst.

Dabei spielt es keine Rolle, ob S offen oder abgeschlossen ist, oder keines von beidem.
Das Integral von f über S definieren wir nun folgendermassen:

∫

S

f :=

∫

Q

g , falls g über Q integrierbar ist.

Allerdings hat die Fortsetzung g von f jetzt möglicherweise längs des Randes der
Teilmenge S Unstetigkeitsstellen. Selbst wenn f auf S stetig ist, kann g also hochgra-
dig unstetig sein. Ob die Funktion g dennoch integrierbar ist, hängt nun auch davon
ab, wie der Rand der Teilmenge S beschaffen ist. Die Integrierbarkeit ist gewährlei-
stet, wenn der Rand eine sogenannte Nullmenge ist. Das bedeutet anschaulich, dass
der Rand nicht zu stark ausgefranst ist.

Dies ist zum Beispiel der Fall, wenn die Menge S ein Normalgebiet ist.

5.2.6 Definition Eine Teilmenge S ⊂ R
2 heisst Normalgebiet (bezüglich y), wenn

es ein Intervall [a, b] ⊂ R und stetige Funktionen α: [a, b] → R und β: [a, b] → R

gibt, so dass S = {(x, y) ∈ R
2 | a ≤ x ≤ b, α(x) ≤ y ≤ β(x)}. Ein Normalgebiet

(bezüglich x) ist entsprechend definiert, wobei die Rollen von x und y vertauscht
sind. Von diesem Typ sind zum Beispiel auch Kreisscheiben oder Ellipsen.

Nehmen wir an, das Normalgebiet S sei in einem Rechteck Q enthalten und
f :Q → R sei eine stetige Funktion. Dann ist f über S integrierbar und es gilt:

∫

S

f =

∫ b

a

(

∫ β(x)

α(x)

f(x, y) dy) dx .
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5.2.7 Beispiel Sei S ⊂ R
2 das Gebiet, das von den Geraden berandet wird, die

durch die Gleichungen y = 0, x = 0 und y = 2 − 2x gegeben sind. Dann ist S ein
Dreieck, enthalten in dem Rechteck Q := [0, 1]× [0, 2]. Sei weiter

f(x, y) = 1 + (x+
y

2
)2 für (x, y) ∈ S.

Um das Integral von f über S zu bestimmen, wollen wir den Satz von Fubini an-
wenden. Dafür schreiben wir S in folgender Form:

S = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 2− 2x .} = {(x, y) | 0 ≤ y ≤ 2, 0 ≤ x ≤ 1− y

2
} .

Nun integrieren wir zuerst über y und dann über x und erhalten dabei folgendes:
∫

S

f =

∫ 1

0

(
∫ 2−2x

0

(1 + (x+
y

2
)2) dy

)

dx =

∫ 1

0

(

y +
2(x+ y

2
)3

3

)
∣

∣

∣

∣

y=2−2x

y=0

dx =

∫ 1

0

(

2− 2x+
2

3
− 2

3
x3

)

dx =

(

8

3
x− x2 − x4

6

)
∣

∣

∣

∣

1

0

=
3

2
.

Dieser Wert gibt das Volumen des Körpers an, der nach oben durch den Graphen
von f und nach unten durch das Dreieck S in der x-y-Ebene begrenzt wird. Der
Graph von f sieht aus wie ein Sonnensegel, und der darunter befindliche Bereich ist
sozusagen der beschattete Bereich.

5.3 Volumenberechnungen

Wir können die Vorbereitungen des letzten Abschnitts nun anwenden, um den
Flächeninhalt einer krummlinig berandeten Teilmenge des R

2 oder das Volumen
eines Körpers in R

3 zu definieren. Noch allgemeiner trifft man folgende Vereinba-
rung:

5.3.1 Definition Sei S ⊂ R
n eine Teilmenge derart, dass die konstante Funktion

f(x) = 1 (für alle x ∈ R
n) über S integrierbar ist. Dann nennt man S messbar und

fasst das Integral der 1-Funktion über S als ihr n-dimensionales Volumen auf:

Voln(S) :=

∫

S

1 dnx .

Ist zum Beispiel S ⊂ R
2 die Fläche zwischen dem Graphen einer Funktion

f : [a, b] → R≥0 und der x-Achse, so lässt sich S als Normalgebiet (bezüglich y)
schreiben:

S = {(x, y) | a ≤ x ≤ b, 0 ≤ y ≤ f(x)} .
Nach dem Satz von Fubini gilt daher wie gewünscht:

Vol2(S) =

∫

S

1 d2(x, y) =

∫ b

a

(

∫ f(x)

0

1 dy) dx =

∫ b

a

f(x) dx .

Entsprechend kann man das Volumen eines dreidimensionalen Körpers berech-
nen, indem man den Körper mit parallelen Ebenen schneidet und über die dabei ent-
stehenden Querschnittsflächen integriert. Dies ist das sogenannte Cavalieri-Prinzip.
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5.3.2 Satz Sei Q ein Rechteck in R
2, I = [a, b] ⊂ R und sei A ⊂ Q × I ⊂ R

3

eine messbare Teilmenge. Für z ∈ I sei Az := {(x, y) ∈ R
2 | (x, y, z) ∈ A}. Ist der

Querschnitt Az für jedes z ∈ I ebenfalls messbar, so gilt:

Vol3(A) =

∫ b

a

Vol2(Az) dz .

Beweis. Nach Definition ist Vol3(A) =
∫

A
1 d3(x, y, z) =

∫

Q×I
χA. Hier bezeichnet

χA die sogenannte charakteristische Funktion von A:

χA(x, y, z) =
{

1 falls (x, y, z) ∈ A

0 sonst.

Der Satz von Fubini liefert

∫

Q×I

χA =

∫ b

a

(
∫

Q

χA(x, y, z) d
2(x, y)

)

dz .

Für fest gewähltes z ist χA(x, y, z) = χAz
(x, y) für alle (x, y) ∈ Q, und daraus folgt

die Behauptung. q.e.d.

Hier sind zwei klassische Volumenberechnungen:

5.3.3 Beispiele • Um das dreidimensionale Volumen einer Kugel K von Radi-
us R zu bestimmen, wählen wir das Koordinatensystem so, dass der Nullpunkt
im Zentrum der Kugel ist. Der Schnitt Kz der Kugel mit einer Ebene, parallel
zur x-y-Ebene auf Höhe z, ist dann eine Kreisscheibe von Radius

√
R2 − z2.

Hier ist also Vol2(Kz) = π(R2 − z2), und daraus folgt:

Vol3(K) =

∫ R

−R

Vol2(Kz) dz =

∫ R

−R

π(R2 − z2) dz = π(R2z − z3

3
)
∣

∣

∣

R

−R
=

4

3
πR3 .

• Sei jetzt P eine Pyramide mit quadratischen Grundriss von Seitenlänge a und
Höhe h. Wir wählen die Spitze der Pyramide als Nullpunkt des Koordinaten-
systems und lassen die z-Achse senkrecht nach unten zeigen. Der Schnitt Pz

der Pyramide mit zur x-y-Ebene parallelen Ebene auf Höhe z ist ein Quadrat,
und für deren Seitenlänge x gilt nach dem Strahlensatz:

a

x
=

h

z
.

Daraus folgt x = a
h
z, und wir erhalten

Vol3(P ) =

∫ h

0

Vol2(Pz) dz =

∫ h

0

a2

h2
z2 dz =

1

3
a2h .


