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5.4 TRANSFORMATION AUF POLARKOORDINATEN UND LINEARE
TRANSFORMATIONEN

In diesem Paragraphen behandeln wir die Frage, wie sich Gebietsintegrale von Funk-
tionen in mehreren Variablen bei einer Koordinatentransformation éndern. Zum Bei-
spiel ist es bei einer Integration iiber ein Kreisgebiet S C R? giinstiger, zu Polarkoor-
dinaten iiberzugehen. Der Zusammenhang zwischen den kartesischen Koordinaten
(,y) und den Polarkoordinaten (r,¢) eines Punktes in R? ist beschrieben durch
die Gleichungen z = rcos¢ und y = rsinp, wobei r > 0 und ¢ € [0, 2] ist. Die
entsprechende Koordinatentransformation ist also die Abbildung

®:Rxo x [0,271] = R, (r,¢) = (rcosp, rsine).

5.4.1 BEMERKUNG Sei f: S C R? — R eine integrierbare Funktion auf einer mess-
baren Teilmenge S und bezeichne A := ®~'(S) die entsprechende Menge, beschrie-
ben mit Polarkoordinaten. Dann kénnen wir das Integral von f iiber S mithilfe der
Polarkoordinaten folgendermassen ausdriicken:

/f(a:,y)dQ(x,y):/f(rcosgo,rsinap)'r’drdgo.
s A

Das Auftauchen des Faktors r bei dieser Koordinatentransformation wird in
der Physik meist anschaulich damit begriindet, ein “infinitesimales” Segment eines
Kreisbogens sei proportional zum Winkel (hier dy), aber auch zum Radius r. Eine
andere Begriindung werden wir spater nachliefern, wenn die allgemeine Transforma-
tionsregel formuliert ist. Hier zunéchst zwei Anwendungsbeispiele.

5.4.2 BEISPIEL Berechnen wir mithilfe der Polarkoordinaten die Fléiche einer Kreis-
scheibe K von Radius R. Hier ist A = {(r,¢) | 0 < r < R,0 < ¢ < 27} und
S ={(z,y) | 2> + y*> < R}. Daraus ergibt sich

T R T2 r=R
Volp(K) = / / rdrdp = 27?5 =7R?,
—mJO =0

wie erwartet.

5.4.3 BEISPIEL Mithilfe der Polarkoordinaten kann man auch den Flidcheninhalt
unter der Gaussschen Glockenkurve, gegeben durch die Funktion f(z) = exp(—%),
berechnen. Die gesuchte Flidche ist das uneigentliche Integral

oo g2
/ e *dx.
— 00

Um auf ein Gebietsintegral zu kommen, multiplizieren wir dies Integral mit sich
selbst, bezeichnen aber in der Kopie die Integrationsvariable mit y, und erhalten:

oo 2 00 42 o0 00 g2442
(/ €le’)-</ e%dy):/ / e dx dy .
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In Polarkoordinaten wird daraus

o ™ r2 7& 0o
/ / e > rdodr=2n(—e *)| =2r.
0 -7 0

Die gesuchte Flédche betréagt also

o0 x2
/ e *dr =+2r.

(o)

Wenden wir uns nun dem Ziel zu, eine Regel fiir das Verhalten von Integralen
bei linearen Koordinatentransformationen zu formulieren. Es geht also eigentlich
darum, die Substitutionsregel auf Funktionen in mehreren Variablen zu verallge-
meinern. Eine wichtige Rolle spielt dabei die Determinante. Wie schon erwéhnt,
gibt der Betrag der Determinante einer 2 x 2-Matrix den Flicheninhalt des von den
Spalten erzeugten Parallelogramms an. Im dreidimensionalen Fall misst der Betrag
der Determinante das Volumen des von den Spalten erzeugten Spates. Entsprechend
gilt fiir das n-dimensionale Volumen der von n Vektoren in R" erzeugten Spatfigur

K= {ZZ:I AUk ‘ 0 S (6773 S Wk}
Vol,,(K) = | det(vy,...,v,)|.
Dies kann man mithilfe des Cavalieri-Prinzips beweisen.

5.4.4 BEMERKUNG Sind vy, ...,v, € R" Vektoren, die ein Spat K aufspannen, und
ist A eine n X n-Matrix, so gilt:

Vol,,(A - K) = |det A| - Vol,,(K) .
Der Betrag der Determinante von A gibt hier also die Anderung des Volumens an.

Beweis. Wir konnen die Vektoren vq,...,v, als Spalten einer Matrix B auffassen.
Dann ist |det B| = Vol,(K). Mit dem Produktsatz folgt |det(AB)| = |det(A)] -
| det(B)| = |det(A)|- Vol,,(K). Die Spalten der Produktmatrix AB sind aber gerade
die Vektoren Avy,...,Av,. q.e.d.

Wenden wir diese Beobachtung auf Riemann-Summen an, erhalten wir folgende
Aussage:

5.4.5 SATZ Sei A eine n x n-Matrix, und bezeichne ®:R™ — R"™ die durch ®(u) =
Au gegebene lineare Abbildung. Sei S C R™ messbar und f: ®(S) — R integrierbar.
Dann ist:

)d"(z) = |det A Au) d™u .
[D(S)f() (2) = | t\/sf( )

Beweis. Wir skizzieren die Begriindung dieser Aussage nur fiir den Fall n = 2.
Schauen wir uns die Riemannsummen von f o ® iiber S genauer an. Sei dazu @) O S
ein Rechteck in R?, und sei Z eine Zerlegung von @ in Teilrechtecke @1, ..., Q,.
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Durch Anwendung der Transformation ® erhalten wir eine Zerlegung von ®(Q) =
A-Q D ®(S) in Parallelogramme A-Q. Wie eben bemerkt, gilt fiir den Flacheninhalt
dieser Parallelogramme jeweils

Voly(AQy) = | det A| - Vola(Qy) -

Eine Wahl von Stiitzstellen uy € Q) liefert ausserdem Stiitzstellen x, = A - u; €
A - Q. Die zu Z gehorige Riemannsumme von f o ® lautet

> (A ug) Volo(Qy) -

Durch Multiplikation mit dem Betrag der Determinante von A wird daraus

[det Al <> f(A-uy) Volo(Qr) = Y flax) Vola(A - Q) .

Die rechte Seite dieser Gleichung ist das Analogon einer Riemannsumme fiir f fiir
die Zerlegung von A(Q) in Parallelogramme AQ), ..., AQ,. Bei entsprechender Ver-
feinerung konvergieren auch diese Summen gegen das Integral von f iiber ®(S).
Durch Grenziibergang erhalten wir also die Behauptung.  q.e.d.

5.4.6 FOLGERUNG Ist S C R" eine messbare Menge und A eine n x n-Matrix, dann
gilt fiir die Volumina von S und A-S ={Ap|p € S}:

Vol,,(A-S) = |det A| - Vol,,(5).

Ist |det A] = 1, so geht bei der Multiplikation mit der Matrix A also jede Figur
in eine Figur mit demselben Volumen iiber. Ist dagegen A = AE (das heisst, die
Multiplikation mit A ist eine Streckung um den Faktor \), so wird das Volumen
jeder Figur mit \™ multipliziert.

5.4.7 BEISPIEL Der Einheitskreis wird durch die lineare Abbildung, gegeben durch
a 0
0 b
Langen a in z-Richtung und b in y-Richtung abgebildet. Also ist der Flicheninhalt
dieser Ellipse gleich 7 - ab. Entsprechend kann man die Einheitskugel in R? durch

Multiplikation mit der Matrix A = , auf eine Ellipse mit Halbachsen der

Multiplikation mit der Matrix A =

o O QR
o o O

0
0 | auf ein Ellipsoid £ mit Halbachsen
c
der Langen a, b, ¢ abbilden. Also ist
4 4
Volz(F) = | det(A)] 3T =3T abc .

Hier ein weiteres Beispiel fiir eine lineare Transformation, die die Berechnung
eines vorgegebenen Integrals erleichtert:
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5.4.8 BEISPIEL Gesucht sei das Integral
m
/ezy d*(z,y) mit B={(z,9) €R*|2>0,y<0,y+1<2<y+2}.
B

Um die Gestalt des Integranden zu vereinfachen, bieten sich folgende neue Koordi-
naten an:
u=x+y, v=x—Y.

Dann ist © = 1(u + v) und y = 2(u — v). Wir betrachten also die lineare Transfor-

2
mation

(0)= (1 4)-()-()

1

_51) und |det A| = 3. Die Menge B entspricht in (u,v)-
2
Koordinaten der Menge:

Hier ist A =

N[N0 |

S={(u,v) |1 <v<2 —v<u<v}.

Das ergibt sich, indem man in die definierenden Ungleichungen fiir B jeweils fiir
und y die entsprechenden Terme in w und v einsetzt. Das gesuchte Integral konnen
wir jetzt mithilfe der Transformation folgendermassen berechnen:

z+y - 1 2 ) .
/ eV @(z,y) = | det A / ev d*(u,v) = —/ (/ ev du) dv .
: ; 2 5 —v

Das innere Integral lautet

v U=v
u u
ev du = vev
—v U=——v

Integration iiber v liefert nun das Ergebnis

s 1 [? 1
/e de(:p,y):—/ (e—e_l)vdv:§(e——).
B 2 4

e

=(e—e .

5.5 SATZ vVON GREEN UND DIVERGENZ

Der Satz von Green stellt einen Zusammenhang her zwischen dem Wegintegral langs
einer geschlossenen Kurve in der Ebene und einem Gebietsintegral iiber das von der
Kurve berandete Gebiet. Der Einfachheit halber beschréinken wir uns dabei wieder
auf Normalgebiete.

5.5.1 SATZ Sei F: D C R? — R? ein Vektorfeld mit stetig differenzierbaren Kom-
ponentenfunktionen f,g und sei A C D ein Normalgebiet. Der Rand 0A sei so
orientiert, dass das Innere immer auf der linken Seite der Randkurve liegt. Dann
gilt:

/(&:g(fv,y)—@;f(w,y))dxdy:/ F= [ flz,y)de+g(z,y)dy.
A 0A 0A
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5.5.2 BEMERKUNG Wir kénnen den Integranden auf der linken Seite der Gleichung,
also 0,9(x,y) — 0, f(x,y), als Zirkulation des Vektorfeldes auf dem Gebiet A auffas-
sen. Ist F' = VU ein Gradientenvektorfeld, dann ist f = 0,U und g = 0,U. Also
ist hier 0,9(x,y) — 0, f(x,y) = 0,0,U — 0,0,U = 0. Der Satz von Green bestétigt
hier also noch einmal die schon bekannte Aussage 5.1.8, dass das Wegintegral lédngs
eines geschlossenen Weges iiber ein konservatives Vektorfeld verschwindet.

Beweis. Halten Wir zunéachst folgendes fest. Ist der Rand des Gebietes A parametri-
siert durch v(t) = (z(t),y(t)) fiir 0 < ¢ < T, dann ist nach Definition

s / = () (5
und daher nach Substitutionsregel

/a F- / F(0), y(0) /() + 9(a(t), y(8)) y'(£)] dt =

y(T)

x(T)
/ F(,y(@)) do + / o(e(y),y) dy.
z(0)

y(0)
Schauen wir uns jetzt das Normalgebiet A genauer an. Nach Definition gibt es
stiickweise stetig differenzierbare Funktionen ay, as: [¢, d] — R und fy, Bs: [a, b] — R,
so dass

A={(z,y) la<z<bfi(r) <y < folr)} =
{(z,y) | au(y) <z < an(y),c <y <d}.

Fiir die Integration von f iiber x lings des Randes denken wir uns den Rand 0A
zerlegt in den Graphen von (31, den Graphen von 5 und eventuell noch zwei Strecken
parallel zur y-Achse (bei z = a bzw. x = b). Zum Integral iiber = tragen die Strecken
parallel zur y-Achse nichts bei. Deshalb liefert die Integration von f iiber x ldngs

0A folgendes:

b a b
/f($>51(96))d93+/b f(l“,52(90))d56=/(f(%ﬁl(l“))—f(ﬂf,ﬁz(ﬂf)))dl“

Entsprechend erhalten wir durch Integration von ¢ iiber y ldngs 0A:

/ (9(02(). y) — glon(y). ) dy.

Das Doppelintegral iiber A lautet in diesem Fall nach dem Satz von Fubini:

d raz(y) b pBa2(z)
/ /() (e ) ddy -~ [ /() 0,1 (z,y) dy di =
c a1 (y a 1(x

— [ (gtasv).) ~ glast). )y — [ (1o 5a0) Sl r(o) o

Cc a

Also stimmen beide Seiten iiberein und die Behauptung ist gezeigt.  q.e.d.



5.5. Satz von Green und Divergenz 101

5.5.3 BEISPIEL Betrachten wir das Normalgebiet A = {(z,y) e R? |0 <2< 1,0 <
2
y < z} und darauf das Vektorfeld F(z,y) = (f(x,y)) - (:iy) Berechnen wir

9(z,y)
zuerst das Gebietsintegral aus der Formel von Green.

[@ate) - s inarar= [yt = [ [yair= [ Sa=.

Der Rand des Dreiecks A besteht aus den drei Teilkurven ~(t) = (¢,0) (0 <t < 1),
Yo(t) = (1,t) (0 <t <1),v(t) =(1—1t,1—1t) (0<t<1). Hier ist also

f(:c,y)dx+g(:1:,y)dy:/ a:2d:c—|—/ :cydy—ir/ v*dr + zy dy .

oA 71 72 V3

Setzt man im dritten Teilintegral ein z(t) = 1—t = y(¢) und berticksichtigt dx = —dt
und dy = —dt, dann erhalt man

1
/ z® dzx + zy dy :/ (—=2) (1 —t)*dt.
73 0
Entsprechend findet man fiir die rechte Seite der Greenschen Formel:

1

Wl N

' ! ! 11
f(z,y)de+g(x,y) dy = / t2 dt+/ tdt+/ (—2)(1—t)?dt = =+~ —
94 0 0 0 3 2
Beide Seiten stimmen also iiberein, wie behauptet.

5.5.4 FOLGERUNG Ist « eine einfach geschlossene, positiv orientierte, stetige und
stiickweise stetig differenzierbare Kurve, die ein Normalgebiet A berandet, so be-
rechnet das folgende Integral den von v umschlossenen Fliacheninhalt:

% /(x dy — y dx) = Flache (A).

Y

Beweis. Wihle f(z,y) = —y und ¢(z,y) = z. Dann ist

/A(ﬁmg(a:, y) — Oy f(z,y))dedy = /A(l + 1) dz dy = 2 Fliache (A) .

q.e.d.

5.5.5 BEISPIEL Sei y(t) = (cos(t) — Lsin(3t),sin(t) — 1 cos(3t)) fiir 0 < ¢ < 2.
Die Kurve  ist einfach geschlossen und umrandet eine Art Raute mit abgerundeten
Ecken. Wir verwenden nun die Folgerung 5.5.4, um den Flédcheninhalt dieser Figur
zu berechnen. Setzen wir v(t) = (z(t), y(t)), dann ist z(t) = cos(t) — } sin(3¢) und

y(t) = sin(t) — § cos(3t). Die Ableitung lautet

7 (t) = (2'(t),y'(t)) = (—sin(t) — %cos(i%t), cos(t) + % sin(3t)) .
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Also finden wir hier

3 [@t=ydn) = 3 [ aow® - s o) a
| 9 3., ., 2
= 5 ) [cos®(t) + sin*(t) — 1—6(5111 (3t) + cos®(3t))+
Z(cos(t) sin(3t) + sin(t) cos(3t))] dt
= %/0 (1—2+Zsin(4t))dt:113—g.

Die gesuchte Flache betréigt also }—271

Der Satz von Green lédsst sich mit dem Begriff der Divergenz eines Vektorfeldes
auf andere Art interpretieren.

5.5.6 DEFINITION Ist F(z,y) = <:77Z1 Ei’ gg) ein stetig differenzierbares Vektorfeld
2 4y

auf einem Gebiet D C R?, versteht man unter der Divergenz von F die Funktion
div(F)(z,y) = 0ufi(z,y) + Oy fo(z, y).

5.5.7 BEISPIELE Ist F(z,y) = (ZZ) (fiir eine Konstante ¢ € R), dann ist div F'(p) =

2 .2
2c fiir alle p € R?. Das Vektorfeld F(z,y) = (x ;/y ) hat die Divergenz div F'(z,y) =
3.

Ist 7 ein stetig differenzierbarer Weg, setzen wir
ds = ||y'(t)]| dt

und nennen dies das dazugehorige Linienelement. Es bezeichnet die infinitesima-
le Weglidnge von ~. Durch Umformulierung des Satzes von Green erhélt man nun
folgenden Divergenzsatz von Gauss:

5.5.8 SATZ Sei A C D ein Normalgebiet. Fiir jeden Punkt p € 0A bezeichne n(p)
einen Einheitsvektor, der bei p auf dem Rand 0A des Gebietes A senkrecht steht
und nach aussen zeigt. Bezeichne schliesslich ds das Linienelement. Dann gilt:

/AdivF(az,y)d:L’dy:/ (F(p),n(p))ds.

0A

Wenn wir uns unter dem Vektorfeld F eine Strémung vorstellen, gibt die rechte
Seite an, wieviel Stromung durch den Rand des Gebietes A nach aussen austritt.
Man bezeichnet deshalb die Divergenz von F' auch als Quelldichte.
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Beweis des Satzes. Schauen wir uns zunéchst die rechte Seite genauer an. Nehmen
wir an, der Rand des Gebietes A sei parametrisiert durch ~:[a,b] — U, wobei die
Orientierung so gewahlt sei, dass das Innere von A immer links von () liege. Ist
(t)
y(t)
n(y(t)) durch Drehung des Geschwindigkeitsvektors 4(¢) um —90° und Normierung
auf Lange 1. Das heisst also:

L ()
GO = 5@ (—fc@)) '

Daraus ergibt sich fiir p = ~(¢), wenn wir auch noch die eindimensionale Substitu-
tionsregel verwenden:

(F(p),n(p)) ds = (F (1)), n(v(0)) [|[7()] dt =

[fl(xay) y(t) - fQ(xay) {L‘(t)] dt = fl(l',y) dy - fQ(IL',y) dx.

Wenn wir nun g(x,y) = fi(z,y) und f(z,y) = —fa(x,y) wihlen, stimmt dieser
Ausdruck mit dem Integranden iiberein, der uns auf der rechten Seite des Satzes
von Green begegnet. Wir konnen also mit Green schliessen:

etwa y(t) = ( fiir alle ¢ € [a, b], so erhalten wir den dusseren Normalenvektor

(F(p),n(p)) ds = fi(x,y) dy—folz,y) dv = A(amfl(x,y)+0yfz(x,y))dw dy = /Adiv F(z,y)dvdy,

wie behauptet.  q.e.d.



