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5.4 Transformation auf Polarkoordinaten und lineare

Transformationen

In diesem Paragraphen behandeln wir die Frage, wie sich Gebietsintegrale von Funk-
tionen in mehreren Variablen bei einer Koordinatentransformation ändern. Zum Bei-
spiel ist es bei einer Integration über ein Kreisgebiet S ⊂ R

2 günstiger, zu Polarkoor-
dinaten überzugehen. Der Zusammenhang zwischen den kartesischen Koordinaten
(x, y) und den Polarkoordinaten (r, ϕ) eines Punktes in R

2 ist beschrieben durch
die Gleichungen x = r cosϕ und y = r sinϕ, wobei r ≥ 0 und ϕ ∈ [0, 2π] ist. Die
entsprechende Koordinatentransformation ist also die Abbildung

Φ:R≥0 × [0, 2π] → R
2, (r, ϕ) 7→ (r cosϕ, r sinϕ) .

5.4.1 Bemerkung Sei f :S ⊂ R
2 → R eine integrierbare Funktion auf einer mess-

baren Teilmenge S und bezeichne A := Φ−1(S) die entsprechende Menge, beschrie-
ben mit Polarkoordinaten. Dann können wir das Integral von f über S mithilfe der
Polarkoordinaten folgendermassen ausdrücken:

∫

S

f(x, y) d2(x, y) =

∫

A

f(r cosϕ, r sinϕ) r dr dϕ .

Das Auftauchen des Faktors r bei dieser Koordinatentransformation wird in
der Physik meist anschaulich damit begründet, ein “infinitesimales” Segment eines
Kreisbogens sei proportional zum Winkel (hier dϕ), aber auch zum Radius r. Eine
andere Begründung werden wir später nachliefern, wenn die allgemeine Transforma-
tionsregel formuliert ist. Hier zunächst zwei Anwendungsbeispiele.

5.4.2 Beispiel Berechnen wir mithilfe der Polarkoordinaten die Fläche einer Kreis-
scheibe K von Radius R. Hier ist A = {(r, ϕ) | 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π} und
S = {(x, y) | x2 + y2 ≤ R}. Daraus ergibt sich

Vol2(K) =

∫ π

−π

∫ R

0

rdr dϕ = 2π
r2

2

∣

∣

∣

r=R

r=0
= πR2 ,

wie erwartet.

5.4.3 Beispiel Mithilfe der Polarkoordinaten kann man auch den Flächeninhalt
unter der Gaussschen Glockenkurve, gegeben durch die Funktion f(x) = exp(−x2

2
),

berechnen. Die gesuchte Fläche ist das uneigentliche Integral

∫ ∞

−∞

e
−

x
2

2
dx .

Um auf ein Gebietsintegral zu kommen, multiplizieren wir dies Integral mit sich
selbst, bezeichnen aber in der Kopie die Integrationsvariable mit y, und erhalten:

(
∫ ∞

−∞

e
−

x
2

2
dx

)

·
(
∫ ∞

−∞

e
−

y
2

2
dy

)

=

∫ ∞

−∞

∫ ∞

−∞

e
−

x
2+y

2

2
dx dy .
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In Polarkoordinaten wird daraus
∫ ∞

0

∫ π

−π

e
−

r
2

2
r dϕ dr = 2π(−e

−

r
2

2 )
∣

∣

∣

∞

0
= 2π .

Die gesuchte Fläche beträgt also

∫ ∞

−∞

e
−

x
2

2
dx =

√
2π .

Wenden wir uns nun dem Ziel zu, eine Regel für das Verhalten von Integralen
bei linearen Koordinatentransformationen zu formulieren. Es geht also eigentlich
darum, die Substitutionsregel auf Funktionen in mehreren Variablen zu verallge-
meinern. Eine wichtige Rolle spielt dabei die Determinante. Wie schon erwähnt,
gibt der Betrag der Determinante einer 2× 2-Matrix den Flächeninhalt des von den
Spalten erzeugten Parallelogramms an. Im dreidimensionalen Fall misst der Betrag
der Determinante das Volumen des von den Spalten erzeugten Spates. Entsprechend
gilt für das n-dimensionale Volumen der von n Vektoren in R

n erzeugten Spatfigur
K = {

∑n

k=1 αkvk | 0 ≤ αk ≤ 1∀k}:

Voln(K) = | det(v1, . . . , vn)| .

Dies kann man mithilfe des Cavalieri-Prinzips beweisen.

5.4.4 Bemerkung Sind v1, . . . , vn ∈ R
n Vektoren, die ein Spat K aufspannen, und

ist A eine n× n-Matrix, so gilt:

Voln(A ·K) = | detA| · Voln(K) .

Der Betrag der Determinante von A gibt hier also die Änderung des Volumens an.

Beweis. Wir können die Vektoren v1, . . . , vn als Spalten einer Matrix B auffassen.
Dann ist | detB| = Voln(K). Mit dem Produktsatz folgt | det(AB)| = | det(A)| ·
| det(B)| = | det(A)| ·Voln(K). Die Spalten der Produktmatrix AB sind aber gerade
die Vektoren Av1, . . . , Avn. q.e.d.

Wenden wir diese Beobachtung auf Riemann-Summen an, erhalten wir folgende
Aussage:

5.4.5 Satz Sei A eine n× n-Matrix, und bezeichne Φ:Rn → R
n die durch Φ(u) =

Au gegebene lineare Abbildung. Sei S ⊂ R
n messbar und f : Φ(S) → R integrierbar.

Dann ist:
∫

Φ(S)

f(x) dn(x) = | detA|
∫

S

f(Au) dnu .

Beweis. Wir skizzieren die Begründung dieser Aussage nur für den Fall n = 2.
Schauen wir uns die Riemannsummen von f ◦Φ über S genauer an. Sei dazu Q ⊃ S

ein Rechteck in R
2, und sei Z eine Zerlegung von Q in Teilrechtecke Q1, . . . , Qr.
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Durch Anwendung der Transformation Φ erhalten wir eine Zerlegung von Φ(Q) =
A·Q ⊃ Φ(S) in Parallelogramme A·Qk. Wie eben bemerkt, gilt für den Flächeninhalt
dieser Parallelogramme jeweils

Vol2(AQk) = | detA| ·Vol2(Qk) .

Eine Wahl von Stützstellen uk ∈ Qk liefert ausserdem Stützstellen xk = A · uk ∈
A ·Qk. Die zu Z gehörige Riemannsumme von f ◦ Φ lautet

∑

k

f(A · uk) Vol2(Qk) .

Durch Multiplikation mit dem Betrag der Determinante von A wird daraus

| detA| ·
∑

k

f(A · uk) Vol2(Qk) =
∑

k

f(xk) Vol2(A ·Qk) .

Die rechte Seite dieser Gleichung ist das Analogon einer Riemannsumme für f für
die Zerlegung von AQ in Parallelogramme AQ1, . . . , AQn. Bei entsprechender Ver-
feinerung konvergieren auch diese Summen gegen das Integral von f über Φ(S).
Durch Grenzübergang erhalten wir also die Behauptung. q.e.d.

5.4.6 Folgerung Ist S ⊂ R
n eine messbare Menge und A eine n×n-Matrix, dann

gilt für die Volumina von S und A · S = {Ap | p ∈ S}:

Voln(A · S) = | detA| ·Voln(S) .

Ist | detA| = 1, so geht bei der Multiplikation mit der Matrix A also jede Figur
in eine Figur mit demselben Volumen über. Ist dagegen A = λE (das heisst, die
Multiplikation mit A ist eine Streckung um den Faktor λ), so wird das Volumen
jeder Figur mit λn multipliziert.

5.4.7 Beispiel Der Einheitskreis wird durch die lineare Abbildung, gegeben durch

Multiplikation mit der Matrix A =

(

a 0
0 b

)

, auf eine Ellipse mit Halbachsen der

Längen a in x-Richtung und b in y-Richtung abgebildet. Also ist der Flächeninhalt
dieser Ellipse gleich π · ab. Entsprechend kann man die Einheitskugel in R

3 durch

Multiplikation mit der Matrix A =





a 0 0
0 b 0
0 0 c



 auf ein Ellipsoid E mit Halbachsen

der Längen a, b, c abbilden. Also ist

Vol3(E) = | det(A)| 4
3
π =

4

3
π · abc .

Hier ein weiteres Beispiel für eine lineare Transformation, die die Berechnung
eines vorgegebenen Integrals erleichtert:
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5.4.8 Beispiel Gesucht sei das Integral
∫

B

e
x+y

x−y

d2(x, y) mit B = {(x, y) ∈ R
2 | x ≥ 0, y ≤ 0, y + 1 ≤ x ≤ y + 2} .

Um die Gestalt des Integranden zu vereinfachen, bieten sich folgende neue Koordi-
naten an:

u = x+ y, v = x− y .

Dann ist x = 1
2
(u + v) und y = 1

2
(u − v). Wir betrachten also die lineare Transfor-

mation

Φ:

(

u

v

)

7→
(

1
2

1
2

1
2

−1
2

)

·
(

u

v

)

=

(

x

y

)

.

Hier ist A =

(

1
2

1
2

1
2

−1
2

)

und | detA| = 1
2
. Die Menge B entspricht in (u, v)-

Koordinaten der Menge:

S = {(u, v) | 1 ≤ v ≤ 2,−v ≤ u ≤ v} .

Das ergibt sich, indem man in die definierenden Ungleichungen für B jeweils für x
und y die entsprechenden Terme in u und v einsetzt. Das gesuchte Integral können
wir jetzt mithilfe der Transformation folgendermassen berechnen:

∫

B

e
x+y

x−y

d2(x, y) = | detA|
∫

S

e
u

v d2(u, v) =
1

2

∫ 2

1

(
∫ v

−v

e
u

v du

)

dv .

Das innere Integral lautet
∫ v

−v

e
u

v du = ve
u

v

∣

∣

∣

u=v

u=−v
= (e− e−1)v .

Integration über v liefert nun das Ergebnis

∫

B

e
x+y

x−y

d2(x, y) =
1

2

∫ 2

1

(e− e−1)v dv =
3

4
(e− 1

e
) .

5.5 Satz von Green und Divergenz

Der Satz von Green stellt einen Zusammenhang her zwischen dem Wegintegral längs
einer geschlossenen Kurve in der Ebene und einem Gebietsintegral über das von der
Kurve berandete Gebiet. Der Einfachheit halber beschränken wir uns dabei wieder
auf Normalgebiete.

5.5.1 Satz Sei F :D ⊂ R
2 → R

2 ein Vektorfeld mit stetig differenzierbaren Kom-
ponentenfunktionen f, g und sei A ⊂ D ein Normalgebiet. Der Rand ∂A sei so
orientiert, dass das Innere immer auf der linken Seite der Randkurve liegt. Dann
gilt:

∫

A

(∂xg(x, y)− ∂yf(x, y)) dx dy =

∫

∂A

F =

∫

∂A

f(x, y) dx+ g(x, y) dy .
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5.5.2 Bemerkung Wir können den Integranden auf der linken Seite der Gleichung,
also ∂xg(x, y)− ∂yf(x, y), als Zirkulation des Vektorfeldes auf dem Gebiet A auffas-
sen. Ist F = ∇U ein Gradientenvektorfeld, dann ist f = ∂xU und g = ∂yU . Also
ist hier ∂xg(x, y)− ∂yf(x, y) = ∂x∂yU − ∂y∂xU = 0. Der Satz von Green bestätigt
hier also noch einmal die schon bekannte Aussage 5.1.8, dass das Wegintegral längs
eines geschlossenen Weges über ein konservatives Vektorfeld verschwindet.

Beweis. Halten wir zunächst folgendes fest. Ist der Rand des Gebietes A parametri-
siert durch γ(t) = (x(t), y(t)) für 0 ≤ t ≤ T , dann ist nach Definition

∫

∂A

F =

∫ T

0

〈F (γ(t)), γ′(t)〉dt =
∫ T

0

〈
(

f(x(t), y(t))
g(x(t), y(t))

)

,

(

x′(t)
y′(t)

)

〉dt ,

und daher nach Substitutionsregel
∫

∂A

F =

∫ T

0

[f(x(t), y(t)) x′(t) + g(x(t), y(t)) y′(t)] dt =

∫ x(T )

x(0)

f(x, y(x)) dx+

∫ y(T )

y(0)

g(x(y), y) dy .

Schauen wir uns jetzt das Normalgebiet A genauer an. Nach Definition gibt es
stückweise stetig differenzierbare Funktionen α1, α2: [c, d] → R und β1, β2: [a, b] → R,
so dass

A = {(x, y) | a < x < b, β1(x) < y < β2(x)} =

{(x, y) | α1(y) < x < α2(y), c < y < d} .
Für die Integration von f über x längs des Randes denken wir uns den Rand ∂A

zerlegt in den Graphen von β1, den Graphen von β2 und eventuell noch zwei Strecken
parallel zur y-Achse (bei x = a bzw. x = b). Zum Integral über x tragen die Strecken
parallel zur y-Achse nichts bei. Deshalb liefert die Integration von f über x längs
∂A folgendes:

∫ b

a

f(x, β1(x)) dx+

∫ a

b

f(x, β2(x)) dx =

∫ b

a

(f(x, β1(x))− f(x, β2(x))) dx .

Entsprechend erhalten wir durch Integration von g über y längs ∂A:
∫ d

c

(g(α2(y), y)− g(α1(y), y)) dy .

Das Doppelintegral über A lautet in diesem Fall nach dem Satz von Fubini:
∫ d

c

∫ α2(y)

α1(y)

∂xg(x, y) dx dy −
∫ b

a

∫ β2(x)

β1(x)

∂yf(x, y) dy dx =

=

∫ d

c

(g(α2(y), y)− g(α1(y), y)) dy −
∫ b

a

(f(x, β2(x))− f(x, β1(x))) dx .

Also stimmen beide Seiten überein und die Behauptung ist gezeigt. q.e.d.
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5.5.3 Beispiel Betrachten wir das Normalgebiet A = {(x, y) ∈ R
2 | 0 ≤ x ≤ 1, 0 ≤

y ≤ x} und darauf das Vektorfeld F (x, y) =

(

f(x, y)
g(x, y)

)

=

(

x2

xy

)

. Berechnen wir

zuerst das Gebietsintegral aus der Formel von Green.

∫

A

(∂xg(x, y)− ∂yf(x, y)) dx dy =

∫

A

y d2(x, y) =

∫ 1

0

∫ x

0

y dy dx =

∫ 1

0

x2

2
dx =

1

6
.

Der Rand des Dreiecks A besteht aus den drei Teilkurven γ1(t) = (t, 0) (0 ≤ t ≤ 1),
γ2(t) = (1, t) (0 ≤ t ≤ 1), γ3(t) = (1− t, 1− t) (0 ≤ t ≤ 1). Hier ist also

∫

∂A

f(x, y) dx+ g(x, y) dy =

∫

γ1

x2 dx+

∫

γ2

xy dy +

∫

γ3

x2 dx+ xy dy .

Setzt man im dritten Teilintegral ein x(t) = 1−t = y(t) und berücksichtigt dx = −dt

und dy = −dt, dann erhält man

∫

γ3

x2 dx+ xy dy =

∫ 1

0

(−2) (1− t)2 dt .

Entsprechend findet man für die rechte Seite der Greenschen Formel:

∫

∂A

f(x, y) dx+g(x, y) dy =

∫ 1

0

t2 dt+

∫ 1

0

t dt+

∫ 1

0

(−2) (1−t)2 dt =
1

3
+
1

2
− 2

3
=

1

6
.

Beide Seiten stimmen also überein, wie behauptet.

5.5.4 Folgerung Ist γ eine einfach geschlossene, positiv orientierte, stetige und
stückweise stetig differenzierbare Kurve, die ein Normalgebiet A berandet, so be-
rechnet das folgende Integral den von γ umschlossenen Flächeninhalt:

1

2

∫

γ

(x dy − y dx) = Fläche (A).

Beweis. Wähle f(x, y) = −y und g(x, y) = x. Dann ist
∫

A

(∂xg(x, y)− ∂yf(x, y)) dx dy =

∫

A

(1 + 1) dx dy = 2 Fläche (A) .

q.e.d.

5.5.5 Beispiel Sei γ(t) = (cos(t) − 1
4
sin(3t), sin(t) − 1

4
cos(3t)) für 0 ≤ t ≤ 2π.

Die Kurve γ ist einfach geschlossen und umrandet eine Art Raute mit abgerundeten
Ecken. Wir verwenden nun die Folgerung 5.5.4, um den Flächeninhalt dieser Figur
zu berechnen. Setzen wir γ(t) = (x(t), y(t)), dann ist x(t) = cos(t) − 1

4
sin(3t) und

y(t) = sin(t)− 1
4
cos(3t). Die Ableitung lautet

γ′(t) = (x′(t), y′(t)) = (− sin(t)− 3

4
cos(3t), cos(t) +

3

4
sin(3t)) .
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Also finden wir hier

1

2

∫

γ

(x dy − y dx) =
1

2

∫ 2π

0

(x(t)y′(t)− y(t)x′(t)) dt

=
1

2

∫ 2π

0

[cos2(t) + sin2(t)− 3

16
(sin2(3t) + cos2(3t))+

3

4
(cos(t) sin(3t) + sin(t) cos(3t))] dt

=
1

2

∫ 2π

0

(
13

16
+

3

4
sin(4t)) dt =

13π

16
.

Die gesuchte Fläche beträgt also 13
16
π.

Der Satz von Green lässt sich mit dem Begriff der Divergenz eines Vektorfeldes
auf andere Art interpretieren.

5.5.6 Definition Ist F (x, y) =

(

f1(x, y)
f2(x, y)

)

ein stetig differenzierbares Vektorfeld

auf einem Gebiet D ⊂ R
2, versteht man unter der Divergenz von F die Funktion

div(F )(x, y) = ∂xf1(x, y) + ∂yf2(x, y).

5.5.7 Beispiele Ist F (x, y) =

(

cx

cy

)

(für eine Konstante c ∈ R), dann ist divF (p) =

2c für alle p ∈ R
2. Das Vektorfeld F (x, y) =

(

x2 + y2

xy

)

hat die Divergenz divF (x, y) =

3x.

Ist γ ein stetig differenzierbarer Weg, setzen wir

ds = ||γ′(t)|| dt

und nennen dies das dazugehörige Linienelement . Es bezeichnet die infinitesima-
le Weglänge von γ. Durch Umformulierung des Satzes von Green erhält man nun
folgenden Divergenzsatz von Gauss:

5.5.8 Satz Sei A ⊂ D ein Normalgebiet. Für jeden Punkt p ∈ ∂A bezeichne n(p)
einen Einheitsvektor, der bei p auf dem Rand ∂A des Gebietes A senkrecht steht
und nach aussen zeigt. Bezeichne schliesslich ds das Linienelement. Dann gilt:

∫

A

divF (x, y) dx dy =

∫

∂A

〈F (p), n(p)〉 ds .

Wenn wir uns unter dem Vektorfeld F eine Strömung vorstellen, gibt die rechte
Seite an, wieviel Strömung durch den Rand des Gebietes A nach aussen austritt.
Man bezeichnet deshalb die Divergenz von F auch als Quelldichte.
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Beweis des Satzes. Schauen wir uns zunächst die rechte Seite genauer an. Nehmen
wir an, der Rand des Gebietes A sei parametrisiert durch γ: [a, b] → U , wobei die
Orientierung so gewählt sei, dass das Innere von A immer links von γ̇(t) liege. Ist

etwa γ(t) =

(

x(t)
y(t)

)

für alle t ∈ [a, b], so erhalten wir den äusseren Normalenvektor

n(γ(t)) durch Drehung des Geschwindigkeitsvektors γ̇(t) um −90◦ und Normierung
auf Länge 1. Das heisst also:

n(γ(t)) =
1

||γ̇(t)||

(

ẏ(t)
−ẋ(t)

)

.

Daraus ergibt sich für p = γ(t), wenn wir auch noch die eindimensionale Substitu-
tionsregel verwenden:

〈F (p), n(p)〉 ds = 〈F (γ(t)), n(γ(t))〉 ||γ̇(t)|| dt =

[f1(x, y) ẏ(t)− f2(x, y) ẋ(t)] dt = f1(x, y) dy − f2(x, y) dx .

Wenn wir nun g(x, y) = f1(x, y) und f(x, y) = −f2(x, y) wählen, stimmt dieser
Ausdruck mit dem Integranden überein, der uns auf der rechten Seite des Satzes
von Green begegnet. Wir können also mit Green schliessen:

〈F (p), n(p)〉 ds = f1(x, y) dy−f2(x, y) dx =

∫

A

(∂xf1(x, y)+∂yf2(x, y)) dx dy =

∫

A

divF (x, y) dx dy ,

wie behauptet. q.e.d.


