Kapitel 6

Ausbau der Differentialrechnung

6.1 DIFFERENTIAL EINER TRANSFORMATION

Bisher haben wir Differenzierbarkeit von reellwertigen Funktionen in mehreren Va-
riablen, sowie von Funktionen, die nur von einem Parameter abhingen, aber in
einen hoherdimensionalen Raum abbilden, untersucht. Nun wollen wir allgemeiner
Funktionen betrachten, bei denen sowohl der Ausgangsraum als auch der Bildraum
hoherdimensional sein kann. Eine solche Funktion ist differenzierbar, wenn sie sich
lokal jeweils gut durch eine lineare Abbildung approximieren léasst. Die Definition
der Differenzierbarkeit mithilfe der Dreigliedentwicklung lautet hier:

6.1.1 DEFINITION Sei U C R" offen, p € U und f: U C R" — R™ eine Funktion. Sei
weiter € > 0 so klein, dass die Kugel K.(p) vom Radius € um p ganz im Definitionsbe-
reich U liegt. Die Funktion f heisst an der Stelle p € U differenzierbar, wenn es eine
lineare Abbildung D f,:R" — R™ und eine ”Restfunktion” R: K.(0) C R* — R™
mit lim, o R(v) = 0 gibt, so dass fiir alle v € R™ mit ||v|| < € gilt:

fp+v) = f(p) + Dfpv) + [[o]| - R(v).

Die Funktion f ldsst sich also entwickeln in einen konstanten Term f(p), einen linea-
ren Term D f,(v) und einen Restterm von hoherer Ordnung. Die lineare Abbildung
Df, ist durch die Entwicklungsbedingung eindeutig festgelegt und wird als Diffe-
rential von f an der Stelle p bezeichnet. Man nennt f auf U differenzierbar, wenn
f an jeder Stelle von U differenzierbar ist.

6.1.2 BEISPIELE e Sei A eine m x n-Matrix, w € R™ fest gegeben und f: R™ —
R™ definiert durch f(v) = Av 4+ w fiir v € R". Dann ist f differenzierbar auf
ganz R" und D f,(v) = Awv fur alle p,v € R™. Hier ist jeweils die Restfunktion
R(v) =0.

2r +y+xy

e Sei f(z,y) = <x—3y+x2) fir z,y € R. An der Stelle p = 0 ist f(p) =0

2 +y n :Uy)
2 )

und die Dreigliedentwicklung von f lautet hier: f(x,y) = (az 3y .

wobei D f,(z,y) = (ix_+3z) - (? —13) (;)

Uberpriifen wir die Bedingung an die Restfunktion R(z,y) = —— <”§)




104 Kapitel 6. Ausbau der Differentialrechnung

Fiir feste x,y und kleines t € R gilt:

. . 1 t2xy . 1 tzy
1 = lim ———— = lim —— =0.
tg%R(t:c,ty) 150 ¢ /42 T2 <t2x2) 150 /g2 T2 <tx2 0

Also ist lim(, )0 R(z,y) = 0, wie verlangt.
6.1.3 BEMERKUNG Wie im eindimensionalen Fall kann man zeigen, dass eine in p
differenzierbare Funktion an dieser Stelle auch stetig sein muss. Weiter lédsst sich
an der Definition sofort ablesen, dass eine Abbildung mit mehreren Komponenten

f:U—=R™ v (fi(v),..., fm(v)), genau dann in a € U differenzierbar ist, wenn
jede der Komponentenfunktionen f;: U — R in p differenzierbar ist.

6.1.4 SATZ Sei jetzt n > 1, m = 1, p € U gegeben und f:U C R" — R eine
Funktion in n Variablen.

1. Ist f bei p differenzierbar, so gilt fiir v € R™ mit ||v|| < e:

Dﬁ@gzhmf@+m0—f@)

t—0 t

Also gibt D f,(v) die Ableitung von f in Richtung von v an.

2. Ist f bei p differenzierbar, so existieren bei p auch samtliche partiellen Ablei-
tungen von f.

3. Ist f stetig partiell differenzierbar, so ist f auch differenzierbar.

Beweis. Um die erste Aussage zu zeigen, setzen wir in der Dreigliedentwicklung
p + tv ein und erhalten

f(p+tv) = f(p) + Dfp(tv) + [[tv]| - R(tv) = f(p) + D fp(v) + [t][[v]] - B(tv)
weil D f, linear ist. Daraus folgt

flp+tv) — f(p)
t

lim
t—0

= Dfp(v) £ lim|[[o]] - R(tv) = D fy(v),

da nach Voraussetzung lim;_,o R(tv) = 0.
Die erste Aussage liefert fiir die kanonischen Basisvektoren v = e;:

Dﬁ@ﬁ:hmf@+wﬂ—f@)

t—0 t

Insbesondere existieren also siamtliche partiellen Ableitungen bei p.

Nehmen wir jetzt an, dass f auf U stetig partiell differenzierbar ist. Fiir jeden
Vektor v € R™ mit ||[v]| < ¢, ist dann die Funktion ¢g(t) = f(p + tv) fiir |¢| < 1
definiert und bei t = 0 differenzierbar. Aus der Kettenregel folgt ¢'(0) = (V f(p), v).
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Setzen wir ¢ = 1 ein in die Dreigliedentwicklung von ¢ bei ¢ = 0, erhalten wir
folgende Dreigliedentwicklung von f:

fo+v) = fp) + (VI (p),v) +[[vll - R(v).
Also ist f differenzierbar bei p und wir lesen ab, dass D f,(v) = (V f(p),v). q.e.d.

Aus der Existenz der partiellen Ableitungen folgt noch nicht die Differenzierbar-
keit. Hierzu ein Beispiel:

Ty .
6.1.5 BEISPIEL Sei f(1,y) = { gy (t%y) 7 (0,0). Die partiellen Ableitun-
sons

gen von f im Nullpunkt existieren. Denn nach Definition ist

9, £(0.0) = Tim L9 = /(0.0)

t—0 t

=0

und ebenso 9, f(0,0) = lim,_,, w = 0. Aber f kann im Nullpunkt nicht dif-
ferenzierbar sein, denn f ist bei p = (0, 0) noch nicht einmal stetig. Beispielsweise ist
limg o f(¢,¢) = £, aber f(0,0) = 0. Die Grenzwertbildung ist also nicht vertauschbar
mit der Auswertung von f.

Das Differential von f an der Stelle p ist bezogen auf die kanonischen Stan-
dardbasen von R™ und R™ durch eine Matrix gegeben, die sogenannte Jacobimatrix

Jf(p) an der Stelle p.

6.1.6 SATZ Ist f an der Stelle p € U C R" differenzierbar und besteht f aus den

Komponenten f1,..., f,., so existieren auch alle partiellen Ableitungen %(p) und
J

die lineare Abbildung D f, wird beziiglich der kanonischen Basen durch die Matrix

beschrieben, die aus siamtlichen partiellen Ableitungen gebildet ist:

Ou, f1(0), ..., O f1(p)

O fo(0)s  -oy Ou fo
Jf(p) = f ) : f )

O fm(p), -, On fm(D)

Beweis. Dies ergibt sich sofort durch Vergleich mit den Dreigliedentwicklungen der
Komponentenfunktionen von f.  q.e.d.

6.1.7 BEISPIEL Betrachten wir die Umrechnung von Polarkoordinaten in kartesi-

sche Koordinaten der Ebene als eine Funktion in zwei Variablen mit zwei Kompo-
nenten, nédmlich

[ rcosp

f(raSO) - (Tsincp

Der Definitionsbereich U ist hier also eine Halbebene. Die Funktion f bildet die

Parallelen zur positiven r-Achse auf Radialstrahlen ab, und die Parallelen zur ¢-

Achse werden unter f auf Kreise um den Nullpunkt abgebildet. Die Funktion f ist

) firr >0, p € R.
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iiberall differenzierbar und die Jacobimatrix zu f an einer Stelle p = (r,¢) (mit
r > 0) ist:
_[cosp —rsing
Tf(re) = (singp T COS ) '
Die bereits behandelten Spezialfille ordnen sich hier folgendermassen ein:

m = 1. Hier besteht die Jacobimatrix nur aus einer Zeile und Jf(p) = (Vf(p))?.

n = 1. Hier geht es sich eigentlich um einen parametrisierten Weg v: [a, ] — R™,
und die Jacobimatrix an einer Stelle ¢ ist jeweils der Geschwindigkeitsvektor

Jy(t) =~ (1)

n =m. Ist f das Gradientenvektorfeld eines Potentials U, so stimmt die Jacobima-
trix von f = VU mit der Hessematrix von U iiberein Jf(p) = Hy(p).

6.1.8 BEMERKUNG Sei jetzt n = m. In diesem Fall gibt der Betrag der Determi-
nante der Jacobimatrix den lokalen Expansions- oder Kontraktionsfaktor von f an.

Genauer gilt:
[ det(D )| = lim Y2l ()

<0 Vol,(Kc(p))

Fiir lineare Abbildungen ist das klar (siehe Folgerung 5.4.6) und fiir beliebige Trans-
formationen ist es schwieriger (wir verzichten hier auf den Beweis).

VpeU.

Im eben betrachteten Beispiel ist det Jf(p) = r > 0, das heisst, im Bereich
0 < r < 1 findet eine Kontraktion und im Bereich r > 1 eine Expansion statt.
Die Kettenregel lautet im Mehrdimensionalen folgendermassen:

6.1.9 SATZ Seien g:U C R* — V C R! und f:V — R™ Funktionen und U,V
jeweils offene Teilmengen. Ist g differenzierbar an der Stelle p € U, und ist f dif-
ferenzierbar an der Stelle g(p) € V, so ist auch f o g bei p differenzierbar. Fiir die
Differentiale gilt:

D(fog),= D fopy © Dgp .-

Das bedeutet fiir die entsprechenden Jacobi-Matrizen:

J(fog)p)=Jf(g(p)-Jg(p).

6.1.10 BEISPIEL Sei g: R? — R? gegeben durch g(z,y) = (z+2y,x-y), und f: R? —
R definiert durch f(u,v) = e®“v. Die Zusammensetzung lautet dann (f o g)(z,y) =
e?*+4 ry. Die zugehorigen Jacobimatrizen sind folgende:

Jf(u7'U) = (262%’6%)’ Jg<x7y) = <; i) :
Durch Multiplikation erhalten wir

1 2

Tf(g(z,y)) - Tg(x,y) = (26> Way, et ) - (y v

) = W (2ry +y, 4oy + ).
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Andererseits ist
0,(f 0 9)(x,y) = ye® U 1 20ye® W und  9,(f o g)(z,y) = we* W 4 4oyt
Also bestétigt sich hier die Regel J(f o g)(z,y) = Jf(g(x,y)) - Jg(z,y).

6.1.11 FOLGERUNG Ist f:U C R* — R™ differenzierbar und ist 7:[a,b] — U ein
differenzierbarer Weg mit y(a) = p, dann bildet f den Weg v auf den Weg 4 = for~y
in R™ ab und nach der Kettenregel ist D f,(v'(a)) = (7')(a). Das Differential D f,
bildet also die entsprechenden Geschwindigkeitsvektoren der Wege aufeinander ab.

6.1.12 SATZ Sei D C R" offen und f: D — R™ eine stetig differenzierbare Abbil-
dung. Sei weiter p € D ein Punkt mit det D f, # 0. Dann ist f in der Ndhe von
p lokal umkehrbar in folgendem Sinn: Es gibt eine offene Umgebung U C D von
p, so dass f, aufgefasst als Abbildung von U nach V := f(U) biijektiv ist und die
Umkehrabbildung f~':V — U ebenfalls differenzierbar ist. Ausserdem gilt fiir alle
xelU

D(fil)f(x) = (Dfar)il .

Der Beweis des Umkehrsatzes ist schwierig. Man kann die Aussage auf den Satz
iiber implizite Funktionen zuriickfithren, der im letzten Kapitel kurz vorgestellt wird.
Hier zwei Beispiele.

6.1.13 BEISPIEL Sei f(z,y) = (ig) fir (z,y) € R?. Diese Funktion bildet die

x-Achse auf den Nullpunkt ab, alle anderen Parallelen zur xz-Achse gehen wieder in
Parallelen zur z-Achse iiber. Dagegen werden die Parallelen zur y-Achse zu Geraden
durch den Nullpunkt. Die Jacobimatrix von f lautet

Jf(:p,y):(g f) und det Jf(z,y)=1y.

Also ist die Funktion f in der Néhe des Punktes p = (1, 1) lokal umkehrbar. Setzen
wir v = zy und v = y, dann ist

- 0) = (“/) -

Diese Umkehrfunktion ist definiert auf V' = {(u,v) | v # 0} und hier ist dann
U= {(z,y) | y # 0}. Die Teilmenge U C R? ist bereits die grosstmégliche Teilmenge,
auf der f umkehrbar ist.

6.1.14 BEISPIEL Betrachten wir wiederum den Wechsel von Polarkoordinaten zu
kartesischen Koordinaten der Ebene. Sei also

7 COS N
= > .
f(r, ) (rsimp) firr >0, p€eR
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Die Jacobimatrix an einer Stelle (7, ) hatten wir bereits berechnet:

TF(r, o) = (cosgo —rsingp) 7

sing 7 Cosp

und det J f(r, ¢) = r. Das Differential von f an der Stelle (r, ¢) ist also invertierbar,
falls  # 0. Aber es reicht hier nicht, die Punkte mit » = 0 aus dem Definitionsbereich
herauszunehmen, weil f ausserdem bezogen auf den Winkel ¢ periodisch ist und
bei der Umkehrung dann eine Mehrdeutigkeit entsteht. Dennoch kénnen wir lokal
umkehren.

Hier ist eine Beschreibung der Umkehrfunktion von f in der Ndhe von p = (1,0):

/22 1 2
fl(x,y):< v —l—y) firz >0,y € R.

arctan(¥)

In diesem Fall ist U = {(r, ) | r >0, -5 <@ < 3} und V := {(z,y) € R* | = > 0}.
Wir iiberpriifen nun noch die Aussage iiber die Differentiale an diesem Beispiel.
Einerseits ist

_ I [ rcosp rsing cosy singp
L — = :
Jf<r7 (10> - r (—Slngo COS%O _SH;QO CO:SO .

Andererseits ist

J(f ) wy) = (Wg,“ﬂ Wi*?ﬂ) :

T r24y2 2492

Setzen wir nun x = rcos ¢ und y = rsin ¢ ein, erhalten wir Ubereinstimmung.

6.2 TRANSFORMATIONSREGEL

Nun konnen wir die Entsprechung der Substitutionsregel im Mehrdimensionalen
formulieren.

Sei dazu ®: S — ®(S5) C R” eine bijektive stetig differenzierbare Transformation,
deren Umkehrung ®~! ebenfalls stetig differenzierbar sei. Die Verallgemeinerung der
Aussage iiber lineare Transformationen lautet dann:

6.2.1 SATZ Ist S C R™ messbar und f: ®(S) — R integrierbar, so gilt:

/ f(ﬂf)d"(:c):/f(CI>(u))|detD<I>u\ d"u .
(5) S

Beweis. Man kann die Uberlegung fiir n = 2, die wir fiir lineare Transformationen
angestellt hatten, folgendermassen anpassen. Sei Z eine Zerlegung eines Rechtecks
@ D S, und sei jeweils uy eine Stiitzstelle im Teilrechteck (). Dann betrachten wir
die Dreigliedentwicklung der Transformation ¢ an der Stelle uy

O(u) = P(ug) + DPy, (v — ug) + R(u) = ®(u) + DDy, (v — uyg) -
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In der Nahe des Punktes u; wird die Transformation ® also ndherungsweise durch
die affine Transformation u — ®(uy)+ D®,, (u—wuy) dargestellt. Die Transformation
® bildet daher das Teilrechteck @, auf ein Gebiet ®(Q)y,) ab, fiir dessen Flidcheninhalt
gilt:

Voly(®(Qr)) =~ | det DD, | - Vola(Qy) .

Sei jetzt wieder xy := ®(uy). Dann liefert der Vergleich der Riemannsummen:

[P(S) fla,y) d*(@,y) = ) flaw) Volo(2(Qr)) ~

S £ (@ ()| det Db, | - Vol (Qi) ~ /S F(®(w))] det DBy | .

Die Details der Grenziiberginge lassen wir hier aus und beschrénken uns auf diese
Skizze der Ideen.  q.e.d.

6.2.2 BEISPIELE e Die schon genannte Transformation auf Polarkoordinaten
ordnet sich hier folgendermassen ein. Die Zuordnung

B:Rog x (—m,m) = B2\ {(2,0) |2 <0}, (r,) = (rcosa,rsing)

ist bijektiv und in beiden Richtungen differenzierbar und |det D®, )| = r.
Deshalb lautet die entsprechende Substitution dx dy = r dr dep.

e Die Einfithrung von Zylinderkoordinaten im dreidimensionalen Raum korre-
spondiert zu der Transformation

r cos()
O(r, @, z) = | rsin(p) (r>0,0<¢p<2m z€R).
z

Wiederum ist ® in beiden Richtungen differenzierbar und |det D®, )| = r.
Die entsprechende Substitution ist hier

drdydz =rdrdpdz.

e Die Kugelkoordinaten sind gegeben durch

r cos(p) sin(6)
O(r,,0) = | rsin(p)sin(f) (r>0,0<e<2m, 0<60<m).
r cos
Man rechnet nach, dass | det D<I>(r7¢79)| = r2sin #. Die entsprechende Substitu-

tion ist also
dr dydz = r*sin(0) drdpdf .

Im folgenden Beispiel werden Kugelkoordinaten verwendet:
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6.2.3 BEISPIEL Das Gebiet B = {(z,y,2) | (#* + y* + 2?)? < y} hat die Gestalt
eines Tropfens. Seine Beschreibung in Kugelkoordinaten lautet:

A={(r,p,0) | r* <sin(p)sin(d), 0 < p <7, 0< < 7}.

Das Volumen des Koérpers B ist gegeben durch das Integral
T T 3/sin(ip) sin(6)
/ Ld*(z,y, 2) = / r?sin(0) dr df dp = / / / r?sin(0) dr df dp =
B A o Jo Jo
™ s 1 s
/ / — sin(y) sin®*(0) df dp = / i sin(p) dp = u ,
o Jo 3 o 6 3

Im letzten Beispiel verwenden wir eine nichtlineare Transformation, mit der die
Beschreibung des Integrationsgebietes vereinfacht wird:

6.2.4 BEISPIEL Sei B = {(z,y) €e R* | 2,y > 0,0 < 2y < 3,2 < y < 2z}. In
den neuen Koordinaten u = zy und v = y/x lautet die Beschreibung des Gebietes
S ={(u,v) €R?*|0<u<3,1<wv<2}. Die entsprechende Transformation ist

1 . \/ﬁ 1
P: ( \/7 Vuv) und  det D®,,) = | 2V 2V ‘ =
i /v i /u v
2 u 2 v

Der Fliacheninhalt des Gebietes B betrigt also:

Volg(B):/BchQ(:c,y):/S%dQ u, v) / / —dvdu = = ln(2)

Das Integral iiber die Funktion f(z,y) = y? iiber B koénnen wir mithilfe der Trans-
formation folgendermassen berechnen:

/y2d2(x,y):/uv\detD<I>w|d2u v / / —dvdu——
B S
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6.3 SATZ UBER IMPLIZITE FUNKTIONEN

Nehmen wir an, f: D — R sei eine stetig differenzierbare Funktion in 2 Variablen,
definiert auf einer offenen Teilmenge D C R2 Durch die Gleichung f(z,y) = 0 wird
auf implizite Art und Weise eine Teilmenge des R? beschrieben, nimlich die Nullstel-
lenmenge der Funktion f. Um diese Nullstellenmenge explizit zu bestimmen, miisste
man die Gleichung nach einer der Variablen auflosen. Hier dazu einige Beispiele:

6.3.1 BEISPIELE 1. Seien a,b,c € R fest und f(x,y) = ax + by — ¢ fir z,y € R.
Die Gleichung f(z,y) = ax + by — ¢ = 0 ist eine Geradengleichung, falls a und
b nicht beide gleichzeitig Null sind. Falls b # 0 ist, kénnen wir nach y auflésen
und erhalten y = <* fiir alle x. Ist b = 0, beschreibt die entsprechende
Geradengleichung eine Parallele zur y-Achse. In diesem Fall kénnen wir nicht
nach y auflésen, dafiir aber nach x.

2. Seien a,b > 0 fest und f(x,y) = az® + by* — 1 fiir 2,y € R. Die Gleichung
ax® + by? = 1 beschreibt eine Ellipse in R2. Losen wir diese Gleichung nach
y auf, erhalten wir y = £¥1=9% fiir 22 < 1. Die Ellipse lisst sich also als
Vereinigung von zwei Funktionsgraphen auffassen, allerdings sind die entspre-

chenden Funktionen bei z = i% nicht differenzierbar! Interessieren wir uns

nur fiir einen Ausschnitt der Ellipse in der Néhe des Punktes (zg, yo) = (0, \/LB)’

so miissen wir den oberen Zweig, namlich y = +7vl_b‘”2, wéhlen. Und wenn
wir hier nur = € (—1, 1) zulassen, ist sichergestellt, dass die dadurch definierte
Funktion sogar iiberall differenzierbar ist.

Wir werden nun zunéchst ein Kriterium dafiir formulieren, unter welchen Umstédnden
sich die Gleichung f(z,y) = 0 nach y auflosen lisst, und zwar in der Nidhe eines
vorgegebenen Punktes (xg,yo) mit f(xo,y0) = 0. Gesucht sind genauer offene Um-
gebungen o € U C R, yp € V C R mit U x V C D und eine Funktion ¢:U — V
mit g(z) = yo so dass

flz,y) =0 <= y=g(z) firalle (z,y)eUxV.

Das bedeutet, dass die Nullstellenmenge von f in U xV mit dem Graphen von g {iber-
einstimmt. Gibt es eine solche Funktion g, so ist sie offenbar eindeutig durch f fest-
gelegt. Man sagt auch, die Funktion ¢ sei “implizit” durch die Gleichung f(z,y) =0
definiert.

Angenommen, die Funktion g existiert und ist differenzierbar auf U. Dann ergibt
sich aus der Beziehung f(z, g(x)) = 0 mit der Kettenregel

0= L frg(x)) = 0.1, g(2)) + 4 (£)0, 1, g()).

Daraus folgt, falls 9, f(x, g(z)) # 0,

0:f(x, 9(x))

g(z) = ~0, (. 9(2)) fiir alle z € U.
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Tatsdchlich reicht es, 0, f(z,y) # 0 fiir + = 2y und y = y, vorauszusetzen, um
die Existenz von g zu garantieren. Denn es gilt der folgende Satz dber implizite
Funktionen:

6.3.2 SATZ Sei D C R? offen, f: D — R stetig differenzierbar und f(xq,y9) = 0
fiir ein (zo,y0) € D. Sei weiter 0, f(zo,y0) # 0. Dann gibt es offene Umgebungen
xo € UCR,yp € VCRmit UxV C D und eine eindeutig bestimmte, stetig
differenzierbare Funktion g:U — V mit g(xo) = yo, so dass fiir alle (x,y) € U x V
gilt:

flxy) =0 <= y=g(x).

Weiter ist 0, f(z.g(x))
L f(z, g(x
() = I

Oy f (x, 9(x))

Die Nullstellenmenge von f lésst sich also in einer passenden Umgebung von (xq, yo)
als Graph einer stetig differenzierbaren Funktion darstellen.

fiir alle x € U.

Hier dazu noch ein Beispiel.

6.3.3 BEISPIEL Sei a > 0 fest gewihlt und f(z,y) := (2% + y*)* — 2azx(2? + y?) —
a*y? fiir z,y € R. Die Losungsmenge der Gleichung f(x,y) = 0 in R? wird als
Kardioide bezeichnet. Sie ist herzformig und hat einen Knickstelle im Ursprung. Es
gibt zwei Schnittpunkte mit der z-Achse, ndmlich den Nullpunkt und den Punkt
(2a,0). Ausserdem schneidet die Kurve die y-Achse bei y = 0 und y = +a. Wir
haben hier

O, f(z,y) = 2(2* + y*)2y — daxy — 2a°y.

Die partielle Ableitung nach y hat vier Nullstellen auf der Kardioide.

Entfernt man diese Punkte, bleiben vier Kurvenabschnitte, die jeweils Funktions-
graphen sind. Im Nullpunkt dagegen ist 0, f(0,0) = 0, und man kann die Gleichung
in der Nédhe des Nullpunktes nicht nach y auflésen. Denn fiir kleine x < 0 gibt es im-
mer genau zwei y-Werte (nahe bei 0), die zusammen mit dem z-Wert die Gleichung
16sen.

Beweis von Satz 6.3.2. Wir gehen in mehreren Schritten vor.

1. Schritt: Konstruktion von g: Dazu nehmen wir an, dass 0y, f(xo,y0) > 0. (Im
anderen Fall argumentiert man entsprechend.) Aus der Stetigkeit von 0,f folgt,
dass 8, f(x,y) > 0 fiir alle (v,y) aus einer passenden Umgebung D von (z,yo)-
Daraus kénnen wir schliessen, dass f auf D beziiglich y streng monoton wachsend
ist, das heisst f(z,y1) > f(x,y2) fiir alle (z,y;) € D mit y; > y». Nun withlen wir
€,0 > 0 mit [zo — 8,20 + 0] X [yo — €, 50 + €] € D. Da f(z0,y0) = 0, ist insbesondere
f(xo,y0 —€) < 0 und f(zg,y0 + €) > 0. Wegen der Stetigkeit von f kénnen wir
sicherstellen, dass f(z,yo —€) < 0 und f(z,yo + €) > 0 fiir alle z € [xg — 0, 29 + I,
indem wir § falls notig noch verkleinern. Aus dem Zwischenwertsatz folgt nun, dass
zu jedem x ein y € [yo — €,y0 + €| existiert mit f(x,y) = 0. Dies y ist durch
x eindeutig bestimmt, weil f beziiglich y streng monoton steigend ist. Wenn wir
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g(x) := y setzen, erhalten wir also die gesuchte Funktion g auf U := (xy — 6,z + ),
und g(U) CV := (yo — €, 90 + €).

Aus der Konstruktion ergibt sich auch sofort, dass g in xy stetig ist. Denn wenn
wir € verkleinern, so kénnen wir ¢ immer entsprechend anpassen, so dass aus |z —
x| < 0 folgt |g(x) — yo| < €. Jeder Punkt x € U erfiillt dieselben Voraussetzungen
wie xg. Also kann man die Stetigkeit von ¢ in x analog zeigen.

2. Schritt: Lipschitz-Stetigkeit von g: Nehmen wir ab jetzt an, dass (xg, y9) = (0,0)
ist. (Dies konnen wir erreichen, indem wir anstelle von f die Funktion f , definiert
durch f(x,y) = f(z—xo, y—yo) betrachten.) Wir zeigen jetzt, dass es eine Konstante
K >0 und ein 6 > 0 gibt mit

lg(x)|] < Klz| fiir alle |z| < 6.

Dazu verwenden wir die Dreigliedentwicklung von f im Nullpunkt:

Flary) = Dfo<(jj)> T Ryl

wobei R: K,(0) — R eine Funktion ist, fiir die gilt: lim(, y)—,0,0) R(x,y) = 0. Setzen
wir a := 0, f(0,0) und b := 9, £(0,0), so erhalten wir:

f(x,y) = ax + by + R(x,y)v/2? + 4.
Wenn wir y = g(x) einsetzen, wird daraus:

0= f(z,9(x)) = ax + bg(x) + Rz, g(x))va* + g(x).

WEeil nach Voraussetzung b # 0 ist, konnen wir schliessen

o) =~ = SR(,9(0)) v/ 90"

Wegen der Stetigkeit von g bei 0 gilt lim, 0 g(z) = 0 und lim,_,o R(z, g(x)) = 0.
Daher gibt es ein § > 0 mit |R(z, g(z))| < || fiir alle |z| < §. Daraus folgt

a 1 a 1
9()| < 151 lal + 5/ + 9@ < 1511l + 5 (] + lg(@),
und schliesslich die gesuchte Abschiatzung

lg(2)| < <2|%| +1)|z| fiir alle 2| < 4.

3. Schritt: Differenzierbarkeit von g: Um zu zeigen, dass ¢ im Nullpunkt diffe-
renzierbar ist, reicht es zu zeigen, dass g im Nullpunkt eine Dreigliedentwicklung
besitzt. Wie eben gezeigt, gilt

o) = =3 = TR(z, 9(2)) v/ + g (02,
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und falls die Ableitung von g an der Stelle x = 0 existiert, muss wegen der Ket-

tenregel g'(0) = —% sein. Der lineare Term in dieser Darstellung ist also bereits der
Kandidat fiir die Ableitung. Jetzt miissen wir nur noch iiberpriifen, dass der zweite

Term in der Entwicklung von g die Restbedingung erfiillt, das heisst

22 + g(z)?
||

lim(~+ R(z, g(z))

Dazu verwenden wir die Abschitzung aus dem vorigen Schritt mit K = 2|¢| + 1:

22+ 9(2)? _ |z + |g()]
| ] o

<1+ K firalle |z| <§.

Da lim, o R(z, g(z)) = 0, folgt nun die Behauptung.  q.e.d.

Es gibt auch eine entsprechende Version des Satzes iiber implizite Funktionen
fiir Gleichungen in mehr als nur zwei Variablen. Diese allgemeinere Version lautet:

6.3.4 SATZ Sei D C R™ xR offen, f: D — R stetig differenzierbar und f(xg,yo) = 0
fiir ein (xo,y0) € D. Sei weiter 0,41 f(Zo,Y0) # 0. Dann gibt es offene Umgebungen
20 €U CR" yo € VCRmit UxV C D und eine eindeutig bestimmte, stetig
differenzierbare Funktion g:U — V mit g(xo) = yo, so dass fiir alle (x,y) € U x V
gilt:

fley)=0 <= y=g(z).

0;f(x,g(x

b 0(a) — il 9()
Ont1f(z,9(x))

Die Nullstellenmenge von f ldsst sich also in einer passenden Umgebung von (xq, yo)

als Graph einer stetig differenzierbaren Funktion g in n Variablen darstellen.

Weiter ist

fir alle z € U.

Die Aussage iiber die partiellen Ableitungen von g ergibt sich wieder durch An-
wendung der Kettenregel auf die Gleichung

flz,g(x) = flx1,...,2n,g(x1,...,2,)) =0 fiir alle z € U.

6.3.5 BEISPIEL Die Nullstellenmenge der Funktion f(z,y, 2) = 2?+y*—2?—1 ist ein

einschaliges Hyperboloid. Eine explizite Beschreibung dieser Flédche in der Nahe des

Punktes a = (2,0, v/3) erhalten wir, indem wir nach z auflosen zu z = /22 + y2 — 1
(falls 22 + y? > 1). Fiir die Punkte (z,y,2) € R* mit 2 > 0 und 22 + y* > 1 gilt:

flr,y,2)=0 <= z=+/224+y>2—-1.

Hier ist also U = {(z,y) € R* | 2> + > > 1} und V = R.y und g(z,y) =
Va2 +y? — 1 fiir alle (z,y) € U. Der Graph von g ist sozusagen die obere Hélfte des
Hyperboloids (wobei der Schnittkreis mit der 2-y-Ebene nicht mitzzhlt). Uberpriifen
wir hier noch die Aussage iiber die partiellen Ableitungen von g¢:

22+ —1 29(x,y)  0.f(x,y,9(x,y))

du9(x,y) =
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2y R T G )
2/ +y2—1  29(x,y)  0.f(x,y,9(x,y))

Oyg(w,y) = :

Wie bereits betont, liefert der Satz {iber implizite Funktionen keine Formel fiir
die lokale Funktion ¢, aber schon aus der theoretischen Existenz der Funktion g
ergeben sich wichtige qualitative Konsequenzen.

6.3.6 FOLGERUNG Ist f: D C R% — R eine stetig differenzierbare Funktion in d > 1
Variablen, ¢ € R fest gewéhlt und gilt V f(a) # 0 fiir alle a € D mit f(a) = ¢, so ist
die Niveaumenge N = N.(f) = {a € D | f(a) = ¢} von f lokal Graph einer stetig
differenzierbaren Funktion g. Das heisst, zu jedem Punkt p € N, gibt es eine Umge-
bung p € U C R? und eine reellwertige, stetig differenzierbare Funktion g in d — 1
Variablen, so dass N.NU mit dem Graphen von g iibereinstimmt. Ist d = 2, kénnen
wir daraus schliessen, dass N eine Kurve ist, die in jedem Punkt eine eindeutige Tan-
gente besitzt und keine Spitzen, Selbstiiberkreuzungen oder Selbstberiihrungen hat.
Ist d = 3, so ist N eine Fléche, die in jedem Punkt eine eindeutige Tangentialebene
hat, wobei wiederum keine Selbstdurchdringungen oder Falten auftreten.

Beweis. Sei p € N, vorgegeben. Nach Voraussetzung ist V f(p) # 0, es gibt also
einen Index j mit 0;f(p) # 0. Wir dndern nun die Numerierung der Variablen so,
dass wir dyf(p) # 0 erhalten. Nun kénnen wir den Satz iiber implizite Funktionen
auf die Funktion h(z) := f(z) — ¢ anwenden.  q.e.d.

6.3.7 BEISPIELE e Die Niveaulinien N, der Funktion f(z,y) = 2? + y? sind
konzentrische Kreise (fiir ¢ > 0). Ist ¢ = 0, entartet die Niveaumenge zu einem
Punkt, fiir ¢ < 0 hat die entsprechende Gleichung jeweils keine Losung, die
zugehorigen Niveaumengen sind also leer. Ist ¢ > 0 fest gewihlt, konnen wir
die entsprechende Kreislinie jeweils lokal als Graphen einer differenzierbaren
Funktion von z oder von y schreiben, ndmlich z = ++/c — y? (fiir |y| < /¢)
oder y = +vc—a? (fiir |z| < /c). Mit weniger als vier lokalen Graphen
kommt man aber nicht aus, wenn man den ganzen Kreis {iberdecken mochte.

e Betrachten wir jetzt die Funktion f(z,y) = y? — 3. Die Gleichung f(z,y) = 0
beschreibt die sogenannte Neillsche Parabel. Es handelt sich um eine Kurve in
der Halbebene rechts von der y-Achse mit einer Spitze im Nullpunkt. Entfernt
man den Nullpunkt, bleibt noch eine Vereinigung von zwei Funktionsgraphen
{ibrig, namlich der Funktionen y = ++v/23 (jeweils fiir > 0). Aber im Null-
punkt gibt es keine lokale Beschreibung der Kurve als Graphen einer Funktion
y = g(x), denn in jeder Umgebung der Form K (0) gibt es zu jedem positiven
x-Wert zwei entsprechende Punkte auf der Kurve.

Ist ¢ < 0, kdnnen wir die entsprechende Niveaulinie von f als Graph der
Funktion = = {/y? + |¢| (fiir y € R) darstellen. Ist ¢ > 0, so benétigen wir
mindestens drei lokale Graphen, um die Niveaulinie zu iiberdecken, etwa y =

+va3 + ¢ (jewells fiir z > —/c) und © = {/y? — ¢ (fur |y| < /).

Und hier schliesslich noch zwei Beispiele.
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6.3.8 BEISPIELE e Die Funktion f(z,y) = 1 — (2% — 1)*> — y? hat zwei iso-
lierte lokale Maxima bei (£1,0). Die entsprechende Niveaumenge N; besteht
nur aus diesen beiden Punkten. Die Niveaumenge Nj ist eine Kurve mit ei-
ner Selbstiiberkreuzung im Nullpunkt, die ansonsten glatt ist. Im Nullpunkt
liegt ein Sattelpunkt von f vor. Fiir alle iibrigen Werte ¢ < 1, ¢ # 0, sind
die Niveaumengen N.(f) glatte Kurven, denn auf diesen Mengen liegen keine
kritischen Punkte von f.

e Sei a > 0 vorgegeben und f(z,y) = (22 + y?)? — 2ax(z* + y?) — a*y*. Die
Funktion f hat zwei kritische Stellen, ndmlich p = (0,0) und ¢ = (3a/2,0). Im
Nullpunkt p ist ein Sattelpunkt und im Punkt ¢ ein isoliertes Minimum. Der
Graph von f erinnert an eine Sitzbadewanne. Die Niveaulinie Ny durch p ist
die oben beschriebene Kardioide (sieche Beispiel 6.3.3). Sie hat im Nullpunkt
eine Spitze und ist ansonsten glatt. Alle iibrigen nichtleeren Niveaumengen
sind glatte Kurven.

Noch allgemeiner kann man von einem System von Gleichungen ausgehen, das in
eine explizite Form gebracht werden soll, indem man nach moglichst vielen Variablen
auflost.

6.3.9 BEISPIEL Sei fi(z,y,2) = x—yund fa(x,y, z) = 22 +y*—2%2—1. Die Gleichung
fi(z,y,2) = 0 beschreibt eine Ebene E im R3, die die 2-Achse enthilt, und die
Gleichung fo(z,y, z) = 0, wie eben untersucht, ein Hyperboloid. Die Losungsmenge
des Systems aus beiden Gleichungen ist also die Schnittmenge des Hyperboloids mit
der Ebene E. Es handelt sich dabei um eine Hyperbel in der Ebene E, die um 90°
gedreht erscheint. Interessieren wir uns nur fiir den Ausschnitt der Hyperbel in der
Néhe des Punktes (1,1, 1), so kénnen wir die Gleichungen folgendermassen nach y
bzw. z auflésen: Ein Punkt (z,y,2) mit z > g und z > 0 erfiillt die Gleichungen

fi(z,y,2) =0 und fo(x,y,z) = 0 genau dann, wenn y = x und z = /222 — 1.

Es geht also um folgendes: Ein System aus m Gleichungen in n + m Variablen
der Form

f1<x17--'7xn7y17"'7ym) =0
f2<$’1,---,xn,y1,---7ym) =0

fm<x17--'7xn7y17"'7ym) =0

beschreibt wiederum auf implizite Art eine Teilmenge des R™™™. Wir erhalten eine
explizite Beschreibung eines Ausschnitts der Losungsmenge, wenn es gelingt, die
Gleichungen nach yq, . . ., y,, aufzulésen, so dass das System nun die folgende Gestalt
annimmt:

Yy = gl(xla"'wrn)
Y2 = go(x1,...,2y)
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Ym = gm(xla <. ,ZL‘n)

Wir kénnen die Komponenten fi, ..., f,, zu einer Funktion F: D C R — R™
und die Komponenten gy, ..., ¢, zu einer Funktion G: U C R" — R™ zusammenfas-
sen. Verwenden wir ausserdem die Notation x = (z1,...,2,) und y = (y1, ..., Ym),
so lautet jetzt das Problem, zu gegebenem F' ein passendes G zu finden, so dass
lokal gilt:

F(z,y)=0 & y=G(z).

Es geht es also wiederum darum, die Nullstellenmenge von F' lokal als Graph dar-
zustellen.

Ist F' differenzierbar, so wird das Differential DF(z,y) der Funktion F' an einer
Stelle (z,y) € D durch eine Matrix vom Typ m x (n+ m) beschrieben. Wir kénnen
diese Matrix also in zwei Blocke unterteilen, eine Teilmatrix vom Typ m X n, die wir
mit D, F(x,y) bezeichnen, und eine quadratische Teilmatrix vom Typ m xm, die wir
mit D, F(x,y) bezeichnen. D, F(x,y) ist das Differential derjenigen Funktion, die
wir aus F' erhalten, indem wir y konstant halten, und D, F(x,y) ist das Differential
der Funktion, die durch F' definiert wird, indem wir x fest halten. Nehmen wir an,
dass F(z,G(z)) = 0 fir alle z, und sind F und G differenzierbar, so folgt aus der
Kettenregel

D, F(z,G(x)) 4+ DyF(xz,G(x)) o DG(z) =0 fir alle .
Daraus ergibt sich, falls D, F(z, G(x)) invertierbar ist, die Beziehung
DG(x) = —(D,F(z,G(x)) " o D, F(z, F(z)).

Der Satz iiber implizite Funktionen in allgemeiner Form lautet mit diesen Be-
zeichnungen:

6.3.10 SATZ Sei F: D C R" x R™ — R™ stetig differenzierbar, D offen, F(p,q) =0
fiir ein (p, q) € D. Sei weiter D, F\, 4 invertierbar. Dann gibt es offene Umgebungen
peUCR"und qeV C R™ mit U x V C D und eine eindeutig bestimmte, stetig
differenzierbare Funktion G:U — V mit G(p) = q, so dass fiir alle (x,y) € U x V
gilt

F(z,y)=0 <= y=0G(x).

Ausserdem ist
DG(x) = —(D,F(z,G(x)))™" - D, F(x,G(x)) fiir allex € U.

Auf den schwierigen Beweis dieses Satzes miissen wir hier verzichten.

Im Spezialfall m = 1 stimmt die Aussage mit der fritheren iiberein. Denn in die-
sem Fall sind F' und G reellwertige Funktionen. Also ist DF(z,y) = grad F'(z,y),
D, F(x,y) = (0,F(z,y),...,0,F(z,y)) und D,F(p,q) = Op41F(p,q). Die Bedin-
gung an D, F(p,q) lautet in diesem Fall also einfach 0,41 F(p,q) # 0. Und fir G
erhalten wir die Aussage:

1
On1 F(z,G(x))

grad G(z) = — (0 F(x,y),...,0F(z,y)).
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Schauen wir uns ausserdem unser Beispiel noch einmal an.

6.3.11 BEISPIEL Sei F: R?® — R?, definiert durch f,(z,y, 2) = z—y und fo(z,y,2) =
22 +y* — 22 — 1. Das Differential von F ist gegeben durch die Jacobimatrix

1 -1 0
JE(@,y,2) = (23: 2y —2,2)'

Hier ist jetzt m = 2 und n = 1, wir wollen nach y und z auflésen in der Nahe
des Punktes a = (1,1,1). Das Kriterium des Satzes verlangt dazu, dass die Teil-

. -1 : . . Lo a1 .
matrix D, F(a) = ( invertierbar ist. Dies ist gewéhrleistet, denn die

0
2 =2
Determinante der Matrix betrdgt 2. Die gesuchte Funktion G:U — V ist gegeben
durch

x
G(z) = 7
222 — 1
wobel wir U = (?,oo) CRund V = {(y,2) € R* | z > 0} wihlen konnen. Das
1
Differential von G lautet DG(x) = ( 2 ) fir © € U. Vergleichen wir mit
V2z2-1
Dy G e = (0 ) (L) =
’ 2g1(x) —2go(x) 2z

G 1) (o) = (o) - ()
. == 2g1(x)+2x == T .
2g2(z) \ 201(z) 1 2x g;gg(m) 2g§(:v)
Wieder stellen wir Ubereinstimmung fest.

Der im vorigen Abschnitt formulierte Umkehrsatz kann mithilfe des Satzes iiber
implizite Funktionen jetzt bewiesen werden.

6.3.12 FOLGERUNG Sei D C R"™ offen und f: D — R" eine stetig differenzierbare
Abbildung. Sei weiter ¢ € D ein Punkt mit det Df, # 0. Dann gibt es eine offene
Umgebung U C D von q, so dass f, aufgefasst als Abbildung von U nach V' := f(U)
biijektiv ist und die Umkehrabbildung f~':V — U ebenfalls differenzierbar ist.

Beweis. Wir definieren die Funktion F:R"™ x D — R" durch F(z,y) = = — f(y)
fir alle y € D, x € R". Sei p := f(q). Offenbar ist F(p,q) = 0. Ausserdem ist
(DyF)(pqy = —D/f, nach unserer Annahme invertierbar. Damit sind die Voraus-
setzungen des Satzes iiber implizite Funktionen erfiillt, und es gibt daher offene
Teilmengen p € U C R" und ¢ € D C R” und eine eindeutig bestimmte, stetig
differenzierbare Funktion G: U — V mit G(p) = ¢, so dass fiir alle (z,y) € U x V
gilt
Flz,y)=z—f(y) =0 <<= y=0G(z).

Die Funktion G ist gerade die Umkehrfunktion von f.  q.e.d.



