
Kapitel 6

Ausbau der Differentialrechnung

6.1 Differential einer Transformation

Bisher haben wir Differenzierbarkeit von reellwertigen Funktionen in mehreren Va-
riablen, sowie von Funktionen, die nur von einem Parameter abhängen, aber in
einen höherdimensionalen Raum abbilden, untersucht. Nun wollen wir allgemeiner
Funktionen betrachten, bei denen sowohl der Ausgangsraum als auch der Bildraum
höherdimensional sein kann. Eine solche Funktion ist differenzierbar, wenn sie sich
lokal jeweils gut durch eine lineare Abbildung approximieren lässt. Die Definition
der Differenzierbarkeit mithilfe der Dreigliedentwicklung lautet hier:

6.1.1 Definition Sei U ⊂ R
n offen, p ∈ U und f :U ⊂ R

n → R
m eine Funktion. Sei

weiter ǫ > 0 so klein, dass die KugelKǫ(p) vom Radius ǫ um p ganz im Definitionsbe-
reich U liegt. Die Funktion f heisst an der Stelle p ∈ U differenzierbar , wenn es eine
lineare Abbildung Dfp:R

n → R
m und eine ”Restfunktion” R:Kǫ(0) ⊂ R

n → R
m

mit limv→0 R(v) = 0 gibt, so dass für alle v ∈ R
n mit ||v|| < ǫ gilt:

f(p+ v) = f(p) +Dfp(v) + ||v|| ·R(v) .

Die Funktion f lässt sich also entwickeln in einen konstanten Term f(p), einen linea-
ren Term Dfp(v) und einen Restterm von höherer Ordnung. Die lineare Abbildung
Dfp ist durch die Entwicklungsbedingung eindeutig festgelegt und wird als Diffe-

rential von f an der Stelle p bezeichnet. Man nennt f auf U differenzierbar, wenn
f an jeder Stelle von U differenzierbar ist.

6.1.2 Beispiele • Sei A eine m×n–Matrix, w ∈ R
m fest gegeben und f :Rn →

R
m definiert durch f(v) = Av + w für v ∈ R

n. Dann ist f differenzierbar auf
ganz R

n und Dfp(v) = Av für alle p, v ∈ R
n. Hier ist jeweils die Restfunktion

R(v) = 0.

• Sei f(x, y) =

(

2x+ y + xy
x− 3y + x2

)

für x, y ∈ R. An der Stelle p = 0 ist f(p) = 0

und die Dreigliedentwicklung von f lautet hier: f(x, y) =

(

2x+ y
x− 3y

)

+

(

xy
x2

)

,

wobei Dfp(x, y) =

(

2x+ y
x− 3y

)

=

(

2 1
1 −3

)(

x
y

)

.

Überprüfen wir die Bedingung an die Restfunktion R(x, y) = 1√
x2+y2

(

xy
x2

)

:
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Für feste x, y und kleines t ∈ R gilt:

lim
t→0

R(tx, ty) = lim
t→0

1

t
√

x2 + y2

(

t2xy
t2x2

)

= lim
t→0

1
√

x2 + y2

(

txy
tx2

)

= 0 .

Also ist lim(x,y)→0R(x, y) = 0, wie verlangt.

6.1.3 Bemerkung Wie im eindimensionalen Fall kann man zeigen, dass eine in p
differenzierbare Funktion an dieser Stelle auch stetig sein muss. Weiter lässt sich
an der Definition sofort ablesen, dass eine Abbildung mit mehreren Komponenten
f :U → R

m, v 7→ (f1(v), . . . , fm(v)), genau dann in a ∈ U differenzierbar ist, wenn
jede der Komponentenfunktionen fi:U → R in p differenzierbar ist.

6.1.4 Satz Sei jetzt n > 1, m = 1, p ∈ U gegeben und f :U ⊂ R
n → R eine

Funktion in n Variablen.

1. Ist f bei p differenzierbar, so gilt für v ∈ R
n mit ||v|| < ǫ:

Dfp(v) = lim
t→0

f(p+ tv)− f(p)

t
.

Also gibt Dfp(v) die Ableitung von f in Richtung von v an.

2. Ist f bei p differenzierbar, so existieren bei p auch sämtliche partiellen Ablei-
tungen von f .

3. Ist f stetig partiell differenzierbar, so ist f auch differenzierbar.

Beweis. Um die erste Aussage zu zeigen, setzen wir in der Dreigliedentwicklung
p+ tv ein und erhalten

f(p+ tv) = f(p) +Dfp(tv) + ||tv|| · R(tv) = f(p) + tDfp(v) + |t|||v|| · R(tv) ,

weil Dfp linear ist. Daraus folgt

lim
t→0

f(p+ tv)− f(p)

t
= Dfp(v)± lim

t→0
||v|| ·R(tv) = Dfp(v) ,

da nach Voraussetzung limt→0R(tv) = 0.
Die erste Aussage liefert für die kanonischen Basisvektoren v = ej :

Dfp(ej) = lim
t→0

f(p+ tej)− f(p)

t
= ∂xj

f(p) .

Insbesondere existieren also sämtliche partiellen Ableitungen bei p.
Nehmen wir jetzt an, dass f auf U stetig partiell differenzierbar ist. Für jeden

Vektor v ∈ R
n mit ||v|| < ǫ, ist dann die Funktion g(t) = f(p + tv) für |t| ≤ 1

definiert und bei t = 0 differenzierbar. Aus der Kettenregel folgt g′(0) = 〈∇f(p), v〉.



6.1. Differential einer Transformation 105

Setzen wir t = 1 ein in die Dreigliedentwicklung von g bei t = 0, erhalten wir
folgende Dreigliedentwicklung von f :

f(p+ v) = f(p) + 〈∇f(p), v〉+ ||v|| · R(v) .

Also ist f differenzierbar bei p und wir lesen ab, dass Dfp(v) = 〈∇f(p), v〉. q.e.d.

Aus der Existenz der partiellen Ableitungen folgt noch nicht die Differenzierbar-
keit. Hierzu ein Beispiel:

6.1.5 Beispiel Sei f(x, y) =
{ xy

x2+y2
für (x, y) 6= (0, 0)

0 sonst
. Die partiellen Ableitun-

gen von f im Nullpunkt existieren. Denn nach Definition ist

∂xf(0, 0) = lim
t→0

f(t, 0)− f(0, 0)

t
= 0

und ebenso ∂yf(0, 0) = limt→0
f(0,t)−f(0,0)

t
= 0. Aber f kann im Nullpunkt nicht dif-

ferenzierbar sein, denn f ist bei p = (0, 0) noch nicht einmal stetig. Beispielsweise ist
limt→0 f(t, t) =

1
2
, aber f(0, 0) = 0. Die Grenzwertbildung ist also nicht vertauschbar

mit der Auswertung von f .

Das Differential von f an der Stelle p ist bezogen auf die kanonischen Stan-
dardbasen von R

n und R
m durch eine Matrix gegeben, die sogenannte Jacobimatrix

Jf(p) an der Stelle p.

6.1.6 Satz Ist f an der Stelle p ∈ U ⊂ R
n differenzierbar und besteht f aus den

Komponenten f1, . . . , fm, so existieren auch alle partiellen Ableitungen ∂fk
∂xj

(p) und

die lineare Abbildung Dfp wird bezüglich der kanonischen Basen durch die Matrix
beschrieben, die aus sämtlichen partiellen Ableitungen gebildet ist:

Jf(p) =









∂x1
f1(p), . . . , ∂xn

f1(p)
∂x1

f2(p), . . . , ∂xn
f2(p)

...
...

...
∂x1

fm(p), . . . , ∂xn
fm(p)









.

Beweis. Dies ergibt sich sofort durch Vergleich mit den Dreigliedentwicklungen der
Komponentenfunktionen von f . q.e.d.

6.1.7 Beispiel Betrachten wir die Umrechnung von Polarkoordinaten in kartesi-
sche Koordinaten der Ebene als eine Funktion in zwei Variablen mit zwei Kompo-
nenten, nämlich

f(r, ϕ) =

(

r cosϕ
r sinϕ

)

für r ≥ 0, ϕ ∈ R.

Der Definitionsbereich U ist hier also eine Halbebene. Die Funktion f bildet die
Parallelen zur positiven r-Achse auf Radialstrahlen ab, und die Parallelen zur ϕ-
Achse werden unter f auf Kreise um den Nullpunkt abgebildet. Die Funktion f ist
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überall differenzierbar und die Jacobimatrix zu f an einer Stelle p = (r, ϕ) (mit
r > 0) ist:

Jf(r, ϕ) =

(

cosϕ −r sinϕ
sinϕ r cosϕ

)

.

Die bereits behandelten Spezialfälle ordnen sich hier folgendermassen ein:

m = 1. Hier besteht die Jacobimatrix nur aus einer Zeile und Jf(p) = (∇f(p))T .

n = 1. Hier geht es sich eigentlich um einen parametrisierten Weg γ: [a, b] → R
n,

und die Jacobimatrix an einer Stelle t ist jeweils der Geschwindigkeitsvektor
Jγ(t) = γ′(t).

n = m. Ist f das Gradientenvektorfeld eines Potentials U , so stimmt die Jacobima-
trix von f = ∇U mit der Hessematrix von U überein Jf(p) = HU(p).

6.1.8 Bemerkung Sei jetzt n = m. In diesem Fall gibt der Betrag der Determi-
nante der Jacobimatrix den lokalen Expansions- oder Kontraktionsfaktor von f an.
Genauer gilt:

| det(Dfp)| = lim
ǫ→0

Voln(f(Kǫ(p)))

Voln(Kǫ(p))
∀p ∈ U .

Für lineare Abbildungen ist das klar (siehe Folgerung 5.4.6) und für beliebige Trans-
formationen ist es schwieriger (wir verzichten hier auf den Beweis).

Im eben betrachteten Beispiel ist det Jf(p) = r > 0, das heisst, im Bereich
0 < r < 1 findet eine Kontraktion und im Bereich r > 1 eine Expansion statt.

Die Kettenregel lautet im Mehrdimensionalen folgendermassen:

6.1.9 Satz Seien g:U ⊂ R
n → V ⊂ R

l und f :V → R
m Funktionen und U, V

jeweils offene Teilmengen. Ist g differenzierbar an der Stelle p ∈ U , und ist f dif-
ferenzierbar an der Stelle g(p) ∈ V , so ist auch f ◦ g bei p differenzierbar. Für die
Differentiale gilt:

D(f ◦ g)p = Dfg(p) ◦Dgp .

Das bedeutet für die entsprechenden Jacobi-Matrizen:

J(f ◦ g)(p) = Jf(g(p)) · Jg(p) .

6.1.10 Beispiel Sei g:R2 → R
2 gegeben durch g(x, y) = (x+2y, x·y), und f :R2 →

R definiert durch f(u, v) = e2uv. Die Zusammensetzung lautet dann (f ◦ g)(x, y) =
e2x+4yxy. Die zugehörigen Jacobimatrizen sind folgende:

Jf(u, v) = (2e2uv, e2u) , Jg(x, y) =

(

1 2
y x

)

.

Durch Multiplikation erhalten wir

Jf(g(x, y)) · Jg(x, y) = (2e2x+4yxy, e2x+4y) ·
(

1 2
y x

)

= e2x+4y(2xy + y, 4xy + x) .
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Andererseits ist

∂x(f ◦ g)(x, y) = ye2x+4y + 2xye2x+4y und ∂y(f ◦ g)(x, y) = xe2x+4y + 4xye2x+4y ,

Also bestätigt sich hier die Regel J(f ◦ g)(x, y) = Jf(g(x, y)) · Jg(x, y).

6.1.11 Folgerung Ist f :U ⊂ R
n → R

m differenzierbar und ist γ: [a, b] → U ein
differenzierbarer Weg mit γ(a) = p, dann bildet f den Weg γ auf den Weg γ̃ = f ◦ γ
in R

m ab und nach der Kettenregel ist Dfp(γ
′(a)) = (γ̃′)(a). Das Differential Dfp

bildet also die entsprechenden Geschwindigkeitsvektoren der Wege aufeinander ab.

6.1.12 Satz Sei D ⊂ R
n offen und f :D → R

n eine stetig differenzierbare Abbil-
dung. Sei weiter p ∈ D ein Punkt mit detDfp 6= 0. Dann ist f in der Nähe von
p lokal umkehrbar in folgendem Sinn: Es gibt eine offene Umgebung U ⊂ D von
p, so dass f , aufgefasst als Abbildung von U nach V := f(U) biijektiv ist und die
Umkehrabbildung f−1:V → U ebenfalls differenzierbar ist. Ausserdem gilt für alle
x ∈ U

D(f−1)f(x) = (Dfx)
−1 .

Der Beweis des Umkehrsatzes ist schwierig. Man kann die Aussage auf den Satz
über implizite Funktionen zurückführen, der im letzten Kapitel kurz vorgestellt wird.

Hier zwei Beispiele.

6.1.13 Beispiel Sei f(x, y) =

(

xy
y

)

für (x, y) ∈ R
2. Diese Funktion bildet die

x-Achse auf den Nullpunkt ab, alle anderen Parallelen zur x-Achse gehen wieder in
Parallelen zur x-Achse über. Dagegen werden die Parallelen zur y-Achse zu Geraden
durch den Nullpunkt. Die Jacobimatrix von f lautet

Jf(x, y) =

(

y x
0 1

)

und det Jf(x, y) = y .

Also ist die Funktion f in der Nähe des Punktes p = (1, 1) lokal umkehrbar. Setzen
wir u = xy und v = y, dann ist

f−1(u, v) =

(

u/v
v

)

.

Diese Umkehrfunktion ist definiert auf V = {(u, v) | v 6= 0} und hier ist dann
U = {(x, y) | y 6= 0}. Die Teilmenge U ⊂ R

2 ist bereits die grösstmögliche Teilmenge,
auf der f umkehrbar ist.

6.1.14 Beispiel Betrachten wir wiederum den Wechsel von Polarkoordinaten zu
kartesischen Koordinaten der Ebene. Sei also

f(r, ϕ) :=

(

r cosϕ
r sinϕ

)

für r ≥ 0, ϕ ∈ R .
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Die Jacobimatrix an einer Stelle (r, ϕ) hatten wir bereits berechnet:

Jf(r, ϕ) =

(

cosϕ −r sinϕ
sinϕ r cosϕ

)

,

und det Jf(r, ϕ) = r. Das Differential von f an der Stelle (r, ϕ) ist also invertierbar,
falls r 6= 0. Aber es reicht hier nicht, die Punkte mit r = 0 aus dem Definitionsbereich
herauszunehmen, weil f ausserdem bezogen auf den Winkel ϕ periodisch ist und
bei der Umkehrung dann eine Mehrdeutigkeit entsteht. Dennoch können wir lokal
umkehren.

Hier ist eine Beschreibung der Umkehrfunktion von f in der Nähe von p = (1, 0):

f−1(x, y) =

(
√

x2 + y2

arctan( y
x
)

)

für x > 0, y ∈ R.

In diesem Fall ist U = {(r, ϕ) | r > 0,−π
2
< ϕ < π

2
} und V := {(x, y) ∈ R

2 | x > 0}.
Wir überprüfen nun noch die Aussage über die Differentiale an diesem Beispiel.

Einerseits ist

Jf(r, ϕ)−1 =
1

r

(

r cosϕ r sinϕ
− sinϕ cosϕ

)

=

(

cosϕ sinϕ
− sinϕ

r

cosϕ
r

)

.

Andererseits ist

J(f−1)(x, y) =

(

x√
x2+y2

y√
x2+y2

− y

x2+y2
x

x2+y2

)

.

Setzen wir nun x = r cosϕ und y = r sinϕ ein, erhalten wir Übereinstimmung.

6.2 Transformationsregel

Nun können wir die Entsprechung der Substitutionsregel im Mehrdimensionalen
formulieren.

Sei dazu Φ:S → Φ(S) ⊂ R
n eine bijektive stetig differenzierbare Transformation,

deren Umkehrung Φ−1 ebenfalls stetig differenzierbar sei. Die Verallgemeinerung der
Aussage über lineare Transformationen lautet dann:

6.2.1 Satz Ist S ⊂ R
n messbar und f : Φ(S) → R integrierbar, so gilt:

∫

Φ(S)

f(x) dn(x) =

∫

S

f(Φ(u)) | detDΦu| dnu .

Beweis. Man kann die Überlegung für n = 2, die wir für lineare Transformationen
angestellt hatten, folgendermassen anpassen. Sei Z eine Zerlegung eines Rechtecks
Q ⊃ S, und sei jeweils uk eine Stützstelle im Teilrechteck Qk. Dann betrachten wir
die Dreigliedentwicklung der Transformation Φ an der Stelle uk

Φ(u) = Φ(uk) +DΦuk
(u− uk) +R(u) ≈ Φ(uk) +DΦuk

(u− uk) .
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In der Nähe des Punktes uk wird die Transformation Φ also näherungsweise durch
die affine Transformation u 7→ Φ(uk)+DΦuk

(u−uk) dargestellt. Die Transformation
Φ bildet daher das Teilrechteck Qk auf ein Gebiet Φ(Qk) ab, für dessen Flächeninhalt
gilt:

Vol2(Φ(Qk)) ≈ | detDΦuk
| · Vol2(Qk) .

Sei jetzt wieder xk := Φ(uk). Dann liefert der Vergleich der Riemannsummen:

∫

Φ(S)

f(x, y) d2(x, y) ≈
∑

k

f(xk) Vol2(Φ(Qk)) ≈

∑

k

f(Φ(uk))| detDΦuk
| · Vol2(Qk) ≈

∫

S

f(Φ(u))| detDΦu| d2u .

Die Details der Grenzübergänge lassen wir hier aus und beschränken uns auf diese
Skizze der Ideen. q.e.d.

6.2.2 Beispiele • Die schon genannte Transformation auf Polarkoordinaten
ordnet sich hier folgendermassen ein. Die Zuordnung

Φ:R>0 × (−π, π) → R
2 \ {(x, 0) | x ≤ 0}, (r, ϕ) 7→ (r cosϕ, r sinϕ)

ist bijektiv und in beiden Richtungen differenzierbar und | detDΦ(r,ϕ)| = r.
Deshalb lautet die entsprechende Substitution dx dy = r dr dϕ.

• Die Einführung von Zylinderkoordinaten im dreidimensionalen Raum korre-
spondiert zu der Transformation

Φ(r, ϕ, z) =





r cos(ϕ)
r sin(ϕ)

z



 (r > 0, 0 ≤ ϕ ≤ 2π, z ∈ R) .

Wiederum ist Φ in beiden Richtungen differenzierbar und | detDΦ(r,ϕ)| = r.
Die entsprechende Substitution ist hier

dx dy dz = r dr dϕ dz .

• Die Kugelkoordinaten sind gegeben durch

Φ(r, ϕ, θ) =





r cos(ϕ) sin(θ)
r sin(ϕ) sin(θ)

r cos θ



 (r ≥ 0, 0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π) .

Man rechnet nach, dass | detDΦ(r,ϕ,θ)| = r2 sin θ. Die entsprechende Substitu-
tion ist also

dx dy dz = r2 sin(θ) dr dϕ dθ .

Im folgenden Beispiel werden Kugelkoordinaten verwendet:
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6.2.3 Beispiel Das Gebiet B = {(x, y, z) | (x2 + y2 + z2)2 ≤ y} hat die Gestalt
eines Tropfens. Seine Beschreibung in Kugelkoordinaten lautet:

A = {(r, ϕ, θ) | r3 ≤ sin(ϕ) sin(θ), 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ π} .

Das Volumen des Körpers B ist gegeben durch das Integral

∫

B

1 d3(x, y, z) =

∫

A

r2 sin(θ) dr dθ dϕ =

∫ π

0

∫ π

0

∫ 3
√

sin(ϕ) sin(θ)

0

r2 sin(θ) dr dθ dϕ =

∫ π

0

∫ π

0

1

3
sin(ϕ) sin2(θ) dθ dϕ =

∫ π

0

π

6
sin(ϕ) dϕ =

π

3
,

Im letzten Beispiel verwenden wir eine nichtlineare Transformation, mit der die
Beschreibung des Integrationsgebietes vereinfacht wird:

6.2.4 Beispiel Sei B = {(x, y) ∈ R
2 | x, y > 0, 0 < xy < 3, x < y < 2x}. In

den neuen Koordinaten u = xy und v = y/x lautet die Beschreibung des Gebietes
S = {(u, v) ∈ R

2 | 0 < u < 3, 1 < v < 2}. Die entsprechende Transformation ist

Φ: (u, v) 7→ (

√

u

v
,
√
uv) und det DΦ(u,v) =

∣

∣

∣

∣

1
2
√
uv

−
√
u

2
√
v3

1
2

√

v
u

1
2

√

u
v

∣

∣

∣

∣

=
1

2v
.

Der Flächeninhalt des Gebietes B beträgt also:

Vol2(B) =

∫

B

1d2(x, y) =

∫

S

1

2v
d2(u, v) =

∫ 3

0

∫ 2

1

1

2v
dv du =

3

2
ln(2) .

Das Integral über die Funktion f(x, y) = y2 über B können wir mithilfe der Trans-
formation folgendermassen berechnen:

∫

B

y2 d2(x, y) =

∫

S

uv| detDΦu,v| d2(u, v) =
∫ 3

0

∫ 2

1

uv

2v
dv du =

9

4
.
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6.3 Satz über implizite Funktionen

Nehmen wir an, f :D → R sei eine stetig differenzierbare Funktion in 2 Variablen,
definiert auf einer offenen Teilmenge D ⊂ R

2. Durch die Gleichung f(x, y) = 0 wird
auf implizite Art und Weise eine Teilmenge des R2 beschrieben, nämlich die Nullstel-
lenmenge der Funktion f . Um diese Nullstellenmenge explizit zu bestimmen, müsste
man die Gleichung nach einer der Variablen auflösen. Hier dazu einige Beispiele:

6.3.1 Beispiele 1. Seien a, b, c ∈ R fest und f(x, y) = ax+ by − c für x, y ∈ R.
Die Gleichung f(x, y) = ax+ by− c = 0 ist eine Geradengleichung, falls a und
b nicht beide gleichzeitig Null sind. Falls b 6= 0 ist, können wir nach y auflösen
und erhalten y = c−ax

b
für alle x. Ist b = 0, beschreibt die entsprechende

Geradengleichung eine Parallele zur y-Achse. In diesem Fall können wir nicht
nach y auflösen, dafür aber nach x.

2. Seien a, b > 0 fest und f(x, y) = ax2 + by2 − 1 für x, y ∈ R. Die Gleichung
ax2 + by2 = 1 beschreibt eine Ellipse in R

2. Lösen wir diese Gleichung nach
y auf, erhalten wir y = ±

√
1−ax2

b
, für x2 ≤ 1

a
. Die Ellipse lässt sich also als

Vereinigung von zwei Funktionsgraphen auffassen, allerdings sind die entspre-
chenden Funktionen bei x = ± 1√

a
nicht differenzierbar! Interessieren wir uns

nur für einen Ausschnitt der Ellipse in der Nähe des Punktes (x0, y0) = (0, 1√
b
),

so müssen wir den oberen Zweig, nämlich y = +
√
1−ax2

b
, wählen. Und wenn

wir hier nur x ∈ (−1, 1) zulassen, ist sichergestellt, dass die dadurch definierte
Funktion sogar überall differenzierbar ist.

Wir werden nun zunächst ein Kriterium dafür formulieren, unter welchen Umständen
sich die Gleichung f(x, y) = 0 nach y auflösen lässt, und zwar in der Nähe eines
vorgegebenen Punktes (x0, y0) mit f(x0, y0) = 0. Gesucht sind genauer offene Um-
gebungen x0 ∈ U ⊂ R, y0 ∈ V ⊂ R mit U × V ⊂ D und eine Funktion g:U → V
mit g(x0) = y0 so dass

f(x, y) = 0 ⇐⇒ y = g(x) für alle (x, y) ∈ U × V .

Das bedeutet, dass die Nullstellenmenge von f in U×V mit dem Graphen von g über-
einstimmt. Gibt es eine solche Funktion g, so ist sie offenbar eindeutig durch f fest-
gelegt. Man sagt auch, die Funktion g sei “implizit” durch die Gleichung f(x, y) = 0
definiert.

Angenommen, die Funktion g existiert und ist differenzierbar auf U . Dann ergibt
sich aus der Beziehung f(x, g(x)) = 0 mit der Kettenregel

0 =
d

dx
f(x, g(x)) = ∂xf(x, g(x)) + g′(x)∂yf(x, g(x)) .

Daraus folgt, falls ∂yf(x, g(x)) 6= 0,

g′(x) = −∂xf(x, g(x))

∂yf(x, g(x))
für alle x ∈ U .
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Tatsächlich reicht es, ∂yf(x, y) 6= 0 für x = x0 und y = y0 vorauszusetzen, um
die Existenz von g zu garantieren. Denn es gilt der folgende Satz über implizite

Funktionen:

6.3.2 Satz Sei D ⊂ R
2 offen, f :D → R stetig differenzierbar und f(x0, y0) = 0

für ein (x0, y0) ∈ D. Sei weiter ∂yf(x0, y0) 6= 0. Dann gibt es offene Umgebungen
x0 ∈ U ⊂ R, y0 ∈ V ⊂ R mit U × V ⊂ D und eine eindeutig bestimmte, stetig
differenzierbare Funktion g:U → V mit g(x0) = y0, so dass für alle (x, y) ∈ U × V
gilt:

f(x, y) = 0 ⇐⇒ y = g(x) .

Weiter ist

g′(x) = −∂xf(x, g(x))

∂yf(x, g(x))
für alle x ∈ U .

Die Nullstellenmenge von f lässt sich also in einer passenden Umgebung von (x0, y0)
als Graph einer stetig differenzierbaren Funktion darstellen.

Hier dazu noch ein Beispiel.

6.3.3 Beispiel Sei a > 0 fest gewählt und f(x, y) := (x2 + y2)2 − 2ax(x2 + y2) −
a2y2 für x, y ∈ R. Die Lösungsmenge der Gleichung f(x, y) = 0 in R

2 wird als
Kardioide bezeichnet. Sie ist herzförmig und hat einen Knickstelle im Ursprung. Es
gibt zwei Schnittpunkte mit der x-Achse, nämlich den Nullpunkt und den Punkt
(2a, 0). Ausserdem schneidet die Kurve die y-Achse bei y = 0 und y = ±a. Wir
haben hier

∂yf(x, y) = 2(x2 + y2)2y − 4axy − 2a2y .

Die partielle Ableitung nach y hat vier Nullstellen auf der Kardioide.
Entfernt man diese Punkte, bleiben vier Kurvenabschnitte, die jeweils Funktions-

graphen sind. Im Nullpunkt dagegen ist ∂yf(0, 0) = 0, und man kann die Gleichung
in der Nähe des Nullpunktes nicht nach y auflösen. Denn für kleine x < 0 gibt es im-
mer genau zwei y-Werte (nahe bei 0), die zusammen mit dem x-Wert die Gleichung
lösen.

Beweis von Satz 6.3.2. Wir gehen in mehreren Schritten vor.
1. Schritt: Konstruktion von g: Dazu nehmen wir an, dass ∂yf(x0, y0) > 0. (Im
anderen Fall argumentiert man entsprechend.) Aus der Stetigkeit von ∂yf folgt,
dass ∂yf(x, y) > 0 für alle (x, y) aus einer passenden Umgebung D̃ von (x0, y0).
Daraus können wir schliessen, dass f auf D̃ bezüglich y streng monoton wachsend
ist, das heisst f(x, y1) > f(x, y2) für alle (x, yj) ∈ D̃ mit y1 > y2. Nun wählen wir
ǫ, δ > 0 mit [x0 − δ, x0 + δ]× [y0 − ǫ, y0 + ǫ] ∈ D̃. Da f(x0, y0) = 0, ist insbesondere
f(x0, y0 − ǫ) < 0 und f(x0, y0 + ǫ) > 0. Wegen der Stetigkeit von f können wir
sicherstellen, dass f(x, y0 − ǫ) < 0 und f(x, y0 + ǫ) > 0 für alle x ∈ [x0 − δ, x0 + δ],
indem wir δ falls nötig noch verkleinern. Aus dem Zwischenwertsatz folgt nun, dass
zu jedem x ein y ∈ [y0 − ǫ, y0 + ǫ] existiert mit f(x, y) = 0. Dies y ist durch
x eindeutig bestimmt, weil f bezüglich y streng monoton steigend ist. Wenn wir
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g(x) := y setzen, erhalten wir also die gesuchte Funktion g auf U := (x0− δ, x0+ δ),
und g(U) ⊂ V := (y0 − ǫ, y0 + ǫ).

Aus der Konstruktion ergibt sich auch sofort, dass g in x0 stetig ist. Denn wenn
wir ǫ verkleinern, so können wir δ immer entsprechend anpassen, so dass aus |x −
x0| < δ folgt |g(x)− y0| < ǫ. Jeder Punkt x ∈ U erfüllt dieselben Voraussetzungen
wie x0. Also kann man die Stetigkeit von g in x analog zeigen.

2. Schritt: Lipschitz-Stetigkeit von g: Nehmen wir ab jetzt an, dass (x0, y0) = (0, 0)
ist. (Dies können wir erreichen, indem wir anstelle von f die Funktion f̃ , definiert
durch f̃(x, y) = f(x−x0, y−y0) betrachten.) Wir zeigen jetzt, dass es eine Konstante
K > 0 und ein δ > 0 gibt mit

|g(x)| ≤ K|x| für alle |x| < δ.

Dazu verwenden wir die Dreigliedentwicklung von f im Nullpunkt:

f(x, y) = Df0(

(

x
y

)

) +R(x, y)||(x, y)|| ,

wobei R:Kr(0) → R eine Funktion ist, für die gilt: lim(x,y)→(0,0) R(x, y) = 0. Setzen
wir a := ∂xf(0, 0) und b := ∂yf(0, 0), so erhalten wir:

f(x, y) = ax+ by +R(x, y)
√

x2 + y2 .

Wenn wir y = g(x) einsetzen, wird daraus:

0 = f(x, g(x)) = ax+ bg(x) +R(x, g(x))
√

x2 + g(x)2 .

Weil nach Voraussetzung b 6= 0 ist, können wir schliessen

g(x) = −a

b
x− 1

b
R(x, g(x))

√

x2 + g(x)2 .

Wegen der Stetigkeit von g bei 0 gilt limx→0 g(x) = 0 und limx→0R(x, g(x)) = 0.
Daher gibt es ein δ > 0 mit |R(x, g(x))| < | b

2
| für alle |x| < δ. Daraus folgt

|g(x)| ≤ |a
b
| |x|+ 1

2

√

x2 + g(x)2 ≤ |a
b
| |x|+ 1

2
(|x|+ |g(x)|) ,

und schliesslich die gesuchte Abschätzung

|g(x)| ≤ (2|a
b
|+ 1)|x| für alle |x| < δ.

3. Schritt: Differenzierbarkeit von g: Um zu zeigen, dass g im Nullpunkt diffe-
renzierbar ist, reicht es zu zeigen, dass g im Nullpunkt eine Dreigliedentwicklung
besitzt. Wie eben gezeigt, gilt

g(x) = −a

b
x− 1

b
R(x, g(x))

√

x2 + g(x)2 ,
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und falls die Ableitung von g an der Stelle x = 0 existiert, muss wegen der Ket-
tenregel g′(0) = −a

b
sein. Der lineare Term in dieser Darstellung ist also bereits der

Kandidat für die Ableitung. Jetzt müssen wir nur noch überprüfen, dass der zweite
Term in der Entwicklung von g die Restbedingung erfüllt, das heisst

lim
x→0

(−1

b
R(x, g(x)) ·

√

x2 + g(x)2

|x| ) = 0 .

Dazu verwenden wir die Abschätzung aus dem vorigen Schritt mit K = 2|a
b
|+ 1:

√

x2 + g(x)2

|x| ≤ |x|+ |g(x)|
|x| ≤ 1 +K für alle |x| < δ.

Da limx→0R(x, g(x)) = 0, folgt nun die Behauptung. q.e.d.

Es gibt auch eine entsprechende Version des Satzes über implizite Funktionen
für Gleichungen in mehr als nur zwei Variablen. Diese allgemeinere Version lautet:

6.3.4 Satz Sei D ⊂ R
n×R offen, f :D → R stetig differenzierbar und f(x0, y0) = 0

für ein (x0, y0) ∈ D. Sei weiter ∂n+1f(x0, y0) 6= 0. Dann gibt es offene Umgebungen
x0 ∈ U ⊂ R

n, y0 ∈ V ⊂ R mit U × V ⊂ D und eine eindeutig bestimmte, stetig
differenzierbare Funktion g:U → V mit g(x0) = y0, so dass für alle (x, y) ∈ U × V
gilt:

f(x, y) = 0 ⇐⇒ y = g(x) .

Weiter ist

∂jg(x) = − ∂jf(x, g(x))

∂n+1f(x, g(x))
für alle x ∈ U .

Die Nullstellenmenge von f lässt sich also in einer passenden Umgebung von (x0, y0)
als Graph einer stetig differenzierbaren Funktion g in n Variablen darstellen.

Die Aussage über die partiellen Ableitungen von g ergibt sich wieder durch An-
wendung der Kettenregel auf die Gleichung

f(x, g(x)) = f(x1, . . . , xn, g(x1, . . . , xn)) = 0 für alle x ∈ U .

6.3.5 Beispiel Die Nullstellenmenge der Funktion f(x, y, z) = x2+y2−z2−1 ist ein
einschaliges Hyperboloid. Eine explizite Beschreibung dieser Fläche in der Nähe des
Punktes a = (2, 0,

√
3) erhalten wir, indem wir nach z auflösen zu z =

√

x2 + y2 − 1
(falls x2 + y2 > 1). Für die Punkte (x, y, z) ∈ R

3 mit z > 0 und x2 + y2 > 1 gilt:

f(x, y, z) = 0 ⇐⇒ z =
√

x2 + y2 − 1 .

Hier ist also U := {(x, y) ∈ R
2 | x2 + y2 > 1} und V = R>0 und g(x, y) =

√

x2 + y2 − 1 für alle (x, y) ∈ U . Der Graph von g ist sozusagen die obere Hälfte des
Hyperboloids (wobei der Schnittkreis mit der x-y-Ebene nicht mitzählt). Überprüfen
wir hier noch die Aussage über die partiellen Ableitungen von g:

∂xg(x, y) =
2x

2
√

x2 + y2 − 1
=

2x

2g(x, y)
=

∂xf(x, y, g(x, y))

∂zf(x, y, g(x, y))
.
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∂yg(x, y) =
2y

2
√

x2 + y2 − 1
=

2y

2g(x, y)
=

∂yf(x, y, g(x, y))

∂zf(x, y, g(x, y))
.

Wie bereits betont, liefert der Satz über implizite Funktionen keine Formel für
die lokale Funktion g, aber schon aus der theoretischen Existenz der Funktion g
ergeben sich wichtige qualitative Konsequenzen.

6.3.6 Folgerung Ist f :D ⊂ R
d → R eine stetig differenzierbare Funktion in d > 1

Variablen, c ∈ R fest gewählt und gilt ∇f(a) 6= 0 für alle a ∈ D mit f(a) = c, so ist
die Niveaumenge N = Nc(f) = {a ∈ D | f(a) = c} von f lokal Graph einer stetig
differenzierbaren Funktion g. Das heisst, zu jedem Punkt p ∈ Nc gibt es eine Umge-
bung p ∈ U ⊂ R

d und eine reellwertige, stetig differenzierbare Funktion g in d − 1
Variablen, so dass Nc∩U mit dem Graphen von g übereinstimmt. Ist d = 2, können
wir daraus schliessen, dass N eine Kurve ist, die in jedem Punkt eine eindeutige Tan-
gente besitzt und keine Spitzen, Selbstüberkreuzungen oder Selbstberührungen hat.
Ist d = 3, so ist N eine Fläche, die in jedem Punkt eine eindeutige Tangentialebene
hat, wobei wiederum keine Selbstdurchdringungen oder Falten auftreten.

Beweis. Sei p ∈ Nc vorgegeben. Nach Voraussetzung ist ∇f(p) 6= 0, es gibt also
einen Index j mit ∂jf(p) 6= 0. Wir ändern nun die Numerierung der Variablen so,
dass wir ∂df(p) 6= 0 erhalten. Nun können wir den Satz über implizite Funktionen
auf die Funktion h(x) := f(x)− c anwenden. q.e.d.

6.3.7 Beispiele • Die Niveaulinien Nc der Funktion f(x, y) = x2 + y2 sind
konzentrische Kreise (für c > 0). Ist c = 0, entartet die Niveaumenge zu einem
Punkt, für c < 0 hat die entsprechende Gleichung jeweils keine Lösung, die
zugehörigen Niveaumengen sind also leer. Ist c > 0 fest gewählt, können wir
die entsprechende Kreislinie jeweils lokal als Graphen einer differenzierbaren
Funktion von x oder von y schreiben, nämlich x = ±

√

c− y2 (für |y| < √
c)

oder y = ±
√
c− x2 (für |x| <

√
c). Mit weniger als vier lokalen Graphen

kommt man aber nicht aus, wenn man den ganzen Kreis überdecken möchte.

• Betrachten wir jetzt die Funktion f(x, y) = y2−x3. Die Gleichung f(x, y) = 0
beschreibt die sogenannte Neillsche Parabel . Es handelt sich um eine Kurve in
der Halbebene rechts von der y-Achse mit einer Spitze im Nullpunkt. Entfernt
man den Nullpunkt, bleibt noch eine Vereinigung von zwei Funktionsgraphen
übrig, nämlich der Funktionen y = ±

√
x3 (jeweils für x > 0). Aber im Null-

punkt gibt es keine lokale Beschreibung der Kurve als Graphen einer Funktion
y = g(x), denn in jeder Umgebung der Form Kǫ(0) gibt es zu jedem positiven
x-Wert zwei entsprechende Punkte auf der Kurve.

Ist c < 0, können wir die entsprechende Niveaulinie von f als Graph der
Funktion x = 3

√

y2 + |c| (für y ∈ R) darstellen. Ist c > 0, so benötigen wir
mindestens drei lokale Graphen, um die Niveaulinie zu überdecken, etwa y =
±
√
x3 + c (jeweils für x > − 3

√
c) und x = 3

√

y2 − c (für |y| < √
c).

Und hier schliesslich noch zwei Beispiele.
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6.3.8 Beispiele • Die Funktion f(x, y) = 1 − (x2 − 1)2 − y2 hat zwei iso-
lierte lokale Maxima bei (±1, 0). Die entsprechende Niveaumenge N1 besteht
nur aus diesen beiden Punkten. Die Niveaumenge N0 ist eine Kurve mit ei-
ner Selbstüberkreuzung im Nullpunkt, die ansonsten glatt ist. Im Nullpunkt
liegt ein Sattelpunkt von f vor. Für alle übrigen Werte c < 1, c 6= 0, sind
die Niveaumengen Nc(f) glatte Kurven, denn auf diesen Mengen liegen keine
kritischen Punkte von f .

• Sei a > 0 vorgegeben und f(x, y) = (x2 + y2)2 − 2ax(x2 + y2) − a2y2. Die
Funktion f hat zwei kritische Stellen, nämlich p = (0, 0) und q = (3a/2, 0). Im
Nullpunkt p ist ein Sattelpunkt und im Punkt q ein isoliertes Minimum. Der
Graph von f erinnert an eine Sitzbadewanne. Die Niveaulinie N0 durch p ist
die oben beschriebene Kardioide (siehe Beispiel 6.3.3). Sie hat im Nullpunkt
eine Spitze und ist ansonsten glatt. Alle übrigen nichtleeren Niveaumengen
sind glatte Kurven.

Noch allgemeiner kann man von einem System von Gleichungen ausgehen, das in
eine explizite Form gebracht werden soll, indem man nach möglichst vielen Variablen
auflöst.

6.3.9 Beispiel Sei f1(x, y, z) = x−y und f2(x, y, z) = x2+y2−z2−1. Die Gleichung
f1(x, y, z) = 0 beschreibt eine Ebene E im R

3, die die z-Achse enthält, und die
Gleichung f2(x, y, z) = 0, wie eben untersucht, ein Hyperboloid. Die Lösungsmenge
des Systems aus beiden Gleichungen ist also die Schnittmenge des Hyperboloids mit
der Ebene E. Es handelt sich dabei um eine Hyperbel in der Ebene E, die um 90◦

gedreht erscheint. Interessieren wir uns nur für den Ausschnitt der Hyperbel in der
Nähe des Punktes (1, 1, 1), so können wir die Gleichungen folgendermassen nach y

bzw. z auflösen: Ein Punkt (x, y, z) mit x >
√
2
2

und z > 0 erfüllt die Gleichungen

f1(x, y, z) = 0 und f2(x, y, z) = 0 genau dann, wenn y = x und z =
√
2x2 − 1.

Es geht also um folgendes: Ein System aus m Gleichungen in n + m Variablen
der Form

f1(x1, . . . , xn, y1, . . . , ym) = 0
f2(x1, . . . , xn, y1, . . . , ym) = 0

...
fm(x1, . . . , xn, y1, . . . , ym) = 0

beschreibt wiederum auf implizite Art eine Teilmenge des Rn+m. Wir erhalten eine
explizite Beschreibung eines Ausschnitts der Lösungsmenge, wenn es gelingt, die
Gleichungen nach y1, . . . , ym aufzulösen, so dass das System nun die folgende Gestalt
annimmt:

y1 = g1(x1, . . . , xn)
y2 = g2(x1, . . . , xn)
...

...
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ym = gm(x1, . . . , xn)

Wir können die Komponenten f1, . . . , fm zu einer Funktion F :D ⊂ R
n+m → R

m

und die Komponenten g1, . . . , gm zu einer Funktion G:U ⊂ R
n → R

m zusammenfas-
sen. Verwenden wir ausserdem die Notation x = (x1, . . . , xn) und y = (y1, . . . , ym),
so lautet jetzt das Problem, zu gegebenem F ein passendes G zu finden, so dass
lokal gilt:

F (x, y) = 0 ⇔ y = G(x) .

Es geht es also wiederum darum, die Nullstellenmenge von F lokal als Graph dar-
zustellen.

Ist F differenzierbar, so wird das Differential DF (x, y) der Funktion F an einer
Stelle (x, y) ∈ D durch eine Matrix vom Typ m× (n+m) beschrieben. Wir können
diese Matrix also in zwei Blöcke unterteilen, eine Teilmatrix vom Typ m×n, die wir
mit DxF (x, y) bezeichnen, und eine quadratische Teilmatrix vom Typ m×m, die wir
mit DyF (x, y) bezeichnen. DxF (x, y) ist das Differential derjenigen Funktion, die
wir aus F erhalten, indem wir y konstant halten, und DyF (x, y) ist das Differential
der Funktion, die durch F definiert wird, indem wir x fest halten. Nehmen wir an,
dass F (x,G(x)) = 0 für alle x, und sind F und G differenzierbar, so folgt aus der
Kettenregel

DxF (x,G(x)) +DyF (x,G(x)) ◦DG(x) = 0 für alle x.

Daraus ergibt sich, falls DyF (x,G(x)) invertierbar ist, die Beziehung

DG(x) = −(DyF (x,G(x))−1 ◦DxF (x, F (x)) .

Der Satz über implizite Funktionen in allgemeiner Form lautet mit diesen Be-
zeichnungen:

6.3.10 Satz Sei F :D ⊂ R
n×R

m → R
m stetig differenzierbar, D offen, F (p, q) = 0

für ein (p, q) ∈ D. Sei weiter DyF(p,q) invertierbar. Dann gibt es offene Umgebungen
p ∈ U ⊂ R

n und q ∈ V ⊂ R
m mit U × V ⊂ D und eine eindeutig bestimmte, stetig

differenzierbare Funktion G:U → V mit G(p) = q, so dass für alle (x, y) ∈ U × V
gilt

F (x, y) = 0 ⇐⇒ y = G(x) .

Ausserdem ist

DG(x) = −(DyF (x,G(x)))−1 ·DxF (x,G(x)) für alle x ∈ U .

Auf den schwierigen Beweis dieses Satzes müssen wir hier verzichten.
Im Spezialfall m = 1 stimmt die Aussage mit der früheren überein. Denn in die-

sem Fall sind F und G reellwertige Funktionen. Also ist DF (x, y) = gradF (x, y),
DxF (x, y) = (∂xF (x, y), . . . , ∂nF (x, y)) und DyF (p, q) = ∂n+1F (p, q). Die Bedin-
gung an DyF (p, q) lautet in diesem Fall also einfach ∂n+1F (p, q) 6= 0. Und für G
erhalten wir die Aussage:

gradG(x) = − 1

∂n+1F (x,G(x))
· (∂xF (x, y), . . . , ∂nF (x, y)) .
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Schauen wir uns ausserdem unser Beispiel noch einmal an.

6.3.11 Beispiel Sei F :R3 → R
2, definiert durch f1(x, y, z) = x−y und f2(x, y, z) =

x2 + y2 − z2 − 1. Das Differential von F ist gegeben durch die Jacobimatrix

JF (x, y, z) =

(

1 −1 0
2x 2y −2z

)

.

Hier ist jetzt m = 2 und n = 1, wir wollen nach y und z auflösen in der Nähe
des Punktes a = (1, 1, 1). Das Kriterium des Satzes verlangt dazu, dass die Teil-

matrix D(y,z)F (a) =

(

−1 0
2 −2

)

invertierbar ist. Dies ist gewährleistet, denn die

Determinante der Matrix beträgt 2. Die gesuchte Funktion G:U → V ist gegeben
durch

G(x) =





x

√
2x2 − 1



 ,

wobei wir U = (
√
2
2
,∞) ⊂ R und V = {(y, z) ∈ R

2 | z > 0} wählen können. Das

Differential von G lautet DG(x) =

(

1
2x√
2x2−1

)

für x ∈ U . Vergleichen wir mit

−(D(y,z)F (x,G(x)))−1 ·DxF (x,G(x)) = −
(

−1 0
2g1(x) −2g2(x)

)−1

·
(

1
2x

)

=

1

2g2(x)

(

2g2(x) 0
2g1(x) 1

)

·
(

1
2x

)

=

(

1
2g1(x)+2x
2g2(x)

)

=

(

1
4x

2g2(x)

)

.

Wieder stellen wir Übereinstimmung fest.

Der im vorigen Abschnitt formulierte Umkehrsatz kann mithilfe des Satzes über
implizite Funktionen jetzt bewiesen werden.

6.3.12 Folgerung Sei D ⊂ R
n offen und f :D → R

n eine stetig differenzierbare
Abbildung. Sei weiter q ∈ D ein Punkt mit detDfq 6= 0. Dann gibt es eine offene
Umgebung U ⊂ D von q, so dass f , aufgefasst als Abbildung von U nach V := f(U)
biijektiv ist und die Umkehrabbildung f−1:V → U ebenfalls differenzierbar ist.

Beweis. Wir definieren die Funktion F :Rn × D → R
n durch F (x, y) = x − f(y)

für alle y ∈ D, x ∈ R
n. Sei p := f(q). Offenbar ist F (p, q) = 0. Ausserdem ist

(DyF )(p,q) = −Dfq nach unserer Annahme invertierbar. Damit sind die Voraus-
setzungen des Satzes über implizite Funktionen erfüllt, und es gibt daher offene
Teilmengen p ∈ U ⊂ R

n und q ∈ D ⊂ R
n und eine eindeutig bestimmte, stetig

differenzierbare Funktion G:U → V mit G(p) = q, so dass für alle (x, y) ∈ U × V
gilt

F (x, y) = x− f(y) = 0 ⇐⇒ y = G(x) .

Die Funktion G ist gerade die Umkehrfunktion von f . q.e.d.


