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2.2 KERN UND BILD; BASISWECHSEL

Jede lineare Abbildung definiert charakteristische Unterrdume, sowohl im Ausgangs-
raum als auch im Bildraum.

2.2.1 SATZ Sei L:V — W eine lineare Abbildung. Dann gilt:
1. Das Bild(L) := {L(v) | v € V'} ist ein linearer Unterraum von W.

2. Der Kern(L) := {v € V | L(v) = 0}, also das Urbild der 0 in W, ist ein
linearer Unterraum von V.

3. L ist genau dann injektiv, wenn Kern(L) = {0}.

4. Liegt w im Bild von L, dann ist sein Urbild L™ (w) = {v € V | L(v) =w} inV
ein affiner Unterraum, genauer eine parallel verschobene Kopie von Kern(L).

Beweis. Zu 1. Das Bild von L ist nichtleer, denn wegen L(0) = 0, enthilt es zu-
mindest den Nullvektor von W. Nehmen wir jetzt an wy, ws € Bild(L). Dann gibt
es Vektoren vy, vy € V mit L(vy) = wy und L(ve) = wy. Aus der Linearitéit von L
folgt L(vy + va) = L(vy) + L(va) = wy + wy. Also ist auch w; + wy im Bild von L
enthalten. Schliesslich gilt fiir alle A € R: L(Avy) = AL(v1) = Aw, € Bild(L).

zu 2. Diesen Beweisteil lassen wir als Ubung.

zu 3. Ist L injektiv, so ist L(v) = 0 nur fir v = 0 moglich. Das heisst Kern(L) =
{0}. Sei jetzt umgekehrt Kern(L) = {0} und nehmen wir an, es sei L(vy) = L(vg) fiir
v1,vy € V. Dann folgt L(vy —wvy) = L(v1) — L(v2) = 0 und daher v; — vy € Kern(L).
Also muss v; = vy sein.  q.e.d.

x
2.2.2 BEISPIEL Sei L:R3 — R3 die lineare Abbildung, gegeben durch L(| y |) =
z
(o +9)/2
(r+y)/2 |. Es handelt sich hier um eine Projektion auf die Ebene E in R?, die
z

von der z-Achse und der Winkelhalbierenden in der x—y—Ebene aufgespannt wird.
Hier ist das Bild die Ebene E, und der Kern ist die Gerade g, erzeugt vom Vektor

1 a a+t
—1 |. Der Punkt w = | a | hat das Urbild L™} (w) = a—t | |zeR . Es
0 1 1

handelt sich also um eine zu g parallele Gerade durch w.

2.2.3 BEMERKUNG Sei L4:R"™ — R™ diejenige lineare Abbildung, die durch die
Multiplikation mit einer festen m x n-Matrix A gegeben ist. Dann ist

Kern(Ly) = {v € R" | Av =0},
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also nichts anderes als Losungsmenge 1L des durch die Matrix A definierten linea-
ren Gleichungssystems. Das Urbild eines Vektors b € R™ stimmt iiberein mit der
Losungsmenge des zugehdrigen inhomogenen linearen Gleichungssystems

L7'(b) = {veR" | Av =1b}.

Bekanntlich ist diese Menge ein affiner Unterraum, genauer eine parallel verschobene
Kopie von L. Bezeichnen wir die Spaltenvektoren von A mit wy, ..., w,, dann ist

Bild(L4) = lin(ws, ..., w,),

d.h., das Bild von L4 ist derjenige lineare Unterraum von R™, der von den Spalten-
vektoren von A erzeugt wird.

1 2
2.2.4 BEISPIELE e Sei A= | -1 1 |.Das Bild der Abbildung L4:R? —
3 =2
R3, definiert durch Multiplikation mit der Matrix A, ist diejenige Ebene in R?,
die von den beiden Spalten von A erzeugt wird. Der Kern besteht hier nur aus
dem Nullvektor.

e Sei A = (? :g _11) Hier definiert die Multiplikation mit A eine Ab-
bildung L,:R?® — R2. Das Bild ist ganz R? und der Kern besteht aus allen
3t
Vektoren in R* der Form | ¢t | (t € R).
0

Betrachten wir schliesslich noch ein Beispiel fiir eine lineare Abbildung zwischen
Funktionenrdumen.

2.2.5 BEISPIEL Sei A > 0 vorgegeben. Durch die Vorschrift L(y) = y” — A%y wird
eine lineare Abbildung von dem Raum der beliebig oft stetig differenzierbaren Funk-
tionen V' = C*°(R) in sich definiert. Hier ist

Kern(L) = {c1e™ + coe™ | c1,co € R} und  Bild(L) = C*(R).

Das Urbild einer Funktion b € V unter L ist nichts anderes als die Losungsmenge
der inhomogenen Differentialgleichung

y//_)\Qy:b-

Wir hatten bereits gesehen, dass es sich dabei um eine parallel verschobene Kopie des
Losungsraums der entsprechenden homogenen Differentialgleichung, also des Kerns
von L, handelt.

2.2.6 SATZ (Dimensionsformel ) Sei L:V — W linear und dim V' = n. Dann gilt:

dim Kern(L) 4+ dim Bild(L) = n..
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Wir wollen diese Aussage zunéichst fiir Matrizen interpretieren. Sei also A eine
m X n-Matrix und L wie oben. Das Bild von L, ist, wie gerade festgehalten,
derjenige Unterraum von R™ der von den Spaltenvektoren von A erzeugt wird.
Die Dimension dieses Unterraums stimmt iiberein mit der maximalen Anzahl linear
unabhéngiger Spalten von A, man nennt diese Zahl auch den Spaltenrang Rang(A).
Die Dimensionsformel liefert jetzt folgende Beziehung:

dim Kern(L4) = n — Rang(A).

Bereits im ersten Paragraphen hatten wir im Zusammenhang mit dem Gaussschen
Eliminationsverfahren eine dhnliche Beziehung fiir die Dimension des Losungsraumes
L = Kern(Ly) gefunden, ndmlich dimIL. = n — r, wobei r der Rang der durch
elementare Zeilenumformungen auf Zeilenstufenform transformierten Matrix A" war.
Der Rang einer Matrix in Zeilenstufenform gibt die Anzahl der Nichtnullzeilen an
und stimmt {iberein mit der maximalen Anzahl linear unabhéngiger Zeilen, also
dem Zeilenrang von A’. Nun bleibt der Zeilenrang einer Matrix bei elementaren
Zeilenumformungen aber unverdndert. Wir erhalten also folgendes Ergebnis:

2.2.7 FOLGERUNG Der Zeilen- und der Spaltenrang einer Matrix stimmen mitein-
ander tiberein. Man spricht deshalb kurz vom Rang einer Matrix. Der Rang gibt
sowohl die Anzahl linear unabhéngiger Spalten als auch die Anzahl linear unabhangi-
ger Zeilen der Matrix an.

Beweis der Dimensionsformel. Weil der Kern von L ein Unterraum von V' ist, gilt
sicher k := dim(Kern(L)) < n. Ausserdem konnen wir eine Basis (vy,...,v;) von
Kern(L) wéhlen und zu einer Basis (vy, ..., U, Ukt1,...,0,) von V erginzen. Es
reicht jetzt, folgende Behauptung zu beweisen:

(L(Vk41),- .., L(v,)) 1ist eine Basis fiir das Bild von L.

Dazu zeigen wir zunéchst, dass die Menge ein Erzeugendensystem fiir das Bild ist.
Sei also w € Bild(L). Dann gibt es ein v € V mit L(v) = w. Wir schreiben v als
Linearkombination der Basiselemente in der Form v = Z?:l a;v; (a; € R). Dann
folgt w = L(v) = > 1, a;L(v;) = Y 1,1 aiL(v;), weil L(v;) = 0 fiir alle i < k. Also
liegt w in der linearen Hiille von (L(vgy1), ..., L(vy,)).

Im zweiten Schritt zeigen wir jetzt, dass die Menge linear unabhéingig ist. Ange-
nommen

0= Z OéiL(UZ') = L( Z Oéi’UZ') .
i=k+1 i=k+1
Das bedeutet, der Vektor u := Y 41 @;v; liegt im Kern der Abbildung L, lisst sich
also in der Basis (vy, ..., vy) schreiben. Das heisst, es gibt Zahlen (3, ..., f; mit
k n
u= Zﬁm = Z iv;
i=1 i=k+1
Daraus folgt die Relation  [yv1 + -+ 4+ Brpvr — Qpy1Vpy1 — -+ — apv, = 0. Da
(v1,...,v,) linear unabhéngig gewahlt waren, folgt 1 = -+ = B = a1 = -+ =

a, =0. qed
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2.2.8 FOLGERUNG Seien V', W endlichdimensionale Vektorrdume und L:V — W
linear. Dann gilt: L ist genau dann bijektiv, wenn dimV = dim W und Kern(L) =
{0}. In diesem Fall ist auch die Umkehrabbildung von L linear und man bezeichnet
L als Vektorraumisomorphismus.

2.2.9 BEISPIEL Sei V ein Vektorraum der Dimension n und A eine Basis fiir V.
Dann ist die Zuordnung

V = R" v Koeff 4(v)

ein Vektorraumisomorphismus. Das bedeutet, jeder endlichdimensionale Vektorraum
ist zu einem der Raume R™ (n € Ny) isomorph.

2.2.10 BEISPIEL Eine quadratische Matrix A definiert genau dann eine bijektive
lineare Abbildung L4: K" — K", wenn A invertierbar ist, wenn also det A # 0
ist. Ist dies der Fall, wird die Umkehrabbildung durch die Multiplikation mit der
inversen Matrix A~! beschrieben.

Die Matrix, die eine lineare Abbildung beschreibt, hangt wesentlich von der Wahl
der Basen — also der Koordinatensysteme — ab! Hierzu das schon erwéihnte Beispiel
der Spiegelung L der Ebene an einer Geraden g durch den Nullpunkt, die mit der
x—Achse den Winkel « bildet. Die Matrix von L beziiglich der kanonischen Basis
lautet, wie schon friiher festgestellt:

My o) (L) = (cos(Qa) sin(2a) ) .

sin(2a)  — cos(2a)

Wihlt man dagegen als Basisvektoren einen Vektor v; # 0 in der Richtung von g
und einen dazu senkrechten Vektor vs # 0, dann ist L(vy) = vy und L(vg) = —vs
und daher lautet die zugehorige Matrix:

1 0
M(UI,UQ)(L) = (O _1) :

Man kann durch Wahl einer giinstigen Basis versuchen, die Abbildung durch eine
moglichst einfache Matrix zu beschreiben, an der sich wichtige Eigenschaften direkt
ablesen lassen. Dazu sei hier noch beschrieben, wie sich die Matrix einer linearen
Selbstabbildung von V' bei einem Basiswechsel dndert.

2.2.11 SATZ Sei L:V — V eine lineare Selbstabbildung des Vektorraums V. Seien
weiter A, B Basen von V' und seien A := M (L) und B := Mp(L) die zugehorigen
Matrizen. Dann gilt:

B=T7'AT, wobei

die Transformationsmatrix T den Basiswechsel von B nach A beschreibt, das heisst,
die Spalten von T' sind die Koeffizientenvektoren der Vektoren aus B, ausgedriickt in
der Basis A. Ist speziell V. = K" und A die kanonische Basis, erhélt man T einfach,
indem man die Elemente von B als Spalten zu einer Matrix zusammenfiigt.
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Beweis. Nach Wahl der Transformationsmatrix gilt fiir jedes v € V:
T - Koeffz(v) = Koeff 4(v) .
Daraus folgt AT Koeffz(v) = Koeff 4(Lv), und das liefert, wie behauptet
T AT - Koeffs(v) = Koeffz(Lv) .

Hier sind die Zusammenhénge nochmals in einem Diagramm dargestellt:

Lp

R”™ — R”™
BN\ B
T | vy + 7!
Ay N A
R™ La, R™ qe.d.

2.2.12 BEISPIEL Sei wiederum V = R? A = (e, es), und sei L die lineare Abbil-

dung, festgelegt durch L(e;) = e;+2e3 und L(ey) = 4e1+3ey. Dannist A = ; ;l )
Sei weiter B die Basis, gebildet aus den Vektoren u = 1 und w = (_12 ) Also
L 1 =2 _ 1 1 2 (1 2 . .

1sthlerT:(1 1 >undT1:m(_1 1):5(_1 1>.D1€Matr1xvon

L bezogen auf die Basis B lautet daher:

g (50
B=T AT_(O _1>.

Das bedeutet, wenn wir einen Vektor durch die Basis B ausdriicken in der Form
v = Tu+ yw, dann ist L(v) = 5Tu — Jw.

Y

=

<
<

u

T T
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Hier ist noch ein weiteres Beispiel:

2.2.13 BEISPIEL Sei V = R3 A = (e, e9,e3) und B = (es, €1, €3). Die ridumliche

Drehung L um die e;—Achse um den Winkel a wird, bezogen auf die Basis A, be-
1 0 0

schrieben durch die Matrix M4(L) = A= [ 0 cosa —sina |.Die Transformati-
0 sina cosa

onsmatrix, die den Basiswechsel von B nach A angibt, lautet hier T' =

— o O
o O =
O = O

Also ist
cosae 0 sino

Mp(L) =B =T 'AT = 0 1 0
—sina 0 cosa
In den Spalten dieser Matrix stehen die Bilder der Vektoren e, ey, €5, jeweils ausge-
driickt in Koordinaten bezogen auf die Basis B.

2.3 EIGENWERTE UND EIGENVEKTOREN

Lineare Abbildungen werden je nach Basiswahl durch unterschiedliche Matrizen be-
schrieben. Besonders einfach ist die Diagonalform. Wir werden in diesem Abschnitt
der Frage nachgehen, welche linearen Abbildungen sich durch eine Diagonalmatrix
darstellen lassen.

Schauen wir uns zunéchst genauer an, welche Wirkung eine durch eine Diago-
nalmatrix definierte lineare Abbildung hat.

2.3.1 BEISPIEL Sei L:R? — R? die durch Multiplikation mit der Matrix A =
1 1
(2] 0) definierte Abbildung. Dann gilt: L(e;) = Ae; = ((2)) = %el. Der Vektor
e1 behilt also unter der Abbildung seine Richtung, aber seine Lange wird halbiert.
Dasselbe gilt fiir alle Vektoren, die in der x-Achse liegen. Die x-Achse als Ganzes
bleibt also stabil.

Weiter ist L(ey) = Aey = (2

L um den Faktor 3 gestreckt, ebenso wie alle Vielfachen von e;. Die y-Achse bleibt
also ebenfalls stabil unter L.

) = 3ey. Der Vektor e; wird also von der Abbildung

2.3.2 DEFINITION Eine Zahl A € R ist ein Figenwert einer linearen Abbildung
L:V — V, falls ein Vektor 0 # v € V existiert mit L(v) = A - wv. In diesem
Fall bezeichnet man v als einen zum FKEigenwert A gehorigen FEigenvektor. Jedes
Vielfache w = awv # 0 von v ist ebenfalls ein Eigenvektor zum Eigenwert A. Denn
L(w) = aL(v) = aAlv = Aw. Die von v aufgespannte Gerade lin(v) bleibt unter der
Abbildung L stabil, es ist eine Eigenrichtung von L.

1

2.3.3 BEISPIELE 1. Die durch die Matrix A = ((2) g) definierte Abbildung

hat den Eigenvektor e; zum Eigenwert % und e; zum Eigenwert 3.
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1

2. Sei L: R? — R? die Multiplikation mit der Matrix A = 9 ;1 wie in Beispiel

2.2.12. Die Vektoren u = (i) und w = (_12) sind Eigenvektoren von L

zum Eigenwert 5 bzw. —1. Denn L(u) = 5u und L(w) = —w.

2.3.4 DEFINITION Eine lineare Abbildung L:V — V heisst diagonalisierbar, wenn
es eine Basis B von V' gibt, so dass Mg(L) eine Diagonalmatrix ist.

Beispielsweise sind Spiegelungen diagonalisierbar, Drehungen dagegen nicht.

2.3.5 SATZ Die Abbildung L ist genau dann diagonalisierbar, wenn sie n linear
unabhéngige Eigenvektoren in V' besitzt (fiir n = dim V).

Beweis. Fiir eine Basis B von V gilt genau dann

A1 0
MB(L) = . )
0 An
wenn L(v;) = A\ju; fiir j = 1,...,n. Das bedeutet aber gerade, dass die Basis B nur
aus Eigenvektoren von L besteht.  q.e.d.

Man kann Eigenwerte, Eigenvektoren und Diagonalisierbarkeit auch fiir Matrizen
definieren.

2.3.6 DEFINITION Eine Zahl A\ € R ist ein Eigenwert einer n x n-Matrix A, falls
ein Vektor 0 # v € R” existiert mit Av = A -v. In diesem Fall bezeichnet man v als
einen zum Eigenwert A gehorigen Figenvektor. Die Matrix A heisst diagonalisierbar,
wenn es eine invertierbare n x n-Matrix T gibt, so dass T~'AT Diagonalform hat.

Nun gilt wieder der entsprechende Satz iiber Diagonalisierbarkeit:

2.3.7 SATZ Eine n x n-Matrix A ist genau dann diagonalisierbar, wenn sie n linear
unabhéngige Eigenvektoren in R™ besitzt.

Beweis. Nehmen wir an, vq,...,v, seien linear unabhéngige Eigenvektoren zu den
Eigenwerten Ay, ..., \,. Wir bilden aus den Spalten vy, ..., v, eine Matrix 7. Diese
Matrix ist dann invertierbar und es gilt einerseits:

AT:(AU1 Avn):()\lvl )\nvn)

Andererseits ist

)\1 0 )\1 0
T = (vy...0p) =(Av1 .. Aun) .
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Also hat T~'AT Diagonalform. Das heisst, A ist diagonalisierbar. Diese Argumen-
tation lédsst sich auch umkehren.  q.e.d.

Nun wollen wir die Frage behandeln, wie man Eigenwerte und Eigenvektoren
einer vorgegebenen Matrix finden kann. Nehmen wir zunéchst an, v € R™ sei ein
Eigenvektor der Matrix A zum Eigenwert A. Dann ist v # 0 und es gilt A\v — Av =
(AE — A)v = 0. Das Gleichungssystem (AE — A)z = 0 hat also zusétzlich zu der
trivialen Losung x = 0 noch eine Losung v # 0 in R™. Daraus folgt

det(AE — A) = 0.

Betrachtet man jetzt A als Unbekannte, so gilt: Die Eigenwerte von A sind gerade
die Losungen der Gleichung det(AE — A) = 0.

Fiir die Matrix B = (i’ i) zum Beispiel ist

A—3 =2

det(AE — B) = det ( 1 -4

> =\ —T7A+10.
Die Nullstellen dieses Polynoms, A\; = 5 und Ay = 2, sind die Eigenwerte der Matrix
B. Allgemein gilt:

2.3.8 SATZ Sei A € M, x,,. Dann ist ps(A) := det(AE — A) ein normiertes Polynom
in A von Grad n. Man nennt ps das charakteristische Polynom von A. Die reellen
Eigenwerte von A sind gerade die reellen Nullstellen von p 4. Deshalb hat A héchstens
n verschiedene Figenwerte.

Beweis. Wir zeigen per Induktion iiber n, dass ps ein Polynom von Grad n ist. Fiir
n=1ist A= (a) und py = A — a. Fiir n > 1 entwickeln wir die Determinante von
AE — A nach der ersten Spalte:

A—ay,  —Qi2 ... —Qip
pA()\) — det —C.L21 A—axp ... _C.L2n
—ay cee A —app
= (A—ay)det(AE,_1 — Ay) + Zn:(—l)k“am det((AE — A)p) -
k=2

Per Induktion ist det(AE,_1— A11) ein Polynom von Grad n—1, und det((AE—A)g1)
sind Polynome von Grad < n—2 fiir alle £ > 2. Denn (AE'— A);; entsteht aus AE— A
durch Streichung der ersten Spalte und der k-ten Zeile, die Variable A kommt also
nur noch in jeweils n — 2 Zeilen vor. Also folgt, dass der Grad von py4 gleich n ist.
q.e.d.

Schauen wir uns den Fall n = 2 genauer an. Das charakteristische Polynom einer

. a b A—a —b
2 x 2-Matrix A = (c d> lautet pa(A) = det(AE — A) = det ( e - d) =
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A —a)AN—d) —bc =X — (a+ d)XA+ (ad — bc). Die Summe der Diagonaleintrige
einer Matrix wird als ihre Spur bezeichnet. Damit gilt:

pa(A) = A% — Spur(A) - A +det A.

Durch vollstéandige Induktion kann man zeigen, dass die Spur und die Determi-
nante einer Matrix, wie im zweidimensionalen Fall schon nachgerechnet, immer als
Koeffizienten des charakteristischen Polynoms auftreten. Genauer:

2.3.9 SATZ Fiir n x n-Matrizen A gilt:
pa(A) = \" — Spur(A)N"! + -+ (=1)"det(A) .

Bezeichnet man mit Ay, ..., A, sdmtliche (mdoglicherweise auch komplexen) Nullstel-
len von p4 und zwar mit Vielfachheit gezéhlt, dann folgt:

Spur(A) = A1+ -+ A, und  det(A) = Ay ---- A,

Um nun zu einem gegebenen Eigenwert A von A die zugehorigen Eigenvektoren
zu bestimmen, ist das lineare Gleichungssystem
Z1
AE—-A)[ : | =0
'CETZ
zu losen. Den Losungsraum dieses Gleichungssystem bezeichnet man als den Figen-
raum zum Eigenwert \. Wir schreiben dafiir L. Der Raum L) besteht aus allen
Eigenvektoren zum Eigenwert A zusammen mit dem Nullvektor. Fiir jeden Eigen-

wert A\ gilt:
dimLy =n — Rang(A\E — A) > 1.

2.3.10 BEISPIELE 1. Das charakteristische Polynom der Matrix B = (? i)

lautet pp(\) = A2=7A+10 = (A—5)(A—2). Um den Eigenraum zum Eigenwert
A1 = 5 zu bestimmen, betrachten wir:

or-m- (4 9)()-()

Der Losungsraum dazu ist

a{) b (e}

Fiir den Eigenwert Ay = 2 ergibt sich entsprechend:

ee-m= (7 2)(2)=(5).

Der Losungsraum dazu ist

(D))o () e}
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1 10
2. Das charakteristische Polynom der Matrix A= 0 1 0 | lautet
0 0 2
A—1 -1 0
pa(A) = det(AE — A) = det 0 Xx=1 0 =(A—132*\-2).
0 0 A—2

Also hat A einen doppelten Eigenwert, ndmlich A\; = 1 und einen einfachen
Eigenwert Ay = 2. Es gilt Ly = lin(e3). Bestimmen wir nun den Eigenraum zu
dem doppelten Eigenwert. Dazu 16sen wir das Gleichungssystem

0 -1 O T
(E—Awv=[0 0 0 y | =0
0o 0 -1 z

Der Losungsraum L; = lin(e;) ist nur eindimensional. Die Matrix A kann
deshalb nicht diagonalisierbar sein.

Eigenvektoren zu verschiedenen Eigenwerten sind automatisch linear unabhéngig
(siehe Ubungsaufgabe). Deshalb gilt:

2.3.11 SATZ Eine n x n-Matrix A ist genau dann diagonalisierbar, wenn gilt:
dim(Ly,) + ... +dim(L,,) = n.
Dabei bezeichnen A1, ..., \, samtliche verschiedenen Eigenwerte von A.

2.3.12 FOLGERUNG Hat eine n X n-Matrix n verschiedene Eigenwerte, dann ist sie
diagonalisierbar.

1 2 3
2.3.13 BEISPIEL Das charakteristische Polynom der Matrix A= | 2 3 1 | lau-
3 1 2
tet
A—1 =2 -3
paA)=det [ -2 A—-3 -1 | =X—6\—-3)\+18.
-3 -1 A-=-2
1
Der Vektor v = [ 1 | ist ein Eigenvektor von A zum Eigenwert 6. Das heisst, pa
1

hat u.a. die Nullstelle 6. Wenn wir p4 durch (A — 6) teilen, erhalten wir: pa(\) =
(A —6)(A? — 3). Also hat A die drei verschiedenen Eigenwerte 6,v/3, —v/3, und ist

daher diagonalisierbar.

Wir wollen nun zeigen, dass sich das charakteristische Polynom einer Matrix bei
einem Basiswechsel nicht &ndert. Dazu fithren wir folgenden Begriff ein.
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2.3.14 DEFINITION Zwei Matrizen A, B € M,,,, heissen dhnlich, wenn eine inver-
tierbare n x n-Matrix T existiert, so dass

B=T71AT.
2.3.15 SATz Sind A, B ahnliche n x n-Matrizen, so gilt:

pa =pp und insbesondere Spur(A) = Spur(B) und det(A) = det(B).

Beweis. Die charakteristischen Polynome stimmen iiberein, denn

pp(\) = det(A\E — B) = det(A\T'T — T7'AT) = det(T"'(A\E — A)T)
= det(AE — A) =pa(N). q.e.d.

2.3.16 DEFINITION Sei L:V — V eine lineare Abbildung, dimV = n. Sei A =
Mpg(L) fiir eine Basis B von V. Dann nennt man p(A\) := pa(A) auch das charakte-
ristische Polynom von L. Das Polynom p hingt nicht von der Wahl der Basis ab.
Denn Basiswechsel fithren zu dhnlichen Matrizen.



