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2.2 Kern und Bild; Basiswechsel

Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangs-
raum als auch im Bildraum.

2.2.1 Satz Sei L:V → W eine lineare Abbildung. Dann gilt:

1. Das Bild(L) := {L(v) | v ∈ V } ist ein linearer Unterraum von W .

2. Der Kern(L) := {v ∈ V | L(v) = 0}, also das Urbild der 0 in W , ist ein
linearer Unterraum von V .

3. L ist genau dann injektiv, wenn Kern(L) = {0}.

4. Liegt w im Bild von L, dann ist sein Urbild L−1(w) = {v ∈ V | L(v) = w} in V
ein affiner Unterraum, genauer eine parallel verschobene Kopie von Kern(L).

Beweis. Zu 1. Das Bild von L ist nichtleer, denn wegen L(0) = 0, enthält es zu-
mindest den Nullvektor von W . Nehmen wir jetzt an w1, w2 ∈ Bild(L). Dann gibt
es Vektoren v1, v2 ∈ V mit L(v1) = w1 und L(v2) = w2. Aus der Linearität von L
folgt L(v1 + v2) = L(v1) + L(v2) = w1 + w2. Also ist auch w1 + w2 im Bild von L
enthalten. Schliesslich gilt für alle λ ∈ R: L(λv1) = λL(v1) = λw1 ∈ Bild(L).

zu 2. Diesen Beweisteil lassen wir als Übung.
zu 3. Ist L injektiv, so ist L(v) = 0 nur für v = 0 möglich. Das heisst Kern(L) =

{0}. Sei jetzt umgekehrt Kern(L) = {0} und nehmen wir an, es sei L(v1) = L(v2) für
v1, v2 ∈ V . Dann folgt L(v1 − v2) = L(v1)−L(v2) = 0 und daher v1 − v2 ∈ Kern(L).
Also muss v1 = v2 sein. q.e.d.

2.2.2 Beispiel Sei L:R3 → R
3 die lineare Abbildung, gegeben durch L(





x
y
z



) =





(x+ y)/2
(x+ y)/2

z



. Es handelt sich hier um eine Projektion auf die Ebene E in R
3, die

von der z-Achse und der Winkelhalbierenden in der x–y–Ebene aufgespannt wird.
Hier ist das Bild die Ebene E, und der Kern ist die Gerade g, erzeugt vom Vektor




1
−1
0



. Der Punkt w =





a
a
1



 hat das Urbild L−1(w) =











a + t
a− t
1



 | x ∈ R







. Es

handelt sich also um eine zu g parallele Gerade durch w.

2.2.3 Bemerkung Sei LA:R
n → R

m diejenige lineare Abbildung, die durch die
Multiplikation mit einer festen m× n-Matrix A gegeben ist. Dann ist

Kern(LA) = {v ∈ R
n | Av = 0} ,
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also nichts anderes als Lösungsmenge L des durch die Matrix A definierten linea-
ren Gleichungssystems. Das Urbild eines Vektors b ∈ R

m stimmt überein mit der
Lösungsmenge des zugehörigen inhomogenen linearen Gleichungssystems

L−1(b) = {v ∈ R
n | Av = b} .

Bekanntlich ist diese Menge ein affiner Unterraum, genauer eine parallel verschobene
Kopie von L. Bezeichnen wir die Spaltenvektoren von A mit w1, . . . , wn, dann ist

Bild(LA) = lin(w1, . . . , wn) ,

d.h., das Bild von LA ist derjenige lineare Unterraum von R
m, der von den Spalten-

vektoren von A erzeugt wird.

2.2.4 Beispiele • Sei A =





1 2
−1 1
3 −2



. Das Bild der Abbildung LA:R
2 →

R
3, definiert durch Multiplikation mit der Matrix A, ist diejenige Ebene in R

3,
die von den beiden Spalten von A erzeugt wird. Der Kern besteht hier nur aus
dem Nullvektor.

• Sei A =

(

2 −6 1
1 −3 −1

)

. Hier definiert die Multiplikation mit A eine Ab-

bildung LA:R
3 → R

2. Das Bild ist ganz R
2 und der Kern besteht aus allen

Vektoren in R
3 der Form





3t
t
0



 (t ∈ R).

Betrachten wir schliesslich noch ein Beispiel für eine lineare Abbildung zwischen
Funktionenräumen.

2.2.5 Beispiel Sei λ > 0 vorgegeben. Durch die Vorschrift L(y) = y′′ − λ2y wird
eine lineare Abbildung von dem Raum der beliebig oft stetig differenzierbaren Funk-
tionen V = C∞(R) in sich definiert. Hier ist

Kern(L) = {c1eλt + c2e
−λt | c1, c2 ∈ R} und Bild(L) = C∞(R) .

Das Urbild einer Funktion b ∈ V unter L ist nichts anderes als die Lösungsmenge
der inhomogenen Differentialgleichung

y′′ − λ2y = b .

Wir hatten bereits gesehen, dass es sich dabei um eine parallel verschobene Kopie des
Lösungsraums der entsprechenden homogenen Differentialgleichung, also des Kerns
von L, handelt.

2.2.6 Satz (Dimensionsformel ) Sei L:V → W linear und dimV = n. Dann gilt:

dimKern(L) + dimBild(L) = n .
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Wir wollen diese Aussage zunächst für Matrizen interpretieren. Sei also A eine
m × n-Matrix und LA wie oben. Das Bild von LA ist, wie gerade festgehalten,
derjenige Unterraum von R

m, der von den Spaltenvektoren von A erzeugt wird.
Die Dimension dieses Unterraums stimmt überein mit der maximalen Anzahl linear
unabhängiger Spalten von A, man nennt diese Zahl auch den Spaltenrang Rang(A).

Die Dimensionsformel liefert jetzt folgende Beziehung:

dimKern(LA) = n− Rang(A) .

Bereits im ersten Paragraphen hatten wir im Zusammenhang mit dem Gaussschen
Eliminationsverfahren eine ähnliche Beziehung für die Dimension des Lösungsraumes
L = Kern(LA) gefunden, nämlich dimL = n − r, wobei r der Rang der durch
elementare Zeilenumformungen auf Zeilenstufenform transformierten Matrix A′ war.
Der Rang einer Matrix in Zeilenstufenform gibt die Anzahl der Nichtnullzeilen an
und stimmt überein mit der maximalen Anzahl linear unabhängiger Zeilen, also
dem Zeilenrang von A′. Nun bleibt der Zeilenrang einer Matrix bei elementaren
Zeilenumformungen aber unverändert. Wir erhalten also folgendes Ergebnis:

2.2.7 Folgerung Der Zeilen- und der Spaltenrang einer Matrix stimmen mitein-
ander überein. Man spricht deshalb kurz vom Rang einer Matrix. Der Rang gibt
sowohl die Anzahl linear unabhängiger Spalten als auch die Anzahl linear unabhängi-
ger Zeilen der Matrix an.

Beweis der Dimensionsformel. Weil der Kern von L ein Unterraum von V ist, gilt
sicher k := dim(Kern(L)) ≤ n. Ausserdem können wir eine Basis (v1, . . . , vk) von
Kern(L) wählen und zu einer Basis (v1, . . . , vk, vk+1, . . . , vn) von V ergänzen. Es
reicht jetzt, folgende Behauptung zu beweisen:

(L(vk+1), . . . , L(vn)) ist eine Basis für das Bild von L.

Dazu zeigen wir zunächst, dass die Menge ein Erzeugendensystem für das Bild ist.
Sei also w ∈ Bild(L). Dann gibt es ein v ∈ V mit L(v) = w. Wir schreiben v als
Linearkombination der Basiselemente in der Form v =

∑n

i=1 αivi (αi ∈ R). Dann
folgt w = L(v) =

∑n

i=1 αiL(vi) =
∑n

k+1 αiL(vi), weil L(vi) = 0 für alle i ≤ k. Also
liegt w in der linearen Hülle von (L(vk+1), . . . , L(vn)).

Im zweiten Schritt zeigen wir jetzt, dass die Menge linear unabhängig ist. Ange-
nommen

0 =
n

∑

i=k+1

αiL(vi) = L(
n

∑

i=k+1

αivi) .

Das bedeutet, der Vektor u :=
∑n

i=k+1 αivi liegt im Kern der Abbildung L, lässt sich
also in der Basis (v1, . . . , vk) schreiben. Das heisst, es gibt Zahlen β1, . . . , βk mit

u =
k

∑

i=1

βivi =
n

∑

i=k+1

αivi .

Daraus folgt die Relation β1v1 + · · · + βkvk − αk+1vk+1 − · · · − αnvn = 0 . Da
(v1, . . . , vn) linear unabhängig gewählt waren, folgt β1 = · · · = βk = αk+1 = · · · =
αn = 0. q.e.d.
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2.2.8 Folgerung Seien V , W endlichdimensionale Vektorräume und L:V → W
linear. Dann gilt: L ist genau dann bijektiv, wenn dimV = dimW und Kern(L) =
{0}. In diesem Fall ist auch die Umkehrabbildung von L linear und man bezeichnet
L als Vektorraumisomorphismus .

2.2.9 Beispiel Sei V ein Vektorraum der Dimension n und A eine Basis für V .
Dann ist die Zuordnung

V → R
n, v 7→ KoeffA(v)

ein Vektorraumisomorphismus. Das bedeutet, jeder endlichdimensionale Vektorraum
ist zu einem der Räume R

n (n ∈ N0) isomorph.

2.2.10 Beispiel Eine quadratische Matrix A definiert genau dann eine bijektive
lineare Abbildung LA:K

n → K
n, wenn A invertierbar ist, wenn also detA 6= 0

ist. Ist dies der Fall, wird die Umkehrabbildung durch die Multiplikation mit der
inversen Matrix A−1 beschrieben.

Die Matrix, die eine lineare Abbildung beschreibt, hängt wesentlich von der Wahl
der Basen — also der Koordinatensysteme — ab! Hierzu das schon erwähnte Beispiel
der Spiegelung L der Ebene an einer Geraden g durch den Nullpunkt, die mit der
x–Achse den Winkel α bildet. Die Matrix von L bezüglich der kanonischen Basis
lautet, wie schon früher festgestellt:

M(e1,e2)(L) =

(

cos(2α) sin(2α)
sin(2α) − cos(2α)

)

.

Wählt man dagegen als Basisvektoren einen Vektor v1 6= 0 in der Richtung von g
und einen dazu senkrechten Vektor v2 6= 0, dann ist L(v1) = v1 und L(v2) = −v2
und daher lautet die zugehörige Matrix:

M(v1,v2)(L) =

(

1 0
0 −1

)

.

Man kann durch Wahl einer günstigen Basis versuchen, die Abbildung durch eine
möglichst einfache Matrix zu beschreiben, an der sich wichtige Eigenschaften direkt
ablesen lassen. Dazu sei hier noch beschrieben, wie sich die Matrix einer linearen
Selbstabbildung von V bei einem Basiswechsel ändert.

2.2.11 Satz Sei L:V → V eine lineare Selbstabbildung des Vektorraums V . Seien
weiter A, B Basen von V und seien A := MA(L) und B := MB(L) die zugehörigen
Matrizen. Dann gilt:

B = T−1AT , wobei

die Transformationsmatrix T den Basiswechsel von B nach A beschreibt, das heisst,
die Spalten von T sind die Koeffizientenvektoren der Vektoren aus B, ausgedrückt in
der Basis A. Ist speziell V = K

n und A die kanonische Basis, erhält man T einfach,
indem man die Elemente von B als Spalten zu einer Matrix zusammenfügt.
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Beweis. Nach Wahl der Transformationsmatrix gilt für jedes v ∈ V :

T ·KoeffB(v) = KoeffA(v) .

Daraus folgt AT KoeffB(v) = KoeffA(Lv), und das liefert, wie behauptet

T−1AT ·KoeffB(v) = KoeffB(Lv) .

Hier sind die Zusammenhänge nochmals in einem Diagramm dargestellt:

R
n LB−→ R

n

B տ ր B

T ↓ V
L−→ V ↑ T−1

A ւ ց A

R
n LA−→ R

n q.e.d.

2.2.12 Beispiel Sei wiederum V = R
2, A = (e1, e2), und sei L die lineare Abbil-

dung, festgelegt durch L(e1) = e1+2e2 und L(e2) = 4e1+3e2. Dann ist A =

(

1 4
2 3

)

.

Sei weiter B die Basis, gebildet aus den Vektoren u =

(

1
1

)

und w =

(

−2
1

)

. Also

ist hier T =

(

1 −2
1 1

)

und T−1 = 1
det(T )

(

1 2
−1 1

)

= 1
3

(

1 2
−1 1

)

. Die Matrix von

L bezogen auf die Basis B lautet daher:

B = T−1AT =

(

5 0
0 −1

)

.

Das bedeutet, wenn wir einen Vektor durch die Basis B ausdrücken in der Form
v = x̃u+ ỹw, dann ist L(v) = 5x̃u− ỹw.

x

y
x̃

ỹ

bb

uw

b

b

L(u)

L(w)

b

v

b
L(v)

−1

2

7

4
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Hier ist noch ein weiteres Beispiel:

2.2.13 Beispiel Sei V = R
3, A = (e1, e2, e3) und B = (e3, e1, e2). Die räumliche

Drehung L um die e1–Achse um den Winkel α wird, bezogen auf die Basis A, be-

schrieben durch die MatrixMA(L) = A =





1 0 0
0 cosα − sinα
0 sinα cosα



. Die Transformati-

onsmatrix, die den Basiswechsel von B nach A angibt, lautet hier T =





0 1 0
0 0 1
1 0 0



.

Also ist

MB(L) = B = T−1AT =





cosα 0 sinα
0 1 0

− sinα 0 cosα



 .

In den Spalten dieser Matrix stehen die Bilder der Vektoren e3, e1, e2, jeweils ausge-
drückt in Koordinaten bezogen auf die Basis B.

2.3 Eigenwerte und Eigenvektoren

Lineare Abbildungen werden je nach Basiswahl durch unterschiedliche Matrizen be-
schrieben. Besonders einfach ist die Diagonalform. Wir werden in diesem Abschnitt
der Frage nachgehen, welche linearen Abbildungen sich durch eine Diagonalmatrix
darstellen lassen.

Schauen wir uns zunächst genauer an, welche Wirkung eine durch eine Diago-
nalmatrix definierte lineare Abbildung hat.

2.3.1 Beispiel Sei L:R2 → R
2 die durch Multiplikation mit der Matrix A =

(

1
2

0
0 3

)

definierte Abbildung. Dann gilt: L(e1) = Ae1 =

(

1
2

0

)

= 1
2
e1. Der Vektor

e1 behält also unter der Abbildung seine Richtung, aber seine Länge wird halbiert.
Dasselbe gilt für alle Vektoren, die in der x-Achse liegen. Die x-Achse als Ganzes
bleibt also stabil.

Weiter ist L(e2) = Ae2 =

(

0
3

)

= 3e2. Der Vektor e2 wird also von der Abbildung

L um den Faktor 3 gestreckt, ebenso wie alle Vielfachen von e2. Die y-Achse bleibt
also ebenfalls stabil unter L.

2.3.2 Definition Eine Zahl λ ∈ R ist ein Eigenwert einer linearen Abbildung
L:V → V , falls ein Vektor 0 6= v ∈ V existiert mit L(v) = λ · v. In diesem
Fall bezeichnet man v als einen zum Eigenwert λ gehörigen Eigenvektor . Jedes
Vielfache w = αv 6= 0 von v ist ebenfalls ein Eigenvektor zum Eigenwert λ. Denn
L(w) = αL(v) = αλv = λw. Die von v aufgespannte Gerade lin(v) bleibt unter der
Abbildung L stabil, es ist eine Eigenrichtung von L.

2.3.3 Beispiele 1. Die durch die Matrix A =

(

1
2

0
0 3

)

definierte Abbildung

hat den Eigenvektor e1 zum Eigenwert 1
2
und e2 zum Eigenwert 3.
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2. Sei L:R2 → R
2 die Multiplikation mit der Matrix A =

(

1 4
2 3

)

wie in Beispiel

2.2.12. Die Vektoren u =

(

1
1

)

und w =

(

−2
1

)

sind Eigenvektoren von L

zum Eigenwert 5 bzw. −1. Denn L(u) = 5u und L(w) = −w.

2.3.4 Definition Eine lineare Abbildung L:V → V heisst diagonalisierbar , wenn
es eine Basis B von V gibt, so dass MB(L) eine Diagonalmatrix ist.

Beispielsweise sind Spiegelungen diagonalisierbar, Drehungen dagegen nicht.

2.3.5 Satz Die Abbildung L ist genau dann diagonalisierbar, wenn sie n linear
unabhängige Eigenvektoren in V besitzt (für n = dimV ).

Beweis. Für eine Basis B von V gilt genau dann

MB(L) =





λ1 0
. . .

0 λn



 ,

wenn L(vj) = λjvj für j = 1, . . . , n. Das bedeutet aber gerade, dass die Basis B nur
aus Eigenvektoren von L besteht. q.e.d.

Man kann Eigenwerte, Eigenvektoren und Diagonalisierbarkeit auch für Matrizen
definieren.

2.3.6 Definition Eine Zahl λ ∈ R ist ein Eigenwert einer n × n-Matrix A, falls
ein Vektor 0 6= v ∈ R

n existiert mit Av = λ · v. In diesem Fall bezeichnet man v als
einen zum Eigenwert λ gehörigen Eigenvektor . Die Matrix A heisst diagonalisierbar ,
wenn es eine invertierbare n× n-Matrix T gibt, so dass T−1AT Diagonalform hat.

Nun gilt wieder der entsprechende Satz über Diagonalisierbarkeit:

2.3.7 Satz Eine n×n-Matrix A ist genau dann diagonalisierbar, wenn sie n linear
unabhängige Eigenvektoren in R

n besitzt.

Beweis. Nehmen wir an, v1, . . . , vn seien linear unabhängige Eigenvektoren zu den
Eigenwerten λ1, . . . , λn. Wir bilden aus den Spalten v1, . . . , vn eine Matrix T . Diese
Matrix ist dann invertierbar und es gilt einerseits:

AT = (Av1 . . . Avn ) = (λ1v1 . . . λnvn ) .

Andererseits ist

T





λ1 0
. . .

0 λn



 = (v1 . . . vn)





λ1 0
. . .

0 λn



 = ( λ1v1 . . . λnvn ) .
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Also hat T−1AT Diagonalform. Das heisst, A ist diagonalisierbar. Diese Argumen-
tation lässt sich auch umkehren. q.e.d.

Nun wollen wir die Frage behandeln, wie man Eigenwerte und Eigenvektoren
einer vorgegebenen Matrix finden kann. Nehmen wir zunächst an, v ∈ R

n sei ein
Eigenvektor der Matrix A zum Eigenwert λ. Dann ist v 6= 0 und es gilt λv − Av =
(λE − A)v = 0. Das Gleichungssystem (λE − A)x = 0 hat also zusätzlich zu der
trivialen Lösung x = 0 noch eine Lösung v 6= 0 in R

n. Daraus folgt

det(λE −A) = 0 .

Betrachtet man jetzt λ als Unbekannte, so gilt: Die Eigenwerte von A sind gerade
die Lösungen der Gleichung det(λE − A) = 0.

Für die Matrix B =

(

3 2
1 4

)

zum Beispiel ist

det(λE −B) = det

(

λ− 3 −2
−1 λ− 4

)

= λ2 − 7λ+ 10 .

Die Nullstellen dieses Polynoms, λ1 = 5 und λ2 = 2, sind die Eigenwerte der Matrix
B. Allgemein gilt:

2.3.8 Satz Sei A ∈ Mn×n. Dann ist pA(λ) := det(λE−A) ein normiertes Polynom
in λ von Grad n. Man nennt pA das charakteristische Polynom von A. Die reellen
Eigenwerte von A sind gerade die reellen Nullstellen von pA. Deshalb hat A höchstens
n verschiedene Eigenwerte.

Beweis. Wir zeigen per Induktion über n, dass pA ein Polynom von Grad n ist. Für
n = 1 ist A = (a) und pA = λ− a. Für n > 1 entwickeln wir die Determinante von
λE − A nach der ersten Spalte:

pA(λ) = det









λ− a11 −a12 . . . −a1n
−a21 λ− a22 . . . −a2n
...

. . .
...

−an1 . . . λ− ann









= (λ− a11) det(λEn−1 − A11) +
n

∑

k=2

(−1)k+1ak1 det((λE −A)k1) .

Per Induktion ist det(λEn−1−A11) ein Polynom von Grad n−1, und det((λE−A)k1)
sind Polynome von Grad≤ n−2 für alle k ≥ 2. Denn (λE−A)k1 entsteht aus λE−A
durch Streichung der ersten Spalte und der k-ten Zeile, die Variable λ kommt also
nur noch in jeweils n − 2 Zeilen vor. Also folgt, dass der Grad von pA gleich n ist.
q.e.d.

Schauen wir uns den Fall n = 2 genauer an. Das charakteristische Polynom einer

2 × 2-Matrix A =

(

a b
c d

)

lautet pA(λ) = det(λE − A) = det

(

λ− a −b
−c λ− d

)

=
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(λ − a)(λ − d) − bc = λ2 − (a + d)λ + (ad − bc). Die Summe der Diagonaleinträge
einer Matrix wird als ihre Spur bezeichnet. Damit gilt:

pA(λ) = λ2 − Spur(A) · λ+ detA .

Durch vollständige Induktion kann man zeigen, dass die Spur und die Determi-
nante einer Matrix, wie im zweidimensionalen Fall schon nachgerechnet, immer als
Koeffizienten des charakteristischen Polynoms auftreten. Genauer:

2.3.9 Satz Für n× n-Matrizen A gilt:

pA(λ) = λn − Spur(A)λn−1 + · · ·+ (−1)n det(A) .

Bezeichnet man mit λ1, . . . , λn sämtliche (möglicherweise auch komplexen) Nullstel-
len von pA und zwar mit Vielfachheit gezählt, dann folgt:

Spur(A) = λ1 + · · ·+ λn und det(A) = λ1 · · · · · λn .

Um nun zu einem gegebenen Eigenwert λ von A die zugehörigen Eigenvektoren
zu bestimmen, ist das lineare Gleichungssystem

(λE − A)





x1
...
xn



 = 0

zu lösen. Den Lösungsraum dieses Gleichungssystem bezeichnet man als den Eigen-
raum zum Eigenwert λ. Wir schreiben dafür Lλ. Der Raum Lλ besteht aus allen
Eigenvektoren zum Eigenwert λ zusammen mit dem Nullvektor. Für jeden Eigen-
wert λ gilt:

dimLλ = n− Rang(λE −A) ≥ 1 .

2.3.10 Beispiele 1. Das charakteristische Polynom der Matrix B =

(

3 2
1 4

)

lautet pB(λ) = λ2−7λ+10 = (λ−5)(λ−2). Um den Eigenraum zum Eigenwert
λ1 = 5 zu bestimmen, betrachten wir:

(5E −B)v =

(

2 −2
−1 1

)(

x
y

)

=

(

0
0

)

.

Der Lösungsraum dazu ist

L5 =

{(

x
y

)

| x = y

}

=

{

α

(

1
1

)

| α ∈ R

}

.

Für den Eigenwert λ2 = 2 ergibt sich entsprechend:

(2E −B)v =

(

−1 −2
−1 −2

)(

x
y

)

=

(

0
0

)

.

Der Lösungsraum dazu ist

L2 =

{(

x
y

)

| x = −2y

}

=

{

α

(

−2
1

)

| α ∈ R

}

.
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2. Das charakteristische Polynom der Matrix A =





1 1 0
0 1 0
0 0 2



 lautet

pA(λ) = det(λE − A) = det





λ− 1 −1 0
0 λ− 1 0
0 0 λ− 2



 = (λ− 1)2(λ− 2) .

Also hat A einen doppelten Eigenwert, nämlich λ1 = 1 und einen einfachen
Eigenwert λ2 = 2. Es gilt L2 = lin(e3). Bestimmen wir nun den Eigenraum zu
dem doppelten Eigenwert. Dazu lösen wir das Gleichungssystem

(E −A)v =





0 −1 0
0 0 0
0 0 −1









x
y
z



 = 0 .

Der Lösungsraum L1 = lin(e1) ist nur eindimensional. Die Matrix A kann
deshalb nicht diagonalisierbar sein.

Eigenvektoren zu verschiedenen Eigenwerten sind automatisch linear unabhängig
(siehe Übungsaufgabe). Deshalb gilt:

2.3.11 Satz Eine n× n-Matrix A ist genau dann diagonalisierbar, wenn gilt:

dim(Lλ1
) + . . .+ dim(Lλr

) = n .

Dabei bezeichnen λ1, . . . , λr sämtliche verschiedenen Eigenwerte von A.

2.3.12 Folgerung Hat eine n×n-Matrix n verschiedene Eigenwerte, dann ist sie
diagonalisierbar.

2.3.13 Beispiel Das charakteristische Polynom der Matrix A =





1 2 3
2 3 1
3 1 2



 lau-

tet

pA(λ) = det





λ− 1 −2 −3
−2 λ− 3 −1
−3 −1 λ− 2



 = λ3 − 6λ2 − 3λ+ 18 .

Der Vektor v =





1
1
1



 ist ein Eigenvektor von A zum Eigenwert 6. Das heisst, pA

hat u.a. die Nullstelle 6. Wenn wir pA durch (λ − 6) teilen, erhalten wir: pA(λ) =
(λ − 6)(λ2 − 3). Also hat A die drei verschiedenen Eigenwerte 6,

√
3,−

√
3, und ist

daher diagonalisierbar.

Wir wollen nun zeigen, dass sich das charakteristische Polynom einer Matrix bei
einem Basiswechsel nicht ändert. Dazu führen wir folgenden Begriff ein.
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2.3.14 Definition Zwei Matrizen A,B ∈ Mn×n heissen ähnlich, wenn eine inver-
tierbare n× n-Matrix T existiert, so dass

B = T−1AT .

2.3.15 Satz Sind A,B ähnliche n× n-Matrizen, so gilt:

pA = pB und insbesondere Spur(A) = Spur(B) und det(A) = det(B) .

Beweis. Die charakteristischen Polynome stimmen überein, denn

pB(λ) = det(λE −B) = det(λT−1T − T−1AT ) = det(T−1(λE − A)T )
= det(λE −A) = pA(λ) . q.e.d.

2.3.16 Definition Sei L:V → V eine lineare Abbildung, dim V = n. Sei A =
MB(L) für eine Basis B von V . Dann nennt man p(λ) := pA(λ) auch das charakte-
ristische Polynom von L. Das Polynom p hängt nicht von der Wahl der Basis ab.
Denn Basiswechsel führen zu ähnlichen Matrizen.


