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2.4 NORMALFORMEN FUR KLEINE MATRIZEN

In diesem Abschnitt geben wir einen Uberblick iiber die moglichen Typen von 2 x 2-
Matrizen und 3 x 3-Matrizen.
Beginnen wir mit dem Fall n = 2. Das charakteristische Polynom einer 2 x 2-

Matrix A = (i Z) lautet wie bereits nachgerechnet:

pa(A) = A2 — (@ + d)X\ + (ad — bc) = A\? — Spur(A)\ + det A

Die Nullstellen dieses Polynoms sind

M = 3 (Spur(A4)) 2 y/(Spur(A)? — ddet 4.

1. Fall: (Spur A)? > 4det A. Dann hat A zwei verschiedene reelle Eigenwerte Ap, As.
Waihlt man zu jedem dieser Eigenwerte einen Eigenvektor v;, so bildet B = (v, v9)
eine Basis und fiir die Transformationsmatrix 7', gebildet aus den Spalten vy, wvs,

gilt:
4 (M0
T AT = ( 0 M)

Man beachte, dass hier v; und vy nicht senkrecht aufeinander stehen miissen!

2. Fall: (Spur A)> = 4det A. In diesem Fall hat A einen doppelten Eigenwert,
namlich A = %Spur(A). Ist der zugehorige Eigenraum L) zweidimensional, so muss
Ly = R? sein. Das bedeutet, Av = \v fiir alle v € R?. Mit anderen Worten, L4 ist
eine Streckung um den Faktor A und A = AE. Ist dimL) = 1, dann ist A nicht
diagonalisierbar. Wir wéhlen jetzt einen Eigenvektor vy.

Behauptung: Es gibt einen weiteren Vektor vy, so dass (A — AE)vy = vy ist.

Beweis. Ergénzen wir zunéchst v; nach Belieben durch Wahl eines linear unabhéngi-
gen zweiten Vektors ¥y zu einer Basis. Bezogen auf diese Basis geht A iiber in eine

Matrix der Form (())\ ;j) WEeil die Spur von A gleich 2\ ist, und die Spur beim

Basiswechsel erhalten bleibt, muss y = A sein. Jetzt setzen wir vy := -v5. Nach

Konstruktion gilt dann Avy = vy + Avs. q.e.d.

8=

Nach Konstruktion sind v; und vy linear unabhéngig und bilden daher eine Basis
B von R%. Es ist Av; = Av; und Avy = v; + Avg. Also liefert der Basiswechsel,
beschrieben durch die Transformationsmatrix 7" = (vq, v2), das Resultat:

e (A1
rar- (3 1),

Ist A = 1, so handelt es sich bei A um eine Scherung lings der v;-Achse (siehe
Ubungsaufgabe).
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2.4.1 BEISPIEL Die Matrix A = (_32 _21> hat das charakteristische Polynom
pa(A) = A2 —2X +1 = (XA — 1)% Also hat A den doppelten Eigenwert 1. Der Ei-
genraum zu diesem Eigenwert ist nur eindimensional und wird von v, = (_11)

aufgespannt. Die Bedingung (A — E)vs = v; wird w.a. erfillt von vy = ((1))

2
Nach dem entsprechenden Basiswechsel, beschrieben durch die Transformationsma-

) (1 0 . 1 (11
trle—(_1 1/2) erhalten wir: T AT—(O 1).

3. Fall: (Spur A)? < 4det A. Dann hat p4 zwei konjugiert komplexe Nullstellen,
M = s+it und Ay = s — it, wobei s = 1 Spur(A4) und ¢t = \/detA — 1(Spur A)? =
Vdet A —s? > 0.

Behauptung: In diesem Fall existiert eine Basis B = (vy,v2) von R? mit

Mp(La) = (i _St) :

Falls s? +t* = 1 und (vy,v2) = (ey, €3), handelt es sich um eine Drehung.

Beweis. Weil A9 eine komplexe Nullstelle des charakteristischen Polynoms ist, hat
das lineare Gleichungssystem (A — (s —it)E)v = 0 eine Losung 0 # v, wenn wir mit
komplexen statt mit reellen Zahlen rechnen. Es gibt also einen komplexen Eigenvek-

tor v = 5} von A zum Eigenwert s —it. Wir schreiben v in der Form v = vy +iv,,
wobei vy, v5 € R? sind. Dann ist 7 = v; — ivy ein komplexer Eigenvektor von A zum
Eigenwert s+ ¢t. Weil v und v linear unabhéngig sind, sind auch die Vektoren vy, vy
linear unabhéngig. Ausserdem gilt:

Av = Avy + 1Avy = (s — it)(v1 + ive) = (sv1 + tva) + i(—tvy + svq) .
Durch Koeffizientenvergleich ergibt sich:

Avy = sv; +tvs und  Ave = —tvy + sv,.

Daraus folgt direkt die Behauptung.  q.e.d.

3 5
Das charakteristische Polynom pa(\) = A? — 4\ + 13 hat die komplexen Nullstellen
2 £ 3¢. Nun 16sen wir das komplexe Gleichungssystem

a-e-am (3)=(75" 57%) () - ()

2.4.2 BEISPIEL Fiir die Matrix A = (_1 _6) gilt Spur(A) =4 und det A = 13.
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und finden (bis auf Vielfaches):
a _ (i) (1), (!
)\ 1 )71 )7 o )
Also wird die Abbildung L4 bezogen auf die Basis, gebildet aus v; = (_11> und

vy = <_01) durch die folgende Matrix beschrieben:

2 -3
=2 7).
Wir koénnen die Ergebnisse der bisherigen Uberlegungen so zusammenfassen:
2.4.3 SATZ Jede reelle 2 x 2-Matrix ist dhnlich zu genau einer der folgenden Typen:

° <)(\)1 )(\) ) (A > Ag) - diese Matrizen haben genau zwei Eigenrichtungen -
2
A O . . .o . .
° (O )\) = AE (X € R) - hier bleiben sédmtliche Ursprungsgeraden stabil

o (g\ i\) (A € R) - hier gibt es genau eine Eigenrichtung

t

Das entsprechende Resultat fiir 3 x 3-Matrizen sieht folgendermassen aus:

. (3 —t) (s,t € R, t > 0) - hier gibt es keine reelle Eigenrichtung

2.4.4 SATZ Jede reelle 3 x 3-Matrix A ist dahnlich zu genau einer der folgenden

Typen:
A0 0
° 0 X O (M1 > Ao > A3), falls A iiber R diagonalisierbar.
0 0 X
Ao 10
° 0 XN O ()\1, Ao € R)
0 0 X
s —t 0
e |t s 0 (s,t, € R, t > 0), falls A komplexe Eigenwerte hat.
0 0 A
A1 O
e |0 X 1 (A € R), hier ist dim(L,) = 1.
0 0 A
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Beweis. Das charakteristische Polynom p4 einer 3 x 3-Matrix A hat Grad 3 und da-
her mindestens eine reelle Nullstelle. Hat p, drei verschiedene reelle Nullstellen, so
ist A diagonalisierbar und es handelt sich um den ersten Typ. Hat p4 eine einfache
und eine doppelte reelle Nullstelle, dann sind der erste und der zweite Typ moglich.
Das ergibt sich entsprechend wie im Fall n = 2. Weiter konnte p4 eine reelle und
zwei konjugiert komplexe Eigenwerte haben. Dann handelt es sich um den dritten
Typ. Hat schliesslich p4 eine dreifache reelle Nullstelle A\, dann héngt der Typ von
der Dimension des zugehorigen Eigenraums ab. Ist dim Ly = 3, ist A diagonalisier-
bar und also vom ersten Typ. Ist dimLL, = 2, so ist A vom zweiten Typ, und ist
schliesslich dim Ly = 1, so erhalten wir den letzten Typ.  q.e.d.

1 0 0
2.4.5 BEISPIELE e Die Matrix B= [ 0 1 0 ]| hat A =1 als dreifachen Ei-
1 0 1
genwert. Der Eigenraum dazu ist zweidimensional, denn L; = lin(e, e3). Also
1 10
ist die Matrix B vom zweiten Typ und dhnlich zu | 0 1 0
0 0 1

2 1 1

e Die Matrix C' = | 0 2 1
0 0 2

genraum dazu ist hier eindimensional, denn es handelt sich gerade um alle

Vektoren auf der z-Achse. Also ist die Matrix B vom vierten Typ und dhnlich
2 0

0
0

hat A = 2 als dreifachen Eigenwert. Der Ei-

1
zu 2 1
0 2

2.5 GEKOPPELTE LINEARE DIFFERENTIALGLEICHUNGEN

Die Untersuchung der Normalformen von Matrizen soll nun auf die Losung von ge-
koppelten Differentialgleichungen angewendet werden. Hier zunéchst zwei Beispiele
dazu.

2.5.1 BEISPIEL Betrachten wir eine Population von Raubtieren und eine Popula-
tion von dazugehodrigen Beutetieren. Weil die Raubtiere die Beute fressen, sinkt
mit steigender Anzahl Raubtiere die Menge an Beute, so dass sich daraufhin die
Uberlebenschancen der Raubtiere verschlechtern und ihre Anzahl wieder abnimmt.
Dadurch kénnen mehr Beutetiere iiberleben, was wiederum (mit Zeitverzogerung)
zum Anwachsen der Raubtierpopulation fithrt. Dieser Sachverhalt wird durch die
sogenannten Rduber-Beute-Gleichungen modelliert. Nehmen wir an, es seien durch-
schnittlich n; Raubtiere und ny Beutetiere vorhanden. Die Funktion z;(¢) gebe die
Anzahl der Raubtiere zum Zeitpunkt ¢ minus n; an und z(t) sei die Anzahl der
Beutetiere minus ny. Natiirlich sind die Anzahlen eigentlich immer ganze Zahlen,
aber bei geniigend grossen Populationen kénnen wir uns die Funktionen xq, xo als
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stetige Funktionen von R>g nach R, denken. Dann gehen wir von folgenden Diffe-
rentialgleichungen aus:

() = amx(t)
o(t) = —ax(t)

Hier steht t € R,t > 0 fiir die Zeit, und o > 0 ist eine Proportionalitdtskonstante.
Die Losung dieses Systems lautet

x1(t) = cpcos(at + ¢3) und  x9(t) = —cysin(at +co) (£ > 0).

Hier sind ¢y, ¢y passende Konstanten. Ist zum Beispiel konkret o = %—g, so lautet die

Losung des Systems zu den Anfangswerten z1(0) = ¢; und x4(0) = 0:

2
z1(t) = cos(%t) und  x5(t) = —¢4 sin(—ot).

Beutetiere

Raubtiere

ny+c
ny

‘ ' ‘ ‘ ‘ t [Tage]

30 60 90 120 150

Wenn die Zeit ¢ in Tagen gemessen wird, ist hier nach 60 Tagen zum erstenmal der
Ausgangszustand wieder erreicht.

2.5.2 BEISPIEL Nehmen wir nun an, die Funktionen z;(¢) und xs(t) beschreiben
die Grosse von zwei Populationen, die wechselseitig voneinander profitieren (zum
Beispiel Bienen und Apfelbdume, oder Spatzen und Vogelbeerbdume, deren Samen
durch die Spatzen weitergetragen werden). Dann lautet ein vereinfachtes entspre-
chendes System von Differentialgleichungen:

i) = ax(t)
75(t) = axy(t)
Die allgemeine Losung dieses Systems lautet fiir t € R:

at

21(t) = cre®™ + e und  x9(t) = cre® — cpe” mit Konstanten ¢, ¢y € R.

Die Konstanten ergeben sich wiederum aus den Startpopulationen zum Zeitpunkt
t=0:

o = %(:cl(()) +2(0)) und = %(:cl(()) — 2(0)).
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Unter einem System zweier gekoppelter linearer Differentialgleichungen erster
Ordnung mit konstanten Koeffizienten versteht man ein System von Gleichungen
folgender Form:

Zi(t) = ax(t) + baa(t)
zo(t) = caq(t) + dao(t)

Dabei sind a, b, ¢, d vorgegebene Zahlen und 1 (t) und xo(t) sind gesuchte differen-

zierbare Funktionen in der Variablen ¢t € R. Wir konnen die Koeffizienten zu einer

a

2 x 2-Matrix A = ( . zusammenfassen, und x;(t), z2(t) als Komponenten einer

b
d
vektorwertigen Funktion X von t auffassen. Damit erhalten wir fiir das Differential-
gleichungssystem folgende kompakte Schreibweise:

(1) 1 (t)
)= (WY —a (D) Z 4l xq).
0=(46) = (50 v
In den beiden eben genannten Beispielen lauten die Differentialgleichungssysteme in
Matrixschreibweise:

X’(t):(_oa ‘5‘>-X(t) baw. X’(t):(g g)-X(t).

Das unterschiedliche Vorzeichen in der zweiten Zeile von A fiihrt also zu vollig
verschiedenen Losungen. Wir werden gleich sehen, dass die Gestalt der Losungen
davon abhéngt, welche Normalform die Koeffizientenmatrix hat.

Besonders einfach ist die Situation, wenn die Koeffizientenmatrix diagonalisier-
bar ist. Dann kann man ndmlich durch einen Basiswechsel erreichen, dass die Glei-
chungen “entkoppelt” werden. Die entsprechende Aussage soll hier gleich allgemei-
ner fiir n miteinander gekoppelte Funktionen angegeben werden. Ein System aus n
gekoppelten linearen Differentialgleichungen erster Ordnung mit konstanten Koeffi-
zienten schreiben wir entsprechend mit einer n x n—Koeffizientenmatrix A in der
Form

X'(t) = AX(1).

Dabei sind die Komponenten z;(t) von X(¢) differenzierbare Funktionen in einer
Variablen (zum Beispiel sich gegenseitig beeinflussende Konzentrationen von Sub-
stanzen). Die Menge der Losungen eines vorgegebenen Systems bildet einen linearen
Unterraum im Vektorraum aller vektorwertigen Funktionen, und zwar kann man zei-
gen, dass die Losungsmenge stets die Dimension n hat. Es gibt also n freie Parameter,
die durch die Anfangswerte festgelegt werden konnen.

2.5.3 BEISPIEL Ist A eine Diagonalmatrix mit Diagonaleintriagen Aq, ..., \,, dann
lautet das entsprechende Differentialgleichungssystem

1 (t) A (t)

X/(t) _ l‘é(t) _ AX(t) _ )\2x.2<t)

2 (1) At (£)
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Das System besteht also in diesem Fall eigentlich aus n entkoppelten Differential-
gleichungen der Form @ (t) = A\jz;(t) (j = 1,...,n) mit den Losungen x;(t) = ¢;e’"
(t € R).

Ist die Koeffizientenmatrix A iiber R diagonalisierbar, so kénnen wir sie durch
einen Basiswechsel in Diagonalgestalt iiberfithren und finden folgendes Resultat.

2.5.4 SATZ Sei (v, vs,...,v,) eine Basis aus Eigenvektoren von A zu reellen Ei-
genwerten A\, Aa, ..., \,. Dann lautet die allgemeine Lésung des Systems X'(t) =

AX(t):

a1 (1)
X(t) = : = creM; + ety + -+ + ey, |
Tn (1)
Hier sind ¢y, o, . . ., ¢, frei wadhlbare Konstanten.

Beweis. Durch den Wechsel auf die Basis B = (vq,...,v,), geht die Matrix A in
Diagonalform iiber und die Eigenwerte Ay, ..., A, stehen auf der Diagonalen. Das
heisst, die Koordinaten & (t), . . ., Z,(t) des Vektors X (¢), ausgedriickt in der Basis B,
erfilllen das entkoppelte Differentialgleichungssystem 7’ (t) = A\;7;(t) (j = 1,...,n).
Also ist Z;(t) = c;jeM?! fiir passende Konstanten ci,...,c,. Dies ist gerade die Be-
hauptung.  q.e.d.

2.5.5 BEISPIEL Kehren wir zuriick zu Beispiel 2.5.2. Hier lautet die Koeffizien-

tenmatrix des Differentialgleichungssystems A = (2 g) Die Eigenwerte dieser

1 1

1 -1
ist Eigenvektor zu A\ = —a. Entsprechend lautet die allgemeine Losung des Diffe-
rentialgleichungssystems

() w1 a1 [ cre® + e

wie bereits angegeben.

Matrix sind +a, der Vektor v; = ist Eigenvektor zu A\ = o und vy =

2.5.6 BEISPIEL Wir betrachten das Differentialgleichungssystem
() = 3x1(t) + 222(t)
2o(t) = w1(t) + 4uo(t)

Dann ist A = (i) i) Fiir diese Matrix sind v; = (1) und vy, = (_21) Eigen-

vektoren zu den Eigenwerten \; = 5 bzw. Ay = 2 von A. Die allgemeine Losung
lautet daher

1 2 c1% + 2cqe?
5t 2 [ a 2
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Fiir den Matrixtyp mit komplexen Eigenwerten kann man folgendes zeigen:

2.5.7 SATZ Sei A eine reelle 2 x 2—Matrix mit komplex konjugierten Eigenwerten
p £ iv (wobei v > 0 ist). Sei weiter v = v + ivy (vy,v9 € R?) ein komplexer
Eigenvektor zum FEigenwert p — iv. Dann hat die allgemeine reelle Losung des Dif-
ferentialgleichungssystems X'(t) = AX(t) die Form:

X (t) = cre'[cos(vt + co) vy + sin(vt + ca) vo]
wobei ¢y, ¢y reelle Konstanten sind.

2.5.8 BEISPIEL Betrachten wir noch einmal das Rauber—-Beute—Modell 2.5.1. Das

Modell liess sich zuriickfithren auf das System zur Matrix A = _Oa ((); . Diese
. . 1 1 (0 .
Matrix hat den komplexen Eigenvektor v = (_Z> = ( 0) +1 (_ 1> zum Eigen-

wert —icv. Hier ist also p = 0, ¥ = a und die allgemeine reelle Losung lautet, wie
bereits angegeben:
X(t) = ¢y [ OSlOTF ) )
—sin(at + ¢o)

Und hier noch ein weiteres Beispiel:

/ — I —
2.5.9 BEISPIEL Die Koeffizientenmatrix des Systems 253 ; 3511((:))+56§22((;))
lautet A = (_31 _56> mit den Eigenwerten 24 3:¢. Hier ist ¢ = 2 und v = 3. Diese

Matrix hat den komplexen Eigenvektor v = [ 1 zum Eigenwert 2 — 3i. Also

ist hier v; = ( .

) und vy, = <_01 ), und die allgemeine Losung hat die Form:

X (t) = c1e*[cos(3t + c») ( _11 ) + sin(3t + ¢3) ( _01 >] ,
wobei ¢y, ¢y reelle Konstanten sind.

Beweis von 2.5.7: Aus Av = (u —iv)v folgt Av = (pu + iv)v. Also kann man die
komplexen Eigenvektoren von A zu u + iv als zueinander konjugiert wéahlen. Die
allgemeine Losung des Differentialgleichungssystems iiber C lautet:

Z(t) = e Mty 4 gpet iy

wobei ¢, ¢y komplexe Konstanten sind. Schreibt man jetzt die erste Konstante in
Polarkoordinaten ¢; = cie™%2 (fiir ¢1, co € R), und wihlt ¢y als komplex Konjugierte
von ¢, dann erhélt man eine reelle Losung, ndmlich

X(t) = 61€ut[€—z‘(ut+c2)v + ez‘(ut+c2)@] — gleth Re(e_i(”””)(vl 4 2.1)2))

= cre"[cos(vt + o) vy + sin(vt + ¢3) vo] . q.e.d.



