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2.4 Normalformen für kleine Matrizen

In diesem Abschnitt geben wir einen Überblick über die möglichen Typen von 2×2-
Matrizen und 3× 3-Matrizen.

Beginnen wir mit dem Fall n = 2. Das charakteristische Polynom einer 2 × 2-

Matrix A =

(

a b
c d

)

lautet wie bereits nachgerechnet:

pA(λ) = λ2 − (a + d)λ+ (ad− bc) = λ2 − Spur(A)λ+ detA .

Die Nullstellen dieses Polynoms sind

λ1,2 =
1

2
(Spur(A))± 1

2

√

(Spur(A))2 − 4 detA .

1. Fall: (SpurA)2 > 4 detA. Dann hat A zwei verschiedene reelle Eigenwerte λ1, λ2.
Wählt man zu jedem dieser Eigenwerte einen Eigenvektor vi, so bildet B = (v1, v2)
eine Basis und für die Transformationsmatrix T , gebildet aus den Spalten v1, v2,
gilt:

T−1AT =

(

λ1 0
0 λ2

)

.

Man beachte, dass hier v1 und v2 nicht senkrecht aufeinander stehen müssen!

2. Fall: (SpurA)2 = 4detA. In diesem Fall hat A einen doppelten Eigenwert,
nämlich λ = 1

2
Spur(A). Ist der zugehörige Eigenraum Lλ zweidimensional, so muss

Lλ = R2 sein. Das bedeutet, Av = λv für alle v ∈ R2. Mit anderen Worten, LA ist
eine Streckung um den Faktor λ und A = λE. Ist dimLλ = 1, dann ist A nicht
diagonalisierbar. Wir wählen jetzt einen Eigenvektor v1.

Behauptung: Es gibt einen weiteren Vektor v2, so dass (A− λE)v2 = v1 ist.

Beweis. Ergänzen wir zunächst v1 nach Belieben durch Wahl eines linear unabhängi-
gen zweiten Vektors ṽ2 zu einer Basis. Bezogen auf diese Basis geht A über in eine

Matrix der Form

(

λ x
0 y

)

. Weil die Spur von A gleich 2λ ist, und die Spur beim

Basiswechsel erhalten bleibt, muss y = λ sein. Jetzt setzen wir v2 := 1
x
ṽ2. Nach

Konstruktion gilt dann Av2 = v1 + λv2. q.e.d.

Nach Konstruktion sind v1 und v2 linear unabhängig und bilden daher eine Basis
B von R2. Es ist Av1 = λv1 und Av2 = v1 + λv2. Also liefert der Basiswechsel,
beschrieben durch die Transformationsmatrix T = (v1, v2), das Resultat:

T−1AT =

(

λ 1
0 λ

)

.

Ist λ = 1, so handelt es sich bei A um eine Scherung längs der v1-Achse (siehe
Übungsaufgabe).
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2.4.1 Beispiel Die Matrix A =

(

3 2
−2 −1

)

hat das charakteristische Polynom

pA(λ) = λ2 − 2λ + 1 = (λ − 1)2. Also hat A den doppelten Eigenwert 1. Der Ei-

genraum zu diesem Eigenwert ist nur eindimensional und wird von v1 =

(

1
−1

)

aufgespannt. Die Bedingung (A − E)v2 = v1 wird u.a. erfüllt von v2 =

(

0
1
2

)

.

Nach dem entsprechenden Basiswechsel, beschrieben durch die Transformationsma-

trix T =

(

1 0
−1 1/2

)

erhalten wir: T−1AT =

(

1 1
0 1

)

.

3. Fall: (SpurA)2 < 4 detA. Dann hat pA zwei konjugiert komplexe Nullstellen,

λ1 = s + it und λ2 = s − it, wobei s = 1
2
Spur(A) und t =

√

detA− 1
4
(SpurA)2 =

√
detA− s2 > 0.

Behauptung: In diesem Fall existiert eine Basis B = (v1, v2) von R
2 mit

MB(LA) =

(

s −t
t s

)

.

Falls s2 + t2 = 1 und (v1, v2) = (e1, e2), handelt es sich um eine Drehung.

Beweis. Weil λ2 eine komplexe Nullstelle des charakteristischen Polynoms ist, hat
das lineare Gleichungssystem (A− (s− it)E)v = 0 eine Lösung 0 6= v, wenn wir mit
komplexen statt mit reellen Zahlen rechnen. Es gibt also einen komplexen Eigenvek-

tor v =

(

z
w

)

von A zum Eigenwert s− it. Wir schreiben v in der Form v = v1+ iv2,

wobei v1, v2 ∈ R
2 sind. Dann ist v = v1 − iv2 ein komplexer Eigenvektor von A zum

Eigenwert s+ it. Weil v und v linear unabhängig sind, sind auch die Vektoren v1, v2
linear unabhängig. Ausserdem gilt:

Av = Av1 + iAv2 = (s− it)(v1 + iv2) = (sv1 + tv2) + i(−tv1 + sv2) .

Durch Koeffizientenvergleich ergibt sich:

Av1 = sv1 + tv2 und Av2 = −tv1 + sv2 .

Daraus folgt direkt die Behauptung. q.e.d.

2.4.2 Beispiel Für die Matrix A =

(

−1 −6
3 5

)

gilt Spur(A) = 4 und detA = 13.

Das charakteristische Polynom pA(λ) = λ2 − 4λ+ 13 hat die komplexen Nullstellen
2± 3i. Nun lösen wir das komplexe Gleichungssystem

(A− (2− 3i)E)

(

z1
z2

)

=

(

−3 + 3i −6
3 3 + 3i

)(

z1
z2

)

=

(

0
0

)

,
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und finden (bis auf Vielfaches):

(

z1
z2

)

=

(

−i− 1
1

)

=

(

−1
1

)

+ i

(

−1
0

)

.

Also wird die Abbildung LA bezogen auf die Basis, gebildet aus v1 =

(

−1
1

)

und

v2 =

(

−1
0

)

durch die folgende Matrix beschrieben:

MB(LA) =

(

2 −3
3 2

)

.

Wir können die Ergebnisse der bisherigen Überlegungen so zusammenfassen:

2.4.3 Satz Jede reelle 2×2-Matrix ist ähnlich zu genau einer der folgenden Typen:

•
(

λ1 0
0 λ2

)

(λ1 > λ2) - diese Matrizen haben genau zwei Eigenrichtungen -

•
(

λ 0
0 λ

)

= λE (λ ∈ R) - hier bleiben sämtliche Ursprungsgeraden stabil

•
(

λ 1
0 λ

)

(λ ∈ R) - hier gibt es genau eine Eigenrichtung

•
(

s −t
t s

)

(s, t ∈ R, t > 0) - hier gibt es keine reelle Eigenrichtung

Das entsprechende Resultat für 3× 3-Matrizen sieht folgendermassen aus:

2.4.4 Satz Jede reelle 3 × 3-Matrix A ist ähnlich zu genau einer der folgenden
Typen:

•





λ1 0 0
0 λ2 0
0 0 λ3



 (λ1 ≥ λ2 ≥ λ3), falls A über R diagonalisierbar.

•





λ1 1 0
0 λ1 0
0 0 λ2



 (λ1, λ2 ∈ R).

•





s −t 0
t s 0
0 0 λ



 (s, t, λ ∈ R, t > 0), falls A komplexe Eigenwerte hat.

•





λ 1 0
0 λ 1
0 0 λ



 (λ ∈ R), hier ist dim(Lλ) = 1.
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Beweis. Das charakteristische Polynom pA einer 3×3-Matrix A hat Grad 3 und da-
her mindestens eine reelle Nullstelle. Hat pA drei verschiedene reelle Nullstellen, so
ist A diagonalisierbar und es handelt sich um den ersten Typ. Hat pA eine einfache
und eine doppelte reelle Nullstelle, dann sind der erste und der zweite Typ möglich.
Das ergibt sich entsprechend wie im Fall n = 2. Weiter könnte pA eine reelle und
zwei konjugiert komplexe Eigenwerte haben. Dann handelt es sich um den dritten
Typ. Hat schliesslich pA eine dreifache reelle Nullstelle λ, dann hängt der Typ von
der Dimension des zugehörigen Eigenraums ab. Ist dimLλ = 3, ist A diagonalisier-
bar und also vom ersten Typ. Ist dimLλ = 2, so ist A vom zweiten Typ, und ist
schliesslich dimLλ = 1, so erhalten wir den letzten Typ. q.e.d.

2.4.5 Beispiele • Die Matrix B =





1 0 0
0 1 0
1 0 1



 hat λ = 1 als dreifachen Ei-

genwert. Der Eigenraum dazu ist zweidimensional, denn L1 = lin(e2, e3). Also

ist die Matrix B vom zweiten Typ und ähnlich zu





1 1 0
0 1 0
0 0 1



.

• Die Matrix C =





2 1 1
0 2 1
0 0 2



 hat λ = 2 als dreifachen Eigenwert. Der Ei-

genraum dazu ist hier eindimensional, denn es handelt sich gerade um alle
Vektoren auf der x-Achse. Also ist die Matrix B vom vierten Typ und ähnlich

zu





2 1 0
0 2 1
0 0 2



.

2.5 Gekoppelte lineare Differentialgleichungen

Die Untersuchung der Normalformen von Matrizen soll nun auf die Lösung von ge-
koppelten Differentialgleichungen angewendet werden. Hier zunächst zwei Beispiele
dazu.

2.5.1 Beispiel Betrachten wir eine Population von Raubtieren und eine Popula-
tion von dazugehörigen Beutetieren. Weil die Raubtiere die Beute fressen, sinkt
mit steigender Anzahl Raubtiere die Menge an Beute, so dass sich daraufhin die
Überlebenschancen der Raubtiere verschlechtern und ihre Anzahl wieder abnimmt.
Dadurch können mehr Beutetiere überleben, was wiederum (mit Zeitverzögerung)
zum Anwachsen der Raubtierpopulation führt. Dieser Sachverhalt wird durch die
sogenannten Räuber-Beute-Gleichungen modelliert. Nehmen wir an, es seien durch-
schnittlich n1 Raubtiere und n2 Beutetiere vorhanden. Die Funktion x1(t) gebe die
Anzahl der Raubtiere zum Zeitpunkt t minus n1 an und x2(t) sei die Anzahl der
Beutetiere minus n2. Natürlich sind die Anzahlen eigentlich immer ganze Zahlen,
aber bei genügend grossen Populationen können wir uns die Funktionen x1, x2 als
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stetige Funktionen von R≥0 nach R≥0 denken. Dann gehen wir von folgenden Diffe-
rentialgleichungen aus:

x′
1(t) = αx2(t)

x′
2(t) = −α x1(t)

Hier steht t ∈ R, t ≥ 0 für die Zeit, und α > 0 ist eine Proportionalitätskonstante.
Die Lösung dieses Systems lautet

x1(t) = c1 cos(αt+ c2) und x2(t) = −c1 sin(αt+ c2) (t ≥ 0).

Hier sind c1, c2 passende Konstanten. Ist zum Beispiel konkret α = 2π
60
, so lautet die

Lösung des Systems zu den Anfangswerten x1(0) = c1 und x2(0) = 0:

x1(t) = c1 cos(
2π

60
t) und x2(t) = −c1 sin(

2π

60
t) .

t

n1

n2

n1 + c

30 60 90 120 150
[Tage]

Beutetiere

Raubtiere

Wenn die Zeit t in Tagen gemessen wird, ist hier nach 60 Tagen zum erstenmal der
Ausgangszustand wieder erreicht.

2.5.2 Beispiel Nehmen wir nun an, die Funktionen x1(t) und x2(t) beschreiben
die Grösse von zwei Populationen, die wechselseitig voneinander profitieren (zum
Beispiel Bienen und Apfelbäume, oder Spatzen und Vogelbeerbäume, deren Samen
durch die Spatzen weitergetragen werden). Dann lautet ein vereinfachtes entspre-
chendes System von Differentialgleichungen:

x′
1(t) = αx2(t)

x′
2(t) = αx1(t)

Die allgemeine Lösung dieses Systems lautet für t ∈ R:

x1(t) = c1e
αt + c2e

−αt und x2(t) = c1e
αt − c2e

−αt mit Konstanten c1, c2 ∈ R.

Die Konstanten ergeben sich wiederum aus den Startpopulationen zum Zeitpunkt
t = 0:

c1 =
1

2
(x1(0) + x2(0)) und c2 =

1

2
(x1(0)− x2(0)) .
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Unter einem System zweier gekoppelter linearer Differentialgleichungen erster

Ordnung mit konstanten Koeffizienten versteht man ein System von Gleichungen
folgender Form:

x′
1(t) = ax1(t) + bx2(t)

x′
2(t) = cx1(t) + dx2(t)

Dabei sind a, b, c, d vorgegebene Zahlen und x1(t) und x2(t) sind gesuchte differen-
zierbare Funktionen in der Variablen t ∈ R. Wir können die Koeffizienten zu einer

2×2-Matrix A =

(

a b
c d

)

zusammenfassen, und x1(t), x2(t) als Komponenten einer

vektorwertigen Funktion X von t auffassen. Damit erhalten wir für das Differential-
gleichungssystem folgende kompakte Schreibweise:

X ′(t) =

(

x′
1(t)

x′
2(t)

)

= A ·
(

x1(t)
x2(t)

)

= A ·X(t) .

In den beiden eben genannten Beispielen lauten die Differentialgleichungssysteme in
Matrixschreibweise:

X ′(t) =

(

0 α
−α 0

)

·X(t) bzw. X ′(t) =

(

0 α
α 0

)

·X(t) .

Das unterschiedliche Vorzeichen in der zweiten Zeile von A führt also zu völlig
verschiedenen Lösungen. Wir werden gleich sehen, dass die Gestalt der Lösungen
davon abhängt, welche Normalform die Koeffizientenmatrix hat.

Besonders einfach ist die Situation, wenn die Koeffizientenmatrix diagonalisier-
bar ist. Dann kann man nämlich durch einen Basiswechsel erreichen, dass die Glei-
chungen “entkoppelt” werden. Die entsprechende Aussage soll hier gleich allgemei-
ner für n miteinander gekoppelte Funktionen angegeben werden. Ein System aus n
gekoppelten linearen Differentialgleichungen erster Ordnung mit konstanten Koeffi-

zienten schreiben wir entsprechend mit einer n × n–Koeffizientenmatrix A in der
Form

X ′(t) = AX(t) .

Dabei sind die Komponenten xj(t) von X(t) differenzierbare Funktionen in einer
Variablen (zum Beispiel sich gegenseitig beeinflussende Konzentrationen von Sub-
stanzen). Die Menge der Lösungen eines vorgegebenen Systems bildet einen linearen
Unterraum im Vektorraum aller vektorwertigen Funktionen, und zwar kann man zei-
gen, dass die Lösungsmenge stets die Dimension n hat. Es gibt also n freie Parameter,
die durch die Anfangswerte festgelegt werden können.

2.5.3 Beispiel Ist A eine Diagonalmatrix mit Diagonaleinträgen λ1, . . . , λn, dann
lautet das entsprechende Differentialgleichungssystem

X ′(t) =









x′
1(t)

x′
2(t)
...

x′
n(t)









= AX(t) =









λ1x1(t)
λ2x2(t)

...
λnxn(t)









.
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Das System besteht also in diesem Fall eigentlich aus n entkoppelten Differential-
gleichungen der Form x′

j(t) = λjxj(t) (j = 1, . . . , n) mit den Lösungen xj(t) = cje
λjt

(t ∈ R).

Ist die Koeffizientenmatrix A über R diagonalisierbar, so können wir sie durch
einen Basiswechsel in Diagonalgestalt überführen und finden folgendes Resultat.

2.5.4 Satz Sei (v1, v2, . . . , vn) eine Basis aus Eigenvektoren von A zu reellen Ei-
genwerten λ1, λ2, . . . , λn. Dann lautet die allgemeine Lösung des Systems X ′(t) =
AX(t):

X(t) =





x1(t)
...

xn(t)



 = c1e
λ1tv1 + c2e

λ2tv2 + · · ·+ cne
λntvn .

Hier sind c1, c2, . . . , cn frei wählbare Konstanten.

Beweis. Durch den Wechsel auf die Basis B = (v1, . . . , vn), geht die Matrix A in
Diagonalform über und die Eigenwerte λ1, . . . , λn stehen auf der Diagonalen. Das
heisst, die Koordinaten x̃1(t), . . . , x̃n(t) des VektorsX(t), ausgedrückt in der Basis B,
erfüllen das entkoppelte Differentialgleichungssystem x̃′

j(t) = λj x̃j(t) (j = 1, . . . , n).
Also ist x̃j(t) = cje

λjt für passende Konstanten c1, . . . , cn. Dies ist gerade die Be-
hauptung. q.e.d.

2.5.5 Beispiel Kehren wir zurück zu Beispiel 2.5.2. Hier lautet die Koeffizien-

tenmatrix des Differentialgleichungssystems A =

(

0 α
α 0

)

. Die Eigenwerte dieser

Matrix sind ±α, der Vektor v1 =

(

1
1

)

ist Eigenvektor zu λ1 = α und v2 =

(

1
−1

)

ist Eigenvektor zu λ2 = −α. Entsprechend lautet die allgemeine Lösung des Diffe-
rentialgleichungssystems

X(t) =

(

x1(t)
x2(t)

)

= c1e
αt

(

1
1

)

+ c2e
−αt

(

1
−1

)

=

(

c1e
αt + c2e

−αt

c1e
αt − c2e

−αt

)

,

wie bereits angegeben.

2.5.6 Beispiel Wir betrachten das Differentialgleichungssystem

x′
1(t) = 3x1(t) + 2x2(t)

x′
2(t) = x1(t) + 4x2(t)

Dann ist A =

(

3 2
1 4

)

. Für diese Matrix sind v1 =

(

1
1

)

und v2 =

(

2
−1

)

Eigen-

vektoren zu den Eigenwerten λ1 = 5 bzw. λ2 = 2 von A. Die allgemeine Lösung
lautet daher

X(t) = c1e
5t

(

1
1

)

+ c2e
2t

(

2
−1

)

=

(

c1e
5t + 2c2e

2t

c1e
5t − c2e

2t

)

.
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Für den Matrixtyp mit komplexen Eigenwerten kann man folgendes zeigen:

2.5.7 Satz Sei A eine reelle 2 × 2–Matrix mit komplex konjugierten Eigenwerten
µ ± iν (wobei ν > 0 ist). Sei weiter v = v1 + iv2 (v1, v2 ∈ R2) ein komplexer
Eigenvektor zum Eigenwert µ− iν. Dann hat die allgemeine reelle Lösung des Dif-
ferentialgleichungssystems X ′(t) = AX(t) die Form:

X(t) = c1e
µt[cos(νt+ c2) v1 + sin(νt + c2) v2] ,

wobei c1, c2 reelle Konstanten sind.

2.5.8 Beispiel Betrachten wir noch einmal das Räuber–Beute–Modell 2.5.1. Das

Modell liess sich zurückführen auf das System zur Matrix A =

(

0 α
−α 0

)

. Diese

Matrix hat den komplexen Eigenvektor v =

(

1
−i

)

=

(

1
0

)

+ i

(

0
−1

)

zum Eigen-

wert −iα. Hier ist also µ = 0, ν = α und die allgemeine reelle Lösung lautet, wie
bereits angegeben:

X(t) = c1

(

cos(αt+ c2)
− sin(αt+ c2)

)

.

Und hier noch ein weiteres Beispiel:

2.5.9 Beispiel Die Koeffizientenmatrix des Systems
x′
1(t) = −x1(t)− 6x2(t)

x′
2(t) = 3x1(t) + 5x2(t)

lautet A =

(

−1 −6
3 5

)

mit den Eigenwerten 2±3i. Hier ist µ = 2 und ν = 3. Diese

Matrix hat den komplexen Eigenvektor v =

(

−1 − i
1

)

zum Eigenwert 2− 3i. Also

ist hier v1 =

(

−1
1

)

und v2 =

(

−1
0

)

, und die allgemeine Lösung hat die Form:

X(t) = c1e
2t[cos(3t+ c2)

(

−1
1

)

+ sin(3t+ c2)

(

−1
0

)

] ,

wobei c1, c2 reelle Konstanten sind.

Beweis von 2.5.7: Aus Av = (µ − iν)v folgt Av = (µ + iν)v. Also kann man die
komplexen Eigenvektoren von A zu µ ± iν als zueinander konjugiert wählen. Die
allgemeine Lösung des Differentialgleichungssystems über C lautet:

Z(t) = c̃1e
(µ−iν)tv + c̃2e

(µ+iν)tv ,

wobei c̃1, c̃2 komplexe Konstanten sind. Schreibt man jetzt die erste Konstante in
Polarkoordinaten c̃1 = c1e

−ic2 (für c1, c2 ∈ R), und wählt c̃2 als komplex Konjugierte
von c̃1, dann erhält man eine reelle Lösung, nämlich

X(t) = c̃1e
µt[e−i(νt+c2)v + ei(νt+c2)v] = c̃1e

µt2Re(e−i(νt+c2)(v1 + iv2))

= c1e
µt[cos(νt + c2) v1 + sin(νt + c2) v2] . q.e.d.


