
Kapitel 3

Quadratische Formen und symmetrische Matrizen

3.1 Skalarprodukte und Normen

Das übliche Skalarprodukt für Vektoren aus dem R
2 ist folgendermassen erklärt:

〈v, w〉 = 〈
(

x1

y1

)

,

(

x2

y2

)

〉 := x1x2 + y1y2 .

Die Länge eines Vektors v =

(

x
y

)

, die hier mit ||v|| notiert wird, ist nach dem Satz

von Pythagoras gegeben durch:

||v|| =
√

x2 + y2 .

Die geometrische Bedeutung des Skalarprodukts ist folgende: 〈v, w〉 gibt die Länge
der senkrechten Projektion von v auf die Richtung von w, multipliziert mit der Länge
von w, an. Bezeichnet α den Winkel zwischen v und w, so gilt:

〈v, w〉 = ||v|| · ||w|| · cosα .

Also ist 〈v, w〉 = 0 genau dann, wenn die Vektoren v und w senkrecht aufeinander
stehen. Und es ergibt sich folgendes:

3.1.1 Satz (Cauchy-Schwarzsche Ungleichung)

|〈v, w〉| ≤ ||v|| · ||w|| für alle v, w ∈ R
2.

Gleichheit gilt genau dann, wenn v, w linear abhängig sind.

Dieses “Standardskalarprodukt” ist das Vorbild für den folgenden Begriff:

3.1.2 Definition Ein Skalarprodukt auf einem reellen Vektorraum V ist eine Ab-
bildung 〈 , 〉:V × V → R mit folgenden Eigenschaften:

(i) 〈v, v〉 ∈ R>0 für alle 0 6= v ∈ V ; 〈0, 0〉 = 0.

(ii) 〈u, αv + βw〉 = α〈u, v〉+ β〈u, w〉 für alle u, v, w ∈ V , α, β ∈ R.

(iii) 〈u, v〉 = 〈v, u〉 für alle u, v ∈ V .

Jedes Skalarprodukt auf V liefert auch einen Längenbegriff auf V , eine sogenann-
te Norm, nämlich

||v|| :=
√

〈v, v〉 für alle v ∈ V .

Wegen der Eigenschaft (i) ist dieser Ausdruck wohldefiniert.
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3.1.3 Beispiele 1. Das Standardskalarprodukt auf Rn ist so erklärt:

〈v, w〉 = 〈





v1
...
vn



 ,





w1

...
wn



〉 =
n

∑

k=1

vkwk .

Die Eigenschaften (i)-(iii) sind erfüllt, wie man direkt nachrechnen kann. Die
dazugehörige Länge ist die vertraute euklidische Länge:

||v|| =
√

v2
1
+ . . .+ v2n für alle v ∈ V .

Für n = 1 stimmt || || mit dem Betrag überein.

2. Eine andere Möglichkeit, ein Skalarprodukt auf R2 zu erklären, ist zum Beispiel
folgende:

〈v, w〉 = 〈
(

x1

y1

)

,

(

x2

y2

)

〉 = 2x1x2 + 3y1y2 .

Auch hier sind die Rechenregeln (i)-(iii) erfüllt, und die zugehörige Norm lau-

tet hier ||
(

x
y

)

|| =
√

2x2 + 3y2. Man kann diese Art der Längenmessung so

verstehen, dass wir die x- und die y-Richtung jeweils neu skaliert haben.

3. Sei V der Vektorraum der stetigen, reellwertigen Funktionen auf dem abge-
schlossenen Intervall [a, b]. Dann definiert auch folgende Vorschrift ein Skalar-
produkt:

〈f, g〉 :=
∫ b

a

f(x)g(x)dx .

Die zugehörige Norm lautet:

||f || =

√

∫ b

a

f(x)2 dx .

Die Linearitätseigenschaft (ii) ergibt sich direkt aus der Linearität des Integrals
und die Symmetrie (iii) ist offensichtlich. Für (i) ist es wichtig, dass es sich um
stetige Funktionen handelt. Ist f ∈ C0[a, b], dann ist f 2 eine stetige Funktion
mit f 2(x) ≥ 0 für alle x. Eine nichtnegative, stetige Funktion kann nur dann
als Integralwert Null liefern, wenn es sich um die Nullfunktion handelt.

3.1.4 Satz (Cauchy-Schwarzsche Ungleichung) für jedes Skalarprodukt auf V und
die dazugehörige Norm gilt:

|〈v, w〉| ≤ ||v|| · ||w|| für alle v, w ∈ V .

Gleichheit gilt genau dann, wenn v, w linear abhängig sind.

In Anlehnung an die geometrische Bedeutung des Standardskalarprodukts des
R

2 und R
3 sagt man, zwei Vektoren u, v ∈ V seien senkrecht zueinander oder ortho-

gonal , wenn 〈v, w〉 = 0. Dafür gibt es auch die Notation v ⊥ w.
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3.1.5 Definition Eine Basis (v1, . . . , vn) von V heisst Orthonormalbasis , falls vi ⊥
vj für alle i 6= j und ||vj|| = 1 für alle j. Das heisst anders ausgedrückt:

〈vi, vj〉 =
{

0 für i 6= j
1 für i = j

.

Eine Orthonormalbasis liefert also ein rechtwinkliges Koordinatensystem.

Wenn man einen Vektor v ∈ V durch eine Orthonormalbasis ausdrücken möchte,
muss man jeweils die Skalarprodukte von v mit den Basisvektoren bestimmen. Denn
es gilt:

3.1.6 Bemerkung Ist (v1, . . . , vn) eine Orthonormalbasis von V , so gilt für jedes
v ∈ V :

v =

n
∑

j=1

〈vj , v〉vj .

Das Skalarprodukt 〈vj, v〉 gibt also jeweils die orthogonale Projektion von v in Rich-
tung von vj an.

Beweis. Ist v =
∑n

k=1
αkvk, so gilt 〈vj, v〉 = 〈vj,

∑n

k=1
αkvk〉 =

∑n

k=1
αk〈vj, vk〉 =

αj . Also stimmt 〈vj, v〉 mit dem (eindeutig bestimmten) Koeffizienten αj überein.
q.e.d.

3.1.7 Beispiele • Standardbasis (e1, . . . , en) für V = R
n mit dem Standard-

skalarprodukt.

• V = R
2 mit dem Standardskalarprodukt. Auch v1 = 1√

2

(

1
1

)

und v2 =

1√
2

(

−1
1

)

bilden eine Orthonormalbasis. Der Vektor w =

(

2
1

)

zum Bei-

spiel hat im v1-v2-Koordinatensystem die Koordinaten x̃ = 〈v1, w〉 = 3/
√
2

bzw. ỹ = 〈v2, w〉 = −1/
√
2. Das heisst:

w = (3/
√
2)v1 − (1/

√
2)v2 .

3.1.8 Satz Jeder endlichdimensionale reelle Vektorraum mit Skalarprodukt hat ei-
ne Orthonormalbasis.

Beweis. Dazu startet man mit einer beliebigen Basis (u1, . . . , un) von V und konstru-
iert daraus rekursiv mithilfe des Gram-Schmidtschen Orthonormalisierungsverfah-

rens eine Orthonormalbasis (v1, . . . , vn), und zwar so, dass für k = 1, . . . , n gilt:

lin(v1, . . . , vk) = lin(u1, . . . , uk) .

Den ersten Vektor v1 wählt man parallel zu u1, aber auf Länge 1 normiert, also
v1 :=

u1

||u1|| . Um den zweiten Vektor v2 zu definieren, geht man aus von der Zerlegung
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von u2 in eine Komponente in Richtung von v1 und eine Komponente w von u2

senkrecht zu v1. Da 〈v1, u2〉 die Länge der Projektion von u2 auf v1 bezeichnet, gilt:
w = u2 − 〈v1, u2〉v1. Nun wählt man v2 parallel zu w, aber auf Länge 1 normiert,
also v2 := w

||w|| . Der dritte Vektor v3 wird aus u3 konstruiert, indem man zunächst
die Projektionen auf v1 und v2 abzieht und dann auf Länge 1 normiert, usw. Hier
das Resultat:

v1 :=
u1

||u1||
, v2 :=

u2 − 〈v1, u2〉v1
||u2 − 〈v1, u2〉v1||

,

und für k = 3, . . . , n

vk :=
uk −

∑k−1

j=1
〈vj , uk〉vj

||uk −
∑k−1

j=1
〈vj , uk〉vj||

.

Man kann direkt nachrechnen, dass (v1, . . . , vn) eine Orthonormalbasis ist. q.e.d.

3.1.9 Beispiel Sei V ⊂ R
3 die Ebene, definiert durch die Gleichung 2x+3y−z = 0,

zusammen mit dem von R
3 geerbten Skalarprodukt. Die Vektoren u1 =





1
0
2



 und

u2 =





0
1
3



 aus V sind linear unabhängig, stehen aber nicht senkrecht aufeinander,

denn 〈u1, u2〉 = 6. Das Orthonormalisierungsverfahren, angewendet auf (u1, u2),
liefert hier:

v1 =
u1

||u1||
=

1√
5





1
0
2



 .

Weiter ist 〈v1, u2〉 = 6√
5
und daher u2 − 〈v1, u2〉v1 = 1

5





−6
5
3



. Wir erhalten

v2 =
1√
70





−6
5
3



 .

Wie gewünscht, gelten 〈v1, v2〉 = 0 und ||v1|| = ||v2|| = 1. Also ist (v1, v2) eine
Orthonormalbasis für die Ebene V .


