Kapitel 4

Differentialrechnung in mehreren Variablen

4.1 ToPOLOGIE DES R"” UND STETIGKEIT VON FUNKTIONEN

Gegenstand dieses Kapitels sind Funktionen in mehreren Variablen. Wir kénnen
die Definitionsbereiche solcher Funktionen als Teilmengen eines mehrdimensionalen
Raumes auffassen. Deshalb schauen wir uns zunéchst den zugrundeliegenden Raum
R™ (fiir ein n € N) genauer an, und definieren solche Begriffe wie Nachbarschaft und
Konvergenz von Folgen. Identifiziert man Punkte im n-dimensionalen Raum mit
ihren Ortsvektoren, liefert die Norm auf R"™ einen Abstandsbegriff, eine sogenannte
Metrik. Man definiert ndmlich als Abstand zwischen p,q € R™:

dist(p, q) == |lp — ql| -

Die offene Kugel vom Radius » um p € R" ist definiert als

K.(p) ={qeR"[|[p—q|l <r}.

Im Fall n = 1 ist eine solche Kugel nichts anderes als ein offenes Intervall. Im Fall
n > 1 gibt es ausserdem viele weitere interessante Umgebungen von Punkten, weil
die Vielfalt an moglichen Figuren im mehrdimensionalen natiirlich wesentlich grésser
ist. Deshalb fiithrt man folgenden Begriff ein:

4.1.1 DEFINITION Eine Teilmenge U C R" heisst offen, falls zu jedem Punkt p € U
ein € > 0 existiert, so dass K.(p) C U. Eine Teilmenge A C R™ heisst abgeschlossen,
wenn das Komplement der Menge U := R" \ A in R" offen ist.

Zum Beispiel ist jede offene Kugel selbst offen, aber auch jede beliebige Ver-
einigung von offenen Kugeln. Allgemeiner sind endliche Durchschnitte und belie-
bige Vereinigungen offener Mengen wieder offen. Die leere Menge und der ganze
Raum R™ sind sowohl offen als auch abgeschlossen. Abgeschlossen sind zum Beispiel
auch endliche Punktmengen. Beliebige Durchschnitte und endliche Vereinigungen
abgeschlossener Mengen sind wieder abgeschlossen.

Im eindimensionalen Fall sind offene Teilmengen nichts anderes als disjunkte Ver-
einigungen offener Intervalle. Im zweidimensionalen Fall aber gibt es wesentlich mehr
offene Teilmengen als nur die disjunkten Vereinigungen von offenen Kreisscheiben,
wie zum Beispiel das Innere von einfach geschlossenen Kurven.

4.1.2 DEFINITION Sei jetzt M eine beliebige Teilmenge des R™. Ein Punkt p €
R™ wird als Randpunkt von M bezeichnet, wenn jede Kugel K,(p) um p (r > 0
beliebig) sowohl M als auch das Komplement R™ \ M schneidet. Die Gesamtheit
aller Randpunkte bilden den Rand der Teilmenge M und dieser Rand wird mit O M
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bezeichnet. Aus der Definition ergibt sich sofort, dass der Rand von M und der
Rand des Komplementes von M miteinander iibereinstimmen. Weiter definiert man
den Abschluss von M als

M :=MUOIM .

Der Abschluss von M ist die kleinste abgeschlossene Teilmenge von R”, die M
enthalt.

Zum Beispiel ist der Rand der offenen Kugel K,.(p) um p € R" gerade die Kuge-
loberfléche

OK,(p) ={q e R" | [lp—qll =7}

Der Abschluss der offenen Kugel ist die sogenannte abgeschlossene Kugel

K,(p)={qeR"||[p—q|| <r}.

Der Rand der Kugel und allgemeiner jeder Rand OM einer Teilmenge M ist ab-
geschlossen, denn es handelt sich um den Durchschnitt von zwei abgeschlossenen

Mengen OM = M N (R \ M).

4.1.3 BEMERKUNG Fine Teilmenge A C R" ist genau dann abgeschlossen, wenn sie
alle ihre Randpunkte enthélt. Eine Teilmenge U C R™ ist genau dann offen, wenn
sie keinen ihrer Randpunkte enthélt. Eine abgeschlossene Teilmenge kann niederdi-
mensional sein, aber eine offene, nichtleere Teilmenge hat immer die volle Dimension
n.

4.1.4 DEFINITION Man nennt eine offene (oder abgeschlossene) Teilmenge M C
R™ zusammenhdngend, wenn es keine Zerlegung von M in zwei disjunkte offene
(bzw. abgeschlossene) nichtleere Teilmengen gibt. Dabei heissen zwei Teilmengen
disjunkt, wenn ihr Durchschnitt leer ist.

Und hier der letzte wichtige topologische Grundbegriff:

4.1.5 DEFINITION Eine abgeschlossene Teilmenge A C R” heisst kompakt, wenn sie
zusétzlich beschrankt ist, das heisst, wenn es eine Schranke S € R gibt mit

IIp|| < S fiir alle p € A.

Zum Beispiel sind abgeschlossene Kugeln kompakt. Im eindimensionalen Fall sind
dies gerade die abgeschlossenen Intervalle. Auch die folgende Menge ist kompakt

A= {030 e R | llpll = 3.

neN

Sie besteht aus unendlich vielen Zusammenhangskomponenten.

4.1.6 DEFINITION Man sagt, eine Folge von Punkten (pg)reny in R”™ konvergiert
gegen den Grenzwert p € R” genau dann, wenn die Abstinde der Punkte p; zu p
gegen Null konvergieren, das heisst limy o ||pr — p|| = 0. Wie bei Zahlenfolgen,
verwendet man in diesem Fall auch die Schreibweise limy_ .o pr = p.
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Man kann folgendes zeigen:

4.1.7 BEMERKUNG Fine Folge von Punkten p; in R" konvergiert genau dann gegen
den Grenzwert p € R", wenn die Folge der j-ten Koordinaten der Punkte py gegen
die j-te Koordinate von p konvergiert und zwar fiir j = 1,...,n.

Zum Beispiel konvergiert die Folge der Punkte p; = (cos Z,sin §) (fiir ¢ € [0, 27]
fest) auf dem Einheitskreis in R? gegen den Punkt p = (1,0). Und die Folge der
Punkte g, = (1 — %)q (fiir ¢ € R™ fest) konvergiert gegen q.

Kommen wir nun zum Begriff der stetigen Funktion. Wir betrachten hier nur
Funktionen, deren Definitionsbereich entweder offen oder Abschluss einer offenen

Menge ist.

4.1.8 DEFINITION Sei U C R eine offene oder abgeschlossene Teilmenge. Eine
Funktion f:U — R heisst stetig an der Stelle p € U, wenn fiir jede Folge (p,) aus
Punkten in U mit lim,, .o, p, = p gilt

Tim f(pn) = f(p) -
Wir nennen f stetig, wenn f an jeder Stelle des Definitionsbereichs stetig ist.

Das bedeutet, dass der Funktionswert an der Stelle f(p) bereits durch das Ver-
halten der Funktion in der Nédhe von p bestimmt ist. Die folgende Charakterisierung
von Stetigkeit lisst sich so verstehen, dass “kleine” Anderungen der Variablen p nur
zu “kleinen” Anderungen des Bildes f(p) fithren.

4.1.9 SATZ Eine Funktion f:U — R auf einer offenen Teilmenge U C R™ ist genau
dann stetig in p € U, wenn zu jedem ¢ > 0 ein 6 > 0 existiert mit Ks(p) C U und

|f(p) — f(q)] < e fiir alle ¢ € K;(p).

Fiir Funktionen mehrerer Variabler gelten entsprechende Rechenregeln fiir Ste-
tigkeit wie im eindimensionalen Fall, das heisst Summen und Differenzen, sowie Pro-
dukte und Zusammensetzungen stetiger Funktionen sind wieder stetig. Zum Beispiel
ist also folgende Funktion in drei Variablen stetig:

flz,y,2) = 2 4 5Pz — exp(v/22 +y2+22) (z,y,z € R).

Einige Eigenschaften stetiger Funktionen im Bezug auf die topologischen Begriffe
sind im folgenden Satz zusammengefasst:

4.1.10 SATZ Sei f eine stetige Funktion auf der offenen Teilmenge D C R™. Dann
gilt folgendes:

o Ist I = (a,b) ein offenes Intervall, so ist f~1(I) ={pe€ D |a < f(p) < b} in
R"™ ebenfalls offen.

e Ist I = [a,b] ein abgeschlossenes Intervall, enthalten in f(D), so ist das Urbild
Y I)={pe D]|a< f(p) <b} in R ebenfalls abgeschlossen. Insbesondere
ist fiir jedes ¢ € R die Menge f~'(c) = {p € D | f(p) = ¢} abgeschlossen.
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e Ist U C D zusammenhéingend, dann ist auch f(U) zusammenhéingend.

e Ist K C D kompakt, dann ist auch f(K) kompakt.

4.1.11 BEISPIEL Die Funktion f(z,y) = (%)2 + (%)2 ist stetig. Das Urbild eines
Wertes ¢ > 0, also die Teilmenge, definiert durch die Gleichung f(z,y) = ¢, ist eine
Ellipse und als solche abgeschlossen. Die Teilmenge, definiert durch die Ungleichung

f(z,y) < ¢, ist offen und zwar handelt es sich hier um das Innere der Ellipse.

Fiir stetige Funktionen auf kompakten Teilmengen gelten Sétze, die die Aussagen
iiber stetige Funktionen auf abgeschlossenen Intervallen verallgemeinern.

4.1.12 SATZ Sei K C R" eine nichtleere kompakte Teilmenge und sei f: K — R
stetig. Dann nimmt f auf K Maximum und Minimum an, das heisst, es gibt Punkte
p,q € K mit

f(p) < f(v) < fq) fiirallev e K.

Ist f:U C R* — R, so versteht man unter dem Graphen von f die folgende
Teilmenge des R™ x R = R"*L:

Graph(f) :={(p, f(p)) | p € U} CR" x R.

4.1.13 BEISPIELE o Ist f:R? — R linear, definiert durch f(x,y) = ax + by
(a,b € R konstant), so ist der zugehoérige Graph die Ebene in R?, definiert
durch die Gleichung z = ax + by.

o Ist f(z,y) = V2?2 + y? = ||(z,y)]], so ist der Graph ein auf die Spitze gestellter,
nach oben offener Kegel.

e Der Graph der Funktion f(z,y) = 2* + y? ist ein Paraboloid.

e Der Graph der Funktion f(z,y) = o (fiir (z,y) # (0,0)) hat die Gestalt
)

eines Trichters mit nach oben im Unendlichen getffneter Spitze.

e Der Graph der Funktion f:R? — R, definiert durch f(z,y) = 1— (22 —1)*>—y?
ist ein Gebirge im R3 mit zwei Berggipfeln.
e Die Funktion f(x,y) = L fire <y ist fiir Punkte mit x = y nicht steti
VT2 fire >y - &
Der Graph hat eine Abbruchkante iiber der Linie z = y.

e Die Funktion f(z,y) = |xr — y| ist iiberall stetig, allerdings ist der Graph
oberhalb der Linie x = y gefalzt.

Man kann den Verlauf einer Funktion f:U C R™ — R auch im Ausgangsraum
R™ graphisch darstellen, indem man dort die Niveaumengen einzeichnet. Unter der
Niveaumenge zur Zahl ¢ € R versteht man die Menge

Ne:={peU]| f(p)=c}.
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Ist f stetig, so sind alle Niveaumengen von f (wie oben bemerkt) abgeschlossene
Teilmengen des R™. Fiir n = 2 sind die Niveaumengen in der Regel Linien, die soge-
nannten Hohenlinien. Aber je nach Wahl von ¢ kénnen die Niveaumengen natiirlich
auch leer sein, nur aus einzelnen Punkten bestehen oder wie im sechsten Beispiel
oben zweidimensional sein.

4.2 PARTIELLE ABLEITUNGEN

Sei jetzt zuniichst U C R? offen und f: U — R eine Funktion in 2 Variablen z und
y. Wihlen wir einen Punkt p = (x,%0) in U aus. Betrachten wir zunéchst y als
einen festen Parameter, und zwar konstant gleich . Ist jetzt f(z,yo), aufgefasst als
Funktion von x, an der Stelle x4 nach x differenzierbar, dann wird die entsprechende
Ableitung als partielle Ableitung von f nach x an der Stelle p bezeichnet. Es gilt:

0, f(p) = lim f($o+t,yo)—f($0,yo).

t—)O t

Die partielle Ableitung nach z gibt also die Anderungsrate der Funktion f in bezug
auf die Variable x an. Entsprechend ist die partielle Ableitung nach y definiert:

9y f(p) := lim

t—0

f (o, yo +1) — f(x0, %0)
n .

Hier wird also umgekehrt x als ein Parameter aufgefasst und konstant gleich x
gesetzt, wihrend y als variabel gedacht ist. Hier ein erstes Beispiel:

4.2.1 BEISPIEL Die Funktion f(z,y) = x? exp(4y) hat an der Stelle p = (z,y) die
partiellen Ableitungen

Ouf(z,y) =2zexp(4y) und 9, f(z,y) = 42° exp(4y) .

Um diese Ableitungen zu berechnen, fassen wir jeweils eine der beiden Variablen als
festen Parameter auf und leiten nach der anderen, als frei gedachten Variablen ab.

Sei nun allgemeiner U C R™ und f eine Funktion in n Variablen. Fixieren wir
wieder einen Punkt p = (p1,...,p,) in U.

4.2.2 DEFINITION Die partielle Ableitung von f bei p = (p1,...,p,) nach der Va-
riablen x; (j = 1,...,n) ist folgender Grenzwert (falls er existiert):

f(p17 e 7pj*17pj +t7pj+17 e 7pn) - f(p)
t—0 t .

Es gibt dafiir auch die folgenden Schreibweisen:

00, 19) = 041 (5) = 5 (9).

Wenn diese Ableitungen existieren, nennt man f bei p partiell differenzierbar.
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Um die partielle Ableitung einer Funktion nach einer bestimmten Variablen zu
berechnen, kann man alle {ibrigen Variablen im definierenden Ausdruck als konstant
betrachten und dann die bekannten Rechenregeln fiir Ableitungen von Funktionen
einer Variablen anwenden.

4.2.3 BEISPIEL Sei f(x,y,z) = 2%e% + sin” 2 fiir z,y, 2 € R. Dann sind
amf('x7y7 Z) = 2ze™ ) 8yf<x7y7 Z) = 53:2653/7 8zf(x7 Y, Z) = 2Sin(2) COS<2) :

Bei Funktionen in zwei Variablen kann man sich die Bedeutung der partiellen
Ableitung auch graphisch veranschaulichen. Schauen wir uns dazu ein weiteres Bei-
spiel an.

4.2.4 BEISPIEL Die Funktion f(z,y) = 2? + y? (fir z,y € R) hat die partiellen
Ableitungen 0, f(z,y) = 2z und 0, f(x,y) = 2y. Im Punkt p = (0, 1) beispielsweise
ist 0, f(p) = 2. Dies ist gerade die Ableitung bei y = 1 der Funktion g(y) = y?, die
wir aus f erhalten, wenn wir x = 0 einsetzen. Der Graph der Funktion g entsteht
aus dem Graphen von f (einem Paraboloid), indem wir mit der Ebene, definiert
durch z = 0, schneiden. Und die partielle Ableitung 0, f(p) gibt die Steigung der
Tangente an den Graphen von f in p oberhalb der y-Richtung an.

Entsprechend stimmt 9, f(p) = 0 mit der Ableitung der Funktion h(x) = z* + 1
bei x = 0 iiberein, die wir aus f erhalten, wenn wir y = 1 einsetzen. Der Graph
von h ergibt sich aus dem Graphen von f durch Schneiden mit der Ebene, definiert
durch y = 1. Die Schnittfigur ist eine Parabel mit Scheitelpunkt iiber p, also ist die
Tangentensteigung dort gleich Null.

Hier ein Beispiel einer Funktion, die nicht iiberall partiell differenzierbar ist.

4.2.5 BEISPIEL Sei f(z,y) = |sin(z) - sin(y)| fir z,y € R. Der Graph von f er-
innert an die Oberfldche einer Steppdecke. Im Nullpunkt existieren die partiellen
Ableitungen und verschwinden, denn

9:£(0,0) = lim SO =100 _ o g 8,£(0,0) = lim 1(0,1) - £(0,0)

t—0 t t—0 t

Aber im Punkt p = (5, 0) gibt es keine Ableitung nach y. Denn die Funktion g(t) =
f(5,t) = |sin(t)| (fiir £ € R) ist bei ¢t = 0 nicht differenzierbar, der Graph hat von g
hat dort eine Knickstelle, die auch sichtbar wird, wenn wir den Graphen von f mit
der Ebene, definiert durch x = 7, schneiden.

=0.

Die Existenz von partiellen Ableitungen kann von der Wahl des Koordinatensy-
stems abhéngen.

4.2.6 BEISPIEL Sei f(x,y) = \/|ry|. Hier existieren die partiellen Ableitungen im
Nullpunkt 9, f(0,0) = 0 und 9, f(0,0) = 0. Aber der Grenzwert

lim =lim — =lim —
t—0 t t—0 ¢ t—0 ¢

existiert nicht. Dies ist sozusagen die Ableitung in Richtung der Diagonalen z = y.
Wiirden wir die Funktion f also in einem um 45° gedrehten Koordinatensystem
darstellen, dann gébe es die partiellen Ableitungen im Nullpunkt nicht.
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4.3 LOKALE EXTREMA UND DIE HESSESCHE FORM

Sei jetzt wieder U C R"™ offen und f:U — R eine Funktion. Unter einem lokalen
Extremum der Funktion f verstehen wir folgendes:

4.3.1 DEFINITION Die Funktion f hat an der Stelle p € U ein isoliertes lokales
Maximum (bzw. Minimum), wenn es ein € > 0 gibt mit f(q) < f(p) (bzw. f(q) >
f(p)) fur alle p # ¢ € K.(p) C U. Man spricht von einem nichtisolierten Maximum
bzw. Minimum, wenn statt der strikten Ungleichungen jeweils nur < bzw. > gelten.

Ein notwendiges Kriterium fiir lokale Extrema lautet:

4.3.2 SATZ Sei f:U — R auf U partiell differenzierbar. Hat f an der Stelle p € U
ein lokales Extremum, dann ist 0, f(p) = 0 fiir alle j = 1,...,n.

Beweis. Nehmen wir an, f hat bei p ein lokales Maximum. Wéhlen wir jetzt eine
Koordinatenrichtung e; aus. Dann gilt insbesondere f(p+te;) < f(p) fiir gentigend
kleine ¢. Also hat die Funktion ¢(t) = f(p+te;) bei t = 0 ein lokales Maximum und
daher folgt aus der eindimensionalen Theorie

d
9'(0) = 85, f(p) = — f(p + te;)i=0 = 0.
Dies gilt fiir alle j =1,...,n.  q.e.d.

Diejenigen Punkte p, bei denen die partiellen Ableitungen verschwinden, sind
also Kandidaten fiir lokale Extrema. Man nennt sie deshalb auch die kritischen
Punkte von f. Ist p ein kritischer Punkt, in dem weder ein lokales Maximum noch
ein lokales Minimum vorliegt, so spricht man von einem Sattelpunkt.

Wir fassen jetzt die partiellen Ableitungen von f an der Stelle p zu einem Vektor
in R™ zusammen. Man spricht hier auch vom Gradienten von f an der Stelle p und
verwendet die folgende Schreibweise:

02, f(p)
Vf(p) = : firpe U.

%:f ()

4.3.3 BEISPIELE 1. f(x,y) = 2% + y? fiir 2,y € R. Dann ist Vf(z,y) = (;;:)
Der Gradient von f verschwindet nur im Nullpunkt, und dort hat f ein isolier-

tes lokales (und absolutes) Minimum, denn 2% + y* > 0 fiir alle (z,y) # (0,0).

2. f(z,y) = xy fir z,y € R. Hier ist Vf(z,y) = (g) Wiederum verschwindet

der Gradient nur im Nullpunkt. Dort hat f aber weder ein lokales Minimum
noch ein lokales Maximum, sondern einen Sattelpunkt. Denn zu jedem € > 0
finden wir Punkte p. = (¢, €) und ¢ = (e, —¢€) in K(0) mit f(p.) = €2 > 0
und f(g) = —3¢* < 0. In Richtung der Winkelhalbierenden liegt also ein
lokales Minimum, in Richtung der Antidiagonalen ein lokales Maximum vor.
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3. Ein Sattelpunkt kann auch eine andere Gestalt haben. Die Funktion f(z,y) =
23 + 12 zum Beispiel hat im Nullpunkt ebenfalls einen Sattelpunkt. Aber hier
haben wir in y-Richtung ein lokales Minimum und in z-Richtung einen (eindi-
mensionalen) Sattel, so dass der Graph einem Sessel dhnelt.

3(z?* — )
2y
gibt also zwei kritische Punkte, namlich (0,0) und (1,0). Im Nullpunkt liegt
ein Sattelpunkt vor (denn in xz-Richtung haben wir hier ein lokales Maximum
und in y-Richtung ein lokales Minimum). An der Stelle (1, 0) befindet sich ein
lokales Minimum, denn sowohl in z-Richtung, als auch in y-Richtung ist hier

ein lokales Minimum.

4. f(z,y) = 2® — 322 + ¢ fir 2,y € R. Hier ist Vf(z,y) = es

5. f(x,y) =1— (22 — 1)* — ¢ fiir z,y € R. Dann ist

Vi(x,y) = <_4(x_22; I)x) :

Hier gibt es drei kritische Punkte, nédmlich (+1,0) und (0,0). In den Punk-
ten (£1,0) hat f jeweils ein isoliertes lokales Maximum. Denn offenbar ist
f(z,y) < 1, und Gleichheit gilt genau dann, wenn 2> = 1 und y = 0 ist.
Im Nullpunkt liegt ein Sattelpunkt vor. Denn fiir 0 < ¢ < 1 ist einerseits
f(t,0) =1— (t* = 1)?> > 0 und andererseits f(0,t) = —t? < 0.

—sin

0 Y
kritische Stellen sind also die Punkte py = (km,y) (kK € Z, y € R). Ist k
gerade, so liegt bei p ein nichtisoliertes Maximum vor. Ist £ ungerade, so hat
f bei pg ein nichtisoliertes Minimum.

6. f(x,y) = coszx fir z,y € R. Der Gradient lautet Vf(x,y) =

Mithilfe der zweiten Ableitungen kann man - wie bei Funktionen in einer Va-
riablen - in vielen Féllen entscheiden, ob an einer bestimmten kritischen Stelle ein
lokales Maximum, ein lokales Minimum oder ein Sattelpunkt vorliegt. Wir neh-
men dazu jetzt an, die ersten partiellen Ableitungen von f seien wiederum partiell
differenzierbare Funktionen. Durch nochmaliges partielles Ableiten erhédlt man die
zweiten partiellen Ableitungen an der Stelle p € U:

;00 f (P) = 02, (0, [ () und 93, f(p) = 0, (0n, f(q))

q=p q=p

Fiir die Wahl der Zahlenpaare (j, k) gibt es insgesamt n? Moglichkeiten und ent-
sprechend viele zweite partielle Ableitungen, die zu einer quadratischen Matrix zu-
sammengestellt werden.

4.3.4 DEFINITION Die n x n-Matrix

.....

wird als Hessesche Matrixz von f bei p bezeichnet.
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Nehmen wir jetzt zusétzlich an, dass die zweiten partiellen Ableitungen von f
iiberall stetig sind. Man schreibt dafiir f € C?(U).

4.3.5 LEMMA Sei f € C*(U). Dann gilt 9,,0,, f(p) = 0.,0,, f(p) fiir alle i,j. Das
heisst, die Matrix Hy(p) ist symmetrisch.

Auf den Beweis verzichten wir hier. Schauen wir uns nochmals die vorher be-
trachteten Beispiele an.

4.3.6 BEISPIELE 1. f(z,y) = «” +y” fiir 2,y € R. Dann ist Vf(z,y) = @:@j)
o Bf 00\ _ (2 0
undHf(a:,y)_<amayf 2 )=\ 2)
2. f(z,y) = xy fir z,y € R. Hier ist Vf(x,y) = <:ZZ’> und Hy(z,y) = ((1] (1])

3. f(z,y) = 1 — (2 — 1) — ¢ fiir 2,y € R. Dann erhalten wir Vf(z,y) =

—4(2? = 1)x (1222 +4 0
< oy ) und Hy(z,y) = < 0 L

Um nun das notwendige Kriterium fiir lokale Extrema formulieren zu konnen,
brauchen wir die im vorigen Kapitel untersuchten Eigenschaften quadratischer For-
men. Erinnern wir an die Begriffe:

4.3.7 DEFINITION Eine symmetrische Matrix A ist positiv definit, wenn all ihre
Eigenwerte positiv sind. Sie ist negativ definit, wenn all ihre Eigenwerte negativ
sind. Hat die Matrix A sowohl negative als auch positive Eigenwerte, dann nennen
wir A indefinit.

Man kann folgendes zeigen:

4.3.8 BEMERKUNG Fine symmetrische invertierbare 2 x 2-Matrix A ist genau dann
indefinit, wenn det A < 0 ist. Sie ist positiv (bzw. negativ) definit, wenn det A > 0
und Spur(A) > 0 (bzw. Spur(A) < 0) ist.

Eine symmetrische invertierbare 3 x 3-Matrix A ist genau dann positiv definit,
wenn det A > 0, det B > 0 und ay; > 0 ist. Hier bezeichnet B diejenige 2 x 2-Matrix,
die aus A durch Streichen der letzten Zeile und Spalte entsteht.

Hier nun das gewiinschte Kriterium:

4.3.9 SATZ Sei f € C*(U) fiir eine offene Teilmenge U C R™. Sei p € U eine
kritische Stelle von f. Dann gilt:

1. Ist die Hessesche Matrix H(p) positiv definit, so hat f bei p ein isoliertes
lokales Minimum.

2. Ist die Hessesche Matrix Hy(p) negativ definit, so hat f bei p ein isoliertes
lokales Maximum.
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3. Ist Hy(p) indefinit, so hat f bei p kein lokales Extremum, sondern einen Sat-
telpunkt.

Fiir n = 1ist Vf(a) = (f'(a)), kritische Stellen sind also gerade die Nullstellen
von f’. Ausserdem hat die Hessesche Matrix dann den Typ 1 x 1 und ist genau
dann positiv (bzw. negativ) definit, wenn f”(a) positiv (bzw. negativ) ist. Also
verallgemeinert dieser Satz das bekannte Kriterium fiir Funktionen einer Variablen.

Den Beweis des Satzes werden wir spater nachtragen. Wenden wir das Kriterium
hier zunéchst auf die bereits erwdhnten Beispiele an.

4.3.10 BEISPIELE 1. f(z,y) = 2 + y? fiir z,y € R. Die Hessesche Matrix im

Nullpunkt lautet H;(0,0) = (2) (2)
genwert 2, ist also positiv definit. Deshalb hat f im Nullpunkt ein isoliertes
Minimum, wie wir bereits oben direkt gesehen haben.

. Diese Matrix hat den doppelten Ei-

2. f(z,y) = xy fir z,y € R. Die einzige kritische Stelle ist wiederum der Null-
punkt und H(0,0) = <(1) é) Diese Matrix hat die Eigenwerte £1, ist also
indefinit. Und tatséchlich hat f im Nullpunkt einen Sattelpunkt.

3. f(z,y) = 1 — (2% — 1)? — ¢? fiir 2,y € R. Die Hessesche Matrix an einer

Stelle (z,y) lautet hier H(z,y) = (—12x02 4 _02) Fiir den Nullpunkt
erhalten wir H;(0,0) = 3 _02
die Eigenwerte 4 und —2. Also hat f im Nullpunkt einen Sattelpunkt. An den
beiden anderen kritischen Stellen haben wir Hy(+1,0) = _08 _02 . Hier
ist die Hessesche Matrix negativ definit und deshalb hat f dort jeweils isolierte
Maxima, in Ubereinstimmung mit dem fritheren Ergebnis.

. Diese Matrix ist indefinit, denn sie hat

4. Sei jetzt f(x,y) = —2® + 2y + y? fiir 2,y € R. Der Gradient von f lautet

—3z% +

—12y? +y = 0 sind. Die Funktion f hat also zwei kritische Punkte: p; = (0,0)
und py = (—%, 73). Die Hessematrix an der Stelle (z,y) lautet:

12
—6x 1

Fiir den Nullpunkt erhalten wir

H,(0,0) = ((1’ ;) .

Diese Matrix hat die Determinante —1, ist also indefinit. Also liegt im Null-
punkt ein Sattelpunkt vor. Fiir den zweiten kritischen Punkt ist

i = (] )

. Er verschwindet genau dann, wenn x = —2y und
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Hier ist die Determinante ist gleich +1 und der Eintrag in der oberen linken
Ecke ist ebenfalls positiv. Also ist H(ps) positiv definit und an der Stelle po
liegt ein Minimum vor.

5. Fiwr f(x,y) = cosw ist Vf(x,y) = (_S(l)nx) und Hy(z,y) = (—cgs:c 8)
An den kritischen Stellen py = (km,0) ist Hy(km,0) = (—C%s km 8) _

(e s

definit, noch indefinit, und iiber diesen Fall macht der Satz keine Aussage.

. Die Hessesche Matrix ist hier also weder positiv noch negativ

4.3.11 BEMERKUNG Ist p ein kritischer Punkt von f und ist H(p) positiv semide-
finit, das heisst, sind sdmtliche Eigenwerte von H(p) grosser oder gleich Null und
ist mindestens ein Eigenwert positiv, dann kann f bei p ein isoliertes oder nichtiso-
liertes lokales Minimum oder einen Sattelpunkt haben. Aber ein lokales Maximum
ist ausgeschlossen.

4.3.12 BEISPIELE e Die Funktion f(x,y) = 2* + y* hat im Nullpunkt einen

Sattelpunkt und H;(0,0) = (g 8)

e Die Funktion f(z,y) = 2* + y* hat im Nullpunkt ein isoliertes Minimum, und
2 0

wiederum ist H(0,0) = (0 0/

Man kann die beschriebene Methode zur Bestimmung der lokalen Extrema einer
Funktion in mehreren Variablen nun einsetzen, um damit mehrdimensionale Opti-
mierungsaufgaben zu 16sen. Hier dazu ein Beispiel:

4.3.13 BEISPIEL Nehmen wir an, zur Verpackung von Speiseeis zu jeweils 1000ml
werde eine quaderféormige Schachtel verwendet, und man sucht nun dasjenige For-
mat, bei dem am wenigsten Materialkosten anfallen. Das bedeutet: Man sucht nach
demjenigen Quader mit Seitenlingen x, y, z und Gesamtvolumen xyz = 1000, der
die kleinste Oberflaiche hat. Die Oberflache ist die Summe der 6 Seitenflachen, also

g(z,y,2) = 2(xy + yz + x2) .

Mit der Bedingung xyz = 1000 kann man die Variable z eliminieren, indem man
z = ﬁﬁ einsetzt. Es ergibt sich eine Funktion in zwei Variablen, deren Minimum

im Bereich z,y > 0 gesucht wird:
1000
flx,y) =2y + (z +y)- W)-

Jetzt berechnen wir erst die kritischen Stellen von f:

wsen = (2 m0) = ()
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genau dann, wenn 2%y = 1000 = y?z. Weil x,y > 0 sind, folgt = y und 23 = 1000.
Es gibt also im Bereich x,y > 0 nur einen kritischen Punkt bei x = y = 10, und die
entsprechende Schachtel ist in diesem Fall ein Wiirfel der Seitenldnge 10cm. Mit der
Hessematrix iiberpriifen wir jetzt noch, dass es sich wirklich um ein Minimum von

f handelt.

4000/ 3 2 4 2
He(x,y) = ( 2/ 4000/y3) , also H(10,10) = (2 4) .

Die Hessematrix beim kritischen Punkt ist positiv definit, f hat also dort tatséchlich
ein isoliertes Minimum.



