
Kapitel 4

Differentialrechnung in mehreren Variablen

4.1 Topologie des R
n und Stetigkeit von Funktionen

Gegenstand dieses Kapitels sind Funktionen in mehreren Variablen. Wir können
die Definitionsbereiche solcher Funktionen als Teilmengen eines mehrdimensionalen
Raumes auffassen. Deshalb schauen wir uns zunächst den zugrundeliegenden Raum
R

n (für ein n ∈ N) genauer an, und definieren solche Begriffe wie Nachbarschaft und
Konvergenz von Folgen. Identifiziert man Punkte im n-dimensionalen Raum mit
ihren Ortsvektoren, liefert die Norm auf Rn einen Abstandsbegriff, eine sogenannte
Metrik. Man definiert nämlich als Abstand zwischen p, q ∈ R

n:

dist(p, q) := ||p− q|| .

Die offene Kugel vom Radius r um p ∈ R
n ist definiert als

Kr(p) := {q ∈ R
n | ||p− q|| < r} .

Im Fall n = 1 ist eine solche Kugel nichts anderes als ein offenes Intervall. Im Fall
n > 1 gibt es ausserdem viele weitere interessante Umgebungen von Punkten, weil
die Vielfalt an möglichen Figuren im mehrdimensionalen natürlich wesentlich grösser
ist. Deshalb führt man folgenden Begriff ein:

4.1.1 Definition Eine Teilmenge U ⊂ R
n heisst offen, falls zu jedem Punkt p ∈ U

ein ǫ > 0 existiert, so dass Kǫ(p) ⊂ U . Eine Teilmenge A ⊂ R
n heisst abgeschlossen,

wenn das Komplement der Menge U := R
n \ A in R

n offen ist.

Zum Beispiel ist jede offene Kugel selbst offen, aber auch jede beliebige Ver-
einigung von offenen Kugeln. Allgemeiner sind endliche Durchschnitte und belie-
bige Vereinigungen offener Mengen wieder offen. Die leere Menge und der ganze
Raum R

n sind sowohl offen als auch abgeschlossen. Abgeschlossen sind zum Beispiel
auch endliche Punktmengen. Beliebige Durchschnitte und endliche Vereinigungen
abgeschlossener Mengen sind wieder abgeschlossen.

Im eindimensionalen Fall sind offene Teilmengen nichts anderes als disjunkte Ver-
einigungen offener Intervalle. Im zweidimensionalen Fall aber gibt es wesentlich mehr
offene Teilmengen als nur die disjunkten Vereinigungen von offenen Kreisscheiben,
wie zum Beispiel das Innere von einfach geschlossenen Kurven.

4.1.2 Definition Sei jetzt M eine beliebige Teilmenge des R
n. Ein Punkt p ∈

R
n wird als Randpunkt von M bezeichnet, wenn jede Kugel Kr(p) um p (r > 0

beliebig) sowohl M als auch das Komplement R
n \ M schneidet. Die Gesamtheit

aller Randpunkte bilden den Rand der Teilmenge M und dieser Rand wird mit ∂M
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bezeichnet. Aus der Definition ergibt sich sofort, dass der Rand von M und der
Rand des Komplementes von M miteinander übereinstimmen. Weiter definiert man
den Abschluss von M als

M := M ∪ ∂M .

Der Abschluss von M ist die kleinste abgeschlossene Teilmenge von R
n, die M

enthält.

Zum Beispiel ist der Rand der offenen Kugel Kr(p) um p ∈ R
n gerade die Kuge-

loberfläche
∂Kr(p) = {q ∈ R

n | ||p− q|| = r} .
Der Abschluss der offenen Kugel ist die sogenannte abgeschlossene Kugel

Kr(p) = {q ∈ R
n | ||p− q|| ≤ r} .

Der Rand der Kugel und allgemeiner jeder Rand ∂M einer Teilmenge M ist ab-
geschlossen, denn es handelt sich um den Durchschnitt von zwei abgeschlossenen
Mengen ∂M = M ∩ (Rn \M).

4.1.3 Bemerkung Eine Teilmenge A ⊂ R
n ist genau dann abgeschlossen, wenn sie

alle ihre Randpunkte enthält. Eine Teilmenge U ⊂ R
n ist genau dann offen, wenn

sie keinen ihrer Randpunkte enthält. Eine abgeschlossene Teilmenge kann niederdi-
mensional sein, aber eine offene, nichtleere Teilmenge hat immer die volle Dimension
n.

4.1.4 Definition Man nennt eine offene (oder abgeschlossene) Teilmenge M ⊂
R

n zusammenhängend , wenn es keine Zerlegung von M in zwei disjunkte offene
(bzw. abgeschlossene) nichtleere Teilmengen gibt. Dabei heissen zwei Teilmengen
disjunkt , wenn ihr Durchschnitt leer ist.

Und hier der letzte wichtige topologische Grundbegriff:

4.1.5 Definition Eine abgeschlossene Teilmenge A ⊂ R
n heisst kompakt , wenn sie

zusätzlich beschränkt ist, das heisst, wenn es eine Schranke S ∈ R gibt mit

||p|| ≤ S für alle p ∈ A.

Zum Beispiel sind abgeschlossene Kugeln kompakt. Im eindimensionalen Fall sind
dies gerade die abgeschlossenen Intervalle. Auch die folgende Menge ist kompakt

A = {0} ∪
⋃

n∈N

{p ∈ R
n | ||p|| = 1

n
} .

Sie besteht aus unendlich vielen Zusammenhangskomponenten.

4.1.6 Definition Man sagt, eine Folge von Punkten (pk)k∈N in R
n konvergiert

gegen den Grenzwert p ∈ R
n genau dann, wenn die Abstände der Punkte pk zu p

gegen Null konvergieren, das heisst limk→∞ ||pk − p|| = 0 . Wie bei Zahlenfolgen,
verwendet man in diesem Fall auch die Schreibweise limk→∞ pk = p .
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Man kann folgendes zeigen:

4.1.7 Bemerkung Eine Folge von Punkten pk in R
n konvergiert genau dann gegen

den Grenzwert p ∈ R
n, wenn die Folge der j-ten Koordinaten der Punkte pk gegen

die j-te Koordinate von p konvergiert und zwar für j = 1, . . . , n.

Zum Beispiel konvergiert die Folge der Punkte pk = (cos ϕ

k
, sin ϕ

k
) (für ϕ ∈ [0, 2π]

fest) auf dem Einheitskreis in R
2 gegen den Punkt p = (1, 0). Und die Folge der

Punkte qk = (1− 1

k
)q (für q ∈ R

n fest) konvergiert gegen q.
Kommen wir nun zum Begriff der stetigen Funktion. Wir betrachten hier nur

Funktionen, deren Definitionsbereich entweder offen oder Abschluss einer offenen
Menge ist.

4.1.8 Definition Sei U ⊂ R
n eine offene oder abgeschlossene Teilmenge. Eine

Funktion f :U → R heisst stetig an der Stelle p ∈ U , wenn für jede Folge (pn) aus
Punkten in U mit limn→∞ pn = p gilt

lim
n→∞

f(pn) = f(p) .

Wir nennen f stetig, wenn f an jeder Stelle des Definitionsbereichs stetig ist.

Das bedeutet, dass der Funktionswert an der Stelle f(p) bereits durch das Ver-
halten der Funktion in der Nähe von p bestimmt ist. Die folgende Charakterisierung
von Stetigkeit lässt sich so verstehen, dass “kleine” Änderungen der Variablen p nur
zu “kleinen” Änderungen des Bildes f(p) führen.

4.1.9 Satz Eine Funktion f :U → R auf einer offenen Teilmenge U ⊂ R
n ist genau

dann stetig in p ∈ U , wenn zu jedem ǫ > 0 ein δ > 0 existiert mit Kδ(p) ⊂ U und

|f(p)− f(q)| < ǫ für alle q ∈ Kδ(p).

Für Funktionen mehrerer Variabler gelten entsprechende Rechenregeln für Ste-
tigkeit wie im eindimensionalen Fall, das heisst Summen und Differenzen, sowie Pro-
dukte und Zusammensetzungen stetiger Funktionen sind wieder stetig. Zum Beispiel
ist also folgende Funktion in drei Variablen stetig:

f(x, y, z) = x2 + 5y2z − exp(
√

x2 + y2 + z2) (x, y, z ∈ R) .

Einige Eigenschaften stetiger Funktionen im Bezug auf die topologischen Begriffe
sind im folgenden Satz zusammengefasst:

4.1.10 Satz Sei f eine stetige Funktion auf der offenen Teilmenge D ⊂ R
n. Dann

gilt folgendes:

• Ist I = (a, b) ein offenes Intervall, so ist f−1(I) = {p ∈ D | a < f(p) < b} in
R

n ebenfalls offen.

• Ist I = [a, b] ein abgeschlossenes Intervall, enthalten in f(D), so ist das Urbild
f−1(I) = {p ∈ D | a ≤ f(p) ≤ b} in R

n ebenfalls abgeschlossen. Insbesondere
ist für jedes c ∈ R die Menge f−1(c) = {p ∈ D | f(p) = c} abgeschlossen.
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• Ist U ⊂ D zusammenhängend, dann ist auch f(U) zusammenhängend.

• Ist K ⊂ D kompakt, dann ist auch f(K) kompakt.

4.1.11 Beispiel Die Funktion f(x, y) =
(

x
a

)2
+

(

y

b

)2
ist stetig. Das Urbild eines

Wertes c > 0, also die Teilmenge, definiert durch die Gleichung f(x, y) = c, ist eine
Ellipse und als solche abgeschlossen. Die Teilmenge, definiert durch die Ungleichung
f(x, y) < c, ist offen und zwar handelt es sich hier um das Innere der Ellipse.

Für stetige Funktionen auf kompakten Teilmengen gelten Sätze, die die Aussagen
über stetige Funktionen auf abgeschlossenen Intervallen verallgemeinern.

4.1.12 Satz Sei K ⊂ R
n eine nichtleere kompakte Teilmenge und sei f :K → R

stetig. Dann nimmt f auf K Maximum und Minimum an, das heisst, es gibt Punkte
p, q ∈ K mit

f(p) ≤ f(v) ≤ f(q) für alle v ∈ K.

Ist f :U ⊂ R
n → R, so versteht man unter dem Graphen von f die folgende

Teilmenge des Rn × R = R
n+1:

Graph(f) := {(p, f(p)) | p ∈ U} ⊂ R
n × R .

4.1.13 Beispiele • Ist f :R2 → R linear, definiert durch f(x, y) = ax + by
(a, b ∈ R konstant), so ist der zugehörige Graph die Ebene in R

3, definiert
durch die Gleichung z = ax+ by.

• Ist f(x, y) =
√

x2 + y2 = ||(x, y)||, so ist der Graph ein auf die Spitze gestellter,
nach oben offener Kegel.

• Der Graph der Funktion f(x, y) = x2 + y2 ist ein Paraboloid.

• Der Graph der Funktion f(x, y) =
1

x2 + y2
(für (x, y) 6= (0, 0)) hat die Gestalt

eines Trichters mit nach oben im Unendlichen geöffneter Spitze.

• Der Graph der Funktion f :R2 → R, definiert durch f(x, y) = 1−(x2−1)2−y2

ist ein Gebirge im R
3 mit zwei Berggipfeln.

• Die Funktion f(x, y) =

{

1 für x ≤ y
2 für x > y

ist für Punkte mit x = y nicht stetig.

Der Graph hat eine Abbruchkante über der Linie x = y.

• Die Funktion f(x, y) = |x − y| ist überall stetig, allerdings ist der Graph
oberhalb der Linie x = y gefalzt.

Man kann den Verlauf einer Funktion f :U ⊂ R
n → R auch im Ausgangsraum

R
n graphisch darstellen, indem man dort die Niveaumengen einzeichnet. Unter der

Niveaumenge zur Zahl c ∈ R versteht man die Menge

Nc := {p ∈ U | f(p) = c} .
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Ist f stetig, so sind alle Niveaumengen von f (wie oben bemerkt) abgeschlossene
Teilmengen des Rn. Für n = 2 sind die Niveaumengen in der Regel Linien, die soge-
nannten Höhenlinien. Aber je nach Wahl von c können die Niveaumengen natürlich
auch leer sein, nur aus einzelnen Punkten bestehen oder wie im sechsten Beispiel
oben zweidimensional sein.

4.2 Partielle Ableitungen

Sei jetzt zunächst U ⊂ R
2 offen und f :U → R eine Funktion in 2 Variablen x und

y. Wählen wir einen Punkt p = (x0, y0) in U aus. Betrachten wir zunächst y als
einen festen Parameter, und zwar konstant gleich y0. Ist jetzt f(x, y0), aufgefasst als
Funktion von x, an der Stelle x0 nach x differenzierbar, dann wird die entsprechende
Ableitung als partielle Ableitung von f nach x an der Stelle p bezeichnet. Es gilt:

∂xf(p) = lim
t→0

f(x0 + t, y0)− f(x0, y0)

t
.

Die partielle Ableitung nach x gibt also die Änderungsrate der Funktion f in bezug
auf die Variable x an. Entsprechend ist die partielle Ableitung nach y definiert:

∂yf(p) := lim
t→0

f(x0, y0 + t)− f(x0, y0)

t
.

Hier wird also umgekehrt x als ein Parameter aufgefasst und konstant gleich x0

gesetzt, während y als variabel gedacht ist. Hier ein erstes Beispiel:

4.2.1 Beispiel Die Funktion f(x, y) = x2 exp(4y) hat an der Stelle p = (x, y) die
partiellen Ableitungen

∂xf(x, y) = 2x exp(4y) und ∂yf(x, y) = 4x2 exp(4y) .

Um diese Ableitungen zu berechnen, fassen wir jeweils eine der beiden Variablen als
festen Parameter auf und leiten nach der anderen, als frei gedachten Variablen ab.

Sei nun allgemeiner U ⊂ R
n und f eine Funktion in n Variablen. Fixieren wir

wieder einen Punkt p = (p1, . . . , pn) in U .

4.2.2 Definition Die partielle Ableitung von f bei p = (p1, . . . , pn) nach der Va-
riablen xj (j = 1, . . . , n) ist folgender Grenzwert (falls er existiert):

∂xj
f(p) := lim

t→0

f(p1, . . . , pj−1, pj + t, pj+1, . . . , pn)− f(p)

t
.

Es gibt dafür auch die folgenden Schreibweisen:

∂xj
f(p) = ∂jf(p) =

∂f

∂xk

(p) .

Wenn diese Ableitungen existieren, nennt man f bei p partiell differenzierbar.
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Um die partielle Ableitung einer Funktion nach einer bestimmten Variablen zu
berechnen, kann man alle übrigen Variablen im definierenden Ausdruck als konstant
betrachten und dann die bekannten Rechenregeln für Ableitungen von Funktionen
einer Variablen anwenden.

4.2.3 Beispiel Sei f(x, y, z) = x2e5y + sin2 z für x, y, z ∈ R. Dann sind

∂xf(x, y, z) = 2xe5y , ∂yf(x, y, z) = 5 x2e5y , ∂zf(x, y, z) = 2 sin(z) cos(z) .

Bei Funktionen in zwei Variablen kann man sich die Bedeutung der partiellen
Ableitung auch graphisch veranschaulichen. Schauen wir uns dazu ein weiteres Bei-
spiel an.

4.2.4 Beispiel Die Funktion f(x, y) = x2 + y2 (für x, y ∈ R) hat die partiellen
Ableitungen ∂xf(x, y) = 2x und ∂yf(x, y) = 2y. Im Punkt p = (0, 1) beispielsweise
ist ∂yf(p) = 2. Dies ist gerade die Ableitung bei y = 1 der Funktion g(y) = y2, die
wir aus f erhalten, wenn wir x = 0 einsetzen. Der Graph der Funktion g entsteht
aus dem Graphen von f (einem Paraboloid), indem wir mit der Ebene, definiert
durch x = 0, schneiden. Und die partielle Ableitung ∂yf(p) gibt die Steigung der
Tangente an den Graphen von f in p oberhalb der y-Richtung an.

Entsprechend stimmt ∂xf(p) = 0 mit der Ableitung der Funktion h(x) = x2 + 1
bei x = 0 überein, die wir aus f erhalten, wenn wir y = 1 einsetzen. Der Graph
von h ergibt sich aus dem Graphen von f durch Schneiden mit der Ebene, definiert
durch y = 1. Die Schnittfigur ist eine Parabel mit Scheitelpunkt über p, also ist die
Tangentensteigung dort gleich Null.

Hier ein Beispiel einer Funktion, die nicht überall partiell differenzierbar ist.

4.2.5 Beispiel Sei f(x, y) = | sin(x) · sin(y)| für x, y ∈ R. Der Graph von f er-
innert an die Oberfläche einer Steppdecke. Im Nullpunkt existieren die partiellen
Ableitungen und verschwinden, denn

∂xf(0, 0) = lim
t→0

f(t, 0)− f(0, 0)

t
= 0 und ∂yf(0, 0) = lim

t→0

f(0, t)− f(0, 0)

t
= 0 .

Aber im Punkt p = (π
2
, 0) gibt es keine Ableitung nach y. Denn die Funktion g(t) =

f(π
2
, t) = | sin(t)| (für t ∈ R) ist bei t = 0 nicht differenzierbar, der Graph hat von g

hat dort eine Knickstelle, die auch sichtbar wird, wenn wir den Graphen von f mit
der Ebene, definiert durch x = π

2
, schneiden.

Die Existenz von partiellen Ableitungen kann von der Wahl des Koordinatensy-
stems abhängen.

4.2.6 Beispiel Sei f(x, y) =
√

|xy|. Hier existieren die partiellen Ableitungen im
Nullpunkt ∂xf(0, 0) = 0 und ∂yf(0, 0) = 0. Aber der Grenzwert

lim
t→0

f(t, t)− f(0, 0)

t
= lim

t→0

√
t2

t
= lim

t→0

|t|
t

existiert nicht. Dies ist sozusagen die Ableitung in Richtung der Diagonalen x = y.
Würden wir die Funktion f also in einem um 45◦ gedrehten Koordinatensystem
darstellen, dann gäbe es die partiellen Ableitungen im Nullpunkt nicht.
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4.3 Lokale Extrema und die Hessesche Form

Sei jetzt wieder U ⊂ R
n offen und f :U → R eine Funktion. Unter einem lokalen

Extremum der Funktion f verstehen wir folgendes:

4.3.1 Definition Die Funktion f hat an der Stelle p ∈ U ein isoliertes lokales
Maximum (bzw. Minimum), wenn es ein ǫ > 0 gibt mit f(q) < f(p) (bzw. f(q) >
f(p)) für alle p 6= q ∈ Kǫ(p) ⊂ U . Man spricht von einem nichtisolierten Maximum
bzw. Minimum, wenn statt der strikten Ungleichungen jeweils nur ≤ bzw. ≥ gelten.

Ein notwendiges Kriterium für lokale Extrema lautet:

4.3.2 Satz Sei f :U → R auf U partiell differenzierbar. Hat f an der Stelle p ∈ U
ein lokales Extremum, dann ist ∂xj

f(p) = 0 für alle j = 1, . . . , n.

Beweis. Nehmen wir an, f hat bei p ein lokales Maximum. Wählen wir jetzt eine
Koordinatenrichtung ej aus. Dann gilt insbesondere f(p+ tej) ≤ f(p) für genügend
kleine t. Also hat die Funktion g(t) = f(p+ tej) bei t = 0 ein lokales Maximum und
daher folgt aus der eindimensionalen Theorie

g′(0) = ∂xj
f(p) =

d

dt
f(p+ tej)|t=0 = 0 .

Dies gilt für alle j = 1, . . . , n. q.e.d.

Diejenigen Punkte p, bei denen die partiellen Ableitungen verschwinden, sind
also Kandidaten für lokale Extrema. Man nennt sie deshalb auch die kritischen

Punkte von f . Ist p ein kritischer Punkt, in dem weder ein lokales Maximum noch
ein lokales Minimum vorliegt, so spricht man von einem Sattelpunkt.

Wir fassen jetzt die partiellen Ableitungen von f an der Stelle p zu einem Vektor
in R

n zusammen. Man spricht hier auch vom Gradienten von f an der Stelle p und
verwendet die folgende Schreibweise:

∇f(p) =





∂x1
f(p)
...

∂xn
f(p)



 für p ∈ U .

4.3.3 Beispiele 1. f(x, y) = x2 + y2 für x, y ∈ R. Dann ist ∇f(x, y) =

(

2x
2y

)

.

Der Gradient von f verschwindet nur im Nullpunkt, und dort hat f ein isolier-
tes lokales (und absolutes) Minimum, denn x2 + y2 > 0 für alle (x, y) 6= (0, 0).

2. f(x, y) = xy für x, y ∈ R. Hier ist ∇f(x, y) =

(

y
x

)

. Wiederum verschwindet

der Gradient nur im Nullpunkt. Dort hat f aber weder ein lokales Minimum
noch ein lokales Maximum, sondern einen Sattelpunkt. Denn zu jedem ǫ > 0
finden wir Punkte pǫ =

1

2
(ǫ, ǫ) und qǫ =

1

2
(ǫ,−ǫ) in Kǫ(0) mit f(pǫ) =

1

4
ǫ2 > 0

und f(qǫ) = −1

4
ǫ2 < 0. In Richtung der Winkelhalbierenden liegt also ein

lokales Minimum, in Richtung der Antidiagonalen ein lokales Maximum vor.



4.3. Lokale Extrema und die Hessesche Form 73

3. Ein Sattelpunkt kann auch eine andere Gestalt haben. Die Funktion f(x, y) =
x3 + y2 zum Beispiel hat im Nullpunkt ebenfalls einen Sattelpunkt. Aber hier
haben wir in y-Richtung ein lokales Minimum und in x-Richtung einen (eindi-
mensionalen) Sattel, so dass der Graph einem Sessel ähnelt.

4. f(x, y) = x3 − 3

2
x2 + y2 für x, y ∈ R. Hier ist ∇f(x, y) =

(

3(x2 − x)
2y

)

, es

gibt also zwei kritische Punkte, nämlich (0, 0) und (1, 0). Im Nullpunkt liegt
ein Sattelpunkt vor (denn in x-Richtung haben wir hier ein lokales Maximum
und in y-Richtung ein lokales Minimum). An der Stelle (1, 0) befindet sich ein
lokales Minimum, denn sowohl in x-Richtung, als auch in y-Richtung ist hier
ein lokales Minimum.

5. f(x, y) = 1− (x2 − 1)2 − y2 für x, y ∈ R. Dann ist

∇f(x, y) =

(

−4(x2 − 1)x
−2y

)

.

Hier gibt es drei kritische Punkte, nämlich (±1, 0) und (0, 0). In den Punk-
ten (±1, 0) hat f jeweils ein isoliertes lokales Maximum. Denn offenbar ist
f(x, y) ≤ 1, und Gleichheit gilt genau dann, wenn x2 = 1 und y = 0 ist.
Im Nullpunkt liegt ein Sattelpunkt vor. Denn für 0 < t2 < 1 ist einerseits
f(t, 0) = 1− (t2 − 1)2 > 0 und andererseits f(0, t) = −t2 < 0.

6. f(x, y) = cosx für x, y ∈ R. Der Gradient lautet ∇f(x, y) =

(

− sin x
0

)

,

kritische Stellen sind also die Punkte pk = (kπ, y) (k ∈ Z, y ∈ R). Ist k
gerade, so liegt bei pk ein nichtisoliertes Maximum vor. Ist k ungerade, so hat
f bei pk ein nichtisoliertes Minimum.

Mithilfe der zweiten Ableitungen kann man - wie bei Funktionen in einer Va-
riablen - in vielen Fällen entscheiden, ob an einer bestimmten kritischen Stelle ein
lokales Maximum, ein lokales Minimum oder ein Sattelpunkt vorliegt. Wir neh-
men dazu jetzt an, die ersten partiellen Ableitungen von f seien wiederum partiell
differenzierbare Funktionen. Durch nochmaliges partielles Ableiten erhält man die
zweiten partiellen Ableitungen an der Stelle p ∈ U :

∂xj
∂xk

f(p) := ∂xj
(∂xk

f(q))
∣

∣

∣

q=p
und ∂2

xk
f(p) := ∂xk

(∂xk
f(q))

∣

∣

∣

q=p
.

Für die Wahl der Zahlenpaare (j, k) gibt es insgesamt n2 Möglichkeiten und ent-
sprechend viele zweite partielle Ableitungen, die zu einer quadratischen Matrix zu-
sammengestellt werden.

4.3.4 Definition Die n× n-Matrix

Hf(p) :=
(

∂xj
∂xi

f(p)
)

i,j=1,...,n

wird als Hessesche Matrix von f bei p bezeichnet.
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Nehmen wir jetzt zusätzlich an, dass die zweiten partiellen Ableitungen von f
überall stetig sind. Man schreibt dafür f ∈ C2(U).

4.3.5 Lemma Sei f ∈ C2(U). Dann gilt ∂xi
∂xj

f(p) = ∂xj
∂xi

f(p) für alle i, j. Das
heisst, die Matrix Hf (p) ist symmetrisch.

Auf den Beweis verzichten wir hier. Schauen wir uns nochmals die vorher be-
trachteten Beispiele an.

4.3.6 Beispiele 1. f(x, y) = x2 + y2 für x, y ∈ R. Dann ist ∇f(x, y) =

(

2x
2y

)

und Hf(x, y) =

(

∂2
xf ∂y∂xf

∂x∂yf ∂2
yf

)

=

(

2 0
0 2

)

.

2. f(x, y) = xy für x, y ∈ R. Hier ist ∇f(x, y) =

(

y
x

)

und Hf(x, y) =

(

0 1
1 0

)

.

3. f(x, y) = 1 − (x2 − 1)2 − y2 für x, y ∈ R. Dann erhalten wir ∇f(x, y) =
(

−4(x2 − 1)x
−2y

)

und Hf(x, y) =

(

−12x2 + 4 0
0 −2

)

.

Um nun das notwendige Kriterium für lokale Extrema formulieren zu können,
brauchen wir die im vorigen Kapitel untersuchten Eigenschaften quadratischer For-
men. Erinnern wir an die Begriffe:

4.3.7 Definition Eine symmetrische Matrix A ist positiv definit, wenn all ihre
Eigenwerte positiv sind. Sie ist negativ definit, wenn all ihre Eigenwerte negativ
sind. Hat die Matrix A sowohl negative als auch positive Eigenwerte, dann nennen
wir A indefinit.

Man kann folgendes zeigen:

4.3.8 Bemerkung Eine symmetrische invertierbare 2×2-Matrix A ist genau dann
indefinit, wenn detA < 0 ist. Sie ist positiv (bzw. negativ) definit, wenn detA > 0
und Spur(A) > 0 (bzw. Spur(A) < 0) ist.

Eine symmetrische invertierbare 3 × 3-Matrix A ist genau dann positiv definit,
wenn detA > 0, detB > 0 und a11 > 0 ist. Hier bezeichnet B diejenige 2×2-Matrix,
die aus A durch Streichen der letzten Zeile und Spalte entsteht.

Hier nun das gewünschte Kriterium:

4.3.9 Satz Sei f ∈ C2(U) für eine offene Teilmenge U ⊂ R
n. Sei p ∈ U eine

kritische Stelle von f . Dann gilt:

1. Ist die Hessesche Matrix Hf(p) positiv definit, so hat f bei p ein isoliertes
lokales Minimum.

2. Ist die Hessesche Matrix Hf(p) negativ definit, so hat f bei p ein isoliertes
lokales Maximum.
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3. Ist Hf(p) indefinit, so hat f bei p kein lokales Extremum, sondern einen Sat-
telpunkt.

Für n = 1 ist ∇f(a) = (f ′(a)), kritische Stellen sind also gerade die Nullstellen
von f ′. Ausserdem hat die Hessesche Matrix dann den Typ 1 × 1 und ist genau
dann positiv (bzw. negativ) definit, wenn f ′′(a) positiv (bzw. negativ) ist. Also
verallgemeinert dieser Satz das bekannte Kriterium für Funktionen einer Variablen.

Den Beweis des Satzes werden wir später nachtragen. Wenden wir das Kriterium
hier zunächst auf die bereits erwähnten Beispiele an.

4.3.10 Beispiele 1. f(x, y) = x2 + y2 für x, y ∈ R. Die Hessesche Matrix im

Nullpunkt lautet Hf(0, 0) =

(

2 0
0 2

)

. Diese Matrix hat den doppelten Ei-

genwert 2, ist also positiv definit. Deshalb hat f im Nullpunkt ein isoliertes
Minimum, wie wir bereits oben direkt gesehen haben.

2. f(x, y) = xy für x, y ∈ R. Die einzige kritische Stelle ist wiederum der Null-

punkt und Hf(0, 0) =

(

0 1
1 0

)

. Diese Matrix hat die Eigenwerte ±1, ist also

indefinit. Und tatsächlich hat f im Nullpunkt einen Sattelpunkt.

3. f(x, y) = 1 − (x2 − 1)2 − y2 für x, y ∈ R. Die Hessesche Matrix an einer

Stelle (x, y) lautet hier Hf(x, y) =

(

−12x2 + 4 0
0 −2

)

. Für den Nullpunkt

erhalten wir Hf (0, 0) =

(

4 0
0 −2

)

. Diese Matrix ist indefinit, denn sie hat

die Eigenwerte 4 und −2. Also hat f im Nullpunkt einen Sattelpunkt. An den

beiden anderen kritischen Stellen haben wir Hf(±1, 0) =

(

−8 0
0 −2

)

. Hier

ist die Hessesche Matrix negativ definit und deshalb hat f dort jeweils isolierte
Maxima, in Übereinstimmung mit dem früheren Ergebnis.

4. Sei jetzt f(x, y) = −x3 + xy + y2 für x, y ∈ R. Der Gradient von f lautet

∇f(x, y) =

(

−3x2 + y
x+ 2y

)

. Er verschwindet genau dann, wenn x = −2y und

−12y2+ y = 0 sind. Die Funktion f hat also zwei kritische Punkte: p1 = (0, 0)
und p2 = (−1

6
, 1

12
). Die Hessematrix an der Stelle (x, y) lautet:

Hf(x, y) =

(

−6x 1
1 2

)

.

Für den Nullpunkt erhalten wir

Hf(0, 0) =

(

0 1
1 2

)

.

Diese Matrix hat die Determinante −1, ist also indefinit. Also liegt im Null-
punkt ein Sattelpunkt vor. Für den zweiten kritischen Punkt ist

Hf(p2) =

(

1 1
1 2

)

.
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Hier ist die Determinante ist gleich +1 und der Eintrag in der oberen linken
Ecke ist ebenfalls positiv. Also ist Hf(p2) positiv definit und an der Stelle p2
liegt ein Minimum vor.

5. Für f(x, y) = cosx ist ∇f(x, y) =

(

− sin x
0

)

und Hf(x, y) =

(

− cosx 0
0 0

)

.

An den kritischen Stellen pk = (kπ, 0) ist Hf(kπ, 0) =

(

− cos kπ 0
0 0

)

=
(

(−1)k+1 0
0 0

)

. Die Hessesche Matrix ist hier also weder positiv noch negativ

definit, noch indefinit, und über diesen Fall macht der Satz keine Aussage.

4.3.11 Bemerkung Ist p ein kritischer Punkt von f und ist Hf(p) positiv semide-
finit, das heisst, sind sämtliche Eigenwerte von Hf(p) grösser oder gleich Null und
ist mindestens ein Eigenwert positiv, dann kann f bei p ein isoliertes oder nichtiso-
liertes lokales Minimum oder einen Sattelpunkt haben. Aber ein lokales Maximum
ist ausgeschlossen.

4.3.12 Beispiele • Die Funktion f(x, y) = x2 + y3 hat im Nullpunkt einen

Sattelpunkt und Hf(0, 0) =

(

2 0
0 0

)

.

• Die Funktion f(x, y) = x2 + y4 hat im Nullpunkt ein isoliertes Minimum, und

wiederum ist Hf(0, 0) =

(

2 0
0 0

)

.

Man kann die beschriebene Methode zur Bestimmung der lokalen Extrema einer
Funktion in mehreren Variablen nun einsetzen, um damit mehrdimensionale Opti-
mierungsaufgaben zu lösen. Hier dazu ein Beispiel:

4.3.13 Beispiel Nehmen wir an, zur Verpackung von Speiseeis zu jeweils 1000ml
werde eine quaderförmige Schachtel verwendet, und man sucht nun dasjenige For-
mat, bei dem am wenigsten Materialkosten anfallen. Das bedeutet: Man sucht nach
demjenigen Quader mit Seitenlängen x, y, z und Gesamtvolumen xyz = 1000, der
die kleinste Oberfläche hat. Die Oberfläche ist die Summe der 6 Seitenflächen, also

g(x, y, z) = 2(xy + yz + xz) .

Mit der Bedingung xyz = 1000 kann man die Variable z eliminieren, indem man
z = 1000

xy
einsetzt. Es ergibt sich eine Funktion in zwei Variablen, deren Minimum

im Bereich x, y > 0 gesucht wird:

f(x, y) = 2(xy + (x+ y) · 1000
xy

) .

Jetzt berechnen wir erst die kritischen Stellen von f :

∇f(x, y) =

(

2y − 2000/x2

2x− 2000/y2

)

=

(

0
0

)
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genau dann, wenn x2y = 1000 = y2x. Weil x, y > 0 sind, folgt x = y und x3 = 1000.
Es gibt also im Bereich x, y > 0 nur einen kritischen Punkt bei x = y = 10, und die
entsprechende Schachtel ist in diesem Fall ein Würfel der Seitenlänge 10cm. Mit der
Hessematrix überprüfen wir jetzt noch, dass es sich wirklich um ein Minimum von
f handelt.

Hf (x, y) =

(

4000/x3 2
2 4000/y3

)

, also Hf(10, 10) =

(

4 2
2 4

)

.

Die Hessematrix beim kritischen Punkt ist positiv definit, f hat also dort tatsächlich
ein isoliertes Minimum.


