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4.3.14 BEMERKUNG Ist eine Funktion f in zwei Variablen an der Stelle p = (xq, yo)
einmal stetig differenzierbar, dann hat der Graph von f an der Stelle (p, f(p)) eine
eindeutig bestimmte Tangentialebene, die durch die folgende Gleichung gegeben ist:

2= f(p) + (0.f(p)) (x —x0) + (O f () (¥ — o) -

Die Tangentialebene ist parallel zur x-y-Ebene genau dann, wenn p ein kritischer
Punkt von f ist.

Beweis. Die Tangenten an den Graphen von f in z-Richtung und in y-Richtung
erzeugen die Tangentialebene. Deren Steigungen werden gerade durch die entspre-
chenden partiellen Ableitungen angegeben.  q.e.d.

4.3.15 BEISPIEL Die Funktion f(z,y) = 2? + y* hat an der Stelle p = (0,1) die
Tangentialebene, gegeben durch die Gleichung

2= J(0,1) + (80, ) &+ (9,f(0, 1)) (y = 1) =1 +2(y = 1).

An der Stelle p = (1, 1) lautet die Gleichung der Tangentialebene z = 2+ 2(x — 1) +
2(y — 1).

4.4 TAYLORENTWICKLUNG

Wir machen hier einen kleinen Exkurs iiber Wege (zum Beispiel in der Ebene oder
im Raum), bevor wir den Beweis des Satzes 4.3.9 nachtragen.

Unter einem Weg oder einer parametrisierten Kurve in R™ versteht man eine
Abbildung ~: I — R™ von einem offenen oder abgeschlossenen Intervall I C R
nach R", die komponentenweise stetig ist. Es handelt sich also um eine Funktion
von einer Variablen, deren Bild sich im R™ befindet. Wenn wir die Variable als die
Zeit interpretieren, so konnen wir uns vorstellen, dass 7(f) jeweils den Ort eines
Massenpunktes zur Zeit ¢ angibt. Das Bild von ~, ndmlich die Teilmenge {v(t) |
t € I} C R", ist gerade die Bahnkurve, die der Massenpunkt im Laufe der Zeit
zuriicklegt.

In Analogie zum eindimensionalen Fall definiert man Differenzierbarkeit hier
folgendermassen:

4.4.1 DEFINITION Man bezeichnet v: I — R" als differenzierbar an der Stelle ¢y €
I, falls der folgende Grenzwert existiert:

(1) — Jip 1 = (o)
7o) = fim t—ty

Man nennt ~ differenzierbar, wenn v an jeder Stelle differenzierbar ist. Und schliess-
lich heisst v stetig differenzierbar, wenn +' stetig ist.
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4.4.2 BEMERKUNG o Wir kénnen +/(to) als Geschwindigkeitsvektor von ~y zum
Zeitpunkt tq auffassen. Denn der Differenzenquotient %Zo(to) gibt jeweils ei-
ne Sekante des Weges an, und der Grenzwert fiir t — ty, beschreibt einen

Tangentialvektor an die Bahn.

e Der Weg ~ ist genau dann an der Stelle t, differenzierbar, wenn alle Kompo-
nenten von vy bei ty differenzierbare Funktionen sind. Ist genauer
1(t) i (t)
VW)= : |,sogilty(t)=|
(1) 2, (1)
4.4.3 BEISPIEL Seir > 0 vorgegeben. Der Weg ~(t) = (rcost,rsint) fir ¢t € [0, 27]
hat als Bild eine Kreislinie von Radius r. Er ist differenzierbar und die Ableitung ist

v (t) = (—rsint,rcost) fiir t € [0,27]. Der Betrag der Geschwindigkeit ist fiir den
gesamten Weg konstant, denn

YOl = /1 sin?() + r2 cos?(t) = 1

aber die Richtung der Bewegung dndert sich natiirlich. Der Geschwindigkeitsvektor
ist jeweils tangent an die Kreislinie.

4.4.4 BEISPIEL Sind p # g zwei Punkte in R", so kénnen wir die Verbindungsstrecke
von p nach ¢ durch folgenden Weg parametrisieren:

y(t) =1 —-t)p+tqg firtel0,1].

Hier ist 7/(t) = ¢ — p fiir alle t. Die Geschwindigkeit ist also iiber die gesamte
Wegstrecke konstant.

4.4.5 BEMERKUNG Ist v injektiv und +'(t) # 0 Vt, dann hat jeder Punkt auf der
Kurve eine eindeutige Tangente und es handelt sich um einen glatten Weg.

Hier sind zwei Beispiele von Kurven mit singuléren Stellen.

4.4.6 BEISPIEL Die Kurve, definiert durch () = (¢2,3) (fiir t € R), hat eine Spitze
im Nullpunkt und ist bekannt unter dem Namen Neillsche Parabel.

Die Kurve a(t) = (t*—1,t(t* — 1)) (fiir t € R) hat im Nullpunkt eine Selbstiiber-
schneidung, dort gibt es also sogar zwei Tangenten in einem Punkt.

Fiir die Zusammensetzung von Funktionen mit Wegen gilt folgende Kettenregel:

4.4.7 SATZ Sei U C R™ offen, 7:[a,b] — U ein stetig differenzierbarer Weg und
f:U — R stetig partiell differenzierbar. Dann ist f o 7:[a,b] — R differenzierbar
und es gilt:

d

L FO@) = (V1) 7)) = Zé‘xjf(v(t)) (1),

wobei y(t) = (z1(t), ..., z,(1)).
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Beweis. Wir fithren den Beweis der Einfachheit halber nur fiir n = 2. Der hoéher-
dimensionale Fall ist entsprechend. Sei jetzt ty € [a, b] fest gewdhlt und sei y(ty) =
(x0,%0). Um die Ableitung von f o~ bei tg zu bestimmen, betrachten wir zunéchst
den Differenzenquotienten

f((t),y(1)) = fwo,y0) _ f@(®),y(t) = flzo.y(t) | fl@o,y(t) — f(xo.40)

t—to t—to t—to

Nach dem Mittelwertsatz der Differentialrechnung, angewendet auf die Funktion
h(t) = f(xo,y(t)), gibt es ein ¢; zwischen t; und ¢ mit:

flao,y(®) = f@o,yo) _ b(O) =hlte) _ i,y
t—t t—1o

Und nach der eindimensionalen Kettenregel ist A'(t1) = [0y f(xo, y(t1))] - ¥/ (¢1). Ent-
sprechend gibt es fiir die Funktion ¢(t) = f(x(t),y) fiir festgehaltenes y ein t5 mit

He ) = Jn)  SOZ90) _ (1) = o, f(olt) )] /(1)

Setzen wir dies ein, erhalten wir zusammen

fx),y(t) — f (o, yo)
t—to

= [0af (x(t2), y(1))] - 7' (t2) + [0y f (w0, y(t1))] - ' (t2)

Weil nach Voraussetzung die partiellen Ableitungen von f, sowie die Komponenten
von v und deren Ableitungen stetig sind, liefert der Grenziibergang von ¢ nach
die Behauptung.  q.e.d.

4.4.8 FOLGERUNG Sei v:[a,b] — U ein Weg mit ~'(t) # 0 fiir alle t. Verlduft
der Weg v ganz in einer Niveaumenge von f, dann steht der Gradient von f an
jeder Stelle p = ~(t) senkrecht auf dem Geschwindigkeitsvektor ~/'(t). Ist f eine
Funktion in 2 Variablen, dann steht also das Gradientenvektorfeld senkrecht auf
den Niveaulinien. Ausserdem zeigt der Gradient an jeder Stelle in die Richtung des
steilsten Anstiegs der Funktion f.

Beweis. Ist f(v(t)) = c fiir alle ¢, dann folgt aus der Kettenregel (V f(y(t)),~'(t)) =
0, und das heisst Vf(y(¢)) L +'(¢). q.ed.

Nun koénnen wir auch den Beweis des Kriteriums 4.3.9 zur Bestimmung lokaler
Extrema von Funktionen in mehreren Variablen mithilfe der Hessematrix nachtra-
gen. Das Kriterium sagt folgendes:

Satz Sei f € C?(U) fiir eine offene Teilmenge U C R™. Sei p € U eine kritische
Stelle von f. Dann gilt:

1. Ist die Hessesche Matrix Hy(p) positiv definit, so hat f bei p ein isoliertes
lokales Minimum.
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2. Ist die Hessesche Matrix H(p) negativ definit, so hat f bei p ein isoliertes
lokales Maximum.

3. Ist H;(p) indefinit, so hat f bei p kein lokales Extremum, sondern einen Sat-
telpunkt.

Beweis. Sei jetzt n > 2. Weil U offen ist, gibt es ein r > 0 mit K,.(p) C U. Zu
v € R™ mit ||v|| = 1 betrachten wir die Funktion in einer Variablen

g(t) :== f(p+tv) fir |t] <r.

Nach der Kettenregel 4.4.7 ist

n

g(t) = (Vf(p+tv),v) =Y duf(p+tv)v;,

=1

wobei vy, ..,v, die Koordinaten von v bezeichnen. Daraus folgt wiederum mit der
Kettenregel:

g"(0) =) 8,00, f (p) vivy = v" Hy(p)u.
ij=1
Weil p nach Voraussetzung ein kritischer Punkt von f ist, gilt ¢’(0) = 0. Ist nun aus-
serdem die Hessematrix H(p) positiv definit, so nimmt die zugehorige quadratische
Form (ausser bei Null) nur positive Werte an. Also ist ¢”(0) > 0. Das eindimensiona-
le Kriterium liefert also, dass g bei ¢ = 0 ein isoliertes lokales Minimum hat. Dies gilt
fiir jede Wahl des Richtungsvektors v und das bedeutet, dass f bei p ein isoliertes

lokales Minimum hat. Entsprechend argumentiert man in den anderen Fiéllen. d
q.e.d.

Hier nochmals die schon erwéhnte Bemerkung iiber Fille, in denen das Kriterium
nicht direkt anwendbar ist:

4.4.9 BEMERKUNG Ist p ein kritischer Punkt von f und ist H;(p) positiv semide-
finit, das heisst, sind sdmtliche Eigenwerte von H(p) grosser oder gleich Null und
ist mindestens ein Figenwert positiv, dann kann f bei p ein isoliertes oder nichtiso-
liertes lokales Minimum oder einen Sattelpunkt haben. Aber ein lokales Maximum
ist ausgeschlossen.

Beweis. Denn ist v ein Eigenvektor zu dem positiven Eigenwert A, so gilt fiir g(¢) =
f(p+ tv) wie im Beweis oben gezeigt ¢”(0) = v H¢(p)v = A||v||> > 0. Also hat die
Funktion g bei t = 0 ein isoliertes lokales Minimum, das heisst, fiir geniigend kleine
t # 0 gilt f(p) < f(p+ tv). Also kann die Funktion f bei p kein lokales Maximum
haben.  q.e.d.

Schauen wir uns die Sattelpunkte nochmal genauer an. Nehmen wir an, f habe an
einer Stelle p eine indefinite Hessematrix mit einem positiven und einem negativen
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Eigenwert. Dann sieht der Graph von f in der Ndhe von p aus wie ein Pass in
einem Gebirge. Denn ist v ein Eigenvektor zu dem negativen Eigenwert, etwa A < 0,
dann hat g(t) = f(p + tv) an der Stelle ¢ = 0 ein isoliertes lokales Maximum, weil
g"(0) = vT"H;(p)v = A||v|]* < 0 ist. Und entsprechend gilt fiir einen Eigenvektor
w zum positiven Eigenwert, dass h(t) = f(p + tw) bei t = 0 ein isoliertes lokales
Minimum hat, weil A”(0) > 0. Also zeigt v in die Richtung einer Passstrasse auf dem
Graphen von f und w zeigt in die Richtung eines Wanderweges, der die Strasse auf
der Passhohe iiberquert.

4.4.10 BEISPIEL Sei wieder f(x,y) = —2® + zy + y*. Wie bereits nachgerechnet,
hat f im Nullpunkt einen Sattelpunkt mit der Hessematrix

H,(0,0) = ((1’ ;) .

Die Eigenwerte dieser Matrix sind A\; = 1 + V2 und Ay =1 — /2. Ein Eigenvektor
zum negativen Eigenwert )y ist zum Beispiel v = 1 _1 Va2 ) Die Gerade durch v
gibt also die Richtung der Passstrasse in diesem konkreten Beispiel an.

Die Taylorentwicklung (bis zum Grad 2) einer Funktion f um einen Punkt p in
mehreren Dimensionen lautet folgendermassen:

4.4.11 FOLGERUNG Sei f € C*(U) fiir eine offene Teilmenge U C R", p € U und
K (p) C U. Dann gilt fiir alle v € R", ||v|| =1 und t € R mit |t| < e:

2

Flp+t0) = £) + KV (D). ) + 5 v Hy(p)o + P R(),

wobei R(v) einen Restterm bezeichnet, der stetig von v abhingt und fiir den gilt
R(0) = 0.

Beweis. Betrachten wir wieder die Funktion ¢(t) = f(p + tv) fiir einen fest gewéhl-
ten Richtungsvektor v und iibersetzen wir die Taylorentwicklung von ¢ bei t = 0,
erhalten wir die behauptete Entwicklung in vier Terme, denn ¢'(0) = (V(f)(p),v)
und ¢”(0) = v H;(p)v, wie eben gezeigt. q.e.d.

4.4.12 BEISPIEL Fiir die Funktion f(z,y) = m lautet die Taylorentwicklung
an der Stelle p = (0,0) fiir v = (x,y) mit ||v|]* = 2*> + 3> = 1:

flp+tv) = flte,ty) =1+ t(x+y)+ *(x +y)* + * R(x,y) fiir ¢ < 1.

4.5 WEGLANGE UND KRUMMUNG

4.5.1 DEFINITION Ist 7: [a,b] — R™ einmal stetig differenzierbar, so kann man die
Lange der entsprechenden Kurve folgendermassen definieren:

Liy) = / Y ()]]dt.
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Wir kénnen diese Definition auch auf Wege mit endlich vielen Knickstellen aus-
dehnen. Damit ist genauer folgendes gemeint: Sei a = t) < t; < ... < t, = b
eine Teilung des Intervalls [a,b], und seien ~i: [ty_1,tx] — R" stetig differenzier-
bar (fiir £k = 1,...,n). Ist jetzt v:[a,b] — R™ stetig und gilt v(¢) = x(t) fiir alle
tr_1 <t < tg, dann nennen wir « stiickweise stetig differenzierbar. In diesem Fall
setzen wir

L(y) =) L)
k=1

Sei C!([a,b],R™) die Menge aller stiickweise stetig differenzierbaren Kurven. Dazu
gehoren zum Beispiel die stiickweise geradlinigen Kurven, die sogenannten Poly-
gonziige. Die Definition der Weglénge passt auch zur anschaulichen Vorstellung, wie
die folgenden Eigenschaften zeigen:

1. Die Kurve 7: [0, 1] = R™, ¢ — (1—t)p+tq, parametrisiert die Strecke zwischen p
und ¢, und wir erhalten L(v) = fol |7/ ()] dt = ||p—ql|, wie es der Anschauung
entspricht.

2. Seien p = po, p1,- - ., Pn = q Punkte in R™ und sei v: [0, n] — R™ definiert durch
Y(t) = (k—t)pr—1+ (@t —(k—1))ps fir k—1 <t <k, k=1,...,n Dann
parametrisiert v den Polygonzug durch p,p1,...,pn_1, ¢, und wir erhalten wie
gewiinscht:

L(v) = ZL(%) = Z ||pr — peall-

3. Ist (ym) eine Folge von Polygonziigen, die “gutartig” gegen v € C!([a,b], R™)
konvergiert, dann gilt:

b b
L(y) = / lim |7, (8)]|dt = lim / (Ol dt = Tim Limm).
a m—roQ m—0o0 a m—roQ

(Man muss hier voraussetzen, dass sowohl die Folge der Wege, als auch die
Folge der Ableitungen jeweils “gleichmissig” gegen v bzw. ' konvergieren.)

4. Ist der Weg so parametrisiert, dass man stets mit (im Betrag) konstanter
Geschwindigkeit v unterwegs ist, das heisst ||7/(¢)|| = v fiir alle ¢, dann ist

b
Lw):/ W ®lldt=v-(b—a).

WEeil in dieser Situation pro Zeiteinheit die Strecke v zuriickgelegt wird, gibt
v(b — a) tatséchlich die Gesamtlinge des Weges an.

5. Die Wegléange ist unabhéngig von der Wahl der Parametrisierung. Genauer:
Ist v € Cl([a,b],R") und ist @:[r,s] — [a,b] bijektiv, stetig differenzierbar
und gilt ¢'(x) > 0 fiir alle x € [r, 5], so gilt wegen der Substitutionsregel:

Loow) = [ ztrec@lde= [ W@ - @) ds =
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b
/HﬂMW:LM-

Hier noch ein kurzer Kommentar zu den Voraussetzungen. Ist ~ stetig differen-
zierbar, so ist 7 ebenfalls stetig, der Betrag von +/ ist deshalb auf [a, b] beschrinkt,
etwa durch M. Daraus folgt L(vy) < ff Mdt = M(b— a) < oo. Die Weglénge ist in
diesem Fall also immer ein endlicher Wert.

Wiirde man die Voraussetzung abschwichen, wire das nicht mehr garantiert. Es
gibt Wege, die zwar differenzierbar sind, deren Ableitung aber nicht iiberall stetig
ist, und deren Wegléinge unendlich ist. Genauer gilt dann lim,_;, [ ||7/(t)||dt = oo
(siche Beispiel in den Ubungen). Noch schlimmer sieht es bei nur stetigen Kurven
aus. Peano hat eine Kurve 7:[0,1] — R? konstruiert, deren Bild sogar ein ganzes
Quadrat in der Ebene komplett ausfiillt. Das Bild von -y ist also nicht eindimensional,
sondern zweidimensional!

Wenn ein Weg sogar zweimal stetig differenzierbar ist und so parametrisiert ist,
dass [|7/(t)|| konstant ist, dann gibt die zweite Ableitung ~”(¢) Auskunft tiber die
Kriimmung des Weges.

4.5.2 DEFINITION Wir sagen, ein Weg 7 ist im Bogenmass parametrisiert, wenn
[|7/(t)]] = 1 ist fiir alle ¢. In diesem Fall gilt fiir die Weglénge des Abschnitts von

7(t1) bis y(t2) t
2
[ =t
t1
Fiir einen im Bogenmass parametrisierten Weg definieren wir die Kriimmung des
Weges an einer Stelle p = (t) als k(p) = ||7"(t)]].

4.5.3 BEISPIEL Die Parametrisierung der Kreislinie von Radius » > 0, gegeben
durch y(t) = (rcos(L), rsin(L)), erfiillt die Bedingung, +'(¢t) = (—sin(%), cos(%)) hat
immer die Linge 1. Ausserdem ist 7”(¢) = % (—cos(%),sin(%)) und daher s(t) =

[[7"(t)]] = L. Je grosser der Radius, um so kleiner ist also die Kriimmung.

4.5.4 BEMERKUNG Ist v im Bogenmass parametrisiert und zweimal stetig differen-

zierbar, dann gilt:

V() LA (t) Vi
Sei jetzt an einer Stelle p = (t) die zweite Ableitung " (t) # 0. Dann spannen der
Tangentialvektor ~/'(t) und der Vektor ~"(t) eine Ebene durch p auf. Die Kreislinie
in dieser Ebene von Radius r = %) um den Punkt q = p + r?y"(t) beriihrt die
Kurve an der Stelle p und wird als Kriimmungskreis bei p bezeichnet.

4.5.5 BEISPIEL Die rdumliche Schraubenlinie, parametrisiert durch
t t t
t) = (r cos(——=), rsin , )
(1) = (rcos( i) Psin ). )

erfiillt die Bedingung an die erste Ableitung, und man findet hier x(t) = - Bs
ist also eine Kurve konstanter Kriimmung.




Kapitel 5

Integration im Mehrdimensionalen

5.1 WEGINTEGRALE UND POTENTIALE

Sei D C R” eine offene Teilmenge. Ist U: D — R eine stetig partiell differenzierbare
Funktion, dann liefert der Gradient das sogenannte Gradientenvektorfeld, das jedem
Punkt p € U auf stetige Art einen Vektor VU(p) an der Stelle p zuordnet. Allge-
meiner versteht man unter einem stetigen Vektorfeld F: D — R" eine Zuordnung,
die jedem Punkt p € D einen Vektor F(p) zuordnet, der stetig von p abhéngt. Da-
bei kann es sich zum Beispiel um die Geschwindigkeit einer Stromung an der Stelle
p handeln. Die Gradientenvektorfelder spielen eine besondere Rolle, wie wir gleich
sehen werden.

5.1.1 DEFINITION Das Vektorfeld F wird als konservativ bezeichnet, wenn eine
zweimal stetig differenzierbare Funktion U: D — R existiert, ein sogenanntes Po-
tential fiir F', so dass

F(z)=VU(z) firallez € D.

5.1.2 BEISPIELE e Bezeichnen wir fiir (z,y, z) € R3 die Linge des entsprechen-
den Ortsvektors mit r = /a2 + y2 + 22. Das Gravitationsfeld auf R3 \ {0},
definiert durch

1 T
F(xvyvz):_ﬁ Yy
z

ist das Gradientenvektorfeld des Potentials U(z,y, z) = L.

ysin(z)
e Sei jetzt F(x,y,2) = | xsin(z) +y | fiir (z,y,2) € R3. Um ein Potential U
xy cos(z)
fiir F' zu finden, verwenden wir zunéchst die erste Komponente von F' und
integrieren sie iiber x:

Ulx,y,z) = /ysin(z) dx + C(y, z) = zysin(z) + C(y, 2) .

Nun ist die Funktion C(y,z) noch so zu bestimmen, dass 9,U(z,y,z) =
xsin(z) + 0,C(y, z) = xsin(z) + y und 0,U(x,y, 2) = zy cos(z) + 0,C(y, 2) =
zy cos(z). Also hat F' das Potential U(z,y,z) = zysin(z) + 5y°.

Nicht jedes Vektorfeld ist konservativ. Eine notwendige Bedingung ergibt sich aus
dem Satz von Schwarz 4.3.5, den wir bereits im Zusammenhang mit der Hessematrix
erwahnt hatten.
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5.1.3 SaTz Ist f € C*(D,R), so gilt 0;0;f = 9;0,f fiir allei,j =1,...,n.

5.1.4 FOLGERUNG Ist F: D — R"™ ein konservatives Vektorfeld mit Komponenten-
funktionen Fi, ..., F,, so gilt 0;F; = 0;F; fiirallei,j=1,...,n

0
5.1.5 BEISPIEL Das Vektorfeld F(xz,y,z) = | 22? | besitzt kein Potential, denn
3y
Oy Fs(x,y,2) =6y # 0= 0,Fy(z,y, 2).

Betrachten wir jetzt eine differenzierbare Kurve 7: [a, b] — D im Gebiet D.

5.1.6 DEFINITION Das Wegintegral des Vektorfeldes F' langs der Kurve 7 ist fol-
gendermassen definiert:

/ / (t)) dt = /abﬁ-dg.

Das Skalarprodukt von F' an der Stelle v(¢) mit dem Geschwindigkeitsvektor 5 (%)
gibt die Komponente von F' in Richtung des Weges an, und dariiber wird eigentlich
integriert.

Man kann (dhnlich wie bei der Definition der Weglénge) zeigen, dass diese Defi-
nition des Wegintegrals unabhéngig von der Wahl der Parametrisierung des Weges
ist. Der Begriff des Wegintegrals stammt aus der klassischen Mechanik. Ist F' ein
Kraftfeld, so gibt das Integral von F' liangs v die physikalische Arbeit an, die bei
einer Bewegung im Kraftfeld entlang des Weges v geleistet wird bzw. die Energie,
die fiir die Bewegung aufzuwenden ist.

5.1.7 BEISPIELE 1. Sei v(t) = p+t(g —p), 0 < t < 1, der geradlinige Weg
0
von p nach ¢ in R* und F(z,y,z) = | 0 | (¢ > 0 konstant) ein konstantes
—c
Kraftfeld in z-Richtung. Man kann sich darunter die Gravitationskraft nahe
der Erdoberfliche vorstellen. Dann ist

0

/ / (1)) dt = /01<_o g —pydt = —c(x(q) — 2(p)).

C

wobei z(q), z(p) jeweils die z—Koordinaten der Punkte p und ¢ bezeichnen. Dies
heisst also, dass die Arbeit, die aufzuwenden ist, um eine Masse im Schwerefeld
der Erde von p nach ¢ zu bewegen, nur von der Hohendifferenz der Punkte
abhéngt.

2. Sei y(t) = (rcost,rsint), 0 < t < 27, eine Kreislinie und F(z,y) = <2§)

(¢ > 0 konstant) ein radiales Kraftfeld. Dann ist

[ = [Crawsoa= [T (G -,
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3. Seiy(t) = (¢3,1) (fir 0 <t < 1), F(z,y) = (_xy) Dann ist

1 1
/F:/(—t3-2t+t2~3t2)dt:/ thdt =1/5.
v 0 0

Ein Potential ist die mehrdimensionale Entsprechung einer Stammfunktion fiir
ein Vektorfeld bezogen auf Wegintegrale. Genauer gilt folgendes:

5.1.8 SATZ Ist F konservativ mit Potential U, und ~y: [a,b] — D ein Weg von y(a) =
p nach v(b) = q, so hangt das Wegintegral von F iiber v nur von p und q ab:

/F:U(Q)—U(p)-

Insbesondere verschwinden alle Wegintegrale iiber F' ldngs geschlossener Wege. Ist
ausserdem D wegzusammenhédngend, so ist das Potential U bis auf Konstante ein-
deutig festgelegt.

Beweis. Das Vektorfeld F' ist das Gradientenfeld der Funktion U. Setzen wir dies
ein und verwenden die Kettenregel 4.4.7, erhalten wir:

b b
[P = [vue@iwyi= [ Guaed=U60) - vo).

Nehmen wir nun ausserdem an, dass D wegzusammenhéngend ist. Wir wéhlen einen
Punkt a € D als Basispunkt fest aus. Sei jetzt V' ein weiteres Potential fiir F. Zu
x € D wahlen wir einen Weg von a nach x und erhalten wie eben:

/F:U(x)—U(a):V(:p)—V(a).

gl
Daraus folgt U(x) —V (z) = U(a) —V (a) =: ¢, also konstant fir allez € D.  q.e.d.

Dieser Satz bedeutet, dass in einem konservativen Kraftfeld die Energie erhalten
bleibt und es nicht mdoglich ist, ein perpetuum mobile zu bauen. Allerdings ist nicht
jedes Vektorfeld konservativ, und zwar selbst wenn die notwendige Bedingung 5.1.4
erfiillt ist. Hier dazu ein Beispiel:

—y
5.1.9 BEISPIEL Sei D :=R?\ {(0,0)} und F(x,y) = | ¥ ) Dies Vektorfeld gibt
1‘2+ 2
die Geschwindigkeit eines Strudels um den Nullpunkt an. Man kann nachrechnen,

dass hier die Bedingung 0, F» = 0, F} erfiillt ist. Auf dem Bereich z > 0 hat F' das
Potential U(z,y) = arctan(y/z).

Aber F besitzt dennoch kein Potential auf ganz D, denn das Wegintegral von F
iiber den folgenden geschlossenen Weg verschwindet nicht. Sei dazu der Einheitskreis

cos(t) " .
sin(t) ) (fiir t € [0, 27]). Dann haben wir:

LF _ /O%((‘Cii;(lg)) , (Zié?if)) dt — /02ﬂ<sm2(t) +cost(t)) dt = 2 4 0.

parametrisiert durch (t) = (
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Verkleinert man aber den Definitionsbereich D auf eine kleine Kugel (ohne Loch),
so kann man, wenn die notwendige Bedingung erfiillt ist, immer auch ein (lokales)
Potential konstruieren.

5.1.10 SATZ Sei D = Kg(p) C R" eine offene Kreisscheibe und sei F: D — R" ein
stetig differenzierbares Vektorfeld mit Komponentenfunktionen Fi, ..., F,, so dass
0,F; = 0;F; fiir allei,j = 1,...,n. Dann besitzt F' ein Potential auf D.

Beweis. Wir kénnen nach eventueller Verschiebung annehmen, dass p = 0 ist. Zu g €
Kg(0) bezeichne 7,: [0,1] — D den geradlinigen Weg von p nach ¢, parametrisiert
durch 7,(t) = tq fiir 0 < ¢ < 1. Die Koordinaten von ¢ bezeichnen wir mit xy, ..., z,.
Setze

1 1 n
U(:L‘l,...,l‘n):/ F:/ <F(tx1,...,txn),q)dt:/ ZFj(txl,...,t:pn)xjdt.
Ya 0 0 =1

Wir behaupten, dass U ein Potential fiir F' ist, d.h. 0,,U = Fj fiir j = 1,...,n.
Wir zeigen dies nur fiir j = 1. Fiir die anderen Koordinaten argumentiert man
entsprechend.

0,U(0) = [ 0u[3 Fitano.. tw)adt = [ IR0+ Y@ F () - a)at.

Nach Voraussetzung gilt 0, F; = 9; F fiir alle j. Also erhalten wir mit der Kettenregel
4.4.7

O, Uy, ... 20) = /Ol[Fl(tq) + tzn:(ajFl(tq))) x| dt =

j=1
1

[ 1R + 1R, )t = [ SR &= R - A,

q.e.d.

5.1.11 BEIsPIEL Wenden wir dies an auf das bereits erwiahnte Vektorfeld, definiert
ysin(z)

durch F(x,y,z) = | xsin(z) |. Um das Potential zu finden, setzen wir wie im
xy cos(z)

Satz:

1
Ulx,y,z) = / (xFy(tx, ty, t2) + yFy(te, ty, tz) + 2F3(te, ty, tz)) dt =
0

/o (z(ty) sin(tz)+y(tz) sin(tz)+zt22y cos(tz)) dt = a:y/o (2t sin(tz)+2t* cos(tz)) dt .

Die Stammfunktion dieses Integranden ist leicht zu raten, und wir erhalten das oben
bereits genannte Potential von F"
t=1

= xysin(z) .
t=0

Ul(x,y,z) = zyt*sin(tz)



