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4.3.14 Bemerkung Ist eine Funktion f in zwei Variablen an der Stelle p = (x0, y0)
einmal stetig differenzierbar, dann hat der Graph von f an der Stelle (p, f(p)) eine
eindeutig bestimmte Tangentialebene, die durch die folgende Gleichung gegeben ist:

z = f(p) + (∂xf(p)) (x− x0) + (∂yf(p)) (y − y0) .

Die Tangentialebene ist parallel zur x-y-Ebene genau dann, wenn p ein kritischer

Punkt von f ist.

Beweis. Die Tangenten an den Graphen von f in x-Richtung und in y-Richtung
erzeugen die Tangentialebene. Deren Steigungen werden gerade durch die entspre-
chenden partiellen Ableitungen angegeben. q.e.d.

4.3.15 Beispiel Die Funktion f(x, y) = x2 + y2 hat an der Stelle p = (0, 1) die
Tangentialebene, gegeben durch die Gleichung

z = f(0, 1) + (∂xf(0, 1)) x+ (∂yf(0, 1)) (y − 1) = 1 + 2(y − 1) .

An der Stelle p = (1, 1) lautet die Gleichung der Tangentialebene z = 2+2(x−1)+
2(y − 1).

4.4 Taylorentwicklung

Wir machen hier einen kleinen Exkurs über Wege (zum Beispiel in der Ebene oder
im Raum), bevor wir den Beweis des Satzes 4.3.9 nachtragen.

Unter einem Weg oder einer parametrisierten Kurve in R
n versteht man eine

Abbildung γ: I → R
n von einem offenen oder abgeschlossenen Intervall I ⊂ R

nach R
n, die komponentenweise stetig ist. Es handelt sich also um eine Funktion

von einer Variablen, deren Bild sich im R
n befindet. Wenn wir die Variable als die

Zeit interpretieren, so können wir uns vorstellen, dass γ(t) jeweils den Ort eines
Massenpunktes zur Zeit t angibt. Das Bild von γ, nämlich die Teilmenge {γ(t) |
t ∈ I} ⊂ R

n, ist gerade die Bahnkurve, die der Massenpunkt im Laufe der Zeit
zurücklegt.

In Analogie zum eindimensionalen Fall definiert man Differenzierbarkeit hier
folgendermassen:

4.4.1 Definition Man bezeichnet γ: I → R
n als differenzierbar an der Stelle t0 ∈

I, falls der folgende Grenzwert existiert:

γ′(t0) = lim
t→t0

γ(t)− γ(t0)

t− t0
.

Man nennt γ differenzierbar , wenn γ an jeder Stelle differenzierbar ist. Und schliess-
lich heisst γ stetig differenzierbar , wenn γ′ stetig ist.
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4.4.2 Bemerkung • Wir können γ′(t0) als Geschwindigkeitsvektor von γ zum

Zeitpunkt t0 auffassen. Denn der Differenzenquotient
γ(t)−γ(t0)

t−t0
gibt jeweils ei-

ne Sekante des Weges an, und der Grenzwert für t → t0 beschreibt einen

Tangentialvektor an die Bahn.

• Der Weg γ ist genau dann an der Stelle t0 differenzierbar, wenn alle Kompo-

nenten von γ bei t0 differenzierbare Funktionen sind. Ist genauer

γ(t) =





x1(t)
...

xn(t)



, so gilt γ′(t) =





x′

1(t)
...

x′

n(t)



 .

4.4.3 Beispiel Sei r > 0 vorgegeben. Der Weg γ(t) = (r cos t, r sin t) für t ∈ [0, 2π]
hat als Bild eine Kreislinie von Radius r. Er ist differenzierbar und die Ableitung ist
γ′(t) = (−r sin t, r cos t) für t ∈ [0, 2π]. Der Betrag der Geschwindigkeit ist für den
gesamten Weg konstant, denn

||γ′(t)|| =
√

r2 sin2(t) + r2 cos2(t) = r ,

aber die Richtung der Bewegung ändert sich natürlich. Der Geschwindigkeitsvektor
ist jeweils tangent an die Kreislinie.

4.4.4 Beispiel Sind p 6= q zwei Punkte in R
n, so können wir die Verbindungsstrecke

von p nach q durch folgenden Weg parametrisieren:

γ(t) := (1− t)p+ tq für t ∈ [0, 1].

Hier ist γ′(t) = q − p für alle t. Die Geschwindigkeit ist also über die gesamte
Wegstrecke konstant.

4.4.5 Bemerkung Ist γ injektiv und γ′(t) 6= 0 ∀t, dann hat jeder Punkt auf der

Kurve eine eindeutige Tangente und es handelt sich um einen glatten Weg.

Hier sind zwei Beispiele von Kurven mit singulären Stellen.

4.4.6 Beispiel Die Kurve, definiert durch γ(t) = (t2, t3) (für t ∈ R), hat eine Spitze
im Nullpunkt und ist bekannt unter dem Namen Neillsche Parabel.

Die Kurve α(t) = (t2−1, t(t2−1)) (für t ∈ R) hat im Nullpunkt eine Selbstüber-
schneidung, dort gibt es also sogar zwei Tangenten in einem Punkt.

Für die Zusammensetzung von Funktionen mit Wegen gilt folgende Kettenregel:

4.4.7 Satz Sei U ⊂ R
n offen, γ: [a, b] → U ein stetig differenzierbarer Weg und

f :U → R stetig partiell differenzierbar. Dann ist f ◦ γ: [a, b] → R differenzierbar

und es gilt:

d

dt
(f(γ(t)) = 〈∇f(γ(t)), γ′(t)〉 =

n
∑

j=1

∂xj
f(γ(t)) · x′

j(t) ,

wobei γ(t) = (x1(t), . . . , xn(t)).
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Beweis. Wir führen den Beweis der Einfachheit halber nur für n = 2. Der höher-
dimensionale Fall ist entsprechend. Sei jetzt t0 ∈ [a, b] fest gewählt und sei γ(t0) =
(x0, y0). Um die Ableitung von f ◦ γ bei t0 zu bestimmen, betrachten wir zunächst
den Differenzenquotienten

f(x(t), y(t))− f(x0, y0)

t− t0
=

f(x(t), y(t))− f(x0, y(t))

t− t0
+

f(x0, y(t))− f(x0, y0)

t− t0
.

Nach dem Mittelwertsatz der Differentialrechnung, angewendet auf die Funktion
h(t) = f(x0, y(t)), gibt es ein t1 zwischen t0 und t mit:

f(x0, y(t))− f(x0, y0)

t− t0
=

h(t)− h(t0)

t− t0
= h′(t1) .

Und nach der eindimensionalen Kettenregel ist h′(t1) = [∂yf(x0, y(t1))] · y′(t1). Ent-
sprechend gibt es für die Funktion g(t) = f(x(t), y) für festgehaltenes y ein t2 mit

f(x(t), y)− f(x0, y)

t− t0
=

g(t)− g(t0)

t− t0
= g′(t2) = [∂xf(x(t2), y)] · x′(t2) .

Setzen wir dies ein, erhalten wir zusammen

f(x(t), y(t))− f(x0, y0)

t− t0
= [∂xf(x(t2), y(t))] · x′(t2) + [∂yf(x0, y(t1))] · y′(t1) .

Weil nach Voraussetzung die partiellen Ableitungen von f , sowie die Komponenten
von γ und deren Ableitungen stetig sind, liefert der Grenzübergang von t nach t0
die Behauptung. q.e.d.

4.4.8 Folgerung Sei γ: [a, b] → U ein Weg mit γ′(t) 6= 0 für alle t. Verläuft

der Weg γ ganz in einer Niveaumenge von f , dann steht der Gradient von f an

jeder Stelle p = γ(t) senkrecht auf dem Geschwindigkeitsvektor γ′(t). Ist f eine

Funktion in 2 Variablen, dann steht also das Gradientenvektorfeld senkrecht auf

den Niveaulinien. Ausserdem zeigt der Gradient an jeder Stelle in die Richtung des

steilsten Anstiegs der Funktion f .

Beweis. Ist f(γ(t)) = c für alle t, dann folgt aus der Kettenregel 〈∇f(γ(t)), γ′(t)〉 =
0, und das heisst ∇f(γ(t)) ⊥ γ′(t). q.e.d.

Nun können wir auch den Beweis des Kriteriums 4.3.9 zur Bestimmung lokaler
Extrema von Funktionen in mehreren Variablen mithilfe der Hessematrix nachtra-
gen. Das Kriterium sagt folgendes:

Satz Sei f ∈ C2(U) für eine offene Teilmenge U ⊂ R
n. Sei p ∈ U eine kritische

Stelle von f . Dann gilt:

1. Ist die Hessesche Matrix Hf (p) positiv definit, so hat f bei p ein isoliertes
lokales Minimum.
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2. Ist die Hessesche Matrix Hf(p) negativ definit, so hat f bei p ein isoliertes
lokales Maximum.

3. Ist Hf(p) indefinit, so hat f bei p kein lokales Extremum, sondern einen Sat-
telpunkt.

Beweis. Sei jetzt n ≥ 2. Weil U offen ist, gibt es ein r > 0 mit Kr(p) ⊂ U . Zu
v ∈ R

n mit ||v|| = 1 betrachten wir die Funktion in einer Variablen

g(t) := f(p+ tv) für |t| < r.

Nach der Kettenregel 4.4.7 ist

g′(t) = 〈∇f(p+ tv), v〉 =
n

∑

i=1

∂xi
f(p+ tv) vi ,

wobei v1, .., vn die Koordinaten von v bezeichnen. Daraus folgt wiederum mit der
Kettenregel:

g′′(0) =
n

∑

i,j=1

∂xj
∂xi

f(p) vivj = vTHf (p)v .

Weil p nach Voraussetzung ein kritischer Punkt von f ist, gilt g′(0) = 0. Ist nun aus-
serdem die Hessematrix Hf(p) positiv definit, so nimmt die zugehörige quadratische
Form (ausser bei Null) nur positive Werte an. Also ist g′′(0) > 0. Das eindimensiona-
le Kriterium liefert also, dass g bei t = 0 ein isoliertes lokales Minimum hat. Dies gilt
für jede Wahl des Richtungsvektors v und das bedeutet, dass f bei p ein isoliertes
lokales Minimum hat. Entsprechend argumentiert man in den anderen Fällen.

q.e.d.

Hier nochmals die schon erwähnte Bemerkung über Fälle, in denen das Kriterium
nicht direkt anwendbar ist:

4.4.9 Bemerkung Ist p ein kritischer Punkt von f und ist Hf(p) positiv semide-

finit, das heisst, sind sämtliche Eigenwerte von Hf(p) grösser oder gleich Null und

ist mindestens ein Eigenwert positiv, dann kann f bei p ein isoliertes oder nichtiso-

liertes lokales Minimum oder einen Sattelpunkt haben. Aber ein lokales Maximum

ist ausgeschlossen.

Beweis. Denn ist v ein Eigenvektor zu dem positiven Eigenwert λ, so gilt für g(t) =
f(p+ tv) wie im Beweis oben gezeigt g′′(0) = vTHf(p)v = λ||v||2 > 0. Also hat die
Funktion g bei t = 0 ein isoliertes lokales Minimum, das heisst, für genügend kleine
t 6= 0 gilt f(p) < f(p + tv). Also kann die Funktion f bei p kein lokales Maximum
haben. q.e.d.

Schauen wir uns die Sattelpunkte nochmal genauer an. Nehmen wir an, f habe an
einer Stelle p eine indefinite Hessematrix mit einem positiven und einem negativen
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Eigenwert. Dann sieht der Graph von f in der Nähe von p aus wie ein Pass in
einem Gebirge. Denn ist v ein Eigenvektor zu dem negativen Eigenwert, etwa λ < 0,
dann hat g(t) = f(p + tv) an der Stelle t = 0 ein isoliertes lokales Maximum, weil
g′′(0) = vTHf(p)v = λ||v||2 < 0 ist. Und entsprechend gilt für einen Eigenvektor
w zum positiven Eigenwert, dass h(t) = f(p + tw) bei t = 0 ein isoliertes lokales
Minimum hat, weil h′′(0) > 0. Also zeigt v in die Richtung einer Passstrasse auf dem
Graphen von f und w zeigt in die Richtung eines Wanderweges, der die Strasse auf
der Passhöhe überquert.

4.4.10 Beispiel Sei wieder f(x, y) = −x3 + xy + y2. Wie bereits nachgerechnet,
hat f im Nullpunkt einen Sattelpunkt mit der Hessematrix

Hf(0, 0) =

(

0 1
1 2

)

.

Die Eigenwerte dieser Matrix sind λ1 = 1 +
√
2 und λ2 = 1 −

√
2. Ein Eigenvektor

zum negativen Eigenwert λ2 ist zum Beispiel v =

(

1
1−

√
2

)

. Die Gerade durch v

gibt also die Richtung der Passstrasse in diesem konkreten Beispiel an.

Die Taylorentwicklung (bis zum Grad 2) einer Funktion f um einen Punkt p in
mehreren Dimensionen lautet folgendermassen:

4.4.11 Folgerung Sei f ∈ C2(U) für eine offene Teilmenge U ⊂ R
n, p ∈ U und

Kǫ(p) ⊂ U . Dann gilt für alle v ∈ R
n, ||v|| = 1 und t ∈ R mit |t| < ǫ:

f(p+ tv) = f(p) + t〈∇(f)(p), v〉+ t2

2
vTHf (p)v + t2R(v) ,

wobei R(v) einen Restterm bezeichnet, der stetig von v abhängt und für den gilt

R(0) = 0.

Beweis. Betrachten wir wieder die Funktion g(t) = f(p+ tv) für einen fest gewähl-
ten Richtungsvektor v und übersetzen wir die Taylorentwicklung von g bei t = 0,
erhalten wir die behauptete Entwicklung in vier Terme, denn g′(0) = 〈∇(f)(p), v〉
und g′′(0) = vTHf(p)v, wie eben gezeigt. q.e.d.

4.4.12 Beispiel Für die Funktion f(x, y) = 1
1−(x+y)

lautet die Taylorentwicklung

an der Stelle p = (0, 0) für v = (x, y) mit ||v||2 = x2 + y2 = 1:

f(p+ tv) = f(tx, ty) = 1 + t(x+ y) + t2(x+ y)2 + t2R(x, y) für |t| < 1.

4.5 Weglänge und Krümmung

4.5.1 Definition Ist γ: [a, b] → R
n einmal stetig differenzierbar, so kann man die

Länge der entsprechenden Kurve folgendermassen definieren:

L(γ) :=

∫ b

a

||γ′(t)||dt .
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Wir können diese Definition auch auf Wege mit endlich vielen Knickstellen aus-
dehnen. Damit ist genauer folgendes gemeint: Sei a = t0 < t1 < . . . < tn = b
eine Teilung des Intervalls [a, b], und seien γk: [tk−1, tk] → R

n stetig differenzier-
bar (für k = 1, . . . , n). Ist jetzt γ: [a, b] → R

n stetig und gilt γ(t) = γk(t) für alle
tk−1 ≤ t ≤ tk, dann nennen wir γ stückweise stetig differenzierbar. In diesem Fall
setzen wir

L(γ) :=

n
∑

k=1

L(γk) .

Sei C1
s ([a, b],R

n) die Menge aller stückweise stetig differenzierbaren Kurven. Dazu
gehören zum Beispiel die stückweise geradlinigen Kurven, die sogenannten Poly-
gonzüge. Die Definition der Weglänge passt auch zur anschaulichen Vorstellung, wie
die folgenden Eigenschaften zeigen:

1. Die Kurve γ: [0, 1] → R
n, t 7→ (1−t)p+tq, parametrisiert die Strecke zwischen p

und q, und wir erhalten L(γ) =
∫ 1

0
||γ′(t)|| dt = ||p−q|| ,wie es der Anschauung

entspricht.

2. Seien p = p0, p1, . . . , pn = q Punkte in R
n und sei γ: [0, n] → R

n definiert durch
γ(t) = (k − t)pk−1 + (t − (k − 1))pk für k − 1 ≤ t ≤ k, k = 1, . . . , n. Dann
parametrisiert γ den Polygonzug durch p, p1, . . . , pn−1, q, und wir erhalten wie
gewünscht:

L(γ) =
n

∑

k=1

L(γk) =
n

∑

k=1

||pk − pk−1|| .

3. Ist (γm) eine Folge von Polygonzügen, die “gutartig” gegen γ ∈ C1
s ([a, b],R

n)
konvergiert, dann gilt:

L(γ) =

∫ b

a

lim
m→∞

||γ′

m(t)|| dt = lim
m→∞

∫ b

a

||γ′

m(t)|| dt = lim
m→∞

L(γm) .

(Man muss hier voraussetzen, dass sowohl die Folge der Wege, als auch die
Folge der Ableitungen jeweils “gleichmässig” gegen γ bzw. γ′ konvergieren.)

4. Ist der Weg so parametrisiert, dass man stets mit (im Betrag) konstanter
Geschwindigkeit v unterwegs ist, das heisst ||γ′(t)|| = v für alle t, dann ist

L(γ) =

∫ b

a

||γ′(t)|| dt = v · (b− a) .

Weil in dieser Situation pro Zeiteinheit die Strecke v zurückgelegt wird, gibt
v(b− a) tatsächlich die Gesamtlänge des Weges an.

5. Die Weglänge ist unabhängig von der Wahl der Parametrisierung. Genauer:
Ist γ ∈ C1

s ([a, b],R
n) und ist ϕ: [r, s] → [a, b] bijektiv, stetig differenzierbar

und gilt ϕ′(x) > 0 für alle x ∈ [r, s], so gilt wegen der Substitutionsregel:

L(γ ◦ ϕ) =
∫ s

r

|| d
dx

(γ ◦ ϕ(x))|| dx =

∫ s

r

||γ′(ϕ(x))|| · ϕ′(x) dx =
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∫ b

a

||γ′(t)|| dt = L(γ) .

Hier noch ein kurzer Kommentar zu den Voraussetzungen. Ist γ stetig differen-
zierbar, so ist γ′ ebenfalls stetig, der Betrag von γ′ ist deshalb auf [a, b] beschränkt,

etwa durch M . Daraus folgt L(γ) ≤
∫ b

a
M dt = M(b − a) < ∞. Die Weglänge ist in

diesem Fall also immer ein endlicher Wert.
Würde man die Voraussetzung abschwächen, wäre das nicht mehr garantiert. Es

gibt Wege, die zwar differenzierbar sind, deren Ableitung aber nicht überall stetig
ist, und deren Weglänge unendlich ist. Genauer gilt dann limx→b

∫ x

a
||γ′(t)||dt = ∞

(siehe Beispiel in den Übungen). Noch schlimmer sieht es bei nur stetigen Kurven
aus. Peano hat eine Kurve γ: [0, 1] → R

2 konstruiert, deren Bild sogar ein ganzes
Quadrat in der Ebene komplett ausfüllt. Das Bild von γ ist also nicht eindimensional,
sondern zweidimensional!

Wenn ein Weg sogar zweimal stetig differenzierbar ist und so parametrisiert ist,
dass ||γ′(t)|| konstant ist, dann gibt die zweite Ableitung γ′′(t) Auskunft über die
Krümmung des Weges.

4.5.2 Definition Wir sagen, ein Weg γ ist im Bogenmass parametrisiert, wenn
||γ′(t)|| = 1 ist für alle t. In diesem Fall gilt für die Weglänge des Abschnitts von
γ(t1) bis γ(t2)

∫ t2

t1

||γ′(t)|| dt = t2 − t1 .

Für einen im Bogenmass parametrisierten Weg definieren wir die Krümmung des
Weges an einer Stelle p = γ(t) als κ(p) = ||γ′′(t)||.

4.5.3 Beispiel Die Parametrisierung der Kreislinie von Radius r > 0, gegeben
durch γ(t) = (r cos( t

r
), r sin( t

r
)), erfüllt die Bedingung, γ′(t) = (− sin( t

r
), cos( t

r
)) hat

immer die Länge 1. Ausserdem ist γ′′(t) = 1
r
(− cos( t

r
), sin( t

r
)) und daher κ(t) =

||γ′′(t)|| = 1
r
. Je grösser der Radius, um so kleiner ist also die Krümmung.

4.5.4 Bemerkung Ist γ im Bogenmass parametrisiert und zweimal stetig differen-

zierbar, dann gilt:

γ′′(t) ⊥ γ′(t) ∀t .
Sei jetzt an einer Stelle p = γ(t) die zweite Ableitung γ′′(t) 6= 0. Dann spannen der

Tangentialvektor γ′(t) und der Vektor γ′′(t) eine Ebene durch p auf. Die Kreislinie

in dieser Ebene von Radius r = 1
κ(p)

um den Punkt q = p + r2γ′′(t) berührt die

Kurve an der Stelle p und wird als Krümmungskreis bei p bezeichnet.

4.5.5 Beispiel Die räumliche Schraubenlinie, parametrisiert durch

γ(t) = (r cos(
t√

r2 + 1
), r sin(

t√
r2 + 1

),
t√

r2 + 1
) ,

erfüllt die Bedingung an die erste Ableitung, und man findet hier κ(t) = r
r2+1

. Es
ist also eine Kurve konstanter Krümmung.



Kapitel 5

Integration im Mehrdimensionalen

5.1 Wegintegrale und Potentiale

Sei D ⊂ R
n eine offene Teilmenge. Ist U :D → R eine stetig partiell differenzierbare

Funktion, dann liefert der Gradient das sogenannte Gradientenvektorfeld , das jedem
Punkt p ∈ U auf stetige Art einen Vektor ∇U(p) an der Stelle p zuordnet. Allge-
meiner versteht man unter einem stetigen Vektorfeld F :D → R

n eine Zuordnung,
die jedem Punkt p ∈ D einen Vektor F (p) zuordnet, der stetig von p abhängt. Da-
bei kann es sich zum Beispiel um die Geschwindigkeit einer Strömung an der Stelle
p handeln. Die Gradientenvektorfelder spielen eine besondere Rolle, wie wir gleich
sehen werden.

5.1.1 Definition Das Vektorfeld F wird als konservativ bezeichnet, wenn eine
zweimal stetig differenzierbare Funktion U :D → R existiert, ein sogenanntes Po-

tential für F , so dass
F (x) = ∇U(x) für alle x ∈ D.

5.1.2 Beispiele • Bezeichnen wir für (x, y, z) ∈ R
3 die Länge des entsprechen-

den Ortsvektors mit r =
√

x2 + y2 + z2. Das Gravitationsfeld auf R3 \ {0},
definiert durch

F (x, y, z) = − 1

r3





x
y
z





ist das Gradientenvektorfeld des Potentials U(x, y, z) = 1
r
.

• Sei jetzt F (x, y, z) =





y sin(z)
x sin(z) + y
xy cos(z)



 für (x, y, z) ∈ R
3. Um ein Potential U

für F zu finden, verwenden wir zunächst die erste Komponente von F und
integrieren sie über x:

U(x, y, z) =

∫

y sin(z) dx+ C(y, z) = xy sin(z) + C(y, z) .

Nun ist die Funktion C(y, z) noch so zu bestimmen, dass ∂yU(x, y, z) =
x sin(z) + ∂yC(y, z) = x sin(z) + y und ∂zU(x, y, z) = xy cos(z) + ∂zC(y, z) =
xy cos(z). Also hat F das Potential U(x, y, z) = xy sin(z) + 1

2
y2.

Nicht jedes Vektorfeld ist konservativ. Eine notwendige Bedingung ergibt sich aus
dem Satz von Schwarz 4.3.5, den wir bereits im Zusammenhang mit der Hessematrix
erwähnt hatten.
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5.1.3 Satz Ist f ∈ C2(D,R), so gilt ∂i∂jf = ∂j∂if für alle i, j = 1, . . . , n.

5.1.4 Folgerung Ist F :D → R
n ein konservatives Vektorfeld mit Komponenten-

funktionen F1, . . . , Fn, so gilt ∂iFj = ∂jFi für alle i, j = 1, . . . , n.

5.1.5 Beispiel Das Vektorfeld F (x, y, z) =





0
2x2

3y2



 besitzt kein Potential, denn

∂yF3(x, y, z) = 6y 6= 0 = ∂zF2(x, y, z).

Betrachten wir jetzt eine differenzierbare Kurve γ: [a, b] → D im Gebiet D.

5.1.6 Definition Das Wegintegral des Vektorfeldes F längs der Kurve γ ist fol-
gendermassen definiert:

∫

γ

F :=

∫ b

a

〈F (γ(t)), γ̇(t)〉 dt =
∫ b

a

~F · d~s .

Das Skalarprodukt von F an der Stelle γ(t) mit dem Geschwindigkeitsvektor γ̇(t)
gibt die Komponente von F in Richtung des Weges an, und darüber wird eigentlich
integriert.

Man kann (ähnlich wie bei der Definition der Weglänge) zeigen, dass diese Defi-
nition des Wegintegrals unabhängig von der Wahl der Parametrisierung des Weges
ist. Der Begriff des Wegintegrals stammt aus der klassischen Mechanik. Ist F ein
Kraftfeld, so gibt das Integral von F längs γ die physikalische Arbeit an, die bei
einer Bewegung im Kraftfeld entlang des Weges γ geleistet wird bzw. die Energie,
die für die Bewegung aufzuwenden ist.

5.1.7 Beispiele 1. Sei γ(t) = p + t(q − p), 0 ≤ t ≤ 1, der geradlinige Weg

von p nach q in R
3 und F (x, y, z) =





0
0
−c



 (c > 0 konstant) ein konstantes

Kraftfeld in z-Richtung. Man kann sich darunter die Gravitationskraft nahe
der Erdoberfläche vorstellen. Dann ist

∫

γ

F =

∫ 1

0

〈F (γ(t)), γ̇(t)〉 dt =
∫ 1

0

〈





0
0
−c



 , q − p〉 dt = −c(z(q)− z(p)) ,

wobei z(q), z(p) jeweils die z–Koordinaten der Punkte p und q bezeichnen. Dies
heisst also, dass die Arbeit, die aufzuwenden ist, um eine Masse im Schwerefeld
der Erde von p nach q zu bewegen, nur von der Höhendifferenz der Punkte
abhängt.

2. Sei γ(t) = (r cos t, r sin t), 0 ≤ t ≤ 2π, eine Kreislinie und F (x, y) =

(

cx
cy

)

(c > 0 konstant) ein radiales Kraftfeld. Dann ist
∫

γ

F =

∫ 2π

0

〈F (γ(t)), γ̇(t)〉 dt =
∫ 2π

0

〈
(

cr cos t
cr sin t

)

,

(

−r sin t
r cos t

)

〉 dt = 0 .
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3. Sei γ(t) = (t2, t3) (für 0 ≤ t ≤ 1), F (x, y) =

(

−y
x

)

. Dann ist

∫

γ

F =

∫ 1

0

(−t3 · 2t+ t2 · 3t2) dt =
∫ 1

0

t4 dt = 1/5 .

Ein Potential ist die mehrdimensionale Entsprechung einer Stammfunktion für
ein Vektorfeld bezogen auf Wegintegrale. Genauer gilt folgendes:

5.1.8 Satz Ist F konservativ mit Potential U , und γ: [a, b] → D ein Weg von γ(a) =
p nach γ(b) = q, so hängt das Wegintegral von F über γ nur von p und q ab:

∫

γ

F = U(q)− U(p) .

Insbesondere verschwinden alle Wegintegrale über F längs geschlossener Wege. Ist

ausserdem D wegzusammenhängend, so ist das Potential U bis auf Konstante ein-

deutig festgelegt.

Beweis. Das Vektorfeld F ist das Gradientenfeld der Funktion U . Setzen wir dies
ein und verwenden die Kettenregel 4.4.7, erhalten wir:

∫

γ

F =

∫ b

a

〈∇U(γ(t)), γ̇(t)〉 dt =
∫ b

a

d

dt
U(γ(t)) dt = U(γ(b))− U(γ(a)) .

Nehmen wir nun ausserdem an, dass D wegzusammenhängend ist. Wir wählen einen
Punkt a ∈ D als Basispunkt fest aus. Sei jetzt V ein weiteres Potential für F . Zu
x ∈ D wählen wir einen Weg von a nach x und erhalten wie eben:

∫

γ

F = U(x)− U(a) = V (x)− V (a) .

Daraus folgt U(x)−V (x) = U(a)−V (a) =: c, also konstant für alle x ∈ D. q.e.d.

Dieser Satz bedeutet, dass in einem konservativen Kraftfeld die Energie erhalten
bleibt und es nicht möglich ist, ein perpetuum mobile zu bauen. Allerdings ist nicht
jedes Vektorfeld konservativ, und zwar selbst wenn die notwendige Bedingung 5.1.4
erfüllt ist. Hier dazu ein Beispiel:

5.1.9 Beispiel Sei D := R
2\{(0, 0)} und F (x, y) =

(

−y

x2+y2
x

x2+y2

)

. Dies Vektorfeld gibt

die Geschwindigkeit eines Strudels um den Nullpunkt an. Man kann nachrechnen,
dass hier die Bedingung ∂xF2 = ∂yF1 erfüllt ist. Auf dem Bereich x > 0 hat F das
Potential U(x, y) = arctan(y/x).

Aber F besitzt dennoch kein Potential auf ganz D, denn das Wegintegral von F
über den folgenden geschlossenen Weg verschwindet nicht. Sei dazu der Einheitskreis

parametrisiert durch γ(t) =

(

cos(t)
sin(t)

)

(für t ∈ [0, 2π]). Dann haben wir:

∫

γ

F =

∫ 2π

0

〈
(

− sin(t)
cos(t)

)

,

(

− sin(t)
cos(t)

)

〉 dt =
∫ 2π

0

(sin2(t) + cos2(t)) dt = 2π 6= 0 .
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Verkleinert man aber den Definitionsbereich D auf eine kleine Kugel (ohne Loch),
so kann man, wenn die notwendige Bedingung erfüllt ist, immer auch ein (lokales)
Potential konstruieren.

5.1.10 Satz Sei D = KR(p) ⊂ R
n eine offene Kreisscheibe und sei F :D → R

n ein

stetig differenzierbares Vektorfeld mit Komponentenfunktionen F1, . . . , Fn, so dass

∂jFi = ∂iFj für alle i, j = 1, . . . , n. Dann besitzt F ein Potential auf D.

Beweis. Wir können nach eventueller Verschiebung annehmen, dass p = 0 ist. Zu q ∈
KR(0) bezeichne γq: [0, 1] → D den geradlinigen Weg von p nach q, parametrisiert
durch γq(t) = tq für 0 ≤ t ≤ 1. Die Koordinaten von q bezeichnen wir mit x1, . . . , xn.
Setze

U(x1, . . . , xn) =

∫

γq

F =

∫ 1

0

〈F (tx1, . . . , txn), q〉 dt =
∫ 1

0

n
∑

j=1

Fj(tx1, . . . , txn) xj dt .

Wir behaupten, dass U ein Potential für F ist, d.h. ∂xj
U = Fj für j = 1, . . . , n.

Wir zeigen dies nur für j = 1. Für die anderen Koordinaten argumentiert man
entsprechend.

∂x1
U(q) =

∫ 1

0

∂x1
[

n
∑

j=1

Fj(tx1, . . . , txn) xj] dt =

∫ 1

0

[F1(tq) + t
n

∑

j=1

(∂1Fj(tq)) · xj ] dt .

Nach Voraussetzung gilt ∂1Fj = ∂jF1 für alle j. Also erhalten wir mit der Kettenregel
4.4.7

∂x1
U(x1, . . . , xn) =

∫ 1

0

[F1(tq) + t
n

∑

j=1

(∂jF1(tq))) xj ] dt =

∫ 1

0

[F1(tq) + t〈∇F1(tq), q〉] dt =
∫ 1

0

d

dt
(tF1(tq)) dt = tF1(tq)

∣

∣

∣

1

0
= F1(q) .

q.e.d.

5.1.11 Beispiel Wenden wir dies an auf das bereits erwähnte Vektorfeld, definiert

durch F (x, y, z) =





y sin(z)
x sin(z)
xy cos(z)



. Um das Potential zu finden, setzen wir wie im

Satz:

U(x, y, z) :=

∫ 1

0

(xF1(tx, ty, tz) + yF2(tx, ty, tz) + zF3(tx, ty, tz)) dt =

∫ 1

0

(x(ty) sin(tz)+y(tx) sin(tz)+zt2xy cos(tz)) dt = xy

∫ 1

0

(2t sin(tz)+zt2 cos(tz)) dt .

Die Stammfunktion dieses Integranden ist leicht zu raten, und wir erhalten das oben
bereits genannte Potential von F :

U(x, y, z) = xyt2 sin(tz)
∣

∣

∣

t=1

t=0
= xy sin(z) .


