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Kapitel 1

Gewohnliche Differentialgleichungen erster Ordnung

Unter einer gewohnlichen Differentialgleichung versteht man eine Gleichung, in der
eine Funktion in einer Variablen zusammen mit ihren Ableitungen auftritt. Treten
in der Gleichung Ableitungen bis hochstens zur n-ten Ordnung auf, so spricht man
von einer gewohnlichen Differentialgleichung n-ter Ordnung. Hier einige Beispiele
erster oder zweiter Ordnung:

Yy+xz=0, oy =e¥ sin(z), y'+ky+w’y=0.

Dabei ist jeweils y = y(z) als Funktion aufzufassen, die von = abhéngt. Léasst sich
die Gleichung nach der hochsten Ableitung auflésen, kann man sie in der folgenden
expliziten Form schreiben:

y"(2) = fle,y(@),....y" V()

wobei f: D C R x R” — R eine stetige Funktion in n + 1 Variablen bezeichnet.
Eine n-mal stetig differenzierbare Funktion ¢ € C"((a,b),R) ist eine Losung dieser
Differentialgleichung, wenn fiir alle z € (a, b) gilt:

(P(n)(x) = f(xa (p(:L‘), R (p(n_l)(l‘)) .

Im ersten Kapitel werden zunédchst einmal gewohnliche Differentialgleichungen erster
Ordnung genauer betrachtet.

1.1 ANFANGSWERTPROBLEME

Schauen wir uns eine Differentialgleichung der folgenden Form an

dy
/——:
V= f(z,y),

wobei f: D C R? — R eine stetige Funktion in zwei Variablen ist (und D C R?
offen). Sei ausserdem (xg,yo) € D fest gewahlt.

1.1.1 DEFINITION Eine stetig differenzierbare Funktion ¢ € C1(I), definiert auf

einem offenen Intervall I C R, so dass (z,p(z)) € D fiir alle x € I, ist eine Losung
des Anfangswertproblems (kurz AWP)

d
y’zﬁzf(l’,y) und  y(z0) = yo,

falls ¢'(z) = f(x, ¢(z)) fur alle x € I und p(zo) = yo. Interpretieren wir die Variable
x als die Zeit, so gibt der Wert yy den “Anfangswert” der gesuchten Funktion zum
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Startzeitpunkt xy an. Wir nennen eine Lésung ¢ mazimal, falls das Definitionsinter-
vall I maximal gew#hlt ist und es keine Fortsetzung von ¢ auf ein grosseres Intervall
zu einer Losung gibt.

1.1.2 BEISPIELE e Die maximale Losung der Differentialgleichung 4/ = 2xy zur
Anfangsbedingung y(0) = yo (yo € R) lautet, wie man durch Trennung der
Variablen zeigen kann, ¢(z) = o - € (z € R) und ist eindeutig bestimmt.

e Sei jetzt yo > 0 vorgegeben. Die maximale Losung des Anfangswertproblems

Y =9 (y>0) und y(0)=yo

Yo

— Yox
tervall von der gestellten Anfangsbedlngung ab. Wiederum ist die Losung des
Anfangswertproblems eindeutig bestimmt.

lautet ¢(x) = fir + < —. Hier hingt also das maximale Losungsin-

e Betrachten wir nun die Differentialgleichung

v =2yl (yeR).

Die maximalen Losungen dieser Differentialgleichung sehen folgendermassen
aus. Zu jeder Wahl von Parametern —oo < ¢; < ¢y < 00 gibt es eine Losung

—(z—1)? firz<e
Perer(2) = 0 fiir ¢y < v <
(r—c)?  firz>c

Zu der Anfangsbedingung (1) = 0 zum Beispiel haben wir also unendlich viele
Losungen, namlich alle Losungen ¢, ., mit ¢; < 1 < cp. Das entsprechende
Anfangswertproblem hat also unendlich viele maximale Losungen!

e Die Mehrdeutigkeit der Losung tritt nur auf, wenn wir den Wert y = 0 zu-
lassen. Schranken wir dagegen den Definitionsbereich der Differentialgleichung
ein und betrachten etwa das Anfangswertproblem

Yy =2ylyl (y#0) und y(1)=1,

so hat dies Anfangswertproblem genau eine maximale Losung, ndmlich ¢(x) =
22 fiir x € Ryy.

Es gilt folgender Satz (von Picard und Lindel6f) zur Existenz und Eindeutigkeit
der Losung eines Anfangswertproblems:

1.1.3 SATZ Sei D C R? offen, f: D — R stetig und nach y partiell differenzierbar,
so dass 0, f(x,y) stetig von x und y abhdngt. Dann hat das Anfangswertproblem

Y = f(z,y) und y(ze) = yo

fiir jede Wahl von (xq,yo) € D eine eindeutig bestimmte maximale Lisung.
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Die maximalen Losungen einer Differentialgleichung bilden eine Kurvenschar.
Der Satz besagt, dass wenn die Voraussetzungen erfiillt sind, durch jeden Punkt im
Definitionsbereich D genau eine Kurve aus dieser Kurvenschar verlauft.

Man kann sich leicht davon iiberzeugen, dass die Voraussetzungen des Satzes in
den ersten beiden Beispielen von 1.1.2 erfiillt sind, im dritten Beispiel dagegen nicht.
Der Beweis des Satzes wird etwas spéter nachgeliefert. Doch zunéchst sollen einige
Losungsmethoden diskutiert werden.

1.2 ELEMENTARE LOSUNGSMETHODEN

Die Losungen der Anfangswertprobleme in den Beispielen 1.1.2 kann man mithilfe
der Methode der Trennung der Variablen bestimmen. Diese Methode lasst sich
anwenden, wenn die fragliche Gleichung folgenden Typ hat:

fiir gewisse stetige Funktionen a und b in jeweils einer Variablen. Taucht x auf der
rechten Seite der Gleichung nicht auf wie im zweiten und dritten Beispiel, dann ist
einfach a(z) = 1 zu setzen. Erinnern wir kurz daran, wie dies Verfahren funktioniert.
Wenn man nur solche y-Werte in Betracht zieht, fiir die b(y) # 0 ist, dann kann man

die Gleichung umformen in
dy /
— = [ a(x)dx.
/ b(y) 2

Wenn man jetzt auf beiden Seiten die Integration ausfithrt und schliesslich nach y
auflost, erhélt man die gesuchten Losungen.
Wir fithren das Verfahren hier exemplarisch fiir das erste Beispiel aus 1.1.2 durch.
Wir schreiben diese Gleichung (unter der Annahme yo # 0 # y) zunéchst um in
y':@:2xy & @:2xdx.
dx Y

Auf diese Weise erscheint die Variable y nur noch auf der linken und die Variable x
nur noch auf der rechten Seite der Gleichung. Nun integrieren wir beide Seiten und

erhalten p
/ Y _ / 2z dx .
Y

Hinter dieser Schreibweise verbirgt sich die Substitionsregel. Ausfiihrlicher kénnte
man das Vorgehen folgendermassen rechtfertigen. Die gesuchte Losung ¢ erfiillt die
Gleichung

¢'(x) =22 - o(x),
also falls yo # 0 # y:




1.2. Elementare Losungsmethoden 7

Nun integrieren wir beide Seiten {iber x und substituieren y = ¢(z). Die Substitu-
tionsregel liefert dann wie eben behauptet

d
/—y:1n|y|+01:/2xdx:x2+02,
)

wobei ¢y, co Integrationskonstanten sind. Setzen wir ¢ = ¢; — ¢; und lésen nach y
auf, erhalten wir

Hier ergibt sich also

y(a)] = et = e,

Die Anfangsbedingung y(0) = yo ist genau dann erfiillt, wenn e® = |yo| ist. Also
lautet die Losung des AWP wie behauptet:

2

p(z) =yo-e
Man sieht, dass y = () nie den Wert 0 annimmt, wenn yo # 0 ist. Also war die
Annahme y # 0 gerechtfertigt. Im Fall yy = 0 argumentiert man entsprechend.

In giinstigen Féllen kann man andere Typen von Differentialgleichungen durch
passende Variablentransformationen auf den hier beschriebenen Typ von Glei-
chung zuriickfithren. Dazu ein Beispiel.

1.2.1 BeispiEL Um das Anfangswertproblems

Yy =(x+y)?, y0)=1,

zu losen, fithren wir die neue Variable u = z + y ein. Dann gilt 3—’; =1+ Z—z =1+y.

Also nimmt die Differentialgleichung, ausgedriickt in u, die folgende einfachere Form
an:

d
u':—u:1+u2.

dx
Hier konnen wir jetzt die Variablen trennen und erhalten

du
/1—|—u2 :arctan(u):/dx:x+c.

Die allgemeine Losung ist also von der Form wu(z) = tan(x + ¢). Riicksubstitution
liefert

y(z) =tan(z +¢) — .

Die Anfangsbedingung ist genau dann erfiillt, wenn tan(c) = 1 ist. Die gesuchte
maximale Losung des Anfangswertproblem lautet also

3
y(x):tan(xjtg)—x fiir —Zﬂ<x<

o~
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Eine inhomogene lineare Differentialgleichung der Form

y' = a(z)y +b(z),

wobei a, b: [ — R stetige Funktionen auf einem Intervall I seien, ldsst sich mithilfe
der Methode der Variation der Konstanten losen, die auf Lagrange zuriickgeht.
Dazu bestimmt man durch Trennung der Variablen zunéchst die allgemeine Losung
der zugehorigen homogenen Differentialgleichung

y = a(x)y,

nimlich y(x) = c-e*®, wobei A eine Stammfunktion von a und c eine frei wihlbare

Integrationskonstante ist. Nun setzt man den Ansatz

in die inhomogene lineare Differentialgleichung ein und bestimmt die Funktion C
so, dass die Differentialgleichung erfiillt ist. Hier wiederum ein Beispiel.

1.2.2 BEISPIEL Betrachten wir die Gleichung
y = —sin(z)y + sin®(x) .

Hier ist a(z) = —sin(z), als Stammfunktion dazu wéhlen wir A(x) = cos(x). Der
Ansatz zur Losung der Gleichung lautet also hier

y(a) = C() - .
Setzt man dies in die inhomogene Differentialgleichung ein, erhélt man
C'(z) - €@ — C(x) sin(z)e®® = —sin(z)C(z)e™® + sin®(x) .

Die Funktion y(z) ist also genau dann eine Losung, wenn

C(z) = /sinB(x) e~ @) gy = /(1 — cos?(z)) e @ sin(x) du .
Mit der Substitution u = — cos(z), du = sin(z) dx, wird daraus
C(z) = /(1 —u?) et du = (1 —u?+2u—2) " = (sin?(x) — 2 cos(z) — 2) e~ =@ 4 ¢
Die gesuchte allgemeine Losung der inhomogenen Differentialgleichung ist also
y(z) = sin(z) — 2cos(z) — 2+ ¢ - e,

Wiederum kann man geeignete andere Differentialgleichungen durch passende
Variablentransformation auf den Typ der inhomogenen linearen Differentialglei-
chung zuriickfithren und so losen. Dies funktioniert zum Beispiel fiir die sogenannte
Bernoulli-Differentialgleichung, nadmlich

Yy +a(x)y+bx)y* =0, (@eRa#l).
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Denn wir konnen die Gleichung umformen in

/
1-a) % +(1—a)al@)y™+ (1 —a)bx)=0.
Setzen wir jetzt u(z) = y'~*(z). Nach der Kettenregel ist u/(z) = Ly'=*(z) =
(1 — )y *(x)y'(z). Also erfilllt y die Bernoulli-Differentialgleichung genau dann,
wenn u die folgende lineare Differentialgleichung 16st:

v+ (1—a)a(z)u+ (1—a)b(z)=0.

1.2.3 BEISPIEL Hier ein Anfangswertproblem fiir eine Bernoulli-Differentialglei-
chung mit a = 4:

/ y 4
—— 1 =0 0)=-1.
y+1+x+( +2)y y(0)

Die entsprechende lineare Differentialgleichung fiir u = 1/y3 lautet:

3
u — uw=3+3x.
1+z

Die allgemeine Losung dieser inhomogenen linearen Differentialgleichung ist
u(z) = c(1 +x)* = 3(1 + ).
Also ist die Losung der Bernoulli-Differentialgleichung von der Form

1
{’/(cx+c—3)(1+x)2.

y(x) =

Die Anfangsbedingung y(0) = —1 ist genau dann erfiillt, wenn ¢ = 2 ist. Die gesuchte

Losung lautet also
1

Y2z —1)(1+ 2)?

und ist definiert auf dem maximalen Losungsintervall —1 < z < %

y(x) =

1.3 EXAKTE DIFFERENTIALGLEICHUNGEN UND INTEGRIERENDER
FAKTOR

Ein weiterer spezieller Typ von Differentialgleichungen, bei denen sich die Losungen
unter Umsténden einfach ablesen lassen, sind die exakten Differentialgleichungen.
Hier ein Beispiel:

) _dy @

= = —— 0).
V=g~ W70
Wir konnen diese Gleichung umschreiben in

rxdr+ydy=0.
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Die linke Seite dieser Gleichung ist eine sogenannte Differentialform. Genauer ver-
steht man unter den stetigen 1-Differentialformen auf einer offenen Teilmenge D C
R? die Ausdriicke der Form

g(z,y)dr + h(z,y) dy,

wobei g, h stetige (bzw. stetig differenzierbare) Funktionen auf D sind. Dazu gehéren
beispielsweise die Differentiale von Funktionen in zwei Variablen. Ist ndmlich f eine
stetig differenzierbare Funktion auf D, so ist

df == 0, f(z,y) dx + 9, f(x,y) dy

eine sogenannte exakte stetige 1-Differentialform. Insbesondere sind dx und dy selbst
exakte Differentialformen. Sie gehoren zu den Koordinatenfunktionen = bzw. y, die
jedem Punkt p € D seine z— bzw. seine y—Koordinate in R? zuordnen. Mit Diffe-
rentialformen kann man rechnen, indem man addiert und neu zusammenfasst oder
mit stetigen Funktionen auf D multipliziert, und die Menge Q'(D) der stetigen
1-Differentialformen bildet einen reellen Vektorraum.

1.3.1 DEFINITION Eine Differentialgleichung der Form
9(@,y) dz + h(z,y) dy =0

fir (x,y) € D C R? heisst ezakt, wenn es eine stetig differenzierbare Funktion
f:D — R gibt mit 0, f = g und d,f = h. Eine differenzierbare Funktion y = ¢(z)
ist eine Losung dieser Differentialgleichung, wenn fiir alle x im Definitionsbereich
von ¢ gilt

g(z, o(x)) + h(z, ¢ (x)) '(z) = 0.

1.3.2 BEMERKUNG 1. Ist ¢ eine differenzierbare Funktion in einer Variablen,
deren Funktionsgraph ganz in einer Niveaumenge von f verlduft, also mit
f(z,0(z)) = c fiir eine Konstante ¢, dann ist ¢ eine Lisung der exakten
Differentialgleichung df = 0.

2. Ist 0, f(xo,y0) # 0, dann gibt es eine maximale Losung von df = 0 zur An-
fangsbedingung y(xo) = yo. Gilt ausserdem 0, f(x,y) # 0 fiir alle (z,y) € D,
dann ist diese maximale Losung sogar eindeutig bestimmt.

Beweis. 1. Aus der Kettenregel folgt (V f(x, p(z)), (1,¢'(x))) = 0, und das heisst

axf(xa @(x)) + ayf(l', @(x)) (p/(ZL') =0,

wie behauptet.

2. Der Graph einer Losung zur Anfangsbedingung y(xg) = yo miisste in der
Niveaumenge zu ¢y = f(xg,yo) verlaufen. Es reicht also, die Gleichung f(z,y) = ¢
nach y aufzulésen. Nach dem impliziten Funktionensatz ist dies lokal in der Néhe des
Punktes (zo, yo) moglich, wenn 9, f (xo, yo) # 0 ist. Die Eindeutigkeit der maximalen
Losung unter der zusétzlichen Annahme, dass 0, f nirgends verschwindet, ergibt sich
wiederum aus dem impliziten Funktionensatz.  q.e.d.
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1.3.3 BEISPIEL Sei r € Ry, vorgegeben. Betrachten wir das Anfangswertproblem
y=—= (y#0) und y(0)=r.
Die Differentialgleichung kénnen wir umformen in die exakte Differentialgleichung
df(x,y) =xdx +ydy =0,

wobei f(z,y) = (2% + y?). Die Niveaulinien dieser Funktion sind Kreislinien mit
dem Nullpunkt als Zentrum. Also ist die gesuchte maximale Losung zur Anfangsbe-
dingung y(0) = r eindeutig bestimmt und lautet

o(r) =vVr2—az? firze (—rr).

In manchen Fillen gelingt es, eine nichtexakte Differentialgleichung durch Mul-
tiplikation mit einem geeigneten Faktor in eine exakte Differentialgleichung zu iiber-
fiithren.

1.3.4 DEFINITION Seien wieder g, h stetig auf D C R% Man bezeichnet eine auf D
stetige Funktion M (z,y) als integrierenden Faktor fir die Differentialgleichung

g(z,y)dr + h(z,y)dy =0,

wenn nach Multiplikation mit M die Differentialgleichung exakt wird. Das heisst,
wenn eine stetig differenzierbare Funktion f auf D existiert, so dass

df (z,y) = M(z,y)g(x,y) dz + M(z,y)h(z,y) dy.
1.3.5 BEISPIEL Die Differentialgleichung
2y* dx + (1+ 3zy) dy =0

ist nicht exakt. Denn fiir g(z,y) = 2y* und h(x,y) = 1 + 3zy miisste dann gelten
gy(z,y) = hy(z,y) fir alle x, y. Hier ist aber g,(x,y) = 4y und h,(x,y) = 3y. Aber es
gibt einen integrierenden Faktor, ndmlich M (z,y) = (1+xy). Denn fiir die Funktion

flz,y) =y (1 +zy)? gilt
df (z,y) = 2y* (1 + zy) dz + (1 + 2y)? + 2zy(1 + 2y)) dy =

2y% (14 zy) dz + (1 + 32y) (1 + 2y) dy .

Die Losungen der Differentialgleichung finden wir also, indem wir

flay) =y +ay)?=c

(fiir ¢ konstant) nach y (oder einfacher nach x) auflésen.



