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5.5 Eindimensionale Wärmeleitungsgleichung . . . . . . . . . . . . . . . . 90
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• Herbert Amann, Gewöhnliche Differentialgleichungen, de Gruyter 1983. Der

Autor legt viel Wert auf motivierende Beispiele und geometrische Anschaulich-

keit.
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Kapitel 1

Gewöhnliche Differentialgleichungen erster Ordnung

Unter einer gewöhnlichen Differentialgleichung versteht man eine Gleichung, in der
eine Funktion in einer Variablen zusammen mit ihren Ableitungen auftritt. Treten
in der Gleichung Ableitungen bis höchstens zur n-ten Ordnung auf, so spricht man
von einer gewöhnlichen Differentialgleichung n-ter Ordnung. Hier einige Beispiele
erster oder zweiter Ordnung:

y′y + x = 0 , y′ = ey · sin(x) , y′′ + ky′ + ω2y = 0 .

Dabei ist jeweils y = y(x) als Funktion aufzufassen, die von x abhängt. Lässt sich
die Gleichung nach der höchsten Ableitung auflösen, kann man sie in der folgenden
expliziten Form schreiben:

y(n)(x) = f(x, y(x), . . . , y(n−1)(x)) ,

wobei f :D ⊂ R × R
n → R eine stetige Funktion in n + 1 Variablen bezeichnet.

Eine n-mal stetig differenzierbare Funktion ϕ ∈ Cn((a, b),R) ist eine Lösung dieser
Differentialgleichung, wenn für alle x ∈ (a, b) gilt:

ϕ(n)(x) = f(x, ϕ(x), . . . , ϕ(n−1)(x)) .

Im ersten Kapitel werden zunächst einmal gewöhnliche Differentialgleichungen erster
Ordnung genauer betrachtet.

1.1 Anfangswertprobleme

Schauen wir uns eine Differentialgleichung der folgenden Form an

y′ =
dy

dx
= f(x, y) ,

wobei f :D ⊂ R
2 → R eine stetige Funktion in zwei Variablen ist (und D ⊂ R

2

offen). Sei ausserdem (x0, y0) ∈ D fest gewählt.

1.1.1 Definition Eine stetig differenzierbare Funktion ϕ ∈ C1(I), definiert auf
einem offenen Intervall I ⊂ R, so dass (x, ϕ(x)) ∈ D für alle x ∈ I, ist eine Lösung
des Anfangswertproblems (kurz AWP)

y′ =
dy

dx
= f(x, y) und y(x0) = y0 ,

falls ϕ′(x) = f(x, ϕ(x)) für alle x ∈ I und ϕ(x0) = y0. Interpretieren wir die Variable
x als die Zeit, so gibt der Wert y0 den “Anfangswert” der gesuchten Funktion zum
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Startzeitpunkt x0 an. Wir nennen eine Lösung ϕ maximal, falls das Definitionsinter-
vall I maximal gewählt ist und es keine Fortsetzung von ϕ auf ein grösseres Intervall
zu einer Lösung gibt.

1.1.2 Beispiele • Die maximale Lösung der Differentialgleichung y′ = 2xy zur
Anfangsbedingung y(0) = y0 (y0 ∈ R) lautet, wie man durch Trennung der
Variablen zeigen kann, ϕ(x) = y0 · ex

2

(x ∈ R) und ist eindeutig bestimmt.

• Sei jetzt y0 > 0 vorgegeben. Die maximale Lösung des Anfangswertproblems

y′ = y2 (y > 0) und y(0) = y0

lautet ϕ(x) =
y0

1− y0x
für x < 1

y0
. Hier hängt also das maximale Lösungsin-

tervall von der gestellten Anfangsbedingung ab. Wiederum ist die Lösung des
Anfangswertproblems eindeutig bestimmt.

• Betrachten wir nun die Differentialgleichung

y′ = 2
√

|y| (y ∈ R) .

Die maximalen Lösungen dieser Differentialgleichung sehen folgendermassen
aus. Zu jeder Wahl von Parametern −∞ ≤ c1 ≤ c2 ≤ ∞ gibt es eine Lösung

ϕc1,c2(x) =







−(x− c1)
2 für x < c1

0 für c1 ≤ x ≤ c2
(x− c2)

2 für x > c2

.

Zu der Anfangsbedingung ϕ(1) = 0 zum Beispiel haben wir also unendlich viele
Lösungen, nämlich alle Lösungen ϕc1,c2 mit c1 ≤ 1 ≤ c2. Das entsprechende
Anfangswertproblem hat also unendlich viele maximale Lösungen!

• Die Mehrdeutigkeit der Lösung tritt nur auf, wenn wir den Wert y = 0 zu-
lassen. Schränken wir dagegen den Definitionsbereich der Differentialgleichung
ein und betrachten etwa das Anfangswertproblem

y′ = 2
√

|y| (y 6= 0) und y(1) = 1 ,

so hat dies Anfangswertproblem genau eine maximale Lösung, nämlich ϕ(x) =
x2 für x ∈ R>0.

Es gilt folgender Satz (von Picard und Lindelöf) zur Existenz und Eindeutigkeit
der Lösung eines Anfangswertproblems:

1.1.3 Satz Sei D ⊂ R
2 offen, f :D → R stetig und nach y partiell differenzierbar,

so dass ∂yf(x, y) stetig von x und y abhängt. Dann hat das Anfangswertproblem

y′ = f(x, y) und y(x0) = y0

für jede Wahl von (x0, y0) ∈ D eine eindeutig bestimmte maximale Lösung.
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Die maximalen Lösungen einer Differentialgleichung bilden eine Kurvenschar.
Der Satz besagt, dass wenn die Voraussetzungen erfüllt sind, durch jeden Punkt im
Definitionsbereich D genau eine Kurve aus dieser Kurvenschar verläuft.

Man kann sich leicht davon überzeugen, dass die Voraussetzungen des Satzes in
den ersten beiden Beispielen von 1.1.2 erfüllt sind, im dritten Beispiel dagegen nicht.
Der Beweis des Satzes wird etwas später nachgeliefert. Doch zunächst sollen einige
Lösungsmethoden diskutiert werden.

1.2 Elementare Lösungsmethoden

Die Lösungen der Anfangswertprobleme in den Beispielen 1.1.2 kann man mithilfe
der Methode der Trennung der Variablen bestimmen. Diese Methode lässt sich
anwenden, wenn die fragliche Gleichung folgenden Typ hat:

y′ = a(x)b(y)

für gewisse stetige Funktionen a und b in jeweils einer Variablen. Taucht x auf der
rechten Seite der Gleichung nicht auf wie im zweiten und dritten Beispiel, dann ist
einfach a(x) = 1 zu setzen. Erinnern wir kurz daran, wie dies Verfahren funktioniert.
Wenn man nur solche y-Werte in Betracht zieht, für die b(y) 6= 0 ist, dann kann man
die Gleichung umformen in

∫

dy

b(y)
=

∫

a(x) dx .

Wenn man jetzt auf beiden Seiten die Integration ausführt und schliesslich nach y
auflöst, erhält man die gesuchten Lösungen.

Wir führen das Verfahren hier exemplarisch für das erste Beispiel aus 1.1.2 durch.
Wir schreiben diese Gleichung (unter der Annahme y0 6= 0 6= y) zunächst um in

y′ =
dy

dx
= 2xy ⇔ dy

y
= 2x dx .

Auf diese Weise erscheint die Variable y nur noch auf der linken und die Variable x
nur noch auf der rechten Seite der Gleichung. Nun integrieren wir beide Seiten und
erhalten

∫

dy

y
=

∫

2x dx .

Hinter dieser Schreibweise verbirgt sich die Substitionsregel. Ausführlicher könnte
man das Vorgehen folgendermassen rechtfertigen. Die gesuchte Lösung ϕ erfüllt die
Gleichung

ϕ′(x) = 2x · ϕ(x) ,
also falls y0 6= 0 6= y:

ϕ′(x)

ϕ(x)
= 2x .
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Nun integrieren wir beide Seiten über x und substituieren y = ϕ(x). Die Substitu-
tionsregel liefert dann wie eben behauptet

∫

ϕ′(x) dx

ϕ(x)
=

∫

dy

y
=

∫

2x dx .

Hier ergibt sich also

∫

dy

y
= ln |y|+ c1 =

∫

2x dx = x2 + c2 ,

wobei c1, c2 Integrationskonstanten sind. Setzen wir c = c2 − c1 und lösen nach y
auf, erhalten wir

|y(x)| = ex
2+c = ex

2

ec .

Die Anfangsbedingung y(0) = y0 ist genau dann erfüllt, wenn ec = |y0| ist. Also
lautet die Lösung des AWP wie behauptet:

ϕ(x) = y0 · ex
2

.

Man sieht, dass y = ϕ(x) nie den Wert 0 annimmt, wenn y0 6= 0 ist. Also war die
Annahme y 6= 0 gerechtfertigt. Im Fall y0 = 0 argumentiert man entsprechend.

In günstigen Fällen kann man andere Typen von Differentialgleichungen durch
passende Variablentransformationen auf den hier beschriebenen Typ von Glei-
chung zurückführen. Dazu ein Beispiel.

1.2.1 Beispiel Um das Anfangswertproblems

y′ = (x+ y)2 , y(0) = 1 ,

zu lösen, führen wir die neue Variable u = x+ y ein. Dann gilt du
dx

= 1+ dy

dx
= 1+ y′.

Also nimmt die Differentialgleichung, ausgedrückt in u, die folgende einfachere Form
an:

u′ =
du

dx
= 1 + u2 .

Hier können wir jetzt die Variablen trennen und erhalten

∫

du

1 + u2
= arctan(u) =

∫

dx = x+ c .

Die allgemeine Lösung ist also von der Form u(x) = tan(x + c). Rücksubstitution
liefert

y(x) = tan(x+ c)− x .

Die Anfangsbedingung ist genau dann erfüllt, wenn tan(c) = 1 ist. Die gesuchte
maximale Lösung des Anfangswertproblem lautet also

y(x) = tan(x+
π

4
)− x für − 3π

4
< x <

π

4
.
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Eine inhomogene lineare Differentialgleichung der Form

y′ = a(x)y + b(x) ,

wobei a, b: I → R stetige Funktionen auf einem Intervall I seien, lässt sich mithilfe
der Methode der Variation der Konstanten lösen, die auf Lagrange zurückgeht.
Dazu bestimmt man durch Trennung der Variablen zunächst die allgemeine Lösung
der zugehörigen homogenen Differentialgleichung

y′ = a(x)y ,

nämlich y(x) = c ·eA(x), wobei A eine Stammfunktion von a und c eine frei wählbare
Integrationskonstante ist. Nun setzt man den Ansatz

y(x) = C(x) · eA(x)

in die inhomogene lineare Differentialgleichung ein und bestimmt die Funktion C
so, dass die Differentialgleichung erfüllt ist. Hier wiederum ein Beispiel.

1.2.2 Beispiel Betrachten wir die Gleichung

y′ = − sin(x)y + sin3(x) .

Hier ist a(x) = − sin(x), als Stammfunktion dazu wählen wir A(x) = cos(x). Der
Ansatz zur Lösung der Gleichung lautet also hier

y(x) = C(x) · ecos(x) .

Setzt man dies in die inhomogene Differentialgleichung ein, erhält man

C ′(x) · ecos(x) − C(x) sin(x)ecos(x) = − sin(x)C(x)ecos(x) + sin3(x) .

Die Funktion y(x) ist also genau dann eine Lösung, wenn

C(x) =

∫

sin3(x) e− cos(x) dx =

∫

(1− cos2(x)) e− cos(x) sin(x) dx .

Mit der Substitution u = − cos(x), du = sin(x) dx, wird daraus

C(x) =

∫

(1−u2) eu du = (1−u2+2u− 2) eu = (sin2(x)− 2 cos(x)− 2) e− cos(x)+ c .

Die gesuchte allgemeine Lösung der inhomogenen Differentialgleichung ist also

y(x) = sin2(x)− 2 cos(x)− 2 + c · ecos(x) .

Wiederum kann man geeignete andere Differentialgleichungen durch passende
Variablentransformation auf den Typ der inhomogenen linearen Differentialglei-
chung zurückführen und so lösen. Dies funktioniert zum Beispiel für die sogenannte
Bernoulli–Differentialgleichung , nämlich

y′ + a(x) y + b(x) yα = 0 , (α ∈ R, α 6= 1) .



1.3. Exakte Differentialgleichungen und integrierender Faktor 9

Denn wir können die Gleichung umformen in

(1− α)
y′

yα
+ (1− α) a(x) y1−α + (1− α)b(x) = 0 .

Setzen wir jetzt u(x) = y1−α(x). Nach der Kettenregel ist u′(x) = d
dx
y1−α(x) =

(1 − α)y−α(x) y′(x). Also erfüllt y die Bernoulli–Differentialgleichung genau dann,
wenn u die folgende lineare Differentialgleichung löst:

u′ + (1− α) a(x) u+ (1− α)b(x) = 0 .

1.2.3 Beispiel Hier ein Anfangswertproblem für eine Bernoulli–Differentialglei-
chung mit α = 4:

y′ +
y

1 + x
+ (1 + x) y4 = 0 y(0) = −1 .

Die entsprechende lineare Differentialgleichung für u = 1/y3 lautet:

u′ − 3

1 + x
u = 3 + 3x .

Die allgemeine Lösung dieser inhomogenen linearen Differentialgleichung ist

u(x) = c(1 + x)3 − 3(1 + x)2 .

Also ist die Lösung der Bernoulli–Differentialgleichung von der Form

y(x) =
1

3

√

(cx+ c− 3)(1 + x)2
.

Die Anfangsbedingung y(0) = −1 ist genau dann erfüllt, wenn c = 2 ist. Die gesuchte
Lösung lautet also

y(x) =
1

3

√

(2x− 1)(1 + x)2

und ist definiert auf dem maximalen Lösungsintervall −1 < x < 1
2
.

1.3 Exakte Differentialgleichungen und integrierender

Faktor

Ein weiterer spezieller Typ von Differentialgleichungen, bei denen sich die Lösungen
unter Umständen einfach ablesen lassen, sind die exakten Differentialgleichungen.
Hier ein Beispiel:

y′ =
dy

dx
= −x

y
(y 6= 0) .

Wir können diese Gleichung umschreiben in

x dx+ y dy = 0 .
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Die linke Seite dieser Gleichung ist eine sogenannte Differentialform. Genauer ver-
steht man unter den stetigen 1–Differentialformen auf einer offenen Teilmenge D ⊂
R

2 die Ausdrücke der Form

g(x, y) dx+ h(x, y) dy ,

wobei g, h stetige (bzw. stetig differenzierbare) Funktionen aufD sind. Dazu gehören
beispielsweise die Differentiale von Funktionen in zwei Variablen. Ist nämlich f eine
stetig differenzierbare Funktion auf D, so ist

df := ∂xf(x, y) dx+ ∂yf(x, y) dy

eine sogenannte exakte stetige 1–Differentialform. Insbesondere sind dx und dy selbst
exakte Differentialformen. Sie gehören zu den Koordinatenfunktionen x bzw. y, die
jedem Punkt p ∈ D seine x– bzw. seine y–Koordinate in R

2 zuordnen. Mit Diffe-
rentialformen kann man rechnen, indem man addiert und neu zusammenfasst oder
mit stetigen Funktionen auf D multipliziert, und die Menge Ω1(D) der stetigen
1–Differentialformen bildet einen reellen Vektorraum.

1.3.1 Definition Eine Differentialgleichung der Form

g(x, y) dx+ h(x, y) dy = 0

für (x, y) ∈ D ⊂ R
2 heisst exakt , wenn es eine stetig differenzierbare Funktion

f :D → R gibt mit ∂xf = g und ∂yf = h. Eine differenzierbare Funktion y = ϕ(x)
ist eine Lösung dieser Differentialgleichung, wenn für alle x im Definitionsbereich
von ϕ gilt

g(x, ϕ(x)) + h(x, ϕ(x))ϕ′(x) = 0 .

1.3.2 Bemerkung 1. Ist ϕ eine differenzierbare Funktion in einer Variablen,

deren Funktionsgraph ganz in einer Niveaumenge von f verläuft, also mit

f(x, ϕ(x)) = c für eine Konstante c, dann ist ϕ eine Lösung der exakten

Differentialgleichung df = 0.

2. Ist ∂yf(x0, y0) 6= 0, dann gibt es eine maximale Lösung von df = 0 zur An-

fangsbedingung y(x0) = y0. Gilt ausserdem ∂yf(x, y) 6= 0 für alle (x, y) ∈ D,

dann ist diese maximale Lösung sogar eindeutig bestimmt.

Beweis. 1. Aus der Kettenregel folgt 〈∇f(x, ϕ(x)), (1, ϕ′(x))〉 = 0, und das heisst

∂xf(x, ϕ(x)) + ∂yf(x, ϕ(x))ϕ
′(x) = 0 ,

wie behauptet.
2. Der Graph einer Lösung zur Anfangsbedingung y(x0) = y0 müsste in der

Niveaumenge zu c0 = f(x0, y0) verlaufen. Es reicht also, die Gleichung f(x, y) = c0
nach y aufzulösen. Nach dem impliziten Funktionensatz ist dies lokal in der Nähe des
Punktes (x0, y0) möglich, wenn ∂yf(x0, y0) 6= 0 ist. Die Eindeutigkeit der maximalen
Lösung unter der zusätzlichen Annahme, dass ∂yf nirgends verschwindet, ergibt sich
wiederum aus dem impliziten Funktionensatz. q.e.d.
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1.3.3 Beispiel Sei r ∈ R>0 vorgegeben. Betrachten wir das Anfangswertproblem

y′ = −x

y
(y 6= 0) und y(0) = r .

Die Differentialgleichung können wir umformen in die exakte Differentialgleichung

df(x, y) = x dx+ y dy = 0 ,

wobei f(x, y) = 1
2
(x2 + y2). Die Niveaulinien dieser Funktion sind Kreislinien mit

dem Nullpunkt als Zentrum. Also ist die gesuchte maximale Lösung zur Anfangsbe-
dingung y(0) = r eindeutig bestimmt und lautet

ϕ(x) =
√
r2 − x2 für x ∈ (−r, r) .

In manchen Fällen gelingt es, eine nichtexakte Differentialgleichung durch Mul-
tiplikation mit einem geeigneten Faktor in eine exakte Differentialgleichung zu über-
führen.

1.3.4 Definition Seien wieder g, h stetig auf D ⊂ R
2. Man bezeichnet eine auf D

stetige Funktion M(x, y) als integrierenden Faktor für die Differentialgleichung

g(x, y) dx+ h(x, y) dy = 0 ,

wenn nach Multiplikation mit M die Differentialgleichung exakt wird. Das heisst,
wenn eine stetig differenzierbare Funktion f auf D existiert, so dass

df(x, y) = M(x, y)g(x, y) dx+M(x, y)h(x, y) dy .

1.3.5 Beispiel Die Differentialgleichung

2y2 dx+ (1 + 3xy) dy = 0

ist nicht exakt. Denn für g(x, y) = 2y2 und h(x, y) = 1 + 3xy müsste dann gelten
gy(x, y) = hx(x, y) für alle x, y. Hier ist aber gy(x, y) = 4y und hx(x, y) = 3y. Aber es
gibt einen integrierenden Faktor, nämlich M(x, y) = (1+xy). Denn für die Funktion
f(x, y) = y (1 + xy)2 gilt

df(x, y) = 2y2 (1 + xy) dx+ ((1 + xy)2 + 2xy(1 + xy)) dy =

2y2 (1 + xy) dx+ (1 + 3xy)(1 + xy) dy .

Die Lösungen der Differentialgleichung finden wir also, indem wir

f(x, y) = y (1 + xy)2 = c

(für c konstant) nach y (oder einfacher nach x) auflösen.


