
Kapitel 6

Hilberträume und symmetrische Operatoren

6.1 Hilberträume

Im ersten Kapitel haben wir bereits Banachräume kennengelernt, also normierte
Vektorräume, die bezüglich der Norm vollständig sind. Von einem Hilbertraum wird
noch mehr verlangt, nämlich dass die Norm durch ein Skalarprodukt gegeben ist.

6.1.1 Definition Ein Vektorraum V mit Skalarprodukt wird als Hilbertraum be-
zeichnet, wenn V bezüglich der zugehörigen Norm vollständig ist, das heisst also,
wenn jede Cauchyfolge in V einen Grenzwert hat.

Ist ein Vektorraum V mit Skalarprodukt endlichdimensional, so ist die Vollständig-
keitsbedingung automatisch erfüllt. Es handelt sich also in jedem Fall um einen
Hilbertraum. Heikler wird es bei unendlichdimensionalen Vektorräumen.

Schauen wir uns zum Beispiel den Raum V = Cn([a, b],R) der n-fach stetig
differenzierbaren Funktionen genauer an. Wir hatten schon gesehen, dass dieser
Raum bezüglich der folgenden Norm vollständig ist:

||f ||n := max{||f (k)||∞ | k = 0, . . . , n} .

Gäbe es zu dieser Norm ein passendes Skalarprodukt auf V , dann müsste die soge-
nannte Parallelogrammregel gelten.

6.1.2 Satz (Parallelogrammregel) Ist V ein reeller Vektorraum mit Skalarprodukt
und bezeichnet || · || die zugehörige Norm, so gilt für alle v, w ∈ V :

||v − w||2 + ||v + w||2 = 2||v||2 + 2||w||2 .

Beweis. Die Norm ist definiert durch ||v|| =
√

〈v, v〉 für v ∈ V . Daraus ergibt sich
mit der Linearität und Symmetrie des Skalarproduktes:

||v − w||2 + ||v + w||2 = 〈v − w, v − w〉+ 〈v + w, v + w〉 =

2〈v, v〉 − 2〈v, w〉+ 2〈v, w〉+ 2〈w,w〉 = 2||v||2 + 2||w||2 . q.e.d.

Sei jetzt der Einfachheit halber [a, b] = [0, 2] und wählen wir die Funktionen
f, g: [0, 2] → R, definiert durch

f(x) =

{

x für 0 ≤ x ≤ 1
1 für 1 ≤ x ≤ 2

und g(x) =

{

1− x für 0 ≤ x ≤ 1
0 für 1 ≤ x ≤ 2

.
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Offenbar sind f, g stetig und ||f ||∞ = max{|f(x)| | x ∈ [0, 2]} = 1 und ebenso
||g||∞ = 1. Ausserdem ist (f + g)(x) = 1 für alle x und

(f − g)(x) =

{

2x− 1 für 0 ≤ x ≤ 1
1 für 1 ≤ x ≤ 2

.

Also ist ||f + g||∞ = 1 = ||f − g||∞. Wir erhalten:

||f − g||2∞ + ||f + g||2∞ = 2 6= 4 = 2||f ||2∞ + 2||g||2∞ .

Das zeigt, dass die Parallelogrammregel für die Maximumnorm auf C0([0, 2],R) nicht
gilt. Auf ähnliche Art kann man auch für andere Intervalle [a, b] und für n > 0
Gegenbeispiele zur Parallelogrammregel konstruieren.

Es hat also keinen Sinn, nach passenden Skalarprodukten zu den Normen || · ||n
zu suchen, um damit auf den Räumen Cn([a, b],R) eine Hilbertraumstruktur zu
etablieren. Die L2-Integralnorm auf dem Raum der stetigen Funktionen C0([a, b],R)
stammt dagegen tatsächlich von einem Skalarprodukt, nämlich

〈f, g〉 :=
∫ b

a

f(x)g(x) dx .

Aber wie bereits früher im Zusammenhang mit Banachräumen gezeigt, ist hier die
Vollständigkeit nicht erfüllt. Denn es gibt Folgen stetiger Funktionen, die im Sinn
des quadratischen Mittels Cauchyfolgen sind, aber im Raum der stetigen Funktio-
nen keinen Grenzwert haben. Das Ziel der nächsten Paragraphen wird es sein, die
Vervollständigung des Raumes der stetigen Funktionen mit der Integralnorm zu ei-
nem Hilbertraum zu konstruieren. Bevor wir uns dieser Aufgabe zuwenden, sei hier
noch ein anderes konkretes Beispiel eines Hilbertraums beschrieben, nämlich der
sogenannte Hilbertsche Folgenraum.

6.1.3 Definition Mit ℓ2(R) bzw. ℓ2(C) bezeichnet man die Menge aller Folgen
reeller bzw. komplexer Zahlen, die quadratsummierbar sind. Dabei heisst eine Folge
(a1, a2, a3, . . .) quadratsummierbar, falls

∑∞
k=1 |ak|2 < ∞ ist.

Zum Beispiel ist die Folge ( 1
k
)k∈N quadratsummierbar, die Folge ( 1√

k
)k∈N dagegen

nicht, weil die Quadrate der Folgenglieder hier die harmonische Reihe liefern, die
bekanntlich divergiert.

6.1.4 Satz Die Menge ℓ2(K) (K = R oder K = C) der quadratsummierbaren
Folgen bildet einen K-Vektorraum. Durch die Vorschrift

〈a, b〉 :=
∞
∑

k=1

akbk für a, b ∈ ℓ2(K)

wird ein Skalarprodukt auf dem Folgenraum definiert, und bezogen auf die zugehöri-
ge Norm ist ℓ2(K) vollständig.
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Beweis. Machen wir uns zunächst einmal klar, dass die Summe von zwei quadrat-
summierbaren Folgen a, b wieder quadratsummierbar ist. Dazu verwenden wir die
Ungleichung

|ak|2 + |bk|2 ≥ 2|akbk| für alle k ∈ N.

(Denn |ak|2+ |bk|2−2|akbk| = (|ak|− |bk|)2 ≥ 0.) Mit dieser Ungleichung können wir
schliessen:

∞
∑

k=1

|ak + bk|2 ≤
∞
∑

k=1

2(|ak|2 + |bk|2) ≤ 2

∞
∑

k=1

|ak|2 + 2

∞
∑

k=1

|bk|2 < ∞ .

Ausserdem sind Vielfache von quadratsummierbaren Folgen offenbar wieder qua-
dratsummierbar. Also bilden die quadratsummierbaren Folgen einen linearen Un-
terraum des Vektorraums aller Folgen.

Schauen wir uns nun an, wie das Skalarprodukt definiert ist. Um zu bestätigen,
dass die Vorschrift sinnvoll ist, können wir wieder die bereits verwendete Ungleichung
benutzen. Denn sind a und b quadratsummierbare Folgen, so ist

|
∞
∑

k=1

akbk| ≤
∞
∑

k=1

|akbk| ≤
1

2

∞
∑

k=1

(|ak|2 + |bk|2) < ∞ .

Überprüfen wir nun die definierenden Eigenschaften des Skalarproduktes.
(i) Ist a ∈ ℓ2(K), so ist laut Vorschrift

〈a, a〉 =
∞
∑

k=1

akak =

∞
∑

k=1

|ak|2 .

Da a quadratsummierbar ist, ist diese Reihe konvergent und der Grenzwert ist eine
nichtnegative reelle Zahl. Da alle Summanden nichtnegativ sind, ist ausserdem der
Grenzwert nur dann gleich Null, wenn alle Summanden verschwinden. Dies ist also
nur bei der Nullfolge der Fall.

(ii) Die Linearität im zweiten Faktor ergibt sich sofort aus der Definition.
(iii) Die Antisymmetrie für K = C sieht man folgendermassen. Sind a, b ∈ ℓ2(C),

so ist nach Definition

〈b, a〉 =
∞
∑

k=1

bkak =
∞
∑

k=1

bkak =
∞
∑

k=1

bkak = 〈a, b〉 .

Damit sind alle drei Eigenschaften gezeigt.
Jetzt müssen wir noch die Vollständigkeit nachweisen. Betrachten wir also eine

Cauchyfolge von Folgen xn = (xn1, xn2, xn3, . . .) aus ℓ
2(K). Das bedeutet: Zu jedem

ǫ > 0 existiert ein Index N ∈ N, so dass für alle m,n ∈ N mit m,n ≥ N gilt:

(∗) ||xn − xm|| =

√

√

√

√

∞
∑

k=1

|xnk − xmk|2 < ǫ .
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Wir müssen zeigen, dass die Folge der Folgen xn in ℓ2(K) einen Grenzwert hat.
Dazu schreiben wir die Folgen zeilenweise untereinander und schauen uns nun die
Spalten des entstandenen Zahlenschemas an (sozusagen einer unendlichen Matrix).
In der Spalte mit der Nummer j stehen jeweils die Einträge xnj der Folgen xn.
Weil |xnj − xmj |2 ≤ ||xn − xm||2 für alle n,m, ist die Folge (xnj)n∈N (für festes j)
eine Cauchyfolge von Zahlen. Da R bzw. C vollständig ist, hat diese Zahlenfolge
einen Grenzwert. Es gibt also eine Zahl aj ∈ K mit limn→∞ xnj = aj . Aus den
Grenzwerten der Spalten bilden wir wiederum eine Folge a := (a1, a2, a3, . . .), und
tatsächlich ist dies der gesuchte Grenzwert der Folge von Folgen xn. Denn halten
wir in der Ungleichung (*) den Index m fest und lassen n gegen unendlich gehen,
erhalten wir:

√

√

√

√

∞
∑

k=1

lim
n→∞

|xnk − xmk|2 =

√

√

√

√

∞
∑

k=1

|ak − xmk|2 = ||a− xm|| ≤ ǫ für alle m ≥ N .

Daraus folgt limm→∞ xm = a. Ausserdem lesen wir ab, dass (a−xm) für alle m ≥ N
quadratsummierbar ist. Insbesondere ist also die Folge a− xN quadratsummierbar
und damit auch a = (a − xN ) + xN . Damit ist nachgewiesen, dass die konstruierte
Grenzfolge a im Folgenraum ℓ2(K) enthalten ist. q.e.d.

6.2 Nullmengen und Lebesgue-Integral

Der Versuch, den Raum der stetigen Funktionen mit der Integralnorm zu ver-
vollständigen, führt zu einer Reihe von Schwierigkeiten. Als Grenzwerte von Cauchy-
folgen im quadratischen Mittel treten Funktionen mit Sprungstellen wie zum Beispiel
Treppenfunktionen auf, die in der Vervollständigung enthalten sein müssen. Aus den
Treppenfunktionen wiederum kann man Folgen bilden, die punktweise gegen nicht
Riemann-integrierbare Funktionen konvergieren.

6.2.1 Beispiel Sei q1, q2, q3, . . . eine Aufzählung aller rationalen Zahlen zwischen 0

und 1. Für n ∈ N sei fn: [0, 1] → R definiert durch fn(x) :=
{

1 für x ∈ An

0 sonst
, wobei

An := ∪n
j=1[qj −

1

2n2
, qj +

1

2n2
] ∩ [0, 1].

Dann gilt an der Stelle x ∈ [0, 1] jeweils limn→∞ f(x) = 1, falls x ∈ Q, und
limn→∞ f(x) = 0, falls x /∈ Q ist. Die Folge der Funktionen fn konvergiert also
punktweise gegen die bekannte nicht Riemann-integrierbare Funktion f auf [0, 1]
gegeben durch

f(x) =
{

1 für x ∈ Q ∩ [0, 1]
0 sonst

.

Ausserdem gilt

|
∫ 1

0

fn(x)dx| ≤
n

∑

j=1

1

n2
=

1

n

und daher limn→∞

∫ 1

0
fn(x)dx = 0.
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Auch diese Grenzfunktion sollte in der Vervollständigung erfasst sein, wir können
die Integralnorm mit dem Riemannschen Integralbegriff nun aber nicht mehr aus-
werten. Einen Ausweg aus diesem Dilemma bietet die Erweiterung des Integralbe-
griffs nach Lebesgue. Sein Integralbegriff ist so gestaltet, dass bei Konvergenz einer
Funktionenfolge im quadratischen Mittel bereits Integration und Limesbildung mit-
einander vertauscht werden dürfen. Für das Beispiel heisst das, die Grenzfunktion f
ist im Sinne von Lebesgue integrierbar und der Wert des Integrals ist gleich Null.

Nun handelt es sich bei f aber um die sogenannte charakteristische Funktion

der Menge der rationalen Zahlen zwischen 0 und 1. Das Integral über f misst die
Grösse dieser Menge. Weil dies Mass verschwindet, bezeichnet man die Teilmenge
der rationalen Zahlen deshalb auch als Lebesgue-Nullmenge in R. Darunter versteht
man genauer folgendes:

6.2.2 Definition Eine Teilmenge A ⊂ R heisst (Lebesgue)-Nullmenge, falls zu
jedem ǫ > 0 eine Folge von Intervallen I1, I2, . . . existiert, so dass

A ⊂ ∪∞
k=1Ik und

∞
∑

k=1

µ(Ik) < ǫ .

Dabei bezeichnet µ(Ik) die Länge des Intervalls Ik. Die Menge A lässt sich also durch
eine abzählbare Menge von Intervallen überdecken, deren Gesamtlänge beliebig klein
gewählt werden kann.

6.2.3 Beispiele 1. Besteht A nur aus einem Punkt a, so ist A eine Nullmenge.
Denn zu ǫ > 0 wählen wir I := [a− ǫ

4
, a+ ǫ

4
]. Dann ist a ∈ I und µ(I) = ǫ

2
< ǫ.

2. Jede endliche Menge A = {a1, a2, . . . , am} ist eine Lebesgue-Nullmenge. Jetzt
brauchen wir jeweils m Intervalle. Zu ǫ > 0 wählen wir Ik := [ak − ǫ

4m
, ak +

ǫ
4m

] für k = 1, . . . , m. Die Vereinigung der Intervalle Ik enthält ganz A und
∑m

k=1 µ(Ik) = m ǫ
2m

< ǫ.

3. Sogar jede abzählbare Teilmenge von R ist eine Nullmenge. Wir wählen wie-
derum eine Aufzählung der Elemente A = {a1, a2, . . .}. Zu ǫ > 0 wählen wir
diesmal

Ik = [ak −
ǫ

4 · 2k , ak +
ǫ

4 · 2k ] (k ∈ N) .

Jetzt ist
∞
∑

k=1

µ(Ik) =

∞
∑

k=1

ǫ

2 · 2k =
ǫ

2

∞
∑

k=1

(
1

2
)k =

ǫ

2
.

Es gibt aber sogar überabzählbare Nullmengen, zum Beispiel die berühmte Can-
tormenge. Man kann diese Menge rekursiv konstruieren, in dem man aus dem In-
tervall [0, 1] sukzessive Teilintervalle herausschneidet. Genauer ist C = limn→∞An,
wobei

A0 = [0; 1] , A1 = A0 \ [
1

3
,
2

3
] , A2 = A1 \ [

1

9
,
2

9
] \ [7

9
,
8

9
] usw.

Oder anders gesagt: An ist die Vereinigung der Intervalle der Form [q, q+ 1
3n
[, wobei

q =
∑n

k=1
ak
3k

für gewisse ak ∈ {0, 2}.
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6.2.4 Bemerkung Die Cantormenge stimmt überein mit

C = {
∞
∑

k=1

ak
3k

| ak ∈ {0, 2}} .

Sie ist überabzählbar, aber dennoch eine Lebesgue–Nullmenge, denn C ⊂ An∀n. Die
Teilmenge An besteht aus 2n Teilintervallen der Breite 1

3n
, d.h. µ(An) = (2

3
)n und

daher limn→∞ µ(An) = 0.

Für die Definition der Integrierbarkeit im Sinne von Lebesgue brauchen wir noch
einige Vorbereitungen. Wir gehen dabei von der Idee aus, eine Funktion durch Trep-
penfunktionen zu approximieren und dabei die Werte auf Nullmengen zu ignorieren.

6.2.5 Definition Eine Funktion ϕ: [a, b] → R ist eine Treppenfunktion, falls eine
Teilung a = a0 < a1 < . . . < an = b des Intervalls [a, b] und Konstanten ck existieren,
so dass ϕ(x) = ck für alle ak < x < ak+1 (k = 0, . . . , n − 1). Abgesehen von den
Werten von ϕ an den Teilungspunkten ak besteht der Graph von ϕ also aus n Stufen.
Bekanntlich ist ϕ (Riemann)integrierbar, und es gilt:

∫ b

a

ϕ(x)dx =

n−1
∑

k=0

ck(ak+1 − ak) .

Hier zunächst die Beschreibung der Approximation des Integrals durch ”verall-
gemeinerte Untersummen”:

6.2.6 Definition Eine Funktion f : [a, b] → R heisse L+-integrierbar, wenn eine
Folge von Treppenfunktionen ϕj : [a, b] → R existiert, so dass folgendes gilt:

1. ϕj(x) ≤ ϕj+1(x) für fast alle x;

2. limj→∞ ϕj(x) = f(x) für fast alle x;

3. Es gibt eine Konstante M ∈ R mit
∫ b

a
ϕj(x)dx ≤ M für alle j.

Dabei soll “für fast alle x” bedeuten, dass die Teilmenge derjenigen Punkte x, für
die die Aussage nicht gilt, eine Nullmenge bilden.

Eine Funktion ist also genau dann L+-integrierbar, wenn sie sich fast überall
als Grenzwert einer fast überall monoton wachsenden Folge von Treppenfunktionen
mit beschränktem Integral darstellen lässt. In diesem Fall bilden die Integrale der
Treppenfunktionen ϕj eine monoton wachsende, nach oben beschränkte und daher
konvergente Folge. Wir definieren das Lebesgue-Integral der Funktion f nun als
Grenzwert dieser Folge:

∫ b

a

f(x)dx := lim
j→∞

∫ b

a

ϕj(x)dx .

Wie schon die Notation suggeriert, hängt der Wert des Integrals nicht von der Wahl
der Folge (ϕj) ab. Es ist aber aufwendig, dies zu zeigen, und wir werden hier darauf
verzichten.
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6.2.7 Beispiele • Die charakteristische Funktion der rationalen Zahlen zwi-
schen 0 und 1 stimmt bereits für fast alle x mit der Nullfunktion überein.
(Denn die Ausnahmemenge, die rationalen Zahlen, bilden ja eine Nullmenge).
Also können wir hier für ϕj einfach die Nullfunktion wählen (für alle j), und
das Lebesgue-Integral über f ist tatsächlich gleich Null.

• Ist f : [a, b] → R eine stetige Funktion, so ist f Riemann-integrierbar, und
wir können das Integral von f als Grenzwert einer Folge von Untersummen
beschreiben. Wählen wir diese Folge nun so, dass das Intervall [a, b] dabei
fortlaufend verfeinert wird, so ist die Folge von Untersummen monoton wach-
send. Jede einzelne Untersumme wiederum lässt sich als Integral einer ge-
eigneten Treppenfunktion auffassen, und die Folge dieser Treppenfunktionen
konvergiert punktweise gegen f . Der Zusatz “fast überall” wird in dieser Si-
tuation nicht gebraucht. Bei stetigen Funktionen stimmen also Riemann- und
Lebesgue-Integral miteinander überein.

• Auch gewisse uneigentliche Integrale sind hier miterfasst. Betrachten wir zum
Beispiel die Funktion f : [0, 1] → R, definiert durch f(0) = 0 und f(x) = 1√

x

für x 6= 0. Hier existiert das uneigentliche Riemannintegral, und die Approxi-
mation des Integrals durch Untersummen entspricht einer Approximation von
f durch Treppenfunktionen für alle x 6= 0. Also ist f hier L+-integrierbar, und
das Lebesgue-Integral stimmt mit dem uneigentlichen Integral überein:

∫ 1

0

f(x)dx = lim
a→0

∫ 1

a

1√
x
dx = lim

a→0
2(
√
1−

√
a) = 2 .

Nun die allgemeine Definition des Lebesgue-Integrals:

6.2.8 Definition Eine Funktion f : [a, b] → R ist Lebesgue-integrierbar, wenn f
sich als Differenz f = g−h von zwei L+-integrierbaren Funktionen auf [a, b] schreiben
lässt, und wir setzen dann

∫ b

a

f(x)dx :=

∫ b

a

g(x)dx−
∫ b

a

h(x)dx .

Hier eine Zusammenstellung wichtiger Eigenschaften (ohne Beweis):

6.2.9 Satz • Die Menge L der Lebesgue-integrierbaren Funktionen auf [a, b]
bildet einen Vektorraum.

• Ist f Lebesgue-integrierbar, so auch |f |, f+ := 1
2
(f + |f |), f− := f − f+.

• Sind f, g ∈ L, so auch f · g.

• Sind f, g ∈ L, und ist f(x) = g(x) für fast alle x, so ist

∫ b

a

f(x)dx =

∫ b

a

g(x)dx .



6.2. Nullmengen und Lebesgue-Integral 101

• Ist f ∈ L, f(x) ≥ 0 für alle x und
∫ b

a
f(x)dx = 0, so folgt f(x) = 0 für fast

alle x.

• Für stetige Funktionen auf [a, b] stimmen Lebesgue- und Riemannintegral
überein.

Ausserdem gilt folgender Satz von der dominierten Konvergenz:

6.2.10 Satz Sei (fn)n∈N eine Folge Lebesgue-integrierbarer Funktionen auf [a, b],
die fast überall punktweise gegen eine Funktion f : [a, b] → R konvergiere, das heisst
limn→∞ fn(x) = f(x) für fast alle x. Sei weiter g ∈ L([a, b]) mit |fn(x)| ≤ g(x) für
fast alle x. Dann ist f ebenfalls Lebesgue-integrierbar und es gilt:

∫ b

a

f(x)dx = lim
n→∞

∫ b

a

fn(x)dx .

Kommen wir nun zurück zu dem ursprünglichen Ziel, eine Vervollständigung des
Vektorraums C0([a, b]) der stetigen Funktionen bezüglich des Integralskalarprodukts
zu konstruieren. Wir betrachten dazu folgenden Kandidaten:

L2 := {f : [a, b] → R | f lokal Lebesgue-integrierbar und

∫ b

a

f 2(x)dx < ∞} .

Dabei nennen wir eine Funktion f lokal integrierbar, wenn für fast alle x ein Teilin-
tervall x ∈ I ⊂ [a, b] existiert, auf dem f Lebesgue-integrierbar ist. Zum Beispiel ist
die Funktion h: [0, 1] → R, definiert durch h(0) = 0 und h(x) = 1

x
für x 6= 0, lokal

integrierbar, aber wir können das Integral nicht auf ganz [0, 1] auswerten, weil die
entsprechende Fläche unter der Hyperbel nicht beschränkt ist.

Offenbar bildet L2 einen Vektorraum, der den Raum C0([a, b]) umfasst. Wir
können das Integralskalarprodukt auf diesen Raum fortsetzen, indem wir für f, g ∈
L2 definieren:

〈f, g〉 :=
∫ b

a

f(x)g(x)dx .

Dies Integral existiert, weil |fg| ≤ 1
2
(f 2 + g2) und daher

|
∫ b

a

f(x)g(x)dx| ≤
∫ b

a

|f(x)g(x)|dx ≤ 1

2

∫ b

a

f 2(x)dx+
1

2

∫ b

a

g2(x)dx < ∞ .

Aber hier stossen wir auf ein neues Problem. Das durch diese Vorschrift erklärte
Produkt erfüllt die Linearitäts- und die Symmetrieeigenschaft des Skalarprodukts,
aber nicht die Normeigenschaft. Denn in L gilt zwar:

〈f, f〉 =
∫ b

a

f 2(x)dx = 0 ⇔ f(x) = 0 für fast alle x.

Aber wenn die Funktion f zum Beispiel nur an einer einzigen Stelle einen Wert un-
gleich Null annimmt, merkt das Integral über f 2 davon nichts und ist trotzdem gleich
Null. Wir können also aus 〈f, f〉 = 0 nicht schliessen f = 0. Um die Normeigenschaft
zu retten, geht man jetzt zu Äquivalenzklassen über. Das heisst, wir identifizieren
einfach sämtliche Funktionen, die sich nur auf einer Nullmenge unterscheiden.
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6.2.11 Definition Wir betrachten zwei Funktionen f, g ∈ L([a, b]) genau dann
als äquivalent und schreiben f ∼ g, wenn f(x) = g(x) für fast alle x. Die Relation
∼ ist eine Äquivalenzrelation. Die zu einer Funktion f gehörige Äquivalenzklasse
schreiben wir als [f ] und bezeichnen die Menge der Äquivalenzklassen als

L2([a, b]) := {[f ] | f ∈ L2} .

Weil die Rechenoperationen mit der Relation verträglich sind, können wir den Raum
L2([a, b]) wiederum als Vektorraum auffassen, indem wir festsetzen

[f ] + [g] := [f + g] und α[f ] := [αf ] für alle α ∈ R, f, g ∈ L2([a, b]).

Das Integralprodukt vererbt sich auf die Äquivalenzklassen, denn der Wert des
Integrals über ein Produkt von Funktionen f ·g ändert sich nicht, auch wenn wir so-
wohl f als auch g auf einer Nullmenge von Punkten abändern. Aber auf L2([a, b]) ist
jetzt die Normeigenschaft erfüllt. Denn aus 〈f, f〉 = 0 folgt f(x) = 0 für fast alle x,
und das heisst, f ist äquivalent zur Nullfunktion, repräsentiert also die ”Nullklasse”.

Jede Äquivalenzklasse in L2 kann höchstens eine stetige Funktion enthalten.
Denn angenommen f, g sind stetige Funktionen auf [a, b] und f ∼ g. Das heisst
f(x) = g(x) für fast alle x, und daher f(x) − g(x) = 0 für fast alle x. Also ist

〈f − g, f − g〉 =
∫ b

a
(f − g)(x)2dx = 0. Da (f − g)2 stetig und (f − g)2(x) ≥ 0 für alle

x, folgt daraus sogar (f − g)2 = 0. Also stimmen f und g miteinander überein. Das
bedeutet, dass wir den Raum der stetigen Funktionen als Teilmenge von L2([a, b])
auffassen können. Der Raum L2 ist nun schliesslich die gesuchte Vervollständigung,
denn es gilt folgendes:

6.2.12 Satz Der Vektorraum L2([a, b])mit dem Integralskalarprodukt ist ein Hilbert-
raum, und der Teilraum C0([a, b]) liegt darin dicht, das heisst, zu jeder Funktion
f ∈ L2([a, b]) gibt es eine Folge stetiger Funktionen fn auf [a, b], die im quadrati-
schen Mittel gegen f konvergieren.

Auf den Beweis der Vollständigkeit von L2([a, b]) müssen wir hier verzichten.
Dazu müsste man sich wesentlich genauer mit der Lebesguetheorie befassen. Zur
Dichtheit sei nur soviel gesagt: Man kann beweisen, dass es zu jeder Treppenfunkti-
on ϕ eine Folge stetiger Funktionen gibt, die im quadratischen Mittel gegen ϕ kon-
vergiert. Mithilfe der Treppenfunktionen wiederum können wir sämtliche Lebesgue-
integrierbaren Funktionen (fast überall) approximieren. Deshalb liegt C0 dicht in L2.


