Kapitel 6

Hilbertraume und symmetrische Operatoren

6.1 HILBERTRAUME

Im ersten Kapitel haben wir bereits Banachrdume kennengelernt, also normierte
Vektorraume, die beziiglich der Norm vollstdndig sind. Von einem Hilbertraum wird
noch mehr verlangt, ndmlich dass die Norm durch ein Skalarprodukt gegeben ist.

6.1.1 DEFINITION Ein Vektorraum V mit Skalarprodukt wird als Hilbertraum be-
zeichnet, wenn V' beziiglich der zugehorigen Norm vollstédndig ist, das heisst also,
wenn jede Cauchyfolge in V' einen Grenzwert hat.

Ist ein Vektorraum V mit Skalarprodukt endlichdimensional, so ist die Vollstandig-
keitsbedingung automatisch erfiillt. Es handelt sich also in jedem Fall um einen
Hilbertraum. Heikler wird es bei unendlichdimensionalen Vektorrdumen.

Schauen wir uns zum Beispiel den Raum V' = C"([a,b],R) der n-fach stetig
differenzierbaren Funktionen genauer an. Wir hatten schon gesehen, dass dieser
Raum beziiglich der folgenden Norm vollstindig ist:

11l 2= max{[| fPl]oc | k=0,....7}.

Gébe es zu dieser Norm ein passendes Skalarprodukt auf V', dann miisste die soge-
nannte Parallelogrammregel gelten.

6.1.2 SATZ (Parallelogrammregel) Ist V ein reeller Vektorraum mit Skalarprodukt
und bezeichnet || - || die zugehorige Norm, so gilt fiir alle v,w € V:

1o = wl* + [Jv + w||* = 2[jv]]* + 2] Jw]|*.

Beweis. Die Norm ist definiert durch ||v|| = /(v,v) fiir v € V. Daraus ergibt sich
mit der Linearitit und Symmetrie des Skalarproduktes:

o — wl[2 4 [0+ w][2 = (v —w,0 — w) + (v -+ w,v+w) =

2(v,v) — 2{v,w) + 2(v, w) + 2(w, w) = 2||v||* + 2||w|]?. q.e.d.

Sei jetzt der Einfachheit halber [a,b] = [0,2] und wéhlen wir die Funktionen
f,9:10,2] — R, definiert durch

() = z fir0<z<1 und  g(z) = l1—z firo<z<1
11 firl<az<? IT=30 fiir 1 < z < 2
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Offenbar sind f, g stetig und ||f||cc = max{|f(z)| | * € [0,2]} = 1 und ebenso
[|g]lco = 1. Ausserdem ist (f + g)(z) = 1 fiir alle z und

20 —1 firo<x<1
(f_g)(aj)_{l fir 1 <z <2

Also ist ||f + gl|lec = 1 = ||f — gl|oo. Wir erhalten:

1 = gll3e +11f + gl =2 # 4 =2|I 115 +2llgll5 -

Das zeigt, dass die Parallelogrammregel fiir die Maximumnorm auf C°([0, 2], R) nicht
gilt. Auf dhnliche Art kann man auch fiir andere Intervalle [a,b] und fir n > 0
Gegenbeispiele zur Parallelogrammregel konstruieren.

Es hat also keinen Sinn, nach passenden Skalarprodukten zu den Normen || - ||,
zu suchen, um damit auf den Riumen C"([a,b],R) eine Hilbertraumstruktur zu
etablieren. Die L*-Integralnorm auf dem Raum der stetigen Funktionen C°([a, b], R)
stammt dagegen tatséchlich von einem Skalarprodukt, ndmlich

(f,9) 3:/ f(z)g(z)dx.

Aber wie bereits frither im Zusammenhang mit Banachrdumen gezeigt, ist hier die
Vollstéandigkeit nicht erfiillt. Denn es gibt Folgen stetiger Funktionen, die im Sinn
des quadratischen Mittels Cauchyfolgen sind, aber im Raum der stetigen Funktio-
nen keinen Grenzwert haben. Das Ziel der nédchsten Paragraphen wird es sein, die
Vervollstandigung des Raumes der stetigen Funktionen mit der Integralnorm zu ei-
nem Hilbertraum zu konstruieren. Bevor wir uns dieser Aufgabe zuwenden, sei hier
noch ein anderes konkretes Beispiel eines Hilbertraums beschrieben, nédmlich der
sogenannte Hilbertsche Folgenraum.

6.1.3 DEFINITION Mit ¢2(R) bzw. ¢*(C) bezeichnet man die Menge aller Folgen
reeller bzw. komplexer Zahlen, die quadratsummierbar sind. Dabei heisst eine Folge
(a1, a9, as, . ..) quadratsummierbar, falls 72 | |ax|* < oo ist.

Zum Beispiel ist die Folge (3 )ken quadratsummierbar, die Folge (ﬁ) ren dagegen
nicht, weil die Quadrate der Folgenglieder hier die harmonische Reihe liefern, die

bekanntlich divergiert.

6.1.4 SATZ Die Menge (*(K) (K = R oder K = C) der quadratsummierbaren
Folgen bildet einen K-Vektorraum. Durch die Vorschrift

(a,b) == Za_kbk fiir a,b € (*(K)
k=1

wird ein Skalarprodukt auf dem Folgenraum definiert, und bezogen auf die zugehori-
ge Norm ist (?(K) vollstindig.
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Beweis. Machen wir uns zunéchst einmal klar, dass die Summe von zwei quadrat-
summierbaren Folgen a,b wieder quadratsummierbar ist. Dazu verwenden wir die
Ungleichung

lar|? + |be|® > 2|apbe| fiir alle k € N.

(Denn |ag|* +|b|? — 2]arbr| = (|ax| — |bx|)? > 0.) Mit dieser Ungleichung kénnen wir
schliessen:

Z|ak+bk <Zz (Jag|* + |bxl?) <22\ak\2+22|bk|2 < 0.

Ausserdem sind Vielfache von quadratsummierbaren Folgen offenbar wieder qua-
dratsummierbar. Also bilden die quadratsummierbaren Folgen einen linearen Un-
terraum des Vektorraums aller Folgen.

Schauen wir uns nun an, wie das Skalarprodukt definiert ist. Um zu bestétigen,
dass die Vorschrift sinnvoll ist, kénnen wir wieder die bereits verwendete Ungleichung
benutzen. Denn sind a und b quadratsummierbare Folgen, so ist

[ee) o oo 1 00
|;akbk| < ; janbi| < 5 ;Uakf + [bef?) < 00

Uberpriifen wir nun die definierenden Eigenschaften des Skalarproduktes.
(i) Ist a € (*(K), so ist laut Vorschrift

o
=y = ZW
k=1 =

Da a quadratsummierbar ist, ist diese Reihe konvergent und der Grenzwert ist eine
nichtnegative reelle Zahl. Da alle Summanden nichtnegativ sind, ist ausserdem der
Grenzwert nur dann gleich Null, wenn alle Summanden verschwinden. Dies ist also
nur bei der Nullfolge der Fall.

(ii) Die Linearitdt im zweiten Faktor ergibt sich sofort aus der Definition.

(iii) Die Antisymmetrie fiir K = C sieht man folgendermassen. Sind a, b € ¢*(C),
so ist nach Definition

S ST
k=1 k=1 k=1

Damit sind alle drei Eigenschaften gezeigt.

Jetzt miissen wir noch die Vollstindigkeit nachweisen. Betrachten wir also eine
Cauchyfolge von Folgen x, = (Zn1, Tna, Tns, - - -) aus £2(K). Das bedeutet: Zu jedem
€ > 0 existiert ein Index N € N, so dass fiir alle m,n € N mit m,n > N gilt:

o0

() M —zall = | S ws = 2ol < e.
k=1
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Wir miissen zeigen, dass die Folge der Folgen z, in (*(K) einen Grenzwert hat.
Dazu schreiben wir die Folgen zeilenweise untereinander und schauen uns nun die
Spalten des entstandenen Zahlenschemas an (sozusagen einer unendlichen Matrix).
In der Spalte mit der Nummer j stehen jeweils die Eintrége x,; der Folgen z,,.
Weil |2,; — Zmj|* < ||z, — zp||? fir alle n,m, ist die Folge (zj)nen (fiir festes )
eine Cauchyfolge von Zahlen. Da R bzw. C vollstdandig ist, hat diese Zahlenfolge
einen Grenzwert. Es gibt also eine Zahl a; € K mit lim, . 2,; = a;. Aus den
Grenzwerten der Spalten bilden wir wiederum eine Folge a := (ay,as,as, . ..), und
tatséchlich ist dies der gesuchte Grenzwert der Folge von Folgen x,. Denn halten
wir in der Ungleichung (*) den Index m fest und lassen n gegen unendlich gehen,
erhalten wir:

o o
Z lim |z,p — Tpe|? = Z lagy — Tmp|? = ||a — x|| < € fiir alle m > N.
=1 k=1

Daraus folgt lim,,, o ,, = a. Ausserdem lesen wir ab, dass (a — z,,) fir alle m > N
quadratsummierbar ist. Insbesondere ist also die Folge a — zny quadratsummierbar
und damit auch @ = (a — ) + zx. Damit ist nachgewiesen, dass die konstruierte
Grenzfolge a im Folgenraum ¢*(K) enthalten ist.  q.e.d.

6.2 NULLMENGEN UND LEBESGUE-INTEGRAL

Der Versuch, den Raum der stetigen Funktionen mit der Integralnorm zu ver-
vollsténdigen, fithrt zu einer Reihe von Schwierigkeiten. Als Grenzwerte von Cauchy-
folgen im quadratischen Mittel treten Funktionen mit Sprungstellen wie zum Beispiel
Treppenfunktionen auf, die in der Vervollstéindigung enthalten sein miissen. Aus den
Treppenfunktionen wiederum kann man Folgen bilden, die punktweise gegen nicht
Riemann-integrierbare Funktionen konvergieren.

6.2.1 BEISPIEL Sei ¢, ¢2, q3, - . . eine Aufzdhlung aller rationalen Zahlen zwischen 0

und 1. Fiir n € N sei f,: [0, 1] — R definiert durch f,(z) := { 1 firze A,

0 sonst , wobel

" 1 1

Ap = j:l[Qj - 2—712’% + 2—712] N [0,1].
Dann gilt an der Stelle z € [0,1] jeweils lim, , f(z) = 1, falls z € Q, und
lim, , f(x) = 0, falls z ¢ Q ist. Die Folge der Funktionen f, konvergiert also
punktweise gegen die bekannte nicht Riemann-integrierbare Funktion f auf [0, 1]
gegeben durch

flz) = {(1) fir x € QN 0, 1] .
sonst

Ausserdem gilt

! —~1 1
\/Ofn<x>dx\s;;=;

und daher lim,, . fol folz)dz = 0.
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Auch diese Grenzfunktion sollte in der Vervollsténdigung erfasst sein, wir kénnen
die Integralnorm mit dem Riemannschen Integralbegriff nun aber nicht mehr aus-
werten. Einen Ausweg aus diesem Dilemma bietet die Erweiterung des Integralbe-
griffs nach Lebesgue. Sein Integralbegriff ist so gestaltet, dass bei Konvergenz einer
Funktionenfolge im quadratischen Mittel bereits Integration und Limesbildung mit-
einander vertauscht werden diirfen. Fiir das Beispiel heisst das, die Grenzfunktion f
ist im Sinne von Lebesgue integrierbar und der Wert des Integrals ist gleich Null.

Nun handelt es sich bei f aber um die sogenannte charakteristische Funktion
der Menge der rationalen Zahlen zwischen 0 und 1. Das Integral {iber f misst die
Grosse dieser Menge. Weil dies Mass verschwindet, bezeichnet man die Teilmenge
der rationalen Zahlen deshalb auch als Lebesgue-Nullmenge in R. Darunter versteht
man genauer folgendes:

6.2.2 DEFINITION Eine Teilmenge A C R heisst (Lebesgue)-Nullmenge, falls zu
jedem € > 0 eine Folge von Intervallen Iy, I5, ... existiert, so dass

ACuUpl I, und ZM(Ik) < €.
k=1
Dabei bezeichnet uu(Iy) die Lénge des Intervalls ;.. Die Menge A lisst sich also durch
eine abzédhlbare Menge von Intervallen iiberdecken, deren Gesamtlénge beliebig klein
gewahlt werden kann.

6.2.3 BEISPIELE 1. Besteht A nur aus einem Punkt a, so ist A eine Nullmenge.
Denn zu € > 0 wihlen wir [ := [a — §,a+ {]. Dannist a € I und u(/) = § <e.

2. Jede endliche Menge A = {ay,as,...,a,} ist eine Lebesgue-Nullmenge. Jetzt
brauchen wir jeweils m Intervalle. Zu € > 0 wihlen wir I := [a — 1 Gk +
1| fir k = 1,...,m. Die Vereinigung der Intervalle I; enthilt ganz A und

Y (I = mys <.

3. Sogar jede abzéhlbare Teilmenge von R ist eine Nullmenge. Wir wihlen wie-
derum eine Aufzidhlung der Elemente A = {aj,as,...}. Zu € > 0 wihlen wir

diesmal . .
[k:[ak—m,ak+m] (kEN)
Jetzt ist
> > € € v 1 €
[ = _— = — —k:—_
ONIARS PR LI
k=1 k=1 k=1

Es gibt aber sogar iiberabzéhlbare Nullmengen, zum Beispiel die beriithmte Can-
tormenge. Man kann diese Menge rekursiv konstruieren, in dem man aus dem In-
tervall [0, 1] sukzessive Teilintervalle herausschneidet. Genauer ist C' = lim,, o, 4,,
wobei
12 12, .78
-z Ao = AN [= 21\ [=. 2
373]7 2 1\[979]\[979
Oder anders gesagt: A, ist die Vereinigung der Intervalle der Form [q, ¢ + 3%[, wobei
q =, 5 filr gewisse a; € {0,2}.

AO:[O;l], A1:AO\[

| usw.
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6.2.4 BEMERKUNG Die Cantormenge stimmt iiberein mit

C:{Z%mke{O,Q}}.

Sie ist tiberabzéhlbar, aber dennoch eine Lebesgue—Nullmenge, denn C' C A,Vn. Die
Teilmenge A, besteht aus 2" Teilintervallen der Breite 5+, d.h. u(A,) = (3)" und
daher lim,,_, o, pu(A,) = 0.

Fiir die Definition der Integrierbarkeit im Sinne von Lebesgue brauchen wir noch
einige Vorbereitungen. Wir gehen dabei von der Idee aus, eine Funktion durch Trep-
penfunktionen zu approximieren und dabei die Werte auf Nullmengen zu ignorieren.

6.2.5 DEFINITION Eine Funktion ¢:[a,b] — R ist eine Treppenfunktion, falls eine
Teilung a = ag < a1 < ... < a, = b des Intervalls [a, b] und Konstanten ¢, existieren,
so dass ¢(x) = ¢ fir alle af < z < agy1 (K = 0,...,n — 1). Abgesehen von den
Werten von ¢ an den Teilungspunkten a; besteht der Graph von ¢ also aus n Stufen.
Bekanntlich ist ¢ (Riemann)integrierbar, und es gilt:

[y

b n—
/ o(r)dr = cr(ags1 — ag) -

i
o

Hier zunéchst die Beschreibung der Approximation des Integrals durch ”verall-
gemeinerte Untersummen”:

6.2.6 DEFINITION Eine Funktion f:[a,b] — R heisse LT-integrierbar, wenn eine
Folge von Treppenfunktionen ¢;: [a, b] — R existiert, so dass folgendes gilt:

1. pj(x) < pj(x) fir fast alle x;
2. lim; o pj(x) = f(z) fiir fast alle z;

3. Es gibt eine Konstante M € R mit fab w;(z)dr < M fiir alle j.

Dabei soll “fiir fast alle 7 bedeuten, dass die Teilmenge derjenigen Punkte x, fiir
die die Aussage nicht gilt, eine Nullmenge bilden.

Eine Funktion ist also genau dann LT-integrierbar, wenn sie sich fast iiberall
als Grenzwert einer fast iiberall monoton wachsenden Folge von Treppenfunktionen
mit beschranktem Integral darstellen lésst. In diesem Fall bilden die Integrale der
Treppenfunktionen ¢; eine monoton wachsende, nach oben beschrénkte und daher
konvergente Folge. Wir definieren das Lebesgue-Integral der Funktion f nun als
Grenzwert dieser Folge:

b b
/ fx)dz == lim [ ¢,(z)dx.
a J—0 a

Wie schon die Notation suggeriert, hiangt der Wert des Integrals nicht von der Wahl
der Folge (y;) ab. Es ist aber aufwendig, dies zu zeigen, und wir werden hier darauf
verzichten.
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6.2.7 BEISPIELE e Die charakteristische Funktion der rationalen Zahlen zwi-
schen 0 und 1 stimmt bereits fiir fast alle  mit der Nullfunktion {iiberein.
(Denn die Ausnahmemenge, die rationalen Zahlen, bilden ja eine Nullmenge).
Also konnen wir hier fiir ¢; einfach die Nullfunktion wéhlen (fiir alle j), und
das Lebesgue-Integral iiber f ist tatséichlich gleich Null.

e Ist f:[a,b] — R eine stetige Funktion, so ist f Riemann-integrierbar, und
wir konnen das Integral von f als Grenzwert einer Folge von Untersummen
beschreiben. Wihlen wir diese Folge nun so, dass das Intervall [a,b] dabei
fortlaufend verfeinert wird, so ist die Folge von Untersummen monoton wach-
send. Jede einzelne Untersumme wiederum lésst sich als Integral einer ge-
eigneten Treppenfunktion auffassen, und die Folge dieser Treppenfunktionen
konvergiert punktweise gegen f. Der Zusatz “fast {iberall” wird in dieser Si-
tuation nicht gebraucht. Bei stetigen Funktionen stimmen also Riemann- und
Lebesgue-Integral miteinander iiberein.

e Auch gewisse uneigentliche Integrale sind hier miterfasst. Betrachten wir zum

Beispiel die Funktion f:[0,1] — R, definiert durch f(0) = 0 und f(z) = %
fiir x # 0. Hier existiert das uneigentliche Riemannintegral, und die Approxi-

mation des Integrals durch Untersummen entspricht einer Approximation von
f durch Treppenfunktionen fiir alle x # 0. Also ist f hier LT-integrierbar, und
das Lebesgue-Integral stimmt mit dem uneigentlichen Integral iiberein:

/0 f(x) dx—hm Td:p—hmZ(\/I—\/a):Z

Nun die allgemeine Definition des Lebesgue-Integrals:

6.2.8 DEFINITION Eine Funktion f:[a,b] — R ist Lebesgue-integrierbar, wenn f
sich als Differenz f = g—h von zwei LT -integrierbaren Funktionen auf [a, b] schreiben
lasst, und wir setzen dann

/abf(x)dx = /abg(x)dx—/abh(x)dx.

Hier eine Zusammenstellung wichtiger Eigenschaften (ohne Beweis):

6.2.9 SATZ e Die Menge L der Lebesgue-integrierbaren Funktionen auf |a, b
bildet einen Vektorraum.

e Ist f Lebesgue-integrierbar, so auch |f|, f* := %(f+ lfh, f-=f—-r"
e Sind f,g € L, so auch f - g.

e Sind f,g € L, und ist f(x) = g(z) fiir fast alle z, so ist

/abf(x)dx - /abg(x)dx.
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e Ist f €L, f(x) > 0 fiir alle z und fab f(z)dz = 0, so folgt f(x) = 0 fiir fast
alle x.

e Fiir stetige Funktionen auf [a,b] stimmen Lebesgue- und Riemannintegral
iiberein.

Ausserdem gilt folgender Satz von der dominierten Konvergenz:

6.2.10 SATZ Sei (fn)nen eine Folge Lebesgue-integrierbarer Funktionen auf [a, bl
die fast iiberall punktweise gegen eine Funktion f:[a,b] — R konvergiere, das heisst
lim,, o fu(z) = f(x) fiir fast alle x. Sei weiter g € L([a,b]) mit |f,(z)| < g(z) fiir
fast alle x. Dann ist f ebenfalls Lebesgue-integrierbar und es gilt:

b b
/ f(z)dz = lim [ f,(x)dx.

n—oo
a

Kommen wir nun zuriick zu dem urspriinglichen Ziel, eine Vervollstédndigung des
Vektorraums C°([a, b]) der stetigen Funktionen beziiglich des Integralskalarprodukts
zu konstruieren. Wir betrachten dazu folgenden Kandidaten:

b
L£?:={f:[a,b] — R | f lokal Lebesgue-integrierbar und / f(z)dx < 0o} .

Dabei nennen wir eine Funktion f lokal integrierbar, wenn fiir fast alle z ein Teilin-
tervall x € I C [a, b] existiert, auf dem f Lebesgue-integrierbar ist. Zum Beispiel ist
die Funktion h: [0, 1] — R, definiert durch 2(0) = 0 und h(z) = 1 fiir  # 0, lokal
integrierbar, aber wir kénnen das Integral nicht auf ganz [0, 1] auswerten, weil die
entsprechende Fliache unter der Hyperbel nicht beschrankt ist.

Offenbar bildet £? einen Vektorraum, der den Raum C°([a,b]) umfasst. Wir
kénnen das Integralskalarprodukt auf diesen Raum fortsetzen, indem wir fiir f, g €

L2 definieren:
(. 9) / fa

Dies Integral existiert, weil | fg| < 1(f* + ¢*) und daher

[ s < [woiar < [ pwaes ) [ ew <.

Aber hier stossen wir auf ein neues Problem. Das durch diese Vorschrift erklarte
Produkt erfiillt die Linearitédts- und die Symmetrieeigenschaft des Skalarprodukts,
aber nicht die Normeigenschaft. Denn in £ gilt zwar:

<f7f>=/bf2(:c)d:c:O & f(z) =0 fiir fast alle .

Aber wenn die Funktion f zum Beispiel nur an einer einzigen Stelle einen Wert un-
gleich Null annimmt, merkt das Integral iiber 2 davon nichts und ist trotzdem gleich
Null. Wir kénnen also aus (f, f) = 0 nicht schliessen f = 0. Um die Normeigenschaft
zu retten, geht man jetzt zu Aquivalenzklassen {iber. Das heisst, wir identifizieren
einfach sédmtliche Funktionen, die sich nur auf einer Nullmenge unterscheiden.
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6.2.11 DEFINITION Wir betrachten zwei Funktionen f,g € L([a,b]) genau dann
als dquivalent und schreiben f ~ ¢, wenn f(z) = g(z) fir fast alle x. Die Relation
~ ist eine Aquivalenzrelation. Die zu einer Funktion f gehorige Aquivalenzklasse
schreiben wir als [f] und bezeichnen die Menge der Aquivalenzklassen als

L*([a,b]) = {[f] | f € £7}.

WEeil die Rechenoperationen mit der Relation vertréglich sind, kénnen wir den Raum
L*([a, b]) wiederum als Vektorraum auffassen, indem wir festsetzen

[f1+1gl=1f+g] wd aff]:=]af] firallea€eR, f g€ L(a,b]).

Das Integralprodukt vererbt sich auf die Aquivalenzklassen, denn der Wert des
Integrals iiber ein Produkt von Funktionen f- ¢ dndert sich nicht, auch wenn wir so-
wohl f als auch ¢ auf einer Nullmenge von Punkten abéindern. Aber auf L?([a, b]) ist
jetzt die Normeigenschaft erfiillt. Denn aus (f, f) = 0 folgt f(x) = 0 fiir fast alle z,
und das heisst, f ist dquivalent zur Nullfunktion, reprasentiert also die ” Nullklasse”.

Jede Aquivalenzklasse in L? kann hochstens eine stetige Funktion enthalten.
Denn angenommen f, g sind stetige Funktionen auf [a,b] und f ~ g. Das heisst
f(z) = g(x) fiir fast alle z, und daher f(z) — g(x) = 0 fiir fast alle z. Also ist
(f—g9,.f—9g) = fab(f —g)(x)%dx = 0. Da (f — g)? stetig und (f — g)?(x) > 0 fiir alle
z, folgt daraus sogar (f — g)? = 0. Also stimmen f und g miteinander iiberein. Das
bedeutet, dass wir den Raum der stetigen Funktionen als Teilmenge von L?([a, b])
auffassen kénnen. Der Raum L? ist nun schliesslich die gesuchte Vervollstindigung,
denn es gilt folgendes:

6.2.12 SATZ Der Vektorraum L?([a, b)) mit dem Integralskalarprodukt ist ein Hilbert-
raum, und der Teilraum C°([a,b]) liegt darin dicht, das heisst, zu jeder Funktion
[ € L*([a,b]) gibt es eine Folge stetiger Funktionen f, auf [a,b], die im quadrati-
schen Mittel gegen f konvergieren.

Auf den Beweis der Vollstéindigkeit von L?([a,b]) miissen wir hier verzichten.
Dazu miisste man sich wesentlich genauer mit der Lebesguetheorie befassen. Zur
Dichtheit sei nur soviel gesagt: Man kann beweisen, dass es zu jeder Treppenfunkti-
on ¢ eine Folge stetiger Funktionen gibt, die im quadratischen Mittel gegen ¢ kon-
vergiert. Mithilfe der Treppenfunktionen wiederum kénnen wir sémtliche Lebesgue-
integrierbaren Funktionen (fast iiberall) approximieren. Deshalb liegt C° dicht in L.



