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6.3 Symmetrische Operatoren

Eine Abbildung zwischen Hilberträumen wird meist als Operator bezeichnet. Von
besonderer Bedeutung sind die linearen Operatoren, die im Gegensatz zu den li-
nearen Abbildungen zwischen Vektorräumen, die wir bisher kennengelernt hatten,
nicht auf dem ganzen Ausgangsraum definiert zu sein brauchen. Man verlangt vom
Definitionsbereich nur, dass es sich um eine dichte, offene Teilmenge handelt.

6.3.1 Definition Seien H1, H2 Hilberträume und sei D ⊂ H1 ein linearer Unter-
raum, der in H1 dicht liegt. Eine Abbildung L:D → H2 wird als linearer Operator

auf H1 bezeichnet, falls L(f + g) = L(f) +L(g) und L(αf) = αL(f) für alle α ∈ R,
f, g, αf ∈ D. Ein linearer Operator L:D ⊂ H1 → H1 heisst symmetrisch, falls

〈L(f), g〉 = 〈f, L(g)〉 für alle f, g ∈ D.

6.3.2 Beispiele • Ist H1 = Rn und H2 = Rm, jeweils mit dem Standardska-
larprodukt, so ist ein linearer Operator zwischen H1 und H2 nichts anderes
als eine lineare Abbildung. Hier kann man stets ganz Rn als Definitionsbereich
wählen. Bekanntlich wird jede solche Abbildung durch eine m×n-Matrix indu-
ziert. Die durch eine reelle n× n-Matrix A definierte Abbildung LA:R

n → Rn

ist genau dann symmetrisch, wenn die Matrix A symmetrisch ist, das heisst
A = At.

• Ist H = Cn mit dem hermiteschen Standardprodukt. Die durch eine komplexe
n × n-Matrix A definierte lineare Abbildung LA:C

n → C
n ist genau dann

symmetrisch, wenn die Matrix A hermitesch ist, das heisst A = A∗ := A
t
.

• Sei jetzt H = ℓ2(R) der Hilbertsche Folgenraum. Betrachten wir zunächst die
Abbildung R auf H, die darin besteht, die Glieder einer Folge jeweils um eine
Position nach rechts zu verschieben:

R((a1, a2, a3, . . .)) := (0, a1, a2, . . .) .

Der so definierte Operator ist linear, aber nicht symmetrisch. Denn zum Bei-
spiel für die Folgen x = (1, 0, 0, . . .) und y = (0, 1, 0, 0, . . .) erhalten wir:

〈R(x), y〉 = 1 6= 0 = 〈x,R(y)〉 .

Der Operator T auf ℓ2(R) sei folgendermassen definiert:

T ((ak)k∈N) := (
1

k
ak)k∈N .

Auch dieser Operator ist linear, ausserdem ist T sogar symmetrisch. Denn sind
a = (ak)k∈N, b = (bk)k∈N zwei quadratsummierbare Folgen, so gilt:

〈T (a), b〉 =
∞
∑

k=1

1

k
akbk = 〈a, T (b)〉 .
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6.3.3 Bemerkung Nun wählen wir den Hilbertraum H = L2([a, b],R). Sei D :=
{f ∈ C2([a, b],R) | f(a) = 0 = f(b)}. Jede Funktion in D lässt sich zweimal
ableiten, wir können daher den Laplaceoperator als linearen Operator auf H mit
Definitionsbereich D auffassen:

∆:D → H, f 7→ f ′′ .

Mit dieser Wahl des Definitionsbereichs ist der Laplaceoperator symmetrisch.

Beweis. Für alle f, g ∈ D gilt: 〈f ′′, g〉 =
∫ b

a

f ′′(x)g(x)dx = −

∫ b

a

f ′(x)g′(x)dx+ f ′(x)g(x)|ba = −

∫ b

a

f ′(x)g′(x)dx

und andererseits 〈f, g′′〉 =
∫ b

a

f(x)g′′(x)dx = −

∫ b

a

f ′(x)g′(x)dx+ f(x)g′(x)|ba = −

∫ b

a

f ′(x)g′(x)dx .

Beide Skalarprodukte stimmen also miteinander überein. q.e.d.

Allgemeiner gilt:

6.3.4 Satz Der Laplaceoperator auf H = L2(Ω,R) (für ein kompaktes Gebiet Ω ⊂
Rn mit glattem Rand), mit dem Definitionsbereich D := {f ∈ C2(Ω,R) | f(x) = 0
für alle x ∈ ∂Ω}, definiert durch

∆:D → H, f 7→ ∆(f) =
n
∑

j=1

∂2
j f ,

ist symmetrisch.

Beweis. Hierfür können wir den folgenden Satz von Green verwenden, der eine Kon-
sequenz des Gaussschen Divergenzsatzes ist, nämlich:
∫

Ω

(g(x)∆f(x)− f(x)∆g(x)) dnx =

∫

∂Ω

(g(x) ∂n(x)f(x)− f(x) ∂n(x)g(x)) dσ(x) ,

wobei ∂n(x) die Ableitung in Richtung des äusseren Normalenvektors n(x) im Punkt
x ∈ ∂Ω bezeichnet. Weil wir nun zusätzlich vorausgesetzt haben, dass sowohl f als
auch g auf dem Rand von Ω verschwinden, verschwindet hier der gesamte Integrand
auf der rechten Seite der Gleichung. Es folgt also

∫

Ω

f(x) ·∆(g)(x)− g(x) ·∆(f)(x) dnx = 0 .

Das bedeutet gerade, dass der Laplaceoperator symmetrisch ist. q.e.d.

Das nächste Ziel wird es sein, eine Entsprechung des Hauptsatzes über sym-
metrische reelle Matrizen für symmetrische Operatoren auf unendlichdimensionalen
Hilberträumen zu finden. Hier zur Erinnerung die Aussage des Hauptsatzes:
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6.3.5 Satz Ist A eine symmetrische n × n-Matrix, so hat A nur reelle Eigenwerte
und es gibt eine Orthonormalbasis des Rn aus Eigenvektoren von A.

Der Begriff des Eigenwertes und des Eigenvektors lässt sich sofort auf lineare
Operatoren ausdehnen.

6.3.6 Definition Eine Zahl λ ∈ C wird als Eigenwert eines linearen Operators
L:D ⊂ H → H bezeichnet, falls ein Vektor 0 6= v ∈ D existiert mit L(v) = λv. Der
Vektor v heisst in dieser Situation Eigenvektor zum Eigenwert λ.

Die Entsprechung des Begriffs der Orthonormalbasis ist für unendlichdimensio-
nale Hilberträume das vollständige Orthonormalsystem. Ein Orthonormalsystem
besteht aus paarweise senkrechten, auf Länge 1 normierten Vektoren. Ein solches
System nennt man vollständig, wenn es maximal ist, sich also nicht mehr vergrössern
lässt. Genauer:

6.3.7 Definition Eine abzählbare Menge {v1, v2, v3, . . .} in einem Hilbertraum H
heisst vollständiges Orthonormalsystem, falls vi ⊥ vj für alle i 6= j, ||vj|| = 1 für alle
j, und falls kein 0 6= v ∈ H existiert mit v ⊥ vj für alle j.

6.3.8 Beispiel Sei H = L2([0, π],R) mit dem Integralskalarprodukt. Der Laplace-
operator ∆ auf L2([0, π],R) mit Definitionsbereich D := {f ∈ C2([0, π] | f(0) =

f(π) = 0} ist wie bereits gezeigt symmetrisch. Die Funktionen fk(x) :=
√

2
π
sin(kx)

(x ∈ [0, π], k ∈ N) sind jeweils Eigenvektoren von ∆ zum Eigenwert −k2, denn
∆(fk) = f ′′

k = −k2fk. Ausserdem bilden die Funktionen fk (k ∈ N) ein vollständiges
Orthonormalsystem in H.

Beweis. Bekanntlich gilt

〈fn, fm〉 =
2

π

∫ π

0

sin(nx) sin(mx)dx = 0 für alle n 6= m.

Ausserdem ist

〈fn, fn〉 =
2

π

∫ π

0

sin2(nx)dx =
1

π

∫ 2π

0

sin2(nx)dx = 1 .

Nehmen wir weiter an, f sei eine stetig differenzierbare Funktion mit f(0) = f(π) =
0 und f ⊥ fk für alle k. Als stetig differenzierbare Funktion besitzt f eine Entwick-
lung in eine Sinusreihe der Form

f(x) =

∞
∑

k=1

γk sin(kx) , wobei γk =
2

π

∫ π

0

f(x) sin(kx) dx .

Nach der Annahme ist

0 = 〈f, fk〉 =

∫ π

0

√

2

π
f(x) sin(kx) dx =

√

π

2
γk .
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Also verschwinden alle Koeffizienten der Sinusreihe und daher ist f die Nullfunktion.
Das Orthonormalsystem lässt sich also innerhalb der Menge D := {f ∈ C2([0, π] |
f(0) = 0 = f(π)} nicht vergrössern. Nehmen wir nun an, g sei eine beliebige Funk-
tion in L2([0, π]) mit g ⊥ fk für alle k. Da jede Funktion aus D sich durch eine
Sinusreihe darstellen lässt, folgt daraus sogar g ⊥ f für alle f ∈ D. Nun ist die Teil-
menge D aber dicht in H. Wir können g also als Grenzwert einer im quadratischen
Mittel konvergierenden Folge von Funktionen gn ∈ D schreiben. Die Stetigkeit des
Skalarproduktes liefert nun

〈g, g〉 = 〈g, lim
n→∞

gn〉 = lim
n→∞

〈g, gn〉 = 0 .

Daraus folgt g(x) = 0 für fast alle x. Also repräsentiert g in L2([0, π]) das Nullele-
ment. Damit ist alles gezeigt. q.e.d.

6.4 Spektralsatz

Die folgenden Aussagen lassen sich wörtlich vom endlichdimensionalen auf den un-
endlichdimensionalen Fall übertragen:

6.4.1 Lemma Ist H ein Hilbertraum, D ⊂ H offen und dicht und L:D → H ein
symmetrischer Operator, so sind sämtliche Eigenwerte von L reell. Sind v, w zwei
Eigenvektoren von L zu verschiedenen Eigenwerten λ 6= µ von L, so ist 〈v, w〉 = 0.

6.4.2 Definition Sei nun H ein unendlichdimensionaler Hilbertraum, D ⊂ H of-
fen und dicht und L:D → H ein symmetrischer Operator. Man sagt, L habe ein
diskretes Spektrum, falls ein vollständiges Orthonormalsystem (v1, v2, v3, . . .) aus Ei-
genvektoren von L für H existiert und die zugehörigen Eigenwerte λj = 〈vj , L(vj)〉
eine monoton wachsende Folge bilden, wobei limj→∞ λj = ∞.

6.4.3 Beispiele 1. Der Operator −∆ auf L2([0, π],R) hat, wie eben gezeigt, ein
diskretes Spektrum und die Eigenwerte sind die Quadratzahlen k2 (k ∈ N).

2. Sei jetzt H = L2([0, 2π],C) mit dem Skalarprodukt

〈f, g〉 :=
1

2π

∫ 2π

0

f(x) g(x) dx〉 .

Sei weiter D = {f ∈ C2([0, 2π],C) | f(0) = 0 = f(2π)}. Der Operator −∆ mit
Definitionsbereich D ist auch auf diesem Hilbertraum symmetrisch und hat ein
diskretes Spektrum. Denn die Eigenfunktionen f0(x) = 1 (zum Eigenwert 0),
f2k−1(x) := eikx, f2k(x) := e−ikx (zum Eigenwert k2) für k ∈ N, bilden ein
vollständiges Orthonormalsystem von H.

6.4.4 Bemerkung Die Legendre-Polynome bilden ein vollständiges Orthonormal-
system im Hilbertraum L2([−1, 1],R).
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Beweis. Die Legendresche Differentialgleichung lautet

(x2 − 1)f ′′(x) + 2xf ′(x) = λf(x) (x ∈ [−1, 1]) .

Die Lösungen dieser Differentialgleichung sind genau die Eigenfunktionen des Diffe-
rentialoperators L auf C2([−1, 1]) ⊂ L2([−1, 1]), definiert durch

L(f)(x) = (x2 − 1)f ′′(x) + 2xf ′(x) (x ∈ [−1, 1]) .

Man kann nachrechnen, dass der Operator L symmetrisch ist. Deshalb sind die
Lösungen der Differentialgleichung zu verschiedenen Eigenwerten λ automatisch
orthogonal. Tatsächlich hat die Legendresche Differentialgleichung Lösungen für
λ = n(n + 1) (n ∈ N), und zwar gibt es zu jeder natürlichen Zahl n (bis auf
Vielfache) genau eine polynomiale Lösung von Grad n für λn = n(n + 1). Bei ent-
sprechender Normierung bilden diese Polynome also ein Orthonormalsystem, und
dies System ist sogar vollständig. Denn innerhalb des Raums der Polynome lässt sich
das System nicht vergrössern, und die Polynome wiederum liegen dicht im Raum
der L2-Funktionen, weil man jede glatte Funktion auf [−1, 1] durch eine Folge von
Polynomen im quadratischen Mittel approximieren kann. Der Differentialoperator
L hat also ein diskretes Spektrum mit Eigenwerten n(n+ 1) (n ∈ N). q.e.d.

Auch die bereits erwähnten Besselfunktionen können wir hier einordnen.

6.4.5 Bemerkung Sei ν ∈ N0 fest gewählt. Der DifferentialoperatorD auf L2([0, 1]),
definiert für alle v ∈ C0([0, R] ∩ C2((0, R]) mit v(R) = 0 durch

D(v)(r) = −v′′(r)−
1

r
v′(r) +

ν2

r2
v(r) (0 < r ≤ 1) ,

ist symmetrisch. Der Operator D hat ein diskretes Spektrum mit Eigenwerten λj =
j2ν,k/R

2 (k ∈ N), wobei jν,k die positiven Nullstellen der Besselfunktion Jν bezeichnen
(siehe 5.4.1). Jeder Eigenwert ist einfach und der entsprechende Eigenraum wird

aufgespannt von vk(r) = Jν(
jν,k
R

r).

Die bereits zitierte Entwicklung einer Funktion in eine Sinusreihe können wir
auch auf folgende Art schreiben:

f(x) =

∞
∑

k=1

(

2

π

∫ π

0

f(x) sin(kx) dx

)

sin(kx) =

∞
∑

k=1

(

∫ π

0

f(x)

√

2

π
sin(kx) dx

)

√

2

π
sin(kx) =

∞
∑

k=1

〈fk, f〉fk(x) .

Ist f nicht stetig differenzierbar, so konvergiert diese Reihenentwicklung im allge-
meinen nur noch für fast alle x. Das bedeutet, die Reihe

∑

∞

k=1〈f, fk〉fk konvergiert
zumindest im quadratischen Mittel gegen f .
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Die Fourierentwicklung einer Funktion f : [0, 2π] → C lautet:

f(x) = c0 +
∞
∑

k=1

(cke
ikx + c−ke

−ikx) ,

wobei ck := 1
2π

∫ 2π

0
f(x) e−ikx dx. Mit den oben gewählten Bezeichungen f0(x) = 1,

f2k−1(x) := eikx, f2k(x) := e−ikx für k ∈ N wird daraus: ck = 〈f2k−1, f〉 und c−k =
〈f2k, f〉 (für k ∈ N0). Also können wir die komplexe Fourierreihe auch so schreiben:

f(x) =
∞
∑

n=0

〈fn, f〉fn .

Auch andere vollständige Orthonormalsysteme liefern entsprechende Reihenent-
wicklungen für Funktionen.

6.4.6 Satz Hat der Operator L ein diskretes Spektrum aus Eigenwerten λ1 ≤ λ2 ≤
. . ., und ist (v1, v2, . . .) ein vollständiges Orthonormalsystem aus dazu gehörigen
Eigenvektoren, so gilt folgendes:

1. Jedes Element u ∈ H besitzt eine Reihenentwicklung der Form

u = lim
n→∞

n
∑

k=1

〈vk, u〉vk .

Dabei ist der Grenzwert im Sinn der durch das Skalarprodukt definierten Norm
zu verstehen. Man spricht hier auch von der verallgemeinerten Fourierentwick-
lung.

2. Für die Koeffizienten der Reihe aus 1. (die verallgemeinerten Fourierkoeffizi-
enten von u) gilt die Besselsche Gleichung

∞
∑

k=1

|〈vk, u〉|
2 = ||u||2 .

3. Der Definitionsbereich von L kann maximal auf folgende Teilmenge ausgedehnt
werden:

M := {u ∈ H |

∞
∑

k=1

λ2
k|〈vk, u〉|

2 < ∞} .

Man kann L auf M fortsetzen, indem man für u ∈ M setzt:

L(u) =

∞
∑

k=1

〈vk, u〉λkvk .

Damit ist der Operator L sozusagen auf “Diagonalform” gebracht.

4. Die Menge {λk | k ∈ N} enthält sämtliche Eigenwerte von L, und alle Ei-
genräume von L sind endlichdimensional.
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Für den Beweis brauchen wir folgendes Lemma:

6.4.7 Lemma Wir verwenden dieselben Bezeichnungen wie im Satz. Dann gilt für
jedes n ∈ N:

||u−

n
∑

k=1

〈vk, u〉vk||
2 = ||u||2 −

n
∑

k=1

|〈vk, u〉|
2 .

Daraus folgt insbesondere die Ungleichung:

n
∑

k=1

|〈vk, u〉|
2 ≤ ||u||2 für alle n ∈ N. .

Kommen wir nun zum Beweis des Satzes.

Beweis. Zu 1.: Aus der im Lemma formulierten Ungleichung lesen wir ab, dass
die Teilsummenfolge der Reihe

∑

∞

k=1 |〈vk, u〉|
2 nach oben beschränkt ist. Da die

Summanden alle nichtnegativ sind, folgt daraus bereits, dass die Reihe konvergiert,
der Grenzwert

∑

∞

k=1 |〈vk, u〉|
2 existiert also.

Daraus wiederum können wir schliessen, dass die Teilsummenfolge sn der Rei-
he
∑

∞

k=1〈vk, u〉vk eine Cauchyfolge in H ist und deshalb im Hilbertraum H einen
Grenzwert w hat. Denn

||sn − sm|| = ||
n
∑

k=m+1

〈vk, u〉vk|| =
n
∑

k=m+1

|〈vk, u〉|
2 .

Nehmen wir nun an, der Grenzwert w stimme nicht mit u überein. Für die Differenz
u− w gilt wegen der Stetigkeit des Skalarproduktes für alle j ∈ N:

〈vj, u− w〉 = 〈vj , u〉 − 〈vj , lim
n→∞

n
∑

k=1

〈vk, u〉vk〉 = 〈vj , u〉 − lim
n→∞

n
∑

k=1

〈vk, u〉〈vj, vk〉 = 0 .

Also steht u−w senkrecht auf allen Vektoren vk. Da wir vorausgesetzt haben, dass
das System der vk vollständig ist, muss daher u = w sein.

Zu 2.: Die Aussagen 1 und 2 sind äquivalent, wie sich sofort aus dem Lemma
ergibt.

Zu 3.: Nehmen wir an, der Operator L sei auf u auswertbar. Dann muss L(u)
die Besselsche Gleichung erfüllen. Wegen der Symmetrie des Operators L und weil
alle Eigenwerte λk reell sind, gilt aber:

〈vk, L(u)〉 = 〈Lvk, u〉 = λk〈vk, u〉 .

Damit folgt aus 2.:

||L(u)||2 =

∞
∑

k=1

|〈vk, L(u)〉|
2 =

∞
∑

k=1

λ2
k|〈vk, u〉|

2 < ∞ .

Ist diese Ungleichung für die Koeffizienten 〈vk, u〉 erfüllt, also u ∈ M , dann ist
die Vorschrift L(u) =

∑

∞

k=1〈vk, u〉λkvk wohldefiniert. (Die Konvergenz der Reihe



110 Kapitel 6. Hilberträume und symmetrische Operatoren

ergibt sich wieder aus dem Lemma.) Ausserdem stimmt diese Vorschrift auf dem
Definitionsbereich D mit der Wirkung von L überein. Denn nach 1. hat L(u) (für
u ∈ D) folgende Reihenentwicklung:

L(u) =

∞
∑

k=1

〈vk, L(u)〉vk .

Verwenden wir jetzt wieder, dass 〈vk, L(u)〉 = λk〈vk, u〉, erhalten wir wie behauptet:

L(u) =

∞
∑

k=1

λk〈vk, u〉vk .

Zu 4.: Nehmen wir an, 0 6= v sei ein Eigenvektor des Operators L zum Eigenwert
µ 6= λk für alle k. Dann folgt v ⊥ vk für alle k, und wegen der Vollständigkeit
des Orthonormalsystems ergibt sich daraus v = 0, ein Wiederspruch. Also enthält
die Liste der λk bereits alle Eigenwerte. Wählen wir jetzt einen Eigenwert λ aus.
Weil die Folge der λk gegen unendlich geht, gibt es einen Index n0 mit λk > λ
für alle k > n0. Also kann der Eigenwert λ höchstens mit den Zahlen λ1, . . . , λn0

übereinstimmen. Die Vielfachheit von λ ist also höchstens n0 und damit endlich.
Damit ist alles gezeigt. q.e.d.

6.4.8 Folgerung Hat der symmetrische Operator L auf dem Hilbertraum H ein
diskretes Spektrum aus Eigenwerten λ1 ≤ λ2 ≤ λ3 ≤ . . . und ist (v1, v2, v3, . . .)
ein vollständiges Orthonormalsystem aus dazugehörigen Eigenvektoren, so ist die
Zuordnung

H → ℓ2(R) , f 7→ (〈v1, f〉, 〈v2, f〉, 〈v3, f〉, . . .)

ein Isomorphismus von Hilberträumen. Der Operator L auf H geht dabei über in
den Operator T auf ℓ2(R), definiert durch

T ((x1, x2, x3, . . .)) := (λ1x1, λ2x2, λ3x3, . . .)

mit dem Definitionsbereich M = {((x1, x2, x3, . . .) ∈ ℓ2(R) |
∑

∞

j=1 λ
2
jx

2
j < ∞}. Der

Operator L ist durch die Wahl des vollständigen Orthonormalsystems also sozusagen
auf Diagonalform gebracht worden.

Die Hermitefunktionen bilden ein vollständiges Orthonormalsystem des Hilber-
traums H = L2(R) mit dem Integralskalarprodukt

〈f, g〉 =

∫

∞

−∞

f(x)g(x) dx .

Sie treten auf im Zusammenhang mit der Schrödingergleichung. Die Schrödinger-
gleichung für ein Teilchen mit einem Freiheitsgrad und Potentialfunktion V (x) = x2

lautet

∂tu(x, t) =
i

2
∂2
xu(x, t)−

i

2
x2u(x, t) .
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Der Produktansatz u(x, t) = v(x)w(t) führt auf die gekoppelten Differentialgleichun-
gen

w′(t) = λw(t) und −
i

2
(x2v(x)− v′′(x)) = λv(x) ,

wobei λ ∈ R ein Eigenwert des Hermite-Operators

H(v)(x) = x2v(x)− v′′(x)

ist. Der Hermite-Operator hat folgende Eigenschaften:

6.4.9 Satz 1. H ist ein symmetrischer Operator auf H = L2(R) mit Definiti-
onsbereich D = {u ∈ C2(R) ∩ L2(R) | u′ ∈ L2(R)}.

2. Die Hermitefunktionen hn, definiert für n ∈ N0 durch

hn(x) = (−1)n exp(x2/2)
dn

dxn
(e−x2

) ,

sind Eigenfunktionen zum Hermiteoperator zum Eigenwert (2n+ 1).

3. Die Hermitefunktionen hn (n ∈ N0) bilden nach passender Skalierung ein
vollständiges Orthonormalsystem für H = L2(R), das heisst, der Hermite-
operator hat ein diskretes Spektrum auf H.

6.4.10 Folgerung Jede Lösung der Schrödingergleichung lässt sich folgendermas-
sen in eine Reihe entwickeln:

u(x, t) =
∞
∑

n=0

ane
−i(n+ 1

2
)thn(x) .

Dabei sind die an reelle Koeffizienten.

Zum Beweis des Satzes: 1. Die Symmetrie lässt sich leicht nachrechnen, wenn
man berücksichtigt, dass die Funktionen im Definitionsbereich D im Unendlichen
schnell abfallen müssen, damit das Quadrat über ganz R integrierbar ist.

3. Nehmen wir an, die zweite Aussage ist gezeigt. Dann folgt auch sofort, dass
die hn ein Orthonormalsystem bilden, weil die entsprechenden Eigenwerte paarweise
verschieden sind. Wie wir gleich sehen werden, ist ausserdem jeweils hn das Produkt
eines Polynoms von Grad n mit der Gaussschen Funktion g(x) = exp(−x2/2). Der
von den hn erzeugte lineare Unterraum in H enthält also alle Funktionen der Form
p(x) exp(−x2/2), wobei p ein beliebiges Polynom ist. Dieser Vorrat an Funktionen
liegt dicht in H, was wir hier ohne Beweis angeben. Nun folgt die Behauptung wie
in Beispiel 4.24.

Es bleibt also nur noch die zweite Aussage zu zeigen. Dazu treffen wir zunächst
einige Vorbereitungen.

6.4.11 Bemerkung Die Hermitefunktionen sind von der Form

hn(x) = (−1)n exp(x2/2)
dn

dxn
(e−x2

) = pn(x) exp(−x2/2) ,
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wobei pn ein Polynom von Grad n mit genau n verschiedenen reellen Nullstellen ist.
Ist n ungerade, so ist pn ungerade, und ist n gerade, so ist pn eine gerade Funktion.
Die ersten drei Hermitefunktionen lauten:

h0(x) = exp(−x2/2) , h1(x) = 2x exp(−x2/2) , h2(x) = (−2 + 4x2) exp(−x2/2) .

6.4.12 Lemma Für die Hermitefunktionen gelten die folgenden Rekursionsformeln:

hn+1(x) = xhn(x)− h′

n(x)
hn+1(x) = 2xhn(x)− 2nhn−1(x)

2nhn−1(x) = xhn(x) + h′

n(x)

Beweis. Die erste Rekursionsformel ergibt sich direkt aus der Definition mit der
Produktregel:

h′

n(x) = (−1)n exp(x2/2)(x
dn

dxn
(e−x2

) +
dn+1

dxn+1
(e−x2

)) = xhn(x)− hn+1(x) .

Die zweite Rekursionsformel folgt aus der Leibnizregel für höhere Ableitungen,
nämlich

(fg)(n) =
n
∑

k=0

(

n

k

)

f (k)g(n−k) .

Denn damit können wir schliessen

dn+1

dxn+1
(e−x2

)) =
dn

dxn
((−2x)e−x2

) = −2x
dn

dxn
(e−x2

)− 2n
dn−1

dxn−1
(e−x2

)) .

Und daraus folgt
−hn+1(x) = −2xhn(x) + 2nhn−1(x) .

Die dritte Aussage folgt sofort aus den ersten beiden. q.e.d.

6.4.13 Folgerung Für alle n ∈ N0 und alle x ∈ R gilt:

H(hn) = x2hn(x)− h′′

n(x) = (2n+ 1)hn(x) .

Beweis. Wir zeigen die Behauptung durch vollständige Induktion. Für n = 0 und
n = 1 kann man die Aussage nachrechnen. Sei jetzt die Aussage richtig für n und
n− 1 (n ≥ 1). Dann erhalten wir für n + 1 mithilfe der Rekursionsformeln und der
Induktionsvoraussetzung:

H(hn+1) = x2hn+1(x)− h′′

n+1(x) =
= 2x3hn(x)− 2nx2hn−1(x)− (2hn(x) + 2xh′

n(x)− 2nh′

n−1(x))
′

= −2n(x2hn−1(x)− h′′

n−1(x))− 4h′

n(x)− 2x(h′′

n(x)− x2hn(x))
= (2n− 1)[−2nhn−1(x) + 2xhn(x)] + 4[xhn(x)− h′

n(x)]
= (2n+ 3)hn+1 .

Damit ist alles gezeigt. q.e.d.


