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6.3 SYMMETRISCHE OPERATOREN

Eine Abbildung zwischen Hilbertrdumen wird meist als Operator bezeichnet. Von
besonderer Bedeutung sind die linearen Operatoren, die im Gegensatz zu den li-
nearen Abbildungen zwischen Vektorrdumen, die wir bisher kennengelernt hatten,
nicht auf dem ganzen Ausgangsraum definiert zu sein brauchen. Man verlangt vom
Definitionsbereich nur, dass es sich um eine dichte, offene Teilmenge handelt.

6.3.1 DEFINITION Seien H;, Ho Hilbertrdume und sei D C H; ein linearer Unter-
raum, der in H; dicht liegt. Eine Abbildung L: D — Hs wird als linearer Operator
auf H; bezeichnet, falls L(f +g) = L(f) + L(g) und L(af) = aL(f) fir alle a € R,
f,g9,af € D. Ein linearer Operator L: D C Hy, — H; heisst symmetrisch, falls

(L(f),g9) = (f,L(g)) firalle f,g € D.

6.3.2 BEISPIELE o Ist H; = R” und Hs = R™, jeweils mit dem Standardska-
larprodukt, so ist ein linearer Operator zwischen H; und s nichts anderes
als eine lineare Abbildung. Hier kann man stets ganz R™ als Definitionsbereich
wiéhlen. Bekanntlich wird jede solche Abbildung durch eine m x n-Matrix indu-
ziert. Die durch eine reelle n x n-Matrix A definierte Abbildung L 4: R" — R"

ist genau dann symmetrisch, wenn die Matrix A symmetrisch ist, das heisst
A=A

e Ist H = C" mit dem hermiteschen Standardprodukt. Die durch eine komplexe
n x n-Matrix A definierte lineare Abbildung L4:C" — C" ist genau dann
symmetrisch, wenn die Matrix A hermitesch ist, das heisst A = A* := A",

e Sei jetzt H = (*(R) der Hilbertsche Folgenraum. Betrachten wir zunéchst die
Abbildung R auf H, die darin besteht, die Glieder einer Folge jeweils um eine
Position nach rechts zu verschieben:

R((CLl, as, as, . . )) = (0, ay, ag, . . ) .

Der so definierte Operator ist linear, aber nicht symmetrisch. Denn zum Bei-
spiel fiir die Folgen x = (1,0,0,...) und y = (0, 1,0,0,...) erhalten wir:

(R(x),y) =17 0= (z,R(y)) -
Der Operator T auf /%(R) sei folgendermassen definiert:

T((oher) = (zanleen

Auch dieser Operator ist linear, ausserdem ist 7" sogar symmetrisch. Denn sind
a = (ag)ren, b = (bg)ren zwei quadratsummierbare Folgen, so gilt:

Z % kb = (a, T(D)) .
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6.3.3 BEMERKUNG Nun wéhlen wir den Hilbertraum H = L?([a,b],R). Sei D :=
{f € C*a,b],R) | f(a) = 0 = f(b)}. Jede Funktion in D Idsst sich zweimal
ableiten, wir koénnen daher den Laplaceoperator als linearen Operator auf ‘H mit
Definitionsbereich D auffassen:

A:D—H, f—f".

Mit dieser Wahl des Definitionsbereichs ist der Laplaceoperator symmetrisch.

Beweis. Fiir alle f, g € D gilt: (f".g9) =

[ renee = [ @@ rwgwt=- [ 1o

und andererseits (f,g") =
b
I R ey e e R
Beide Skalarprodukte stimmen also miteinander iiberein.  q.e.d.

Allgemeiner gilt:

6.3.4 SATZ Der Laplaceoperator auf H = L?(Q2,R) (fiir ein kompaktes Gebiet Q) C
R"™ mit glattem Rand), mit dem Definitionsbereich D := {f € C*(,R) | f(x) =
fiir alle x € 0N)}, definiert durch

A:D —H, fHA(f):i@ff

ist symmetrisch.

Beweis. Hierfiir konnen wir den folgenden Satz von Green verwenden, der eine Kon-
sequenz des Gaussschen Divergenzsatzes ist, ndmlich:

[ a@as@) = r@do@)ds = [ (6000 f0) = 1) uygta) derto),
wobei 0y,(;) die Ableitung in Richtung des dusseren Normalenvektors n(x) im Punkt
x € L) bezeichnet. Weil wir nun zusétzlich vorausgesetzt haben, dass sowohl f als
auch g auf dem Rand von €2 verschwinden, verschwindet hier der gesamte Integrand
auf der rechten Seite der Gleichung. Es folgt also

/Q f(@) - Alg)(a) — g(x) - A(S)(x) dz = 0.

Das bedeutet gerade, dass der Laplaceoperator symmetrisch ist.  q.e.d.

Das néchste Ziel wird es sein, eine Entsprechung des Hauptsatzes iiber sym-
metrische reelle Matrizen fiir symmetrische Operatoren auf unendlichdimensionalen
Hilbertraumen zu finden. Hier zur Erinnerung die Aussage des Hauptsatzes:
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6.3.5 SATZ Ist A eine symmetrische n x n-Matrix, so hat A nur reelle Eigenwerte
und es gibt eine Orthonormalbasis des R™ aus Eigenvektoren von A.

Der Begriff des Eigenwertes und des Eigenvektors lédsst sich sofort auf lineare
Operatoren ausdehnen.

6.3.6 DEFINITION Eine Zahl A € C wird als Eigenwert eines linearen Operators
L: D C H — H bezeichnet, falls ein Vektor 0 # v € D existiert mit L(v) = Av. Der
Vektor v heisst in dieser Situation Figenvektor zum Eigenwert \.

Die Entsprechung des Begriffs der Orthonormalbasis ist fiir unendlichdimensio-
nale Hilbertrdume das vollstindige Orthonormalsystem. Ein Orthonormalsystem
besteht aus paarweise senkrechten, auf Lénge 1 normierten Vektoren. Ein solches
System nennt man vollstdndig, wenn es maximal ist, sich also nicht mehr vergrossern
lésst. Genauer:

6.3.7 DEFINITION Eine abzihlbare Menge {vq, va, vs, ...} in einem Hilbertraum
heisst vollstindiges Orthonormalsystem, falls v; L v; fir alle i # 7, ||v;|| = 1 fiir alle
J, und falls kein 0 # v € H existiert mit v L v; fiir alle j.

6.3.8 BEISPIEL Sei H = L*([0, 7], R) mit dem Integralskalarprodukt. Der Laplace-
operator A auf L*([0, 7], R) mit Definitionsbereich D := {f € C*([0,x] | f(0) =
f(m) = 0} ist wie bereits gezeigt symmetrisch. Die Funktionen f(x) := \/g sin(kx)

(x € [0,7], k € N) sind jeweils Eigenvektoren von A zum Eigenwert —k?, denn
A(fx) = f!! = —k? fx. Ausserdem bilden die Funktionen f; (k € N) ein vollstéindiges
Orthonormalsystem in .

Beweis. Bekanntlich gilt

2 s
(fn, frm) = —/ sin(nx) sin(ma)der =0 fiir alle n # m.
T Jo
Ausserdem ist

2

(frs fn) = - /07r sin®(nx)dr = /o 7rsin2(n:c)d:v =1.

1
7r
Nehmen wir weiter an, f sei eine stetig differenzierbare Funktion mit f(0) = f(7) =

0 und f L f; fiir alle k. Als stetig differenzierbare Funktion besitzt f eine Entwick-
lung in eine Sinusreihe der Form

f(z) = nyk sin(kz), wobei = 2 /7r f(z)sin(kx) dx .
k=1 T Jo

Nach der Annahme ist

0= = [ ” @f@») sin(k) dz = \/gvk-
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Also verschwinden alle Koeffizienten der Sinusreihe und daher ist f die Nullfunktion.
Das Orthonormalsystem lisst sich also innerhalb der Menge D := {f € C?*([0, 7] |
f(0) =0 = f(m)} nicht vergrossern. Nehmen wir nun an, g sei eine beliebige Funk-
tion in £2([0,7]) mit g L f; fiir alle k. Da jede Funktion aus D sich durch eine
Sinusreihe darstellen lésst, folgt daraus sogar g L f fiir alle f € D. Nun ist die Teil-
menge D aber dicht in H. Wir konnen ¢ also als Grenzwert einer im quadratischen
Mittel konvergierenden Folge von Funktionen g, € D schreiben. Die Stetigkeit des
Skalarproduktes liefert nun

(9,9) = (g, lim g,) = lim (g,g,) = 0.
n—oo n—oo

Daraus folgt g(x) = 0 fiir fast alle x. Also reprisentiert g in L?([0,7]) das Nullele-
ment. Damit ist alles gezeigt.  q.e.d.

6.4 SPEKTRALSATZ

Die folgenden Aussagen lassen sich wortlich vom endlichdimensionalen auf den un-
endlichdimensionalen Fall iibertragen:

6.4.1 LEMMA Ist H ein Hilbertraum, D C ‘H offen und dicht und L: D — H ein
symmetrischer Operator, so sind samtliche Eigenwerte von L reell. Sind v, w zwei
Eigenvektoren von L zu verschiedenen Eigenwerten \ # p von L, so ist (v, w) = 0.

6.4.2 DEFINITION Sei nun H ein unendlichdimensionaler Hilbertraum, D C H of-
fen und dicht und L: D — H ein symmetrischer Operator. Man sagt, L habe ein
diskretes Spektrum, falls ein vollstdndiges Orthonormalsystem (vy, vq, vs, .. .) aus Ei-
genvektoren von L fiir H existiert und die zugehorigen Eigenwerte \; = (v;, L(v;))
eine monoton wachsende Folge bilden, wobei lim;_,o, A; = 00.

6.4.3 BEISPIELE 1. Der Operator —A auf L?([0, 7], R) hat, wie eben gezeigt, ein
diskretes Spektrum und die Eigenwerte sind die Quadratzahlen k? (k € N).

2. Sei jetzt H = L?([0,27], C) mit dem Skalarprodukt

o= 5 [ T@lgta) da).

Sei weiter D = {f € C*([0,2x],C) | f(0) =0 = f(2m)}. Der Operator —A mit
Definitionsbereich D ist auch auf diesem Hilbertraum symmetrisch und hat ein
diskretes Spektrum. Denn die Eigenfunktionen fo(z) = 1 (zum Eigenwert 0),
for_1(z) = e* for(x) = e ** (zum Eigenwert k?) fiir & € N, bilden ein
vollstdndiges Orthonormalsystem von H.

6.4.4 BEMERKUNG Die Legendre-Polynome bilden ein vollstindiges Orthonormal-
system im Hilbertraum L*([—1,1],R).
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Beweis. Die Legendresche Differentialgleichung lautet

(@ = 1)f"(2) + 22f'(x) = Mf(2) (v €[-1,1]).

Die Losungen dieser Differentialgleichung sind genau die Eigenfunktionen des Diffe-
rentialoperators L auf C?([—1,1]) C L?([-1, 1]), definiert durch

L(f)(x) = (2* = 1)f"(2) + 22f'(z) (2 €[-1,1]).

Man kann nachrechnen, dass der Operator L symmetrisch ist. Deshalb sind die
Losungen der Differentialgleichung zu verschiedenen Eigenwerten A\ automatisch
orthogonal. Tatsdchlich hat die Legendresche Differentialgleichung Loésungen fiir
A =n(n+1) (n € N), und zwar gibt es zu jeder natiirlichen Zahl n (bis auf
Vielfache) genau eine polynomiale Losung von Grad n fiir A, = n(n + 1). Bei ent-
sprechender Normierung bilden diese Polynome also ein Orthonormalsystem, und
dies System ist sogar vollstdndig. Denn innerhalb des Raums der Polynome lésst sich
das System nicht vergréssern, und die Polynome wiederum liegen dicht im Raum
der L?-Funktionen, weil man jede glatte Funktion auf [—1,1] durch eine Folge von
Polynomen im quadratischen Mittel approximieren kann. Der Differentialoperator
L hat also ein diskretes Spektrum mit Eigenwerten n(n+ 1) (n € N).  q.e.d.

Auch die bereits erwahnten Besselfunktionen konnen wir hier einordnen.

6.4.5 BEMERKUNG Seiv € Ny fest gewéhlt. Der Differentialoperator D auf L*([0, 1]),
definiert fiir alle v € C°([0, R] N C*((0, R]) mit v(R) = 0 durch

1 2
D) (r) = =v"(r) — =v'(r) + —v(r) (0<r <),

r
ist symmetrisch. Der Operator D hat ein diskretes Spektrum mit Eigenwerten \; =
Jor/R? (k € N), wobei j, . die positiven Nullstellen der Besselfunktion .J, bezeichnen
(siehe 5.4.1). Jeder Eigenwert ist einfach und der entsprechende Eigenraum wird

aufgespannt von vg(r) = Jy(]u}ék ).

Die bereits zitierte Entwicklung einer Funktion in eine Sinusreihe konnen wir
auch auf folgende Art schreiben:

fla) = ( / fla s1n(kx)dx) sin(kz) =

k=1

i (/OW f(x)\/gsin(k:c) da:) \/jsm kx) kf; fis f)

k=1

Ist f nicht stetig differenzierbar, so konvergiert diese Reihenentwicklung im allge-
meinen nur noch fiir fast alle z. Das bedeutet, die Reihe > 77 (f, fi) fi konvergiert
zumindest im quadratischen Mittel gegen f.
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Die Fourierentwicklung einer Funktion f: [0, 27] — C lautet:

f(ZL‘) =co+ Z(Ckeikx + C_ke_ilm) R
k=1

wobel ¢ 1= 5= OZW f(x)e~* dx. Mit den oben gewiithlten Bezeichungen fo(z) = 1,

for—1(x) == e for(z) = e~ * fiir k € N wird daraus: ¢x = (for_1, f) und c_j =
(for, f) (fiir k € Ng). Also kénnen wir die komplexe Fourierreihe auch so schreiben:

o0

n=0
Auch andere vollstindige Orthonormalsysteme liefern entsprechende Reihenent-

wicklungen fiir Funktionen.

6.4.6 SATZ Hat der Operator L ein diskretes Spektrum aus Eigenwerten \; < Ay <
.., und ist (vy,ve,...) ein vollstindiges Orthonormalsystem aus dazu gehdérigen
FEigenvektoren, so gilt folgendes:

1. Jedes Element u € H besitzt eine Reihenentwicklung der Form

n
u= lim Z(vk,u)vk.
n—oo
k=1

Dabei ist der Grenzwert im Sinn der durch das Skalarprodukt definierten Norm
zu verstehen. Man spricht hier auch von der verallgemeinerten Fourierentwick-
lung.

2. Fiir die Koeffizienten der Reihe aus 1. (die verallgemeinerten Fourierkoeffizi-
enten von u) gilt die Besselsche Gleichung

> ok w) P =l

00
k=1

3. Der Definitionsbereich von L kann maximal auf folgende Teilmenge ausgedehnt
werden:

M={ueH|Y N|(vu)’ < oo}.
k=1

Man kann L auf M fortsetzen, indem man fiir u € M setzt:

L(u) = Z(vk, UY ARV, -

o
k=1
Damit ist der Operator L sozusagen auf “Diagonalform” gebracht.

4. Die Menge {\; | k € N} enthélt samtliche Eigenwerte von L, und alle Ei-
genrdume von L sind endlichdimensional.
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Fiir den Beweis brauchen wir folgendes Lemma:

6.4.7 LEMMA Wir verwenden dieselben Bezeichnungen wie im Satz. Dann gilt fiir
jedes n € N:

llu =D (ons worl? = [[ul® = D o, w)
k=1 k=1
Daraus folgt insbesondere die Ungleichung:

> Hog, w)* < Jul* fiir alle n € N..

k=1
Kommen wir nun zum Beweis des Satzes.

Beweis. Zu 1.: Aus der im Lemma formulierten Ungleichung lesen wir ab, dass
die Teilsummenfolge der Reihe > 7 [(vg, u)[* nach oben beschrinkt ist. Da die
Summanden alle nichtnegativ sind, folgt daraus bereits, dass die Reihe konvergiert,
der Grenzwert >, |(vy, u)|? existiert also.

Daraus wiederum kénnen wir schliessen, dass die Teilsummenfolge s,, der Rei-
he > 77, (vg, u)vy, eine Cauchyfolge in H ist und deshalb im Hilbertraum # einen
Grenzwert w hat. Denn

n n
lsn = smll =11 D (el = > v, w)]*.
k=m-+1 k=m-+1

Nehmen wir nun an, der Grenzwert w stimme nicht mit « tiberein. Fiir die Differenz
u — w gilt wegen der Stetigkeit des Skalarproduktes fiir alle j € N:

n

(vj, u —w) = (vj,u) — <vj,,}gg02<vk,u>vk> = (vj,u) — lim. > vk, u)(vj, o) = 0.

k=1

Also steht u — w senkrecht auf allen Vektoren v,. Da wir vorausgesetzt haben, dass
das System der vy vollstdndig ist, muss daher u = w sein.

Zu 2.: Die Aussagen 1 und 2 sind dquivalent, wie sich sofort aus dem Lemma
ergibt.

Zu 3.: Nehmen wir an, der Operator L sei auf u auswertbar. Dann muss L(u)
die Besselsche Gleichung erfiillen. Wegen der Symmetrie des Operators L und weil
alle Eigenwerte \; reell sind, gilt aber:

(Ug, L(u)) = (Lo, u) = Agp(vg, u) .

Damit folgt aus 2.:
1L()IIP =D ok L) = D Al u)|? < oo
k=1 k=1

Ist diese Ungleichung fiir die Koeffizienten (vy,u) erfiillt, also v € M, dann ist
die Vorschrift L(u) = Y, (v, u) gy, wohldefiniert. (Die Konvergenz der Reihe
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ergibt sich wieder aus dem Lemma.) Ausserdem stimmt diese Vorschrift auf dem
Definitionsbereich D mit der Wirkung von L iiberein. Denn nach 1. hat L(u) (fiir
u € D) folgende Reihenentwicklung:

oo

L(u) =Y (vg, L(w))vy.

k=1

Verwenden wir jetzt wieder, dass (vy, L(u)) = A\g(vg, u), erhalten wir wie behauptet:

L(u) = Z A (g, UV,
k=1

Zu 4.: Nehmen wir an, 0 # v sei ein Eigenvektor des Operators L zum Eigenwert
i # N\ fiir alle k. Dann folgt v L v, fiir alle k£, und wegen der Vollstindigkeit
des Orthonormalsystems ergibt sich daraus v = 0, ein Wiederspruch. Also enthélt
die Liste der A\ bereits alle Eigenwerte. Wéhlen wir jetzt einen Eigenwert A\ aus.
Weil die Folge der A\, gegen unendlich geht, gibt es einen Index ny mit Ay > A
fiir alle £ > ng. Also kann der Eigenwert A hochstens mit den Zahlen Ay, ..., \,,
iibereinstimmen. Die Vielfachheit von A ist also hochstens ny und damit endlich.
Damit ist alles gezeigt.  q.e.d.

6.4.8 FOLGERUNG Hat der symmetrische Operator L auf dem Hilbertraum H ein
diskretes Spektrum aus Eigenwerten \; < Ay < A3 < ... und ist (v, vs,0s,...)
ein vollstdndiges Orthonormalsystem aus dazugehdrigen Eigenvektoren, so ist die
Zuordnung

H—>£2<R)7 f'_>(<U17f>7<U27f>7<v37f>7"')

ein Isomorphismus von Hilbertraumen. Der Operator L auf ‘H geht dabei iiber in
den Operator T auf (*(R), definiert durch

T((l‘l, o, T3, .. )) = ()\11‘1, )\QI‘Q, )\31‘3, .. )

mit dem Definitionsbereich M = {((x1, xg,23,...) € (*(R) | 3272, NjaF < oo}. Der
Operator L ist durch die Wahl des vollstandigen Orthonormalsystems also sozusagen

auf Diagonalform gebracht worden.

Die Hermitefunktionen bilden ein vollstdndiges Orthonormalsystem des Hilber-
traums H = L?(R) mit dem Integralskalarprodukt

(f.g) = / " () de.

Sie treten auf im Zusammenhang mit der Schrédingergleichung. Die Schrodinger-
gleichung fiir ein Teilchen mit einem Freiheitsgrad und Potentialfunktion V (x) = 22
lautet

Owu(z,t) = %6§u(m, t) — %xQU(x,t).
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Der Produktansatz u(x,t) = v(x)w(t) fithrt auf die gekoppelten Differentialgleichun-
gen

W) = () und - %(az%(:c) — (@) = Mo(a),
wobei A € R ein Eigenwert des Hermite-Operators
H(v)(z) = 2*v(z) — v"(z)
ist. Der Hermite-Operator hat folgende Eigenschaften:

6.4.9 SATZ 1. H ist ein symmetrischer Operator auf H = L*(R) mit Definiti-
onsbereich D = {u € C*(R) N L*(R) | v’ € L*(R)}.

2. Die Hermitefunktionen h,,, definiert fiir n € Ny durch

() = (—1)" exp(a®/2) S (&),

dz™

sind Eigenfunktionen zum Hermiteoperator zum Eigenwert (2n + 1).

3. Die Hermitefunktionen h, (n € Ny) bilden nach passender Skalierung ein
vollstéindiges Orthonormalsystem fiir H = L*(R), das heisst, der Hermite-
operator hat ein diskretes Spektrum auf H.

6.4.10 FOLGERUNG Jede Lésung der Schrédingergleichung ldsst sich folgendermas-
sen in eine Reihe entwickeln:

u(z, t) = Z ane_i("Jr%)thn(:p) :
n=0

Dabei sind die a,, reelle Koeffizienten.

Zum Beweis des Satzes: 1. Die Symmetrie lésst sich leicht nachrechnen, wenn
man beriicksichtigt, dass die Funktionen im Definitionsbereich D im Unendlichen
schnell abfallen miissen, damit das Quadrat iiber ganz R integrierbar ist.

3. Nehmen wir an, die zweite Aussage ist gezeigt. Dann folgt auch sofort, dass
die h,, ein Orthonormalsystem bilden, weil die entsprechenden Eigenwerte paarweise
verschieden sind. Wie wir gleich sehen werden, ist ausserdem jeweils h,, das Produkt
eines Polynoms von Grad n mit der Gaussschen Funktion g(z) = exp(—z?/2). Der
von den h, erzeugte lineare Unterraum in H enthélt also alle Funktionen der Form
p(x) exp(—x?/2), wobei p ein beliebiges Polynom ist. Dieser Vorrat an Funktionen
liegt dicht in H, was wir hier ohne Beweis angeben. Nun folgt die Behauptung wie
in Beispiel 4.24.

Es bleibt also nur noch die zweite Aussage zu zeigen. Dazu treffen wir zunéchst
einige Vorbereitungen.

6.4.11 BEMERKUNG Die Hermitefunktionen sind von der Form
n
2

() = (1) exp(a?/2) () = pulr) exp(—a2/2),
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wobei p,, ein Polynom von Grad n mit genau n verschiedenen reellen Nullstellen ist.
Ist n ungerade, so ist p, ungerade, und ist n gerade, so ist p, eine gerade Funktion.
Die ersten drei Hermitefunktionen lauten:

hol) = exp(—22/2),  hi(x) = 2vexp(—a%/2),  ha(a) = (=2 + 422) exp(—a®/2).
6.4.12 LEMMA Fiir die Hermitefunktionen gelten die folgenden Rekursionsformeln:

hnii(z) = xhn(z) = by, (2)
hnii(z) = 2xh,(z) — 2nh,_1(x)
2nh, 1(x) = zh,(z)+ hl(x)

Beweis. Die erste Rekursionsformel ergibt sich direkt aus der Definition mit der
Produktregel:
dntt 2

() = (=1)" exp(a?/2) (@~ ( )+ (7)) = 2ha(@) = b ().

Die zweite Rekursionsformel folgt aus der Leibnizregel fiir hohere Ableitungen,
némlich

22

n n -
(fo)™ =>" (k) fE gtk
k=0
Denn damit konnen wir schliessen
dntt 22 dn dn 2 dr—1 g2
) = o (2)e ) = <2r ()~ 2 ().

dz™

Und daraus folgt
—hps1(z) = =2xh, () + 2nh,_1(z) .

Die dritte Aussage folgt sofort aus den ersten beiden.  q.e.d.

6.4.13 FOLGERUNG Fiir alle n € Ny und alle x € R gilt:
H(h,) = 2*h, () — h(z) = (2n + 1)h, (7).

Beweis. Wir zeigen die Behauptung durch vollstédndige Induktion. Fiir n = 0 und
n = 1 kann man die Aussage nachrechnen. Sei jetzt die Aussage richtig fiir n und
n—1 (n > 1). Dann erhalten wir fiir n 4+ 1 mithilfe der Rekursionsformeln und der
Induktionsvoraussetzung;:

H(hpi1) = 2" hoga(@) = by (2) =
= 20%h,(2) — 2n2?h,_1(7) — (2h,(2) + 220 (z) — 2nh), | (x))
= —2n(ah, (2) — by (2)) — 4 () — 20(R(2) — 2o (2))
= (2n = 1)[-2nh,_1(z) + 2zh,(2)] + 4[zh,(x) — K, (x)]
= (2n+3)hpy -

Damit ist alles gezeigt.  q.e.d.



