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1.6 DIFFERENTIALGLEICHUNGEN IM KOMPLEXEN

Man kann den Existenz- und Eindeutigkeitssatz von Picard und Lindel6f auch aufs
Komplexe iibertragen. Genauer gilt folgende Aussage:

1.6.1 SATZ Sei D C C? ein Gebiet und f: D — C in beiden komplexen Variablen
holomorph. Auf dem Kompaktum R = {(z,w) € C? | |z— 2| < a,|w—wo| < b} C D
sei f beschrénkt durch die Konstante M > 0, d.h. | f(z,w)| < M fiir alle (z,w) € R.
Dann existiert eine holomorphe Losung w(z) fiir das Anfangswertproblem

w'(z2) = f(z,w(z)) und w(z) = wo,

die mindestens auf der Kreisscheibe K = {z | |z — zo| < min(a,b/M)} definiert ist.
Sind w, v Lésungen dieses Anfangswertproblems auf einem Gebiet G, das zy enthélt,
dann stimmen v und w auf G bereits iiberein.

Beweis. Die komplexe Ableitung f,, von f nach w ist stetig und daher auf dem
Kompaktum R nach oben beschrénkt, etwa durch die Konstante L. Nun folgt wie
im Reellen aus dem Mittelwertsatz, dass f beziiglich w auf R Lipschitz-stetig ist.
Das Anfangswertproblem kénnen wir, wie im Reellen, in eine Integralgleichung um-
formulieren, namlich

w(z) = wo + / T H(C w(0)) de,

und eine Losung ist nichts anderes als ein Fixpunkt des Integraloperators
T(0) =+ [ £ ul0))de.
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Der Vektorraum B der auf K holomorphen und beschrankten Funktionen w(z) bildet
einen Banachraum mit der Norm

[lul| = sup{Ju(z)| - e 2= | 2 € K}

Man kann zeigen: Der Operator T bildet die Teilmenge U := {u € B | |u(z) — wp| <
bVz € K} in sich ab und ist Lipschitz-stetig mit Lipschitzkonstante 1/2. Nun folgt
aus dem Banachschen Fixpunktsatz die Existenz einer sogar eindeutigen Losung
auf K. Die Eindeutigkeit folgt aus dem Identitétssatz fiir holomorphe Funktionen.
q.e.d.

1.6.2 FOLGERUNG Hat eine Funktion f in zwei reellen Variablen auf einem Gebiet
D eine Fortsetzung zu einer holomorphen Funktion in zwei komplexen Variablen,
dann ist die reelle Losung des Anfangswertproblems

y, - f(x,y), y(l‘o) =Y

sogar reell-analytisch, d.h. sie besitzt eine Potenzreihenentwicklung.
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1.6.3 BEISPIEL Die Losung der Differentialgleichung

Yy =—-zy, y(0)=1

lautet
o0 :L,Zn
(o) = exp(—a?) = 3 (1"
n=0 ’

Man kann also in entsprechenden Fillen versuchen, die Losung mithilfe eines
Potenzreihenansatzes zu bestimmen. Hier ein Beispiel:

1.6.4 BEISPIEL Betrachten wir die Riccati-Gleichung mit Anfangsbedingung
y =2 +y*, y0)=1.

Hier ist f(z,y) = 2* + y* ein Polynom, hat also offenbar eine holomorphe Fortset-
zung. Der Potenzreihenansatz

y(x) =) ana"
n=0

fihrt auf
o0 o0 o0 n
n-1_ .2 2
g na,x" " = —I—(g a,x")* = x° + E E Ap_k)T
n=1 n=0 n=0 k=0

Koeflizientenvergleich liefert jetzt die rekursiven Bedingungen

ag=1=uay, 2ay=22apa;, 3az= 1+2a0a2+af, (n+1)a,41 = Zakan o Vn > 2.

Man findet (fiir |z| < 1)

A3 Tt
y( )—1+?L’+ZL‘ +?+?+



Kapitel 2

Vektorfelder und Differentialgleichungen

2.1 INTEGRALKURVEN VON VEKTORFELDERN

Sei jetzt D eine offene Teilmenge von R x R™ und F: D — R" eine stetige Abbil-
dung. Wir konnen die erste Variable als Zeitparameter auffassen und damit F' als ein
zeitabhingiges Vektorfeld interpretieren, das jedem Paar (t, X)) € D aus Zeit t und
Ort X einen Vektor F'(¢, X) in R™ zuordnet. Zum Beispiel liefert die Stromungsge-
schwindigkeit des Wassers in einem Fluss ein solches Vektorfeld in einem Teilgebiet
des R3, und die Windgeschwindigkeit definiert ein Vektorfeld auf der Erdoberfliche.
Jedes solche zeitabhéngige Vektorfeld liefert eine Differentialgleichung erster Ord-
nung, namlich die Gleichung

X'(t)y=F(t, X(t)) (teR).

Unter einer Losung dieser Differentialgleichung versteht man eine stetig differenzier-
bare Kurve v: I — R™ mit (¢,v(t)) € D fiir alle £ und

v (t) = F(t,y(t)) fiirallet e I.

Das bedeutet, zu jedem Zeitpunkt ¢ stimmt der Geschwindigkeitsvektor von v zur
Zeit t mit dem von F am Ort () vorgeschriebenen Vektor F'(t,v(t)) tiberein. Die
Losungskurven werden auch als Integralkurven des Vektorfeldes bezeichnet.

2.1.1 BEISPIEL Sei f(x,y) = z* —y®> und F(z,y) = Vf(z,y) = (2z,—3y?) fiir
x,y € R das Gradientenvektorfeld. Die entsprechende Differentialgleichung lautet:

(1) = (?(t)) — F(y(t)) = Vf(z(t),y(t)) = (_%Zg%) .

Die Losungskurven dieser Differentialgleichung sind die Gradientenlinien von f. Die
Losungen zur Anfangsbedingung x(0) = x¢ und y(0) = y, sind: z(t) = z¢e* und
y(t) = 50i77, definiert fiir ¢ > —%, falls yo > 0, bzw. fiir ¢ < |%|, falls yo < 0.
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Abbildung 2.1: Gradientenlinien (in blau) und Niveaulinien (in rot).

2.1.2 BEISPIEL Jede homogene lineare Differentialgleichung zweiter Ordnung lésst
sich als ein System von zwei linearen Differentialgleichungen im Phasenraum auffas-
sen. Hier ist zum Beispiel die DGL fiir die Schwingung einer Feder mit Reibung:

2" (t) + 202’ (t) + wz(t) = 0,

wobei o > 0 ein Mass fiir die Reibung ist und w > 0 die Elastizitdt der Feder
angibt. Setzen wir jetzt y(t) := 2/(t), kénnen wir die DGL in folgendes System
linearer Differentialgleichungen umschreiben:

(70) = (ot Do) = (e 2) (G3)

Dabei ist die Koeffizientenmatrix des Systems die sogenannte Begleitmatriz des cha-
rakteristischen Polynoms

p(\) = A? + 20\ + w?

der urspriinglichen Differentialgleichung zweiter Ordnung. Jede Losung des Systems
lisst sich als Kurve im R? auffassen. Die geddmpfte Schwingung z(t) = e~ cos(t)
entspricht zum Beispiel einer Spiralbewegung im Phasenraum

10 = (260) = (Lacostonbsnsn )

Und hier aus aktuellem Anlass noch ein weiteres Beispiel:

2.1.3 BEISPIEL Ein einfaches Modell zur Ausbreitung einer Epidemie bietet folgen-
des System aus drei gekoppelten Differentialgleichungen. Bezeichne S(t) die Anzahl
anfélliger, aber noch nicht infizierter Personen, I(t) die Anzahl infizierter Perso-
nen und R(t) die Anzahl der in Quaranténe isolierten, genesenen oder verstorbenen
Personen. Dann nehmen wir an, es gelten folgende Beziehungen:
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S'(t) = —rS)I(t)
I'(ty = rS@#)I(t) —bI(t)
R'(t) = bl(t)

wobei r > 0 die Infektionsrate und b > 0 die Ausscheidungsrate ist. Durch
Aufaddieren aller drei Differentialgleichungen folgt, dass die Gesamtzahl S(t)+1(t)+
R(t) konstant sein muss. Es reicht also, die ersten zwei Gleichungen des Systems
zu betrachten. Man kann das Verhalten der Losungen analysieren, indem man die
Funktion I in Abhéngigkeit von S bestimmt. Denn aus (1) und (2) folgt

a b
ds rS

und daraus durch Integration

b

1 1 1 1 1 1

Abbildung 2.2: Anzahl infizierter Personen I in Abhéngigkeit von Anfélligen S.

Die Losung () = (i((g ) bildet also eine Kurve im ersten Quadranten des R?,
die beim Punkt (Sy, Iy) startet. Bei wachsendem ¢ féllt S(¢) streng monoton und (%)
wichst zunéchst, bis ein Maximum bei S = % erreicht wird, und fallt dann wieder
ab. Es gilt lim; ,, I(f) = 0 und lim; ., S(f) = Sy > 0. Die Epidemie endet erst,
wenn es keine ansteckenden Personen mehr gibt. Und eine gewisse Anzahl S, von
Personen bleibt von der Epidemie verschont. Aus den diesen Uberlegungen folgt der
sogenannte Schwellensatz der Epidemiologie:

2.1.4 SATz Ist die Zahl anfalliger Personen Sy zu Anfang grésser als der Schwellen-
wert v = 2, aber Sy — v << v und ist Iy sehr klein im Vergleich zu Sy, dann werden
etwa 2(Sp — v) Personen insgesamt erkranken.
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Fiir Differentialgleichungen erster Ordnung gilt auch im mehrdimensionalen Fall
ein Existenz- und Eindeutigkeitssatz, denn der Banachsche Fixpunktsatz lédsst sich
auch hier anwenden.

2.1.5 DEFINITION Sei F: K C RxR" — R", (t, X) — F(t, X) stetig. Man sagt, I’
sei auf K Lipschitz-stetig beziiglich X, falls eine Konstante L > 0 existiert mit

||F(t,X1) — F(t,XQ)H S L- ||X1 —X2|| fiir alle (t,Xl), (t,XQ) e K.

Die optimale Konstante L héingt von der Wahl der Norm auf R™ ab. Aber weil auf R”
alle Normen zueinander dquivalent sind, ist F' entweder Lipschitz-stetig beziiglich
jeder Norm oder beziiglich keiner Norm.

Hier einige Beispiele:

2.1.6 BEISPIELE e Sei F:R x R" — R" gegeben durch F(t, X) = A- X, wobei
A eine feste n x n-Matrix ist. Dann ist F auf ganz R"*! Lipschitz-stetig zur
Lipschitz-Konstante L = || A]|, wobei ||A]| := max{||Av]|| | v € R",|[v|| = 1}
die Operatornorm von A zur gewéahlten Norm auf R™ bezeichnet.

e Sei jetzt F: I x R™ — R", I = [a,b] C R, von der Form F(t, X) = A(t) - X,
wobei A(t) jeweils eine n x n-Matrix ist, deren Eintrége stetig von ¢ abhéngen.
In diesem Fall hingt auch die Operatornorm ||A(t)|| stetig von ¢ ab und ist
daher auf dem kompakten Intervall I beschrinkt. Also folgt

L :=max{||At)|| |t € [} < 0.

o Ist F"K C R xR" — R” einmal stetig differenzierbar, K kompakt und
{X € R" | (t,X) € K} konvex fiir alle ¢, dann erfiillt F' die Lipschitz-
Bedingung zur Lipschitz-Konstante

L = max{||JE,(X)|| | (£, X) € K}.

Hier bezeichnet JF;(X) die Jacobi-Matrix der Abbildung F;: R" — R"”, X
F(t, X), an der Stelle X.

Denn: Weil K konvex ist, liegt mit p,q € K auch jeder Punkt auf der Ver-
bindungsstrecke p + s(¢ — p) € K fiir alle 0 < s < 1. Jetzt setze g(s) =
F(t,p+ s(q—p)) (fir ¢t fest und s € [0, 1] variabel). Die Ableitung der Funk-
tion g von s ist nach der Kettenregel

g'(s) = (JF(p+s(g—p))-(¢g—p).

Aus dem Mittelwertsatz der Differentialrechnung folgt nun:
1E(t,p)=F(t,q)l| = llg(0)—g(D]| < max|lg'(s)|| < max [[JF(p+s(g=p)Il-llg—pll-

Der Existenz- und Eindeutigkeitssatz lautet jetzt folgendermassen:
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2.1.7 SATZ Sei F: D C R x R" — R” stetig. Weiter sei F' auf jeder kompakten
Teilmenge K C D Lipschitz-stetig beziiglich der Raumvariable X. Dann hat das
Anfangswertproblem

X'(t) = F(t,X(1),  X(to) = Xy

fiir jede Wahl von (ty, Xo) € D eine eindeutig bestimmte Losung X mit maximalem
Definitionsintervall.

Beweis. Wir verwenden wiederum den Banachschen Fixpunktsatz. Dazu sei auf R"
jetzt eine Norm fixiert. Wir wahlen zuerst in D eine Zylinderumgebung K von
(to, Xo) der Form K = [tg — d,tg + 8] X K (Xj), wobel K. (Xo) = {X € R" | || X —
Xol|| < €}. Weil K kompakt ist, erfiillt ' auf K eine Lipschitz-Bedingung beziiglich
X mit Konstante L (bezogen auf die gewéhlte Norm). Sei zusétzlich 6 < 1/L.

Betrachten wir jetzt den Banachraum V' der stetigen Wege v: [tg —d, to+6] — R”
mit der Norm

[0 := max{|[v@I] | [t —to| < 6}

Die Teilmenge U C V der stetigen Wege v, die ganz in der abgeschlossenen Kugel
K (Xo) verlaufen, also mit ||y(t) — Xo|| < e fiir alle ¢, ist wiederum in V' abgeschlos-
sen.

Der Operator T: U — V sei definiert durch

t
7)) = X+ [ Fls.(s) ds.
to
Gemeint ist hier komponentenweise Integration. Nach eventueller Verkleinerung von
0 gilt T(U) C U, denn
T (7)(#) = Xol| < & - max{|[F(£, y(O)I] | [t —to] <6}

< Smax{||[F(t, X)|| | (t.X) € K}.

Die Funktion F' ist stetig, nimmt also auf K ihr Maximum an, etwa M. Ist jetzt
zusétzlich 6 < ¢/M, dann haben wir fiir alle ¢

T (7)(t) = Xol[ < €.

Jetzt bleibt nur noch zu zeigen, dass der Operator 7' kontrahierend wirkt. Fiir
alle [t — to| < 4 gilt:

T (v) () = T(v2) (O] < 6Ll =l -

Also ist T Lipschitz-stetig mit der Lipschitz-Konstanten ¢ = L < 1.

Also hat nach dem Banachschen Fixpunktsatz der Integraloperator T einen ein-
deutig bestimmten Fixpunkt vy in U. Das heisst, die Differentialgleichung hat auf
dem Intervall [ty — 0, tp + 0] genau eine Losung zur vorgegebenen Anfangsbedingung.
Diese Losung setzen wir maximal fort. Auch die maximale Fortsetzung muss eindeu-
tig sein. Denn sonst gébe es ein Intervall I = [t1, t5] und zwei Losungen ~q,y2: I — D
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mit y1(t1) = 72(t1) = Xy und () # 7o(t) fiir alle t; < t < ty. Dies ist aber ein Wi-
derspruch dazu, dass die Anfangsbedingung X (¢;) = X; lokal nur von genau einer
Losung erfiillt wird.  q.e.d.

Der Beweis des Satzes beinhaltet wieder ein iteratives Verfahren zur Konstruk-
tion der Losung.

2.1.8 BEISPIEL Betrachten wir die Differentialgleichung
2x(t)
X’t—(()) FXt:( )
0= (04 ) = Fex@) = (5ot
zur Anfangsbedingung X (0) = ( . Hier lautet der Integraloperator
_ (1 x(t)
re0m = (1) [ (50)) @
Wenn wir mit der konstanten Funktion X (¢ ( starten, finden wir
1 L2 1+ 2t
0= (1)« (3) v (1)
(1 L2014+ 2t) (142t +(20)%)2
Xa(t) = (1) +/0 (3(1—|—3t)) dt = (1+3t+(3t)2/2 ’
und schliesslich fiir n € N:

1 L2142t 4 ... 4+ B 1+2t+---+((27ff1+).1
Xn+1(t) - + (37;)n dt == (3t)”+.1 .
1 0o \3(1+3t+...4+ =) L+3t+... +

(n+1)!

Also ist die gesuchte Losung

X(t) = lim X,(t) = (ZZ) .

n—oo

2.2 DIFFERENTIALGLEICHUNGEN n-TER ORDNUNG

Betrachten wir jetzt eine gewohnliche Differentialgleichung von Ordnung n der Form
e () = flt,xt), ..., 2" V(@) (teR),

wobei f: D C R x R” — R eine stetig differenzierbare Funktion in n 4+ 1 Variablen
bezeichne. Hier gilt der folgende Existenz- und Eindeutigkeitssatz:

2.2.1 FOLGERUNG Fiir jede Wahl von (to, co, 1, . ..,cn—1) € D gibt es eine eindeu-
tig bestimmte Losung x(t) der Differentialgleichung n-ter, die die Anfangsbedingun-
gen

z(te) =co, o'(to)=c1, ... , ™ D(t))=coy

erfiillt.
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Beweis. Die Funktion x(t) 16st die angegebene Differentialgleichung n-ter Ordnung

(t)

x'(t
genau dann, wenn X (t) := ( ) folgende Gleichung 16st:
x(n—l)(t)
' (t) (t)

5(t) 3(t)

P
l
—
~
N—

2 (1) F(taa(t), . (1)

Dies ist offenbar ein System von Differentialgleichungen erster Ordnung, und die
Anfangsbedingung

Cn—1

entspricht dem oben angegebenen Satz von Anfangsbedingungen an die Funktion
z(t). q.ed.

Schauen wir uns den linearen Fall genauer an. Eine homogene lineare Differen-
tialgleichung n-ter Ordnung hat die Form

™) + ap (2™ + . Fag(t)a(t) =0,

wobei ay, b: [ — R stetige Funktionen auf einem Intervall I C R sind. Wenn wir eine
solche Gleichung in ein System erster Ordnung umschreiben, erhalten wir folgendes

2 (t) 0 1 0
xh(t) 0 0 1 ...
X/(t) — — X(t) .
z 5 !
(1) —ao(t) —at) o —ana(l)

Sind die Koeffizienten a; Konstanten, so ist die Koeffizientenmatrix die Begleitma-
triz des charakteristischen Polynoms der urspriinglichen Differentialgleichung (siehe
Beispiel 2.1.2).

Aus dem Existenz- und Eindeutigkeitssatz ergibt sich folgendes.

2.2.2 SATZ 1. Die Losungen einer homogenen linearen Differentialgleichung bil-
den einen n-dimensionalen Unterraum im Vektorraum aller Funktionen auf I.
FEine Basis des Losungsraums wird als Fundamentalsystem der Differentialglei-
chung bezeichnet.

2. Sind @1, 2 Losungen einer inhomogenen linearen Differentialgleichung, so ist
die Differenz ¢y —py Losung der zugehérigen homogenen Differentialgleichung.
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Fiir homogene lineare Differentialgleichungen n-ter Ordnung gibt es keine allge-
meinen Losungsformeln. Aber wenn die Koeffizientenfunktionen a; konstant sind,
also von ¢ nicht explizit abhéngen, dann kann man konkrete Fundamentalsysteme
angeben.

2.2.3 SATZ Zu der linearen Differentialgleichung
2™ 4 a,_1 ()™ + . 4+ ag(t)z =0 (ar € R konstant,)

definiert man das charakteristische Polynom p(\) = A" + S1_0 axA\*. Hat p n ver-
schiedene Nullstellen Ay, ..., \,, dann bilden die Funktionen xy(t) = e*! ein Fun-
damentalsystem der Differentialgleichung.

2.2.4 BEISPIEL Losen wir folgendes Anfangswertproblem
" +22'+52=0 und z(0)=1,2"(0)=-1.

Das charakteristische Polynom p(\) = A\? 4+ 2\ + 5 hat die komplex konjugierten
Nullstellen —1 + 2¢. Die Funktionen

zi(t) = e und  ay(t) = e

bilden daher ein komplexes Fundamentalsystem. Geht man zu Real- und Imaginérteil
iiber, erhélt man ein reelles Fundamentalsystem. Die Anfangsbedingungen fithren
nun auf die Losung z(t) = e "cos(2t) (t € R), die eine geddmpfte Schwingung
beschreibt.

Wenn man bereits eine Fundamentallosung einer linearen Differentialgleichung
zweiter Ordnung gefunden hat, dann kann man eine zweite mithilfe des folgenden
Ansatzes finden:

2.2.5 BEMERKUNG Sei ¢:1 — R eine Losung von z” + a1(t)x’ + ao(t)x = 0 mit
©(t) # 0 fiir alle t € I. Dann findet man eine weitere, von @ linear unabhingige
Losung v mit dem Ansatz 1)(t) = p(t)u(t). Denn der Ansatz fiihrt auf die folgende
lineare Differentialgleichung erster Ordnung fiir u':

p()u"(t) + (2¢'(t) + ar () p(t))u'(t) = 0.
Durch Lésen dieser Gleichung und Integration von u’ erhédlt man also schliesslich ).

2.2.6 BEISPIELE e Man kann dies Prinzip verwenden, um ausgehend von der
Fundamentallésung ¢(t) = t" (fiir n € N, n > 2) ein Fundamentalsystem der
folgenden Differentialgleichung zu finden:

1 2
:E"—I—gx'—yz—?x:() (t>0).

Und zwar ist hier ¢(t) = ¢7".
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e Hat das charakteristische Polynom der Differentialgleichung x” + a2’ +agz = 0
eine doppelte Nullstelle bei \;, dann bilden (t) = e* und 9 (t) = te* ein
Fundamentalsystem.

Schliesslich kann man auch mit einem Potenzreihenansatz nach Losungen suchen.

2.2.7 BEISPIEL Sei n € N gegeben. Die Legendresche Differentialgleichung dazu
lautet

(t* — 12" +2t' —n(n+1)x =0.
Eine Losung dieser DGL ist das n-te Legendre-Polynom

1 dn
©pl2n dn

P.(t) #—-1)".

Eine weitere, davon linear unabhéngige Losung kann man mithilfe eines Potenzrei-
henansatzes finden.

2.3 INHOMOGENE DIFFERENTIALGLEICHUNGEN UND FALTUNG

Schauen wir uns nun den inhomogenen Fall genauer an. Betrachten wir eine lineare
Differentialgleichung n-ter Ordnung mit konstanten Koeffizienten

D(z)(t) = 2 (t) + ap_12" V(@) + ...+ agx(t) = b(t),

wobei b auf einem Intervall I definiert sei, das ¢ = 0 enthélt. Sei weiter {¢1,...,p,}
ein Fundamentalsystem der entsprechenden homogenen Gleichung. Dann kann man
daraus eine sogenannte Elementarlosung bilden und durch Faltung mit der Inhomo-
genitét b eine Losung der inhomogenen Differentialgleichung konstruieren (zumin-
dest fiir t > 0).

2.3.1 DEFINITION Sei ¢ = Y}, cxpy (¢ passende Konstanten) diejenige Losung
der homogenen Differentialgleichung D(x) = 0 mit ¢(0) = 0, ©*(0) = 0 fiir alle
1 <k <n-—2und o™ Y(0) = 1. Als Elementarlosung der Differentialgleichung
bezeichnet man die Funktion e, definiert durch

) — o(t) fir £ >0
e(t) {o fiir t < 0

2.3.2 SaTz Wir schneiden auch die Funktion b auf dem Bereich t < 0 ab, indem
wir setzen: b(t) = 0 fiir alle t < 0. Die Funktion

u(t) := (exb)(t) = /0 o(t—s)b(s)ds (firt>0,tel)

ist eine Losung der inhomogenen linearen Differentialgleichung D(z)(t) = b(t) auf
dem Bereicht € I, t > 0.
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Zu zeigen ist also D(u) = D(exb) = b. Nach den Rechenregeln iiber die Faltung
ist dies #quivalent zu D(e % b) = D(e) x b = b (fiir alle Inhomogenititen b). Das
neutrale Element des Faltungsproduktes ist aber gerade die Diracsche Deltafunktion.
Deshalb schreibt man auch D(e) = dg, und fasst e als Losung der inhomogenen
Differentialgleichung zur Inhomogenitét dg auf.

Hier wird nur der Beweis fiir n = 2 angegeben. Der Allgemeinfall ist entspre-
chend. Dafiir benétigen wir folgende Aussage iiber parameterabhéngige Integrale:

2.3.3 BEMERKUNG Sei g:R x R — R eine stetige, beziiglich der ersten Variablen
differenzierbare Funktion und a € R. Dann gilt fiir t > a:

d t
7 g(t,s)ds = g(t,t) /agts

Beweis. Fur h > 0 ist

S e nas— [asas) =
1

t+h t 1
E/ g(t+h,s) ds—i—/ E(g(t—i—h, s)—g(t,s))ds.
t a

Durch Grenziibergang h — 0 folgt nun die Behauptung.  q.e.d.

Beweis des Satzes fir n = 2. Um D(u) auswerten zu koénnen, berechnen wir
zundchst die erste und die zweite Ableitung von u und benutzen dabei die eben
gezeigte Bemerkung. Fiir ¢t > 0 gilt:

u'(t) = %/0 o(t — s)b(s) ds = ¢(0)b(t) +/0 ' (t— s)b(s)ds.

Wegen der Anfangsbedingung ¢(0) = 0 ist also u/( fo (t — s)b(s)ds . Daraus
folgt mit der Bedingung ¢'(0) = 1:
t t
u"(t) = ¢'(0)b(t) + / " (t — s)b(s)ds = b(t) + / O"(t — s)b(s)ds .
0

0

Setzen wir nun ein in den Differentialoperator D, erhalten wir:

D(u)(t) = u(8) + ar (1) + agu(?) /D )(t = s)b(s) ds.

Nun ist aber nach Konstruktion D(¢) = 0 und daher D(u)(t) = b(t) fiir alle ¢ > 0.
Also ist u wie behauptet eine Losung der inhomogenen Differentialgleichung. q.e.d.
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2.3.4 BEISPIEL Sei A > 0 vorgegeben. Betrachten wir die inhomogene Differential-
gleichung
2" (t) — Nax(t) = b(t) fiir t > 0.

Hier lautet die entsprechende homogene Differentialgleichung z” = \2z. Die Losun-
gen sind die Funktionen der Form ¢(t) = cie + cpe . Die Anfangsbedingungen
¢(0) =0 und ¢/(0) = 1 sind erfiillt, wenn ¢; = —¢; = 55 ist, d.h. ¢(t) = §sinh(At).
Durch Abschneiden erhalten wir die Elementarlosung

e(t) = { 4sinh(At) falls ¢ > 0
0 sonst

Durch Faltung der Elementarlésung mit b wird daraus die folgende Losung der
inhomogenen Differentialgleichung:

u(t) :=(exb)(t) = %/0 sinh(\(t — s))b(s) ds.
Ist konkret b(t) = A, findet man
u(t) = %(cosh()\t) ~).

Ist b(t) = €' fiir ¢ > 0, so ist (falls A # £1)

1 1 t At 1 t -t .
t>0.
u(iﬁ) = o\ ( /\(6 e ) (6 e ) fiir 0



