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1.6 Differentialgleichungen im Komplexen

Man kann den Existenz- und Eindeutigkeitssatz von Picard und Lindelöf auch aufs
Komplexe übertragen. Genauer gilt folgende Aussage:

1.6.1 Satz Sei D ⊂ C2 ein Gebiet und f :D → C in beiden komplexen Variablen

holomorph. Auf dem Kompaktum R = {(z, w) ∈ C2 | |z−z0| ≤ a, |w−w0| ≤ b} ⊂ D
sei f beschränkt durch die Konstante M ≥ 0, d.h. |f(z, w)| ≤M für alle (z, w) ∈ R.
Dann existiert eine holomorphe Lösung w(z) für das Anfangswertproblem

w′(z) = f(z, w(z)) und w(z0) = w0 ,

die mindestens auf der Kreisscheibe K = {z | |z − z0| < min(a, b/M)} definiert ist.

Sind w, v Lösungen dieses Anfangswertproblems auf einem Gebiet G, das z0 enthält,
dann stimmen v und w auf G bereits überein.

Beweis. Die komplexe Ableitung fw von f nach w ist stetig und daher auf dem
Kompaktum R nach oben beschränkt, etwa durch die Konstante L. Nun folgt wie
im Reellen aus dem Mittelwertsatz, dass f bezüglich w auf R Lipschitz-stetig ist.
Das Anfangswertproblem können wir, wie im Reellen, in eine Integralgleichung um-
formulieren, nämlich

w(z) = w0 +

∫ z

z0

f(ζ, w(ζ)) dζ ,

und eine Lösung ist nichts anderes als ein Fixpunkt des Integraloperators

T (u) = w0 +

∫ z

z0

f(ζ, u(ζ)) dζ .

Der Vektorraum B der aufK holomorphen und beschränkten Funktionen u(z) bildet
einen Banachraum mit der Norm

||u|| = sup{|u(z)| · e−2L|z−z0| | z ∈ K} .

Man kann zeigen: Der Operator T bildet die Teilmenge U := {u ∈ B | |u(z)−w0| ≤
b ∀z ∈ K} in sich ab und ist Lipschitz-stetig mit Lipschitzkonstante 1/2. Nun folgt
aus dem Banachschen Fixpunktsatz die Existenz einer sogar eindeutigen Lösung
auf K. Die Eindeutigkeit folgt aus dem Identitätssatz für holomorphe Funktionen.
q.e.d.

1.6.2 Folgerung Hat eine Funktion f in zwei reellen Variablen auf einem Gebiet

D eine Fortsetzung zu einer holomorphen Funktion in zwei komplexen Variablen,

dann ist die reelle Lösung des Anfangswertproblems

y′ = f(x, y), y(x0) = y0

sogar reell-analytisch, d.h. sie besitzt eine Potenzreihenentwicklung.
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1.6.3 Beispiel Die Lösung der Differentialgleichung

y′ = −xy, y(0) = 1

lautet

y(x) = exp(−x2) =

∞
∑

n=0

(−1)n
x2n

n!
∀x .

Man kann also in entsprechenden Fällen versuchen, die Lösung mithilfe eines
Potenzreihenansatzes zu bestimmen. Hier ein Beispiel:

1.6.4 Beispiel Betrachten wir die Riccati-Gleichung mit Anfangsbedingung

y′ = x2 + y2 , y(0) = 1 .

Hier ist f(x, y) = x2 + y2 ein Polynom, hat also offenbar eine holomorphe Fortset-
zung. Der Potenzreihenansatz

y(x) =
∞
∑

n=0

anx
n

führt auf

∞
∑

n=1

nanx
n−1 = x2 + (

∞
∑

n=0

anx
n)2 = x2 +

∞
∑

n=0

(

n
∑

k=0

akan−k)x
n .

Koeffizientenvergleich liefert jetzt die rekursiven Bedingungen

a0 = 1 = a1, 2a2 = 2a0a1, 3a3 = 1+2a0a2+a
2
1, (n+1)an+1 =

n
∑

k=0

akan−k ∀n > 2.

Man findet (für |x| < 1)

y(x) = 1 + x+ x2 +
4x3

3
+

7x4

6
+ . . .



Kapitel 2

Vektorfelder und Differentialgleichungen

2.1 Integralkurven von Vektorfeldern

Sei jetzt D eine offene Teilmenge von R × Rn und F :D → Rn eine stetige Abbil-
dung. Wir können die erste Variable als Zeitparameter auffassen und damit F als ein
zeitabhängiges Vektorfeld interpretieren, das jedem Paar (t, X) ∈ D aus Zeit t und
Ort X einen Vektor F (t, X) in Rn zuordnet. Zum Beispiel liefert die Strömungsge-
schwindigkeit des Wassers in einem Fluss ein solches Vektorfeld in einem Teilgebiet
des R3, und die Windgeschwindigkeit definiert ein Vektorfeld auf der Erdoberfläche.
Jedes solche zeitabhängige Vektorfeld liefert eine Differentialgleichung erster Ord-
nung, nämlich die Gleichung

X ′(t) = F (t, X(t)) (t ∈ R) .

Unter einer Lösung dieser Differentialgleichung versteht man eine stetig differenzier-
bare Kurve γ: I → Rn mit (t, γ(t)) ∈ D für alle t und

γ′(t) = F (t, γ(t)) für alle t ∈ I.

Das bedeutet, zu jedem Zeitpunkt t stimmt der Geschwindigkeitsvektor von γ zur
Zeit t mit dem von F am Ort γ(t) vorgeschriebenen Vektor F (t, γ(t)) überein. Die
Lösungskurven werden auch als Integralkurven des Vektorfeldes bezeichnet.

2.1.1 Beispiel Sei f(x, y) = x2 − y3 und F (x, y) = ∇f(x, y) = (2x,−3y2) für
x, y ∈ R das Gradientenvektorfeld. Die entsprechende Differentialgleichung lautet:

γ̇(t) =

(

ẋ(t)
ẏ(t)

)

= F (γ(t)) = ∇f(x(t), y(t)) =

(

2x(t)
−3y2(t)

)

.

Die Lösungskurven dieser Differentialgleichung sind die Gradientenlinien von f . Die
Lösungen zur Anfangsbedingung x(0) = x0 und y(0) = y0 sind: x(t) = x0e

2t und
y(t) = y0

3y0t+1
, definiert für t > − 1

3y
, falls y0 > 0, bzw. für t < | 1

3y
|, falls y0 < 0.
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Abbildung 2.1: Gradientenlinien (in blau) und Niveaulinien (in rot).

2.1.2 Beispiel Jede homogene lineare Differentialgleichung zweiter Ordnung lässt
sich als ein System von zwei linearen Differentialgleichungen im Phasenraum auffas-
sen. Hier ist zum Beispiel die DGL für die Schwingung einer Feder mit Reibung:

x′′(t) + 2αx′(t) + ω2x(t) = 0 ,

wobei α > 0 ein Mass für die Reibung ist und ω > 0 die Elastizität der Feder
angibt. Setzen wir jetzt y(t) := x′(t), können wir die DGL in folgendes System
linearer Differentialgleichungen umschreiben:

(

x′(t)
y′(t)

)

=

(

y(t)
−ω2x(t)− 2αy(t)

)

=

(

0 1
−ω2 −2α

)(

x(t)
y(t)

)

.

Dabei ist die Koeffizientenmatrix des Systems die sogenannte Begleitmatrix des cha-
rakteristischen Polynoms

p(λ) = λ2 + 2αλ+ ω2

der ursprünglichen Differentialgleichung zweiter Ordnung. Jede Lösung des Systems
lässt sich als Kurve im R2 auffassen. Die gedämpfte Schwingung x(t) = e−αt cos(βt)
entspricht zum Beispiel einer Spiralbewegung im Phasenraum

γ(t) =

(

x(t)
x′(t)

)

= e−αt

(

cos(βt)
−α cos(βt)− β sin(βt)

)

.

Und hier aus aktuellem Anlass noch ein weiteres Beispiel:

2.1.3 Beispiel Ein einfaches Modell zur Ausbreitung einer Epidemie bietet folgen-
des System aus drei gekoppelten Differentialgleichungen. Bezeichne S(t) die Anzahl
anfälliger, aber noch nicht infizierter Personen, I(t) die Anzahl infizierter Perso-
nen und R(t) die Anzahl der in Quarantäne isolierten, genesenen oder verstorbenen
Personen. Dann nehmen wir an, es gelten folgende Beziehungen:
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S ′(t) = −rS(t)I(t)
I ′(t) = rS(t)I(t)− bI(t)
R′(t) = bI(t)

wobei r > 0 die Infektionsrate und b > 0 die Ausscheidungsrate ist. Durch
Aufaddieren aller drei Differentialgleichungen folgt, dass die Gesamtzahl S(t)+I(t)+
R(t) konstant sein muss. Es reicht also, die ersten zwei Gleichungen des Systems
zu betrachten. Man kann das Verhalten der Lösungen analysieren, indem man die
Funktion I in Abhängigkeit von S bestimmt. Denn aus (1) und (2) folgt

dI

dS
= −1 +

b

rS

und daraus durch Integration

I(S) = I0 + S0 − S +
b

r
ln(S/S0) .

Abbildung 2.2: Anzahl infizierter Personen I in Abhängigkeit von Anfälligen S.

Die Lösung γ(t) =

(

S(t)
I(t)

)

bildet also eine Kurve im ersten Quadranten des R2,

die beim Punkt (S0, I0) startet. Bei wachsendem t fällt S(t) streng monoton und I(t)
wächst zunächst, bis ein Maximum bei S = b

r
erreicht wird, und fällt dann wieder

ab. Es gilt limt→∞ I(t) = 0 und limt→∞ S(t) = S∞ > 0. Die Epidemie endet erst,
wenn es keine ansteckenden Personen mehr gibt. Und eine gewisse Anzahl S∞ von
Personen bleibt von der Epidemie verschont. Aus den diesen Überlegungen folgt der
sogenannte Schwellensatz der Epidemiologie:

2.1.4 Satz Ist die Zahl anfälliger Personen S0 zu Anfang grösser als der Schwellen-

wert ν = b
r
, aber S0 − ν << ν und ist I0 sehr klein im Vergleich zu S0, dann werden

etwa 2(S0 − ν) Personen insgesamt erkranken.
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Für Differentialgleichungen erster Ordnung gilt auch im mehrdimensionalen Fall
ein Existenz- und Eindeutigkeitssatz, denn der Banachsche Fixpunktsatz lässt sich
auch hier anwenden.

2.1.5 Definition Sei F :K ⊂ R×Rn → Rn, (t, X) → F (t, X) stetig. Man sagt, F
sei auf K Lipschitz-stetig bezüglich X , falls eine Konstante L > 0 existiert mit

||F (t, X1)− F (t, X2)|| ≤ L · ||X1 −X2|| für alle (t, X1), (t, X2) ∈ K .

Die optimale Konstante L hängt von der Wahl der Norm auf Rn ab. Aber weil auf Rn

alle Normen zueinander äquivalent sind, ist F entweder Lipschitz-stetig bezüglich
jeder Norm oder bezüglich keiner Norm.

Hier einige Beispiele:

2.1.6 Beispiele • Sei F :R× Rn → Rn gegeben durch F (t, X) = A ·X , wobei
A eine feste n × n-Matrix ist. Dann ist F auf ganz Rn+1 Lipschitz-stetig zur
Lipschitz-Konstante L = ||A||, wobei ||A|| := max{||Av|| | v ∈ Rn, ||v|| = 1}
die Operatornorm von A zur gewählten Norm auf Rn bezeichnet.

• Sei jetzt F : I × Rn → Rn, I = [a, b] ⊂ R, von der Form F (t, X) = A(t) · X ,
wobei A(t) jeweils eine n×n-Matrix ist, deren Einträge stetig von t abhängen.
In diesem Fall hängt auch die Operatornorm ||A(t)|| stetig von t ab und ist
daher auf dem kompakten Intervall I beschränkt. Also folgt

L := max{||A(t)|| | t ∈ I} <∞ .

• Ist F :K ⊂ R × Rn → Rn einmal stetig differenzierbar, K kompakt und
{X ∈ Rn | (t, X) ∈ K} konvex für alle t, dann erfüllt F die Lipschitz-
Bedingung zur Lipschitz-Konstante

L := max{||JFt(X)|| | (t, X) ∈ K} .

Hier bezeichnet JFt(X) die Jacobi-Matrix der Abbildung Ft:R
n → Rn, X 7→

F (t, X), an der Stelle X .

Denn: Weil K konvex ist, liegt mit p, q ∈ K auch jeder Punkt auf der Ver-
bindungsstrecke p + s(q − p) ∈ K für alle 0 ≤ s ≤ 1. Jetzt setze g(s) =
F (t, p+ s(q − p)) (für t fest und s ∈ [0, 1] variabel). Die Ableitung der Funk-
tion g von s ist nach der Kettenregel

g′(s) = (JFt(p+ s(q − p))) · (q − p) .

Aus dem Mittelwertsatz der Differentialrechnung folgt nun:

||F (t, p)−F (t, q)|| = ||g(0)−g(1)|| ≤ max
s

||g′(s)|| ≤ max
s∈[0,1]

||JFt(p+s(q−p))||·||q−p|| .

Der Existenz- und Eindeutigkeitssatz lautet jetzt folgendermassen:
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2.1.7 Satz Sei F :D ⊂ R × Rn → Rn stetig. Weiter sei F auf jeder kompakten

Teilmenge K ⊂ D Lipschitz-stetig bezüglich der Raumvariable X . Dann hat das

Anfangswertproblem

X ′(t) = F (t, X(t)), X(t0) = X0

für jede Wahl von (t0, X0) ∈ D eine eindeutig bestimmte Lösung X mit maximalem

Definitionsintervall.

Beweis. Wir verwenden wiederum den Banachschen Fixpunktsatz. Dazu sei auf Rn

jetzt eine Norm fixiert. Wir wählen zuerst in D eine Zylinderumgebung K von
(t0, X0) der Form K = [t0 − δ, t0 + δ] ×Kǫ(X0), wobei Kǫ(X0) = {X ∈ Rn | ||X −
X0|| ≤ ǫ}. Weil K kompakt ist, erfüllt F auf K eine Lipschitz-Bedingung bezüglich
X mit Konstante L (bezogen auf die gewählte Norm). Sei zusätzlich δ < 1/L.

Betrachten wir jetzt den Banachraum V der stetigen Wege γ: [t0−δ, t0+δ] → Rn

mit der Norm
||γ||0 := max{||γ(t)|| | |t− t0| ≤ δ} .

Die Teilmenge U ⊂ V der stetigen Wege γ, die ganz in der abgeschlossenen Kugel
Kǫ(X0) verlaufen, also mit ||γ(t)−X0|| ≤ ǫ für alle t, ist wiederum in V abgeschlos-
sen.

Der Operator T :U → V sei definiert durch

T (γ)(t) = X0 +

∫ t

t0

F (s, γ(s)) ds .

Gemeint ist hier komponentenweise Integration. Nach eventueller Verkleinerung von
δ gilt T (U) ⊂ U , denn

||T (γ)(t)−X0|| ≤ δ ·max{||F (t, γ(t))|| | |t− t0| ≤ δ}

≤ δmax{||F (t, X)|| | (t, X) ∈ K} .

Die Funktion F ist stetig, nimmt also auf K ihr Maximum an, etwa M . Ist jetzt
zusätzlich δ < ǫ/M , dann haben wir für alle t

||T (γ)(t)−X0|| ≤ ǫ .

Jetzt bleibt nur noch zu zeigen, dass der Operator T kontrahierend wirkt. Für
alle |t− t0| ≤ δ gilt:

||T (γ1)(t)− T (γ2)(t)|| ≤ δL||γ1 − γ2|| .

Also ist T Lipschitz-stetig mit der Lipschitz-Konstanten q = δL < 1.
Also hat nach dem Banachschen Fixpunktsatz der Integraloperator T einen ein-

deutig bestimmten Fixpunkt γ0 in U . Das heisst, die Differentialgleichung hat auf
dem Intervall [t0−δ, t0+ δ] genau eine Lösung zur vorgegebenen Anfangsbedingung.
Diese Lösung setzen wir maximal fort. Auch die maximale Fortsetzung muss eindeu-
tig sein. Denn sonst gäbe es ein Intervall I = [t1, t2] und zwei Lösungen γ1, γ2: I → D
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mit γ1(t1) = γ2(t1) = X1 und γ1(t) 6= γ2(t) für alle t1 < t ≤ t2. Dies ist aber ein Wi-
derspruch dazu, dass die Anfangsbedingung X(t1) = X1 lokal nur von genau einer
Lösung erfüllt wird. q.e.d.

Der Beweis des Satzes beinhaltet wieder ein iteratives Verfahren zur Konstruk-
tion der Lösung.

2.1.8 Beispiel Betrachten wir die Differentialgleichung

X ′(t) =

(

x′(t)
y′(t)

)

= F (X(t)) =

(

2x(t)
3y(t)

)

zur Anfangsbedingung X(0) =

(

1
1

)

. Hier lautet der Integraloperator

T (X)(t) =

(

1
1

)

+

∫ t

0

(

2x(t)
3y(t)

)

dt .

Wenn wir mit der konstanten Funktion X0(t) =

(

1
1

)

starten, finden wir

X1(t) =

(

1
1

)

+

∫ t

0

(

2
3

)

dt =

(

1 + 2t
1 + 3t

)

,

X2(t) =

(

1
1

)

+

∫ t

0

(

2(1 + 2t)
3(1 + 3t)

)

dt =

(

1 + 2t+ (2t)2/2
1 + 3t+ (3t)2/2

)

,

und schliesslich für n ∈ N:

Xn+1(t) =

(

1
1

)

+

∫ t

0

(

2(1 + 2t+ . . .+ (2t)n

n!
)

3(1 + 3t+ . . .+ (3t)n

n!
)

)

dt =

(

1 + 2t+ . . .+ (2t)n+1

(n+1)!

1 + 3t+ . . .+ (3t)n+1

(n+1)!

)

.

Also ist die gesuchte Lösung

X(t) = lim
n→∞

Xn(t) =

(

e2t

e3t

)

.

2.2 Differentialgleichungen n-ter Ordnung

Betrachten wir jetzt eine gewöhnliche Differentialgleichung von Ordnung n der Form

x(n)(t) = f(t, x(t), . . . , x(n−1)(t)) (t ∈ R),

wobei f :D ⊂ R× Rn → R eine stetig differenzierbare Funktion in n + 1 Variablen
bezeichne. Hier gilt der folgende Existenz- und Eindeutigkeitssatz:

2.2.1 Folgerung Für jede Wahl von (t0, c0, c1, . . . , cn−1) ∈ D gibt es eine eindeu-

tig bestimmte Lösung x(t) der Differentialgleichung n-ter, die die Anfangsbedingun-
gen

x(t0) = c0 , x′(t0) = c1 , . . . , x(n−1)(t0) = cn−1

erfüllt.
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Beweis. Die Funktion x(t) löst die angegebene Differentialgleichung n-ter Ordnung

genau dann, wenn X(t) :=









x(t)
x′(t)
...

x(n−1)(t)









folgende Gleichung löst:

X ′(t) =









x′1(t)
x′2(t)
...

x′n(t)









=









x2(t)
x3(t)
...

f(t, x1(t), . . . , xn(t))









.

Dies ist offenbar ein System von Differentialgleichungen erster Ordnung, und die
Anfangsbedingung

X(t0) =









c0
c1
...

cn−1









entspricht dem oben angegebenen Satz von Anfangsbedingungen an die Funktion
x(t). q.e.d.

Schauen wir uns den linearen Fall genauer an. Eine homogene lineare Differen-

tialgleichung n-ter Ordnung hat die Form

x(n)(t) + an−1(t)x
(n−1)(t) + . . .+ a0(t)x(t) = 0 ,

wobei ak, b: I → R stetige Funktionen auf einem Intervall I ⊂ R sind. Wenn wir eine
solche Gleichung in ein System erster Ordnung umschreiben, erhalten wir folgendes

X ′(t) =













x′1(t)
x′2(t)
...
...

x′n(t)













=













0 1 0 . . .
0 0 1 . . .
...
... 1

−a0(t) −a1(t) . . . . . . −an−1(t)













X(t) .

Sind die Koeffizienten ak Konstanten, so ist die Koeffizientenmatrix die Begleitma-

trix des charakteristischen Polynoms der ursprünglichen Differentialgleichung (siehe
Beispiel 2.1.2).

Aus dem Existenz- und Eindeutigkeitssatz ergibt sich folgendes.

2.2.2 Satz 1. Die Lösungen einer homogenen linearen Differentialgleichung bil-

den einen n-dimensionalen Unterraum im Vektorraum aller Funktionen auf I.
Eine Basis des Lösungsraums wird als Fundamentalsystem der Differentialglei-

chung bezeichnet.

2. Sind ϕ1, ϕ2 Lösungen einer inhomogenen linearen Differentialgleichung, so ist

die Differenz ϕ1−ϕ2 Lösung der zugehörigen homogenen Differentialgleichung.
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Für homogene lineare Differentialgleichungen n-ter Ordnung gibt es keine allge-
meinen Lösungsformeln. Aber wenn die Koeffizientenfunktionen ak konstant sind,
also von t nicht explizit abhängen, dann kann man konkrete Fundamentalsysteme
angeben.

2.2.3 Satz Zu der linearen Differentialgleichung

x(n) + an−1(t)x
(n−1) + . . .+ a0(t)x = 0 (ak ∈ R konstant,)

definiert man das charakteristische Polynom p(λ) = λn +
∑n−1

k=0 akλ
k. Hat p n ver-

schiedene Nullstellen λ1, . . . , λn, dann bilden die Funktionen xk(t) = eλkt ein Fun-

damentalsystem der Differentialgleichung.

2.2.4 Beispiel Lösen wir folgendes Anfangswertproblem

x′′ + 2x′ + 5x = 0 und x(0) = 1, x′(0) = −1 .

Das charakteristische Polynom p(λ) = λ2 + 2λ + 5 hat die komplex konjugierten
Nullstellen −1 ± 2i. Die Funktionen

x1(t) = e−t+2it und x2(t) = e−t−2it

bilden daher ein komplexes Fundamentalsystem. Geht man zu Real- und Imaginärteil
über, erhält man ein reelles Fundamentalsystem. Die Anfangsbedingungen führen
nun auf die Lösung x(t) = e−t cos(2t) (t ∈ R), die eine gedämpfte Schwingung
beschreibt.

Wenn man bereits eine Fundamentallösung einer linearen Differentialgleichung
zweiter Ordnung gefunden hat, dann kann man eine zweite mithilfe des folgenden
Ansatzes finden:

2.2.5 Bemerkung Sei ϕ: I → R eine Lösung von x′′ + a1(t)x
′ + a0(t)x = 0 mit

ϕ(t) 6= 0 für alle t ∈ I. Dann findet man eine weitere, von ϕ linear unabhängige

Lösung ψ mit dem Ansatz ψ(t) = ϕ(t)u(t). Denn der Ansatz führt auf die folgende

lineare Differentialgleichung erster Ordnung für u′:

ϕ(t)u′′(t) + (2ϕ′(t) + a1(t)ϕ(t))u
′(t) = 0 .

Durch Lösen dieser Gleichung und Integration von u′ erhält man also schliesslich ψ.

2.2.6 Beispiele • Man kann dies Prinzip verwenden, um ausgehend von der
Fundamentallösung ϕ(t) = tn (für n ∈ N, n ≥ 2) ein Fundamentalsystem der
folgenden Differentialgleichung zu finden:

x′′ +
1

t
x′ −

n2

t2
x = 0 (t > 0) .

Und zwar ist hier ψ(t) = t−n.



2.3. Inhomogene Differentialgleichungen und Faltung 33

• Hat das charakteristische Polynom der Differentialgleichung x′′+a1x
′+a0x = 0

eine doppelte Nullstelle bei λ1, dann bilden ϕ(t) = eλt und ψ(t) = teλt ein
Fundamentalsystem.

Schliesslich kann man auch mit einem Potenzreihenansatz nach Lösungen suchen.

2.2.7 Beispiel Sei n ∈ N gegeben. Die Legendresche Differentialgleichung dazu
lautet

(t2 − 1)x′′ + 2tx′ − n(n + 1)x = 0 .

Eine Lösung dieser DGL ist das n-te Legendre-Polynom

Pn(t) =
1

n!2n
dn

dtn
(t2 − 1)n .

Eine weitere, davon linear unabhängige Lösung kann man mithilfe eines Potenzrei-
henansatzes finden.

2.3 Inhomogene Differentialgleichungen und Faltung

Schauen wir uns nun den inhomogenen Fall genauer an. Betrachten wir eine lineare
Differentialgleichung n-ter Ordnung mit konstanten Koeffizienten

D(x)(t) = x(n)(t) + an−1x
(n−1)(t) + . . .+ a0x(t) = b(t) ,

wobei b auf einem Intervall I definiert sei, das t = 0 enthält. Sei weiter {ϕ1, . . . , ϕn}
ein Fundamentalsystem der entsprechenden homogenen Gleichung. Dann kann man
daraus eine sogenannte Elementarlösung bilden und durch Faltung mit der Inhomo-
genität b eine Lösung der inhomogenen Differentialgleichung konstruieren (zumin-
dest für t ≥ 0).

2.3.1 Definition Sei ϕ =
∑n

k=1 ckϕk (ck passende Konstanten) diejenige Lösung
der homogenen Differentialgleichung D(x) = 0 mit ϕ(0) = 0, ϕ(k)(0) = 0 für alle
1 ≤ k ≤ n − 2 und ϕ(n−1)(0) = 1. Als Elementarlösung der Differentialgleichung
bezeichnet man die Funktion e, definiert durch

e(t) =
{

ϕ(t) für t ≥ 0
0 für t < 0

.

2.3.2 Satz Wir schneiden auch die Funktion b auf dem Bereich t < 0 ab, indem

wir setzen: b(t) = 0 für alle t < 0. Die Funktion

u(t) := (e ∗ b)(t) =

∫ t

0

ϕ(t− s)b(s) ds (für t ≥ 0, t ∈ I)

ist eine Lösung der inhomogenen linearen Differentialgleichung D(x)(t) = b(t) auf

dem Bereich t ∈ I, t ≥ 0.
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Zu zeigen ist also D(u) = D(e∗ b) = b . Nach den Rechenregeln über die Faltung
ist dies äquivalent zu D(e ∗ b) = D(e) ∗ b = b (für alle Inhomogenitäten b). Das
neutrale Element des Faltungsproduktes ist aber gerade die Diracsche Deltafunktion.
Deshalb schreibt man auch D(e) = δ0, und fasst e als Lösung der inhomogenen
Differentialgleichung zur Inhomogenität δ0 auf.

Hier wird nur der Beweis für n = 2 angegeben. Der Allgemeinfall ist entspre-
chend. Dafür benötigen wir folgende Aussage über parameterabhängige Integrale:

2.3.3 Bemerkung Sei g:R × R → R eine stetige, bezüglich der ersten Variablen

differenzierbare Funktion und a ∈ R. Dann gilt für t ≥ a:

d

dt

∫ t

a

g(t, s) ds = g(t, t) +

∫ t

a

∂

∂t
g(t, s) ds .

Beweis. Für h > 0 ist

1

h

(
∫ t+h

a

g(t+ h, s) ds−

∫ t

a

g(t, s) ds

)

=

1

h

∫ t+h

t

g(t+ h, s) ds+

∫ t

a

1

h
(g(t+ h, s)− g(t, s)) ds .

Durch Grenzübergang h→ 0 folgt nun die Behauptung. q.e.d.

Beweis des Satzes für n = 2. Um D(u) auswerten zu können, berechnen wir
zunächst die erste und die zweite Ableitung von u und benutzen dabei die eben
gezeigte Bemerkung. Für t > 0 gilt:

u′(t) =
d

dt

∫ t

0

ϕ(t− s)b(s) ds = ϕ(0)b(t) +

∫ t

0

ϕ′(t− s)b(s) ds .

Wegen der Anfangsbedingung ϕ(0) = 0 ist also u′(t) =
∫ t

0
ϕ′(t − s)b(s) ds . Daraus

folgt mit der Bedingung ϕ′(0) = 1:

u′′(t) = ϕ′(0)b(t) +

∫ t

0

ϕ′′(t− s)b(s) ds = b(t) +

∫ t

0

ϕ′′(t− s)b(s) ds .

Setzen wir nun ein in den Differentialoperator D, erhalten wir:

D(u)(t) = u′′(t) + a1u
′(t) + a0u(t) = b(t) +

∫ t

0

D(ϕ)(t− s)b(s) ds .

Nun ist aber nach Konstruktion D(ϕ) = 0 und daher D(u)(t) = b(t) für alle t ≥ 0.
Also ist u wie behauptet eine Lösung der inhomogenen Differentialgleichung. q.e.d.
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2.3.4 Beispiel Sei λ > 0 vorgegeben. Betrachten wir die inhomogene Differential-
gleichung

x′′(t)− λ2x(t) = b(t) für t ≥ 0.

Hier lautet die entsprechende homogene Differentialgleichung x′′ = λ2x. Die Lösun-
gen sind die Funktionen der Form ϕ(t) = c1e

λt + c2e
−λt. Die Anfangsbedingungen

ϕ(0) = 0 und ϕ′(0) = 1 sind erfüllt, wenn c1 = −c2 =
1
2λ

ist, d.h. ϕ(t) = 1
λ
sinh(λt).

Durch Abschneiden erhalten wir die Elementarlösung

e(t) =

{

1
λ
sinh(λt) falls t ≥ 0

0 sonst
.

Durch Faltung der Elementarlösung mit b wird daraus die folgende Lösung der
inhomogenen Differentialgleichung:

u(t) := (e ∗ b)(t) =
1

λ

∫ t

0

sinh(λ(t− s))b(s) ds .

Ist konkret b(t) = λ, findet man

u(t) =
1

λ
(cosh(λt)− 1) .

Ist b(t) = et für t ≥ 0, so ist (falls λ 6= ±1)

u(t) =
1

2λ

(

1

1− λ
(et − eλt)−

1

1 + λ
(et − e−λt)

)

für t ≥ 0.


