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3.3 FLUSSE ODER DYNAMISCHE SYSTEME

Sei jetzt allgemeiner F: D C R™ — R" ein stetig differenzierbares, aber nicht not-
wendig lineares Vektorfeld. Dann erfiillt F' die Voraussetzungen des Existenz- und
Eindeutigkeitssatzes. Das bedeutet, dass die zugehorige Differentialgleichung

Y'(t) = F(Y (1))

zu jeder Anfangsbedingung Y (ty) = Yj eine eindeutig bestimmte maximale Losung
hat. In dieser Situation hédngt die rechte Seite der Differentialgleichung nicht expli-
zit, sondern nur implizit von der Variablen ¢ ab. Eine solche Differentialgleichung
bezeichnet man als autonom. Die Losungen dieser Differentialgleichung sind gerade
die Integralkurven des Vektorfeldes F'. Das heisst, an jeder Stelle einer solchen Kurve
stimmt der Geschwindigkeitsvektor mit dem an dieser Stelle durch das Vektorfeld
vorgegebenen Vektor iiberein.

3.3.1 DEFINITION Unter dem Fluss oder dem dynamischen System, definiert durch
ein stetig differenzierbares Vektorfeldes F: D — R”", versteht man die Abbildung
©:G C Rx D — R, die einem Paar (¢, X) die Losung ~y(¢) der Differentialgleichung
Y'(t) = F(Y(t)) zur Anfangsbedingung v(0) = X, zuordnet. Dabei ist die Teilmenge
G C R x D so gross gewahlt wie moglich. Das heisst, ein Paar (¢, X) € R x D liegt
in G, wenn die maximale Losung der Differentialgleichung zur Anfangsbedingung
Y (0) = X bei ¢ definiert ist. Der Fluss beschreibt also die Gesamtheit aller Losungen
der durch F' gegebenen Differentialgleichung.

Bezeichnen wir mit (w™(X),w* (X)) das Definitionsintervall der maximalen Lo-
sung der Differentialgleichung Y’ = F(Y) zur Anfangsbedingung Y (0) = X. (Es
kann also auch vorkommen, dass die Intervallgrenzen minus oder plus unendlich
sind). Dann kénnen wir den Definitionsbereich des Flusses so schreiben:

G={t,X)| XeD,tew (X),w (X))

-1 0

3.3.2 BEISPIEL Sei jetzt konkret A = 0 —1

. Das entsprechende Vektorfeld

ist gegeben durch F (<§)) = <:z) Als Definitionsbereich wahlen wir diesmal

D = {v € R? | ||v|]| < 1}. Die Losung der zugehérigen Differentialgleichung zum
Anfangspunkt v = 0 ist konstant gleich Null und fiir alle Zeiten ¢t € R definiert. Die
Losung zur Anfangsbedingung v(0) = v (fiir v # 0) lautet v(¢) = e"*v und ist nur
definiert fiir ¢ > In(||v||). Geht man noch weiter zuriick in die Vergangenheit, wird
der zuldssige Bereich D C R? verlassen. Also haben wir hier w™(v) = In(||v||) und
wt(v) = +oo. Der Fluss des Vektorfeldes ist also gegeben durch

o(t,v) =e v
und er ist definiert auf dem Gebiet

G=1{(t0)|teR}U{(t,v)|veR%:t>n(|v])}.
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3.3.3 DEFINITION Man bezeichnet den Definitionsbereich D C R"™ des Vektorfeldes
auch als Phasenraum. Jede Losung der Differentialgleichung Y’ = F(Y') beschreibt
eine parametrisierte Kurve im Phasenraum, und die Anfangsbedingung gibt den
Punkt vor, durch den diese Kurve fiir ¢t = 0 geht. Zeichnet man diese Kurven in den
Phasenraum ein, erhéilt man wie im linearen Fall das Phasenbild.

3.3.4 BEISPIEL Sei f(z,y) = 2* —4® und F(z,y) = Vf(z,y) = (2z,—-3y?) fiir
x,y € R das Gradientenvektorfeld. Die entsprechende Differentialgleichung lautet:

Y(t) = F(y(t) = Vf(2(t),y(t) = (:?(t)) N (—23:;(;()75)) '

y(t)

Die Losungskurven dieser Differentialgleichung sind die Gradientenlinien von f, und
der Gradientenfluss von f ist hier folgender:

l‘62t

o(t,z,y) = (3 ) 1)) , fir t > —%, falls y > 0, bzw. fiir t < |£\, falls y < 0.
yt+

Die Funktion f definiert noch eine weitere Schar von Kurven, die auf den Gradien-
tenlinien jeweils senkrecht stehen, ndmlich seine Niveaulinien.

Abbildung 3.5: Gradientenlinien (in blau) und Niveaulinien (in rot).

Der Fluss eines Vektorfeldes hat eine Reihe bemerkenswerter Eigenschaften.

3.3.5 SATZ e Der Fluss o:G C R x D — D C R" ist stetig.

e Ist das Vektorfeld F' p-mal stetig differenzierbar, so ist auch der zugehdrige
Fluss ¢ p-mal stetig differenzierbar.

e Ist F reell analytisch, so ist auch der Fluss ¢ analytisch.
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Beweis. Die erste (bzw. zweite) Aussage folgt daraus, dass die Losung der Differen-
tialgleichung Y’ = F(Y) stetig (bzw. differenzierbar) von der Anfangsbedingung
abhédngt. Auf den Beweis dieser Tatsache werden wir hier verzichten. Die dritte Aus-
sage folgt daraus, dass das Picard-Lindel6f-Verfahren auch fiir holomorphe Funk-
tionen (iiber C) funktioniert.  q.e.d.

3.3.6 SATZ Ist (t,X) € G und Y := ¢(t,X), sowie (s,Y) € G, dann folgt (s +
t,X) € G und

pls +1,X) = pls,0(t, X)) .
Ausserdem ist p(0, X) = X fiir alle X.

Der Beweis dieser Aussage beruht auf der Beobachtung, dass die Losungen einer
autonomen Differentialgleichung invariant sind unter Translation der Zeit. Genauer:

3.3.7 LEMMA Ist 7:[a,b] — D eine Lésung der Differentialgleichung Y’ = F(Y'),
wobei F: D C R™ — R" ein stetiges Vektorfeld ist, so ist fiir jedes t € R auch
A:la —t,b —t] — D, definiert durch 7(s) := 7(s + t), eine Losung derselben Diffe-
rentialgleichung.

Beweis. Aus der Kettenregel ergibt sich fiir alle s:

F(s) = (s 1) = 7(s+1) = Fla(s + 1)) = F(3(s)).
q.e.d.

Hier ein Beispiel einer nichtautonomen Differentialgleichung, fiir die die entspre-
chende Aussage nicht gilt:

3.3.8 BEISPIEL Sei F(t,z,y) = (2t,y) fiir t € R, (z,y) € R?. Durch dies zeitabhén-
gige Vektorfeld wird folgende Differentialgleichung definiert:

Die Losung 7: R — R? dieser Differentialgleichung zur Anfangsbedingung ~(0) =

(o, y0) lautet
t2 + ZTo )
t) = .
o= (")

Sei jetzt t > 0 festgewdhlt und s € R variabel. Die Funktion

(s +1)*+ 2
yoeert

() =0 = (

ist keine Losung der Differentialgleichung, denn

Vo= (P00 2 reaen = (2

yoes-i-t
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Beweis des Satzes: Die Gleichung ¢(0, X) = X (fiir alle X) ergibt sich sofort aus
der Definition. Seien jetzt (¢, X),(s,Y) € G, wobei Y := ¢(t, X). Die Funktion
s = (s, p(t, X)) = ¢(s,Y) ist nach Definition die eindeutig bestimmte Losung
der Differentialgleichung Y’ = F(Y) zum Startvektor Y fiir s = 0. Vergleichen wir
jetzt mit der Zuordnung s — (s + ¢, X ). Wie im Lemma bemerkt, handelt es sich
ebenfalls um eine Losung der durch F' definierten Differentialgleichung. Ausserdem
nimmt die Zuordnung bei s = 0 den Wert (¢, X) = Y an. Also stimmen beide
Losungen miteinander iiberein, und wir erhalten die Behauptung.  q.e.d.

Stellen wir uns die Variable ¢ jetzt als Zeitparameter vor. Dann beschreibt
t — o(t, X) eine Bewegung ldngs einer Bahnkurve ausgehend vom Punkt X. Die
Abbildung ¢ gibt die Gesamtheit dieser Bewegungen an. Ist G = R x D, so lie-
fert der Fluss zu jedem fest gewéhlten Zeitpunkt ¢ € R eine Transformation des
Phasenraums

oD =D, p(X) = p(t, X).

Es handelt sich sozusagen um eine Momentaufnahme zum Zeitpunkt ¢, die mit dem
Anfangszustand in Beziehung gesetzt wird.

Fiir den Fall, dass der Definitionsbereich des Flusses G = R x R" ist, sind die
Abbildungen ¢; Transformationen des Raumes R". Die Aussage des Satzes 3.3.6
konnen wir in diesem Fall so schreiben:

wo = idgn, ps0 @ = sy fiir alle s,t € R.
Insbesondere folgt fiir s = —t:

Yt 0wy =@ =1id .

Das bedeutet, die Transformation ¢, ist umkehrbar, und die Umkehrabbildung ¢;*
stimmt tiberein mit ¢_, (dabei lduft die Zeit sozusagen riickwirts).
Betrachten wir die Zuordnung

R — umkehrbare, in beiden Richtungen stetige Transformationen des R", ¢ +— ¢

stellen wir fest, dass die Addition von Zahlen in R genau der Komposition von
Transformationen entspricht. Eine solche Zuordnung wird als Gruppenhomomorphis-
mus bezeichnet, oder man sagt, dass R (als additive Gruppe) auf dem Phasenraum
operiert.

3.3.9 DEFINITION Unter der Bahn (oder Trajektorie) eines Punktes X € D ver-
steht man die Teilmenge

Bx = {p(t,X) | t € (w(X),w" (X))}

des Phasenraums. Die Menge By ist gerade die Bahn von X unter der Operation
der Gruppe R, falls ¢ fiir alle Zeiten t definiert ist.

Aus den Eigenschaften eines dynamischen Systems ergeben sich nun folgende
Konsequenzen fiir das Aussehen der Bahnen.
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3.3.10 FOLGERUNG Sei D C R" eine offene Teilmenge und F: D — R" ein lokal
Lipschitz-stetiges Vektorfeld. Fiir die Trajektorien des entsprechenden Flusses gilt
folgendes:

e Durch jeden Punkt des Phasenraums geht genau eine Trajektorie.

e Die Bahn eines Punktes besteht nur aus einem Punkt genau dann, wenn dieser
Punkt eine Nullstelle des Vektorfelds F ist. In diesem Fall wird der Punkt als
stationdre Losung oder als Gleichgewichtslage bezeichnet.

e Ist ein Punkt keine stationidre Losung, so ist der Geschwindigkeitsvektor an
jeder Stelle der Bahn ungleich Null.

e Fine Bahn, die nicht nur aus einem Punkt besteht, ist entweder eine offene
Kurve ohne Selbstiiberschneidungen, oder sie ist einfach geschlossen und es
gibt eine Periode T' > 0 mit

o(t, X) =+ T,X) firallete (w (X),w"(X)).

Beweis. Nehmen wir an, ein Punkt X € D liege nicht nur auf seiner eigenen Bahn,
sondern auch auf der Bahn des Punktes Y € D. Das heisst, X = ¢(s,Y) fiir ein
s € R. Daraus folgt ¢ (X) = ¢i(ps(Y)) = pis(Y) fiir alle t € (w™(X),w™(X)).
Also gilt

{o(t. X) |t e (W (X),w (X))} ={pt+5Y) |[t+s€ (W (V),w (Y))}

Das bedeutet, dass die Bahnen von X und Y bereits miteinander iibereinstimmen.
Die Beschreibungen dieser Bahnen unterscheidet sich nur durch eine Umparametri-
sierung der Zeit.

Zur zweiten Aussage: Ein Punkt X ist genau dann ein Gleichgewichtspunkt,
wenn (t, Xo) = X, fiir alle t. Das bedeutet, die Losung der Differentialgleichung
Y’ = F(Y) zur Anfangsbedingung Y (0) = X ist die konstante Funktion Y (t) = X,
(fiir alle t). Dies ist genau dann der Fall, wenn Y'(t) = F(X) = 0 ist.

Die dritte Aussage ist nur eine Umformulierung der zweiten Aussage.

Und nun zu den Moglichkeiten fiir eine eindimensionale Trajektorie: Angenom-
men p(t1, X) # p(tz, X) fiir alle t; # to, dann hat die Bahn von X offenbar keine
Selbstiiberschneidungen. Sie kann auch keine Randpunkte haben, weil nach Voraus-
setzung D offen ist. Denn durch jeden Punkt p in D gibt es nach dem Existenz-
und Eindeutigkeitssatz eine Losung der Differentialgleichung, die auf einem offenen
Intervall (—¢, €) definiert ist, und bei ¢t = 0 durch p geht.

Nehmen wir nun an, die Bahn habe eine Selbstiiberschneidung, bestehe aber nicht
nur aus einem Punkt. Das heisst, es gibt Werte t1 # t5 mit p(t1, X) = ¢(t2, X) und
daraus folgt

(0, X) =X =9, (o(t1,X)) = 01, (0(t2, X)) = (2 — 11, X) .
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Weil X keine Gleichgewichtslage sein sollte, ist der Geschwindigkeitsvektor der Bahn
an der Stelle X ungleich 0. Die Dreigliedentwicklung von ¢(t, X') beziiglich t lautet

p(t, X) =00, X) +t F(X) +tR(1),
wobei lim;_,o R(t) = 0 ist. Daraus ergibt sich nun die Abschitzung:
(0, X) = o(t, X)|| = |t [|F(X) + R(#)|| > 0

falls 0 < |t| klein genug ist, so dass ||R(t)|| < ||[F(X)]||. Es gibt also eine Zeit
to > 0 mit p(t, X) # (0, X) fiir alle 0 < t < ty. Anders gesagt, es verstreicht ein
Zeitintervall, bevor die Bahn zum Ausgangspunkt zuriickkehren kann.
Sei jetzt T > 0 die kleinste Zahl mit ¢(0, X) = ¢(7, X). Dann erhalten wir wie
behauptet
o(t, X) = pi((0, X)) =t +T,X) fiir alle ¢.

Die Funktion t — ¢(t, X) ist also periodisch mit Periode 7', und die entsprechende
Bahn ist einfach geschlossen.  q.e.d.

Kehren wir zum Vergleich noch einmal zu dem oben genannten Beispiel einer
nichtautonomen Differentialgleichung zurtick.

3.3.11 BEISPIEL Die Losungskurven der Differentialgleichung

lauten (fur zo,yo € R):

YRR, () = (%;) N <t2yjef0) '

Ist yo = 0, so haben wir y(¢) = (t*+ ¢, 0). Diese Kurve verliuft entlang der x-Achse
und hat an der Stelle x = xy einen Umkehrpunkt. Fiir je zwei verschiedene zy-Werte
iiberlappen sich die Bilder der Kurven in R?, ohne miteinander iibereinzustimmen.
Hier haben wir also Bahnen mit Randpunkten, die ineinanderlaufen. Ist yo # 0, so

haben wir y(t) = yoetV*® =20 fiir alle ¢. Die entsprechenden Kurven im Phasenraum
R? verlaufen (je nach Vorzeichen von 3y) ganz in der oberen oder der unteren Halb-
ebene, und haben jeweils an der Stelle (xg, %) eine vertikale Tangente und einen
Wendepunkt bei z = xy + 1.

Schauen wir uns Gradientenvektorfelder noch einmal genauer an. Ist f: D — R
eine zweimal stetig differenzierbare Funktion in zwei Variablen, definiert auf einer
offenen Teilmenge D C R?, so ist das zugehorige Gradientenvektorfeld V f gegeben
durch

Vo) = (400)) b g(o,5) = 0. f(o.) wnd he.y) = 0, (2,0).
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Betrachten wir jetzt das um 90 Grad gedrehte Vektorfeld

F(z,y) = (_h(x’y)) :

9(z,y)

Wenn wir zusétzlich annehmen, dass F' keine Nullstellen in D hat, dann sind al-
le Trajektorien von F' eindimensional und schneiden die Gradientenlinien jeweils
senkrecht. Genauer handelt es sich gerade um die Zusammenhangskomponenten der
Niveaulinien von f. Die Funktion f liefert also eine simultane Zerlegung von D in
zwei Scharen von Kurven, die iiberall aufeinander senkrecht stehen. Die Trajektorien
des Vektorfeldes F' sind Losungskurven der exakten Differentialgleichung

df = gdz + hdy.

3.4 STABILITAT VON GLEICHGEWICHTSLAGEN

Hier ist eine Prézisierung der intuitiven Vorstellung von Stabilitédt einer Gleichge-
wichtslage.

3.4.1 DEFINITION Sei Y = X, eine Gleichgewichtslage der Differentialgleichung
Y’ = F(Y) fiir ein stetig differenzierbares Vektorfeld F'. Der Punkt Xy heisst stabil,
falls zu jedem € > 0 ein > 0 existiert mit

X —Xoll <6 = |lpt, X)— Xo|| <e firallet >0,
und andernfalls instabil. X, heisst Attraktor, falls ein 6 > 0 existiert mit

tlim o(t,X) =X, furalle || X — Xo|| <.
—00

Xo heisst asymptotisch stabil, falls X, ein stabiler Attraktor ist.
Es gibt folgendes Kriterium fiir Stabilitéat fiir lineare Vektorfelder:

3.4.2 SATZ Sei A eine feste n x n-Matrix mit Eigenwerten A1, ..., \,. Wir setzen
v :=max{Re(};) | j =1,...,n}. Ist v <0, so ist der Nullpunkt asymptotisch stabil
fiir das durch A definierte dynamische System. Ist v > 0, ist der Nullpunkt instabil.

Der Vergleich mit den Phasenbildern der ebenen linearen Vektorfelder zeigt, dass
hier die intuitiv vorgenommene Einteilung mit der nun gegebenen Definition, sowie
mit dem Kriterium fiir Stabilitédt iibereinstimmt.

Allgemeiner gilt folgendes Stabilitédtskriterium fiir stationdre Punkte von stetig
differenzierbaren Vektorfeldern (Prinzip der linearisierten Stabilitét).

3.4.3 SATZ Sei F: D C R"™ — R" ein stetig differenzierbares Vektorfeld, und sei
Y = X, eine stationdre Losung der Differentialgleichung Y’ = F(Y'). Bezeichne
weiter v das Maximum der Realteile von Eigenwerten des Differentials DF(X,) von
F bei X,y. Entsprechend zu eben gilt: Ist v < 0, so ist X, asymptotisch stabil fiir
das durch F' definierte dynamische System. Ist v > 0, ist X instabil.
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3.4.4 BEISPIEL Wir betrachten die Differentialgleichung
i=2"-) (AER).

Die Gleichgewichtspunkte sind die Nullstellen der Funktion f(x) = 2? — X, nimlich
++/X (falls A > 0). Der Phasenraum ist hier eindimensional, und im Phasenbild fiir
A > 0 gibt es die zwei Punkte +v/X. Im Komplement dieser beiden Punkte gibt es
die drei Bahnen (—oo, —v/\), (=vV A, VA), (VA 00).

Das Differential von f lautet f'(z) = 2z, und daher ist v = £2v/X. Der Punkt
z = —/\ ist also stabil und der Punkt 2 = v/X instabil.

—z(1+vy)
r—Y
Nullstellen, ndmlich den Nullpunkt und den Punkt p = (—1,—1). Der entsprechen-
de Fluss hat also zwei Gleichgewichtspunkte. Das Differential des Vektorfeldes an

einer Stelle (z,y) lautet DF(, ) = ( _(11+ v) :T ) . In den Gleichgewichtspunkten

3.4.5 BEISPIEL Das Vektorfeld F(z,y) = ( ) (fiir ,y € R) hat zwei

haben wir also:

-1 0 0 1
DF(070) = < 1 _1) und DF(—L—l) = <1 _1) .

Im Nullpunkt haben wir den doppelten Eigenwert —1, der Nullpunkt ist also asym-
ptotisch stabil. Im Punkt p haben wir die Eigenwerte %(1 ++/5). Das ist ein positiver
und ein negativer Eigenwert. Also ist der Punkt p instabil.

Das Prinzip der linearisierten Stabilitdt ldsst sich mithilfe einer Methode von
Ljapunov beweisen.

3.4.6 SATZ Sei F' ein stetig differenzierbares Vektorfeld mit Nullstelle Xy und V' €
CY(D,R) mit V(Xy) =0 und V(X) > 0 fiir alle X # X,.

1. Ist t — V(p(t, X)) monoton fallend fiir alle X € D undt > 0, so ist X stabil.

2. Ist t — V(p(t, X)) sogar streng monoton fallend fiir alle X # X, und t > 0,
so ist Xy asymptotisch stabil.

Beweis. Wir zeigen nur den ersten Teil. Wahlen wir zunéchst ¢ > 0 so klein, dass
K (Xo) € D. Auf dem kompakten Rand der Kugel nimmt die Funktion V ein
positives Minimum ¢ > 0 an. Ausserdem ist V(Xy) = 0 < ¢p. Also kann man § > 0
finden, so dass V(X) < ¢ fiir alle || X — Xo|| < 0. Sei jetzt X ein solcher Punkt
mit || X — Xo|| < J. Weil nach Voraussetzung die Funktion V' lings der Trajektorien
monoton fallend ist, gilt V(¢(t, X)) < ¢ fir alle £ > 0. Die Trajektorie von X kann
also die Kugel K (Xj) fiir positive Zeiten nicht verlassen, denn auf der Schnittstelle
mit dem Rand miisste sie sonst einen Wert > ¢y annehmen.  q.e.d.

Wenden wir diesen Satz von Ljapunov nun an, um zumindest in einem Spezialfall
das Prinzip der linearisierten Stabilitdt zu beweisen.
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3.4.7 FOLGERUNG Sei F ein stetig differenzierbares Vektorfeld auf der offenen Teil-
menge D C R"™ mit Nullstelle X,. Das Differential DF(X,) von F' bei X sei diago-
nalisierbar mit reellen negativen Eigenwerten Ai,...,\,. Nach einem linearen Ko-
ordinatenwechsel kann man erreichen, dass die Jacobimatrix A von F bei X, Dia-
gonalform hat. Wir wéhlen als Ljapunov-Funktion jetzt V(X) = || X — X,||* fiir
X € D und behaupten, dass V' ldngs von Trajektorien von Punkten X # X, die
geniigend nahe bei X, liegen, streng monoton fallend ist. Nach dem Stabilitéitssatz
von Ljapunov folgt also, dass Xq asymptotisch stabil ist.

Beweis. Zu zeigen ist, dass t — V(p(t, X)) streng monoton fallend ist fiir X nahe
bei Xj. Dies ist nach der Kettenregel gleichbedeutend mit

0> %V(w(t,X)) = (VV(p(t, X)), F(p(t, X))) .

Einerseits ist hier VV (X)) = 2(X —Xj). Andererseits liefert die Dreigliedentwicklung
von F' folgende Zerlegung von F' in ein lineares Vektorfeld und einen nichtlinearen
Storterm:

F(Xo+Y)=AY + R(Y)-||Y||, wobeilimy_,,R(Y)=0.
Also gilt an der Stelle Xy + Y = ¢(t, X)

DV (1, )) = (VV (X +Y). F(Xo + Y)) = (2¥. A + RY)||Y]).

Bezeichnet v < 0 das Maximum der Eigenwerte von A, so gilt die Abschitzung
(Y, AY) <A[[Y[].
Ausserdem ist nach der Cauchy-Schwarzschen Ungleichung
Y, R(Y)) <|[Y][- [[RY)]].

Weil limy o R(Y) = 0, kann man ein € > 0 finden, so dass fir alle ||Y|| < € gilt:
1
1B < 5l

Zusammen folgt fur alle ||Y|| < € :

%V(¢(t, X)) = 2((Y, AY) + (Y, R(Y))[[Y]]) <

1
2A[YIP(y + 1RO < 2l IP(=IvI + 5D = =1l - IY]P < 0. q.e.d.

Hier ist noch ein Anwendungsbeispiel der Ljapunov-Methode, bei dem das Prin-
zip der linearisierten Stabilitdt nicht funktioniert:
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73
3.4.8 BEISPIEL Das Vektorfeld F(z,y) = < xy— ;; ) auf R? hat eine Nullstelle im
Nullpunkt. Die Jacobimatrix im Nullpunkt lautet hier: A = <(1) _01) und hat die

Eigenwerte £i¢. In diesem Fall macht das Eigenwertstabilitdtskriterium also keine
Aussage. Aber mit der Ljapunov-Methode kommt man hier trotzdem zum Ziel. Als
Ljapunov-Funktion withlen wir V(z,y) = 2? + y?. Die Positivitit ist dann sicher
gewihrleistet. Ausserdem rechnet man nach

%V(w(t z,y)) = (VV(z,y), Fz,y)) = 22(—y —2°) + 2y(z —y°) = 22" —2y* <0

fir alle (x,y) # (0,0). Also ist der Nullpunkt sogar ein Attraktor.



