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3.3 Flüsse oder Dynamische Systeme

Sei jetzt allgemeiner F :D ⊂ Rn → Rn ein stetig differenzierbares, aber nicht not-
wendig lineares Vektorfeld. Dann erfüllt F die Voraussetzungen des Existenz- und
Eindeutigkeitssatzes. Das bedeutet, dass die zugehörige Differentialgleichung

Y ′(t) = F (Y (t))

zu jeder Anfangsbedingung Y (t0) = Y0 eine eindeutig bestimmte maximale Lösung
hat. In dieser Situation hängt die rechte Seite der Differentialgleichung nicht expli-
zit, sondern nur implizit von der Variablen t ab. Eine solche Differentialgleichung
bezeichnet man als autonom. Die Lösungen dieser Differentialgleichung sind gerade
die Integralkurven des Vektorfeldes F . Das heisst, an jeder Stelle einer solchen Kurve
stimmt der Geschwindigkeitsvektor mit dem an dieser Stelle durch das Vektorfeld
vorgegebenen Vektor überein.

3.3.1 Definition Unter dem Fluss oder dem dynamischen System, definiert durch
ein stetig differenzierbares Vektorfeldes F :D → Rn, versteht man die Abbildung
ϕ:G ⊂ R×D → Rn, die einem Paar (t, X) die Lösung γ(t) der Differentialgleichung
Y ′(t) = F (Y (t)) zur Anfangsbedingung γ(0) = X , zuordnet. Dabei ist die Teilmenge
G ⊂ R×D so gross gewählt wie möglich. Das heisst, ein Paar (t, X) ∈ R×D liegt
in G, wenn die maximale Lösung der Differentialgleichung zur Anfangsbedingung
Y (0) = X bei t definiert ist. Der Fluss beschreibt also die Gesamtheit aller Lösungen
der durch F gegebenen Differentialgleichung.

Bezeichnen wir mit (ω−(X), ω+(X)) das Definitionsintervall der maximalen Lö-
sung der Differentialgleichung Y ′ = F (Y ) zur Anfangsbedingung Y (0) = X . (Es
kann also auch vorkommen, dass die Intervallgrenzen minus oder plus unendlich
sind). Dann können wir den Definitionsbereich des Flusses so schreiben:

G = {(t, X) | X ∈ D, t ∈ (ω−(X), ω+(X))} .

3.3.2 Beispiel Sei jetzt konkret A =

(

−1 0
0 −1

)

. Das entsprechende Vektorfeld

ist gegeben durch F (

(

x

y

)

) =

(

−x

−y

)

. Als Definitionsbereich wählen wir diesmal

D := {v ∈ R2 | ||v|| < 1}. Die Lösung der zugehörigen Differentialgleichung zum
Anfangspunkt v = 0 ist konstant gleich Null und für alle Zeiten t ∈ R definiert. Die
Lösung zur Anfangsbedingung γ(0) = v (für v 6= 0) lautet γ(t) = e−tv und ist nur
definiert für t > ln(||v||). Geht man noch weiter zurück in die Vergangenheit, wird
der zulässige Bereich D ⊂ R2 verlassen. Also haben wir hier ω−(v) = ln(||v||) und
ω+(v) = +∞. Der Fluss des Vektorfeldes ist also gegeben durch

ϕ(t, v) = e−tv

und er ist definiert auf dem Gebiet

G = {(t, 0) | t ∈ R} ∪ {(t, v) | v ∈ R
2, t > ln(||v||)} .
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3.3.3 Definition Man bezeichnet den Definitionsbereich D ⊂ Rn des Vektorfeldes
auch als Phasenraum. Jede Lösung der Differentialgleichung Y ′ = F (Y ) beschreibt
eine parametrisierte Kurve im Phasenraum, und die Anfangsbedingung gibt den
Punkt vor, durch den diese Kurve für t = 0 geht. Zeichnet man diese Kurven in den
Phasenraum ein, erhält man wie im linearen Fall das Phasenbild .

3.3.4 Beispiel Sei f(x, y) = x2 − y3 und F (x, y) = ∇f(x, y) = (2x,−3y2) für
x, y ∈ R das Gradientenvektorfeld. Die entsprechende Differentialgleichung lautet:

γ̇(t) = F (γ(t)) = ∇f(x(t), y(t) =

(

ẋ(t)
ẏ(t)

)

=

(

2x(t)
−3y2(t)

)

.

Die Lösungskurven dieser Differentialgleichung sind die Gradientenlinien von f , und
der Gradientenfluss von f ist hier folgender:

ϕ(t, x, y) =

(

xe2t
y

3yt+1
)

)

, für t > − 1
3y
, falls y > 0, bzw. für t < | 1

3y
|, falls y < 0.

Die Funktion f definiert noch eine weitere Schar von Kurven, die auf den Gradien-
tenlinien jeweils senkrecht stehen, nämlich seine Niveaulinien.

Abbildung 3.5: Gradientenlinien (in blau) und Niveaulinien (in rot).

Der Fluss eines Vektorfeldes hat eine Reihe bemerkenswerter Eigenschaften.

3.3.5 Satz • Der Fluss ϕ:G ⊂ R×D → D ⊂ Rn ist stetig.

• Ist das Vektorfeld F p-mal stetig differenzierbar, so ist auch der zugehörige

Fluss ϕ p-mal stetig differenzierbar.

• Ist F reell analytisch, so ist auch der Fluss ϕ analytisch.
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Beweis. Die erste (bzw. zweite) Aussage folgt daraus, dass die Lösung der Differen-
tialgleichung Y ′ = F (Y ) stetig (bzw. differenzierbar) von der Anfangsbedingung
abhängt. Auf den Beweis dieser Tatsache werden wir hier verzichten. Die dritte Aus-
sage folgt daraus, dass das Picard–Lindelöf–Verfahren auch für holomorphe Funk-
tionen (über C) funktioniert. q.e.d.

3.3.6 Satz Ist (t, X) ∈ G und Y := ϕ(t, X), sowie (s, Y ) ∈ G, dann folgt (s +
t, X) ∈ G und

ϕ(s+ t, X) = ϕ(s, ϕ(t, X)) .

Ausserdem ist ϕ(0, X) = X für alle X .

Der Beweis dieser Aussage beruht auf der Beobachtung, dass die Lösungen einer
autonomen Differentialgleichung invariant sind unter Translation der Zeit. Genauer:

3.3.7 Lemma Ist γ: [a, b] → D eine Lösung der Differentialgleichung Y ′ = F (Y ),
wobei F :D ⊂ Rn → Rn ein stetiges Vektorfeld ist, so ist für jedes t ∈ R auch

γ̃: [a − t, b − t] → D, definiert durch γ̃(s) := γ(s + t), eine Lösung derselben Diffe-

rentialgleichung.

Beweis. Aus der Kettenregel ergibt sich für alle s:

γ̃′(s) =
d

ds
γ(s+ t) = γ′(s+ t) = F (γ(s+ t)) = F (γ̃(s)) .

q.e.d.

Hier ein Beispiel einer nichtautonomen Differentialgleichung, für die die entspre-
chende Aussage nicht gilt:

3.3.8 Beispiel Sei F (t, x, y) = (2t, y) für t ∈ R, (x, y) ∈ R2. Durch dies zeitabhän-
gige Vektorfeld wird folgende Differentialgleichung definiert:

(

ẋ(t)
ẏ(t)

)

=

(

2t
y(t)

)

.

Die Lösung γ:R → R2 dieser Differentialgleichung zur Anfangsbedingung γ(0) =
(x0, y0) lautet

γ(t) =

(

t2 + x0

y0e
t

)

.

Sei jetzt t > 0 festgewählt und s ∈ R variabel. Die Funktion

γ̃(s) = γ(s+ t) =

(

(s+ t)2 + x0

y0e
s+t

)

ist keine Lösung der Differentialgleichung, denn

γ̃′(s) =

(

2(s+ t)
y0e

s+t

)

6= F (s, γ̃(s)) =

(

2s
y0e

s+t

)

.
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Beweis des Satzes: Die Gleichung ϕ(0, X) = X (für alle X) ergibt sich sofort aus
der Definition. Seien jetzt (t, X), (s, Y ) ∈ G, wobei Y := ϕ(t, X). Die Funktion
s 7→ ϕ(s, ϕ(t, X)) = ϕ(s, Y ) ist nach Definition die eindeutig bestimmte Lösung
der Differentialgleichung Y ′ = F (Y ) zum Startvektor Y für s = 0. Vergleichen wir
jetzt mit der Zuordnung s 7→ ϕ(s + t, X). Wie im Lemma bemerkt, handelt es sich
ebenfalls um eine Lösung der durch F definierten Differentialgleichung. Ausserdem
nimmt die Zuordnung bei s = 0 den Wert ϕ(t, X) = Y an. Also stimmen beide
Lösungen miteinander überein, und wir erhalten die Behauptung. q.e.d.

Stellen wir uns die Variable t jetzt als Zeitparameter vor. Dann beschreibt
t 7→ ϕ(t, X) eine Bewegung längs einer Bahnkurve ausgehend vom Punkt X . Die
Abbildung ϕ gibt die Gesamtheit dieser Bewegungen an. Ist G = R × D, so lie-
fert der Fluss zu jedem fest gewählten Zeitpunkt t ∈ R eine Transformation des
Phasenraums

ϕt:D → D, ϕt(X) = ϕ(t, X) .

Es handelt sich sozusagen um eine Momentaufnahme zum Zeitpunkt t, die mit dem
Anfangszustand in Beziehung gesetzt wird.

Für den Fall, dass der Definitionsbereich des Flusses G = R × Rn ist, sind die
Abbildungen ϕt Transformationen des Raumes Rn. Die Aussage des Satzes 3.3.6
können wir in diesem Fall so schreiben:

ϕ0 = idRn , ϕs ◦ ϕt = ϕs+t für alle s, t ∈ R.

Insbesondere folgt für s = −t:

ϕ−t ◦ ϕt = ϕ0 = id .

Das bedeutet, die Transformation ϕt ist umkehrbar, und die Umkehrabbildung ϕ−1
t

stimmt überein mit ϕ−t (dabei läuft die Zeit sozusagen rückwärts).
Betrachten wir die Zuordnung

R → umkehrbare, in beiden Richtungen stetige Transformationen des Rn, t 7→ ϕt ,

stellen wir fest, dass die Addition von Zahlen in R genau der Komposition von
Transformationen entspricht. Eine solche Zuordnung wird alsGruppenhomomorphis-

mus bezeichnet, oder man sagt, dass R (als additive Gruppe) auf dem Phasenraum
operiert.

3.3.9 Definition Unter der Bahn (oder Trajektorie) eines Punktes X ∈ D ver-
steht man die Teilmenge

BX = {ϕ(t, X) | t ∈ (ω−(X), ω+(X))}

des Phasenraums. Die Menge BX ist gerade die Bahn von X unter der Operation
der Gruppe R, falls ϕ für alle Zeiten t definiert ist.

Aus den Eigenschaften eines dynamischen Systems ergeben sich nun folgende
Konsequenzen für das Aussehen der Bahnen.
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3.3.10 Folgerung Sei D ⊂ Rn eine offene Teilmenge und F :D → Rn ein lokal

Lipschitz-stetiges Vektorfeld. Für die Trajektorien des entsprechenden Flusses gilt

folgendes:

• Durch jeden Punkt des Phasenraums geht genau eine Trajektorie.

• Die Bahn eines Punktes besteht nur aus einem Punkt genau dann, wenn dieser

Punkt eine Nullstelle des Vektorfelds F ist. In diesem Fall wird der Punkt als

stationäre Lösung oder als Gleichgewichtslage bezeichnet.

• Ist ein Punkt keine stationäre Lösung, so ist der Geschwindigkeitsvektor an

jeder Stelle der Bahn ungleich Null.

• Eine Bahn, die nicht nur aus einem Punkt besteht, ist entweder eine offene

Kurve ohne Selbstüberschneidungen, oder sie ist einfach geschlossen und es

gibt eine Periode T > 0 mit

ϕ(t, X) = ϕ(t+ T,X) für alle t ∈ (ω−(X), ω+(X)).

Beweis. Nehmen wir an, ein Punkt X ∈ D liege nicht nur auf seiner eigenen Bahn,
sondern auch auf der Bahn des Punktes Y ∈ D. Das heisst, X = ϕ(s, Y ) für ein
s ∈ R. Daraus folgt ϕt(X) = ϕt(ϕs(Y )) = ϕt+s(Y ) für alle t ∈ (ω−(X), ω+(X)).
Also gilt

{ϕ(t, X) | t ∈ (ω−(X), ω+(X))} = {ϕ(t+ s, Y ) | t+ s ∈ (ω−(Y ), ω+(Y ))} .

Das bedeutet, dass die Bahnen von X und Y bereits miteinander übereinstimmen.
Die Beschreibungen dieser Bahnen unterscheidet sich nur durch eine Umparametri-
sierung der Zeit.

Zur zweiten Aussage: Ein Punkt X0 ist genau dann ein Gleichgewichtspunkt,
wenn ϕ(t, X0) = X0 für alle t. Das bedeutet, die Lösung der Differentialgleichung
Y ′ = F (Y ) zur Anfangsbedingung Y (0) = X0 ist die konstante Funktion Y (t) = X0

(für alle t). Dies ist genau dann der Fall, wenn Y ′(t) = F (X0) = 0 ist.

Die dritte Aussage ist nur eine Umformulierung der zweiten Aussage.

Und nun zu den Möglichkeiten für eine eindimensionale Trajektorie: Angenom-
men ϕ(t1, X) 6= ϕ(t2, X) für alle t1 6= t2, dann hat die Bahn von X offenbar keine
Selbstüberschneidungen. Sie kann auch keine Randpunkte haben, weil nach Voraus-
setzung D offen ist. Denn durch jeden Punkt p in D gibt es nach dem Existenz-
und Eindeutigkeitssatz eine Lösung der Differentialgleichung, die auf einem offenen
Intervall (−ǫ, ǫ) definiert ist, und bei t = 0 durch p geht.

Nehmen wir nun an, die Bahn habe eine Selbstüberschneidung, bestehe aber nicht
nur aus einem Punkt. Das heisst, es gibt Werte t1 6= t2 mit ϕ(t1, X) = ϕ(t2, X) und
daraus folgt

ϕ(0, X) = X = ϕ−t1(ϕ(t1, X)) = ϕ−t1(ϕ(t2, X)) = ϕ(t2 − t1, X) .
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Weil X keine Gleichgewichtslage sein sollte, ist der Geschwindigkeitsvektor der Bahn
an der Stelle X ungleich 0. Die Dreigliedentwicklung von ϕ(t, X) bezüglich t lautet

ϕ(t, X) = ϕ(0, X) + t F (X) + t R(t) ,

wobei limt→0R(t) = 0 ist. Daraus ergibt sich nun die Abschätzung:

||ϕ(0, X)− ϕ(t, X)|| = |t| ||F (X) +R(t)|| > 0

falls 0 < |t| klein genug ist, so dass ||R(t)|| < ||F (X)||. Es gibt also eine Zeit
t0 > 0 mit ϕ(t, X) 6= ϕ(0, X) für alle 0 < t ≤ t0. Anders gesagt, es verstreicht ein
Zeitintervall, bevor die Bahn zum Ausgangspunkt zurückkehren kann.

Sei jetzt T > 0 die kleinste Zahl mit ϕ(0, X) = ϕ(T,X). Dann erhalten wir wie
behauptet

ϕ(t, X) = ϕt(ϕ(0, X)) = ϕ(t+ T,X) für alle t .

Die Funktion t 7→ ϕ(t, X) ist also periodisch mit Periode T , und die entsprechende
Bahn ist einfach geschlossen. q.e.d.

Kehren wir zum Vergleich noch einmal zu dem oben genannten Beispiel einer
nichtautonomen Differentialgleichung zurück.

3.3.11 Beispiel Die Lösungskurven der Differentialgleichung

(

ẋ(t)
ẏ(t)

)

=

(

2t
y(t)

)

lauten (für x0, y0 ∈ R):

γ:R → R
2, γ(t) =

(

x(t)
y(t)

)

=

(

t2 + x0

y0e
t

)

.

Ist y0 = 0, so haben wir γ(t) = (t2+x0, 0). Diese Kurve verläuft entlang der x-Achse
und hat an der Stelle x = x0 einen Umkehrpunkt. Für je zwei verschiedene x0-Werte
überlappen sich die Bilder der Kurven in R2, ohne miteinander übereinzustimmen.
Hier haben wir also Bahnen mit Randpunkten, die ineinanderlaufen. Ist y0 6= 0, so

haben wir y(t) = y0e
±

√
x(t)−x0 für alle t. Die entsprechenden Kurven im Phasenraum

R
2 verlaufen (je nach Vorzeichen von y0) ganz in der oberen oder der unteren Halb-

ebene, und haben jeweils an der Stelle (x0, y0) eine vertikale Tangente und einen
Wendepunkt bei x = x0 + 1.

Schauen wir uns Gradientenvektorfelder noch einmal genauer an. Ist f :D → R

eine zweimal stetig differenzierbare Funktion in zwei Variablen, definiert auf einer
offenen Teilmenge D ⊂ R2, so ist das zugehörige Gradientenvektorfeld ∇f gegeben
durch

∇f(x, y) =

(

g(x, y)
h(x, y)

)

, wobei g(x, y) = ∂xf(x, y) und h(x, y) = ∂yf(x, y) .
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Betrachten wir jetzt das um 90 Grad gedrehte Vektorfeld

F (x, y) =

(

−h(x, y)
g(x, y)

)

.

Wenn wir zusätzlich annehmen, dass F keine Nullstellen in D hat, dann sind al-
le Trajektorien von F eindimensional und schneiden die Gradientenlinien jeweils
senkrecht. Genauer handelt es sich gerade um die Zusammenhangskomponenten der
Niveaulinien von f . Die Funktion f liefert also eine simultane Zerlegung von D in
zwei Scharen von Kurven, die überall aufeinander senkrecht stehen. Die Trajektorien
des Vektorfeldes F sind Lösungskurven der exakten Differentialgleichung

df = g dx+ h dy .

3.4 Stabilität von Gleichgewichtslagen

Hier ist eine Präzisierung der intuitiven Vorstellung von Stabilität einer Gleichge-
wichtslage.

3.4.1 Definition Sei Y ≡ X0 eine Gleichgewichtslage der Differentialgleichung
Y ′ = F (Y ) für ein stetig differenzierbares Vektorfeld F . Der Punkt X0 heisst stabil,
falls zu jedem ǫ > 0 ein δ > 0 existiert mit

||X −X0|| < δ ⇒ ||ϕ(t, X)−X0|| < ǫ für alle t > 0,

und andernfalls instabil . X0 heisst Attraktor , falls ein δ > 0 existiert mit

lim
t→∞

ϕ(t, X) = X0 für alle ||X −X0|| < δ.

X0 heisst asymptotisch stabil , falls X0 ein stabiler Attraktor ist.

Es gibt folgendes Kriterium für Stabilität für lineare Vektorfelder:

3.4.2 Satz Sei A eine feste n × n-Matrix mit Eigenwerten λ1, . . . , λn. Wir setzen

γ := max{Re(λj) | j = 1, . . . , n}. Ist γ < 0, so ist der Nullpunkt asymptotisch stabil

für das durch A definierte dynamische System. Ist γ > 0, ist der Nullpunkt instabil.

Der Vergleich mit den Phasenbildern der ebenen linearen Vektorfelder zeigt, dass
hier die intuitiv vorgenommene Einteilung mit der nun gegebenen Definition, sowie
mit dem Kriterium für Stabilität übereinstimmt.

Allgemeiner gilt folgendes Stabilitätskriterium für stationäre Punkte von stetig
differenzierbaren Vektorfeldern (Prinzip der linearisierten Stabilität).

3.4.3 Satz Sei F :D ⊂ Rn → Rn ein stetig differenzierbares Vektorfeld, und sei

Y ≡ X0 eine stationäre Lösung der Differentialgleichung Y ′ = F (Y ). Bezeichne
weiter γ das Maximum der Realteile von Eigenwerten des Differentials DF (X0) von
F bei X0. Entsprechend zu eben gilt: Ist γ < 0, so ist X0 asymptotisch stabil für

das durch F definierte dynamische System. Ist γ > 0, ist X0 instabil.



3.4. Stabilität von Gleichgewichtslagen 49

3.4.4 Beispiel Wir betrachten die Differentialgleichung

ẋ = x2 − λ (λ ∈ R).

Die Gleichgewichtspunkte sind die Nullstellen der Funktion f(x) = x2 − λ, nämlich
±
√
λ (falls λ ≥ 0). Der Phasenraum ist hier eindimensional, und im Phasenbild für

λ > 0 gibt es die zwei Punkte ±
√
λ. Im Komplement dieser beiden Punkte gibt es

die drei Bahnen (−∞,−
√
λ), (−

√
λ,

√
λ), (

√
λ,∞).

Das Differential von f lautet f ′(x) = 2x, und daher ist γ = ±2
√
λ. Der Punkt

x = −
√
λ ist also stabil und der Punkt x =

√
λ instabil.

3.4.5 Beispiel Das Vektorfeld F (x, y) =

(

−x(1 + y)
x− y

)

(für x, y ∈ R) hat zwei

Nullstellen, nämlich den Nullpunkt und den Punkt p = (−1,−1). Der entsprechen-
de Fluss hat also zwei Gleichgewichtspunkte. Das Differential des Vektorfeldes an

einer Stelle (x, y) lautetDF(x,y) =

(

−(1 + y) −x

1 −1

)

. In den Gleichgewichtspunkten

haben wir also:

DF(0,0) =

(

−1 0
1 −1

)

und DF(−1,−1) =

(

0 1
1 −1

)

.

Im Nullpunkt haben wir den doppelten Eigenwert −1, der Nullpunkt ist also asym-
ptotisch stabil. Im Punkt p haben wir die Eigenwerte 1

2
(1±

√
5). Das ist ein positiver

und ein negativer Eigenwert. Also ist der Punkt p instabil.

Das Prinzip der linearisierten Stabilität lässt sich mithilfe einer Methode von
Ljapunov beweisen.

3.4.6 Satz Sei F ein stetig differenzierbares Vektorfeld mit Nullstelle X0 und V ∈
C1(D,R) mit V (X0) = 0 und V (X) > 0 für alle X 6= X0.

1. Ist t 7→ V (ϕ(t, X)) monoton fallend für alle X ∈ D und t ≥ 0, so ist X0 stabil.

2. Ist t 7→ V (ϕ(t, X)) sogar streng monoton fallend für alle X 6= X0 und t ≥ 0,
so ist X0 asymptotisch stabil.

Beweis. Wir zeigen nur den ersten Teil. Wählen wir zunächst ǫ > 0 so klein, dass
Kǫ(X0) ⊂ D. Auf dem kompakten Rand der Kugel nimmt die Funktion V ein
positives Minimum c0 > 0 an. Ausserdem ist V (X0) = 0 < c0. Also kann man δ > 0
finden, so dass V (X) < c0 für alle ||X − X0|| < δ. Sei jetzt X ein solcher Punkt
mit ||X−X0|| < δ. Weil nach Voraussetzung die Funktion V längs der Trajektorien
monoton fallend ist, gilt V (ϕ(t, X)) < c0 für alle t > 0. Die Trajektorie von X kann
also die Kugel Kǫ(X0) für positive Zeiten nicht verlassen, denn auf der Schnittstelle
mit dem Rand müsste sie sonst einen Wert ≥ c0 annehmen. q.e.d.

Wenden wir diesen Satz von Ljapunov nun an, um zumindest in einem Spezialfall
das Prinzip der linearisierten Stabilität zu beweisen.
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3.4.7 Folgerung Sei F ein stetig differenzierbares Vektorfeld auf der offenen Teil-

menge D ⊂ Rn mit Nullstelle X0. Das Differential DF (X0) von F bei X0 sei diago-

nalisierbar mit reellen negativen Eigenwerten λ1, . . . , λn. Nach einem linearen Ko-

ordinatenwechsel kann man erreichen, dass die Jacobimatrix A von F bei X0 Dia-

gonalform hat. Wir wählen als Ljapunov-Funktion jetzt V (X) := ||X − X0||2 für

X ∈ D und behaupten, dass V längs von Trajektorien von Punkten X 6= X0, die

genügend nahe bei X0 liegen, streng monoton fallend ist. Nach dem Stabilitätssatz

von Ljapunov folgt also, dass X0 asymptotisch stabil ist.

Beweis. Zu zeigen ist, dass t 7→ V (ϕ(t, X)) streng monoton fallend ist für X nahe
bei X0. Dies ist nach der Kettenregel gleichbedeutend mit

0 >
d

dt
V (ϕ(t, X)) = 〈∇V (ϕ(t, X)), F (ϕ(t, X))〉 .

Einerseits ist hier ∇V (X) = 2(X−X0). Andererseits liefert die Dreigliedentwicklung
von F folgende Zerlegung von F in ein lineares Vektorfeld und einen nichtlinearen
Störterm:

F (X0 + Y ) = AY +R(Y ) · ||Y || , wobei limY→0R(Y ) = 0.

Also gilt an der Stelle X0 + Y = ϕ(t, X)

d

dt
V (ϕ(t, X)) = 〈∇V (X0 + Y ), F (X0 + Y )〉 = 〈2Y,AY +R(Y )||Y ||〉 .

Bezeichnet γ < 0 das Maximum der Eigenwerte von A, so gilt die Abschätzung

〈Y,AY 〉 ≤ γ||Y ||2 .

Ausserdem ist nach der Cauchy-Schwarzschen Ungleichung

〈Y,R(Y )〉 ≤ ||Y || · ||R(Y )|| .

Weil limY→0R(Y ) = 0, kann man ein ǫ > 0 finden, so dass für alle ||Y || < ǫ gilt:

||R(Y )|| < 1

2
|γ| .

Zusammen folgt für alle ||Y || < ǫ :

d

dt
V (ϕ(t, X)) = 2(〈Y,AY 〉+ 〈Y,R(Y )〉||Y ||) ≤

2||Y ||2(γ + ||R(Y )||) < 2||Y ||2(−|γ|+ 1

2
|γ|) = −|γ| · ||Y ||2 < 0 . q.e.d.

Hier ist noch ein Anwendungsbeispiel der Ljapunov-Methode, bei dem das Prin-
zip der linearisierten Stabilität nicht funktioniert:
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3.4.8 Beispiel Das Vektorfeld F (x, y) =

(

−y − x3

x− y3

)

auf R2 hat eine Nullstelle im

Nullpunkt. Die Jacobimatrix im Nullpunkt lautet hier: A =

(

0 −1
1 0

)

und hat die

Eigenwerte ±i. In diesem Fall macht das Eigenwertstabilitätskriterium also keine
Aussage. Aber mit der Ljapunov-Methode kommt man hier trotzdem zum Ziel. Als
Ljapunov-Funktion wählen wir V (x, y) = x2 + y2. Die Positivität ist dann sicher
gewährleistet. Ausserdem rechnet man nach

d

dt
V (ϕ(t, x, y)) = 〈∇V (x, y), F (x, y)〉 = 2x(−y−x3) + 2y(x− y3) = −2x4 − 2y4 < 0

für alle (x, y) 6= (0, 0). Also ist der Nullpunkt sogar ein Attraktor.


