Kapitel 5

Partielle Differentialgleichungen

Wir werden uns exemplarisch mit drei partiellen Differentialgleichungen beschéfti-
gen, die in der Physik eine grosse Bedeutung haben und gleichzeitig grundlegende
Typen ganzer Klassen von Differentialgleichungen reprisentieren. Diese drei Glei-
chungen sind die folgenden:

Laplacegleichung: Au=5" 02u=0 (u:Q—->R QCR").

j=1"J

Wirmeleitungsgleichung: Au=0u (wQxR—->R QCR")
Hier héngt u nicht nur vom Ort (z1,...,2,), sondern auch von der Zeit ¢ ab.

Wellengleichung: AAu=0%u (w:QxR—->R, QCR).

Die Laplacegleichung représentiert den elliptischen Typ, die Wéarmeleitungsglei-
chung den parabolischen Typ und die Wellengleichung den hyperbolischen Typ einer
partiellen Differentialgleichung.

5.1 DIRICHLETPROBLEM

Schauen wir uns zunéchst einmal die Laplacegleichung auf der Einheitskreisscheibe
Q= {(z,y) € R* | 22 + y*> < 1} genauer an. Der Rand der Einheitskreisscheibe ist
die Einheitskreislinie 92 = S = {(z,y) € R? | 2% + y? = 1}.

Problem: Das sogenannte Dirichletproblem besteht darin, zu gegebener stetiger
Funktion f:S' — R eine Funktion u:Q — R mit u € C*(Q) zu finden, die die
Laplacegleichung 16st und auf dem Rand von ) die durch f vorgegebenen Werte
annimmt. Es miissen also folgende Gleichungen gelten:

Au(z,y) = Bou(x,y) + Oyu(z,y) = 0 fiir alle (z,y) € Q und
u(z,y) = f(x,y) fiir alle (z,y) € S*.

Diese Fragestellung kénnen wir zum Beispiel so interpretieren, dass wir nach ei-
ner stationéren (d.h. einer zeitunabhéngigen) Losung der Wérmeleitungsgleichung
auf einer leitenden kreisformigen Kupferplatte suchen. Dann gibt f die Tempera-
turverteilung auf dem Rand der Platte an, und wir gehen davon aus, dass diese
Verteilung zeitlich konstant gehalten wird. Gesucht ist diejenige Temperaturvertei-
lung u, die sich im Inneren der Kupferplatte einstellt, wenn wir den Zeitparameter
t gegen unendlich gehen lassen.

Wir werden nun eine Losung konstruieren, und zwar durch Superposition von
Produktlosungen.
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1. Schritt: Transformation auf Polarkoordinaten.

Der Ubergang von Polarkoordinaten zu kartesischen Koordinaten ist gegeben
durch x = rcosg, y = rsiny (r > 0, ¢ € R). Die vorgegebene Funktion f auf der
Kreislinie kénnen wir nun in folgender Form schreiben:

f(z,y) = flcosp,sinp) =: F(p).

Durch f wird also eine 27-periodische stetige Funktion F:R — R festgelegt. Wir
setzen jetzt
U(r,p) :=u(rcosp,rsing) firr >0, ¢ € R.

Dann ist U eine 27-periodische Funktion beziiglich ¢, und die Gleichungen fiir u
liefern folgende Bedingungen an U (siehe Ubungsaufgabe):

1 1
Au(rcos g, rsin ) = 02U + ~0,U + —ZGzU =0 firaller >0,p € R und
r r

U(l,p) = F(p) furalle p € R.

Ausserdem existiert lim, o U(r, ) fiir alle ¢ und ist von ¢ unabhéingig.

2. Schritt: Produktlosungen bestimmen.

Nehmen wir an, U ist eine Losung der Laplacegleichung, die sich als Produkt
aus einer Funktion v:R.y — R des Radius und einer 2m-periodischen Funktion
w:R — R des Winkels schreiben lésst:

U(r,p) =ov(r) -w(p) firalle r, p.

Setzen wir diesen Ansatz in die Laplacegleichung ein, erhalten wir:

V() + - (rulp) + ' ()o(r) =0,

Daraus folgt:
2" (r)+r'(r)  w(p)
v(r) w(p)
Die linke Seite dieser Gleichung héangt nicht von ¢ und die rechte Seite nicht von r
ab. Da beide Seiten fiir alle r, ¢ miteinander iibereinstimmen, hiangt der Ausdruck

tatsdchlich weder von r noch von ¢ ab. Es gibt also eine Konstante A € R mit

(1) w”(¢) = = w(p) fiir alle p, und
2 V" (r +1v'r—ivr:0 fiir alle r > 0.
2 () - 5

Die Laplacegleichung fiir U liefert also zwei durch die Konstante A gekoppelte Dif-
ferentialgleichungen fiir die Funktionen v und w.
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Zur Gleichung (1): Zu A < 0 lautet die allgemeine Losung dieser Gleichung w(p) =
creV=r 4 cpeV A (c1,co € R). Eine Funktion von diesem Typ ist aber nicht 27-
periodisch, es sei denn ¢; = ¢3 = 0 und w(yp) = 0 fiir alle .

Zu X\ > 0 lautet die allgemeine Losung

w(p) = 1 cos(VA@) + casin(VAp)  (c1, ¢, € R).

Da w ausserdem 27-periodisch sein soll, muss gelten v\ € N.

Ist A = 0, lautet die Losung w(p) = ¢1 + cop (mit Konstanten ¢, ¢y € R), und
diese Funktion ist nur dann periodisch, wenn ¢y, = 0.

Wir erhalten also folgendes Resultat: Die Gleichung (1) hat genau dann eine 27-
periodische Losung w, die nicht iiberall verschwindet, wenn \ = k? fiir ein k& € Nj.
In diesem Fall gilt

w(p) = ¢y cos(kyp) + casin(ky)  (c1,c0 € R).

Zur Gleichung (2): Fiir A = k% (k € Ny) lautet die Gleichung

2
V" (r) + %v'( ) — i—Qv( ) =0 firaller > 0.

Falls k£ = 0, bilden die Funktionen v;(r) = 1 und vy(r) = Inr ein Fundamentalsystem
von Losungen. Allerdings existiert fiir die Logarithmusfunktion kein Grenzwert fiir
r — 0. Also kommt fiir unser Problem nur eine konstante Funktion als Losung in
Frage.

Falls £ > 0, bilden die Funktionen v;(r) = r*¥ und vy(r) = =% ein Fundamen-
talsystem von Losungen. Wiederum kommt nur ein Vielfaches der Funktion v; in
unserem Zusammenhang in Frage, weil der Grenzwert lim,_,ov(r) existieren muss.

Resultat: Die Produktlésungen der Laplacegleichung haben folgende Form:
Ulr, o) = r*(acos(ky) + Bsin(kp)) (r>0,0 € R).

Dabei sind «a, 8 € R, k € Ny Konstanten.

3. Schritt: Superposition der Produktlosungen.

Fiir das Dirichletproblem machen wir einen Reihenansatz der Form
U(r,p) = —ao + Z (an cos(ne) + by, sin(ny)) .

Die Randbedingung lautet dann:

1

U(l,p) = F(p) = 500 + Z(an cos(np) + by, sin(ngp)) .

Dies ist gerade die Fourierentwicklung von F'. Die Randbedingung wird also erfiillt
sein, wenn wir fiir die Koeffizienten a,, und b,, die reellen Fourierkoeffizienten von F
einsetzen.
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5.1.1 BEISPIELE e Sei f(x,y) =z -y fiir (x,y) € S'. Dazu gehort die Funktion
F(p) = f(cosg,sing) = cosy - sing = 3sin(2¢p). Die Fourierentwicklung
besteht hier nur aus einem einzigen Summanden, die Koeffizienten sind a,, = 0
fiir alle n, by = % und ba,, = 0 fiir alle n # 2. Also lautet unser Losungskandidat
fiir das Dirichletproblem

1
Ur, ) = §r2 sin(2¢) = (rsin )(r cos ) ,
oder in kartesischen Koordinaten geschrieben:
u(x,y) =x-y fiir (z,y) € Q.

Diese naheliegende Fortsetzung von f aufs Innere der Kreisscheibe erfiillt
tatséchlich die Laplacegleichung, wie man sofort sieht.

e Sei f(z,y) = 2* fiir (z,y) € S*. Dann ist F(p) = (cos)® = 2 cos o+ § cos(3¢)

fiir ¢ € R. Hier lauten also die Fourierkoeffizienten b, = 0 fiir alle n, a; = %,
as = i und a,, = 0 fiir alle n # 1,3. Also lautet der Losungskandidat in
Polarkoordinaten:

3 1
U(r,p) = 7oy + ZT?’ cos(3¢p) .

Setzen wir die Beziehung fiir den Cosinus des dreifachen Winkels ein i cos(3yp) =
(cos p)® — 2 cos ¢, erhalten wir:

3 3 3 9

U(r,p) = 77 cosy + (rcos )’ — L reosp.

Nun konnen wir U in kartesische Koordinaten umschreiben:
3 3 3 3
u(z,y) = yias 2® — Z(:z:Q +y*)z = Za:B — Zyzx +

Diese Fortsetzung von f ist schon weniger leicht zu raten. Sie ist in der Tat
eine Losung der Laplacegleichung, wie man direkt nachrechnen kann.

Das Ergebnis unserer Uberlegungen ist im folgenden Satz zusammengefasst:

5.1.2 SATZ Hat die Funktion F eine auf [0,27] absolut und gleichméssig konver-
gente Reihenentwicklung der Form

F(p) = flcosi,sinp) = Sa+ D (an cos(np) + by sin(ng)),

n=1
so ist
1 = .
Ulr,p) = —ag + Z r"(a, cos(ny) + b, sin(ny))
2 n=1

fiir 0 <r < 1,p € R gleichméssig konvergent. Und schreibt man die Funktion U in
kartesische Koordinaten um, erhédlt man eine Losung u des Dirichletproblems.
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Beweis. Die Fourierreihe von F' liefert eine konvergente Majorante fiir die Reihen-
entwicklung von U(r, ). Daraus folgt die behauptete gleichméssige Konvergenz.
Daher darf Differentiation und Reihenbildung miteinander vertauscht werden, und
wir erhalten:

AU(r,p) = Z A(r"(ap cos(ny) + b, sin(ny))) =0,

weil alle Summanden nach Konstruktion Produktlésungen des Laplaceoperators
sind. Die Randbedingung ist ebenfalls erfiillt.  q.e.d.

5.2 HARMONISCHE FUNKTIONEN

5.2.1 DEFINITION Die Lésungen u € C%(Q) der Laplacegleichung Au = 0 auf einem
Gebiet Q C R™ nennt man harmonische Funktionen auf €.

Mit diesem Begriff konnen wir das Dirichletproblem fiir eine Kugel K = Kr(p)
von Radius R um einen Punkt p in R” folgendermassen formulieren:

Dirichletproblem: Finde zu einer gegebenen stetigen Funktion f:0K — R auf
dem Rand der Kugel eine harmonische Fortsetzung u: K — R auf das Innere der
Kugel K.

Im vorigen Kapitel haben wir fiir den Fall n = 2 mithilfe der Fourierentwicklung
eine Losung zu beliebigen stetigen Randwerten konstruiert. Nun wollen wir zeigen,
dass es keine andere Losung gibt, oder anders gesagt, dass die Losung des Dirichlet-
problems eindeutig bestimmt ist. Das ergibt sich als Folgerung aus dem folgenden
Mazimumprinzip fiir harmonische Funktionen:

5.2.2 SATZ Sei K = Kpg(p) C R" eine abgeschlossene Kugel von Radius R um
p € R™, und bezeichne () das Innere von K. Sei u: K — R stetig und auf ) sogar
harmonisch. Dann nimmt u sowohl Maximum als auch Minimum auf dem Rand von
K an.

Beweis. Nehmen wir der Einfachheit halber an, dass p = 0 ist. Fiir ¢ > 0 definieren
wir eine Funktion v: K — R durch:

v(z) = u(x) +e(x?+... +22) firreK.

Dann folgt Av(x) = Au(x) 4 2ne = 2ne > 0 fir alle z € K.

Weil v stetig ist und K kompakt, nimmt v auf K sein Maximum an, etwa bei
zo € K. Angenommen, der Punkt zy ¢ OK. Dann handelt es sich auch um ein
lokales Maximum, und daher ist Vo(zg) = 0, und die Eigenwerte Ay, Ao, ..., A, der
Hesseschen Matrix H,(x) von v miissen kleiner oder gleich 0 sein. Andererseits ist

M+ Ao+ A, = Spur Hy(20) = 07v(x0) + 05v(w0) + . .. 4+ 02v(x0) = Av(20) > 0.
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Dies ist ein Widerspruch, und es gilt doch xq € K. Wir erhalten:
v(xo) = u(xo) + €| |x0||* = w(wo) + €R? > v(x) > u(x) fiir alle v € K.
Also gilt fiir alle € > 0:
u(z) < eR? + max{u(2’) | 2/ € OK}.

Das ist nur moglich, wenn wu tatséchlich sein Maximum schon auf dem Rand von K
annimmt.  q.e.d.

Das Maximumprinzip hat die folgende wichtige Konsequenz:

5.2.3 FOLGERUNG Zu jeder Vorgabe von Randwerten auf einer Kugel in R" gibt
es hochstens eine Losung des Dirichletproblems.

Beweis. Nehmen wir an, uy,us € C%(Q,R) sind harmonische Funktionen mit den-
selben Randwerten, das heisst Au; = 0 = Aup und wy(z,y) = us(z,y) = f(x,y)
fir alle (z,y) € OK. Dann ist auch die Differenzfunktion u := u; — up harmonisch,
und v verschwindet auf dem Rand: u(z,y) = 0 fir alle (z,y) € 0K. Nach dem
Maximumprinzip nimmt u auf dem Rand sowohl Maximum als auch Minimum an,
das bedeutet:

minu = 0 = maxu.

Also folgt u = 0 und damit u; = us, wie behauptet.  q.e.d.
Ausserdem koénnen wir folgendes festhalten:

5.2.4 BEMERKUNG FEine harmonische Funktion auf einem Gebiet ) C R™ hat keine
isolierten lokalen Extrema.

Beweis. Ubungsaufgabe.  q.e.d.

Zwischen harmonischen Funktionen in zwei Variablen und holomorphen Funk-
tionen besteht ein enger Zusammenhang:

5.2.5 SATZ Eine Funktion u auf einem Gebiet Q@ C R? ist genau dann harmonisch,
wenn u sich als Realteil einer holomorphen Funktion auf Q) (aufgefasst als Teilmenge
von C) darstellen lésst.

Beweis. Ist h eine holomorphe Funktion auf Q@ C C und gilt h(x + iy) = u(z,y) +
iv(z,y) fur alle (z,y) € Q, wobei u,v: 2 — R den Real- bzw. den Imaginérteil von
h angeben, dann erfiillen © und v die Cauchy-Riemannschen Differentialgleichungen
dyu = Oyv und dyu = —d, v, und daraus folgt Au = J2u +8§u = 0,0,v — 0,0,v =0,
da v sogar zweimal stetig differenzierbar sein muss.

Sei jetzt umgekehrt u harmonisch. Zu jedem Punkt p € § gibt es eine offe-
ne Kreisscheibe K = Kg(p) um p, deren Abschluss ganz in € enthalten ist. Weil
Au = 0 ist, konnen wir u als die Losung des Dirichletproblems auf K fiir die durch



5.2. Harmonische Funktionen 79

u auf 0K vorgegebenen Randwerte auffassen. Da die Losung des Dirichletproblems
eindeutig bestimmt ist, stimmt sie mit derjenigen Lésung iiberein, die man aus der
Fourierentwicklung der Randwerte gewinnen kann. Weil u sogar zweimal stetig dif-
ferenzierbar ist, ist die entsprechende Fourierreihe auf dem Rand von K absolut und
gleichmaéssig konvergent, und die Funktion u hat in Polarkoordinaten die folgende
Beschreibung:

U9) = a0t 32 (5) @ncostng) + msinion)
= ¢o+ Z (%)n (cnem“" + Che m*")
n=1

fir 0 < r < R,p € R, wobei ¢, = %(an — ib,). Wir haben dies eigentlich nur
fiir den Fall R = 1 gezeigt. Eine Funktion auf K l&dsst sich aber leicht auf eine
entsprechende Funktion auf der Einheitskreisscheibe zuriickfiihren, und man erhéalt
dann die angegebene Formel.

Wir kénnen z = re’® als komplexe Zahl auffassen, und definieren eine komplexe

Funktion h:{z € C | |z] < R} — C durch

=, ¢, ao > a, — ib,
h(z) ::co+22—nz":—+27nz".
—~ R 2 R

n=1

Dabei sind die ¢, die komplexen Fourierkoeffizienten der Funktion U(R, ). Die
Potenzreihe > 2" hat Konvergenzradius > R, denn sie konvergiert nach Vor-
aussetzung fiir |z| = R. Also ist die Funktion h holomorph, und die Losung des
Dirichletproblems lédsst sich als Realteil der holomorphen Funktion A darstellen.
q.e.d.

5.2.6 BEISPIELE Sei n =2 und R = 1.

e Wir haben bereits gezeigt, dass die Fourierentwicklung der Randfunktion f(x,y) =

23 fiir (z,y) € S auf die folgende harmonische Fortsetzung fiihrt:

1 3
u(z,y) = ng — %y% + 1% fiir 22 + ¢y < 1.

Um diese Fortsetzung zu finden, hatten wir f in Polarkoordinaten geschrieben:

1
F(p) = f(cosp,sing) = cos® Y= %cosgo + 1 cos(3y) .

Daraus lesen wir ab:
h(z) = §z + 123
4747

Der Realteil dieser holomorphen Funktion stimmt tatsédchlich mit der Funktion
u iiberein, wie man sofort nachrechnet.
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e Sei jetzt F(p) = p fir 0 < ¢ < wund F(p) = 21 — ¢ fir 7 < ¢ < 27. Die
Fourierentwicklung von F' lautet:

T 4 cos(3¢)
F(gp):§—;(coscp+ 2 +...).
Die komplexen Fourierkoeffizienten sind hier also:
T 4 .
Co — 5, 2C2k71 = —m = A2k—1 und Col — 0 firkeN.

Die entsprechende holomorphe Funktion lautet also

4 > 2k—1

ME) =7 =20 G

und der Realteil u(z,y) = Re(h(x+iy)) von h ist die harmonische Fortsetzung
von F' aufs Innere der Kreisscheibe.

Man kann die Losungen der Laplacegleichung auch durch eine Integraleigenschaft
charakterisieren. Diese Eigenschaft besagt, dass der Wert der Funktion an einer
beliebigen Stelle p jeweils mit dem Integralmittel der Funktion iiber jede beliebige
Kugel um p iibereinstimmt. Um dies préziser zu formulieren, bezeichnen wir mit w,
die Oberflache der Einheitskugel in R", das heisst

Wy 1= / do(z) .
0K R(0)

Zum Beispiel ist wy = 27 und w3 = 4.
5.2.7 DEFINITION Sei 2 C R” ein offenes Gebiet und u: ) — R stetig. Man sagt,
dass u die Mittelwerteigenschaft hat, wenn folgendes gilt:
W)= s [ ule)dota)
u(p) = — u(x)do(x
wn BT OKR(p)

fiir jede abgeschlossene Kugel Kg(p), die ganz in € enthalten ist. Fiir n = 2 bedeutet
das konkreter:

1 27 )
ur) = 5= [ ulo+ Ry

T
fiir jede abgeschlossene Kreisscheibe Kgr(p) C .
5.2.8 BEMERKUNG Hat u die Mittelwerteigenschaft, dann gilt auch

n
u(p) = ~ / u(z)dride,y . .. dx,
Wt Jnip)

fiir jede abgeschlossene Kugel Kg(p) C . Insbesondere gilt fiir das Kugelvolumen

n "
/ 1dl’1d$2...d.§l}nzw .
Kr(p) n
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Beweis. Denken wir uns die Kugel wie eine Zwiebel in Schalen zerlegt und interpre-
tieren wir die Integration iiber die Vollkugel als eine Integration iiber immer kleiner
werdende Kugeloberflichen. Dies Prinzip liefert:

/K L ula)dedes . da = /0 ’ ( /a L) da<x)) o

R Rn
/ wn'r’”’lu(p)d'r’ = wp,—u(p) .
0 n

Und daraus folgt die Behauptung. Setzt man fiir u diejenige Funktion ein, die kon-
stant gleich 1 ist, erhédlt man die Aussage iiber das Volumen der Kugel. q.e.d.

5.2.9 SATZ Sei u eine zweimal stetig differenzierbare Funktion auf einem offenen
Gebiet €2 C R™. Die Funktion u ist harmonisch genau dann, wenn sie die Mittelwert-
eigenschaft hat.

Beweis. Wir beweisen die Aussage nur fiir den Fall n = 2. Nehmen wir zuerst an,
uw sei harmonisch. Dann kénnen wir u als Realteil einer geeigneten holomorphen
Funktion h schreiben und die Cauchyformel fiir A verwenden. Ist Kg(p) eine abge-
schlossene Kreisscheibe in €2, und fassen wir den Punkt p als komplexe Zahl zy auf,
so liefert die Cauchyformel:

1 h(¢)
Mz0) = 2mi /aKR(zo) ﬂdg'

Wiéhlen wir nun wie iiblich fiir den Kreisrand die Parametrisierung ( = v(p) =
20 + Re™ (o € [0,27]), so erhalten wir:

W) = = / TR0 sy ap = 2 [ hz + R do.

2mi Reiv T or 0
Fiir den Realteil v von h folgt daraus, wenn wir z,+ Re' als Punkt o € R? auffassen:
1 [ 1 2
u(p) = %/o u(z)dp = F ), u(z)Rdep .
Wegen do(x) = Rdyp, ergibt sich daraus wie behauptet:

1

= — u(x)do(z) .
2R Joxpp) (#)da(z)

u(p)

Nehmen wir jetzt umgekehrt an, dass u die Mittelwerteigenschaft erfiillt. Dann
gilt nach Bemerkung 5.2.8:

/ u(p +v) d*v = TR*u(p) .
UEKR(O)
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Betrachten wir jetzt die Taylorentwicklung von w um p (bis zum Grad 2):

u(p +v) = ulp) + ((Vu)(p),v) + %UTHu(p)v + R(v)|[vl]*,

wobei lim,_,o R(v) = 0. Offenbar ist

/ u(p) d*v = 7R*u(p) und / (Vu)(p),v) d*v =0,
veKR(0) vEKR(0)

weil der lineare Term harmonisch ist und deshalb wie bereits gesehen, die Mittel-
werteigenschaft hat. Fiir die durch die Hessematrix gegebene quadratische Form
qm,p)(v) = v H,(p)v gilt (siehe Ubungsaufgabe)

Also folgt aus der Mittelwerteigenschaft zu vorgegenem e > 0 fiir gentigend kleine

Radien R, so dass |R(v)| < e
R?
/ R()||v||* d*v / / 7’7’d<pdr—627r—.
UEKR(O)

Weil demnach fiir alle e > 0 gilt

o

|Au(p)| < 4e,

muss tatsdchlich (Au)(p) = 0 sein. Also ist u harmonisch.  q.e.d.



