
Kapitel 5

Partielle Differentialgleichungen

Wir werden uns exemplarisch mit drei partiellen Differentialgleichungen beschäfti-
gen, die in der Physik eine grosse Bedeutung haben und gleichzeitig grundlegende
Typen ganzer Klassen von Differentialgleichungen repräsentieren. Diese drei Glei-
chungen sind die folgenden:

Laplacegleichung: ∆u =
∑n

j=1 ∂
2
j u = 0 (u: Ω → R, Ω ⊂ Rn).

Wärmeleitungsgleichung: ∆u = ∂tu (u: Ω× R → R, Ω ⊂ Rn.)
Hier hängt u nicht nur vom Ort (x1, . . . , xn), sondern auch von der Zeit t ab.

Wellengleichung: c2∆u = ∂2
t u (u: Ω× R → R, Ω ⊂ Rn).

Die Laplacegleichung repräsentiert den elliptischen Typ, die Wärmeleitungsglei-
chung den parabolischen Typ und die Wellengleichung den hyperbolischen Typ einer
partiellen Differentialgleichung.

5.1 Dirichletproblem

Schauen wir uns zunächst einmal die Laplacegleichung auf der Einheitskreisscheibe
Ω = {(x, y) ∈ R2 | x2 + y2 < 1} genauer an. Der Rand der Einheitskreisscheibe ist
die Einheitskreislinie ∂Ω = S1 = {(x, y) ∈ R

2 | x2 + y2 = 1}.
Problem: Das sogenannte Dirichletproblem besteht darin, zu gegebener stetiger
Funktion f :S1 → R eine Funktion u: Ω → R mit u ∈ C2(Ω) zu finden, die die
Laplacegleichung löst und auf dem Rand von Ω die durch f vorgegebenen Werte
annimmt. Es müssen also folgende Gleichungen gelten:

∆u(x, y) = ∂2
xu(x, y) + ∂2

yu(x, y) = 0 für alle (x, y) ∈ Ω und

u(x, y) = f(x, y) für alle (x, y) ∈ S1.

Diese Fragestellung können wir zum Beispiel so interpretieren, dass wir nach ei-
ner stationären (d.h. einer zeitunabhängigen) Lösung der Wärmeleitungsgleichung
auf einer leitenden kreisförmigen Kupferplatte suchen. Dann gibt f die Tempera-
turverteilung auf dem Rand der Platte an, und wir gehen davon aus, dass diese
Verteilung zeitlich konstant gehalten wird. Gesucht ist diejenige Temperaturvertei-
lung u, die sich im Inneren der Kupferplatte einstellt, wenn wir den Zeitparameter
t gegen unendlich gehen lassen.

Wir werden nun eine Lösung konstruieren, und zwar durch Superposition von
Produktlösungen.
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1. Schritt: Transformation auf Polarkoordinaten.

Der Übergang von Polarkoordinaten zu kartesischen Koordinaten ist gegeben
durch x = r cosϕ, y = r sinϕ (r ≥ 0, ϕ ∈ R). Die vorgegebene Funktion f auf der
Kreislinie können wir nun in folgender Form schreiben:

f(x, y) = f(cosϕ, sinϕ) =: F (ϕ) .

Durch f wird also eine 2π-periodische stetige Funktion F :R → R festgelegt. Wir
setzen jetzt

U(r, ϕ) := u(r cosϕ, r sinϕ) für r ≥ 0, ϕ ∈ R.

Dann ist U eine 2π-periodische Funktion bezüglich ϕ, und die Gleichungen für u
liefern folgende Bedingungen an U (siehe Übungsaufgabe):

∆u(r cosϕ, r sinϕ) = ∂2
rU +

1

r
∂rU +

1

r2
∂2
ϕU = 0 für alle r > 0, ϕ ∈ R und

U(1, ϕ) = F (ϕ) für alle ϕ ∈ R.

Ausserdem existiert limr→0 U(r, ϕ) für alle ϕ und ist von ϕ unabhängig.

2. Schritt: Produktlösungen bestimmen.

Nehmen wir an, U ist eine Lösung der Laplacegleichung, die sich als Produkt
aus einer Funktion v:R>0 → R des Radius und einer 2π-periodischen Funktion
w:R → R des Winkels schreiben lässt:

U(r, ϕ) = v(r) · w(ϕ) für alle r, ϕ.

Setzen wir diesen Ansatz in die Laplacegleichung ein, erhalten wir:

v′′(r)w(ϕ) +
1

r
v′(r)w(ϕ) +

1

r2
w′′(ϕ)v(r) = 0 .

Daraus folgt:
r2v′′(r) + rv′(r)

v(r)
= −w′′(ϕ)

w(ϕ)
.

Die linke Seite dieser Gleichung hängt nicht von ϕ und die rechte Seite nicht von r
ab. Da beide Seiten für alle r, ϕ miteinander übereinstimmen, hängt der Ausdruck
tatsächlich weder von r noch von ϕ ab. Es gibt also eine Konstante λ ∈ R mit

(1) w′′(ϕ) = −λw(ϕ) für alle ϕ, und

(2) v′′(r) +
1

r
v′(r)− λ

r2
v(r) = 0 für alle r > 0.

Die Laplacegleichung für U liefert also zwei durch die Konstante λ gekoppelte Dif-
ferentialgleichungen für die Funktionen v und w.
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Zur Gleichung (1): Zu λ < 0 lautet die allgemeine Lösung dieser Gleichung w(ϕ) =
c1e

√
−λϕ + c2e

√
−λϕ (c1, c2 ∈ R). Eine Funktion von diesem Typ ist aber nicht 2π-

periodisch, es sei denn c1 = c2 = 0 und w(ϕ) = 0 für alle ϕ.
Zu λ > 0 lautet die allgemeine Lösung

w(ϕ) = c1 cos(
√
λϕ) + c2 sin(

√
λϕ) (c1, c2 ∈ R) .

Da w ausserdem 2π-periodisch sein soll, muss gelten
√
λ ∈ N.

Ist λ = 0, lautet die Lösung w(ϕ) = c1 + c2ϕ (mit Konstanten c1, c2 ∈ R), und
diese Funktion ist nur dann periodisch, wenn c2 = 0.

Wir erhalten also folgendes Resultat: Die Gleichung (1) hat genau dann eine 2π-
periodische Lösung w, die nicht überall verschwindet, wenn λ = k2 für ein k ∈ N0.
In diesem Fall gilt

w(ϕ) = c1 cos(kϕ) + c2 sin(kϕ) (c1, c2 ∈ R) .

Zur Gleichung (2): Für λ = k2 (k ∈ N0) lautet die Gleichung

v′′(r) +
1

r
v′(r)− k2

r2
v(r) = 0 für alle r > 0.

Falls k = 0, bilden die Funktionen v1(r) = 1 und v2(r) = ln r ein Fundamentalsystem
von Lösungen. Allerdings existiert für die Logarithmusfunktion kein Grenzwert für
r → 0. Also kommt für unser Problem nur eine konstante Funktion als Lösung in
Frage.

Falls k > 0, bilden die Funktionen v1(r) = rk und v2(r) = r−k ein Fundamen-
talsystem von Lösungen. Wiederum kommt nur ein Vielfaches der Funktion v1 in
unserem Zusammenhang in Frage, weil der Grenzwert limr→0 v(r) existieren muss.

Resultat: Die Produktlösungen der Laplacegleichung haben folgende Form:

U(r, ϕ) = rk(α cos(kϕ) + β sin(kϕ)) (r ≥ 0, ϕ ∈ R) .

Dabei sind α, β ∈ R, k ∈ N0 Konstanten.

3. Schritt: Superposition der Produktlösungen.

Für das Dirichletproblem machen wir einen Reihenansatz der Form

U(r, ϕ) =
1

2
a0 +

∞
∑

n=1

rn(an cos(nϕ) + bn sin(nϕ)) .

Die Randbedingung lautet dann:

U(1, ϕ) = F (ϕ) =
1

2
a0 +

∞
∑

n=1

(an cos(nϕ) + bn sin(nϕ)) .

Dies ist gerade die Fourierentwicklung von F . Die Randbedingung wird also erfüllt
sein, wenn wir für die Koeffizienten an und bn die reellen Fourierkoeffizienten von F
einsetzen.
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5.1.1 Beispiele • Sei f(x, y) = x · y für (x, y) ∈ S1. Dazu gehört die Funktion
F (ϕ) = f(cosϕ, sinϕ) = cosϕ · sinϕ = 1

2
sin(2ϕ). Die Fourierentwicklung

besteht hier nur aus einem einzigen Summanden, die Koeffizienten sind an = 0
für alle n, b2 =

1
2
und ban = 0 für alle n 6= 2. Also lautet unser Lösungskandidat

für das Dirichletproblem

U(r, ϕ) =
1

2
r2 sin(2ϕ) = (r sinϕ)(r cosϕ) ,

oder in kartesischen Koordinaten geschrieben:

u(x, y) = x · y für (x, y) ∈ Ω.

Diese naheliegende Fortsetzung von f aufs Innere der Kreisscheibe erfüllt
tatsächlich die Laplacegleichung, wie man sofort sieht.

• Sei f(x, y) = x3 für (x, y) ∈ S1. Dann ist F (ϕ) = (cosϕ)3 = 3
4
cosϕ+ 1

4
cos(3ϕ)

für ϕ ∈ R. Hier lauten also die Fourierkoeffizienten bn = 0 für alle n, a1 = 3
4
,

a3 = 1
4
und an = 0 für alle n 6= 1, 3. Also lautet der Lösungskandidat in

Polarkoordinaten:

U(r, ϕ) =
3

4
r cosϕ+

1

4
r3 cos(3ϕ) .

Setzen wir die Beziehung für den Cosinus des dreifachen Winkels ein 1
4
cos(3ϕ) =

(cosϕ)3 − 3
4
cosϕ, erhalten wir:

U(r, ϕ) =
3

4
r cosϕ+ (r cosϕ)3 − 3

4
r2 · r cosϕ .

Nun können wir U in kartesische Koordinaten umschreiben:

u(x, y) =
3

4
x+ x3 − 3

4
(x2 + y2)x =

1

4
x3 − 3

4
y2x+

3

4
x .

Diese Fortsetzung von f ist schon weniger leicht zu raten. Sie ist in der Tat
eine Lösung der Laplacegleichung, wie man direkt nachrechnen kann.

Das Ergebnis unserer Überlegungen ist im folgenden Satz zusammengefasst:

5.1.2 Satz Hat die Funktion F eine auf [0, 2π] absolut und gleichmässig konver-
gente Reihenentwicklung der Form

F (ϕ) = f(cosϕ, sinϕ) =
1

2
a0 +

∞
∑

n=1

(an cos(nϕ) + bn sin(nϕ)) ,

so ist

U(r, ϕ) =
1

2
a0 +

∞
∑

n=1

rn(an cos(nϕ) + bn sin(nϕ))

für 0 ≤ r < 1, ϕ ∈ R gleichmässig konvergent. Und schreibt man die Funktion U in
kartesische Koordinaten um, erhält man eine Lösung u des Dirichletproblems.
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Beweis. Die Fourierreihe von F liefert eine konvergente Majorante für die Reihen-
entwicklung von U(r, ϕ). Daraus folgt die behauptete gleichmässige Konvergenz.
Daher darf Differentiation und Reihenbildung miteinander vertauscht werden, und
wir erhalten:

∆U(r, ϕ) =
∞
∑

n=1

∆(rn(an cos(nϕ) + bn sin(nϕ))) = 0 ,

weil alle Summanden nach Konstruktion Produktlösungen des Laplaceoperators
sind. Die Randbedingung ist ebenfalls erfüllt. q.e.d.

5.2 Harmonische Funktionen

5.2.1 Definition Die Lösungen u ∈ C2(Ω) der Laplacegleichung ∆u = 0 auf einem
Gebiet Ω ⊂ Rn nennt man harmonische Funktionen auf Ω.

Mit diesem Begriff können wir das Dirichletproblem für eine Kugel K = KR(p)
von Radius R um einen Punkt p in Rn folgendermassen formulieren:

Dirichletproblem: Finde zu einer gegebenen stetigen Funktion f : ∂K → R auf
dem Rand der Kugel eine harmonische Fortsetzung u:K → R auf das Innere der
Kugel K.

Im vorigen Kapitel haben wir für den Fall n = 2 mithilfe der Fourierentwicklung
eine Lösung zu beliebigen stetigen Randwerten konstruiert. Nun wollen wir zeigen,
dass es keine andere Lösung gibt, oder anders gesagt, dass die Lösung des Dirichlet-
problems eindeutig bestimmt ist. Das ergibt sich als Folgerung aus dem folgenden
Maximumprinzip für harmonische Funktionen:

5.2.2 Satz Sei K = KR(p) ⊂ Rn eine abgeschlossene Kugel von Radius R um
p ∈ Rn, und bezeichne Ω das Innere von K. Sei u:K → R stetig und auf Ω sogar
harmonisch. Dann nimmt u sowohl Maximum als auch Minimum auf dem Rand von
K an.

Beweis. Nehmen wir der Einfachheit halber an, dass p = 0 ist. Für ǫ > 0 definieren
wir eine Funktion v:K → R durch:

v(x) := u(x) + ǫ(x2
1 + . . .+ x2

n) für x ∈ K .

Dann folgt ∆v(x) = ∆u(x) + 2nǫ = 2nǫ > 0 für alle x ∈ K.
Weil v stetig ist und K kompakt, nimmt v auf K sein Maximum an, etwa bei

x0 ∈ K. Angenommen, der Punkt x0 /∈ ∂K. Dann handelt es sich auch um ein
lokales Maximum, und daher ist ∇v(x0) = 0, und die Eigenwerte λ1, λ2, . . . , λn der
Hesseschen Matrix Hv(x0) von v müssen kleiner oder gleich 0 sein. Andererseits ist

λ1+λ2+ . . .+λn = SpurHv(x0) = ∂2
1v(x0)+∂2

2v(x0)+ . . .+∂2
nv(x0) = ∆v(x0) > 0 .
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Dies ist ein Widerspruch, und es gilt doch x0 ∈ ∂K. Wir erhalten:

v(x0) = u(x0) + ǫ||x0||2 = u(x0) + ǫR2 ≥ v(x) ≥ u(x) für alle x ∈ K.

Also gilt für alle ǫ > 0:

u(x) ≤ ǫR2 +max{u(x′) | x′ ∈ ∂K} .

Das ist nur möglich, wenn u tatsächlich sein Maximum schon auf dem Rand von K
annimmt. q.e.d.

Das Maximumprinzip hat die folgende wichtige Konsequenz:

5.2.3 Folgerung Zu jeder Vorgabe von Randwerten auf einer Kugel in Rn gibt
es höchstens eine Lösung des Dirichletproblems.

Beweis. Nehmen wir an, u1, u2 ∈ C2(Ω,R) sind harmonische Funktionen mit den-
selben Randwerten, das heisst ∆u1 = 0 = ∆u2 und u1(x, y) = u2(x, y) = f(x, y)
für alle (x, y) ∈ ∂K. Dann ist auch die Differenzfunktion u := u1 − u2 harmonisch,
und u verschwindet auf dem Rand: u(x, y) = 0 für alle (x, y) ∈ ∂K. Nach dem
Maximumprinzip nimmt u auf dem Rand sowohl Maximum als auch Minimum an,
das bedeutet:

min u = 0 = maxu .

Also folgt u = 0 und damit u1 = u2, wie behauptet. q.e.d.

Ausserdem können wir folgendes festhalten:

5.2.4 Bemerkung Eine harmonische Funktion auf einem Gebiet Ω ⊂ Rn hat keine
isolierten lokalen Extrema.

Beweis. Übungsaufgabe. q.e.d.

Zwischen harmonischen Funktionen in zwei Variablen und holomorphen Funk-
tionen besteht ein enger Zusammenhang:

5.2.5 Satz Eine Funktion u auf einem Gebiet Ω ⊂ R2 ist genau dann harmonisch,
wenn u sich als Realteil einer holomorphen Funktion auf Ω (aufgefasst als Teilmenge
von C) darstellen lässt.

Beweis. Ist h eine holomorphe Funktion auf Ω ⊂ C und gilt h(x + iy) = u(x, y) +
iv(x, y) für alle (x, y) ∈ Ω, wobei u, v: Ω → R den Real- bzw. den Imaginärteil von
h angeben, dann erfüllen u und v die Cauchy-Riemannschen Differentialgleichungen
∂xu = ∂yv und ∂yu = −∂xv, und daraus folgt ∆u = ∂2

xu+ ∂2
yu = ∂x∂yv− ∂y∂xv = 0,

da v sogar zweimal stetig differenzierbar sein muss.
Sei jetzt umgekehrt u harmonisch. Zu jedem Punkt p ∈ Ω gibt es eine offe-

ne Kreisscheibe K = KR(p) um p, deren Abschluss ganz in Ω enthalten ist. Weil
∆u = 0 ist, können wir u als die Lösung des Dirichletproblems auf K für die durch
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u auf ∂K vorgegebenen Randwerte auffassen. Da die Lösung des Dirichletproblems
eindeutig bestimmt ist, stimmt sie mit derjenigen Lösung überein, die man aus der
Fourierentwicklung der Randwerte gewinnen kann. Weil u sogar zweimal stetig dif-
ferenzierbar ist, ist die entsprechende Fourierreihe auf dem Rand von K absolut und
gleichmässig konvergent, und die Funktion u hat in Polarkoordinaten die folgende
Beschreibung:

U(r, ϕ) =
1

2
a0 +

∞
∑

n=1

( r

R

)n

(an cos(nϕ) + bn sin(nϕ))

= c0 +
∞
∑

n=1

( r

R

)n
(

cne
inϕ + cne

−inϕ
)

für 0 ≤ r < R, ϕ ∈ R, wobei cn = 1
2
(an − ibn). Wir haben dies eigentlich nur

für den Fall R = 1 gezeigt. Eine Funktion auf K lässt sich aber leicht auf eine
entsprechende Funktion auf der Einheitskreisscheibe zurückführen, und man erhält
dann die angegebene Formel.

Wir können z = reiϕ als komplexe Zahl auffassen, und definieren eine komplexe
Funktion h: {z ∈ C | |z| < R} → C durch

h(z) := c0 + 2

∞
∑

n=1

cn
Rn

zn =
a0
2

+

∞
∑

n=1

an − ibn
Rn

zn .

Dabei sind die cn die komplexen Fourierkoeffizienten der Funktion U(R,ϕ). Die
Potenzreihe

∑∞
n=1

cn
Rn z

n hat Konvergenzradius ≥ R, denn sie konvergiert nach Vor-
aussetzung für |z| = R. Also ist die Funktion h holomorph, und die Lösung des
Dirichletproblems lässt sich als Realteil der holomorphen Funktion h darstellen.
q.e.d.

5.2.6 Beispiele Sei n = 2 und R = 1.

• Wir haben bereits gezeigt, dass die Fourierentwicklung der Randfunktion f(x, y) =
x3 für (x, y) ∈ S1 auf die folgende harmonische Fortsetzung führt:

u(x, y) =
1

4
x3 − 3

4
y2x+

3

4
x für x2 + y2 ≤ 1.

Um diese Fortsetzung zu finden, hatten wir f in Polarkoordinaten geschrieben:

F (ϕ) = f(cosϕ, sinϕ) = cos3 ϕ =
3

4
cosϕ+

1

4
cos(3ϕ) .

Daraus lesen wir ab:

h(z) =
3

4
z +

1

4
z3 .

Der Realteil dieser holomorphen Funktion stimmt tatsächlich mit der Funktion
u überein, wie man sofort nachrechnet.
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• Sei jetzt F (ϕ) = ϕ für 0 ≤ ϕ < π und F (ϕ) = 2π − ϕ für π ≤ ϕ ≤ 2π. Die
Fourierentwicklung von F lautet:

F (ϕ) =
π

2
− 4

π
(cosϕ+

cos(3ϕ)

32
+ . . .) .

Die komplexen Fourierkoeffizienten sind hier also:

c0 =
π

2
, 2c2k−1 = − 4

(2k − 1)2π
= a2k−1 und c2k = 0 für k ∈ N .

Die entsprechende holomorphe Funktion lautet also

h(z) = π − 4

π

∞
∑

k=1

z2k−1

(2k − 1)2
,

und der Realteil u(x, y) = Re(h(x+ iy)) von h ist die harmonische Fortsetzung
von F aufs Innere der Kreisscheibe.

Man kann die Lösungen der Laplacegleichung auch durch eine Integraleigenschaft
charakterisieren. Diese Eigenschaft besagt, dass der Wert der Funktion an einer
beliebigen Stelle p jeweils mit dem Integralmittel der Funktion über jede beliebige
Kugel um p übereinstimmt. Um dies präziser zu formulieren, bezeichnen wir mit ωn

die Oberfläche der Einheitskugel in R
n, das heisst

ωn :=

∫

∂KR(0)

dσ(x) .

Zum Beispiel ist ω2 = 2π und ω3 = 4π.

5.2.7 Definition Sei Ω ⊂ Rn ein offenes Gebiet und u: Ω → R stetig. Man sagt,
dass u die Mittelwerteigenschaft hat, wenn folgendes gilt:

u(p) =
1

ωnRn−1

∫

∂KR(p)

u(x)dσ(x)

für jede abgeschlossene Kugel KR(p), die ganz in Ω enthalten ist. Für n = 2 bedeutet
das konkreter:

u(p) =
1

2π

∫ 2π

0

u(p+Reiϕ)dϕ

für jede abgeschlossene Kreisscheibe KR(p) ⊂ Ω.

5.2.8 Bemerkung Hat u die Mittelwerteigenschaft, dann gilt auch

u(p) =
n

ωnRn

∫

KR(p)

u(x)dx1dx2 . . . dxn

für jede abgeschlossene Kugel KR(p) ⊂ Ω. Insbesondere gilt für das Kugelvolumen
∫

KR(p)

1 dx1dx2 . . . dxn =
ωnR

n

n
.
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Beweis. Denken wir uns die Kugel wie eine Zwiebel in Schalen zerlegt und interpre-
tieren wir die Integration über die Vollkugel als eine Integration über immer kleiner
werdende Kugeloberflächen. Dies Prinzip liefert:

∫

KR(p)

u(x)dx1dx2 . . . dxn =

∫ R

0

(
∫

∂Kr(p)

u(x)dσ(x)

)

dr =

∫ R

0

ωnr
n−1u(p)dr = ωn

Rn

n
u(p) .

Und daraus folgt die Behauptung. Setzt man für u diejenige Funktion ein, die kon-
stant gleich 1 ist, erhält man die Aussage über das Volumen der Kugel. q.e.d.

5.2.9 Satz Sei u eine zweimal stetig differenzierbare Funktion auf einem offenen
Gebiet Ω ⊂ Rn. Die Funktion u ist harmonisch genau dann, wenn sie die Mittelwert-
eigenschaft hat.

Beweis. Wir beweisen die Aussage nur für den Fall n = 2. Nehmen wir zuerst an,
u sei harmonisch. Dann können wir u als Realteil einer geeigneten holomorphen
Funktion h schreiben und die Cauchyformel für h verwenden. Ist KR(p) eine abge-
schlossene Kreisscheibe in Ω, und fassen wir den Punkt p als komplexe Zahl z0 auf,
so liefert die Cauchyformel:

h(z0) =
1

2πi

∫

∂KR(z0)

h(ζ)

ζ − z0
dζ .

Wählen wir nun wie üblich für den Kreisrand die Parametrisierung ζ = γ(ϕ) =
z0 +Reiϕ (ϕ ∈ [0, 2π]), so erhalten wir:

h(z0) =
1

2πi

∫ 2π

0

h(γ(ϕ))

Reiϕ
γ̇(ϕ) dϕ =

1

2π

∫ 2π

0

h(z0 +Reiϕ) dϕ .

Für den Realteil u von h folgt daraus, wenn wir z0+Reiϕ als Punkt x ∈ R
2 auffassen:

u(p) =
1

2π

∫ 2π

0

u(x)dϕ =
1

2πR

∫ 2π

0

u(x)Rdϕ .

Wegen dσ(x) = Rdϕ, ergibt sich daraus wie behauptet:

u(p) =
1

2πR

∫

∂KR(p)

u(x)dσ(x) .

Nehmen wir jetzt umgekehrt an, dass u die Mittelwerteigenschaft erfüllt. Dann
gilt nach Bemerkung 5.2.8:

∫

v∈KR(0)

u(p+ v) d2v = πR2u(p) .
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Betrachten wir jetzt die Taylorentwicklung von u um p (bis zum Grad 2):

u(p+ v) = u(p) + 〈(∇u)(p), v〉+ 1

2
vTHu(p)v +R(v)||v||2 ,

wobei limv→0R(v) = 0. Offenbar ist

∫

v∈KR(0)

u(p) d2v = πR2u(p) und

∫

v∈KR(0)

〈(∇u)(p), v〉 d2v = 0 ,

weil der lineare Term harmonisch ist und deshalb wie bereits gesehen, die Mittel-
werteigenschaft hat. Für die durch die Hessematrix gegebene quadratische Form
qHu(p)(v) = vTHu(p)v gilt (siehe Übungsaufgabe)

1

2

∫

v∈KR(0)

qHu(p)(v) d
2v =

πR4

8
Spur(Hu(p)) =

πR4

8
∆u(p) .

Also folgt aus der Mittelwerteigenschaft zu vorgegenem ǫ > 0 für genügend kleine
Radien R, so dass |R(v)| < ǫ:

∣

∣

∣

∣

−πR4

8
∆u(p)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

v∈KR(0)

R(v)||v||2 d2v
∣

∣

∣

∣

≤ ǫ

∫ R

0

∫ 2π

0

r2r dϕ dr = ǫ2π
R4

4
.

Weil demnach für alle ǫ > 0 gilt

|∆u(p)| ≤ 4ǫ ,

muss tatsächlich (∆u)(p) = 0 sein. Also ist u harmonisch. q.e.d.


