
H. Kraft et al. (2021) “Is the Affine Space Determined by Its Automorphism Group?,”
International Mathematics Research Notices, Vol. 2021, No. 6, pp. 4280–4300
Advance Access Publication January 9, 2019
doi:10.1093/imrn/rny281

Is the Affine Space Determined by Its Automorphism Group?

Hanspeter Kraft1,∗, Andriy Regeta2, and Immanuel van Santen
(born Stampfli)1

1Departement Mathematik und Informatik, Universität Basel,
Spiegelgasse 1, Basel CH-4051, Switzerland and 2Mathematisches
Institut, Universität Köln, Weyertal 86-90, Köln D-50931, Germany

∗Correspondence to be sent to: e-mail: hanspeter.kraft@unibas.ch

In this note we study the problem of characterizing the complex affine space An via its

automorphism group. We prove the following. Let X be an irreducible quasi-projective

n-dimensional variety such that Aut(X) and Aut(An) are isomorphic as abstract groups.

If X is either quasi-affine and toric or X is smooth with Euler characteristic χ(X) �= 0

and finite Picard group Pic(X), then X is isomorphic to An.

The main ingredient is the following result. Let X be a smooth irreducible quasi-

projective variety of dimension n with finite Pic(X). If X admits a faithful (Z/pZ)n-

action for a prime p and χ(X) is not divisible by p, then the identity component of the

centralizer CentAut(X)((Z/pZ)n) is a torus.

1 Introduction

In 1872, Felix Klein suggested as part of his Erlangen Programm to study geometrical

objects through their symmetries. In the spirit of this program it is natural to ask to

which extent a geometrical object is determined by its automorphism group. This is the

case for compact and locally Euclidean manifolds as shown by Whittaker [30]. It also

holds for differentiable manifolds, for symplectic manifolds, and for contact manifolds;

see [30], [6], [27], and [28].
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We will study this question in the algebraic setting, that is, for complex

algebraic varieties. For such a variety X we denote by Aut(X) the group of regular

automorphisms of X. As this automorphism group is usually quite small, it almost never

determines the variety. However, if Aut(X) is large, like for affine n-space An, n ≥ 2, this

might be true. Our guiding question is the following.

Question. Let X be a variety. Assume that Aut(X) is isomorphic to the group Aut(An).

Does this imply that X is isomorphic to An?

This question cannot have a positive answer for all varieties X. For example,

Aut(An) and Aut(An × Z) are isomorphic for any complete variety Z with a trivial

automorphism group. Similarly, Aut(An) and Aut(An∪̇Y) are isomorphic for any variety

Y with a trivial automorphism group. Thus, we have to impose certain assumptions

on X.

In case X is affine, the group Aut(X) has the structure of a so-called ind-group.

Using this extra structure one has the following result; see [17]. If X is a connected

affine variety, then every isomorphism of ind-groups between Aut(X) and Aut(An) is

induced by an isomorphism X
∼→ An of varieties. For some generalizations of this result

we refer to [25].

In dimension 2, it is shown in [22] that if X is an irreducible normal surface

and Y is an affine toric surface, then X is isomorphic to Y if the automorphism groups

Aut(X) and Aut(Y) are isomorphic.

Our main result in this paper is the following.

Main Theorem. Let X be a complex irreducible quasi-projective variety of dimension

n such that Aut(X) � Aut(An). Then X � An if one of the following conditions holds.

1. X is smooth, the Euler characteristic χ(X) is nonzero and the Picard group

Pic(X) is finite.

2. X is toric and quasi-affine.

As an immediate application we get the following result.

Corollary. If S ⊂ An is a closed subvariety such that χ(S) �= 1, then Aut(An \ S) ��
Aut(An).

In fact, X := An \ S is smooth and quasi-projective, χ(X) = χ(An) − χ(S) �= 0

(Lemma 2.14(1)), and Pic(X) is trivial.
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4282 Kraft et al.

Outline of Proof

Let θ : Aut(An)
∼→ Aut(X) be an isomorphism. First we show that if a torus of Aut(An)

of maximal dimension n is mapped onto an algebraic subgroup of Aut(X) and if X is

quasi-affine, then X � An (Proposition 4.1). Our main result in order to achieve

these conditions is the following. (For the definition of the topology on Aut(X) see

Section 2.2.)

Theorem 1.1. Let Y and Z be irreducible quasi-projective varieties, and let

θ : Aut(Y)
∼→ Aut(Z) be an isomorphism. Assume that n := dim Y ≥ dim Z and that

the following conditions are satisfied:

(i) Y is quasi-affine and toric.

(ii) Z is smooth, χ(Z) �= 0, and Pic(Z) is finite.

Then dim Z = n, and for each n-dimensional torus T ⊆ Aut(Y), the identity component

of the image θ(T)◦ is a closed torus of dimension n. Furthermore, Z is quasi-affine.

From this and Proposition 4.1 we can deduce our Main Theorem by setting

Y := An and Z := X in case (1) and Y := X and Z := An in case (2); see Section 4.2.

For the proof of Theorem 1.1 we first remark that every torus T ⊆ Aut(X)

of maximal dimension n = dim X is self-centralizing (Lemma 2.10). For any prime

p the torus T contains a unique subgroup μp isomorphic to (Z/pZ)n. In particular,

T ⊆ CentAut(X)(μp), and thus the image of T under θ : Aut(X)
∼→ Aut(Y) is mapped to

a subgroup of the centralizer of θ(μp).

Our strategy is then to show that the identity component of the centralizer

CentAut(Y)(θ(μp)) is an algebraic group. Our main result in this direction is the following

generalization of [19, Proposition 3.4].

Theorem 1.2. Let X be a smooth, irreducible, quasi-projective variety of dimension

n with finite Picard group Pic(X). Assume that X carries a faithful (Z/pZ)n-action for

some prime p that does not divide χ(X). Then the centralizer C := CentAut(X)((Z/pZ)n)

is a closed subgroup of Aut(X) and its identity component C◦ is a closed torus of

dimension ≤ n.

For the proof we first show that the fixed-point set X(Z/pZ)n
contains an isolated

point x0. This follows from the smoothness of X and the assumption that p does not

divide χ(X). Now we study the tangent representation of (Z/pZ)n in x0 and show that

the homomorphism C◦ → GL(Tx0
X) is regular and has a finite kernel.
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2 Preliminary Results

Throughout this note we work over the field C of complex numbers. A variety will be a

reduced separated scheme of finite type over C.

2.1 Quasi-affine varieties

Let us recall some well-known results about quasi-affine varieties.

Lemma 2.1 ([10, Chapter II, Proposition 5.1.2]). A variety X is quasi-affine if and only

if the canonical morphism η : X → SpecO(X) is a dominant open immersion of schemes.

Lemma 2.2 ([5, Chapter I, Section 2, Proposition 2.6]). Let X and Y be varieties. Then

the natural homomorphism

O(X) ⊗C O(Y) → O(X × Y)

is an isomorphism of C-algebras.

Lemma 2.3. Let X and Y be varieties where X is quasi-affine. Then every morphism

Y × X → X extends uniquely to a morphism Y × SpecO(X) → SpecO(X). In particular,

every regular action of an algebraic group on X extends to a regular action on SpecO(X).

Proof. We can assume that Y is affine. By Lemma 2.2 we have O(Y×X) = O(Y)⊗CO(X).

Hence, Y × X → X induces a homomorphism of C-algebras O(X) → O(Y) ⊗C O(X) that

in turn gives the desired extension Y × SpecO(X) → SpecO(X). �

2.2 Algebraic structure on the group of automorphisms

In this subsection, we recall some basic results about the automorphism group Aut(X)

of a variety X. The survey [2] and the article [24] will serve as references. Recall that a

morphism ν : A → Aut(X) is a map from a variety A to Aut(X) such that the associated

map

ν̃ : A × X → X, (a, x) �→ ax := ν(a)(x)

is a morphism of varieties. We get a topology on Aut(X), called Zariski topology, by

declaring a subset F ⊂ Aut(X) to be closed, if for every variety A the preimage ν−1(F)

under every morphism ν : A → Aut(X) is closed in A. In particular, a morphism ν : A →
Aut(X) is continuous with respect to the Zariski topology.
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4284 Kraft et al.

Similarly, a morphism ν = (ν1, ν2) : A → Aut(X) × Aut(X) is a map from a variety

A into Aut(X) × Aut(X) such that ν1 and ν2 are morphisms. Thus, we get analogously as

before a topology on Aut(X) × Aut(X). Note that for morphisms ν, ν1, ν2 : A → Aut(X) the

following maps are again morphisms

A → Aut(X), a �→ ν1(a) ◦ ν2(a),

A → Aut(X), a �→ ν(a)−1,

and that ν−1(�) is closed in A where � ⊂ Aut(X)×Aut(X) denotes the diagonal. It follows

that Aut(X) behaves like an algebraic group.

Lemma 2.4. For any variety X the maps

Aut(X) × Aut(X) → Aut(X) , (ϕ1, ϕ2) �→ ϕ1 ◦ ϕ2

Aut(X) → Aut(X) , ϕ �→ ϕ−1

are continuous, and the diagonal � is closed in Aut(X) × Aut(X).

Example 2.5. For any set S ⊆ Aut(X) the centralizer Cent(S) is a closed subgroup of

Aut(X). This is a consequence of Lemma 2.4.

Definition 2.6. For a subset S ⊆ Aut(X) its dimension is defined by

dim S := sup

{
d

∣∣∣∣ there exists a variety A of dimension d and an

injective morphism ν : A → Aut(X) with image in S

}
.

The following lemma generalizes the classical dimension estimate to morphisms

A → Aut(X).

Lemma 2.7. If ν : A → Aut(X) is a morphism, then dim ν(A) ≤ dim A.

Proof. Let η : B → Aut(X) be an injective morphism such that η(B) ⊆ ν(A). We have to

show that dim B ≤ dim A. For this consider the fiber product
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By definition, we have A ×Aut(X) B := {(a, b) ∈ A × B | ν(a) = η(b)}. Since ν × η : A × B →
Aut(X) × Aut(X) is a morphism, hence continuous, and � ⊂ Aut(X) × Aut(X) is closed, it

follows that A ×Aut(X) B ⊂ A × B is closed. Thus, the fiber product is a variety, and the

two maps ν̄ and η̄ are morphisms. By assumption, ν̄ is surjective and η̄ is injective, and

the claim follows. �

For a subgroup G ⊆ Aut(X), the identity component G◦ ⊆ G is defined by

G◦ =
{

g ∈ G

∣∣∣∣ there exists an irreducible variety A and a morphism

ν : A → Aut(X) with image in G such that g, e ∈ ν(A)

}
.

We call a subgroup G ⊆ Aut(X) connected if G = G◦. In the next proposition, we list

several properties of the identity component of a subgroup of Aut(X). If G is an ind-

group, then these properties are known; see [9, Proposition 2.2.1].

Proposition 2.8. Let X be a variety, and let G ⊆ Aut(X) be a subgroup. Then the

following holds.

1. G◦ is a normal subgroup of G.

2. The cosets of G◦ in G are the equivalence classes under the relation

g1 ∼ g2 ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

there exists an irreducible variety A

and a morphism ν : A → Aut(X)

with image in G such that g1, g2 ∈ ν(A) .

3. For each morphism ν : A → Aut(X) with image in G the preimage ν−1(G◦) is

closed in A. In particular, if G is closed in Aut(X), then G◦ is also closed in

Aut(X).

4. If X is quasi-projective and G is closed in Aut(X), then the index of G◦ in G is

countable.

Proof. (1) This follows immediately from the definition of G◦.

(2) We have to show that “∼” is an equivalence relation on G. Reflexivity and

symmetry are obvious. For the transitivity, let g ∼ h and h ∼ k. By definition, there exist

irreducible varieties A and B, morphisms ν : A → Aut(X) and η : B → Aut(X) with image
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4286 Kraft et al.

in G, and a1, a2 ∈ A, b1, b2 ∈ B such that ν(a1) = g, ν(a2) = h, η(b1) = h, η(b2) = k. Then

the map

A × B → Aut(X), (a, b) �→ ν(a) ◦ h−1 ◦ η(b)

is a morphism with image in G that sends (a1, b1) to g and (a2, b2) to k. Thus, g ∼ k,

proving the transitivity.

(3) Let

k⋃
i=1

Bi = ν−1(G◦) ⊆ A

be the decomposition of the closure of ν−1(G◦) into irreducible components B1, . . . , Bk.

Thus, Bi ∩ ν−1(G◦) is nonempty. Since ν has image in G it follows from the transitivity of

“∼” that ν(Bi) ⊆ G◦. Thus, Bi ⊆ ν−1(G◦) for all i. Hence, ν−1(G◦) is closed in A.

(4) Let ν : A → Aut(X) be a morphism. Since ν−1(G) ⊆ A is closed, it has only

finitely many irreducible components. This implies that its image ν(A) meets only

finitely many cosets of G◦ in G. The claim follows if we show that there exist countably

many morphisms of varieties into Aut(X) whose images cover Aut(X).

Since X is quasi-projective, there exists a projective variety X and an open

embedding X ⊆ X. For each polynomial p ∈ Q[x] we denote by Hilbp the Hilbert scheme

of X × X associated with the Hilbert polynomial p and denote by Up ⊆ Hilbp × X × X the

universal family, which is by definition flat over Hilbp. By [14, Theorem 3.2], Hilbp is a

projective scheme over C. For i = 1, 2 consider the following morphisms:

qi : (Hilbp × X × X) ∩ Up → Hilbp × X , (h, x1, x2) �→ (h, xi),

which are defined over Hilbp. By [12, Proposition 9.6.1], the points h ∈ Hilbp where the

restriction

qi|{h} : ({h} × X × X) ∩ Up → {h} × X

is an isomorphism form a constructible subset Sp of Hilbp. Now choose locally closed

subsets Sp
j , j = 1, . . . , kp of Hilbp that cover Sp. We equip each Sp

j with the underlying

reduced scheme structure of Hilbp. Note that (Hilbp × X ×X)∩Up and Hilbp × X are both

flat over Hilbp. Therefore, we can apply [13, Proposition 5.7] and we get that qi restricts

to an isomorphism over Sp
j . Thus, for each j we get a morphism of varieties
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which defines a morphism Sp
j → Aut(X). For each automorphism ϕ in Aut(X), the closure

in X × X of the graph �ϕ ⊆ X × X defines a (closed) point in the Hilbert scheme Hilbp for

a certain rational polynomial p, which belongs to Sp. Thus, the images of the morphisms

Sp
j → Aut(X) cover Aut(X). Since there are only countably many rational polynomials,

the claim follows. �

We say that G is an algebraic subgroup of Aut(X) if there exists a morphism

ν : H → Aut(X) of an algebraic group H with image G, which is a homomorphism of

groups.

The next result gives a criterion for a subgroup of Aut(X) to be algebraic. The

main argument is due to Ramanujam [24].

Theorem 2.9. Let X be an irreducible variety, and let G ⊆ Aut(X) be a subgroup. Then

the following statements are equivalent:

(1) G is an algebraic subgroup of Aut(X).

(2) There exists a morphism of a variety into Aut(X) with image G.

(3) dim G is finite and G◦ has finite index in G.

(4) There is a structure of an algebraic group on G such that for each irreducible

variety A we get a bijection

{
morphisms A → Aut(X)

with image in G

}
1 : 1−→

{
morphisms of

varieties A → G

}
.

Proof. The implication (1) ⇒ (2) follows from the definition.

Assume that there is a morphism η : A → Aut(X) with image equal to G. By

Lemma 2.7 we get dim G ≤ dim A; hence, dim G is finite. Since A has only finitely many

irreducible components it follows from Proposition 2.8 2 that G◦ has finite index in G.

This proves (2) ⇒ (3).

The implication (3) ⇒ (4) is proved in [24, Theorem, p. 26] in case G = G◦. This

implies that G◦ carries the structure of an algebraic group with the required property.

Since G◦ has finite index in G we obtain a unique structure of an algebraic group on G

extending the given structure on G◦. It remains to see that the required property holds

for G.

By construction, the canonical inclusion ι : G → Aut(X) is a morphism, and

thus each morphism of varieties A → G yields a morphism A → Aut(X) by composing
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4288 Kraft et al.

with ι. For the reverse, let ν : A → Aut(X) be a morphism with image in G. Since A is

irreducible there is g ∈ G such that the image of ν lies in gG◦ (Proposition 2.8(2)). Thus,

the composition λg−1 ◦ ν : A → Aut(G) is a morphism with image in G◦ where λg ∈ Aut(X)

is the left multiplication with g. It follows that ν corresponds to a morphism A → G of

varieties, proving (3) ⇒ (4).

The remaining implication (4) ⇒ (1) is obvious. �

2.3 Ingredients from toric geometry

Recall that a toric variety is a normal irreducible variety X together with a regular

faithful action of a torus of dimension dim X. For details concerning toric varieties we

refer to [8].

Lemma 2.10. Let X be a toric variety, and let T be a torus of dimension dim X that acts

faithfully on X. Then the centralizer of T in Aut(X) is equal to T. In particular, the image

of T in Aut(X) is closed.

Proof. Let g ∈ Aut(X) such that gt = tg for all t ∈ T. By definition, there is an open,

dense T-orbit in X, say U. Since gU ∩U is nonempty, there exists x ∈ U such that gx ∈ U.

Using that U = Tx we find t0 ∈ T with gx = t0x. Thus, for each t ∈ T we get

gtx = tgx = tt0x = t0tx .

Using that U = Tx is dense in X, we get g = t0. �

Lemma 2.11. Let X be a toric variety. Then the coordinate ring O(X) is finitely

generated and integrally closed.

Proof. This is a special case of a result of Knop; see [16, Satz, p. 33]. �

The next proposition is based on the study of homogeneous Ga-actions on affine

toric varieties in [21]. Recall that a group action ν : G → Aut(X) on a toric variety is called

homogeneous if the torus normalizes the image ν(G). Note that for any homogeneous

Ga-action ν there is a well-defined character χ : T → Gm, defined by the formula

t ν(s) t−1 = ν(χ(t) · s) for t ∈ T, s ∈ C.
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Proposition 2.12. Let X be an n-dimensional quasi-affine toric variety. If X is not a

torus, then there exist homogeneous Ga-actions

η1, . . . , ηn : Ga × X → X

such that the corresponding characters χ1, . . . , χn are linearly independent in the

character group of T.

The proof needs some preparation. Denote by Y the spectrum of O(X). By

Lemma 2.11, the variety Y is normal, and the faithful torus action on X extends uniquely

to a faithful torus action on Y, by Lemma 2.3.

The following notation is taken from [21]. Let N be a lattice of rank n, M =
Hom(N,Z) be its dual lattice, NQ = N ⊗Z Q and MQ = M ⊗Z Q. Thus, we have a natural

pairing MQ × NQ → Q, (m, n) �→ 〈m, n〉. Let σ ⊂ NQ be the strongly convex polyhedral

cone that describes Y and let σ∨
M be the intersection of the dual cone σ∨ in MQ with M.

Thus, Y = Spec R, where

R := C[σ∨
M ] =

⊕
m∈σ∨

M

Cχm ⊆ C[M] .

For each extremal ray ρ ⊂ σ , denote by ρ⊥ the elements u ∈ MQ with 〈u, v〉 = 0 for all

v ∈ ρ. Moreover, let τM = ρ⊥ ∩ σ∨
M and let

Sρ = { e ∈ M | e �∈ σ∨
M , e + m ∈ σ∨

M for all m ∈ σ∨
M \ τM } .

By [21, Remark 2.5] we have Sρ �= ∅ and e + m ∈ Sρ for all e ∈ Sρ and all m ∈ τM . Let us

recall the description of the homogeneous locally nilpotent derivations on R.

Proposition 2.13 ([21, Lemma 2.6 and Theorem 2.7]). Let ρ be an extremal ray in σ and

let e ∈ Sρ . Then

∂ρ,e : R → R , χm �→ 〈m, ρ〉χe+m

is a homogeneous locally nilpotent derivation of degree e, and every homogeneous

locally nilpotent derivation of R is a constant multiple of some ∂ρ,e.

Proof of Proposition 2.12. Since X is not a torus, Y is also not a torus. Thus, σ contains

extremal rays, say ρ1, . . . , ρk and k ≥ 1. Recall that associated to these extremal rays,

there exist torus-invariant divisors V(ρ1), . . . , V(ρk) in Y. Again, since X is not a torus,
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4290 Kraft et al.

one of these divisors does intersect X. Let us assume that ρ = ρ1 is an extremal ray such

that V(ρ) ∩ X is nonempty. Then using the orbit-cone correspondence, one can see that

Y \X is contained in the union Z = ⋃k
i=2 V(ρi); see [8, Section 3.1]. Let e ∈ Sρ be fixed. We

claim that the Ga-action on Y associated with the locally nilpotent derivation ∂ρ,e+m′ of

Proposition 2.13 fixes Z for all m′ ∈ τM \ ⋃
i≥2 ρ⊥

i .

Let us fix m′ ∈ τM with 〈m′, v〉 > 0 for all v ∈ ⋃
i≥2 ρi. Note that the fixed-point

set of the Ga-action on Y corresponding to ∂ρ,e+m′ is the zero set of the ideal generated

by the image of ∂ρ,e+m′ . The divisor V(ρi) is the zero set of the kernel of the canonical

C-algebra surjection

pi : C[σ∨
M ] → C[σ∨

M ∩ ρ⊥
i ] , χm �→

{
χm, ifm ∈ ρ⊥

i

0, otherwise
;

see [8, Section 3.1]. Thus, we have to prove that for all i = 2, . . . , k the composition

C[σ∨
M ]

∂ρ,e+m′−→ C[σ∨
M ]

pi−→ C[σ∨
M ∩ ρ⊥

i ]

is the zero map. Since, by definition, ∂ρ,e+m′ vanishes on τM = ρ⊥ ∩ σ∨
M , we only have to

show that for all m ∈ σ∨
M \ τM the following holds:

〈e + m′ + m, v〉 > 0 for all v ∈ ρi, i = 2, . . . , k.

This is satisfied because 〈m′, v〉 > 0 and 〈e + m, v〉 ≥ 0 (note that e ∈ Sρ implies e + m ∈
σ∨

M ). This proves the claim.

Since τM spans a hyperplane in M and e �∈ τM , we can choose m′
1, . . . , m′

n ∈
τM \ ⋃

i≥2 ρ⊥
i such that e + m′

1, . . . , e + m′
n are linearly independent in MQ. Hence, the

homogeneous locally nilpotent derivations

∂ρ,e+m′
i
, i = 1, . . . , n

define Ga-actions on Y that fix Z and thus restrict to Ga-actions on X. Moreover, the

character of ∂ρ,e+m′
i

is χi = χe+m′
i . In particular, χ1, . . . , χn are linearly independent,

finishing the proof of Proposition 2.12. �
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2.4 The Euler characteristic

For a variety X, the Euler characteristic is defined by

χ(X) =
∑
i≥0

(−1)i dimQ Hi(X,Q),

where Hi(X,Q) denotes the i-th singular cohomology group with rational coefficients.

The following results can be found in [18, Appendix].

Lemma 2.14. The Euler characteristic has the following properties.

(1) If X is a variety and Y ⊆ X is a closed subvariety, then χ(X) = χ(Y)+χ(X\Y).

(2) If X → Y is a fiber bundle, which is locally trivial in the étale topology with

fiber F, then χ(X) = χ(Y)χ(F).

2.5 Results about the fixed-point variety

The next result gives a criterion for the existence of fixed points under the action of a

finite p-group.

Proposition 2.15. Let p be a prime, and let G be finite p-group acting on a variety

X. If p does not divide the Euler characteristic χ(X), then the fixed-point variety XG is

nonempty.

Proof. Assume that XG is empty, that is, every G-orbit has cardinality pk for some

k > 0. We prove by induction on the dimension of X that p divides χ(X). Let X ′ ⊂ X be

a dense smooth open affine subset. By intersecting the G-translates gX ′ for g ∈ G we

can in addition assume that X ′ is G-invariant. Denote by π : X ′ → X ′/G the algebraic

quotient, that is, the morphism corresponding to the inclusion of the invariant ring

O(X ′)G in O(X ′). It follows from Luna’s slice theorem [23, Chapter II, Section 2] that

there is a smooth open dense subset U ⊂ X ′/G such that π restricts to a fiber bundle

π−1(U) → U, which is locally trivial in the étale topology. Now Lemma 2.14(2) implies

that p divides χ(π−1(U)). Using Lemma 2.14(1) and dim X \ π−1(U) < dim X the claim

follows by induction.
�

Remark 1. The proposition above is a purely topological result and holds in a much

more general setting; see, for example, [3, Chapter III, Theorem 4.4] or [4, Section III.7].

The next result is essentially due to Fogarty; see [7, Theorem 5.2].
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Proposition 2.16. Let G be a reductive group acting on a variety X. Assume that X

is smooth at a point x ∈ XG. Then XG is smooth at x and the tangent space satisfies

Tx(XG) = (TxX)G.

Remark 2. Assume that (Z/pZ)n acts faithfully on a smooth quasi-projective variety

X. If p does not divide χ(X), then dim X ≥ n.

In fact, by Proposition 2.15 there is a fixed-point x ∈ X, and the action of

(Z/pZ)n on the tangent space TxX is faithful [19, Lemma 2.2]; hence, n ≤ dim TxX =
dim X.

3 Proof of Theorems 1.1 and 1.2

Definition 3.1. Let X be a variety and M ⊆ Aut(X) a subset. A map η : M → Z into a

variety Z is called regular if for every morphism ν : A → Aut(X) with image in M, the

composition η ◦ ν : A → Z is a morphism of varieties.

3.1 Semi-invariant functions

Lemma 3.2. Let X be an irreducible normal variety, and let f ∈ O(X) be a non-constant

function such that the zero set Z := VX(f ) ⊂ X is an irreducible hypersurface. Let

G ⊆ Aut(X) be a connected subgroup that stabilizes Z. Then the function f is a G-semi-

invariant, that is,

f (gx) = χ(g)−1 · f (x) for x ∈ X and g ∈ G ,

where χ : G → C∗ is a character and a regular map.

For the proof we need the following description of the invertible functions on a

product variety, which is due to Rosenlicht [26, Theorem 2]. For a variety X we denote

by O(X)∗ the group of invertible functions on X.

Lemma 3.3. Let X1 and X2 be irreducible varieties. Then O(X1 ×X2)∗ = O(X1)∗ ·O(X2)∗.

Proof of Lemma 3.2. Since X is normal, the local ring R = OX,Z is a discrete valuation

ring. Let m be the maximal ideal of R. By assumption, f R = mk for some k > 0. Since

m is stable under G, the same is true for mk. Hence, for every g ∈ G, there exists a unit

rg ∈ R∗ such that gf = rg · f in R. Since f and g f have no zeroes in X \ Z, it follows that
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rg is regular and nonzero in X \ Z. Moreover, the open set where rg ∈ R is defined and

nonzero meets Z; hence, rg ∈ O(X)∗. Consider the homomorphism

χ : G → O(X)∗ , g �→ rg .

For all x ∈ X \Z, g ∈ G we get f (gx) = χ(g)(x)−1f (x), and f (gx) and f (x) are both nonzero.

Since for each morphism ν : A → Aut(X) with image in G, the map ν̃ : A × X → X,

(a, x) �→ ν(a)(x) is a morphism, we see that

A × (X \ Z) → C∗ , (a, x) �→ χ(ν(a))(x) = f (x) · f (ν̃(a, x))−1

is a morphism. If A is irreducible, then, by Lemma 3.3, there exist invertible functions

q ∈ O(A)∗ and p ∈ O(X \ Z)∗ such that χ(ν(a))(x) = q(a)p(x). If, moreover, ν(a0) = e ∈ G

for some a0 ∈ A, then

1 = re(x) = χ(ν(a0))(x) = q(a0)p(x) for all x ∈ X \ Z ,

that is, p ∈ C∗; hence, the composition χ ◦ ν : A �→ O(X)∗ has image in C∗. Since G is

connected, this implies that χ(G) ⊆ C∗ and that χ : G → C∗ is a character.

It remains to see that χ is regular. Choose x0 ∈ X\Z. As before, for each morphism

ν : A → Aut(X) with image in G, the map

A → C∗, a �→ χ(ν(a)) = f (x0) · f (ν(a)(x0))−1

is also a morphism. �

Lemma 3.4. Let X be an irreducible normal variety, and let G ⊆ Aut(X) be a connected

subgroup. Assume that f1, . . . , fn ∈ O(X) have the following properties.

(1) Zi := VX(fi), i = 1, . . . , n, are irreducible G-invariant hypersurfaces.

(2)
⋂

i Zi contains an isolated point.

If χi : G → C∗ is the character of fi (Lemma 3.2), then

χ := (χ1, . . . , χn) : G → (C∗)n

is a regular homomorphism with finite kernel.
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Proof. Let G act on An by

g(a1, . . . , an) := (χ1(g)−1 · a1, . . . , χn(g)−1 · an).

Then the map f := (f1, . . . , fn) : X → An is G-equivariant. Let Y ⊆ An be the closure of

f (X). By assumption, f −1(0) = ⋂
i Zi contains an isolated point; hence, f : X → Y has

a finite degree, that is, the field extension C(X) ⊃ C(Y) is finite. This implies that the

kernel K of χ : G → (C∗)n is finite because K embeds into AutC(Y)(C(X)). By Lemma 3.2,

χ is regular. �

3.2 Another centralizer result

For an irreducible normal variety X, we denote by CH1(X) the first Chow group, that

is, the free group of integral Weil divisors modulo linear equivalence [15, Chapter II,

Section 6].

Proposition 3.5. Let X be an irreducible normal variety of dimension n with a faithful

action of (Z/pZ)n. Assume that CH1(X) is finite and that there exists a fixed-point

x which is a smooth point of X. Then the centralizer CentAut(X)((Z/pZ)n) is a closed

subgroup of Aut(X), and its identity component is a closed torus of dimension ≤ n.

Proof. We denote G := CentAut(X)((Z/pZ)n). By [19, Lemma 2.2] we get a faithful

representation of (Z/pZ)n on TxX, and thus we can find generators σ1, . . . , σn such that

(TxX)σi ⊂ TxX is a hyperplane for each i and that (TxX)(Z/pZ)n = 0. By Proposition 2.16,

the hypersurface Xσi ⊂ X is smooth at x, with tangent space Tx(Xσi) = (TxX)σi . Hence,

there is a unique irreducible hypersurface Zi ⊆ X which contains x and is contained

in Xσi . It follows that Zi is G◦-stable, and that x is an isolated point of
⋂

i Zi, because

(TxX)(Z/pZ)n = 0. Since a multiple of Zi is zero in CH1(X), there exist G◦-semi-invariant

functions fi ∈ O(X) such that VX(fi) = Zi (Lemma 3.2), and the corresponding characters

χi define a regular homomorphism

χ = (χ1, . . . , χn) : G◦ → (C∗)n

with a finite kernel (Lemma 3.4). It follows that dim G◦ ≤ n. Indeed, if ν : A → Aut(X) is

an injective morphism with image in G◦, then χ ◦ν : A → (C∗)n is a morphism with finite

fibers, and so dim A ≤ n. This implies, by Theorem 2.9, that G◦ ⊆ Aut(X) is an algebraic
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subgroup and that χ is a homomorphism of algebraic groups with a finite kernel. Hence,

G◦ is a torus. Since G is closed in Aut(X) the same holds for G◦, see Proposition 2.8. �

3.3 Proof of Theorem 1.2

Now we can prove Theorem 1.2 that has the same conclusion as the proposition

above, but under different assumptions. We have to show that the assumptions of

Proposition 3.5 are satisfied. Since X is smooth, it follows that CH1(X) � Pic(X) is finite,

and Proposition 2.15 implies that the fixed-point variety X(Z/pZ)n ⊆ X is nonempty. Now

the claims follow from Proposition 3.5.

3.4 Images of maximal tori under group isomorphisms

Proposition 3.6. Let X and Y be irreducible quasi-projective varieties such that n :=
dim X ≥ dim Y. Assume that the following conditions are satisfied:

(1) X is quasi-affine and toric.

(2) Y is smooth, χ(Y) �= 0, and Pic(Y) is finite.

If θ : Aut(X)
∼→ Aut(Y) is an isomorphism, then dim Y = n, and for each n-dimensional

torus T ⊆ Aut(X) the identity component of the image θ(T)◦ ⊂ Aut(Y) is a closed torus

of dimension n.

Proof. Let θ : Aut(X) → Aut(Y) be an isomorphism. Since χ(Y) �= 0 it follows that there

is a prime p that does not divide χ(Y).

Let T ⊂ Aut(X) be a torus of dimension n. We have T = CentAut(X)(T) (Lemma

2.10), and thus θ(T) is a closed subgroup of Aut(Y). Let μp ⊂ T be the subgroup generated

by the elements of order p, and let G := CentAut(Y)(θ(μp)) that is closed in Aut(Y). By

Remark 2, we have θ(T) ⊆ G and dim Y = n. Now Theorem 1.2 implies that G◦ ⊂ Aut(Y)

is a closed torus of dimension ≤ n, and by Proposition 2.8 and Theorem 2.9, we see

that θ(T)◦ is a closed connected algebraic subgroup of G◦.

In order to show that dim θ(T)◦ ≥ n we construct closed subgroups {1} = T0 ⊂
T1 ⊂ T2 ⊂ · · · ⊂ Tn = T with the following properties:

(i) dim Ti = i for all i.

(ii) θ(Ti) is closed in θ(T) for all i.

It then follows that θ(Ti)
◦ is a connected algebraic subgroup of θ(T)◦. Since the index of

θ(Ti)
◦ in θ(Ti) is countable (Proposition 2.8), but the index of Ti in Ti+1 is not countable,

we see that dim θ(Ti+1)◦ > dim θ(Ti)
◦, and so dim θ(T)◦ ≥ n.
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(a) Assume first that X is a torus. Then Aut(X) contains a copy of the symmetric

groups Sn, and we can find cyclic permutations τi ∈ Aut(X) such that Ti := CentT(τi) is

a closed subtorus of dimension i, and Ti ⊂ Ti+1 for all 0 < i < n. It then follows that

θ(Ti) = Centθ(T)(θ(τi)) is closed in θ(T), and we are done.

(b) Now assume that X is not a torus. By Proposition 2.12 there exist one-

dimensional unipotent subgroups U1, . . . , Un of Aut(X) normalized by T such that the

corresponding characters χ1, . . . , χn : T → C∗ are linearly independent. Since

ker(χi) = {t ∈ T | t ◦ ui ◦ t−1 = uifor allui ∈ Ui} = CentT(Ui)

it follows that

Ti :=
n−i⋂
k=1

ker(χk) = CentT(U1 ∪ · · · ∪ Un−i) ⊆ T

is a closed algebraic subgroup of T of dimension i. It follows that the image θ(Ti) =
Centθ(T)(θ(U1) ∪ · · · ∪ θ(Un)) is closed in θ(T), and the claim follows also in this case. �

3.5 Proof of Theorem 1.1

Using Proposition 3.6, it is enough to show that a smooth toric variety Y with finite (and

hence trivial) Picard group is quasi-affine.

For proving this, let � ⊂ NQ = N ⊗Z Q be the fan that describes Y where N is a

lattice of rank n. Let N′ ⊆ N be the sublattice spanned by � ∩ N, and let Y ′ be the toric

variety corresponding to the fan � in N′
Q

= N′ ⊗Z Q. It follows from [8, p. 29] that

Y � Y ′ × (C∗)k,

where k = rank N/N′. Thus, Y ′ is a smooth toric variety with trivial Picard group. Hence,

it is enough to prove that Y ′ is quasi-affine and therefore we can assume k = 0, that is,

� spans NQ. By [8, Proposition in Section 3.4] we get

0 = rank Pic(Y) = d − n,

where d is the number of edges in �. Let σ ⊂ NQ be the convex cone spanned by the

edges of � and let σ∨ denote the dual cone of σ in MQ = M ⊗Z Q where M = Hom(N,Z).

Since d = n, the edges of � are linearly independent in NQ and thus σ is a simplex.

From the inclusion of the cones of � in σ we get a morphism f : Y → SpecC[σ∨ ∩ M] by

[8, Section 1.4], and since each cone in � is a face of σ it is locally an open immersion
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[8, Lemma in Section 1.3]. This implies that f is quasi-finite and birational and thus by

Zariski’s Main Theorem [11, Corollaire 4.4.9] it is an open immersion.

4 Proof of the Main Theorem

4.1 A first characterization

Proposition 4.1. Let X be an irreducible quasi-affine variety. If Aut(An)
∼→ Aut(X) is

an isomorphism that maps an n-dimensional torus in Aut(An) to an algebraic subgroup,

then X � An as a variety.

Proof. Since all n-dimensional tori in Aut(An) are conjugate [1], all n-dimensional

tori are sent to algebraic subgroups of Aut(X) via θ . The standard maximal torus T in

Aut(An) acts via conjugation on the subgroup of standard translations Tr ⊂ Aut(An)

with a dense orbit O ⊂ T and thus we get Tr = O ◦ O.

This implies that S := θ(T) acts on U := θ(Tr) via conjugation and we get U =
θ(O) ◦ θ(O). Hence, for fixed u0 ∈ θ(O) ⊂ U the morphism

S × S → Aut(X) , (s1, s2) �→ s1 ◦ u0 ◦ s−1
1 ◦ s2 ◦ u0 ◦ s−1

2

has image equal to U. Now it follows from Theorem 2.9 that U is a closed (commutative)

algebraic subgroup of Aut(X) with no nontrivial element of finite order, hence a

unipotent subgroup.

We claim that U has no nonconstant invariants on X. Indeed, let ρ : Ga × X → X

be the Ga-action on X coming from a nontrivial element of U. If f ∈ O(X)U is a U-

invariant, then it is easy to see that

ρf (s, x) := ρ(f (x) · s, x) (∗)

is a Ga-action commuting with U. Since U is self-centralizing, we see that ρf (s) ∈ U

for all s ∈ Ga. Moreover, formula (∗) shows that for every finite dimensional subspace

V ⊂ O(X)U the map V → U, f �→ ρf (1), is a morphism, which is injective. Indeed,

ρf (1) = ρh(1) implies that ρ(f (x), x) = ρ(h(x), x) for all x ∈ X; hence, f (x) = h(x) for all

x ∈ X \ Xρ . It follows that O(X)U is finite-dimensional. Since X is irreducible, O(X)U is

an integral domain and hence equal to C, as claimed.

Since X is irreducible and quasi-affine, the unipotent group U has a dense orbit

that is closed, and so X is isomorphic to an affine space Am. Since m is the maximal
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number such that there exists a faithful action of (Z/2Z)m on Am (Remark 2), we finally

get m = n. �

If X is an affine variety, then Aut(X) has the structure of a so-called affine ind-

group; see, for example, [20], [29], and [9] for more details. The following result is a

special case of [17, Theorem 1.1]. It is an immediate consequence of Proposition 4.1

above because a homomorphism of affine ind-groups sends algebraic groups to alge-

braic groups.

Corollary 4.2. Let X be an irreducible affine variety. If there is an isomorphism

Aut(X) � Aut(An) of affine ind-groups, then X � An as a variety.

Corollary 4.3. Let X be a smooth, irreducible quasi-projective variety such that χ(X) �=
0 and Pic(X) is finite. If there is an isomorphism Aut(An) � Aut(X) of abstract groups

and if dim X ≤ n, then X � An as a variety.

Proof. Theorem 1.1 shows that for an isomorphism θ : Aut(An)
∼→ Aut(X) and any

n-dimensional torus T ⊆ Aut(An), the identity component of the image S := θ(T)◦ is a

closed torus of dimension n in Aut(X) and dim X = n, and X is quasi-affine. Thus, we

can apply Theorem 1.1 to θ−1 : Aut(X)
∼→ Aut(An) and get that θ−1(S)◦ is a closed torus

of dimension n in Aut(An). Since

θ−1(S)◦ ⊆ θ−1(S) ⊆ T ,

it follows that θ−1(S) = T, that is, θ(T) = S is a closed n-dimensional torus in Aut(X). The

assumptions of Proposition 4.1 are now satisfied for the isomorphism θ : Aut(An)
∼→

Aut(X), and the claim follows. �

4.2 Proof of the Main Theorem

If the assumptions (1) of the Main Theorem hold, that is, X is a smooth, irreducible,

quasi-projective variety of dimension n such that χ(X) �= 0 and Pic(X) is finite, then the

claim follows from Corollary 4.3.

Now assume that the assumptions (2) are satisfied, that is, X is quasi-affine and

toric of dimension n. Let T ⊆ Aut(X) be a torus of maximal dimension. We can apply

Theorem 1.1 to an isomorphism θ : Aut(X)
∼→ Aut(An) and find that S := θ(T)◦ ⊂ Aut(An)

is a closed torus of dimension n. Since the index of the standard n-dimensional torus
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in its normalizer in Aut(An) is finite and since all n-dimensional tori in Aut(An) are

conjugate [1], it follows that S has finite index in θ(T). Hence, θ−1(S) has finite index

in T. Since T is a divisible group, θ−1(S) = T is an algebraic group. Thus, we can apply

Proposition 4.1 to the isomorphism θ−1 : Aut(An)
∼→ Aut(X) and find that X � An as a

variety.
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