APPENDIX A

Basics from Algebraic Geometry

In this appendix we gather together some notions and results from algebraic geometry
which have been used in the text. We concentrate on affine algebraic geometry which
simplifies a lot the notational part and makes the subject much easier to access in a first
attempt. In the second appendix, we discuss the relation between the ZARISKI topology
and the C-topology. With its help we are able to use certain compactness arguments
replacing the corresponding results from projective geometry.

The appendix assumes a basic knowledge in commutative algebra. Although we give
complete proofs for almost all statements they are mostly rather short. This was done
on purpose. For advanced readers we only wanted to recall briefly the basic facts, while
beginners are going to find a more detailed study of algebraic geometry is necessary. We
recommend the text books [Har77], [Mum99], [Mum95], [Sha94a, Sha94b] and the
literature cited below. As a substitute we have presented many examples which should
make the new ideas clear and with which one can check the results. In addition, a number
of exercises are included. The reader is advised to look at them carefully; some of them
will be used in the proofs.
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1. Affine Varieties

1.1. Regular functions. Our base field is the field C of complex numbers. Every
polynomial p € C[zy,...,z,] can be regarded as a C-valued function on C"™ in the usual
way:

a=(a,...,a,) — pla) =pla,...,an).
These functions will be called regular. More generally, let V' be a C-vector space of dimen-
sion dimV =n < oo.

1.1.1. DEFINITION. A C-valued function f: V — C is called regular if f is given by
a polynomial p € C[zy,...,x,] with respect to one and hence all bases of V. This means
that for a given basis vq,...,v, of V we have

flarvr + -+ apvy) = play, ..., an)

for a suitable polynomial p. The algebra of regular functions on V will be denoted by
o).

By our definition, every choice of a basis (v1,vs,...,v,) of V defines an isomorphism
Clz1,...,7,] = O(V) by identifying x; with the ith coordinate function on V defined by
the basis, i.e.,

xi(a1v1 + agve + - - + apvy) == a;.
Another way to express this is by remarking that the linear functions on V are regular
and thus the dual space V* := Hom(V, C) is a subspace of O(V). So if (vi,va,...,vy,) is
a basis of V and (z1,z2,...,2,) the dual basis of V*, then O(V) = Clz1, 22, ..., z,] and
the linear functions x; are algebraically independent.

1.1.2. EXAMPLE. Denote by M,, = M,,(C) the complex nxn-matrices so that O(M,,) =
Clzsj | 1 < 4,7 < n]. Consider det(tE, — X) as a polynomial in C[t,z;;,7,j = 1,...,n
where X := (z;;). Developing this as a polynomial in ¢ we find

det(tE, — X) =t" — 511" 1 4 59t" % — - £ (=1)"s,

with polynomials sy in the variables x;;. This defines regular functions s; € O(M,,) which
are homogeneous of degree k. Of course, we have s1(A) = tr(A) = a11 + -+ - + any, and
sn(A) = det(A) for any matrix A € M,,.

The same construction applies to End(V') for any finite dimensional vector space V
and defines regular function s € O(End(V)).

1.1.3. ExAMPLE. Consider the the space of unitary polynomials of degree n:
P,={t"+ait" ' +axyt" >+ +a,|ay, - ,a, € C} ~C".

There is a regular function D, € O(P,), the discriminant, with the following property:
Dn(p) =0 for ap € P, if and only if p has a multiple root. E.g.

2 2 2 3 3 2
Dy(a1,a2) = af —4az, Ds(a1,as,a3) = aja; — 4a; — 4ajas + 18ajazas — 27aj3.

ProOF. Expanding [}, (t —y;) =t" —o1(y)t" '+ + (=1)"0,(y) we see that the
polynomials o;(y) are the elementary symmetric polynomials in n variables yi, ..., yn, i.e.

Uk(y):Uk(yla"'ayn) = Z Yir Yiz = Yiye -
i <to<--<ik
Define D, := [Tic;(yi — y;)?. Since D,, is symmetric it can be (uniquely) written as
a polynomial in the elementary symmetric functions oy (y) (see [Art91, Chap. 14, Theo-

rem 3.4)), Dy (y1,...,yn) = Fn(0o1,02,...,0,) with a suitable polynomial F,,. If Ay,..., A\,
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are the roots of f € P,, then a; = (—1)'0;(A1,...,\s), and so the regular function
Dy(ay,...,a,) := F,(—ay, a2, —as,...,(—1)"a,) has the required property. O
1.1.4. ExaAMPLE. We denote by Alt,, C M,, the subspace of alternating matrices:
Alt, :={AeM, | A" = —A}.
There is a regular function Pf € O(Alty,,), the Pfaffian, with the following property:
det(A) = Pf(A)? for all A € Alty,,. Usually, the sign of the Pfaffian is determined by

J
requiring that Pf({ }) =1 where J := {_01 (1)} E.g.
J

0 T12 X13 T4

0 zi12 — —z12 0 w23 24 —
PE([_), % ]) = =12, Pf <{zl3 “aa 0 o }) = T14T23 — T13T24 + T12%34
—X14 —X24 —T34

PRrOOF. It is well-known that for any alternating matrix A with entries in an arbitrary
field K there is a g € GL,,(K) such that

J

(4) gAg' = J

Now take K = C(z;; | 1 <i < j <n=2m) and put

0 T12 T13  r Tip
—T12 0 Toz  tr Top
A= |—T13 —T23 0 o T,
—T1in —T2n —T3n T 0

Then there is a ¢ € GL,(K) such that gAg’ has the form given in (4). It follows that
the polynomial det(A) € K[z;; | 1 <i < j < n] equals det(g) ™2, the square of a rational
function, hence the claim. O
1.1.5. EXERCISE. For a = (a1,a2,...,an) € C" denote by ev,: O(C") — C the evaluation
map f+— f(a). Then the kernel of ev, is the maximal ideal
my = (1,‘1 — Q1,2 —A2,...,Tn _an)-

1.1.6. EXERCISE. Let W C O(V) a finite dimensional subspace. Then the linear functions
evy |w for v € V span the dual space W*.

1.2. Zero sets and ZariskiZariski topology. We now define the basic object of
algebraic geometry, namely the zero set of regular functions. Let V' be a finite dimensional
vector space.

1.2.1. DEFINITION. If f € O(V), then we define the zero set of f by
V(f):={veV|f(v)=0}=F10).
More generally, the zero set of f1, fa,..., fs € O(V) or of a subset S C O(V) is defined by

V(f1, for s fs) = OV<fi>:{vev|f1<v>:-~~:fs<v>:o}
" V(S):={veV | fv)=0forall feS}
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1.2.2. REMARK. The following properties of zero sets follow immediately from the
definition.
(1) Let S € O(V) and denote by a := (S) C O(V) the ideal generated by S. Then
V(S) = V(a).
(2) TS CT CO(V), then V(S) 2 V(T).
(3) For any family (S;)icr of subset S; C O(V) we have

V(U S;) = ﬂ V(S;)
iel iel
1.2.3. EXAMPLE. (1) SL,(C) = V(det —1) € M,,(C).
(2) On(C) = VX, avitjy — iy | 18 < j < ).
(3) If f = f(x,y) € C[z,y] is a non-constant polynomial in 2 variables, then V(f) C
C is called a plane curve. In order to visualize a plane curve, we usually draw a
real picture C R2.

1.2.4. LEMMA. LetV be a finite dimensional vector space and let a, b be ideals in O(V)
and (a; | i € I) a family of ideals of O(V).
(1) If a C b, then V(a) 2 V(b).
( ) ﬂiGI V(al) - V(Zzé] ai)'
(3) V(a)uV(b) =V(anb) =V(a-b).
(4) V(0) =V and V(1) = 0.

PRrOOF. Properties (1) and (2) follow from Remark 1, and property (4) is easy. So we
are left with property (3). Since a D anb D a-b, it follows from (1) that V(a) C V(anb) C
V(a-b). So it remains to show that V(a-b) C V(a) UV(b). If v € V does not belong to
V(a) UV(b), then there are functions f € a and h € b such that f(v) # 0 # h(v). Since
f-h€a-band (f-h)(v)#0 we see that v ¢ V(a-b), and the claim follows. O

1.2.5. DEFINITION. The lemma shows that the subsets V(a) where a runs through the
ideals of O(V') form the closed sets of topology on V which is called ZARISKI topology.
From now on all topological terms like “open”, “closed”, “neighborhood”, “continuous”,
etc. will refer to the ZARISKI topology.

1.2.6. EXAMPLE. (1) The nilpotent cone N C M, consisting of all nilpotent
matrices is closed and is a cone, i.e. stable under multiplication with scalars. E.g.
for n = 2 we have

N = V(211 + 722, T11%22 — T12721) € My
(2) The subset M{") C M,, of matrices of rank < r are closed cones.
(3) The set of polynomials f € P, with a multiple root is closed (see Example 1.1.3).

(4) The closed subsets of C are the finite sets together with C. So the non-empty
open sets of C are the cofinite sets.

1.2.7. EXERCISE. Show that the subset A := {(n,m) € C*> | n,m € Zand m > n > 0} is
ZARISKI-dense in C?.

1.2.8. DEFINITION. Let X C V be a closed subset. A reqular function on X is defined
to be the restriction of a regular function on V:

OX) = {flx | feO(V)}
The kernel of the (surjective) restriction map res: O(V) — O(X) is called the vanishing
ideal of X, or shortly the ideal of X:

I(X):={feO(V)| f(x) =0 for all z € X}.

Zariskitop.def

exclosed

topC
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Thus we have a canonical isomorphism O(V)/I(X) = O(X).

1.2.9. EXERCISE. A regular function f € O(V) is called homogeneous of degree d if f(tv) =
t*f(v) forall t € Cand all v € V.
(1) A polynomial f € C[z1,...,z,] is homogeneous of degree d as a regular function on C"
if and only if all monomials occurring in f have degree d.
(2) Assume that the ideal a C O(V) is generated by homogeneous functions. Then the
zeros set V(a) C V is a cone.
(3) Conversely, if X C V is a cone, then the ideal I(X) can be generated by homogeneous
functions. More precisely, if f|x = 0, then fq|x = 0 for every homogeneous component

fd of f

1.2.10. REMARK. Every finite dimensional C-vector space V carries a natural topology
given by the choice of a norm or a hermitian scalar product. We will call it the C-topology.
Since all polynomials are continuous with respect to the C-topology we see that the C-
topology is finer than the ZARISKI topology.

1.2.11. EXERCISE. Show that every non-empty open set in C™ is dense in the C-topology.
(Hint: Reduce to the case n = 1 where the claim follows from Example 1.2.6(4).)

1.2.12. REMARK. In the ZARISKI topology the finite sets are closed. This follows from
the fact that for any two different points v, w € V one can find a regular function f € O(V)
such that f(v) = 0 and f(w) # 0. (One says that the regular functions separate the points.)
But the ZARISKI topology is not Hausdorff (see the following exercise).

1.2.13. EXERCISE. Let U,U’ C C" be two non-empty open sets. Then U N U’ is non-empty,
too. In particular, the ZARISKI topology is not Hausdorff.

1.2.14. EXERCISE. Consider a polynomial f € Clzo,z1,...,2Zn] of the form f = zo —
p(z1,...,2n), and let X = V(f) be its zero set. Then I(X) = (f) and O(X) ~ Clz1, ..., zn].

1.3. Hilbert’s Nullstellensatz. The famous Nullstellensatz of HILBERT appears in
many different forms which are all more or less equivalent. We will give some of them
which are suitable for our purposes.

1.3.1. DEFINITION. If a is an ideal of an arbitrary ring R, its radical v/a is defined by
Va:={reR|r™ € a for some m > 0}.

Clearly, v/a is an ideal and /+/a = v/a. Moreover, v/a = R implies that a = R. The ideal a

is called perfect if a = v/a. The ring R is called reduced if \/(0) = (0), or, equivalently, if R

contains no nonzero nilpotent elements. Also, if a C O(V) is an ideal, then V(a) = V(v/a),
hence I(X) is perfect for every X C V.

1.3.2. THEOREM (HILBERT’s Nullstellensatz). Let a C O(V) be an ideal and X :=
V(a) CV its zero set. Then

I(X) = I(V(a)) = Va.

A first consequence is that every proper ideal has a non-empty zero set, because
X =V(a) = 0 implies that v/a =I(X) = O(V) and so a = O(V).

1.3.3. COROLLARY. For every ideal a # O(V) we have V(a) # (.

Let m C Clzy,...,z,] be a maximal ideal and a = (ay,...,a,) € V(m) which exists
by the previous corollary. Then m C (21 — aq,...,2Z, — a,), and so these two are equal.
1.3.4. COROLLARY. Every mazimal ideal m of Clzy,...,x,] is of the form

m:(xl—al,...,xn—an).
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Another way to express this is by using the evaluation map ev,: O(V) — C (see
Exercise 1.1.5).

1.3.5. COROLLARY. FEwvery mazimal ideal of O(V) equals the kernel of the evaluation
map evy: O(V) — C at a suitable v e V.

1.3.6. EXERCISE. If X C V is a closed subset and m C O(X) a maximal ideal, then O(X)/m =
C. Moreover, m = ker(evy: f — f(x)) for a suitable z € X.

PROOF OF THEOREM 1.3.2. We first prove Corollary 1.3.4 which implies Corollary 1.3.5
as we have seen above. It also implies Corollary 1.3.3, because every proper ideal is con-
tained in a maximal ideal.

Let m C Clxy,...,%,] be a maximal ideal and denote by K := Clxy,...,z,|/m its
residue class field. Then K contains C and has a countable C-basis, because Clz1, ..., z,]
does. If K # C and p € K\ C, then p is transcendental over C. It follows that the elements
(pia | a € C) from K form a non-countable set of linearly independent elements over C.
This contradiction shows that K = C. Thus z; + m = a; + m for a suitable a; € C (for
i=1,...,n), and som = (1 — ai,...,%, — ap). This proves Corollary 1.3.4.

To get the theorem, we use the so-called trick of RABINOWICH. Let a C Clzy,...,zy]
be an ideal and assume that the polynomial f vanishes on V(a). Now consider the polyno-
mial ring R := Clzg, 21, ..., 2] in n+1 variables and the ideal b := (a,1—z(f) generated
by 1 —zof and the elements of a. Clearly, V(b) = @ and so 1 € b, by Corollary 1.3.3. This
means that we can find an equation of the form

D hifi+h(1—wof) =1

where f; € a and h;,h € R. Now we substitute % for x¢ and find
1
Z hi(?,l‘l, e ,"En)fi = 1

Clearing denominators finally gives >, hif; = f™, ie., f™ € a, and the claim follows. O

1.3.7. COROLLARY. For any ideal a C O(V) and its zero set X := V(a) we have
O(X) = O(V)/Va.

1.3.8. EXERCISE. Let a C R be an ideal of a (commutative) ring R. Then a is perfect if and
only if the residue class ring R/a has no nilpotent elements different from 0.

1.3.9. EXAMPLE. Let f € C[zy,...,x,] be an arbitrary polynomial and consider its
decomposition into irreducible factors: f = pi*p5?---ple. Then /(f) = (p1p2---ps) and
so the ideal (f) is perfect if and only if the polynomial f it is square-free. In particular, if
f €Clxy,...,x,] is irreducible, then OV(f)) =~ Clxy,...,2,]/(f). A closed subset of the

form V(f) is called a hypersurface.

1.3.10. ExaAMPLE. We have O(SL,(C)) ~ O(M,,)/(det —1), because the polynomial
det —1 is irreducible.

ProoOF. For a fixed 7o, the polynomial det —1 is linear in the z;,1, ..., 2;yn. Thus, if
det —1 = f1 - fo, then all of them appear in one factor and none in the other. The same
argument applied to 1, ..., %nj, finally shows that one of the factors is a constant. [

1.3.11. ExaMPLE. Consider the plane curve C' := V(y? — 23) which is called NEIL'S
parabola. Then O(C) ~ Clx,y]/(y*> — 23) = C[t?,t%] C CJ[t] where the second isomorphism
is given by p: x — t2,y — t3.

cormax?2

maxid

cormax1
cormax?2

cormax0

cormax1

hypersurface.exa

Neil
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PROOF. Clearly, y?> — 23 € ker p. For any f € C[z,y] we can write f = fo(x)+ f1(z)y+
h(z,y)(y? — 23). If f € kerp, then 0 = p(f) = fo(t?) + f1(t*)t® and so fo = f1 = 0. This
shows that ker p = (y? — 2®), and the claim follows. O

1.3.12. EXERCISE. Let C' C C? be the plane curve defined by y—2? = 0. Then I(C) = (y—=?)
and O(C) is a polynomial ring in one variable.

1.3.13. EXERCISE. Let D C C? be the zero set of xy — 1. Then O(D) is not isomorphic to a
polynomial ring, but there is an isomorphism O(D) = C[t,t™].

1.3.14. EXERCISE. Consider the “parametric curve”
Y = {(t,t>,t*) € C* | t € C}.

Then Y is closed in C3. Find generators for the ideal I(Y) and show that O(Y) is isomorphic to
the polynomial ring in one variable.

Another important consequence of the “Nullstellensatz” is a one-to-one correspon-
dence between closed subsets of C™ and perfect ideals of the coordinate ring Clz1, ..., z,].

1.3.15. COROLLARY. The map X — I(X) defines a inclusion-reversing bijection
{X CV closed} = {a C O(V) perfect ideal}

whose inverse map is given by a — V(a). Moreover, for any finitely generated reduced
C-algebra R there is a closed subset X C C™ for some n such that O(X) is isomorphic to
R

PROOF. The first part is clear since V(I(X)) = X and I(V(a)) = v/a for any closed
subset X C V and any ideal a C O(V).

If R is a reduced and finitely generated C-Algebra, R = C|[f1,..., fn], then R ~
Clzy,x2,...,2,]/a where a is the kernel of the homomorphism defined by x; — f;. Since
R is reduced we have /a = a and so O(V(a)) ~ Clz1,...,2,]/a ~ R. O

1.3.16. EXERCISE. Let X C V be a closed subset and f € O(X) a regular function such that
f(z) #0for all z € X. Then f is invertible in O(X), i.e. the C-valued function f~': 2 — f(z)™"
is regular on X.

1.3.17. EXERCISE. Every closed subset X C C" is quasi-compact, i.e., every covering of X
by open sets contains a finite covering. Is this also true for open or even locally closed subsets of
c"?

1.3.18. EXERCISE. Let X C C" be a closed subset. Assume that there are no non-constant
invertible regular function on X. Then every non-constant f € O(X) attains all values in C, i.e.
f: X — C is surjective.

1.3.19. EXERCISE. Consider the curve
Y = {({#*t"t°) e C’ |t e C}

cf. Exercise 1.3.14. Then Y is closed in C?. Find generators for the ideal I(Y) and show that I(Y")
cannot be generated by two polynomials.

(Hint: Define the weight of a monomial in z,y, z by wt(z) := 3, wt(y) := 4, wt(z) := 5. Then the
ideal I(Y") is linearly spanned by the differences mi — mgz of two monomials of the same weight.
This occurs for the first time for the weight 8, and then also for the weights 9 and 10. Now show
that for any generating system of I(Y') these three differences have to occur in three different
generators.)
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1.4. Affine varieties. We have seen in the previous section that every closed subset
X CV (or X C C") is equipped with an algebra of C-valued functions, namely the
coordinate ring O(X). We first remark that O(X) determines the topology of X. In fact,
define for every ideal a C O(X) the zero set in X by

Vx(a):={z e X | f(z) =0 for all f € a}.

Clearly, we have Vx(a) = V(a) N X where a C O(V) is an ideal which maps surjectively
onto a under the restriction map. This shows that the sets Vx(a) are the closed sets of
the topology on X induced by the ZARISKI topology of V. Moreover, the coordinate ring
O(X) also determines the points of X since they are in one-to-one correspondence with
the maximal ideals of O(X):

z € X —m, :=kerev, CO(X)

where ev,: O(X) — C is the evaluation map f — f(x). This leads to the following
definition of an affine variety.

1.4.1. DEFINITION. A set Z together with a C-algebra O(Z) of C-valued functions on
Z is called an affine variety if there is a closed subset X C C™ for some n and a bijection
¢: Z = X which identifies O(X) with O(2), i.e., p*: O(X) — O(Z) given by f +— fo,
is an isomorphism.

The functions from O(Z) are called regular, and the algebra O(Z) is called coordinate
ring of Z or algebra of reqular functions on Z.

The affine variety Z has a natural topology, also called ZARISKI topology, the closed
sets being the zero sets

Vz(a):={z€ Z| f(z) =0for all f € a}

where a runs through the ideals of O(Z). If follows from what we said above that the
bijection p: Z = X is a homeomorphism with respect to the ZARISKI topology.

Clearly, every closed subset X C V or X C C" together with its coordinate ring O(X)
is an affine variety. More generally, if X is an affine variety and ¥ C X a closed subset,
then Y together with the restrictions O(Y) := {f|y | f € O(X)} is an affine variety, called
a closed subvariety. Less trivial examples are the following.

1.4.2. EXAMPLE. Let M be a finite set and define O(M) := CM = Maps(M, C) to be
the set of all C-valued functions on M. Then (M, O(M)) is an affine variety and O(M) is
isomorphic to a product of copies of C. This follows immediately from the fact that any
finite subset N C C" is closed and that O(N) = Maps(N, C).

1.4.3. EXAMPLE. Let X be a set and define the symmetric product Sym,, (X) to be
the set of unordered n-tuples of elements from X, i.e.,

Sym, (X)=XxX x---x X/~

where (a1, a2, ...,an) ~ (b1,ba,...,b,) if and only if one is a permutation of the other.
In case X = C we define O(Sym,,(C)) to be the symmetric polynomials in n variables
and claim that Sym,, (C) is an affine variety.
To see this consider the map

:C"—=C", a=(a,...,an) — (01(a),02(a),...,on(a))

where 01, ..., 0, are the elementary symmetric polynomials (see Example 1.1.3). It is easy
to see that @ is surjective and that ®(a) = ®(b) if and only if a ~ b. Thus, ¢ defines a
bijection ¢: Sym, (C) = C", and the pull-back of the regular functions on C" are the
symmetric polynomials: ¢*: Clxy,...,z,] — O(Sym,,(C)).

finiteset.exa

symprod
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In general, one defines
OXXxXx--xX):=C[fiferfulfi € OX)]

n copies

and
O(Sym,,(X) :={f€O(X x X x---x X) | f symmetric}.

1.4.4. EXERCISE. Let Z be an affine variety with coordinate ring O(Z). Then every polynomial
f € O(Z)]t] with coefficients in O(Z) defines a function on the product Z x C in the usual way:

F=Y ft": (z,0) > > fi(z)a" e C
k=0 k=0

Show that Z x C together with O(Z)[t] is an affine variety.
(Hint: For any ideal a C Clx1,...,,] there is a canonical isomorphism Clz1,...,zn,t]/(a) =
(Clz1, ..., za]/a)[t].)
1.4.5. EXERCISE. For any affine variety Z there is a inclusion-reversing bijection
{A C Z closed} = {a C O(Z) perfect ideal}
given by A I(A) :={f € O(Z) | fla = 0} (cf. Corollary 1.3.15).

For the last example we start with a reduced and finitely generated C-algebra R.
Denote by spec R the set of maximal ideals of R:

spec R := {m | m C R a maximal ideal}.

We know from HILBERT’s Nullstellensatz (see Exercise 1.3.6) that R/m = C for all maximal
ideals m € spec R. This allows to identify the elements from R with C-valued functions on
spec R: For f € R and m € spec R we define

f(m):=f+meR/m=C.

1.4.6. PROPOSITION. Let R be a reduced and finitely generated C-algebra. Then the
set of maximal ideals spec R together with the algebra R considered as functions on spec R
is an affine variety.

PROOF. We have already seen earlier that every such algebra R is isomorphic to the
coordinate ring of a closed subset X C C™. The claim then follows by using the bijection
X 5 spec O(X), x + m, = kerev,, and remarking that for f € O(X) and € X we have
f(z) = evy(f) = f + my, by definition. O

1.4.7. EXERCISE. Denote by C), the n-tuples of complex numbers up to sign, i.e., Cp, := C"/ ~
where (a1,...,an) ~ (b1,...,bs) if a; = £b; for all i. Then every polynomial in C[z3,23, ..., 22]
is a well-defined function on C,. Show that C), together with these functions is an affine variety.
(Hint: Consider the map ®: C* — C", (a1,...,an) — (ai,...,a?) and proceed like in Exam-

ple 1.4.3.)

Although every affine variety is isomorphic to a closed subset of C™ for a suitable n,
there are many advantages to look at these objects and not only at closed subsets. In fact,
an affine variety can be identified with many different closed subsets of this form (see the
following Exercise 1.4.8), and depending on the questions we are asking one of them might
be more useful than another. We will even see in the following section that certain open
subsets are affine varieties in a natural way.

On the other hand, whenever we want to prove some statements for an affine variety
X we can always assume that X = V(a) C C™ so that the regular functions on X appear
as restrictions of polynomial functions. This will be helpful in the future and quite often
simplify the arguments.
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1.4.8. EXERCISE. Let X be an affine variety. Show that every choice of a generating system
fis fay .-, fn € O(X) of the algebra O(X) consisting of n elements defines an identification of X
with a closed subset V(a) C C".
(Hint: Consider the map X — C™ given by z — (fi1(z), f2(z),..., fa(z)).)

1.5. Special open sets. Let X be an affine variety and f € O(X). Define the open
set Xy C X by
Xj = X\ Vx(f) = {z € X | f(x) # 0}.

An open set of this form is called a special open set.
1.5.1. LEMMA. The special open sets of an affine variety X form a basis of the topology.

Proor. If U C X is open and z € U, then X \ U is closed and does not contain z.
Thus, there is a regular function f € O(X) vanishing on X \ U such that f(z) # 0. This
implies v € Xy C U. O

Given a special open set Xy C X we see that f(z) # 0 for all z € X; and so the

function % is well-defined on X7.

1.5.2. PROPOSITION. Denote by O(Xy) the algebra of functions on Xy generated by
% and the restrictions h|x, of reqular functions h on X :

O(Xy) = C[} {hx, | heOX))] = O<X>|Xf[;1.

Then (Xf,O(Xy)) is an affine variety and O(Xy) ~ O(X)[t]/(f -t —1).
PRrOOF. Let X = V(a) C C™ and define
X :=V(a,f @, —1) CCML

It is easy to see that the projection pr: crtt - C™ onto the first n coordinates induces a
bijective map X = Xy whose inverse ¢: Xy 5 X is given by

o1, yxn) = (21, .oy Xy f21, .- ,xn)_l).

The following commutative diagram now shows that ¢*(O(X)) is generated by ¢*(2,41) =
+ and the restrictions h|x, (h € O(X)).

f
X X & ot
closed
=L b
Xf —=— X —= ¢
open closed

This proves the first claim. For the second, we have to show that the canonical homo-
morphism O(X)[t]/(f -t — 1) — O(X) is an isomorphism. In other words, every function
h =", hit" € O(X)[t] which vanishes on X is divisible by f-t—1. Since f| ¢ is invertible
we first obtain ), h; f™7* = 0 which implies

m m—1
h=h—t" Y hif" =Y hat' (1 f),
=0 =0

and the claim follows. O

specialopenset.subsec
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1.5.3. ExaMPLE. The group GL,(C) is a special open set of M,,(C), hence GL, (C)
is an affine variety with coordinate ring O(GL,(C)) = C[{zi; | 1 < i,j < n},75]. In
particular, C* := GL; = C\ {0} is an affine variety with coordinate ring Clz, z71].

1.5.4. EXERCISE. Let R be an arbitrary C-algebra. For any element s € R define Rs :=
Rlz]/(s -z —1).
(1) Describe the kernel of the canonical homomorphism ¢: R — R,.
(2) Prove the universal property: For any homomorphism p: R — A such that p(s) is
invertible in A there is a unique homomorphism p: Rs — A such that po .= p.
(3) What happens if s is a zero divisor and what if s is invertible?

1.6. Decomposition into irreducible components. We start with a purely topo-
logical notion.

1.6.1. DEFINITION. A topological space T is called irreducible if it cannot be decom-
posed in the form T'= AU B where A, B g T are proper closed subsets. Equivalently,
every non-empty open subset is dense.

1.6.2. LEMMA. Let X C C” be a closed subset. Then the following are equivalent:

(i) X is irreducible.
(ii) I(X) is a prime ideal.
(iii) O(X) is a domain, i.e., has no zero-divisor.

PRrROOF. (i)=-(ii): If I(X) is not prime we can find two polynomials f, h € C[z1, ..., 2]\
I(X) such that f-h € I(X). This implies that X C V(f-h) = V(f)UV(h), but X is neither
contained in V(f) nor in V(h). Thus X = (V(g) N X)U (V(h) N X) is a decomposition into
proper closed subsets, contradicting the assumption.

(ii)=-(iii): This is clear since O(X) = Clxy, ..., z,]/I(X).

(iii)=(i): If X = AU B is a decomposition into proper closed subsets there are non-
zero functions f,h € O(X) such that f|4 = 0 and h|p = 0. But then f - h vanishes on
all of X and so f - h = 0. This contradicts the assumption that O(X) does not contain
zero-divisor. O

1.6.3. EXaAMPLE. Let f € C[z1,...,z,]. Then the hypersurface V(f) is irreducible if
and only if f is a power of an irreducible polynomial. This follows from Example 1.3.9
and the fact that the ideal (f) is prime if and only if f is irreducible. More generally, if
f=pi'p5? - phe is the primary decomposition, then

V(f) =V(Pp1) UV(p2) U---UV(py)

where each V(p;) is irreducible, and this decomposition is irredundant, i.e., no term can
be dropped.

1.6.4. THEOREM. Fwvery affine variety X is a finite union of irreducible closed subsets

(5) X=X3UXU---UX,.

If this decomposition is irredundant, then the X;’s are the mazimal irreducible subsets of
X and are therefore uniquely determined.

The maximal X;’s are called the irreducible components of X and the unique ir-
redundant decomposition of X in the form (5) is called decomposition into irreducible
components.

For the proof of the theorem above we first recall that a C-algebra R is called Noe-
therian if the following equivalent conditions hold:

GLn.ex
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(i) Every ideal of R is finitely generated.
(ii) Ewery strictly ascending chain of ideals of R terminates.

(iii) Ewvery non-empty set of ideals of R contains mazimal elements.

(The easy proofs are left to the reader; for the equivalence of (ii) and (iii) one has to use
Zorn’s Lemma.)

The famous “Basissatz” of HILBERT implies that every finitely generated C-algebra is
Noetherian (see [Art91, Chap. 12, Theorem 5.18]). In particular, this holds for the coor-
dinate ring O(X) of any affine variety X. Using the inclusion reversing bijection between
closed subsets of X and perfect ideals of O(X) (see Corollary 1.3.15 and Exercise 1.4.5)
we get the following result.

1.6.5. PROPOSITION. Let X be an affine variety. Then
(1) Ewery closed subset A C X is of the form Vx(f1, fay..-, fr)-
(2) Ewery strictly descending chain of closed subsets of X terminates.
(3) Every non-empty set of closed subsets of X contains minimal elements.

1.6.6. REMARK. It is easy to see that for an arbitrary topological space T" the properties
(2) and (3) from the previous proposition are equivalent. If they hold, then T is called
Noetherian.

PROOF OF THEOREM 1.6.4. We first show that such a decomposition exists. Consider
the following set

M :={AC X | A closed and not a finite union of irreducible closed subsets}.

If M # (), then it contains a minimal element Ag. Since Ay is not irreducible, we can find
proper closed subset B, B’ C Ag such that Ay = BU B’. But then B, B’ ¢ M and so both
are finite unions of irreducible closed subsets. Hence Ag is a finite union of irreducible
closed subsets, too, contradicting the assumption.

To show the uniqueness let X = X; U Xy U--- U X where all X; are irreducible
closed subsets and assume that the decomposition is irredundant. Then, clearly, every X;
is maximal. Let ¥ C X be a maximal irreducible closed subset. Then Y = (Y N X;) U
YNXy)U---U(¥ NX,) andso Y =Y N X, for some j. It follows that ¥ C X; and so
Y = X because of maximality. a

1.6.7. REMARK. The algebraic counterpart to the decomposition into irreducible com-
ponents is the following statement about radical ideals in finitely generated algebras R:
Every radical ideal a C R is a finite intersection of prime ideals:

a=prNp2MN---MNps.
If this intersection is irredundant, then the p;’s are the minimal prime ideals containing

a. (The easy proof is left to the reader.)

1.6.8. EXAMPLE. Consider the two hypersurfaces Hy := V(zy — 2), Hy := V(zz — y?)
in C? and their intersection X := H; N Hy. Then

X =V(y,2) UC where C := {(t,*,1*) | t € C},

and this is the irreducible decomposition.

In fact, it is obvious that the z-axis V(y, 2z) is closed and irreducible and belongs to
X, and the same holds for the curve C' (see Exercise 1.3.14). If (a,b,¢) € X \ V(y, z), then
either b or c is # 0. But then b # 0 because ab = c. Hence a = c¢b~! and so b = ac = ¢?b~!
which implies that ¢ = b3. Thus b = (cb~!)? and ¢ = (cb~1)3, i.e. (a,b,c) € C.

Another way to see this is by looking at the coordinate ring:

Cle,y, 2]/ (zy — z,22 — y*) = Clz,y]/(«®y — y*).

bijection

exbijection

minimalprimes

exparamcurve
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On the level of ideals we get (z2y — 4?) = (y(x — y?)) = (y) N (x — y?), and the ideals (y)
and (z — y?) are obviously prime, with residue class ring isomorphic to a polynomial ring
in one variable. This shows that X has two irreducible components, both with coordinate
ring isomorphic to C[t].

1.6.9. EXERCISE. The closed subvariety X := V(2? — yz,22 — ) C C* has three irreducible
components. Describe the corresponding prime ideals in C[z, y, z].

1.6.10. EXAMPLE. The group Oz := {A € My | AA* = E} has two irreducible compo-
0 1

nents, namely SOs := O3 N SLy and 1 0

-SO3, and the two components are disjoint.

In fact, the condition AA* = E for A = {CCL Z} implies that {Z] =+ [_dc] Since

det ,ab = a® +b? we see that SO, = { {ab Z} | a® + b2 = 1} is irreducible as well as
0 1 a b .
[1 0} 502 = {{b —a] | a® + b2 = 1}, and the claim follows.

1.6.11. EXERCISE. Let X = X; U X2 where X1, X2 C X are closed and disjoint. Then one
has a canonical isomorphism O(X) = O(X1) x O(X2>).

1.6.12. EXERCISE. Let X = J, X; be the decomposition into irreducible components. Let
Ui C X; be open subsets and put U := |J, U; C X.
(1) Show that U is not necessarily open in X.
(2) Find sufficient conditions to ensure that U is open in X.
(3) Show that U is dense in X if and only if all U; are non-empty.

1.7. Rational functions and local rings. If X is an irreducible affine variety, then
O(X) is a domain by Lemma 1.6.2. Therefore, we can form the field of fractions of O(X)
which is called the field of rational functions on X and will be denoted by C(X). Clearly, if
X =C", then C(X) = C(z1,z2,...,2,), the rational function field. An irreducible affine
variety X is called rational if its field of rational functions C(X) is isomorphic to a rational
function field.

A rational function f € C(X) can be regarded as a function “defined almost every-
where” on X. In fact, we say that f is defined in x € X if there are p,q € O(X) such that

f =1 and g(z) #0.

1.7.1. ExaMPLE. Consider again NEIL'S parabola C := V(y? — 2®) C C? from Exam-
ple 1.3.11 and put Z := z|¢ and 7 := y|c. Then the rational function f := % € C(C) is not
defined in (0,0). Note that f? = Z. The interesting point here is that f has a continuous
extension to all of C' with value 0 at (0,0), even in the C-topology.

PROOF. There is an isomorphism O(C) = C[t?,t3] (see Example 1.3.11) which maps
Z to t? and § to ¢3, and so f = £ is mapped to t. Since ¢ ¢ C[t?,¢3] the first claim follows
from Lemma 1.7.3 above. The second part is easy, because the map C — C': t — (t2,1%)
is a homeomorphism even in the C-topology. O

1.7.2. EXERCISE. If f € C(C?) = C(x,y) is defined in C?\ {(0,0)}, then f is regular.

For a rational function f on the irreducible affine variety X we denote by Def(f) C X
the set of points where f is defined. By definition, Def(f) C X is an open set. Moreover,
we have we have the following result.

1.7.3. LEMMA. Def(f) = X if and only if f is reqgular on X.
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PRrROOF. Consider the “ideal of denominators” a := {p € O(X) | p- f € O(X)}. If
Def(f) = X, then V(a) = 0. Hence 1 € a, and so f € O(X). O

1.7.4. EXERCISE. Let f € C(V') be a non-zero rational function on the vector space V. Then
Def(f) is a special open set in V.

Assume that X is irreducible and let z € X. Define
Ox, :={f € C(X) | f is defined in z}.

It is easy to see that Ox . is the localization of O(X) at the maximal ideal m,. (For
the definition of the localization of a ring at a prime ideal and, more generally, for the
construction of rings of fractions we refer to [Eis95, 1.2.1].) This example motivates the
following definition.

1.7.5. DEFINITION. Let X be an affine variety and = € X an arbitrary point. Then
the localization O(X)n, of the coordinate ring O(X) at the maximal ideal in z is called
the local ring of X at x. It will be denoted by Ox , its unique maximal ideal by mx ;. ,

We will see later that the local ring of X at = completely determines X in a neigh-
borhood of x (see Proposition 2.3.1(3)).

1.7.6. EXERCISE. If X is irreducible, then O(X) = cx Ox 2

1.7.7. EXERCISE. Let X be an affine variety, * € X a point and X’ C X the union of
irreducible components of X passing through x. Then the restriction map induces a natural
isomorphism Ox . — Ox/ .

1.7.8. EXERCISE. Let R be an algebra and u: R — Rs the canonical map r — { where Rs
is the localization at a multiplicatively closed subset 1 € S C R (0 ¢ S).

(1) If a C R is an ideal and as := Rs u(a) C Rg, then
p(pu(a)) = (as) = {b € R| sb € a for some s € S}.
Moreover, (R/a)s = Rs/as where S is the image of S in R/a.
(Hint: For the second assertion use the universal property of the localization.)
(2) If m C R is a maximal ideal and S := R\ m, then mg is the maximal ideal of Rs and
the natural maps R/m* 5 Rs/m% are isomorphisms for all k > 1.
(Hint: The image S in R/m” consists of invertible elements.)

1.7.9. EXERCISE. Let p < g be positive integers with no common divisor and define Cj 4 :=
{(t*,t7) | t € C} C C?. Then C,, is a closed irreducible plane curve which is rational, i.e.
C(Cp,q) ~ C(t). Moreover, O(Cp q) is a polynomial ring if and only if p = 1.

1.7.10. EXERCISE. Consider the elliptic curve E := V(y* — z(2® — 1)) C C2. Show that E
is not rational, i.e. that C(E) is not isomorphic to C(¢). (Hint: If C(E) = C(t), then there are
rational functions f(t), h(t) which satisfy the equation f(¢)*> = h(t)(h(t)? — 1).)

2. Morphisms

2.1. Morphisms and comorphisms. In the previous sections we have defined and
discussed the main objects of algebraic geometry, the affine varieties. Now we have to
introduce the “regular maps” between affine varieties which should be compatible with
the concept of regular functions.

2.1.1. DEFINITION. Let XY be affine varieties. A map ¢: X — Y is called regular or
a morphism if the pull-back of a regular function on Y is regular on X:

fopeOX) for all f € O().

localring.def

localmorphism.prop

rationalregular

localization

morphism.subsec

morphism.def



morphism

cusp

Neil

lift

graph

126 APPENDIX A. BASICS FROM ALGEBRAIC GEOMETRY

Thus we obtain a homomorphism ¢*: O(Y) — O(X) of C-algebras given by ¢*(f) := foyp,
which is called comorphism of ¢.

A morphism ¢ is called an isomorphism if ¢ is bijective and the inverse map ¢~! is
also a morphism. If, in addition, Y = X, then ¢ is called an automorphism.

2.1.2. EXAMPLE. A map ¢ = (f1, fa,.-., fm): C* — C™ is regular if and only if the
components f; are polynomials in Clz1,...,z,]. This is clear, since ¢*(y;) = f; where
Y1,Y2, - - -, Ym are the coordinate functions on C™.

More generally, let X be an affine variety and a ¢ = (f1,..., fm): X — C™ a map.
Then ¢ is a morphism if and only if the components f; are reqular functions on X . (This
is clear since f; = ¢*(y;).)

2.1.3. EXAMPLE. The morphism t + (¢2,¢%) from C — C? induces a bijective mor-
phism C — C := V(y? — 23) which is not an isomorphism (see Example 1.3.11).

Similarly, for the curve D := V(y? — 22 — 23) there is a morphism ¢: C — D given by
t — (t2 — 1,t(t> — 1)). This time 1 is surjective, but not injective since (1) = ¥(—1) =
(0,0).

2.1.4. EXERCISE. Let g € GL,, be an invertible matrix. Then left multiplication A — gA,
right multiplication A — Ag and conjugation A — gAg~! are automorphisms of M,,.

If a morphism ¢ = (f1, fo,..., fm): C* — C™ maps a closed subset X C C" into a
closed subset Y C C™, then the induced map ¢: X — Y is clearly a morphism, just by
definition. This holds in a slightly more general setting, as claimed in the next exercise.

2.1.5. EXERCISE. Let ¢: X — Y be a morphism. If X’ C X and Y’ C Y are closed subvari-

eties such that ¢(X’) C Y’, then the induced map ¢': X' — Y’ z — ¢(z), is again a morphism.
The same holds if X’ and Y’ are special open sets.

These examples have the following converse which will be useful in many applications.

2.1.6. LEMMA. Let X CC" and Y C C™ be closed subvarieties and let o: X — Y be
a morphism. Then there are polynomials f1,..., fm € Clz1,...,xy] such that the following

diagram commutes:
n q)::(fl,‘“,fm)
L LAN

C cm
E E
X = v
PRrROOF. Let y1,...,¥yn denote the coordinate functions on C™. Put g; := y;|y and

consider ¢*(7;) € O(X). Since X C C" is closed there exist f; € Clzy,...,z,] such that
filx = ¢*(g;), for j =1,..., m. We claim that the morphism ® := (f1,..., f): C* - C™
satisfies the requirements of the lemma. In fact, let « € X C C™ and set ¢(a) =: b =
(b1,...,bm). Then
b = y;(b) = ;(b) = 73 (w(a)) = " (3)(a) = f(a) = f;(a),
and so ¢(a) = ®(a). O
2.1.7. EXERCISE. (1) Every morphism C — C* is constant.
(2) Describe all morphisms C* — C*.
(3) Every non-constant morphism C — C is surjective.

(4) An injective morphism C — C is an isomorphism, and the same holds for injective
morphisms C* — C*.

2.1.8. EXERCISE. Let ¢: C" — C™ be a morphism and define
Ty = {(a,p(a)) € C"T"}.
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which is called the graph of the morphism . Show that I, is closed in C"*™, that the projection
pren : C™™™ — C™ induces an isomorphism p: T', = C™ and that ¢ = prem op™ .

2.1.9. PROPOSITION. Let X,Y be affine varieties. The map p — ©* induces a bijection
Mor(X,Y) = Alg(O(Y), O(X)).
between the morphisms from X to'Y and the algebra homomorphism from O(Y) to O(X).

2.1.10. REMARK. The mathematical term used in the situation above is that of a
contravariant functor from the category of affine varieties and morphisms to the category
of finitely generated reduced C-algebras and homomorphism, given by X — O(X) and
¢ — ¢*. In particular, we have ¢*(Idx) = Idp(x) and (¢ 0 1))* = 9" o ¢* whenever the
expressions make sense. The proposition above then says that this functor is an equivalence,
the inverse functor being R +— spec R defined in Proposition 1.4.6. It will be helpful to
keep this “functorial point of view” in mind although it will not play an important role in
the following.

PROOF. (a) If o} = ¢}, then, for all f € O(Y) and all x € X, we get
fle(x)) = 1(F)(x) = v2(f)(@) = fp2(2)).

Hence, ¢1(x) = pa2(x) since the regular functions separate the points (Remark 1.2.12).

(b) Let p: O(Y) — O(X) be an algebra homomorphism. We want to construct a
morphism ¢: X — Y such that ¢* = p. For this we can assume that Y C C™ is a closed
subvariety. Let ; := y;|y be the restrictions of the coordinate functions on C™ and define
fi = p(g;) € O(X). Then we get a morphism ® := (f1,..., fm): X — C™ such that
®*(y;) = f; (see Example 2.1.2). If h = h(yy, ..., ym) € I(Y), then

h(fis-- s fm) = Bp(0n), - p(Gm)) = p(W(G1; - -, Gm)) = O

because h(J1,. .., ¥m) = hly = 0 by assumption. Therefore h(®(a)) = 0 for all @ € X and
all h € I(Y) and so ®(X) C Y. This shows that ® induces a morphism ¢: X — Y such
that ©*(y;) = ®*(y;) = fj = p(y;), and so ™ = p. O

2.1.11. EXAMPLE. Let X be an affine variety, V' a finite dimensional vector space
and ¢: X — V a morphism. The linear functions on V form a subspace V* C O(V)
which generates O(V'). Therefore, the induced linear map ¢*|y«: V* — O(X) completely
determines ¢*, and we get a bijection

Mor(X,V) = Hom(V*,O(X)) ¢ @*[v-.

The second assertion follows from Proposition 2.1.9 and the well-known “Substitution
Principle” for polynomials rings (see [Art91, Chap. 10, Proposition 3.4]).

2.1.12. EXERCISE. Show that for an affine variety X the morphisms X — C* correspond
bijectively to the invertible functions on X.

2.1.13. EXERCISE. Let X,Y be affine varieties and ¢: X — Y, ¥: Y — X morphisms such
that 1 o ¢ = Idx. Then ¢(X) C Y is closed and ¢: X = ¢(X) is an isomorphism.

2.2. Images, preimages and fibers. It is easy to see that morphisms are con-
tinuous. In fact, the ZARISKI topology is the finest topology such that regular functions
are continuous, and since morphisms are defined by the condition that the pull-back of a
regular function is again regular, it immediately follows that morphisms are continuous.
We will get this result again from the next proposition where we describe images and
preimages of closed subsets under morphisms.

2.2.1. PROPOSITION. Let ¢p: X =Y be a morphism of affine varieties.

equivalence

spec

separate

morphism

equivalence

images

image
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(1) If B := Vy(S) C Y is the closed subset defined by S C O(Y), then ¢~ (B) =
Vx (¢*(S)). In particular, ¢ is continuous.

(2) Let A:=V(a) C X be the closed subset defined by the ideal a C O(X). Then the
closure of the image p(A) is defined by ¢*'(a) C O(Y):

o(A) = Vy (" ().
PROOF. For z € X we have
r €@ 1(B) <= p(r)eB < f(p(x))=0forall fcS,

and this is equivalent to ¢*(f)(x) =0 for all f € S, hence to z € Vx (¢*(5)), proving the
first claim.
For the second claim, let f € O(Y). Then

flom =0 <= floay =0 <= ¢*(Na=0 <= ¢*(f) € I(4) = Va

The latter is equivalent to the condition that a power of f belongs to ap*_l(a). Thus the
zero set of ©* 1 (a) equals the closed set o(A). O

2.2.2. EXERCISE. If ¢1,p2: X — Y are two morphisms, then the “kernel of coincidence”
ker(1,02) = {7 € X | ¢1(2) = pa(w)} € X

is closed in X

imagescomponents . L.
2.2.3. EXERCISE. Let ¢: X — Y be a morphism of affine varieties.

(1) If X is irreducible, then ¢(X) is irreducible.
(2) Every irreducible component of X is mapped into an irreducible component of Y.
(3) If U C Y is a special open set, then so is ¢~ *(U).

2.2.4. EXERCISE. Let ¢: C" — C™ be a morphism, ¢ = (f1, f2, ..., fm) where fi € Clz1, 22, ..., Zx],
and let Y := ¢(C") be the closure of the image of ¢. Then

‘I(Y) = (yl _f17y2_f27"'7ym _fm)m(c[yhyQ,,ym]

where both sides are considered as subsets of C[z1,...,Zn,y1,...,Ym]. So I(Y) is obtained from
the ideal (y1 — fi,...,Ym — fm) by eliminating the variables x1,...,Tn.

(Hint: Use the graph I'y, defined in Exercise 2.1.8 and show that the ideal I(I',) is generated by
{vi—fili=1,....m})

2.2.5. EXERCISE. Let ¢: X = X be an automorphism and Y C X a closed subset such that
@(Y)CY. Then p(Y)=Y and ¢|y: Y — Y is an automorphism, too.
(Hint: Look at the descending chain Y D Y7 := ¢(Y) D Y2 := (Y1) D ---. If Y;, = Y41, then
p(Yn-1) =Y, = ¢(Yy) and so Yn—1 = Y5.)

closedimm.def

2.2.6. DEFINITION. A morphism ¢: X — Y is called a closed immersion if o(X) CY
is closed and the induced map X — (X) is an isomorphism.

closedimmersion.lem

2.2.7. LEMMA. A morphism @: X — Y is a closed immersion if and only if the
comorphism o*: O(Y) — O(X) is surjective.

PROOF. If ¢ is a closed immersion, then O(X) ~ O(p(X)) and the regular functions
on ¢(X) are restrictions from regular functions on Y, hence ¢* is surjective.

Now assume that ¢* is surjective, and put a := ker ¢*. This is a radical ideal and so
a = I(A) where A := Vx(a). By definition, ¢* has the decomposition O(Y) = O(A) =
O(X), i.e.  induces an isomorphism X = A C Y. O

2.2.8. EXERCISE. Let ¢: X — Y and ¢¥: Y — Z be morphisms, and assume that the com-
position ¥ o ¢ is a closed immersion. Then ¢ is a closed immersion.
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A special case of preimages are the fibers of a morphism ¢: X — Y. Let y € Y. Then

¢ Hy) = {z € X | p(x) =y}
is called the fiber of y € Y. By the proposition above, the fiber of y is a closed subvariety
of X defined by ¢*(m,):

¢ (y) = Vx (¢ (my)).
Of course, the fiber of a point y € Y can be empty. In algebraic terms this means that
©*(m,) generates the unit ideal (1) = O(X).

2.2.9. EXERCISE. Describe the fibers of the morphism ¢: Mg — My, A — A2 (Hint: Use the
fact that p(gAg™") = gp(A)g™ for g € GLo.)

2.2.10. DEFINITION. Let ¢: X — Y be a morphism of affine varieties and consider the
fiber F:= ¢~ !(y) of a point y € ¢(X) C Y. Then the fiber F is called reduced if ¢*(m,)
generates a perfect ideal in O(X), i.e. if

O(X) - p*(my) = O(X) - " (my).
The fiber F'is called reduced in the point x € F' if this holds in the local ring Ox 4, i.e.

Oxz - ¢*(my) = Ox 2 - 9" (my).

2.2.11. EXAMPLE. Look again at the morphism ¢: C — C := V(y? — 23) C C?,
t — (t2,3). Then ¢* is the injection O(C) = C[t?,t3] — CJt] and so

Clt] - " (m(,0) = (t,7) © V/(12,1%) = ().
Thus the zero fiber ¢~ (0) is not reduced. On the other hand, all other fibers are reduced.
In fact, ¢ induces an isomorphism of C* with the special open set C'\ {(0,0)}(= Cz = Cjp),

where the inverse map is given by (a,b) — 2

The following lemma shows that reducedness is a local property.

2.2.12. LEMMA. Let p: X —Y be a morphism and F := ¢~ 1(y) the fiber of y € Y.

(1) If F is reduced in x € F, then F is reduced in a neighborhood of x.
(2) If F is reduced in every x € F, then F is reduced.

PROOF. We will use here some standard facts related to “localization”, see [Eis95,
1.2.1]. Set R := O(X)/¢*(m,)O(X), and let ¢ := 1/(0) C R denote the nilradical.

(1) Since Ry, is reduced, the ideal ¢ is in the kernel of the map R — Ry, . It follows
that there is an element s ¢ m, such that v belongs to the kernel of R — Ry, i.e. Ry is
reduced. This means that the fiber F' is reduced in every point of Fj.

(2) If F is reduced in every point, it follows from (1) that there are finitely many
s; € R such that R, is reduced for all ¢ and that (s1,...,$s,) = R. This implies that
sN .t = (0) for all i and some N > 0, hence t = (0), because 1 € (s1,...,5m)- O

2.2.13. EXERCISE. Show that all fibers of the morphism : C — D := V(y* — 2® — 2®) C C?,
t > (> —1,t(t* — 1)), are reduced and that 1 induces an isomorphism C\ {1, -1} = D\ {(0,0)}.

2.2.14. EXERCISE. Consider the morphism ¢: SLa — C3, ¢( {Z Z}) := (ab, ad, cd).
(1) The image of ¢ is a closed hypersurface H C C? defined by zz — y(y — 1) = 0.
(2) The fibers of ¢ are the left cosets of the subgroup T := {{t til} |teC}.

(3) All fibers are reduced.

reducedfiber

Neil2

reducedfiber.lem

double-point

cosets
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(Hint: Show that the left multiplication with some g € SLy induces an automorphism Ay of H
and isomorphisms ¢~ (y) = ¢~ (A\g(y)) for all y € H. This implies that it suffices to study just
one fiber, e.g. ¢ ' (p(E)).)

2.2.15. EXERCISE. Consider the morphism ¢: C? — C? given by o(z,y) = (z, zy).

(1) o(C?) =C?\ {(0,y) | y # 0} which is not locally closed.

(2) What happens with the lines parallel to the z-axis or parallel to the y-axis?
(3) ¢~1(0) = y-axis. Is this fiber reduced?

(4) ¢ induces an isomorphism C? \ y-axis — C? \ y-axis.

2.3. Dominant morphisms and degree. Let ¢: X — Y be a morphism of affine
varieties, = a point of X and y := ¢(z) its image in Y. Then ¢*(m,) C m,, and so ¢*
induces a local homomorphism

(pi: Oyﬁl — OX,z-
(A homomorphism between local rings is called local if it maps the maximal ideal into the
maximal ideal.)

The next proposition tells us that, in a neighborhood of a point z € X, a morphism
@ is uniquely determined by the local homomorphism ¢} .

2.3.1. PROPOSITION. (1) Let p,vp: X =Y be two morphisms and v € X a point
such that p(x) = ¥(x) and @ = k. Then ¢ and yp coincide on every irreducible
component of X which contains x.

(2) Ifre X, yeY and if p: Oyy = Ox 4 is a local homomorphism, then there is
a special open sets X' C X containing v and a morphism p: X' — 'Y such that
7 = p-

(3) Ifz € X,y €Y and p: Oyy = Ox, an isomorphism, then there exist spe-
cial open sets X' C X and Y' C Y containing x and y, respectively, and an
isomorphism ¢: X' =Y such that ¢ = p.

PRrROOF. (1) Let R be a finitely generated reduced C-algebra and m C R a maximal
ideal. The canonical map pu: R — Ry, is injective if and only if m contains all minimal
prime ideals of R. (In fact, ker p = {r € R | sr = 0 for some s € R\ m}.)

Denote by X C X the union of irreducible components passing through z and by Y C
Y the union of irreducible components passing through ¢(z). Then (X ) C Y, because the
image of an irreducible component of X is contained in an irreducible component of Y (see
Exercise 2.2.3). Thus we obtain a morphism @: X — Y with the following commutative
diagram of C-algebras and homomorphisms which shows that ¢ is completely determined
by o3

oY) —— 0O(Y) — Oy o) = Oy ()

lw* l@* lvi

O(X) —— O(X) —=—  Ox,=0Ox,
(2) We can assume that all irreducible components of X pass through x and all irreducible
components of Y pass through y. Then
O(Y) - OY,y — 0X73¢ B O(X)

Let hy,...,hy € O(Y) be a set of generators and put g; := p(h;). Then we can find an
element ¢ € O(X) \ m, such that g; € O(X), for all j, i.e. p(O(Y)) C O(X);. Hence there
is a morphism ¢: X; — Y such that ¢* = plo(x),, and so ¢} = p.

(3) By (2) we can assume that there is a morphism ¢: X — Y such that ¢% = p, i.e.
p(O(Y)) C O(X). Let f1,..., fn € O(X) be generators. Then f; = p(h)) where h; € O(Y)
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and s € O(Y) \ my,. This implies that p(O(Y);) = O(X); where t = p(s). Thus p induces
an isomorphism O(Y), = O(X);, and the claim follows. O

2.3.2. DEFINITION. Let X,Y be irreducible affine varieties. A morphism ¢: X — Y
is called dominant if the image is dense in Y, i.e. ¢(X) = Y. This is equivalent to the
condition that ¢*: O(Y) — O(X) is injective (see Proposition 2.2.1(2)).

It follows that every dominant morphism ¢: X — Y induces a finitely generated field
extension ¢*: C(Y) — C(X). If this is a finite field extension of degree d := [C(X) : C(Y)]
we will say that ¢ is a morphism of finite degree d. If d = 1, i.e. if ¢* induces an isomorphism
C(Y) = C(X), then ¢ is called a birational morphism.

2.3.3. EXERCISE. Let ¢: C — C be a non-constant morphism. Then ¢ has finite degree d,
and there is a non-empty open set U C C such that #¢ *(x) = d for all z € U.

There is a similar result as the second part of Proposition 2.3.1 saying that affine
varieties with isomorphic function fields are locally isomorphic.

2.3.4. PROPOSITION. Let X and Y be irreducible affine varieties and assume that we
have an isomorphism p: C(Y) = C(X). Then there exist special open sets X' C X and
Y' CY and an isomorphism v: X' 5 Y such that p = *.

PRrROOF. Since O(Y) C C(Y) is finitely generated, there is an f € O(X) such that
p(O(Y)) C O(X)s. Replacing X by X; we can therefore assume that p(O(Y)) C O(X).
By the same argument we can find an h € O(Y) such that p=}(O(X)) € O(Y)p,. Thus
OV )1) € O(X) iy and p~H(O(X) ) € O ). Hence p(O(Y)a) = O(X) ), and
we get an isomorphism 91 X, 5Y), with ¢* = p. O

2.4. Rational varieties and Liiroth’s Theorem. An irreducible affine variety X
is called rational if its field of rational functions C(X) is a purely transcendental extension
of C (section 1.7). By Proposition 2.3.4 this means that X contains a special open set U
which is isomorphic to a special open set of C™.

2.4.1. PROPOSITION. Let ¢: X — Y be a dominant morphism where X is rational
and dimY = 1. Then Y is a rational curve.

PROOF. We can assume that X is a special open set of C™. Then there is a line L in
C™ such that ¢(L N X) C Y is dense. This implies that C(C) € C(L N X) = C(x), and
the claim follows from the LUROTH’s Theorem below. O

2.4.2. THEOREM (LUROTH’s Theorem). Let K C C(z) be a subfield which contains C.
Then there is an h € K such that K = C(h).

PROOF. We can assume that K # C. Any f(t) € C(x)[t] can be written in the
form f(t) = % where p(z,t) € Clz,t], ¢(z) € Clz], and p, ¢ are relatively prime.
Define the degree of f by deg(f) := max{deg, p,deg, ¢q}. It is easy to see that deg(f) =
deg(f1) + deg(f2) in case f = f1f2 and both factors f; are monic as polynomials in ¢.

Let h € K\ C be an element of minimal degree d, h = Tgi; where r, s € C[z]. We can
assume that r, s are monic and that deg, s < deg, r = d. Set f = f(¢) := r(t) — hs(t) €
K|[t] € C(z)[t]. Then deg, f = d and f(x) = 0. We claim that f is irreducible in K[¢]. This
implies that f is the minimal polynomial of x over K, but also the minimal polynomial of
x over C(h), hence K = C(h).

It remains to see that f is irreducible as a polynomial in K[t]. If f(t) = f1(¢)f2(t),
then deg(f) = deg(f1) + deg(f2) since f is monic. If deg(f1) = 0, then f1(¢) € C[t], and
thus f1(¢) divides r(t) and s(t), because h is purely transcendental over C. Therefore, we

image
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birational.prop

rational-
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birational.prop

rational-
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can assume that 0 < deg(f1) < d. But then one of the coeflicients of f;(¢) belongs to K\ C
and has height < d, contradicting the minimality of d. 0

2.5. Products. If f is a function on X and h a function on Y, then we denote by
f - h the C-valued function on the product X x Y defined by (f - h)(z,y) := f(z) - h(y).

2.5.1. PROPOSITION. The product X XY of two affine varieties together with the
algebra
OXxY):=C[f-h| feO(X),heOY)]
of C-valued functions is an affine variety. Moreover, the canonical homomorphism O(X)®
OY)—=0O(X xY), f@hw f-h, is an isomorphism.

PROOF. Let X C C” and Y C C™ be closed subvarieties. Then X x Y C C*t™ is
closed, namely equal to the zero set V(I(X) U I(Y)). So it remains to show that O(X x
Y) = Cly, ..oy, Zny Y1y -+, Um] /I (X x Y) is generated by the products f - h and that
f-heOXxY)for fe OX)and h € O(Y). But this is clear since Z; = z;|xxy =
zi|x -1 and §; = yjlxxy = 1-yjly, and f|x - hly = (fh)|xxy for f € Clzy,...,z,] and
h e C[yla s 7ym]'

For the last claim, we only have to show that the map O(X) ® O(Y) — O(X x Y),
f®h— f-h,is injective. For this, let (f; | i € I) be a basis of O(Y). Then every element
5 € O(X)®O(Y) can be uniquely written as s = > o .. s, ® f;. If s is in the kernel of the
map, then > s;(z) fi(y) = 0 for all (z,y) € X xY and so, for every fixed z € X, > s;(z) f;
is the zero function on Y. This implies that s;(z) = 0 for all z € X and so s; = 0 for all
1. Thus s = 0 proving the claim. O

2.5.2. EXAMPLE. (1) By definition, we have C™ x C™ = C™*".
(2) The two projections pry: X xY — X, (z,y) — x, and pry: X XY — Y,
(x,y) — y, are morphisms with comorphisms pr (f) = f-1 and pri-(h) =1- h.
(3) f p: X — X" and ¢: Y — Y’ are morphisms, then so is

ex P X xY = X' xY', (2,9) = (o(),%(y)).

(4) Diagonal: A: X — X x X, x — (z,z) is a closed immersion where A(X) C
X x X is the closed subset defined by {f-1—-1-f| f € O(X)}.
(5) Graph: Let p: X — Y be a morphism. Then

I(p) = {(z,p(2)) [z € X} C X XY

is a closed subset. Moreover, the projection pry induces an isomorphism p: I'(¢) =
1

X and ¢ = pry op™ .
(6) Matrix multiplication: The composition of linear maps
p: Hom(U, V) x Hom(V, W) — Hom(U,W), (A,B)— BoA
is a morphism. Choosing coordinates we find p*(2;;) = >, YikZr;-
2.5.3. EXERCISE. Show that the ideal of the diagonal A(X) C X x X is generated by the
function f-1—1- f, f € O(X) (see Example 2.5.2(4)).

2.5.4. LEMMA. The projection pry: X xY — X 4s an open morphism, i.e. the image
of an open set under pry is open.

PrOOF. It suffices to show that the image of a special open set U := (X x Y), is
open. Writing g = ) f; - h; with linearly independent h; one gets pry(U) = |J, Xy, and
the claim follows. O

2.5.5. PROPOSITION. If X,Y are irreducible affine varieties, then X XY is irreducible.



A.2. MORPHISMS 133

PRrROOF. Assume that X x Y = AU B with closed subsets A, B. Define
Xa={reX|{z} xYCA} and Xp:={reX|{z}xY CB}
Since Y is irreducible we see that X = X4 U Xpg. Now we claim that X4 and Xp are both
closed in X and so one of them equals X, say X4 = X. But then A = X x Y and we are

done. To prove the claim we remark that X \ X4 = pry(X x Y \ A) which is open by
Lemma 2.5.4 above. O

open

2.5.6. COROLLARY. If X = J; X; and Y = J,Y; are the irreducible decompositions general-product
of X andY, then X xY = Uij X; x Yj is the irreducible decomposition of the product.

2.5.7. REMARK. In terms of algebras, Proposition 2.5.5 above says that a tensor prod-
uct A ® B of two finitely generated domains is a domain.

irreducible-

product.prop

fiberprod.subsec

2.6. Fiber products. Let X,Y, S be affine varieties and let ¢: X — S, ¢¥: Y — §
two morphisms. Then

XxgY ={(z,y) e X xY |p(x)=¢(y)} CX XY

is a closed subset. In fact, it is the inverse image (o x ¥) "} (A(S)) of the diagonal A(S) C
S x S which is a closed subset (Example 2.5.2(4)). We have the commutative diagram

exproduct

X X g Y q Y diagonal

pl lw

X —F5 8
where the morphisms p and ¢ are induced by the projections X xY — X and X xY — Y.
The affine variety X xg Y is called the fiber product of X,Y over S. It has the following
universal property which defines it up to unique isomorphisms.

2.6.1. PROPOSITION. If a: Z — X and 5: Z — Y are two morphisms such that
poa = 1pof3, then there is a unique morphism (o, B): Z — X xgY such that po(a, f) = «

and q o (o, B) = :
A B

XxgV 1 >y

Pk
X—*% .9

PrOOF. Clearly, the morphism z — (a(z),5(2)) € X x Y has its image in X xz YV
and satisfies the conditions. It is also obvious that it is unique. O

2.6.2. EXAMPLE. (1) If ¢: X — S is a closed immersion, then ¢ is a closed
immersion with image ¢ ~1(X).
(2) If se Sand X = {s} < S, then {s} xg Y =¢~1(s).
(3) If f€O(S) and p: X =855 < S, then Sy xgY =Yy (5) CY.

2.6.3. EXAMPLE. We look again at the curve D := V(y? — 22 — 23) and the morphism

¢: C — D given by t — (t* — 1,¢(¢t* — 1)) from Example 2.1.3 (see also Exercise 2.2.13).
Then C xp C=AU{(1,-1),(=1,1)} C C? where A is the diagonal. double-point

2.6.4. EXERCISE. Show that O(X x5Y) =~ (O(X) ®o(s) O(Y))rea where Rieq := R/+/(0).



Galois.ex

Galois.ex

sectionirrdec

ex-dimension

134 APPENDIX A. BASICS FROM ALGEBRAIC GEOMETRY

2.6.5. EXAMPLE. Let f: C™ — C be a morphism defined by a homogeneous polynomial
f € Clzy,...,x,] of degree d. Then all fibers f~1()\) for A # 0 are isomorphic and smooth.
They are irreducible if and only if f is not a power of another polynomial.

PRrROOF. The first part is clear, because ), %xi =d- f. It is also obvious that f — 1
is reducible, if f is a power of another polynomial. So assume that f — 1 is reducible, and
consider the polynomial F(xy,...,7,,2) = f(z1,...,2,) — 2% Then the zero set V(F) is

the fiber product
V(F)=CxcC" —4— Cn

/| l

C SELENN
and V(F) \ p~1(C*) ~ C* x f~!(1), because f is homogeneous of degree d. This shows
that V(F') and hence F' is reducible. Considering F' as a polynomial F' = f — 2" € K|[z]
where f € K := Clxy,...,z,], we can use a standard result from Galois theory to deduce
that f is a power (Exercise 2.6.6). O

2.6.6. EXERCISE. Let K be a field of characteristic zero which contains the roots of unity.
Let d € N and assume that a € K\ J,, K”. Then the polynomial 2% —a € K|[z] is irreducible.

(Hint: If b% = a, then 2% —a = Hj (2 — ¢7b) where ¢ € K is a primitive dth root of unity. It follows
that K[b]/K is a Galois extension, and that the Galois group G embeds into the group pq C K

of dth roots of unity by o — %. Thus G is cyclic, and if the order is m|d, then the power of b™
is fixed by G.)

3. Dimension

3.1. Definitions and basic results. If k£ is a field and A a k-algebra, then a

set ai,as,...,a, € A of elements from A are called algebraically independent over k if
they do not satisfy a non-trivial polynomial equation F(a1,as,...,a,) = 0 where F €
klxy,...,x,]. Equivalently, the canonical homomorphism of k-algebras k[z1,...,z,] — A

defined by z; — a; is injective.

In order to define the dimension of a variety we will need the concept of transcendence
degree tdeg;, K of a field extension K /k. It is defined to be the maximal number of alge-
braically independent elements in K. Such a set is called a transcendence basis, and all
such bases have the same number of elements. We refer to [Art91, Chap. 13, Sect. 8] for
the basic properties of transcendental extensions.

3.1.1. DEFINITION. Let X be an irreducible affine variety and C(X) its field of rational
functions. Then the dimension of X is defined by

dim X := tdege C(X).

If X is reducible and X = |J X; the irreducible decomposition (see 1.6), then
dim X := maxdim Xj.

Finally, we define the local dimension of X in a point z € X = |J X; to be

dim, X := max dim X;.
X3z

3.1.2. EXAMPLE.
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(1) We have dim C™ = n. More generally, if V is a complex vector space of dimension
n, then dimV = n.
(In fact, x1,..., 2, is a transcendence basis of the field C(xy,...,z,).)

(2) If U C X is a special open subset which is dense in X, then dimU = dim X.
(This is obvious if X is irreducible. If X; C X is an irreducible component, then
U; == UnNX; is a special open set and U = |J,; U; is the decomposition into
irreducible components.)

(3) Every maximal set of algebraically independent elements of O(X) consists of
dim X elements.
(For an irreducible X this is clear, and one easily reduces to this case.)

last

3.1.3. EXERCISE. If ¢: X 5 Y is an isomorphism, then dim, X = dimg () Y for all z € X.

3.1.4. EXERCISE. Let G C GL,, be a closed subgroup. Then dimy G = dim G for all g € G. irredgroups
(Hint: Use the fact that left multiplication with g is an isomorphisms G = G.)
3.1.5. LEMMA. For affine varieties X,Y we have dim(X x V) = dim X + dim Y, dimeproduct

Proor. It suffices to consider the case where X, Y are irreducible, see Corollary 2.5.6.
Then O(X)®O(Y) is a domain as well as C(X)®C(Y). Now C(X) is finite over a subfield
C(x1,...,2,) where n = dim X, and C(Y) is finite over a subfield C(yi,...,¥m) where
m = dimY. Hence C(X) @ C(Y) is finitely generated over C(x1,...,2,) @ C(y1,. .., Ym)-
Since C(X x Y) is the field of fractions of C(X) @ C(Y), it follows that it is finite over
C(z1,..-,Tn,Y1,- -, Ym) which is the field of fractions of C(z1,...,2,)RC(y1, ..., Ym). O

general-product

dimX?

3.1.6. EXERCISE. Let X be an affine variety. Assume that O(X) is generated by r elements.
Then dim X < r, and if dim X = r, then X ~ C".

3.1.7. EXERCISE. The function z + dim, X is upper semi-continuous on X. (This means
that for all & € R the set {z € X | dim, X < a} is open in X.)

hypersurface.lem

3.1.8. LEMMA. Let f € Clzy,...,2,] be a non-constant polynomial and X := V(f) C
C™ its zero set. Then dim X =n — 1.

PrROOF. We can assume that f is irreducible and that the variable x,, occurs in f.
Denote by z; € O(X) = Clx1,...,z,]/(f) the restrictions of the coordinate functions ;.
Then C(X) = C(Z1,Z2,...,Ty). Since f(Z1,Ta,...,T,) = 0 we see that Z,, € C(X) is alge-
braic over the subfield C(Z1, Za, ..., Zn—1). Therefore, tdeg C(X) = tdeg C(Z1, Za, ..., Tn-1) <
n — 1. On the other hand, the composition

Clz1, .. 2n1] = Clry, ..., z,] —> O(X)
is injective, since the kernel is the intersection (f) N Clxy,...,2,—1] which is zero. Thus,
tdeg C(X) > n — 1, and the claim follows. O

The first part of the proof above, namely that dim V(f) < n = dim C" has the following
generalization.

3.1.9. LEMMA. If X is irreducible and Y ;Cé X a proper closed subset, then dimY <
dim X.

PRrROOF. We can assume that Y is irreducible. If hq, ..., h,, € O(Y) are algebraically
independent where m = dimY’, and h; = iL1|y for hy,...,hy € O(X), then hi,... hm
are algebraically independent, too, and so dim X > dim Y. If dimY = dim X, then every
f € O(X) is algebraic over C(hy, ..., hy). Choose f € O(X) in the kernel of the restriction
map, i.e. fly = 0. Then f satisfies an equation of the form

P o f =0
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where p; € C(hy,...,hy,) and k is minimal. Multiplying this equation with a suitable

qE€ C[izl, ..., hy] we can assume that p; € (C[?Ll, ...y hy). But this implies that pg|y = 0.
Thus pr = 0 and we end up with a contradiction. O

3.1.10. ExamMPLE. We have dim X = 0 if and only if X is finite, and this is equivalent
to dimg O(X) < oo.
(This is clear: If X is irreducible of dimension 0, then C(X) is algebraic over C and so
C=0(X)=C(X), and the claim follows.)

3.1.11. EXERCISE. Let A be a finitely generated algebra. Then the following statements are
equivalent.

(i) A is finite dimensional.
(ii) Area := A/+/(0) is finite dimensional.
(iii) The number of maximal ideals in A is finite.

3.1.12. EXERCISE. Let U C X be a dense open set. Then dim X \ U < dim X.

3.1.13. PROPOSITION. Let X be an irreducible affine variety of dimension n. Then

there is a special open set U C X which is isomorphic to a special open set of a hypersurface
V(h) C Cnt1.

PROOF. The existence of a primitive element implies that the field of rational functions

C(X) has the form
C(X) =C(z1, ..., zn)[f]

where f satisfies a minimal equation: f™ +p; f™ '+ +p, =0, p; € C(z1,...,2,), see
[Art91, Chap. 14, Theorem 4.1]. Multiplying with a suitable polynomial from C[zy, ..., x,]
we can assume that all p; belong to C[z1, ..., x,]. Then the polynomial h := y™+py" '+
-+ pm € Clz1,...,2p,y] is irreducible and defines a hypersurface H := V(h) C C**!
whose field of rational functions C(H) is isomorphic to C(X), by construction. Now the
claim follows from Proposition 2.3.4. O

3.2. Finite morphisms. Finite morphisms will play an important role in the fol-
lowing. In particular, they will help us to “compare” an arbitrary affine variety X with
an affine space C" of the same dimension by using the famous Normalization Lemma of
NOETHER.

3.2.1. DEFINITION. Let A C B be two rings. We say that B is finite over A if B is a
finite A-module, i.e. there are by,...,bs € B such that B = Zj Ab;.

A morphism ¢: X — Y between two affine varieties is called finite if O(X) is finite
over ¢*(O(Y)).

If A C B C C are rings such that B is finite over A and C' is finite over B, then C
is finite over A. In particular, if ¢: X — Y and ¢: Y — Z are finite morphisms, then
the composition 1 o ¢: X — Z is finite, too. Another useful remark is the following: If
¢: X = Y is finite and X’ C X, Y’ C Y closed subsets such that ¢(X’) C Y, then the
induced morphism ¢’: X’ — Y” is also finite.

3.2.2. EXAMPLE. Typical examples of finite morphisms are the ones given in Exam-
ple 2.1.3, namely ¢: C — C = V(y? —23) CC? and ¢: C — D = V(y? — 22 — 23) C C%
In both cases, the morphisms are the so-called normalizations, a concept which we will
discuss later.

On the other hand, the inclusion of a special open set X; < X is not finite if f is
neither invertible nor zero.
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3.2.3. EXERCISE. Every non-constant morphism ¢: C — C is finite, and the same holds for
the non-constant morphisms : C* — C*.
The basic geometric property of a finite morphism is given in the next proposition.

3.2.4. PROPOSITION. Let ¢: X = Y be a finite morphism. Then ¢ is closed and has
finite fibers.

PrROOF. If y € Y, then ¢ ' (y) = Vx(p*(m,)) (see 2.2). If ¢~ 1(y) # 0, then the
induced morphism ¢~!(y) — {y} is finite, too, and so O(¢~1(y)) is a finite dimensional
C-algebra. Thus, the fiber ¢ ~1(y) is finite (Example 3.1.10) proving the second claim.

For the first claim it suffices to show that ¢(X) = ¢(X). Hence we can assume that
»(X) =Y, ie. that p*: O(Y) — O(X) is injective. If o~ (y) = @, then O(X)m, = O(X)
where we identify m, with its image ¢*(m,). The Lemma of NAKAYAMA (see Lemma 3.2.5
below) now implies that (1 4+ a)O(X) = 0 for some a € m, which is a contradiction since
14+a#0. g

3.2.5. LEMMA (Lemma of NAKAYAMA). Let R be a ring, a C R an ideal and M
a finitely generated R-module. If aM = M, then there is an element a € a such that
(14 a)M = 0. In particular, if M is torsionfree and a # R, then M = 0.

PROOF. Let M = Z?Zl Rmj. Then m; = Zj a;;m; for all ¢ where a;; € a. If A
denotes the k x k-matrix (a;;); ; and m the column vector (my,...,ms)" this means that
m = A-m. Thus (E — A)m = 0, and so det(E — A)m; = 0 for all j. But

l—an1  —ax
det(E — A) =det | —@21 l—ax2 -+ | =144 wherea € a.

and the claim follows. O

3.2.6. EXERCISE. Define p: C* — C by t — t + % Show that his morphism is closed, has
finite fibers, but is not finite. Thus the converse statement of the Proposition 3.2.4 above is not
true.

3.2.7. EXERCISE. Let X be an affine variety and z € X. Assume that f1,..., fr € m, generate
the ideal m, modulo m2, i.e., my = (f1,..., fr) +m2. Then {z} is an irreducible component of

Vx(fi,..., fr)-
(Hint: If C C Vx (f1,---, fr) is an irreducible component containing 2z and m C O(C) the maximal
ideal of z, then m?> = m. Hence m = 0 by the Lemma of NAKAYAMA above.)

3.2.8. EXERCISE. Let ¢: X — Y be a finite surjective morphism. Then dim X = dim Y.

3.2.9. EXERCISE. Let X be an affine variety and X = |J, X; the irreducible decomposition.
A morphism ¢: X — Y is finite if and only if the restrictions ¢|x,: X; — Y are finite for all 3.

The following easy lemma will be very useful in sequel.

3.2.10. LEMMA. Let A C B be rings and b € B. Assume that b satisfies an equation
of the form

(6) B +ab™ a2+ 44, =0
where a1, as,...,am € A. Then the subring A[b] C B is finite over A.
PROOF. It follows from the equation satisfied by b that for N > m we have
WYV = —a bV —apbN T — e — bV

and so, by induction, that A[b] = 37" " Ab'. O
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3.2.11. DEFINITION. An element b € B satisfying an equation of the form (6) is called
integral over A.

The next result is usually called the “Normalization Lemma”. It is due to EMMY
NOETHER, but was first formulated, in a special case, by DAVID HILBERT.

3.2.12. THEOREM (Normalization Lemma). Let K be an infinite field and A a finitely
generated K-algebra. Then there are algebraically independent elements ay,...,a, € A
such that A is finite over Klay,...,ay]

PrOOF. We proceed by induction on the number m of generators of A as a K-algebra.
If m =0, then A = K and there is nothing to prove. If A = KJby,...,b,] and if by, ..., by,

are algebraically independent, we are done, too. So let’s assume that F'(by,...,b,) =0
where F' € K[z, ..., %] is a non-zero polynomial. We can also assume that x,, occurs in
F. Write

F= Z Qpyrg.iry 1 TG - T

and put 7 := max{ri +ro+ -+ "m | O ry.r, # 0}. Substituting z; = x} + yjy, for
j=1,...,m—1, we find

(7) F= ( Z arl...rm’){l "'7;;”—_11)1‘:)1+H(x/17"'7x;n—17xm)
r1+ret-trm=r

where x,, occurs in H with an exponent < 7. Since K is infinite we can find v, ..., Ym_-1 €

K such that 3. _ o et eyt # 0. Setting b i= bj — by, for j =

1,...,m—1, weget A= K[b],bh,...,b,,_1,bn]. Now equation (7) implies that b, satisfies

an equation of the form (6), hence A is finite over K[b),...,0, ;] by Lemma 3.2.10, and

the claim follows by induction. a

3.2.13. REMARK. The proof above shows the following. If A = KJby,...,b,], then
there is a number n < m and n linear combinations a; := Zj vijb; € A such that
ay,...,a, are algebraically independent over K and that A is finite over Klay,...,ay].

A first consequence is the following result which is usually called NOETHER’S normal-
1zation.

3.2.14. PROPOSITION. Let X is an affine variety of dimension n. Then there is a finite

Noethel'Normalizationg)lrﬁ}jective mor‘phism SD . X N (C’I’L

NNL

ex-dimension

finitemorphism

lincomb

finite-cone

homogeneous-pol

PrROOF. It follows from the Normalization Lemma (Theorem 3.2.12) that there exist
fi,--+, fn € O(X) such that O(X) is finite over the subring C[f1, ..., f»]. Hence dim X =
n (Example 3.1.2(3)), and the morphism ¢ = (fi,..., fn): X — C™ is finite and surjective
(Proposition 3.2.4). O

This result can be improved, using Remark 3.2.13 above.

3.2.15. PROPOSITION. Let X C C™ be a closed subvariety of dimension n < m. Then
there is a linear projection A: C™ — C™ such that N\|x: X — C™ is finite and surjective.

In fact, more is true: There is an open dense set U C Hom(C™,C™) such that the
proposition above holds for any A € U. We will not give a proof here since it does not
follow immediately from our previous results. A special case is given in Exercise 3.2.18
below.

3.2.16. EXaMPLE. Let fi, fo,..., fmm € Clx1,...,x,] be non-constant homogeneous
polynomials, and put A := C[f1, fa,. .., fm]- Then the following statements are equivalent:

(i) Clz,...,2n]/(f1, f2,..., fm) is a finite dimensional algebra.

eqintegral
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(i) There is a k € N such that (z1,z2,...,2,)* C (f1, f2y- -+, fm)-

(iii) Clzq,...,zy] is finite over A.

ProOOF. Let m := (z1,...,2,) C Clz1,...,2,] be the homogeneous maximal ideal.

(i)=(ii): Since R := Clz1,...,xn])/(f1, f2,- -, fm) is graded and finite dimensional we
have m”* = 0 for some k where m C R is the image of m. Hence m* C (f1,..., fm).

(il)=-(iii): Set V := @i:ol Clz1, ..., xn)i € Clzy,...,x,). We will show, by induction,
that m* C AV for all £, hence AV = C[zy,...,2,]. Clearly, m* C AV for £ < k. If £ > k
and f € m’, then f = it hifi where we can assume that all h; are homogeneous.
Therefore, deg h; < ¢, hence h; € AV by induction, and so f € AV.

(iii)=(i): If Clzy, ..., zy] is finite over A, then Clz1,...,2,]/(f1,..., fm) is finite over
A/(f1,-., fm) = C, hence the claim. O

3.2.17. EXERCISE. Assume that the morphism ¢: C" — C™ is given by non-constant homo-
geneous polynomials fi, -, fm. If o~ (0) is finite, then = *(0) = {0} and ¢ is a finite morphism.
(Hint: Use the example above together with Exercise 3.1.11.)

3.2.18. EXERCISE. Let X C C" be a closed cone and A\: C" — C™ a linear map. If X Nker A =
{0}, then A\|x: X — C™ is finite. Moreover, the set of linear maps A\: C* — C™ such that A|x is
finite is open in Hom(C™,C™) = M, »(C).

NOETHER’S normalization often allows to reduce problems about general affine vari-
eties X to the case X = C". One useful application is the following, and more will follow
in the next sections.

3.2.19. PROPOSITION. An irreducible affine variety X cannot be covered by a countable
set of proper closed subsets.

PRrOOF. This is clear for X = C. Now let X = (J,; X; where I is countable and all
X; C X are closed. If X = C", then, by induction, every linear subspace of dimension
n — 1 is contained in one of the X;. Since there are uncountable many such subspaces,
there are infinitely many of them contained in the same X;. Thus X; = C", because the
union of infinitely many linear subspace of codimension 1 is Zarsiki-dense in C™. In fact,
a polynomial vanishing on such a union is divisible by infinitely many linear functions.

In general, choose a finite surjective morphism ¢: X — C™ (Proposition 3.2.14).
Then C" = (J;c; »(X;), and so p(X;,) = C" for some iy, because all p(X;) are closed
(Proposition 3.2.4). But then dim X;, =n = dim X and so X;, = X. O

3.3. Krull’s principal ideal theorem. We have seen in Lemma 3.1.8 that the
dimension of a hypersurface V(f) C C™ is equal to n — 1, i.e. codimcn V(f) = 1 where
the codimension of a closed subvariety Y C X is defined by codimy Y := dim X —dim Y.
We want to generalize this to arbitrary affine varieties X. First we prove a converse of
Lemma 3.2.10.

3.3.1. LEMMA. Let A C B be rings. Assume that A is Noetherian and that B is finite
over A. Then every b € B is integral over A, i.e., b satisfies an equation of the form

b 4 ab™ 4 agb™ % 4, =0
where a1, as,...,ay, € A.

PROOF. Since A is Noetherian the subalgebra A[b] C B is finite over A. Therefore,
the sequence A C A+ Ab C A+ Ab+ Ab?> C --- C A+ Ab+ ---+ AbF C --- becomes
stationary. Hence, there is a m > 1 such that ¥™ € A4+ Ab+--- + Apm—1, O
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int-closed

3.3.2. EXERCISE. Let r € C(z1,...,x,) satisfy an equation of the form
" 4™ o 4 po = 0 where pj € Clzy, ..., 0]
Then r € Clz1,...,2zxs]. In particular, if A C C(a,...,an) is a subalgebra which is finite over
Clai, .. .,an], then A = Claq,...,an].

3.3.3. LEMMA. Let A be a C-domain and K its field of fractions. Let aq,...,a, € A
be algebraically independent such that A is finite over Clay,...,a,]. Denote by N: K —
C(ay,...,ay) the norm. Then

(1) N(A) CClay,...,as);
(2) For alla € A we have \/AaNClay,...,a,] = \/Clai,...,a,]N(a).

PROOF. For a € A denote by aV) := a,a®,...,a™ € K the conjugates of a over
C(ay,...,a,) where K is the algebraic closure of K. Since a is integral over Clay, ..., a,],
the same holds for all a(/). This implies, by Lemma 3.2.10, that the subalgebra A :=
Clay,...,a,][aM, ..., a"] C K is finite over Clay, . . ., a,]. Therefore, N(a) = aMa® ... q(")
belongs to AN C(aq,...,ay) which is equal to Clay, ..., a,] by Exercise 3.3.2 above. This
prove the first claim.

Now we have

norm

lemintegral

int-closed

[It=a) ="+ ht™" 4 4 byt +

J
where h; € AN C(a,...,an) = Clay,...,a,] and h, = (=1)"N(a). It follows that
N(a) = ab where b = (—=1)""1(a" ' + hya" 2+ -+ + h,_1) € A and so N(a) € Aa.
Thus, Clay,...,a,]N(a) C AaNClay,...,a,)].

In order to see that Aa N Clay,...,a,] C

ment sa € Aa N Clay,...,a,]. Then N(sa) =
Cla1, .. .,a,)N(a) we finally get sa € \/Cla1, ...

V/Clai,...,a,]N(a) we choose an ele-
( a)’, and since N(sa) = N(s)N(a) €
an]N(a). O

3.3.4. THEOREM (KRULL’S Principal Ideal Theorem). Let X be an irreducible affine
variety and f € O(X), f # 0. Assume that Vx(f) is non-empty. Then every irreducible
component of Vx (f) has codimension 1 in X. In particular, dim Vx(f) = dim X — 1.

PROOF. Let Vx(f) =C1UCyU---UC, be the irreducible decomposition. Choose an
h € O(X) vanishing on CoUC3U- - -UC,. which does not vanish on Cy. Then Vx, (f) = CiN
X}, is irreducible. Thus, it suffices to consider the case where Vx (f) C X is irreducible. By
the Normalization Lemma (Theorem 3.2.12) there is a finite surjective morphism ¢: X —
C", n = dim X. By Lemma 3.3.3(2) we get o(Vx(f)) = V(N(f)), and so dim Vx(f) =
dimV(N(f)) =n —1 (see Lemma 3.1.8). O

KrullPIT.thm

NNL

hypersurface.lem
Tt is easy to see that this result also holds for equidimensional varieties (i.e. varieties X
where all irreducible components have the same dimension) in case f is a non-zero divisor.
For a general X and a non-zero divisor f € O(X), we can only say that every irreducible
component of Vx(f) has dimension < dim X — 1.

A first consequence is the following result.
3.3.5. PROPOSITION. Let X be an irreducible variety and f1, fo, ..., fr € O(X). If the

zero set Vx (f1,..., fr) is non-empty, then every irreducible component C of Vx(f1,- .., fr)
has dimension dim C' > dim X — r.

PROOF. We proceed by induction on dim X. Define Y := Vx(f1), and let Y = Y1 U
-+ UYs be the decomposition into irreducible components. Then

Vx(fr, o b)) =V, (f2r 0 fr)
J

dimcomponents.prop
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Since dimY; = dim X — 1 for all j we see, by induction, that every irreducible component
of Vy,(fa,..., fr) has dimension > (dim X — 1) — (r — 1) = dim X — r, and the claim
follows. O

3.3.6. EXERCISE. Let X be an affine variety and f € O(X) a non-zero divisor. For any
x € Vx (f) we have dim, Vx (f) = dim, X — 1.
(Hint: If f is a non-zero divisor, then f is non-zero on every irreducible component X; of X and so
Vx, (f) is either empty or every irreducible component has codimension 1. Now the claim follows
easily.)

Another consequence of KRULL’S Principal Ideal Theorem is the following which gives
an alternative definition of the dimension of a variety.

3.3.7. PROPOSITION. Let X be an irreducible variety and Y ; X a closed irreducible

subset. Then there is a strictly decreasing chain of length n := dim X,
Xp=X2X, 12 2Xa=Y 22X 2 X,

of irreducible closed subsets X;. In particular, dim X equals the length of a mazimal chain
of irreducible closed subsets.

PRrROOF. By induction, we only have to show that Y is contained in an irreducible
hypersurface H C X. Let f € I(Y) be a non-zero function. Then X O Vx(f) 2 Y and
so Y is contained in an irreducible component of Vx (f) which all have codimension 1 by
Theorem 3.3.4. d

3.3.8. REMARK. This result allows to define the dimension dim A of a C-algebra A
as the maximal length of a chain of prime ideal pg C p; C --- C p,,, C A. If A is finitely
generated, then dim A is finite, and every maximal chain has length dim A. Moreover,
dim A = dim A,.q where A,oq := A/\/((T), and so dim A = dim X where X is an affine
variety with coordinate ring isomorphic to A;eq.

We also see that for a variety X and a point z € X we have dim, X = dim Ox ;.

3.3.9. COROLLARY. Let A be a finitely generated C-algebra and let a € A be a non-zero
divisor. Then dim A/Aa < dim A — 1, and equality holds if Ayeq is a domain.

PrOOF. Put A := A/(a) and denote by a’ € A,q the image of a. Then a is a
non-zero divisor in Ayeq and so dim A;eq/+/(a’) < dim Ayeq — 1 by Theorem 3.3.4. Since
Aved =~ Aveda/+/(a’) we finally get dim A = dim A,eq < dim Ayeq — 1 = dim A — 1 O

3.4. Decomposition Theorem and dimension formula. Let ¢: X — Y be a
dominant morphism where X, Y are both irreducible. We want to show that the dimension
of a non-empty fiber ¢ ~!(y) is always > dim X — dim Y and that we have equality on a
dense open set of Y. A crucial step is the following Decomposition Theorem for a morphism.

3.4.1. THEOREM. Let X and Y be irreducible varieties and ¢: X — Y a dominant
morphism. There is a non-empty special open set U C'Y and a factorization of ¢ of the
form

e L (U)—L>UxCr

SOk

U

where p is a finite surjective morphism and r := dim X — dim Y. In particular, the fibers
o Hy) = p~({y} x C") have the same dimension for all y € U, namely dim X —dimY".

KrullPIT.thm
defdimA

PIT.cor

KrullPIT.thm

decomptheorem.subsec
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3.4.2. REMARK. We will see later in Proposition 3.4.7 that the fibers ¢ ~!(y) fory € U
are equidimensional, i.e., all irreducible components have the same dimension, namely
dim X —dimY.

PROOF. Since ¢ is dominant we will regard O(Y) as a subalgebra of O(X). Let
K = C(Y) be the quotient field of O(Y) and put A := K - O(X) C C(X), the K-
algebra generated by K and O(X). Then A is finitely generated over K and so we can find
algebraically independent elements hq, ..., h, € A such that A is finite over Klhq,...,h,]
(Theorem 3.2.12). It follows that r = dim X — dimY".

We claim that there is an f € O(Y) such that h; = % with a; € O(X) for all 7 and

that O(Xy) = O(X)y is finite over O(Y¥)[h1, ..., hy]. The first statement is clear, and we
can therefore assume that hq,..., h, € O(X).

For the second statement, let by,...,bs be generators of A over K[hy,...,h,]. Mul-
tiplying with a suitable element of O(Y) C K we can first assume that b; € O(X) and
then, by adding more elements if necessary, that by, ...,bs generate O(X) as a C-algebra.

Now b;b; = >, cgj)bk where c](fj) € K[hi,...,h;]. Thus we can find an f € O(Y) such
that f -\ € O(Y)[h,...,h]. It follows that

Z O(Y§)[h1,. .. h]b; CO(X); = O(Xy)

is a subalgebra containing O(X) and %, hence is equal to O(Xy), and the claim follows.
Setting U := Y} we get ¢~ !(U) = X; and obtain a morphism

p=px(hi,....;h): Xy =Yy xC", z— (¢(z),h1(x),...,h(x))

which satisfies the requirements of the proposition.
The last statement is clear (see Exercise 3.2.8). O

3.4.3. EXAMPLE. Let f € Clz,y] be a non-constant polynomial. Then there is a finite
morphism p: C2 — C2 such that f = pry op:

C2 _r, C2

C

PROOF. We can assume that the variable y occurs in f. Consider the isomorphism
®: C2 5 C? given by (z,y) — (z,y+2") and choose n large enough so that f = ®*(f) =
f(z,y+ 2") has leading term az™ where a € C*. Then C[z, ] is finite over C[f, ], hence
defines a finite surjective morphism p: C?> — C2, (z,y) (f(x,y),y), and we get the
following commutative diagram:

> 2 2

ol
cz 2,

Now the claim follow with p := po ®~1. O

3.4.4. EXAMPLE. In this example we work out the decomposition of Theorem 3.4.1
for the morphism : Ma(C) — Mz (C), A — A2 i.e., we want to find an f € O(Mz) such
that the induced morphism ¢~ (Mz(C)s) — M2(C); is finite and surjective.

dimfiber
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Let A = {‘C‘ Z] so that O(M,) = Cla, b, ¢, d] and

R := ¢*(O(My)) = C[a® + bc, d* + be,b(a + d), c(a + d)] € Cla, b, c, d).
We have tr(A)? — tr(A2%) = 2det(A), hence tr(A) satisfies the integral equation
(8) zt — 2tr(A?%)2? = 4det(A?) — tr(A?)?,

over R, showing that R[tr(A)] is finite over R and contains det(A). Since R contains the
elements tr(A)b, tr(A)c and a? — b? = tr(A)(a — b) it follows that

R[tr(A)}tr(A) = (C[(L, bv &) d}tr(A) .

Moreover, equation (8) has the two solutions +tr(A), and that the other two solutions
satisfy the equation x? — tr(A?) = —2det(A). It follows that the norm of tr(A4) which is
N(tr(A)) = tr(A?)? — 4det(A?), has in R[tr(A)] the decomposition

N(tr(A)) = tr(A)2(2 det(A) — tr(A2)),

trace

hence R[tr(A)]n(tr(a)) 2 R[tr(A)]e(a)- This implies that the induced morphism ¢~ (M (C) v (tr(4))) —

Mz (C) n(tr(a)) is finite and surjective of degree 4. Note that N (tr(A4)) # 0 is equivalent to
the condition that A2 has distinct eigenvalues.
3.4.5. EXERCISE. Work out the decomposition of Theorem 3.4.1 for the morphisms ¢: SLy —

C?, o( {Z Z}) := (ab, ad, cd) (see Exercise 2.2.14). What is the degree of the finite morphism p?

3.4.6. COROLLARY. If ¢: X =Y is a morphism, then there is a set U C ¢(X) which
is open and dense in o(X).

PrOOF. If X is irreducible, this is an immediate consequence of Theorem 3.4.1. In
general, let X = J,.; X; be the decomposition into irreducible components. Then, for a

suitable subset J C I, we can assume that ¢(X) = ;¢ ; ¢(X;) is the decomposition into
irreducible components. For each j € J there is a proper closed subset A; ; ©(X;) such

that p(X;) \ A; C ¢(X;). Hence ¢(X)\ ; A; is an open dense subset of ¢(X) contained
in the image p(X). O

3.4.7. PROPOSITION. Let X andY be irreducible varieties and p: X — Y a dominant
morphism. If y € o(X) and C is an irreducible component of the fiber o~ 1(y), then

dimC >dim X —dimY.

PROOF. Set m := dimY and let ¢: Y — C™ be a finite surjective morphism (The-
orem 3.2.12). If we denote by ¢: X — C™ the composition 1 o ¢, then every fiber of
@ is a finite union of fibers of ¢. Hence it suffices to prove the claim for the morphism
35 = (fl,. . .,fm>: X—->C" Ifa= (al,. . .,am) S (ZJ(X), then (,5_1<(l) = VX(fl - a17f2 -
a2, ..., fm — am), and the claim follows from Proposition 3.3.5, a consequence of Krull’s
Principal Ideal Theorem. 0

One might believe that the two propositions above imply that for any morphism
¢: X — Y the function y — dim ¢~!(y) is upper-semicontinuous. This is not true as one
can show by examples (see Exercise 3.4.8). However, a famous theorem of CHEVALLEY’S
says that the function x + dim, o~ !(¢(z)) is upper-semicontinuous on X. The proof is
quite involved and we will not present it here.

3.4.8. ExgERCISE. Consider the morphism ¢: C* — C? given by (z,%) — (z,zy). Show that
the image ¢(C?) is not locally closed in C? and that the map a — dim¢~'(a) is not upper-
semicontinuous.
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Another application of the above is the following density result. We call a morphism
v: X =Y strongly dominant if for every irreducible component C' C X the closure ¢(C)
is an irreducible component of Y. In case X and Y are both irreducible, this is equivalent
to dominant. Note that for a morphism ¢: X — Y with dense image it is not true in
general that the inverse image of a dense open set is dense. But this holds for a strongly
dominant morphisms where we have the following much stronger result.

3.4.9. PROPOSITION. Let p: X — Y be a strongly dominant morphism. If D CY is
a dense subset, then p~1(D) is dense in X.

PROOF. We can assume that X,Y are both irreducible and that all fibers have the
same dimension d := dim X — dimY. Consider the closed subset X’ := ¢o=1(D) C X and
denote by C1,...,C} the irreducible components of X’. Define, for i =1,...,k,

Di:={yeD|dmC;ny ' (y) =d}.

Clearly, D = |J, D;, and so there is an index ip such that ¥ = D,,. This implies that
the induced morphism ¢;,: Cj, — Y is dominant and that dim¢p; Yy) = d for all y
of the dense set D;, C Y. Therefore, dimC;, = dimY + d = dim X (see the following
Exercise 3.4.10), hence X = C;, C p~1(D). O

3.4.10. EXERCISE. Let X and Y be irreducible varieties and ¢p: X — Y a dominant morphism.
If D CY is a dense subset such that dimp~*(y) = d for all y € D, then dim X = dimY + d.

3.5. Constructible sets. Recall that a subset A C X of a variety X is called locally
closed if A is the intersection of an open and a closed subset, or, equivalently, if A is open
in its closure A. We have seen in Exercise 3.4.8 that images of morphisms need not to be
locally closed. However, we will show that images of morphisms are always “constructible”
in the following sense.

3.5.1. DEFINITION. A subset C' of an affine variety X is called constructible if it is a
finite union of locally closed subsets.

3.5.2. EXERCISE. (1) Finite unions, finite intersections and complements of constructible
sets are again constructible. ~
(2) If C is a constructible, then C contains a set U which is open and dense in C.

3.5.3. PROPOSITION. If ¢: X — Y is a morphism, then the image of a constructible
subset is constructible.

PROOF. Since every open set is the union of finitely many special open sets it suffices
to show, in view of the exercise above, that the image of a morphism is constructible. By
Corollary 3.4.6 there is a dense open set U C (X)) contained in the image ¢(X). Then the
complement Y’ := ¢(X)\ U is closed and dimY”’ < dimY (Exercise 3.1.12). By induction
on dim ¢(X), we can assume that the claim holds for the morphism ¢’: X' := ¢~ }(Y') —
Y” induced by ¢. But then ¢(X) = U U ¢'(X’) and we are done. O

3.5.4. EXERCISE. Let X be an irreducible affine variety and C' C X a dense constructible
subset. Then C' can written in the form

C:CQUOC]'
j=1

where Cp C X is open and dense, C; is locally closed, C; is irreducible of codimension > 1, and

CjﬁCoI(D.
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3.6. Degree of a morphism. Recall that a dominant morphism ¢: X — Y between
irreducible varieties is called of finite degree d if dim X = dimY and d = [C(X) : C(Y)]
(see 2.3). This has the following geometric interpretation.

3.6.1. PROPOSITION. Let XY be irreducible affine varieties and p: X — 'Y a dom-
inant morphism of finite degree d. Then there is a dense open set U C 'Y such that

#pl(y)=d forally € U.
PrOOF. We have C(X) = C(Y)[r] where r satisfies the minimal equation
a4 ag =0,

Replacing Y and X by suitable special open sets Y; and X7 (f € O(Y) C O(X)) we can
assume that

(1) € O(X);

(2) a1,...,aq € O(Y);

(3) O(X) is finite over O(Y) (Theorem 3.4.1);
(1) O(X) = OVl

In fact, (1) and (2) are clear and so A := O(Y)[r] = @'} O(Y)r* C O(X). For § :=
OY)\ {0} we get As = C(Y)[r] = C(X) = O(X)g, we can find an s € S such that
)

As = O(X)s, hence (3) and (4). In particular
d—1
OX)=EPON)ri & O[]/t + art™ + - + aq)
7=0

and so, for every y € Y, we get
O(X)/O(X)my, = C[t]/(t* + ar ()t + - + aa(y))

This means that the number of elements in the fiber ¢~!(y) is equal to the number of
different solutions of the equation

(9) t4+a ()t + - +ag(y) =0.

Let Dy be the discriminant of an equation of degree d (see Example 1.1.3) and define
f(y) :=D(a1(y),...,a4(y)). Then f € O(Y), and f(y) # 0 if and only if equation (9) has
d different solutions, or, equivalently, the fiber ¢ ~!(y) has d points. Thus, the special open
set U := Yy C Y has the required property. O

3.6.2. REMARK. One can show that the open set U constructed in the proof has the
property that the morphism ¢~1(U) — U is an unramified covering with respect to the
C-topology.

3.6.3. EXERCISE. What is the degree of the morphism M,, — M, given by A — A*?

3.6.4. EXERCISE. Let ¢: X — Y be a dominant morphism where X and Y are irreducible.
If there is an open dense set U C X such that ¢|y is injective, then ¢ is birational.

3.6.5. EXERCISE. Let ¢: X — Y be a quasi-finite morphism, i.e. all fibers are finite. Then
dim p(X) = dim X.

3.7. Mébius transformations. Let f € C(z) \ C, f = L where p,q € C[2] are
prime. Define deg f := max{degp, deg ¢}.

3.7.1. LEMMA. [C(z2): C(f)] =degf.
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PROOF. The rational function f defines a dominant morphism f: C\ V(q) — C,
corresponding to the embedding C(z) < C(z) given by z +— f. For o € C we find

ffoz:gfa:piaq.
q q
For a general a € C the numerator p — ag has degree deg f and has no multiple roots.
Thus, by Proposition 3.6.1, the map f has degree deg f. O
For any matrix A = {CCL 2} € GL2(C) the corresponding MOBIUS transformation
pa: C(z) = C(z) is defined by

(2) az +b

z) = .

pa cz+d

Lemma 3.7.1 above shows that 4 is an isomorphism, and a easy calculation gives paoup =
puap for all A, B € GLy(C). It is also clear that ua = up if and only if B = AA for some
A € C*. Finally, again by Lemma 3.7.1, every automorphism of the field C(z) is a MOBIUS
transformation. Thus we have proved the following result.

3.7.2. PROPOSITION. The map A — 4 is a surjective group homomorphism p: GLo(C) —

Aut(C(z)) with kernel C*Es.

4. Tangent Spaces, Differentials, and Vector Fields

4.1. Zariski tangent space. A tangent vector § in a point zq of an affine variety X
is “rule” to differentiate regular functions, i.e., it is a C-linear map 6: O(X) — C satisfying

(10) 6(f - g9) = flzo) 6(g) + g(w0) 6(f) for all f,g € O(X).
Such a map is called a derivation of O(X) in xo. For n > 0 we have 6(f") = nf" (o) -
4(f), and so, for any polynomial F = F(y1,...,Ym), we get

SF(frr o)) =3 g—quo), o F(0)) - 5(F5).

j=1 "%

This implies that a derivation in x( is completely determined by its values on a generating
set of the algebra O(X). Moreover, a linear combination of derivations in z( is again a
derivation in xy. As a consequence, the derivations in xg form a finite dimensional subspace
of Hom(O(X), C).

4.1.1. DEFINITION. The ZARISKI tangent space T, X of a variety X in a point xg is
defined to be the set of all tangent vectors in xq:
T X := Derg, (O(X)) :={d: O(X) — C | § a C-linear derivation in z¢}.
We have seen that T, X is a finite dimensional linear subspace of Hom(O(X), C).

4.1.2. EXERCISE. Let § € T, X be a tangent vector in x. Then
(1) 6(c) =0 for every constant ¢ € O(X).

(2) 1t f € O(X) is invertible, then (/") = —

fl@)®
4.1.3. ExampLE. If X =C" and a = (a4, ...,a,) € C", then

T.c"=EPc 0

al‘i a
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where 8%1- (f) = g—i(a). Thus we have a canonical isomorphism 7,C" ~ C" by identi-

fying 6 € Daera((C[:vl, .oy xy]) with (8z4,...,0z,) € C™.
More generally, if V' is a finite dimensional vector space and z¢y € V we define, for
every v € V, the tangent vector 9, 4,: O(V) — C in x¢ by

Dy o (f) = f(zo +1tv) — f(=0)

)
t t=0

and thus obtain a canonical isomorphism V' = T, V, for every zo € V. We will mostly
identify T,V with V.

Let 6 € T, X be a tangent vector. Since O(X) = C@m, we see that J is determined by
its restriction to m,. Moreover, formula (10) above shows that § vanishes on m2. Hence, §
induces a linear map 0: m, /m2 — C.

4.1.4. LEMMA. Given an affine variety X and a point x € X there is a canonical
isomorphism
T,X = Hom(m,/m2,C).
given by § v 6 := 8|, .

PROOF. We have already seen that ¢ +— ¢ is injective. On the other hand, let C' C m,
be a complement of m2 so that O(X) = C® C @ m2. If \: C — C is linear, then one
easily sees that the extension of A to a linear map ¢ on O(X) by putting d|cgmz =0 is a
derivation in . O

4.1.5. EXERCISE. The canonical homomorphism O(X) — Ox . induces an isomorphism
mz/mi = m/m2 where m C Ox . is the maximal ideal.

If U =Xy C X is a special open set and € U, then T,U = T, X in a canonical
way. In fact, a derivation §’ of O(U) induces a derivation ¢ of O(X) by restriction: 6(h) :=
0’(hly), and every derivation 0 of O(X) “extends” to a derivation ¢’ of O(U) = O(X)s
by setting (5'(]%) = —%W (see Exercise 4.1.2; one has to check that every
derivation vanishes on the kernel of the map O(X) — O(Xy)). The same result follows
from Exercise 4.1.5 using Lemma 4.1.4.

4.1.6. EXERCISE. If Y C X is a closed subvariety and z € Y, then dim 7T, Y < dim T, X.
(Hint: The surjection O(X) — O(Y) induces a surjection my x /m2 x — mgy /m2 y.)

4.1.7. PROPOSITION. dim7,X > dim, X.

ProoF. If C' C X is an irreducible component passing through = we have dim7,C <
dim T, X (Exercise 4.1.6). Thus we can assume that X is irreducible. Choose f1,..., f, €

m, such that the residue classes modulo m2 form a basis of m,/m2, hence r = dim T}, X,
by Lemma 4.1.4. Since the zero set Vx(f1,..., fr) has {2} as an irreducible component

(see Exercise 3.2.7) it follows from Proposition 3.3.5 that
0=dim{z} > dim X — r = dim X — dim 7, X.
Hence the claim. O

4.1.8. DEFINITION. The variety X is called nonsingular or smooth in z € X if
dimT,X = dim, X. Otherwise it is singular in x. The variety X is called nonsingular

or smooth if it is nonsingular in every point. We denote by Xing the set of singular points
of X.

4.1.9. PROPOSITION. Forx € X andy €Y there is a canonical isomorphism
Tz (X xY) ST,XaT,Y.
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PRrROOF. Every derivation § of O(X x Y) in (x,y) induces, by restriction, derivations
dx of O(X) in x and dy of O(Y') in y. This defines a linear map T(, ) X XY — T, X ©T,Y
which is injective, because §(f - h) = h(y) - ox f + f(x) - dyh for f € O(X) and h € O(Y).

In order to see that the map is surjective we first claim that given two derivations
01 € TX and §y € T,Y there is a unique linear map §: O(X x Y) — C such that
O(f - h) = h(y) - 01f + f(z) - 62h. This follows from Proposition 2.5.1 and the universal
property of the tensor product. Now it is easy to see that this map ¢ is a derivation in
(z,y) and that dx = 01 and oy = da. O

4.2. Tangent spaces of subvarieties. Let X C V be closed subvariety of the
vector space V and zg € X. If § € T,,,)V = V is a tangent vector which vanishes on
I(X) = ker(res: O(V) — O(X)), then the induced map §: O(X) — C is a derivation in
xg, and vice versa. Thus we have the following result.

4.2.1. PROPOSITION. If X CV is a closed subvariety and xo € X, then
T, X ={veV|d(f)=0fordl feI X))}V =T,V.

More explicitly, let V.= C™ and assume that the ideal I(X) is generated by f1,...,fs €
Clx1,...,2n]. Then, for zg € X, we get

(x)a; =0 fori=1,...,s}.

T,X = {a=(a1,...,an) € C" | gf,»
=1 9t

In particular,

dimT,X =n —r1k (afl (x)) .
075"/ (i)

The s X n-matrix

ofi
Jac(f1,..., fs) == (3f>
T3/ (i.9)
with entries in Clz1,...,z,] is called the Jacobian matriz of fi,..., fs. We get
T.(X) = kerJac(f1,. .-, fm)a-
The proposition above gives the following criterion for smoothness.

4.2.2. PROPOSITION (JACOBI-Criterion). Let X C C™ be a closed subvariety where
I(X)=(f1,...,fs). Then x € X is non-singular if and only if

rk(Jac(fl, cee fs)ac) >n— dlmac X.
4.2.3. EXAMPLE. Consider the plane curve C = V(y? — 23) € C2 Then I(C) =

(y? — 23) and so the tangent space in an arbitrary point zo = (a,b) € C is given by
T(a,5)C = {(u,v) € C* | =3a*u + 2bv = 0}. Since (a,b) = (t,*) for some t € C we get
C? for t =0,
T C= 2
(82,6%) Cl,| fortz0.

In particular, C is singular in (0,0) and smooth elsewhere.

4.2.4. EXAMPLE. Let H := V(f) C C" be a hypersurface where f € Clzy,...,x,] is
square-free. Then Hgjng = {a € H | %(a) = 0 for all i} = V(f, %, ce %) It follows

that dim Hgne < dimH = n — 1. In fact, no irreducible component C of H belongs to
Hgiyg, because no prime divisor p of f divides all %.
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4.2.5. EXERCISE. Calculate the tangent spaces of the plane curves C; := V(y — z?) and
Co = V(y* — 2® — 2®) in arbitrary points (a,b).

4.3. R-valued points and epsilonization. Let X C C” be a closed subvariety. For
any C-algebra R we define the R-valued points of X by

X(R):={a=(a1,...,a,) € R" | f(a) =0 for all f € I(X)}.

This definition does not depend on the embedding X C C™, because we have a canonical
bijection Alg:(O(X), R) = X(R) given by p — (p(Z1), ..., p(Zn)).

Now consider the C-algebra Cle] := C[t]/(t?) where € := t + (#?) which is called the
algebra of dual numbers. By definition, we have C[e] = C @ Ce and €2 = 0. If X is an
affine variety and p: O(X) — C[e] an algebra homomorphism, then an easy calculation
shows that p is of the form p = ev, ®J, e for some xz € X where ev, is the evaluation
map f — f(x) and ¢, is a derivation in z, i.e., p(f) = f(z) + 6.(f) €. Conversely, if §, is
a derivation in x, then p := ev, ®J, € is an algebra homomorphism. Hence

(11) X(Cle]) ={(z,d) |r€ X and 6 € T, X}

This formula is very useful for calculating tangent spaces as we will see below.
If X = V is a vector space, then the homomorphisms p: O(V) — Cle] are in one-to-one
correspondence with the elements of V' @ Ve. In fact, there are canonical bijections

V(Cle]) = Alge(O(V),Cle]) = V @ Ve.

The inverse map to Alg:(O(V),Cle]) = V @ Ve associates to x +ve € V & Ve the algebra
homomorphism p: f +— f(x + ve), and since

flx+ve)=f(x)+0pafe
it follows again from the above that T,V can be canonically identified with V.

4.3.1. EXAMPLE. (a) The tangent space of GL,, at E is the space of all n X n-matrices
and the tangent space of SL,, at ' € SL,, is the subspace of traceless matrices:

TgSL, =sl, == {X € M, | tr X =0} C Tz GL,, = gl,, := M,, .

In fact, I(SL,,) = (det —1), and an easy calculation shows that det(E + Xe) = 1+ (tr X)e
which implies, by Proposition 4.2.1, that X € M,, belongs to Ty SL,, if and only if tr X = 0.

(b) Next we look at the orthogonal group O,, := {A € M,, | AA* = E}. As a closed
subset O,, is defined by (”;rl) quadratic equations and so dim O,, > n? — (";1) = (g) On
the other hand, we have

(E+ Xe)(E+Xe)l =E+ (X + X"e

which shows that T O,, C {X € M,, | X skew symmetric}. Since this space has dimension
(Z) and since dimg O,, = dim O,, (Exercise 3.1.4) it follows from Proposition 4.1.7 that

Tg O, = T SO,, = s0,, := {X € M,, | X skew symmetric}.

4.3.2. EXERCISE. If X,Y C C" are closed subvarieties and z € X NY, then T,(X NY) C
T.X NT.Y CC". Give an example where T,(X NY) g T.XNT.Y.
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4.4. Nonsingular varieties. We want to show that every variety X contains an
open dense set of smooth points. Later in Corollary 4.10.6 we will even see that the
smooth points form a open set.

4.4.1. ExaMpPLE. Let H := V(f) C C" be a hypersurface where f € Clzy,...,z,]
is square-free and non-constant, and so I(H) = (f). Then the tangent space in a point
xg € H is given by

TIDH = {CL = (al,...,an) | ;ai(gxfi(xO) = 0}7

and so of of of
HU :V STy Tyt T CH
siis (f Ox1’ Oxs 8xn> =

It follows that Hgng is a proper closed subset whose complement is dense. (This is clear
(%’2 cannot be a multiple of f and
so V(f, %’ cee %) is a proper closed subset of V(f). This implies that every irreducible
component of H contains a non-empty open set of nonsingular points which does not meet
the other components, and the claim follows.)

It is also interesting to remark that a common point of two or more irreducible com-

ponents of H is always singular. We will see that this true in general (Corollary 4.10.6).

for irreducible hypersurfaces since a non-zero derivative

4.4.2. PROPOSITION. Let X be an irreducible affine variety. Then the set Xging of
singular points of X is a proper closed subset of X whose complement is dense.

PrOOF. We can assume that X is an irreducible closed subvariety of C™ of dimension
d. Mt I(X)=(f1,...,fs), then, by Proposition 4.2.1,

af](x))( ; <n-—d}
0.

Xsing = {J} e X | rk <axZ
which is the closed subset defined by the vanishing of all (n — d) x (n — d) minors of the
Jacobian matrix Jac(f1,..., fs). In order to see that Xgne has a dense complement, we use
the fact, that every irreducible variety contains a special open set which is isomorphic to a
special open set of an irreducible hypersurface H (see Proposition 3.1.13). Since H contains
a dense open set of nonsingular points (see Example 4.4.1 above) the claim follows. O

We will see later in Corollary 4.10.6 that the proposition above holds for every variety.
At this moment we only know that there is always a dense open set U C X consisting of
nonsingular points.

4.4.3. EXERCISE. If X is an affine variety such that all irreducible components have the same
dimension. Then Xging is closed and has a dense complement.

4.4.4. EXERCISE. The hypersurface H = V(zz — y(y — 1)) C C® from Exercise 2.2.14 is
nonsingular.

4.4.5. EXERCISE. Let g € C[z1,...,2n] be a quadratic form and Q := V(q) C C". Then 0 is
a singular point of Q. It is the only singular point if and only if g is nondegenerate.

4.4.6. EXERCISE. Determine the singular points of the plane curves
By :=V(y* - p())

where p(z) is an arbitrary polynomial, and deduce a necessary and sufficient condition for E, to
be smooth.

4.4.7. EXERCISE. Let X C C" be a closed cone (see Exercise 1.2.9). Then Xging is a cone,
too. Moreover, 0 € X is a nonsingular point if and only if X is subvector space.

singclosed

singhypersurface.exa
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4.4.8. EXERCISE. Let X be an affine variety such that the group of automorphisms acts
transitively on X. Then X is smooth.

4.5. Tangent bundle and vector fields. Let X be an affine variety. Denote by
TX := U,ecx T X the disjoint union of the tangent spaces and by p: TX — X the
natural projection, § € T, X — x. We call TX the tangent bundle of X. We will see later
that T X has a natural structure of an affine variety and that p is a morphism.

A section £: X — TX of p, i.e. po& =1dy, is a collection (£;).cx of tangent vectors
& € T, X. It is usually called a wector field and can be considered as an operator on
regular functions f € O(X):

(f)(x) =& f for x € X.

4.5.1. DEFINITION. An algebraic vector field on X is a section £: X — T X with the
property that £f € O(X) for all f € O(X). The space of algebraic vector fields is denoted
by Vec(X).

In the following, we will mostly talk about “vector fields” and omit the term “algebraic”
whenever it is clear from the context.

Thus a vector field ¢ can be considered as a linear map £: O(X) — O(X), and so
Vec(X) is a subvector space of Endc(O(X)). More generally, the vector fields form a
module over O(X) where the product f¢€ for f € O(X) is defined in the obvious way:

4.5.2. EXAMPLE. Let X = V be a C-vector space and fix a vector v € V. Then
0y € Vec(V) is defined by = — 0, 5. It follows that
[z +tv) — f(z)

t

which implies that this vector field is indeed algebraic. We claim that every algebraic
vector field on V is of this form. In fact, if V' = C”, then

Ouf =

€ 0(X)
t=0

0
(‘hi

Vec(C") = @ Clz, ..., x4)
i=1

which means that every algebraic vector field £ on C" is of the form £ =", hia%i where
h; € Clzy,...,z,]) = O(C™). (This follows from the two facts that every vector field £ on
C™ is of this form with arbitrary functions h,; and that £(z;) = h;.)

Another observation is that for every vector field £ on X the corresponding linear map
€: O(X) = O(X) is a derivation, i.e. £ is a linear differential operator:

€(fh) = fEh+ hESF for all f,h € O(X).

4.5.3. PROPOSITION. The map sending a vector field to the corresponding linear dif-
ferential operator defines a bijection Vec(X) = Der(O(X),0(X)) C End(O(X)).

PROOF. It remains to show that every derivation £: O(X) — O(X) is given by an al-
gebraic vector field. For this, define &, := ev, of. Then the vector field (£;).cx is algebraic
and the corresponding linear map is &. O

Example 4.5.2 above shows that for X = V we have a canonical bijection TV ~V x V|
using the identifications T,V =V ~ {«} x V. Then p: TV — V becomes the projection
pry, and algebraic vector fields are section of pry,, i.e. morphisms £: V. — V x V of the
form &(x) = (x,&;). We will mostly identify TV with V x V.
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4.5.4. PROPOSITION. Let X CV be a closed subset.
(1) If & € Vec(V), then &|x defines a vector field on X (i.e. & € T, X for allz € X)
if and only if (f)|x =0 for all f € 1(X). Moreover, it suffices to test a system
of generators of the ideal I(X).
(2) There is a canonical bijection TX = {(z,8) | § € T.X C V} where the latter is
a closed subset of X x V. Thus TX has the structure of an affine variety. Using
coordinates, we get

TX 5 {(z,a1,...,a,) | Zazgj(x) =0foral felI(X)}CXxC"
i=1

K2

(3) A vector field & on X is algebraic if and only if £: X — TX is a morphism.

PrOOF. (1) We have &, € T, X for all x € X if and only if £, f = 0 for all z and all
f € I(X) which is equivalent to (f)|x =0 for all f € I(X).

(2) We can assume that V = C" and O(V) = Clz1, ..., z,]. If I(X) = (f1,--- fm)
then, by (1),

T = {(x,6;,) e X xV|deT, X}

={(z,a1,...,ay) | Zaiaf(
i=1 v

which shows that this is a closed subspace of X x C". Now (2) follows easily.

z)=0forj=1,....,m} C X xC"

(3) Using the identification of T'X with the closed subvariety 77 above, an arbitrary
section £: X — TX has the form &, = > h; (:c)a%i with arbitrary functions h; on X. Set
Z; := x;|x. Then the vector field £ is algebraic if and only if h; = £Z; is regular on X
which is equivalent to the condition that £: X — T X is a morphism. O

4.5.5. REMARK. We will see later in Proposition 4.6.7 that the structure of TX as an
affine variety does not depend on the embedding X C V.

4.5.6. EXAMPLE. Consider the curve H := V(zy — 1) C C%. Then I(H) = (zy — 1).

For a vector field ¢ = a(x,y)0; + b(z,y)d, on C? we get
ey — 1) = alz,y)y + b(z, y)z.

Thus {(zy — 1)|# = 0 if and only if ay + bz = 0 on H. It follows that 20, — y0, defines a
vector field & on H and that Vec(H) = O(C)&. (In fact, setting h := ay|g = —bx|g we
get alg = h- x|y and blg = —h-y|g.)

The tangent bundle TH C H xC? has the following description (see Proposition 4.5.4(1)):

TH ={(t,t ', a,p) |at™  + Bt =0} = {(t,t7, —pt*, |t € C*,BcC} > H xC.

4.5.7. EXAMPLE. Consider NEIL'S parabola C' := V(y* — 23) C C? (see Exam-
ple 1.3.11). Then a vector field a0, + b9, defines a vector field on C' if and only if
—3az? +2by =0 on C.

To find the solutions we use the isomorphism O(C) = C[t?,t],  — t*,y — t* (see
Example 2.2.11). Thus we have to solve the equation 3at = 2b in C[t?,¢3]. This is easy:
Every solution is a linear combination (with coefficients in C[t2,¢%]) of the two solutions
(2t2,3t3) and (2t3, 3t*). This shows that

o = (220, +3y9,)|p and & = (2y0, + 3220,)|p
are vector fields on C and that Vec(C') = O(C)&y + O(C)&;. Moreover, 22&y = 4.

propVF

restrictVFEF
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Our calculation also shows that every vector field on C vanishes in the singular point
0 of the curve. For the tangent bundle we get

TC ={(t*,t*, 0, B) | —3at* +2Bt> = 0} C C x C?
which has two irreducible components, namely
TC = {(#*,t*,2a,3at) | t,a € C} U {(0,0)} x C?

4.5.8. EXERCISE. Determine the vector fields on the curve D := V(y* — 2? — 2%) C C2. Do
they all vanish in the singular point of D?

4.5.9. EXERCISE. Determine the vector fields on the curves Dy := {(t,#*,t*) € C* | t € C}
and Dy := {(t3,t*,¢5) € C* | t € C}.

(Hint: For D3 one can use that O(Dz) ~ C[t*,t*,t°] = C & @,-, Ct'.)

If the variety X is smooth, then all fibers of p: TX — X are vector spaces of the same
dimension. We will show now that in this case T X is a vector bundle of rank r := dim X
over X. This means that for every point x € X there is a special open neighborhood U of
z in X and an isomorphism p~(U) 5 +y: U x C” over U which is linear in the fibers,
ie. ¢: T,U=p 1(u) = {u} x C" = C" is a linear map.

4.5.10. PROPOSITION. If X is smooth and irreducible, then TX — X is a vector bundle
of rank r = dim X

PROOF. We can assume that X C C™ is a closed subset where I(X) = (f1,..., fm)-
Denote by J = Jac(f1,-.., fm) the Jacobian matrix, with entries in C[zy,...,z,]. Then
ker J(z) = T,(X) C C™ (Proposition ??), and by assumption, rk(J(z)) = n — r for all
x € X.Fix 29 € X and choose n—r columns of J(z) which are linearly independent. Then
this holds for all x in an special open neighborhood U of xg. Let 1 < iy < --- < i, < n be
the indices of the remaining columns and denote by ¢: C™ — C” the corresponding linear
projection. Then ¢ induces an isomorphism ker J(z) = C” for all x € U. O

4.5.11. PROPOSITION. The vector fields Vec(X) on X form a Lie algebra with Lie
bracket

[§,m] == E§om—nok.
ProoOF. By Proposition 4.5.3 it suffices to show that for any two derivations &, 7 of

O(X) the commutator £ o — n o £ is again a derivation. But this is a general fact and
holds for any associative algebra, see the following Exercise 4.5.13. O

4.5.12. EXERCISE. Let A be an arbitrary associative C-algebra. Then A is a Lie algebra with
Lie bracket [a, b] := ab — ba, i.e., the bracket [, ] satisfies the Jacobi identity

[a, [b, c]] = [[a, b], ] + [b, [a, c]] for all a,b,c € A.

4.5.13. EXERCISE. Let R be an associative C-algebra. If £&,77: R — R are both C-derivations,
then so is the commutator £ o n — 1 o £&. This means that the derivations Der(R) form a Lie
subalgebra of Endc(R).

4.5.14. EXERCISE. Let X C C" be a closed and irreducible. Then dim7TX > 2dim X. If X is
smooth, then T'X is irreducible and smooth of dimension dim7X = 2dim X.
(Hint: If I(X) = (f1,... fm), then TX C C" x C" is defined by the equations

n

fi =0and Zyi%(x):Oforjzl,...,m.
i=1 t

The Jacobian matrix of this system of 2m equations in 2n variables x1,...,Zn,y1,...,Yn has the
following block form
[Jac(fh...,fm) 0
* Jac(f1,.- ., fm)

vectorbundle.prop
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and thus has rank > 2-rk Jac(f1,..., fm) = 2(n — dim X).)

4.6. Differential of a morphism. Let p: X — Y be a morphism of affine varieties,
and let z € X.

4.6.1. DEFINITION. The differential of ¢ in x is the linear map
dpg: Tp X = Ty)Y
defined by 6 — dp,. () := 0 o @*.
If Z C X is a closed subvariety and z € Z, then we get for the induced morphism

0lz: Z =Y that d(¢|z). = dp.|r.z. Another obvious remark is that the differential of a
constant morphism is the zero map.

4.6.2. REMARK. Set y := @(z). The comorphism ¢*: O(Y) — O(X) defines a ho-
momorphism m, — m; and thus a linear map @*: my/mi — m,/m2. It is easy to see
that the differential dy, corresponds to the dual map of @* under the isomorphisms
T, X ~ Hom(m,/m2,C) and T)Y ~ Hom(m,/m?,C) (see Lemma 4.1.4).

4.6.3. EXAMPLE. Using the identification T{, (X xY) = T, X & T,,Y (see Proposi-
tion 4.1.9) one easily sees that the differential d(pry )y : Tz, (X xY) — T, X coincides
with the linear projection prp, x.

4.6.4. PROPOSITION. Consider a morphism ¢ = (f1,..., fm): C* = C™, f; € O(C") =
Clxy,...,xn]. Then the differential

d(px: Tw(C" =C"— Tw(z)Cm =C™

of v in x € C" is given by the Jacobi matriz
Ofi
Jac(fl,...,fm)w:<a (z )) .
i /)

PROOF. The identification of the tangent space T,C" = Der,(O(C")) with C" is
given by § — (0x1,...,0x,) (see Example 4.1.3). This implies that

dpz(8) = (6o @") (Y1), -+, (609" )(Ym)) = (0f15- -, 0 fm).
Now the claim follows since
8f]
Z axl ) - dx;.

O

4.6.5. PROPOSITION. Let ¢: X — Y be a morphism, and let Xo C X and Yy CY be
closed subvarieties such that o(Xo) C Yy. Denote by po: Xo — Yy the induced morphism.
Then, for all x € Xo, we have dp.(T:Xo) C Tp2)Yo, and dpo = do|rx,: TXo — TY).

ProoFr. We know that 6 € T, X belongs to T, Xy if and only if 6(f) = 0 for all f €
Ix(Xy) (Proposition 4.2.1), and similarly for Y. Since ¢(Xy) C Yy we have ¢o*(Iy (Yp)) C
Ix(Xp). Thus, for § € T, X, we obtain

dpz(0)(h) = d(¢™(h)) =0 for all h € Iy (Yp),
and the claim follows. a

4.6.6. EXERCISE. Let ¢: X — Y and ¢: Y — Z be morphisms of affine varieties and let
x € X. Then
d( 0 @)z = dipy 0 dp
where y := p(z) € Y.
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For any morphism ¢: X — Y the differentials dy, define a map dp: TX — TY of the
tangent bundles in the obvious way. Embedding X and Y into vector spaces, the tangent
bundle inherits the structure of an affine variety (Proposition 4.5.4).

4.6.7. PROPOSITION. The differential dp: TX — TY, (x,0) — (o(x),dps(d), is a
morphism of varieties. In particular, the structure of TX as an affine variety is indepen-
dent of the embedding of X into a vector space.

PrOOF. Consider first the case X = C*, Y = C™ and ¢ = (f1,..., fn). Then
dp: TC"=C"xC" - TC"™=C"™ xC™ is given by

Aol a1, ran) = (B ). 30 o Z%’;m

(Proposition 4.6.4) which is clearly a morphism.
Now choose embeddings X C C" and Y C C™, and extend the morphism ¢ to a
morphism ®: C* — C™ (Lemma 2.1.6):

Xéccn

o| |0

C
Y — C™
The claim follows from Proposition 4.6.5 above. U

4.7. Epsilonization. In order to calculate explicitly differentials of morphisms we

will again use the epsilonization (4.3). Recall that for 6 € T,,X the map p := ev, @de: O(X) —

Cle] is a homomorphism of algebras and vice versa. If ¢: X — Y is a morphism and = € X,
y := p(x) € Y, then we obtain, by definition, the following commutative diagram:

evy, de

O(X) Clel
W*T %M)E
oY)

If X :=V and Y := W are vector spaces, then a homomorphism p: O(V) — Cle] corre-
sponds to an element G ve € V & Ve where p(f) = f(z + ve), and so p o ¢* corresponds
to the element p(z + ve) € W @ We. Thus we obtain the following result which is very
useful for calculating differentials of morphisms.

4.7.1. LEMMA. Let ¢: V — W be a morphism between vector spaces, and let x € V
and v € T,V = V. Then we have

Pl +ev) = p(z) +dpg(v) e
where both sides are considered as elements of W & We.
4.7.2. EXAMPLE. The differential of the morphism ?™: M,, = M,,, A~ A™, in F is

m - Id. In fact, (E + Xe)™ = E + mXe.
The differential of ¢: My — My, A +— A2, in an arbitrary matrix B is given by
dep(X) = BX + X B, because (B + X¢)? = B2 + (BX + XB)e.
The differential of the matrix multiplication u: M, xM, — M, in (E,FE) is the
addition: (E+ Xe)(E+Ye)=E+ (X +Y)e.
4.7.3. EXERCISE. Consider the multiplication p: My x My — M and show:
(1) dua,p) is surjective, if A or B is invertible.

prop-dphi
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(2) If rk A=rk B =1, then dua,p) has rank 3.
(3) We have rkdp(a,0y = rkdpo,a) = 21k A.

4.7.4. EXERCISE. Calculate the differential of the morphism ¢: End(V) x V — V given by
(p,v) — p(v), and determine the pairs (p,v) where dy(, . is surjective.

4.8. Tangent spaces of fibers. Let ¢: X — Y be a morphism, x € X and F :=
¢ Y(¢(z)) the fiber through z. Since ¢|F is the constant map, its differential in any point
is zero and so T, F C ker dp,. This proves the first part of the following result.

4.8.1. PROPOSITION. Let p: X — Y be a morphism, v € X and F := ¢~ (p(x)) the
fiber through x.
(1) T.F C kerdy,.
(2) If the fiber F is reduced in x, then T, F = ker dy,.
(3) If X is smooth in x and rk dp, = dim, X —dim, F, then F is reduced and smooth
m .

PROOF. (2) Put y := ¢(x) € Y. By definition the fiber is reduced in z if and only if
the ideal in the local ring Ox , generated by ¢*(m,) is perfect which means that Op, =
Ox /¢ (my)Ox o (see Definition 2.2.10).

Now let § € T, X be a derivation of O(X) in z. If § € ker dp,, then 6 o p* = 0. Hence
0, regarded as a derivation of Ox ,, vanishes on ¢*(m,)Ox , and thus induces a derivation
of Opy in z, ie., 6 € T, F.

(3) Set R := O(X)/¢*(my,)O(X) O m := my/¢*(m,)O(X). Clearly, Riea = O(F),
and the composition m,/m?> — m,/m? — m/m? is the zero map. Since X is smooth
in x we get dimm,/m2 = dim, X, and since the first map is dual to dy, it has rank
dim, X — dim, F. It follows that dimm/m? < dim, F = dim R,. Now it follows from
Proposition 4.10.5 that Ry is a domain, hence Ry, = OF,, and that I is smooth in z,
because dim T, F = dimm/m? < dim,, F. O

4.8.2. EXAMPLE. Let X C C™ be a closed subset and I(X) = (f1,..., fm). Consider
the morphism ¢ = (f1,..., fm): C® — C™. Then X = ¢~1(0), and this fiber is reduced
in every point. Thus, for every z € X,

T.X = kerdyp, = ker Jac(f1,..., fm)z
as we have already seen in Proposition 4.2.1. The following result is a partial inverse.

4.8.3. PROPOSITION. Let Z = V(fi,...,fm) € C™ be a closed subset. Assume that
rkJac(f1,..., fm): =n—dim, Z for all z € Z. Then Z is smooth and I(Z) = (f1,..., fm)-

PROOF. Consider the morphism ¢ = (f1,..., frm): C* — C™. Then Z = ¢~ 1(0),
and dy, = Jac(f1,..., fm)z: C* — C™. Thus T.Z C kerJac(fi,..., fm):, and we have
equality, because dim, Z < dim7,Z < dimker Jac(f1,..., fm). = dim, Z. Now Proposi-
tion 4.8.1(3) shows that the fiber ¢~1(0) is reduced and smooth in every point z, hence
the claim. O

4.8.4. EXERCISE. For every point (z,y) € X x Y we have T, X = ker d(pry ) (s, and Ty, X =
ker d(pry )(z,y) Where pry,pry are the canonical projections (see Proposition 4.1.9).

4.8.5. EXERCISE. For the closed subset N C M, of nilpotent 2 x 2-matrices we have I[(N) =
(tr,det).
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4.9. Morphisms of maximal rank. The main result of this section is the following
theorem.

4.9.1. THEOREM. Let p: X — Y be a dominant morphism between two irreducible
varieties X and Y. Then there is a dense open set U C X such that dpy: To X — Ty)Y
is surjective for all x € U.

We first work out an important example which will be used in the proof of the propo-
sition above.

4.9.2. EXAMPLE. Let Y be an irreducible affine variety and X C Y x C an irreducible
hypersurface. Assume that [(X) = (f) where f =" fit' € O(Y)[t] = O(Y x C) and
fn = 1. Consider the following diagram:

XHQ-YX(C

N

Y

f(y, a) # 0, and this holds

Then the differential dp(y. q): Tiy,a) X — T,Y s surjective if g

on a dense open set of X.

Proor. We have T\, X C T(, )Y x C = T,Y ® C, and this subspace is given by
Tya)X = {(6,A) | (6, A)f = 0}, because I(X) = (f). Now we have

(0N =D (0fia*+ fily) i zpﬂa4ul a)- A
i=0
Since dp(y.q)(d,\) = 0 we see that dp(, o) is surjective if 2 5 (y, a) # 0 which proves the

first claim. But 8{ cannot be a multiple of f and thus does not vanish on X, proving the
second claim. 0

The next lemma shows that the situation described in the example above always holds
on an open set for every morphism of finite degree.

4.9.3. LEMMA. Let X,Y be irreducible affine varieties and p: X — Y a morphism of
finite degree. Then there is a special open set U CY and a closed embedding v: o~ 1(U) —
U x C with the following properties:

(i) I(v(U)) = (f) where f =Y fit" € O(U)]t];
(i) pry oy = @lo-1(v)-

/\

o (U) —Z> Vysef) —=—=U x C

S

U

PrOOF. We have to show that there is a non-zero s € O(Y) such that O(X), ~
O(Y)s[t]/(f) with a polynomial f € O(Y);[t]. Then the claim follows by setting U := Y.
By assumption, the field C(X) is a finite extension of C(Y) of degree n, say,

C(X) = C(Y)[n] = C(Y)[t]/(f)

exmaxrank

lemmaxrank
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where f = Y"1, f;t", fi € C(Y) and f, = 1. There is a non-zero element s € O(Y') such
that

(a) fi € O(Y)s for all i,

(b) h € O(X), and

(c) O(X)s = O(Y),[h] = @iy O(Y)h'.
In fact, (a) and (b) are clear. For (c¢) we first remark that O(Y);[h] = @?:—01 O(Y)sht C
O(X)s, because of (a) and (b). If hy,..., ~hy, is a set of generators of O(X) we can find a
non-zero s € O(Y) such that h; € O(Y),[h], proving (c).

Setting U := Y, we get ¢ 1(U) = X and O(X,) = O(Y;)[t]/(f), by (c), and the claim

follows. O

PROOF OF THEOREM 4.9.1. By the Decomposition Theorem (Theorem 3.4.1) we can
assume that ¢ is the composition of a finite surjective morphism and a projection of the
form Y x C" — Y. Since the differential of the second morphism is surjective in any point
we are reduced to the case of a finite morphism. Now the claim follows from Lemma 4.9.3
above and the Example 4.9.2. g

4.9.4. LEMMA. Let ¢: X — Y be a morphism, x € X and y := ¢(x) € Y. Assume
that X is smooth in x and dy, is surjective.
(1) Y is smooth in y.
(2) The fiber o~ (y) is reduced and smooth in x, and dim, F = dim, X — dim, Y.

Proor. By assumption,
dim T, F < dimkerdy, = dim7T, X —dim7,Y < dim X — dimY < dim, F

which implies that we have equality everywhere. In particular, F' is smooth in  and Y is
smooth in y.

If we denote by m C O(X)/m,O(X) the maximal ideal corresponding to z € F one
easily sees that m/m? is the cokernel of the natural map m,/m? — m,/m? induced by o*.
The duality between m,/m2 and 7, X (see Lemma 4.1.4 and Remark 4.6.2) implies that
dimker dp, = dimc m/m?. Since dim ker dp, = dim, F = dim O(X),/m,O(X), it follows
that O(X),/m,O(X), is a domain (Proposition 4.10.5), and so F' is reduced in . O

4.9.5. COROLLARY. For every morphism ¢: X — Y there is a dense special open set
U C X such that all fibers of the morphism ¢|y: U — Y are reduced and smooth.

PROOF. One easily reduces to the case where X is irreducible. Then there is a special
open set U C X which is smooth (Corollary 4.10.6) and such that dy, is surjective for all
x € U (Theorem 4.9.1). Now the claim follows from the previous Lemma 4.9.4. 0

4.9.6. COROLLARY (Lemma of SARD). Let p: C"* — C™ be a dominant morphism and
set S := {x € C" | dp, is not surjective}. Then S is closed and p(S) is a proper closed
subset of C™. In particular, there is a dense open set U C C™ such that all fibers ¢~ (y)
fory € U are reduced and smooth of dimension n —m.

PrOOF. If ¢ = (f1,..., fm), then S = {z € C" | rkJac(f1,..., fm)(x) < m} and
so S is closed in C™. Moreover, the differential of |s: S — C™ at any point of S is
not surjective. Therefore, by Theorem 4.9.1, the closure of the image ¢(S) has dimension
strictly less than m. O

4.9.7. EXERCISE. Let f € C[z1,...,2n] be a non-constant polynomial. Then V(f — ) is a
smooth hypersurface for almost all A € C.
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4.9.8. COROLLARY. If ¢: X — Y is a morphism such that dp, = 0 for all z € X,
then the image o(X) is finite. In particular, if X is connected, then ¢ is constant.

ProOF. If X’ C X is an irreducible component and Y’ := ¢(X’), then the induced
morphism ¢': X’ — Y’ has the same property, namely dy¢’ = 0 for all z € X'. Tt follows
now from Theorem 4.9.1 that dim Y’ = 0. Hence ¢ is constant on X'. U

4.9.9. EXAMPLE. Let V be a vector space and W C V a subspace. If X C V is a
closed irreducible subvariety such that 7, X C W for all x € X, then X C x + W for any
z e X.

(This follows from the previous corollary applied to the morphism ¢: X — V/W induced
by the linear projection V. — V/W.)

4.10. Associated graded algebras. Let R be C-algebra and a C R an ideal. The
associated graded algebra gr, R is defined in the following way. Consider the C-vector space

gr, R = @ai/a”l =R/ada/a’*®a’/a® D
i>0
and define the multiplication of (homogeneous) elements by
(f + a1y (h+a?TY) i= fh+ otTiF!

for f € a’,h € a’. It is easy to see that this defines a multiplication on gr, R. By definition,
R/ais a subalgebra of gr, R, and gr, R is generated by a/a? as a R/a-algebra. In particular,
if R is finitely generated as a C-algebra, then so is gr, R.

We want to use this construction to give the following characterization of nonsingular
points.

4.10.1. THEOREM. Let X be an affine variety. A point x € X is nonsingular if and
only if the associated graded algebra gry, O(X) is a polynomial ring. In particular, the local
ring Ox » of a nonsingular point x is a domain and so x belongs to a unique irreducible
component of X.

Before we can give the proof we have to explain some technical results from commu-
tative algebra. Let R be a C-algebra and m C R a maximal ideal. Consider the subalgebra
R of R[t,t™!] generated as an R-algebra by ¢ and m¢~1:

R=Rtmt = om’t?emt '©@RORGR*® .- CR[t,t7!].
In the following lemma we collect some basic properties of this construction.
4.10.2. LEMMA. (1) If R is finitely generated, then so is R.

(2) There is a canonical isomorphism R/Rt = gr. R.

(3) If a Cw is an ideal and @ := a[t,t~'| N R, then R/ﬁ = R/a. i

(4) If n C R is the nilradical, then & = n[t,t=] N R is the nilradical of R, and
R/i S R/n. )

(5) Assume that R is a finitely generated domain. Then R is a domain, and we have

dimR=dimR+1 and dimR/Rt=dimR.

(6) Assume that R finitely generated and that the minimal primes p1,...,p, are all
contained in m. Then the p1,...,p, are the minimal primes of R.

maxrank
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ProoF. (1) If R=Clhy, - ,hm] and m = (f1,..., fn), then
R=Clh1, . h,t, fit 1o fut ™Y,

and so R is finitely generated.
(2) By definition, we have

Ri=---em’t?om’t ' émoRIG R G- .
Hence

R/Rt=--- @ (m?*/m*)t 2@ (m/m?)t~ ' & R/m
and the claim follows.

(3) The canonical map 7: R[t,t7!] — (R/a)[t,t~!] induces, by our construction, a
surjective homomorphism 7: R — R/a with kernel ker7 N R = aft,t~!] N R.

(4) Put Ryeq := R/n. Then Ryeqlt, t~1] is reduced, i.e. without nilpotent elements # 0,
and so is Ryeq. Since the kernel of the map R[t,t!] — Ryeq[t,t 1] is equal to n[t,t~!] and
consists of nilpotent elements the claim follows from (3).

(5) The first part is clear since R[t,t~'] is a domain. Since R, = RI[t,t"'] we get
dim R = dim R[t,t~!] = dim R[t] = dim R + 1. Moreover, by the Principal Ideal Theorem
(Theorem 3.3.4) we have dim R/Rt = dim R — 1.

(6) It follows from (3) and (5) that the ideals p; are prime. Since (), p; = n we obtain
from (2)
(pi =(pilt.t "IN R=n[t,t" N R =4.
Since p; N R[t] = p;[t] there are no inclusions p; C p; for i # j, and the claim follows. (We

use here the well-know fact that the minimal primes in a finitely generated C-algebra are
characterized by the condition () p; = n, cf. Remark 1.6.7.) O

In the next lemma we give some properties of the associated graded algebra gr,, R
where m is a maximal ideal of R.

4.10.3. LEMMA. Let R be a C-algebra and m C R a mazimal ideal.

(1) Assume that (; mJ = (0). If gry, R is a domain, then so is R.
(2) Denote by mRy, C Ry, the mazimal ideal of the localization Ry,. There is a natural
isomorphism gr,, R = 8lmR,, Bm of graded C-algebras.

PRrROOF. (1) If ab = 0 for non-zero elements a,b € R, we can find 7,5 > 0 such that
a€m\mt and b € m7 \ mI*. Thus @ := a + m™*! and b := b+ mI*! are non-zero
elements in gr, A, and @b = ab + m**t/*! = 0. This contradiction proves the claim.

(2) Set M := mRy, C Ry. The image of S := R\ m in R/m* consists of invertible
elements and so R/m* — Ry, /OMF is surjective. It is also injective, because Ry /9M* can be
identified with the localization of R/m* at S. Thus R/m* = R, /9MF and so m*/m‘*1 =
oMt /ML for all i > 0. O

Finally, we need the following result due to KRULL. It implies that in a local Noetherian
C-algebra R with maximal ideal m we have (1,5, m? = (0).

4.10.4. LEMMA (KRULL). Let R be a Noetherian C-algebra, a C R an ideal and b :=
Ni>o a’. Then ab = b. In particular, there is an a € a such that (1+ a)b = 0.
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PRrROOF. The second claim follows from the first and the Lemma of NAKAYAMA
(Lemma 3.2.5). Let a = (ay,...,as) and put

I:={(f|f € R[z1,...,xs] homogeneous and f(ai,...,as) € b) C R[z1,...,xs].

It is easy to see that I is an ideal of R[z1,...,zs] and so I = (f1,..., fx) where the f;
are homogeneous. Choose an n € N, n > deg f; for all j. By definition, b C a™ and so, for

every b € b, there is a homogeneous polynomial f € R[xq,--- ,xs] of degree n such that
flay,...,as) = b. It follows that f = Zj hjf; where the h; are homogeneous of degree
>0, and so b = f(a1, . ,as) = Zj hj(al, . ,as)fj(al, . ,Cls) € ab. O

The next proposition is a reformulation of our main Theorem 4.10.1. For later use we
will prove it in this slightly more general form.

4.10.5. PROPOSITION. Let R be a finitely generated C-algebra and let m C R be a
mazximal ideal. Then dim gr,, R = dim Ry,. Moreover, dimc m/m? = dim Ry, if and only if
gr. R is a polynomial ring. If this holds, then Ry is a domain.

PRrROOF. Inverting an element from R\ m does not change gr,, R (Lemma 4.10.3(2)).
Therefore we can assume that all minimal primes of R are contained in m. In particular,
we have dim Ry, = dim R = max; dim R/p; where p1,...,p, are the minimal prime ideals.
Moreover, every element from R\ m is a non-zero divisor.

Now consider the C-algebra R = R[t,mt~'] C R[t,t~'] introduced above. It follows
from Lemma 4.10.2 that R has the following two properties:

(i) R/Rt = gr,, R, by (2).
(ii) dim R/Rt = dim R, by (5) and (6).
Hence, dim gr,, R = dim R,,, proving the first claim.

Assume now that dimec m/m? = dim Ry, =: n. Then we obtain a surjective homomor-
phism

p:Clyr, .. yn] = grm R

by sending y1, . . . , ¥ to a C-basis of m/m?2. But every proper residue class ring of C[yy, . . . , ]

has dimension < n, and so the homomorphism p is an isomorphism.

On the other hand, if gr,, R is a polynomial ring, then dim R, = dimgr, R =
dime m/m?2. Moreover, Nj>o m’ = (0) by Lemma 4.10.4, because every element from R\m
is a non-zero divisor, and so R is a domain by Lemma 4.10.3(1). O

4.10.6. COROLLARY. If X is an affine variety, then Xng C X is a closed subset whose
complement is dense in X.

PRrROOF. Let X = J; X; is the decomposition of X into irreducible components. A
point z € X is a singular point of X if and only if it is either a singular point of X; or it
belongs to two different irreducible components. Thus

Xsing = U(Xi)sing U U Xj N Xka
i j#k
and the claim follows easily. 0
Let us denote by @XJ the m;-adic completion of the local ring Ox .. It is defined to

be the inverse limit
Ox 4= {inO(X)/ml;

(We refer to [Eis95, 1.7.1 and 1.7.2] for more details and some basic properties.) Since
m* = {0} we have a natural embedding Ox . C Ox ..
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If X = C" and = = 0, then the completion coincides with the algebra of formal power
series in n variables:
0@7170 = (C[[xl, cee ,xn]].

The next result is an easy consequence of Theorem 4.10.1 above.

4.10.7. COROLLARY. The point x € X is nonsingular if and only if @X,m 18 isomorphic
to the algebra of formal power series in dim, X variables.

4.10.8. REMARK. A famous result of AUSLANDER-BUCHSBAUM states that the local
ring Ox , in a nonsingular point of a variety X is always a unique factorization domain.
For a proof we refer to [Mat89, §20, Theorem 20.3].

5. Normal Varieties and Divisors
5.1. Normality.

5.1.1. DEFINITION. Let A C B be rings. An element b € B is integral over A if b
satisfies an equation of the form
n—1
" = Z a;b’  where a; € A.
i=0
Equivalently, b € B is integral over A if and only if the subring A[b] C B is a finite
A-module.
If every element from B is integral over A we say that B is integral over A.

5.1.2. EXERCISE. Let A C B be rings. If A is Noetherian and B finite over A, then B is
integral over A.

5.1.3. LEMMA. Let A C B C C be rings and assume that A is Noetherian.
(1) If B is integral over A and C' integral over B, then C is integral over A.
(2) The set
B’ :={b e B|b is integral over A}

is a subring of B.

PROOF. (1) Let ¢ € C. Then we have an equation ¢™ = ZT:_Ol bjc/ with b; €
B. In particular, the coefficients b; are integral over A and so, by induction, A; :=
Albg, b1, ..., bm—1] is a finitely generated A-module. Moreover, A;[c] is a finitely generated
Aj-module, hence a finitely generated A-module. But then Al[c] C A;p[c] is also finitely
generated.

(2) Let by,by € B’. Then A[by] is integral over A and bs is integral over A, hence
integral over A[b;], and so A[by, bs] is integral over A[by]. Thus, by (1), A[by, bo] is integral
over A which implies that by +by and by b, are both integral over A, hence belong to B’. [

5.1.4. EXERCISE. Let f € C[z] be a non-constant polynomial. Then C[z] is integral over the
subalgebra C[f].

5.1.5. DEFINITION. Let A be a domain with field of fraction K. We call A integrally
closed if the following holds:

If x € K is integral over A, then x € A.

An affine variety X is normal if X is irreducible and O(X) is integrally closed. We say
that X is normal in z € X if the local ring Ox , is integrally closed.
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5.1.6. EXAMPLE. A unique factorization domain A is integrally closed. In particular,
C” is a normal variety.
(Let K be the field of fractions of A and z € K integral over A: 2™ = Z;:Ol a;x" where a; €
n—1

A. Write 2 = ¢ where a,b € A have no common divisor. Then a” = b(}_:"; a;b" "~ 'a’)

which implies that b is a unit in A and so = € A.)

5.1.7. EXERCISE. If the domain A is integrally closed, then so is every ring of fraction Ag
where 1 € S C A is multiplicatively closed.

5.1.8. LEMMA. Let X be an irreducible variety. Then X is normal if and only if all
local rings Ox 5 are integrally closed.

ProoF. If X is normal, then Ox ; = O(X)n, is integrally closed (see the Exercise
above), and the reverse implication follows from O(X) = [,y Ox . (Exercise 1.7.6). [

5.2. Integral closure and normalization.

5.2.1. PROPOSITION. Let A be a finitely generated C-algebra with no zero-divisors # 0
and with field of fractions K, and let L/ K be a finite field extension. Then

A" :={x € L |z is integral over A} D A
s a finitely generated C-algebra which is finite over A.

ProoOF. We already know that A’ is a C-algebra (Lemma 5.1.3(2)).

(a) We first assume that A = Clz1, ..., 2z, is a polynomial ring and K = C(z1,. .., 2 ).
Let L = K[z] where z is integral over A and [L : K] =: n. Denote by x; := x,29,...,2p
the conjugates of  in some Galois extension L' of K. Clearly, all x; are integral over A,
because they satisfy the same equation as x.

If y = > cix’ (¢; € K) is an arbitrary element of L we obtain the “conjugates” of
y in L’ in the form

n—1
Yj = Zczx; forj=1,...,n.
i=0
The n x n-matrix X := (2}) has determinant d = []; _ (x; — 2x) which is integral over A.
Obviously, d? is symmetric, hence fixed under the Galois group of L'/K, and so d? € K.
Since d? is also integral over A we finally get d> € A. From CRAMER’s rule we obtain
1 Y1 1 W
=X ] =g A
Cn Yn Yn

This shows that if y is integral over A, then so is dc; for all i, hence d?c; € A for all i.
This implies that d2A’ C E;L_:Ol Az’ and so A’ is a finitely generated A-module.

(b) For the general case we use NOETHER’s Normalization Lemma (Theorem 3.2.12)
which states that A contains a polynomial ring Ay = Clzy,...,2zy] such that A is finite
over Ag. Thus A is integral over Ay and therefore, by Lemma 5.1.3(1)

A" = {x € L | z is integral over Ag}.

It follows from part (a) that A’ is a finitely generated Ap-module, hence also a finitely
generated A-module. O
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5.2.2. DEFINITION. Let A be a finitely generated C-algebra with no zero-divisors # 0.
If L is a finite field extension of the field of fractions of A, then
A" :={z € L |z is integral over A} D A
is called the integral closure of A in L. Clearly, A’ is integrally closed.
Let X be an irreducible affine variety and denote by O(X)" C C(X) the integral
closure of O(X) in its field of fractions C(X). By Proposition 5.2.1 there is a normal

variety X and a finite birational morphism 1: X — X such that O(X) ~ O(X)'. More
precisely, we have the following result.

5.2.3. LEMMA. Let X be an irreducible variety and n: X — X a morphism with the
following two properties:
(1) X is normal;
(2) n is finite and birational.
Then O(X) is the integral closure of n*(O(X)) in C(X) = n*(C(X)), and we have the
following universal property:
(P) IfY is a normal affine variety, then every dominant morphism ¢: Y — X factors
through n: There is a uniquely determined p: Y — X such that ¢ =no ¢:

- %) X
—_—

PROOF. Since 7 is birational we have n*(O(X)) C O(X) C C(X) = n*(C(X)). By
(2) O(X) is finite, hence integral over n*(O(X)), and by (1) it is the integral closure of
1" (0(X)).

If Y is normal affine variety and ¢: Y — X a dominant morphism, then

O(X) = ¢"(0(X)) CO(Y) S C(Y).

Denote by O(X)’ the integral closure of O(X) in C(X). Since O(Y') is integrally closed it
follows that ¢*(O(X)") C C(Y) is contained in O(Y). Since n* induces an isomorphism
O(X)" = O(X) there is a uniquely determined homomorphism p: O(X) — O(Y)) which
makes the following diagram commutative:

O(X)
Ve
O(X) |n*
/ Cj

oY) ~——"———0(X)
Clearly, the corresponding morphism ¢: Y — X is the unique morphism such that p =
no P O
5.2.4. DEFINITION. The morphism 7: X — X constructed above is called normal-
ization of X. It follows from Lemma 5.2.3 that it is unique up to a uniquely determined
isomorphism.

5.2.5. EXERCISE. If ¢: X — Y is a finite surjective morphism where X is irreducible and Y
is normal, then #¢ ! (y) < deg for all y € Y. (See Proposition 3.6.1 and its proof.)
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5.2.6. PROPOSITION. Let X be an irreducible variety. Then the set
Xnorm :={z € X | X is normal in x}
is open and dense in X.

PrOOF. Let O(X)" C C(X) be the integral closure of O(X) and define
@ = {f € O(X) | JO(X) C O(X)}.

Then a is a non-zero ideal of O(X), because O(X)’ is finite over O(X), and Xyorm =
X \ Vx(a). In fact, for S := O(X) \ m, we have

Ox.z=0(X)s CO(X)s

and the latter is the integral closure of Ox . On the other hand, O(X)s = O(X)Y if and
only if SN a # @ which is equivalent to = ¢ Vx(a). O

5.2.7. EXERCISE. Consider the morphism ¢: C* — C*, (z,y) — (z,zy, v*, v*).
(1) ¢ is finite and ¢: C* — Y := ¢(C?) is the normalization.
(2) 0 €Y is the only non-normal and the only singular point of Y.
(3) Find defining equations for Y C C* and generators of the ideal I(Y).

5.2.8. EXERCISE. If X is a normal variety, then so is X x C".

New part from 4.2.2015:

We know that for a dominant morphism ¢: X — Y of finite degree d there is an open dense
set U C Y such that every fiber ¢ *(y), y € U, has exactly d points (Proposition 3.6.1). Under
stronger assumptions this can be improved.

5.2.9. PROPOSITION. Let p: X — Y be a finite surjective morphism where X, Y are irreducible
and Y is normal. Then |~ (y)| < degp for all y € Y. Moreover, the set

{yeY|lp ' (W)l =degp} CY

is open and dense in Y .

Proor. (a) Let ¢ '(yo) = {x1,...,2x}. Choose an f € O(X) such that f(z;) # f(z;)
for i # j. Let F = t™ + hit™ ' + --- + hy, be the minimal equation of f over C(Y). Then
m < deg ¢, and the coefficients h; belong to O(Y) since they are integral over O(Y). It follows
that f(z1),..., f(zk) are distinct roots of the polynomial F(yo,t), hence k < m < deg ¢, proving
the first claim.

(b) Now assume that the fiber of yo has d := degy points. We know that such points
exist, see Proposition 3.6.1. With the notation above we see that F(yo,t) has degree d and that
f(z1),..., f(zq) are the d distinct roots of F'(yo,t). In particular, the discriminant of F' does not
vanish in yo, hence there is an open neighbourhood U of yo such that F(y,t) has d distinct roots
for all y € U. We will show that |¢ ™' (y)| = d for y € U which proves the second claim.

Consider the finite morphism ¢ x f: X — Y x C, and denote by X’ C Y x C its image.
We have inclusions O(Y) C O(X') C O(X). Since f belongs to O(X’) and has a minimal
equation of degree d over C(Y) we get C(X') = C(X), i.e. the induced morphism ¢': X — X' is
birational. Moreover, X’ C Vy xc(F) C Y x C, hence coincides with an irreducible component of
the hypersurface Z := Vy xc(F), because Z has codimension 1, by KRULL’s Theorem 3.3.4.

We claim that Z is irreducible. Let Z = Z; U - - U Zj be the decomposition into irreducible
components where Z; = X’. By KRULL’s Theorem 3.3.4, all Z; have the same dimension, namely
dimY'. Since p := pry |z: Z — Y is finite, we get p(Z;) =Y for all i. Moreover, p~ ' (y) = {(y,a) |
F(y,a) = 0}, hence |p~*(y)| < d for all y € Y. On the other hand, p' := p|x/: X' = Z1 = Y
has degree d, and so there is a dense open set U’ C Y such that |p'~'(y)| = d for all y € U’
(Proposition 3.6.1). Therefore, p~*(U’) C Z1, hence Z = Zi, because p~'(U’) is dense in Z.

As a consequence, we obtain a factorization

0 X — s Z=Vyo(F) — 2 Y
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where both maps ¢’ and p are finite and surjective. Since |p~*(y)| = d for y € U, we get
le~t(y)| > d for y € U, hence |p~'(y)| = d by (a), and the claim follows. O

(end of new part)

5.3. Discrete valuation rings and smoothness. Let K be a field.

5.3.1. DEFINITION. A discrete valuation of the field K is a surjective map v: K* := K\ {0} —
Z with the following properties:

(a) v(zy) = v(z) +v(y);
(b) v(z+y) = min(v(z),v(y)).
To simplify the notation one usually defines v(0) := co.

5.3.2. EXAMPLE. Let K = Q and p € N a prime number. Define v,(z) := r € Z if p occurs
with exponent r in the rational number = # 0. Then v,: Q" — Z is a discrete valuation of Q.

The following lemma collects some facts about discrete valuations. The easy proofs are left
to the reader.

5.3.3. LEMMA. Let K be a field and v: K* — Z a discrete valuation.
(1) A:=={x € K |v(z) >0} is a subring of K.
(2) m:={zx € K |v(z) >0} C A is a mazximal ideal of A.
(3) {x € K |v(z) =0} are the units of A.
(4) For every non-zero x € K we have x € A or ™ € A.
(5) m = (z) for every x € K with v(z) = 1.
(6) mF = {z € K |v(z) >k} and these are all non-zero ideals of A.
(7) If m = (z), then every z € K has a unique expression of the form z = tz" where k € Z
and t is a unit of A.

5.3.4. DEFINITION. A domain A is called a discrete valuation ring, shortly DVR, if there is
a discrete valuation v of its field of fractions K such that A = {x € K | v(z) > 0}. In particular,
A has all the properties listed in Lemma 5.3.3 above. Clearly, v is uniquely determined by A.

5.3.5. EXERCISE. Let A be a discrete valuation ring with field of fraction K. If B C K is a
subring containing A, then either B= A or B = K.

In the sequel we will use the following characterization of a discrete valuation rings
(see [AM69, Proposition 9.2]).

5.3.6. PROPOSITION. Let A be a Noetherian local domain of dimension 1, i.e. the maz-
imal ideal m # (0) and (0) are the only prime ideals in A. Then the following statements
are equivalent:

(i) A is a discrete valuation ring.
(ii) A is integrally closed.

)
(iii) The mazimal ideal m is principal.
(iV) dimA/m m/m2 =1.
(v) Every non-zero ideal of A is a power of m.

(vi) There is an x € A such that every non-zero ideal of A is of the form (z*).

PRrROOF. (i)=(ii): If z € K and = ¢ A, then A[z] = K which is not finite over A.

(ii)=(iii): Let @ € m, a # 0. Then m* C (a) and m*~! Z (a) for some k > 0. Choose
an element b € m"~!\ (a) and put z := ¢. Then z 7 'm = 1bm C ImF C A If 27 'm C m,
then 2~! would be integral over A and so ™! € A, contradicting the construction. Thus
r7lm = A and so m = (z).

(ili)=(iv): If m = (z), then m/m? = A/m - (z + m?), and m? # m.

(iv)=(v): Let @ C A be a non-zero ideal. Then /a = m and so m* C a for some
k € N. Put A := A/m* and denote by m C A the image of m. Since m = () + m? we get
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m = (z) + mF for all k € N and so m = (z) C A. Now it is easy to see that a = m" for
some r < k, and so a=m".

(v)=(vi): We have m # m2. Choose x € m \ m2. Then, by assumption, (z) = m* for
some k > 1, and so m = ().

(vi)=(i): By assumption, every element a € A has a unique expression of the form
a = tx* where k € N and t a unit of A. Define v/(a) := k. This has a well-defined extension
to K* by setting v(%) := v(a) — v(b) for a,b € A, b # 0. One easily verifies that v is a
discrete valuation of K and that A is the corresponding valuation ring. d

Let X be an irreducible variety and H C X an irreducible hypersurface, i.e. codimx H =

1. The ideal p := I(H) of H is a minimal prime ideal # (0) and thus the localization
Ox, g = O(X), is a local Noetherian domain of dimension 1. If X is normal it follows
from Proposition 5.3.6 that Ox g is a discrete valuation ring which corresponds to a dis-
crete valuation vy : C(X)* — Z. In this case, vy vanishes on the non-zero constants, i.e.
vy is a discrete valuation of C(X)/C.

5.3.7. ExampLE. If f € C[zy,...,z,] is a non-constant irreducible polynomial and
H :=V(f), then the valuation vy has the following description: For a rational functionr €
C(a1,...,2n) we have vy (r) = m if f occurs with exponent m in a primary decomposition

of r.

5.3.8. EXERCISE. Let K/k be a finitely generated field extension, and let A C K be a discrete
valuation ring with maximal ideal m, field of fraction K and containing k. Then tdeg, A/m <
tdeg, K.

(Hint: If tdeg, R/m = tdeg, K, then R contains a field L with tdeg, L = tdeg, K. This implies
that K is a finitely generated R-module which is impossible.)

5.4. The case of curves. If Y is an irreducible curve, then the local rings Oy, =
O(Y ), satisfy the assumptions of the proposition above. The equivalence of (i), (ii) and
(iv) then gives the following result. (In fact, we do not need to assume that Y is irreducible;
cf. Theorem 4.10.1.)

5.4.1. PROPOSITION. Let Y be an affine variety and y € Y such that dimyY = 1.
Then the following statements are equivalent:

(i) The local ring Oy, is a discrete valuation ring.
(ii) Y is normal in y.
(iii) Y s smooth in y.
In particular, a normal curve is smooth and an irreducible smooth curve is normal.

Now assume that C' is a normal curve. Every point ¢ € C determines a discrete
valuation v, of the field of rational functions C(C), with corresponding DVR the local
ring A. := O¢,.. Clearly, A. contains the constants C, and the point ¢ € C' is determined
by A.. Moreover, O(C) = (),cy Ac. On the other hand, if v is a discrete valuation such
that the corresponding DVR A contains O(C), then v = v, for a suitable point ¢ € C. (In
fact, A/m = C (Exercise 5.3.8) and so m N O(C) is a maximal ideal m.. It follows that
Oc,c C A, hence they are equal, by Exercise 5.3.5).

As a consequence, we get the following special case of ZARISKI’s Main Theorem from
section 5.5.

5.4.2. PROPOSITION. Let p: C' — D be a birational morphism of irreducible affine
curves where D is normal. Then ¢ is an open immersion.

PROOF. (a) Let us first assume that ¢ is surjective and C' is normal. Identifying C(D)
with C(C) via ¢* we get O(D) C O(C). For ¢ € C and d := ¢(c) € D we get Oc. C Op 4,
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hence O¢ . = Op 4, by Exercise 5.3.5. Therefore, c is uniquely determined by d, and so ¢
is bijective. It follows that

O(D) = ﬂ Op,a = ﬂ Oc,c = 0(0),
deD ceC
i.e.  is an isomorphism.
(b) In general, the image ¢(C) C D is open. Choose a special open set C' C ¢(C) and
consider the morphism ¢': D’ — C’ where D’ — ¢~ 1(C") is the normalization. Hence, by
(a), ¢’ is an isomorphism, and the claim follows. O

Let us describe now the discrete valuations of the field C(z) of rational functions on
the affine line C. For a € C we get v,(f) := ord(;—_q) f, the order of the factor (z —a) in f,
and the corresponding DVR is A, := Clz](;_). In addition, there is the discrete valuation
Voo : C(2)* = Z where voo(f) = — deg f, with corresponding DVR Ay := Clz™ ! (,-1).

5.4.3. LEMMA. The set of discrete valuations v of the field C(x) which vanish on the
non-zero constants C\ {0} is given by {v, | a € CU{o0}}. In particular, (), A, = C.

PROOF. Let v: C(z)* — Z be a discrete valuation with valuation ring A O C and
maximal ideal m C A.

(a) If v(z) > 0, then Clz] € A and m N Clz] is a maximal ideal of C[z], because
A/m = C (Exercise 5.3.8). Thus m N C[z] = m, for some a € C and so A, C A. This
implies that A = A, (Exercise 5.3.5), hence v = v,.

(b) If v(x) < 0, then, setting y := ™', we get v(y) > 0, hence A = C[y](,) = Ao, by
(a).

(c) The last statement is clear: (), A, = C[z] N C[z~!] = C. 0

As a consequence, we can classify the smooth rational curves.

5.4.4. PROPOSITION. Let C be a smooth rational curve. Then C' is isomorphic to C\ F
where F C C is a finite set.

PRrROOF. By assumption, we have C(C) = C(xz). Denote by € the set of discrete
valuations of C(z) corresponding to points of C. Since [),.¢ Aa = O(C) it follows from
Lemma 5.4.3 at least one discrete valuation v, does not belong to 2.

If voo & Q, then O(C) = N,cq Av 2 Naec Aa = Clz]. Thus we get a rational map
C — C which is an open immersion by Proposition 5.4.2.

If vy & Q for some a € C, then y := - € A, for all b # a, hence Cly] € N,eq Ab =

r—a

O(C), and the claim follows as above. O

5.4.5. EXAMPLE. Let C be a normal curve, and assume that there is a dominant
morphism ¢: C* — C. Then C ~ C. In fact, C is a rational curve by LUROTH’s Theorem
(see Proposition 2.4.1), hence C = C \ F. But every invertible function on C defines an
invertible function on C”, and so F' is empty.

5.5. Zariski’s Main Theorem. We start with the following generalization of the
previous result saying that normal curves are smooth (Proposition 5.4.1). Recall that the
singular points X, of an affine variety form a closed subset with a dense complement
(Proposition 4.10.6).

5.5.1. PROPOSITION. Let X be a normal affine variety. Then codimyx Xing > 2.

subring
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PRrROOF. (a) Let H C X be an irreducible hypersurface and assume that I(H) = (f).
We claim that if z € H is a singular point of X, then x is a singular point of H, too. In
fact, O(H) = O(X)/(f) and mp , = m;/fO(X). Thus mH,z/m%{7$ = (m,/m2)/C- f and
sodimT,H >dim7,X —1>dimX —1=dimH.

(b) Now assume that codimx Xgng = 1, and let H C X, be an irreducible hyper-
surface of X. If p := I(H) is a principal ideal it follows from (a) that H consists of singular
points. But this contradicts the fact that the smooth points of an irreducible variety form
a dense open set.

In general, the localization Ox g is a discrete valuation ring and therefore its maximal
ideal pOx g is principal (Proposition 5.3.6). This implies that we can find an element
s € O(X)\ p such that the ideal pO(X); C O(X)s = O(Xy) is principal. Since pO(X)s =
I(H N X;) we arrive again at a contradiction, namely that all points of H N X, are
singular. g

Another important property of normal varieties is that regular functions can be ex-
tended over closed subset of codimension > 2.

5.5.2. PROPOSITION. Let X be a normal affine variety and f € C(X) a rational
function which is defined on an open set U C X. If codimx X \U > 2, then f is a reqular
function on X.

PRrROOF. Define the ”ideal of denominators” a := {g € O(X) | ¢- f € O(X)}. By
definition U C V' \ Vx (a) and so, by assumption, codimx Vx (a) > 2.

Using NOETHER’S Normalization Lemma (Theorem 3.2.12) we can find a finite surjec-
tive morphism ¢: X — C". We have ¢(Vx(a)) = V(aNClzy,...,z,]) and dim p(Vx (a)) =
dimV(a N Clzy,...,z,]) < n — 2. This implies that we can find two polynomials g1, ¢s €

aNClzy,...,z,] with no common divisor (see the following Exercise 5.5.3). As a conse-

quence, we have f = PL_ P2 g suitable p1,p2 € O(X).

q1 q2
If f .= f, @ f(@ are the conjugates of f in some finite field extension L/C(z1, . ..

of degree d containing C(X) we have

f® S fori=1,...,d
q1 q2
where the pgi) are the conjugates of p; and the pg) the conjugates of py. The element
f € C(X) satisfies the equation

d d
[[¢t=r)y=tt+> pt"7 =0
i=1 j=1
where the coefficients b; € C(x1,...,z,) are given by the elementary symmetric functions

o; in the following form:

1 1 d 1 1 d
bj=x0;(fO, . f D) = 2= (p",. ) = =0 (08, ).
bt 4
Since p1,p2 € O(X) are integral over Clxy,...,x,] we see that both aj(pgl), . ,pgd))
and o; (pél), e ,péd)) belong to C[zy,...,z,]. Since ¢; and g2 have no common factor this
implies that b; € C[z1,...,2,]. As a consequence, f is integral over C[z, ..., z,] and thus

belongs to O(X). O

5.5.3. EXERCISE. Let a C C[z1,...,x,] be an ideal with the property that any two elements
f1, f2 € a have a non-trivial common divisor. Then there is a non-constant A which divides every
element of a.
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5.5.4. COROLLARY. If X is a normal variety, then O(X) = (1, O(X), where p runs
through the minimal prime ideals # (0).

PROOF. Let r € (), O(X), and define a:= {g € O(X) | ¢-r € O(X)}. It follows that
a < p for all minimal primes p # 0, and so Vx (a) does not contain an irreducible hyper-
surface. This implies that codimx Vx(a) > 2 and so r is regular by the Proposition 5.5.2
above. O

We thus have the following characterization of normal varieties. An irreducible variety
X is normal if and only if the following two condition hold:

(a) For every minimal prime p # (0) the local ring O(X), is a discrete valuation
rng;
(b) O(X) =N, O(X)p where p runs through the minimal prime ideals # (0).
We have seen in examples that there are bijective morphisms which are not isomor-
phisms. This cannot happen if the target variety is normal, as the following result due to
Icusa shows (cf. [Igu73, Lemma 4, page 379]).

5.5.5. LEMMA (IcusA’s Lemma). Let X be an irreducible and Y a normal affine
variety and let ¢: X — Y be a dominant morphism. Assume

(a) codimy Y \ o(X) > 2, and
(b) degp =1.
Then ¢ is an tsomorphism.

PRrOOF. By assumption (b), we have the following commutative diagram:

oY) —— 0(X)

gl gl
C(Y) C(X)

If H C Y is an irreducible hypersurface, then, by assumption (a), H meets the image
©(X) in a dense set and so ¢(¢~'(H)) = H. This implies that there is an irreducible

hypersurface H' C X such that ¢(H') = H. If we denote by p := I(H) C O(Y) and
p':=1(H") C O(X) the corresponding minimal prime ideals we get p’ N O(Y") = p. Thus

O(Y)y € O(X)y G C(Y) = C(X).

Since O(Y'), is a discrete valuation ring this implies O(Y), = O(X), (see Exercise 5.3.5).
Thus, by Corollary 5.5.4,

O(X) C (OX)y =[)OY), = OY),
p’ p

and the claim follows. O

5.5.6. EXAMPLE. Let X be an irreducible variety and ¢: X — C™ a dominant
morphism of degree 1 with finite fibers. Then ¢(X) C C™ is a special open set and
¢: X = p(X) is an isomorphism.

PROOF. Let YV := Cn\ p(X) C C*. If H C Y is an irreducible hypersurface, H =
V(f), then ¢~ 1(H) has codimension > 2 in X. Since ¢~ (H) = Vx(p*(f)), it follows
from KRULL'S Principal Ideal Theorem A.3.3.4 that o= '(H) = (), and so p(X) C C%.
Repeating this we finally end up with a special open set U C C™ such that (X ) C U and
codimU \ ¢(X) > 2. Now the claim follows from IGUSA’s Lemma 5.5.5 above. O

intersection
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This example generalizes to the following result called ZARISKI’s Main Theorem.

5.5.7. THEOREM. Let X be an irreducible affine variety and p: X —'Y a dominant
morphism with finite fibers. Then there is a finite morphism n:Y — Y and an open
immersion v: X — Y such that ¢ =nou:

XC—L>}~/

\ ln
)

Y

In particular, if Y is normal and degp = 1, then ¢ is an open immersion.

Zariski.thm

PROOF. Replacing Y by its normalization Y in the field extension C(X)/C(Y) we
can assume that deg¢ = 1, and have to show that ¢ is an open immersion. Let H C Y
be an irreducible hypersurface such that H N ¢(X) has codimension > 2 in H. The ideal
of H is a minimal prime p C O(Y) and O(Y),, is a discrete valuation ring. Since ¢~ (H)
has codimension > 2 in X we see that Vx(p) = 0, and so ¢(X) CY \ H. It follows that
there are finitely many hypersurfaces H; C Y such that (X) C Y’ :=Y \|J; H; and that
Y’ \ ¢p(X) has codimension > 2. Now we apply IqUusa’s Lemma 5.5.5 to a covering of Y’ Leasalom
by special open sets to see that ¢(X) = Y’ and that ¢: X = Y’ is an isomorphism. [

There is a partial converse of Proposition 5.5.1 which is a special case of SERRE’S-
Criterion for Normality which we now formulate without giving a proof.

normalsing

Serre.prop

5.5.8. PROPOSITION. Let H C C™ be an irreducible hypersurface. If the singular points
Hgine have codimension > 2 in H, then H is normal.

5.5.9. EXAMPLE. Let Q, := V(2% + 23 + - +22) C C". Then dimQ,, = n — 1 and
0 € @y, is the only singular point. Thus @), is normal for n > 3.

5.5.10. EXERCISE. Show that the nilpotent cone N := {A € M | A nilpotent} is a normal
variety.

5.5.11. PROPOSITION (SERRE’S Criterion). Let X C C™ be the zero set of f1,..., fr €
Clz1, ... xn): X :=V(f1,..., fr). Define

X' :={z € X |rkJac(f1,..., fr)(x) <r}.

(1) If X \ X' is dense in X, then I(X) = (f1,..., fr) and X' = Xing.
(2) If codimyxy X \ X’ > 2, then X is normal.

5.5.12. EXAMPLE. let N := {A € M,, | A nilpotent} the nilpotent cone in M,,. We
claim that N is a normal variety.

ProoF. Consider the morphism 7: M,, — C", w(A) := (tr A, tr A%,... tr A"). Then
N = 7710). If P € N is a nilpotent element of rank n — 1, then tkdrp = n. In
fact, tr(P + eX)* = tr(P* + ekP*1X) = ektr(P*~!1X). Taking P in Jordan nor-
mal form one easily sees that drp: X +— (tr X, tr PX,tr P2X,... tr P""1X) is surjec-
tive. It follows that rkJac(fi,..., f,)(P) = n for the functions f;(A) := tr A7 and for
P € N’ := {nilpotent matrices of rank n—1}. Now one shows that codimy N\N' =2. O
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5.6. Divisors. Let X be a normal affine variety. Define
H :={H C X | H irreducible hypersurface}.

5.6.1. DEFINITION. A dwisor on X is a finite formal linear combination

D= > npg-H whereny €Z.
HeH
We write D > 0 if nyg > 0 for all H € H. The set of divisors forms the divisor group

Div X = @ 7 - H.
HeH

Recall that for any irreducible hypersurface H € H we have defined a discrete valuation
vi: C(X)* — Z whose discrete valuation ring is the local ring Ox g (see section 5.3).

5.6.2. DEFINITION. For f € C(X)* we define the divisor of (f) by
(f):=="> vulf)-H.

HeH
Such a divisors is called a principal divisor.

5.6.3. REMARKS. (1) (f)isindeed a divisor, i.e. vg(f) # 0 only for finitely many

HeH.
(This is clear for f € O(X) \ {0}, because vy (f) > 0 if and only if H C V(f),
and follows for a general f = £ because (f) = (p) — (¢), by definition.)

(2) (f-h)=(f)+ (h) for all f,h e C(X).

(3) (f) > 0if and only if f € O(X).
(We have vg(f) > 0 if and only if f € Ox g. Since (\ycqy Ox,5 = O(X) the
claim follows.)

(4) (f) =0if and only if f is a unit in O(X).
(If (f) = 0, then, by (3), f € O(X) and f~! € O(X).)

5.6.4. DEFINITION. Two divisors D, D’ € Div X are called linearly equivalent, written
D ~ D', if D— D' is a principal divisor. The set of equivalence classes is the divisor class
group of X:
Cl1X := Div X/{principal divisors}
It follows that we have an exact sequence of commutative groups
1-0X)" -C(X)" - DivX -ClX =0

5.6.5. REMARK. We have C1X = 0 if and only if O(X) is a unique factorization
domain. In fact, a unique factorization domain is characterized by the condition that all
minimal prime ideals p # (0) are principal.

5.6.6. EXAMPLE. Let C' C C? be a smooth curve. If f € O(C) and f € Clz,y] a
representative of f, then

(f): Z mP’Pa

PeCcnV(f)

and the integers mp > 0 can be understood as the intersection multiplicity of C' and V(f)

in P. E.g. if the intersection is transversal, i.e., TpC N TpV(f) = (0), then mp = 1 (see
the following Exercise 5.6.7).

5.6.7. EXERCISE. Let C, E C C? be two irreducible curves, I(C) = (f) and I(E) = (h). If
P € C N E define mp := dimc Cz, y]/(f, h). Show that
(1) If C is smooth and h = h|c € O(C), then (h) =Y pccpyme - P



A.5. NORMAL VARIETIES AND DIVISORS 173

(2) fPeCNE and TpCNTpE = (0), then mp = 1.

5.6.8. EXERCISE. (1) For the parabola C' = V(y — z?) we have C1C = (0).
(2) For an elliptic curve E = V(y* — (x® — 1)) every divisor D is linearly equivalent to 0
or to P for a suitable point P € E.



