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Introduction. In this first chapter, we introduce and discuss a few simple
and sometimes well-known geometric examples. Since we don’t develop the basics
and the methods until the following chapters, we sometimes have to refer to later

1



2 CHAPTER I. FIRST EXAMPLES AND BASIC CONCEPTS

and must be satisfied with an intuitive justification and notions introduced ad hoc.
Nevertheless, it is still worth while to make a detailed study of these examples at
this point. One recognizes the necessity of making the intuitive notions and the
basics precise and also of developing new methods. Moreover, in the remaining part
of the book we can test our newly won knowledge on the examples which are given
here.

There are also a number of exercises included in the text, some with hints. The
reader is strongly advised to work out the solutions. At the end of each paragraph,
we recollect them for the convenience of the reader.

1. Elementary Euclidean Geometry

1.1. Triangles. We denote by E := R2 the Euclidean plane endowed with the
standard metric where the distance of two points P = (x, y) and P ′ = (x′, y′) is

defined by |P − P ′| :=
√

(x− x′)2 + (y − y′)2. A triangle ∆ is given by its vertices
P1, P2, P3 and will be denoted by ∆(P1, P2, P3). Thus the set T := E3 describes all
triangles in the plane E, including the degenerated ones where all vertices are on a
line or even partially coincide.

-
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Two triangles ∆ and ∆′ are called congruent if there is an isometry ϕ of the plane
such that ϕ(∆) = ∆′. Recall that an isometry ϕ of the plane E is a map ϕ : E → E
which preserves lengths: |ϕ(P ) − ϕ(Q)| = |P − Q| for all P,Q ∈ E (see [Art91,
Chapter 5.1]). The isometries form a group, the isometry group which we denote
by . Using the description of the triangles by their vertices, we have the following
definition.

Definition 1.1.1. Two triangles ∆(P1, P2, P3) and ∆(Q1, Q2, Q3) are congru-
ent,

∆(P1, P2, P3) ∼ ∆(Q1, Q2, Q3),

if there is an isometry β ∈ Iso(E) and a permutation σ ∈ S3 such that Qσ(i) = β(Pi)
for i = 1, 2, 3.

In terms of coordinates this means the following. Let Pi = (xi, yi) and Qi =
(x′i, y

′
i), i = 1, 2, 3. Then there is an orthogonal matrix A ∈ O2(R), a vector t =
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(tx, ty) ∈ R2 and a permutation σ ∈ S3 such that[
x′σ(i)

y′σ(i)

]
= A

[
xi
yi

]
+

[
tx
ty

]
for i = 1, 2, 3.

1.2. Invariants. A well-known classical result says that two triangles are con-
gruent if and only if their edges have the same lengths. This statement has two parts.
Firstly, it says that the set of lengths of the edges of a triangle is an “invariant”
of the congruence class, and secondly that this invariant completely determines the
triangle up to congruence. To be more precise let us make the following definition.

Definition 1.2.1. An invariant of the triangles is a map f : T → R with the
following property: If ∆,∆′ ∈ T are congruent, ∆ ∼ ∆′, then f(∆) = f(∆′).

This means that the map f is invariant under isometries and permutations, i.e.
f(β(P1), β(P2), β(P3)) = f(P1, P2, P3) for β ∈ Iso(E), and f(Pσ(1), Pσ(2), Pσ(3)) =
f(P1, P2, P3) for σ ∈ S3. Clearly, the invariants form a subalgebra of the algebra of
real functions on T, and this algebra is closed under substitution, i.e. if h : R→ R
is any function and f an invariant, then so is h ◦ f : ∆ 7→ h(f(∆)).

Examples 1.2.2. (a) The circumference of a triangle ∆ = ∆(P1, P2, P3), given
by

u(∆) := |P1 − P2|+ |P2 − P3|+ |P3 − P1| = `12 + `23 + `31,

is an invariant. Here `ij := |Pi − Pj | =
√

(xi − xj)2 + (yi − yj)2.

(b) The area F (∆) of the triangle ∆ = ∆(P1, P2, P3) is an invariant. It is given
by the formula

F (∆) =

∣∣∣∣∣∣12 det

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ =

∣∣∣∣12(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)

∣∣∣∣ .
Note that the length `ij of a single edge of ∆ is not an invariant in the sense

of our definition; only the symmetric functions of the three lengths `12, `23, `31

are invariants! The classical result mentioned above can now be formulated in the
following way.

Proposition 1.2.3. The congruence class of a triangle ∆ ∈ T is completely
determined by the three invariants

f1(∆) := u(∆), f2(∆) := `12`23 + `12`31 + `23`31, f3(∆) := `12`23`31

which are the elementary symmetric functions in the lengths of the edges.

Exercise 1.2.4. Verify the formula for the area of a triangle given in Example 1.2.2(b).

Exercise 1.2.5. Using the identification T = R6 show that a function f : R6 → R is
an invariant if and only if the following three conditions hold:

(1) f(x1, y1, x2, y2, x3, y3) = f(xσ(1), yσ(1), xσ(2), yσ(2), xσ(3), yσ(3)) for all permuta-
tions σ ∈ S3;

(2) f(x1, y1, x2, y2, x3, y3) = f(x1 − x3, y1 − y3, x2 − x3, y2 − y3, 0, 0);

(3) f(x1, y1, x2, y2, x3, y3) = f(x′1, y
′
1, x
′
2, y
′
2, x
′
3, y
′
3) if

[
x′i
y′i

]
:= A

[
xi
yi

]
for i = 1, 2, 3

and A ∈ O2(R).

Exercise 1.2.6. Consider the following set of triples of real numbers:

D := {(a, b, c) ∈ R3 | a, b, c are the lengths of the edges of a triangle}.
Describe D as a subset of R3 by inequalities and show that there is a homeomorphism
(R≥0)3 ∼→ D which is equivariant with respect to permutations from S3.
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1.3. Congruence classes. It turns out that all the formulas become nicer
and easier to handle if we replace the lengths `ij of the edges by their squares

`2ij = (xi − xj)2 + (yi − yj)2.

Then, for a triangle ∆ = ∆(P1, P2, P3) ∈ T, the three elementary symmetric func-
tions in `212, `

2
23, `

2
31 are homogeneous polynomials in x1, y1, x2, y2, x3, y3 of degree

2, 4 and 6:

s1(∆) := `212 + `223 + `231,

s2(∆) := `212`
2
23 + `212`

2
31 + `223`

2
31,

s3(∆) := `212`
2
23`

2
31.

As above, s1(∆), s2(∆), s3(∆) are invariants of ∆, and they determine ∆ up to
congruence. Here is a first example.

Example 1.3.1. For the square of the area F (∆) of the triangle ∆ we have the
following expression:

16F (∆)2 = 4(`212`
2
23 + `212`

2
31 + `223`

2
31)− (`212 + `223 + `231)2 = 4 s2(∆)− s1(∆)2.

In particular, F (∆) is a polynomial in the first two elementary symmetric functions
of `212, `

2
23, `

2
31.

Exercise 1.3.2. Verify the polynomial expression for F (∆)2 given above. Give an
expression of F (∆)2 as a polynomial in `212 + `223 + `231 and `412 + `423 + `431.

Now consider the map

π : T→ R3, ∆ 7→ (s1(∆), s2(∆), s3(∆)).

Proposition 1.2.3 says that ∆ ∼ ∆′ if and only if π(∆) = π(∆′). In other words,
the fiber π−1(π(∆)) is equal to the congruence class C∆ of ∆. Therefore, we can
identify the image π(T) with the set of congruence classes:

π : T→ π(T) ' T/∼ .
In this way the set of congruence classes T/∼ appears as a subset of R3. It is
an interesting task to work out the shape of this subset. E.g. the image of a non-
degenerate triangle is an interior point of π(T) where as the image of a degenerate
triangle is a boundary point.

Remark 1.3.3. Since π is a polynomial map the image π(T) ⊆ R3 is a which
is defined by certain inequalities (see [PS85]). We will see below (Remark 1.4.2)
that the quotient topology on π(T) coincides with the topology induced from the
embedding π(T) ⊆ R3. As a consequence, every continuous invariant f : T→ R is a
continuous function in s1, s2, s3: f(∆) = f̄(s1(∆), s2(∆), s3(∆)) where f̄ : R3 → R
is continuous. (This follows from Tietze’s extension theorem which asserts that
for a closed subset A of a normal topological space X every continuous function
f : A→ R extends to a continuous function on X.)

1.4. Orbit space and quotient map. We now give a different description of
the congruence classes, namely as orbits under a certain group action. The group
of isometries of the plane E is the semidirect product of the orthogonal group O2(R)
and the subgroup of translations T ' (R+)2: Iso(E) = O2(R) n T . This group acts
simultaneously on any number of copies of E, in particular on T = E3:

ϕ(P1, P2, P3) = (ϕ(P1), ϕ(P2), ϕ(P3)).

There is also an action of the symmetric group S3 on E3 by permuting the factors,

σ(P1, P2, P3) = (Pσ−1(1), Pσ−1(2), Pσ−1(3)),
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and these two actions obviously commute. Thus we obtain an action of the product

G := Iso(E)× S3

on T = E3 whose orbits are the congruence classes (see Definition 1.1.1). Therefore,
the space T/∼ can be regarded as the orbit space T/G, and the map

π : T→ R3, ∆ 7→ (s1(∆), s2(∆), s3(∆))

already considered above identifies the image π(T) with the orbit space T/G. Let
us call such a map π a quotient map. A more precise definition will be given later
in the algebraic context.

We have already mentioned above that the invariants s1, s2, s3 are polynomials.
Denote by R[T] = R[x1, y1, x2, y2, x3, y3] the algebra of polynomial functions on T.

Proposition 1.4.1. The algebra R[T]G of invariant polynomial functions on
T is a polynomial ring generated by s1, s2, s3. More precisely, the pull-back map of
the quotient map,

π∗ : R[x, y, z]→ R[T], p 7→ p ◦ π,
satisfies π∗(x) = s1, π

∗(y) = s2, π
∗(z) = s3, and it induces an isomorphism

R[x, y, z]
∼→ R[T]G.

Proof. Consider the three polynomial maps

T = E3 π1−−−−→ E2 π2−−−−→ R3 π3−−−−→ R3

defined in the following way:

π1(P1, P2, P3) := (P2 − P3, P1 − P3),

π2(Q1, Q2) := (|Q1|2, |Q2|2, |Q1 −Q2|2),

π3(a, b, c) := (a+ b+ c, ab+ ac+ bc, abc).

It is easy to see that he composition π3 ◦ π2 ◦ π1 is equal to π.
(a) The map π1 : E3 → E2 is linear with kernel {(P, P, P ) | P ∈ E}, and

so the fibers are the orbits of the normal subgroup T ⊆ Iso(E) of translations.
Hence π1 is a surjective quotient map with respect to T . Also, π is equivariant with
respect to the linear actions of O2(R) on E3 and E2. It is also equivariant with
respect to the action of S3 which, on E2, is given by (1, 2)(Q1, Q2) = (Q2, Q1) and
(1, 3)(Q1, Q2) = (Q1 −Q2,−Q2). One easily sees that π∗1 identifies R[E2] with the
invariants R[E3]T ⊆ R[E3].

(b) The map π2 : E2 → R3 is a quotient with respect to O2(R), and π∗2 iden-
tifies R[a, b, c] with the invariants R[E2]O2(R). The first statement is easy whereas
the second needs some work (see Exercise 1.4.3). Moreover, π2 is equivariant with
respect to the S3-action on E2 and R3.

(c) The map π3 : R3 → R3 is a quotient map with respect to S3, and π∗3 identifies
R[x, y, z] with the symmetric polynomials R[a, b, c]S3 . This will be discussed in the
following paragraph (see Proposition 2.2.1).

Clearly, (a), (b) and (c) imply that the composition π = π3◦π2◦π1 is a quotient
with respect to G, and that π∗ identifies R[x, y, z] with the invariants R[E3]G. In
particular, R[E3]G is a polynomial ring generated by s1, s2, s3. �

Remark 1.4.2. In the notation of the proof above we see that π1 is a linear
surjective map, hence open, whereas the composition π3 ◦ π2 : E2 → R3 is given by
invariants under the compact group S3 ×O2(R). It follows that this map is proper
and that the image carries the quotient topology ([Sch75]; cf. [PS85, Proposi-
tion 0.4]). As already mentioned above this implies that every continuous invariant
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f : T→ R is a continuous function in s1, s2, s3. In particular, we did not loose any
information by restricting to polynomial functions!

Exercise 1.4.3. Let E := Rn, n ≥ 2, be the n-dimensional Euclidean space with the
standard scalar product (x, y) := x1y1 + · · · + xnyn, and denote by R[E] and R[E2] the
real polynomial functions on E and E2 := E ×E respectively. We want to determine the
invariant polynomials under On(R) and SOn(R).

(1) We have R[E]SOn = R[E]On = R[s] where s(x) := |x|2 := (x, x).
(2) We have R[E2]On = R[s1, s2, s12] where s1(x, y) := |x|2, s2(x, y) := |y|2 and

s12(x, y) := (x, y).
(3) For n ≥ 3 we have R[E2]SOn = R[E2]On . What happens for n = 2?

(Hint: Restricting an invariant polynomial f ∈ R[E2]On(R) to D := Re1 × Re2 we get
f |D = f(x1, y2) = q(x2

1, y
2
2), and so the invariant f1 := f − q(s1, s2) vanishes on D and

thus on On(R) ·D which is the zeros set of s12 in E2. In order to see that f1 is divisible by
s12 one complexifies the spaces and shows that On(R) ·D is Zariski dense in the complex
zeros set VC(s12) ⊆ E2

C.)

1.5. Summary. This example is typical for many classification problems. We
start with certain mathematical objects M which we want to classify up to a given
equivalence. For example, we want to classify algebras, modules, representations
etc. up to isomorphisms. The objects are described by a set X, i.e. to every x ∈ X
there is an object M(x) associated to x. In addition, there is a group G acting on
X such that M(x) is equivalent to M(x′) if and only if there is a g ∈ G such that
gx = x′. As a consequence, the set of equivalence classes of these objects equals the
orbit space X/G. Moreover, there is a natural map πX : X → X/G, the quotient
map, which sends any x ∈ X to its orbit Gx.

In general, there might be several different descriptions of our objects, so that
the set X is not uniquely determined. It is an important task to find a description
suitable and adapted to the given situation. Moreover, the set X usually has some
additional structure, e.g. a topology which allows to say if two objects are close
to each other, and to define continuous families of objects. Then the set of equiva-
lence classes inherits, via the quotient map π : X → X/G, a topology, the so-called
quotient topology.

In order to distinguish non-equivalent objects we are looking for invariant func-
tions f : X → R, i.e. R-valued functions which the property that f(x) = f(x′)
whenever x and x′ belong to the same orbit. If we can even find enough invariants
{f1, f2, . . . , fn} so that they separate the orbits, i.e. for x, x′ not in the same orbit
there is an fj such that fj(x) 6= fj(x

′), then we can define the map π : X → Rn,
x 7→ (f1(x), . . . , fn(x)), whose image can be identified with the orbits space X/G.
If X is a topological space and all fj are continuous, then π is continuous, and
one can hope that quotient topology on π(X) ' X/G coincides with the induced
topology from Rn. If this is the case and if, in addition, the image is closed, then we
know from Tietzes extension theorem that every continuous invariant function f is
a continuous function in f1, . . . , fn, i.e., f(x) = q(f1(x), . . . , fn(x)) for a continuous
function q : Rn → R.

In our situation, the set X will be an algebraic variety, and the equivalence re-
lation on X will be given by the action of an algebraic group on X. So an important
question is whether the orbit space X/G also carries the structure of an algebraic
variety. In general, this is not the case, as we will see in some later examples in
this Chapter. One of the main difficulties is that even continuous functions cannot
separate all orbits, because there exist non-closed orbits. (This did not happen in
the example above since the action of the translations T was free and the group
Ḡ := G/T was compact.) Therefore, we have to study very carefully the invariant
regular functions. They will help us to get around some of these difficulties.
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2. Symmetric Product and Symmetric Functions

2.1. Symmetric product. Given a set X we denote by Xn the n-fold carte-
sian product, i.e., the set of ordered n-tuples of elements from X:

Xn := X ×X × · · · ×X = {(x1, x2, . . . , xn) | xi ∈ X}.
However, there are many examples where the ordering does not make sense, e.g.
the vertices of triangle, the roots of a polynomial, etc. This leads to the definition
of the symmetric product. Denote by Sn the symmetric group on n letters.

Definition 2.1.1. Let X be a set. On Xn define the following equivalence
relation

(x1, x2, . . . , xn) ∼ (y1, y2, . . . , yn)⇐⇒ ∃σ ∈ Sn : yi = xσ(i) for i = 1, . . . , n.

The n-th symmetric product is then defined by X(n) := Xn/∼. It is the set of
unordered n-tuples of elements from X.

There is an action of the symmetric group Sn on Xn, defined by

σ(x1, x2, . . . , xn) := (xσ−1(1), xσ−1(2), . . . , xσ−1(n)),

whose orbits are the equivalence classes, and so the symmetric product equals the
orbit space: SnX = X/Sn. (Note that we have to use σ−1 in order to get a left
action of Sn.)

Example 2.1.2. The unordered pairs of real numbers R(2) can be described by
using the symmetric functions x+ y and xy. In fact, the fibers of the map

π : R2 → R2, (x, y) 7→ (x+ y, xy).

are the equivalence classes and the image is given by {(u, v) | u2 − 4v ≥ 0} which
is homeomorphic to R×R≥0. Thus π : R2 → R×R≥0, (x, y) 7→ (x+ y, (x− y)2) is
the quotient map (see Exercise 2.1.4 below).

Example 2.1.3. We have C(2) ' C2 where the quotient map π : C2 → C2 is
given by (x, y) 7→ (x+ y, xy). In fact, this morphism is surjective and the fibers are
exactly the orbits under S2. If (a, b) ∈ C2 and x1, x2 are the roots of t2 − at + b,
then π−1(a, b) = {(x1, x2), (x2, x1)}. In particular, the fiber of (a, b) contains only
one element if and only if a2 − 4b = 0.

Exercise 2.1.4. Show that the map π : C2 → C2 of Example 2.1.3 is proper and open
in the standard C-topology. Deduce from this that the same assertions hold for the map
π : R2 → R2/∼⊆ R2 given in Example 2.1.2.

2.2. Symmetric functions. The symmetric group Sn of permutations of
{1, 2, . . . , n} has a natural representation on Cn which is given by σ(ei) := eσ(i),
i = 1, 2, . . . , n. In terms of coordinates we have

σ(a1, a2, . . . , an) := (aσ−1(1), aσ−1(2), . . . , aσ−1(n)).

The corresponding matrices Pσ are called permutation matrices (see [Art91, Chap.
1.4]). The induced action on the polynomial functions C[x1, . . . , xn] on Cn is given
by σxi = xσ(i), i = 1, . . . , n, and the invariant polynomial function C[x1, . . . , xn]Sn

are the symmetric polynomials. The elementary symmetric functions s1, s2, . . . , sn
are defined by

sk(x1, . . . , sn) :=
∑

11<i2<···<ik

xi1xi2 · · ·xik .

In particular,

s1(x1, . . . , xn) = x1 + x2 + · · ·+ xn and sn(x1, . . . , xn) = x1x2 · · ·xn.
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Proposition 2.2.1. The elementary symmetric functions s1, s2, . . . , sn are al-
gebraically independent and generate the algebra of of symmetric polynomials:

C[x1, . . . , xn]Sn = C[s1, s2, . . . , sn].

In particular, every symmetric polynomial can be uniquely written as a polynomial
in the si.

Proof. (1) We prove this by induction on n, the case n = 1 being obvious.
Define s′i := si|xn=0. Then s′1, . . . , s

′
n−1 are the elementary symmetric functions

in the variables x1, . . . , xn−1 and s′n = 0. Assume that p(s1, . . . , sn) = 0 where
p = p(t1, . . . , tn) is a polynomial of minimal degree > 0 with this property. Then 0 =
p(s1, . . . , sn)|xn=0 = p(s′1, . . . , s

′
n−1, 0). Hence, by induction, p(t1, . . . , tn−1, 0) = 0.

Thus p is divisible by tn which contradicts the minimality of p.
Let f ∈ C[x1, . . . , xn]Sn be symmetric. Then f(x1, . . . , xn−1, 0) is symmetric

in x1, . . . , xn−1 and so, by induction, f(x1, . . . , xn−1, 0) = q(s′1, . . . , s
′
n−1) with a

suitable polynomial q. Define g := f − q(s1, . . . , sn−1). Then g is symmetric and
g|xn=0 = 0. It follows that g is divisible by xn, hence by all xi’s, and so g = snf0

where f0 is symmetric and of smaller degree than g. The claim follows by induction
on deg f . �

Exercise 2.2.2. Consider the symmetric polynomials ψj := xj1 + xj2 + · · ·+ xjn which
are called power sums or Newton functions. Prove the following formulas due to Newton,

(−1)j+1jsj = ψj − s1ψj−1 + s2ψj−2 − · · ·+ (−1)j−1sj−1ψ1 for j = 1, . . . , n,

and deduce that the power sums ψ1, ψ2, . . . , ψn generate the algebra of symmetric functions
C[x1, . . . , xn]Sn .
(Hint: The case j = n is easy: Consider f(t) :=

∏
i(t − xi) and calculate

∑
i f(xi) which

is equal to 0. For j < n, the right hand side is a symmetric function of degree ≤ j, hence
can be expressed as a polynomial in s1, . . . , sj . Now put xj+1 = . . . = xn = 0 and use
induction on n. Another proof can be found in [Wey97, Chap. II A.3].)

Exercise 2.2.3. Show that every rational symmetric function is a rational function in
s1, . . . , sn. In particular, the field extension C(x1, . . . , xn)/C(s1, . . . , sn) is a finite Galois
extension of degree n! with Galois group Sn.

Exercise 2.2.4. Show that

C[x1, . . . , xn]Sn−1 = C[x1, . . . , xn−1]Sn−1 [xn] = C[x1, . . . , xn]Sn [xn]

=

n−1⊕
j=0

C[x1, . . . , xn]Snxjn

(Hint: If f ∈ C[x1, . . . , xn]Sn and f =
∑
j fjx

j
n, then fj ∈ C[x1, . . . , xn−1]Sn−1 . This gives

the second equality. For the last one uses that xn satisfies an integral equation of degree
n, see (1) in the following section 2.3.)

Exercise 2.2.5. Show that

C[x1, . . . , xn] =
⊕

0≤ik<k

C[x1, . . . , xn]Snxi22 x
i3
3 · · ·x

in
n .

In particular, C[x1, . . . , xn] is a free module over C[x1, . . . , xn]Sn of rank n!.

(Hint: By induction, C[x1, . . . , xn−1] =
⊕

0≤ik<k
C[x1, . . . , xn−1]Sn−1xi22 x

i3
3 · · ·x

in−1
n−1 , hence

C[x1, . . . , xn] =
⊕

0≤ik<k
C[x1, . . . , xn]Sn−1xi22 x

i3
3 · · ·x

in−1
n−1 . Now use the previous exer-

cise.)

Exercise 2.2.6. The orbit sum of a polynomial f ∈ C[x1, . . . , xn] is defined by sf :=∑
h∈Of

h where Of ⊆ C[x1, . . . , xn] is the orbit of f under Sn. E.g. sx1x2···xk = sk and

s
x
j
1

= ψj . Show that C[x1, . . . , xn]Snd has a basis consisting of the orbit sums of the

monomials xp1
1 xp2

2 · · ·xpnn where p = (p1, p2, · · · , pn) runs through the partitions of d into
n elements, i.e. p1 ≥ p2 ≥ · · · ≥ pn ≥ 0 and p1 + p2 + · · ·+ pn = d.
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2.3. Roots of polynomials. It is well-known that the coefficients of a monic
polynomial are the elementary symmetric functions of the roots, up to sign. More
precisely, we have the following identity

(1)

n∏
i=1

(t− xi) = tn − s1(x1, . . . , xn)tn−1 + s2(x1, . . . , xn)tn−2−

· · ·+ (−1)nsn(x1, . . . , xn).

where both sides are considered as elements of the polynomial ring C[x1, . . . , xn, t].

Example 2.3.1. The polynomial
∏
i<j(xi − xj)2 is symmetric, hence can be

written as a polynomial in the elementary symmetric functions sk:∏
i<j

(xi − xj)2 = D(s1, . . . , sn).

The polynomial D has degree n(n − 1) and is called discriminant. By definition,
D(b1, . . . , bn) = 0 if and only if the polynomial tn− b1tn−1 + b2t

n−2−· · ·+ (−1)nbn
has multiple roots.

Exercise 2.3.2. For any pair n ≥ m there is a polynomialRn,m ∈ C[x1,..., xn, y1, . . . , ym]
with the following property: Two monic polynomials f = tn + a1t

n−1 + · · ·+ an and g =
tm+b1t

m−1 + · · ·+bm have a common root if and only if Rn,m(a1, . . . , an, b1, . . . , bm) = 0.
(The polynomial Rn,m is called the resultant.)

Consider the following polynomial map

π : Cn → Cn, (a1, . . . , an) 7→ (s1(a1, . . . , an), . . . , sn(a1, . . . , an)).

It follows from the above that π is surjective and that the fibers are the Sn-orbits.
In fact, an element λ = (λ1, . . . , λn) of the fiber of (b1, . . . , bn) consists of the roots
(with multiplicities) of the polynomial tn − b1tn−1 + b2t

n−2 − · · · + (−1)nbn. But
more is true:

Proposition 2.3.3. (1) The morphism π : Cn → Cn is surjective and its
fibers are the Sn-orbits.

(2) The morphism π is finite and therefore closed in the Zariski topology.
(3) The morphism π is proper and therefore closed in the standard C-topology.

Proof. We just proved (1), and (2) follows from Exercise 2.2.5. A proof of the
last statement (3) can be found in [Sch75]. �

The proposition shows that the polynomial map π : Cn → Cn is a quotient map
with the additional property that the image carries the quotient topology. Therefore,
every continuous invariant function f factors through π: f = π∗(f̄) := f̄ ◦ π with a
continuous function f̄ : Cn → C. And the same holds for the polynomial functions,
because

π∗(C[y1, . . . , yn]) = C[s1, . . . , sn] = C[x1, . . . , xn]Sn .

In particular, the symmetric product C(n) can be identified with Cn by using the
elementary symmetric functions. It turns out that the more general symmetric
products (Ck)(n) are much more complicated, and they are not really understood
so far. Let us look at the first non-trivial case.

Example 2.3.4. In order to describe (C2)(2) we first calculate the algebra of
invariants C[x1, y1, x2, y2]S2 where σ(x1) = x2 and σ(y1) = y2. It is generated by
the following five invariants

a1 := x1 + x2, a2 := y1 + y2,
a3 := (x1 − x2)2, a4 := (y1 − y2)2, a5 := (x1 − x2)(y1 − y2)
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which satisfy the relation a3a4 = a2
5. In fact, using the new generators

z1 := x1 + x2, z2 := y1 + y2, z3 := x1 − x2, z4 := y1 − y2

we get for a monomial m = zr11 z
r2
2 z

r3
3 z

r4
4 that σ(m) = (−1)r3+r4m, and so the

invariants are generated by z1, z2, z
2
3 , z

2
4 , z3z4, as claimed. One can deduce from this

that the morphism

π : C2 × C2 → C5

given by the five invariants has image X := V(y3y4−y2
5) ⊆ C5 and that the induced

map π : C2 × C2 → X has all the properties of a quotient map, i.e. (C2)(2) ' X.
The details will be discussed later, see ??.

Remark 2.3.5. If we restrict the morphism π to the real points Rn ⊆ Cn
then the map π|Rn : Rn → Rn is not anymore surjective. In fact, the image π(Rn)
corresponds to those real polynomials all of whose roots are real. For example, the
quadratic polynomial t2−bt+c has real roots if and only if b2−4c ≥ 0. This implies
that π(R2) = {(b, c) | b2 − 4c ≥ 0}.

Is there a similar description for real polynomials of higher degree? In fact,
there is a beautiful result due to Sylvester (see [PS85]). For a polynomial p =
tn − b1tn−1 + b2t

n−2 − · · ·+ (−1)nbn define the Bezoutian matrix by

Bez(p) := (ψi+j−2(b1, . . . , bn))i,j=1,···n

where ψk(b1, . . . , bn) are the power sums in the roots of p expressed as polynomials
in the coefficients of p (see Exercise 2.2.2). Then we have the following result (see
[Pro78], cf. [PS85]).

Proposition 2.3.6. Let p ∈ R[x1, . . . , xn] be a real monic polynomial.

(1) The roots of p are all real if and only if Bez(p) is positive semidefinite.
(2) The rank of Bez(p) equals the number of distinct roots, and its signature

equals the number of distinct real roots.

Exercise 2.3.7. Let G ⊆ GLn(C) be a finite subgroup. Then the G-invariant poly-
nomials C[x1, . . . , xn]G separate the G-orbits on Cn, i.e. for any two orbits O1, O2 there
is an invariant function which takes different values on O1 and O2.
More generally, if X is an affine variety and G ⊆ Aut(X) a finite group of regular auto-
morphisms of X, then the G-invariant regular functions O(X)G separate the G-orbits on
X.
(Hint: First construct a function f ∈ O(X) which vanishes on one orbit, but is non-zero
on any point of the other. Then

∏
g∈G g

∗(f) is invariant and separates the two orbits.

Here g∗(f) = f ◦ g is the pull-back.)

3. Quadratic Forms

3.1. Equivalence classes. A (complex) quadratic form q is a homogeneous
polynomial function of degree two:

q(x1, . . . , xn) =
∑
i≤j

cijxixj , cij ∈ C.

Two such forms are called equivalent it they are obtained from each other by
a linear substitution of the variables. The quadratic forms form a vector space
Qn := C[x1, . . . , xn]2 of dimension

(
n+1

2

)
which can be identified with the complex

symmetric n× n-matrices Symn(C): For A = (aij) ∈ Symn(C) we set

qA := (x1, . . . , xn)A(x1, . . . , xn)t =

n∑
i,j=1

aijxixj .
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The inverse map is given in the following way. Define the associated bilinear form
Bq(x, y) := 1

2 (q(x+ y)− q(x)− q(y)) and put Aq := (B(ei, ej)). This identification
allows to define the rank rk q and the discriminant ∆ q of a quadratic form q:

rk q := rkAq, ∆ q := detAq.

Clearly, the two forms qA and qB are equivalent if and only if there is an invertible
g ∈ GLn(C) such that B = gAgt. In particular, the rank is an invariant, but
the discriminant is not: ∆qB = (det g)2∆qA. We have the following well-known
classification result.

Proposition 3.1.1. Two quadratic forms are equivalent if and only if they
have the same rank. In particular, a quadratic q form of rank r is a equivalent to

qr := x2
1 + · · ·+ x2

r, r = 0, 1, . . . , n.

Proof. We prove by induction on n that there is a basis (v1, . . . , vn) of Cn
such that Bq(vi, vj) = 0 except for i = j and i ≤ r = rk q. If q = 0 there is nothing
to prove. Otherwise there is a v1 ∈ Cn such that q(v1) = Bq(v1, v1) = 1. Define
V ′ := {w ∈ Cn | Bq(v1, w) = 0}. Then Cn = Cv⊕V ′. By induction, there is a basis
(v2, . . . , vn) of V ′ with the required property, which proves the second part of the
proposition. �

3.2. Closures of equivalence classes. We have seen above that there is an
action of the general linear group GLn(C) on Symn(C) given by (q, A) 7→ gAgt,
and that the orbits of this action are precisely the equivalence classes. Considering
a quadratic forms q as a function on Cn there is the following natural linear action
of GLn(C) on Qn:

(g, q) 7→ g · q where (g · q)(x) := q(g−1x).

An easy calculation shows that this action corresponds to the following linear action
on the symmetric matrices: (g,A) 7→ g−tAg−1. Note that this is not an equivalent
representation to the previous one given by (g,A) 7→ gAgt. But it has the same
orbits, since it is obtained from the previous one by the outer automorphism g 7→
g−t of GLn(C).

Denote by Cq ⊆ Qn the equivalence class of the form q and by CA ⊆ Symn the

equivalence class of the symmetric matrix A. We want to study the closures Cq
C

in the C-topology which turn out to be equal to the closures Cq in the Zariski
topology, see Exercise 3.2.2. Since the equivalence classes Cq are the orbits of the
(linear) action of GLn(C) and since this action is continuous we see that the closure

Cq
C

is stable under GLn(C), hence a union of equivalence classes. In fact, we have
the following result.

Proposition 3.2.1. For the equivalence classes Cq of quadratic forms we have

{0} ⊆ Cq1
C ⊆ Cq2

C ⊆ · · ·Cqn
C

= Qn.

Proof. Since the rank function is lower semicontinuous (see Exercise 3.2.3

below) we know that the unions
⋃
i≤r Cqi are closed and so Cqr

C ⊆
⋃
i≤r Cqi .

Moreover, for all ε 6= 0 the form x2
1 + · · ·+x2

i−1 +εx2
r is equivalent to qr this implies

that qr−1 ∈ Cqr
C

. Since the closure of an equivalence class is a union of equivalence
classes the claim follows. �

This observation has the following consequence. Every continuous invariant
function f : Qn → C is constant. In particular, continuous invariant functions can-
not separate the orbits.
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Exercise 3.2.2. Show that Cq
C

equals the closure Cq in the Zariski topology.

Exercise 3.2.3. The rank function rk: Mn(C) → R is lower semicontinuous. This
means that for all α ∈ R the set {A ∈ Mn(C) | rkA ≤ α} is closed in Mn(C).

3.3. Other equivalence relations. We can study other equivalence relations
on Qn by looking at subgroups G ⊆ GLn(C), e.g. the special linear group SLn(C) or
the orthogonal groups On(C) or SOn(C). In the case G = SLn(C), the discriminant
∆ is an invariant. In fact, we have the following result. (We denote by C[Qn] the
complex polynomial functions on Qn.)

Proposition 3.3.1. C[Qn]SLn(C) = C[∆].

For q ∈ Qn we denote by Oq the orbit of q under SLn(C).

Proposition 3.3.2. Consider the morphism ∆: Qn → C.

(1) For λ ∈ C \ {0} the fiber ∆−1(λ) is a single SLn-orbit, namely the orbit
Oq(λ) of the form q(λ) := λx2

1 + x2
2 + · · ·+ x2

n.

(2) ∆−1(0) = Oqn−1
∪Oqn−2

∪ · · · ∪Oq1 ∪ {0}.
(3) For 0 < i < n we have Oqi

C ⊇ Oqi−1 . In particular, ∆−1(0) = Oqn−1

C
.

(4) Every C-continuous invariant function f on Qn is a C-continuous func-
tion of the discriminant ∆.

Proof of Proposition 3.3.1 and 3.3.2. For a quadratic form q of rank n
there is a g ∈ GLn(C) such that q · q = x2

1 + · · ·+ x2
n, by Proposition 3.1.1. Writing

g in the form g =

[ µ
1
. . .

1

]
h where µ = det g and so h ∈ SLn(C) we see that

h · q = λx2
1 + · · ·+ x2

n where λ = ∆(q). This proves (1). The same argument shows
that for i < n the SLn-orbit of qi equals the GLn-orbit which was denoted above
by Cqi . Thus (2) and (3) follow from Proposition 3.2.1.

The morphism s : C → Qn given by s(λ) := q(λ) is a section of ∆, i.e. ∆ ◦s =
IdC. Moreover, U := SLn ·s(C) ⊆ Qn contains all orbits except Oqn−2

, . . . , Oq1 , {0}.
Hence, by (3), U is dense in Qn. Now let f : Qn → C be an invariant polynomial
function. Define f̄(λ) := f(s(λ)). Then f̄ ∈ C[y] and f̄ ◦∆ equals f on s(C). Since
both functions are invariant they coincide on U , hence are equal: f = f̄ ◦∆. This
proves Proposition 3.3.1, and a similar argument for a C-continuous f gives (4). �

The result shows that invariant polynomial functions can describe equivalence
classes “generically”, but for special values there might be several classes with the
same polynomial invariants. And this cannot be avoided as long as we work with
continuous functions. We will see many other examples below and later in the book.

Remark 3.3.3. It is well-known that every real quadratic form is equivalent
under On(R) to a “diagonal form” a1x

2
1 + a2x

2
2 + · · ·+ anx

2
n where the coefficients

are unique up to permutations. Equivalently, every real symmetric matrix can be
diagonalized with an orthogonal matrix and the diagonal form is unique up to
permutations. This does not hold if we consider complex quadratic forms with
respect to the complex orthogonal group. In fact, the symmetric matrix

[
1 i
i −1

]
is

nilpotent. However, it is true “generically”: There is an open dense set U ⊆ Qn such
that every form in U can be diagonalized with a complex orthogonal transformation.
We will discuss this in detail in Chapter IV (see Example IV.3.4.3).
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4. Conjugacy Classes of Matrices

4.1. Adjoint representation. Let Mn = Mn(C) denote the vector space of
complex n×n-matrices. Two matrices A,B ∈ Mn are called conjugate or similar if
there is a g ∈ GLn(C) such that B = gAg−1. Thus the equivalence relation is given
by a group action (g,A) 7→ gAg−1 called the adjoint representation, whose orbits
are the conjugacy classes CA := {gAg−1 | g ∈ GLn(C)}.

Example 4.1.1. Every complex 2 × 2-matrix A is conjugate to one of the
following: [

λ 0
0 µ

]
or

[
λ 1
0 λ

]
.

If A has two different eigenvalues λ 6= µ, then its conjugacy class is determined by

λ, µ. If A has a twofold eigenvalue λ then it is either conjugate to

[
λ 1
0 λ

]
or equal

to

[
λ 0
0 λ

]
. This occurs if and only if (trA)2−4 detA = 0. Looking at the morphism

π : M2 → C2, A 7→ (trA,detA),

this implies that the fibers over K := V(x2 − 4y) consist of two conjugacy classes
whereas all other fibers form a single class.

Denote by

χA(t) := det(tE −A) = tn − a1t
n−1 + a2t

n−2 − · · ·+ (−1)nan

the characteristic polynomial of A. Its coefficients a1, a2, . . . , an are the elementary
symmetric functions in the eigenvalues of A. If we consider the matrix X = (xij)
with indeterminate entries xij , then χX(t) := det(tE −X) is a homogeneous poly-
nomial in the variables t, xij :

χX(t) := det(tE −X) = tn − S1(X)tn−1 + S2(X)tn−2 − · · ·+ (−1)nSn(X).

It follows that the coefficients Sk(X) are invariant polynomial functions on Mn(C),
Sk ∈ O(Mn)GLn(C), and that they are homogeneous of degree k. In particular,

S1(A) = trA and Sn(A) = detA.

More generally, Si(D) = si(λ1, . . . , λn) (see section 2.2) in case D is an upper trian-
gular matrix with diagonal entries λ1, . . . , λn. Now define the following morphism

π : Mn → Cn, A 7→ (S1(A), S2(A), . . . , Sn(A)),

which associates to every matrix A the elementary symmetric functions of the
eigenvalues of A.

Proposition 4.1.2. (1) O(Mn(C))GLn(C) = C[S1, S2, . . . , Sn], and the Si
are algebraically independent.

(2) Every C-continuous invariant function f on Mn is a C-continuous func-
tion in S1, . . . , Sn.

Proof. For a given polynomial p(t) = tn + c1t
n−1 + c2t

n−2 + · · ·+ cn consider
the companion matrix R defined by

(2) R = R(c1, c2, . . . , cn) :=



0 0 · · · 0 −cn
1 0 · · · 0 −cn−1

. . .
. . .

...
...

. . . 0 −c2
1 −c1

 ∈ Mn(C).
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Its characteristic polynomial equals p(t) (see Exercise 4.1.3 below) and so the mor-
phism s : Cn → Mn given by s(a1, . . . , an) := R(−a1, a2,−a3, . . . , (−1)nan) is a
section of π, i.e. π◦s = IdCn . Moreover, every matrix A with n different eigenvalues
is conjugate to a matrix R(c1, . . . , cn), and so the set

GLn ·s(Cn) = {gRg−1 | g ∈ GLn, R a companion matrix} ⊆Mn

contains all matrices with n different eigenvalues and is therefore dense in Mn

(Exercise 4.1.4). Now the two claims follow as in the proof of Proposition 3.3.2. �

Exercise 4.1.3. Show that the characteristic polynomial of R =


0 0 ··· 0 −cn
1 0 ··· 0 −cn−1

. . .
. . .

...
...

. . . 0 −c2
1 −c1


equals tn + c1t

n−1 + c2t
n−2 + · · ·+ cn.

(Hint: Calculate det(tE −R) by expansion on the first column.)

Exercise 4.1.4. Show that in every C-neighborhood of a matrix A there is a matrix
with n different eigenvalues.
(Hint: This is clear for upper triangular matrices.)

4.2. The geometry of π : Mn → Cn. Proposition 4.1.2 above shows that
every invariant polynomial function f : Mn → C factors through π: There is a
polynomial f̄ ∈ C[x1, . . . , xn] such that f = f̄ ◦ π. Let us now study the geometry
of the conjugacy classes and of the morphism π : Mn → Cn. Recall that every
matrix A ∈Mn has a well-defined Jordan decomposition A = As +An where As is
semisimple (i.e. diagonalizable), An is nilpotent and AsAn = AnAs.

Lemma 4.2.1. Let A = As +An be the Jordan decomposition of A ∈ Mn

(1) As is in the closure of the conjugacy class of A: As ∈ CA
C

.
(2) The conjugacy class of A is closed if and only if A is semisimple.

Proof. The first statement follows from the fact that As + An is conjugate
to As + εAn for all ε 6= 0. This also implies that a closed conjugacy class must be
semisimple.

In order to obtain the inverse implication we first remark that every fiber of π
contains a unique semisimple conjugacy class. Secondly, one knows that a matrix A
is semisimple if and only if its minimal polynomial µA has no multiple roots. Now let
A be semisimple with minimal polynomial µA. Clearly, every matrix in CA has the

same minimal polynomial, and so µA(B) = 0 for all B ∈ CA
C

. As a consequence,
B is semisimple, too, and B is conjugate to A because π(B) = π(A). �

The next proposition is an easy consequence from what we have said so far.

Proposition 4.2.2. Consider the morphism π : Mn → Cn given by the coeffi-
cients of the characteristic polynomial.

(1) π is surjective.
(2) The fiber π−1(b) is a single conjugacy class C = CA if and only if D(b) 6= 0

where D is the discriminant. In this case A is semisimple with n different
eigenvalues.

(3) Every fiber F of π contains a unique closed conjugacy class C = CH where
H is semisimple. Moreover,

F = {A ∈ Mn | As is conjugate to H}.

In particular, every fiber contains finitely many conjugacy classes.
(4) π−1(0) equals the set N of nilpotent matrices.
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One can say much more, but the proofs of the following statements are also
more involved and will not be given here.

Proposition 4.2.3. Every fiber of the morphism π : Mn → Cn is reduced,
irreducible and normal of dimension n2 − n. Moreover, the ideal I(π−1(b)) of the
fiber π−1(b) equals (S1 − b1, S2 − b2, · · · , Sn − bn), and so the fibers are complete
intersections (see AI.5.7 and Example AI.5.7.6)..

4.3. Cyclic matrices. Our Proposition 4.2.2 above has a number of inter-
esting interpretations. Since every fiber contains a single closed conjugacy class
which is semisimple, we can say that the morphism π : Mn → Cn parametrizes the
semisimple conjugacy classes.

On the other hand we have seen that π(A) = π(B) if and only if As is conjugate
to Bs which in turn is equivalent to CA∩CB 6= ∅. So we can say that the morphism
π : Mn → Cn is the quotient with respect to the equivalence relation

A ∼ B ⇐⇒ CA ∩ CB 6= ∅.

For the last interpretation, we recall that a matrix A is called cyclic or regular
if there is an element v ∈ Cn such that Cn is linearly spanned by the images
{Akv | k ∈ N}. It follows that (v,Av,A2v, . . . , An−1v) is a basis of Cn, and so A
is conjugate to a companion matrix (2). It is not difficult to see that the cyclic
matrices are also characterized by the condition, that in its Jordan normal form
there is only one Jordan block for every eigenvalue. From all this one can deduce
the following result. The reader ist advised to work out the details, starting with
M2 and M3 (see Exercise 4.3.2 below).

Proposition 4.3.1. Let A ∈ Mn(C).

(1) The map π : Mn → Cn is of maximal rank in A if and only if A is cyclic.
(2) If A is cyclic, then CA is dense in the fiber π−1(π(A)).
(3) A is cyclic if and only if the centralizer ZA := {g ∈ GLn | gA = Ag} is a

commutative algebraic group of dimension n.
(4) The cyclic matrices form an open dense set Mreg

n , and the induced map
π : Mreg

n → Cn identifies Cn with the orbit space.

Exercise 4.3.2. (1) Every cyclic matrix is conjugate to a companion matrix.
(2) The conjugacy class CN of a cyclic nilpotent matrix N is dense in N .
(3) Every fiber of π contains a dense conjugacy class which is the class of a cyclic

matrix.
(4) The differential dAπ of π in a cyclic matrix A is of maximal rank n.

4.4. The nilpotent cone. The set Nn ⊆ Mn of nilpotent matrices equals the
fiber π−1(0) which is defined by the vanishing of the coefficients of the characteristic
polynomial, and also defined by the n2 equations Xn = 0 where X = (xij)ij is the
n× n-matrix with entries xij :

Nn = V(S1, . . . , Sn) = V(Xn).

It follows that N is a closed cone, i.e. closed and stable under multiplication with
λ ∈ C. It consists of finitely many conjugacy classes which are represented by the
Jordan normal forms. Using the sizes of the Jordan blocks we can be parametrized
the nilpotent conjugacy classes by the partitions of n, i.e. by the set

Pn := {(p = (p1, . . . , pn) ∈ Nn | p1 ≥ p2 ≥ · · · ≥ pn,
∑
i

pi = n}.
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Example 4.4.1. The partitions p of 4 are (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)
(we leave out the trailing zeroes), and the corresponding classes Cp are those of the
matrices N(p) given by

0 1
0 1

0 1
0

 ,


0 1
0 1

0
0

 ,


0 1
0

0 1
0

 ,


0 1
0

0
0

 ,


0
0

0
0

 .
In general, C(n) is the conjugacy class of the regular nilpotent matrix N(n), and

C(1,...,1) = {0}. The closure of a nilpotent class C(p) is stable under conjugation,
hence is a finite union of nilpotent classes:

Cp =
⋃
j

Cqj .

Exercise 4.4.2. For n = 4 the inclusion order in Nn is given by

{0} = C(1,1,1,1) ⊆ C(2,1,1) ⊆ C(2,2) ⊆ C(3,1) ⊆ C(4).

There is a nice combinatorial description of the partitions q appearing in the
closure of Cp (see [Kra78]). For this define the following partial order on Pn:

q = (q1, . . . , qn) ≺ p = (p1, . . . , pn) ⇐⇒ q1+· · ·+qk ≤ p1+· · ·+pk for k = 1, . . . , n

Proposition 4.4.3. We have Cq ⊆ Cp if and only if q ≺ p.

One implication is easy (see the exercises below), for the other we refer to the
literatur mentioned above.

Exercise 4.4.4. Define the dual partition p̂ of p by p̂k := #{j | pj ≥ k}. Then

(1) p̂k = dim ker(Np)
k, and

(2) q ≺ p if and only if q̂ � p̂.
Exercise 4.4.5. The function rk: Mn → Z, A 7→ rkA, is lower semicontinuous, i.e.

for all k ∈ N the subset {A ∈ Mn | rkA ≥ k} is open.

Exercise 4.4.6. Use the previous two exercises to prove one implication of Proposi-
tion 4.4.3: If Cq ⊆ Cp then q ≺ p.

Exercise 4.4.7. Work out the inclusions of the closures of the nilpotent classes in
N 5 and verify Proposition 4.4.3 for n = 5.
(Hint: C(3,2) ⊆ C(4,1), but C(2,2,1) * C(3,1,1) and C(3,1,1) * C(2,2,1).)

5. Invariants of Several Vectors

5.1. Pairs of vectors. Let V = C2 be the two dimensional complex vector
space with the usual operation of GL2(C) given by

gv =

[
α β
γ δ

] [
x
y

]
:=

[
αx+ βy
γx+ δy

]
for g =

[
α β
γ δ

]
∈ GL2(C), v =

[
x
y

]
∈ V.

We consider now pairs of vectors from V and define on V × V the following equiv-
alence relation:

(v1, v2) ∼ (w1, w2) ⇐⇒ there is a g ∈ SL2(C) with gvi = wi for i = 1, 2.

Clearly, the map

π = [ , ] : V × V → C, (v1, v2) 7→ [v1, v2] := det

[
x1 x2

y1 y2

]
, where vi =

[
xi
yi

]
,

is constant on the equivalence classes. Expressed in terms of coordinates we have

π = x1y2 − x2y1.

One can easily give the normal forms for each equivalence class:



I.5. INVARIANTS OF SEVERAL VECTORS 17

(a) If λ := [v1, v2] 6= 0, then (v1, v2) ∼ ([ 1
0 ] , [ 0

λ ]) holds. (This follows from
the fact that GL2 operates transitively on pairs of linearly independent
vectors.)

(b) The fiber π−1(0) consists of infinitely many equivalence classes of pairs of
linearly dependent vectors. As representatives we could take, for example,
(0, 0), (e1, 0) and (λe1, e1) with λ ∈ C. (One uses the fact that SL2(C)
operates transitively on the non-zero vectors.)

π

V × V

•{(0, 0)}

C

equivalence
classes para-
metrized by P1

one equivalence class

0 λ 6= 0

?

Figure 1. The quotient map for pairs of vectors

5.2. The null fiber. Now we would like to look a little closer at the null
fiber N := π−1(0) as a geometric object. We denote by P1 = P1(C) the complex
projective line:

P1 := {(a, b) ∈ C2 | (a, b) 6= (0, 0)}/∼
where (a, b) ∼ (a′, b′) iff the two vectors are linearly dependent. The equivalence
class of (a, b) is denoted by (a : b).

Proposition 5.2.1. There exists a surjective map ρ : N \{(0, 0)} → P1 whose
fibers are exactly the equivalence classes.

Proof. Set

ρ

([
x1

y1

]
,

[
x2

y2

])
:=

{
(x1 : x2) if (x1, x2) 6= (0, 0),

(y1 : y2) if (y1, y2) 6= (0, 0).

Since the two vectors are linearly dependent the map ρ is well-defined and has the
desired properties. �

In this way the equivalence classes in N \{(0, 0)} can be parametrized by the
complex projective line P1, via ρ, see Figure 1 above.

This parametrization can also be explained by the following description of the
null fiber π−1(0) as a vector bundle over P1.

Proposition 5.2.2. There is a vector bundle B of rank two over P1 and a
surjective map ϕ : B → N such that the following holds:

(1) S0 := ϕ−1((0, 0)) is the zero section of B, S0 ' P1;

(2) The map ϕ induces an isomorphism B \ S0
∼→ N \{(0, 0)};

(3) Every fiber of B is isomorphically mapped onto the closure of an equiva-
lence class.



18 CHAPTER I. FIRST EXAMPLES AND BASIC CONCEPTS

Proof. We consider the open covering U0 ∪ U∞ of P1 defined by U0 := {(λ :
µ) ∈ P1 | λ 6= 0} and U∞ := {(λ : µ) ∈ P1 | µ 6= 0}, along with the trivial vector
bundles V ×U0 and V ×U∞. The bundle B is obtained from the following diagram

V × U0
⊆−−−−→ B

⊇←−−−− V × U∞y y y
U0

⊆−−−−→ P1 ⊇←−−−− U∞

by “glueing together” the trivial bundles over U0∩U∞, using the identification over
a point (λ : µ) ∈ U0 ∩ U∞:

(v, (λ : µ))0 = (w, (λ : µ))∞ ⇐⇒ µv = λw.

Now we define ϕ : B → N by

ϕ((v, (λ : µ))0) := (v,
µ

λ
v) and ϕ((w, (λ : µ))∞) := (

λ

µ
w,w).

It is easy to see that ϕ is well-defined, i.e. that it is compatible with the above
identifications, and also that it has the properties which we want. �

Remark 5.2.3. The assertion shows that one gets the null fiber N from the
vector bundle B by “blowing down” the zero section to a point. Conversely the
bundle is obtained from the null fiber by “blowing up” the point (0, 0) to a P1.

Exercise 5.2.4. Give a direct proof of the third statement of Proposition 5.2.2 that
the closure of a non-trivial equivalence class in the null fiber N is isomorphic to C2.

5.3. Vector bundles over P1. The vector bundles on the projective line P1

are well-known. For each integer s ∈ Z there is a line bundle O(s) and every vector
bundle is isomorphic to a direct sum of such line bundles. For the description of
such an O(s) we use, as before, the open covering P1 = U0 ∪U∞ and consider the
trivial bundles C× U0 and C× U∞.

C× U0
⊆−−−−→ O(s)

⊇←−−−− C× U∞ypr

yp ypr

U0
⊆−−−−→ P1 ⊇←−−−− U∞

The line bundle O(s) is now obtained by glueing these two trivial bundles together
over U0 ∩ U∞ using the following identification:

(t, (λ : µ))0 = (u, (λ : µ))∞ ⇐⇒ λst = µsu.

If we compare this with the construction of B above, then we get the following
corollary to Proposition 5.2.2.

Corollary 5.3.1. The vector bundle B from Proposition 5.2.2 above is iso-
morphic to O(−1)⊕O(−1).

Remark 5.3.2. The bundle O(−1) is the so-called Hopf-bundle. Over the real
numbers R we can visualize this geometrically in the following way. We interpret
the real projective line P1(R) as the unit circle in the real plane with opposite
(antipodal) points identified. If one now takes a copy of R as the fiber over every
point of the unit circle, then one has to identify the fibers which lie over opposite
points. Since the coordinates of opposite points differ by a factor of −1, one must
glue these fibers together “with a twist”. If one applies this process to a half-circle
with two end points, then by identifying the two fibers over the two ends one gets
a Möbius band.
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Exercise 5.3.3. (1) Show that the line bundle O(s) can be described in the
following way. Let η : C2\{0} → P1 be the canonical map. Define on (C2\{0})×C
the following equivalence relation:

((x, y), t) ∼ ((x′, y′), t′) ⇐⇒ There exists a λ ∈ C∗ = C \ {0} with

x = λx′, y = λy′ and t = λst′

Then one can identify the set of equivalence classes with O(s), and the projec-
tion onto the first factor pr : (C2 \ {0}) × C → C2 \ {0} induces the following
commutative diagram:

C2 \ {0} × C pr−−−−−→ O(s)

pr

y y
C2 \ {0} η−−−−−→ P1

(2) Give another proof of Proposition 5.2.2 and the corollary by using a similar
construction of the bundle B as in the previous exercise for the line bundles
O(s).

(3) A section σ : P1 → O(s) (i.e. one has p ◦ σ = idP1) induces a map σ : C2 \
{0} → (C2 \ {0}) × C of the form (x, y) 7→ ((x, y), f(x, y)). It follows that
((x, y), f(x, y)) ∼ ((λx, λy), f(λx, λy)) for every λ ∈ C∗, i.e. f(λx, λy) = λs ·
f(x, y). Nonzero polynomials F with this property only exist for s ≥ 0, and
these then are exactly the homogeneous polynomials f(x, y) of degree s.

The line bundles O(n) with n negative are thus distinguished by the fact
that they do not have any polynomial sections except for the zero section.

5.4. Invariants of several vectors. Instead of pairs we could naturally look
at triples or arbitrary n-tuples of vectors in V , considered with the corresponding
equivalence relation. Finding a complete system of invariants was one of the classical
problems of invariant theory. One means by this a system of invariant polynomials
f1, f2, . . . , fN on V ×V × · · ·×V (i.e. they are constant on the equivalence classes)
with the property that every invariant polynomial can be expressed as a polynomial
function in the f ′is.

Such a complete system is given, for example, by the functions fij , 1 ≤ i < j ≤
n, defined by

fij(v1, . . . , vn) := [vi, vj ].

For a proof of this classical result we refer to the literature, e.g. [Wey39], [Vus76],
[dCP76]. We will discuss this in more details in section 6.2.2.

In the case of triples of vectors one is led to study the following map:

π : V × V × V → C3, (v1, v2, v3) 7→ ([v1, v2], [v1, v3], [v2, v3]).

One can easily show that π is surjective and that, with the exception of the null
fiber N := π−1(0), every fiber of π is an equivalence class. The null fiber itself is
made up of those triples (v1, v2, v3) which span a vector space of dimension ≤ 1.

Exercise 5.4.1. Give a proof of these statements.

The equivalence classes in N \{0} can be parametrized by the complex projec-
tive plane P2. Also in this case there is a vector bundle B of rank two over P2 and
a surjective map ϕ : B → N which maps the zero section S0 of B onto the origin,
and induces an isomorphism B \ S0

∼→ N \{0}. and which maps every fiber of B
isomorphically onto the closure of an equivalence class in N .

B
ϕ−−−−→ N ⊆−−−−→ V × V × Vy y y

P2 {0} ⊆−−−−→ C3
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Similar to what we saw above one has B
∼→ O(−1)⊕O(−1) where the line bundles

O(s) on P2 are defined in the analogous way to what was done at the beginning of
section 5.3.

It is recommended that the reader looks carefully at this example and also its
generalization to arbitrary n-tuples.

6. Nullforms

Our approach in the last three sections can be described in the following com-
prehensive way. Given is a complex vector space V and a linear action of a group
G on V . We are interested in the orbits of the group G in V . In the examples these
are the equivalence classes. For a description of them we could give a continuous
map π : V → Cr which is constant on the orbits and has the property that for
almost all z ∈ π(V ) ⊆ Cr the fiber π−1(z) is exactly one orbit. The fibers over some
special points, in particular over the origin, might form a somewhat complicated
picture and require particular consideration. In some cases they can be regarded as
“degenerations” of the general fiber (see e.g. section 3).

Particularly interesting are those orbits whose closures contain zero. For con-
tinuity reasons these lie in the zero fiber π−1(π(0)), classically called null fiber. In
all the examples we have considered so far the converse is also true. Namely, the
orbits in the zero fiber contain zero in their closures. The exact connection between
these will be made clear later (see section IV.2.6).

6.1. Binary forms. Now we would like to study the orbits a little closer in
the case of binary forms. Using the terminology of Hilbert one calls the forms
which arise in this way nullforms. We denote by

Rn :=

{
n∑
i=0

aix
n−iyi | ai ∈ C

}
the space of binary forms of degree n, i.e., the (n+ 1)-dimensional complex vector
space of homogeneous polynomials of degree n in the two indeterminates x and y.
For f1, f2 ∈ Rn an equivalence relation is defined on Rn by

f ∼ f ′ ⇐⇒ there is a g ∈ SL2(C), g =

[
α β
γ δ

]
, such that

f2(x, y) = fg1 (x, y) := f(αx+ βy, γx+ δy).

We can also express this in another way. The group G = SL2(C) acts on Rn by
“variable substitution”

f 7→ g.f := fg
−1

, i.e. g.f(x, y) = f(δx− βy,−γx+ αy)

This means that one has e.f = f for the identity matrix e ∈ G and (gh).f =
g.(h.f) for every g, h ∈ G. In particular, we have

g.x = δx− βy and g.y = −γx+ αy

For fixed f ∈ Rn the equivalence class Cf is equal to the G-orbit G.f under this
action:

Cf := {fg | g ∈ G} = G.f := {g.f | g ∈ G}.

For t ∈ C∗ := C \ {0} and d =

[
t 0
0 t−1

]
we simply write ft instead of t.f , i.e.

ft(x, y) = f(t−1x, ty).
One gets a rough description of the orbits in Rn from the following lemma.

Lemma 6.1.1. (1) Every binary form f ∈ Rn is a product of linear forms.
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(2) A nonzero form f is equivalent to one of the form xrysf ′ with r ≥ s ≥ 0
where f ′ ∈ Rn−r−s is a form which has no linear factor x or y or of
multiplicity greater than s.

Proof. The assertion (1) follows from the Fundamental Theorem of Algebra.
The assertion (2) follows from (1) and the fact that GL2(C) operates transitively
on pairs of linearly independent linear forms. �

Definition 6.1.2. We call f ∈ Rn a nullform if the origin 0 ∈ Rn lies in
the closure of the orbit of f : 0 ∈ G.f . Denote by Nn the set of nullforms in Rn,
classically called the null fiber or the null cone.

Example 6.1.3. The form f = yn is a nullform. This follows from f ∼ ft =
tnyn by taking the limit as t → 0. More generally, let f = xiyn−i. Then ft =
tn−2ixiyn−i, and so xiyn−i is a nullform for 2i < n.

Exercise 6.1.4. If f ∈ Rn contains a linear factor of multiplicity > n
2

, then f is a
nullform.
(Hint: f is equivalent to f̃ = yjf ′ where 2j > n. It follows that f̃t = t2j−nyjf ′′, and the
claim follows by taking the limit t→ 0.)

The following Criterion of Hilbert is the central result in the study of null-
forms. For a proof we refer the reader to the fifth Chapter, see V.3.

Proposition 6.1.5 (Hilbert’s Criterion). A form f ∈ Rn is a nullform if and

only if there exists a form f̃ ∼ f with the property that limt→0 f̃t exists and equals
0.

The criterion asserts that every nullform has a representative in the vector
space

R+
n := {f ∈ Rn | lim

t→0
ft = 0}.

Obviously, for m = bn−1
2 c one has

R+
n = {

m∑
i=0

aix
iyn−i | ai ∈ C} = {f ∈ Rn | yn−m divides f}.

Since the operation of G does not change the multiplicity of linear forms in f , we
get the following result.

Proposition 6.1.6. An element f ∈ Rn is a nullform if and only if f con-
tains a linear factor of multiplicity m > n

2 or f = 0.

Examples 6.1.7. (1) For n = 1 every form is a nullform. In total there
are two equivalence classes in R1, C0 = {0} and Cx = R1 \ {0}.

(2) For n = 2 we find two equivalence classes of nullforms, Cy2 and C0.
(3) For n = 3 and 4 there are three equivalence classes of nullforms, Cxy2 ,

Cy2 , C0, and Cxy3 , Cy4 , C0.
(4) For n ≥ 5 there are always infinitely many equivalence classes of nullforms,

with bn−3
2 c parameters.

If one now notes that the form yn lies in the closure of every orbit of a nullform
which is not zero, then one gets the diagrams of orbits in the null cone Nn given
in Figure 2.
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n = 1 n = 2 n = 3 n = 4 n ≥ 5

•

• Cx

{0} •

• Cx2

{0} •

•

{0}

Cx3

• Cx2y

•

•

•

{0}

Cx4

Cx3y

•

•

{0}

Cxn

bn−3
2 c parameters

Figure 2. The null cone of the binary forms Rn

6.2. The null cone of R5. In conclusion we would like to describe somewhat
more precisely the nullforms N 5 in R5. We leave it to the reader to show how one
can generalize this to forms of arbitrary degree. As above, we let R+

5 = Cx2y3 ⊕
Cxy4 ⊕ Cy5 ⊆ R5. Then there is a surjective map

ρ̃ : R+
5 × SL2(C)→ N 5 given by (f, g) 7→ g.f.

Let B be the group of upper triangular matrices in SL2(C):

B :=

{[
t β

t−1

]
| t ∈ C∗, β ∈ C

}
.

Lemma 6.2.1. (a) One has R+
5 ⊆ N 5, and every nullform is equivalent

to a form in R+
5 .

(b) The subspace R+
5 is B-stable, i.e., for every b ∈ B and f ∈ R+

5 one has
b.f ∈ R+

5 .
(c) If f ∈ R+

5 with f 6= 0 and g.f ∈ R+
5 for some g ∈ SL2(C), then g ∈ B.

Proof. The claims in (a) have already been verified. Next we note that R+
5 =

{f ∈ R5 | y3 divides f}. Since y is mapped by elements in B to multiples of y, the
claim (b) follows. If f and g.f lie in R+

5 , then g.f has not only y, but also g.y as a
factor of at least third order. But then g.y is a multiple of y and, as a consequence,
g ∈ B which proves (c). �

We let B act on R+
5 × SL2(C) by

b(f, g) := (b.f, gb−1),

and denote the set of B-orbits by R+
5 ×B SL2(C). Clearly, the above map ρ̃ : R+

5 ×
SL2(C)→ N 5 factors through the canonical map q : R+

5 ×SL2(C)→ R+
5 ×B SL2(C)

which assigns to each element its B-orbit. We denote the space of left cosets by
SL2(C)/B, i.e.

SL2(C)/B := {gB | g ∈ SL2(C)}.
Then we have the following commutative diagram

SL2(C)
pr←−−−− R+

5 × SL2(C)
ρ̃−−−−→ N 5y yq ∥∥∥

SL2(C)/B
p←−−−− R+

5 ×B SL2(C)
ρ−−−−→ N 5
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where the map p is induced by the projection pr : R+
5 × SL2(C)→ SL2(C).

Proposition 6.2.2. (a) SL2(C)/B ' P1.
(b) p : R+

5 ×B SL2(C) → SL2(C)/B is a vector bundle over SL2(C)/B ' P1

with typical fiber R+
5 .

Proof. (a) The isomorphism is induced by the map

η : SL2(C)→ P1,

[
α β
γ δ

]
7→ (α : γ)

which is constant exactly on the left cosets gB.

(b) The subset R+
5 × SL2(C) ⊆ R5 × SL2(C) is a B-stable where the action of

B on R5 × SL2(C) is defined analogously. It follows that R+
5 × B SL2(C) ⊆ R5 ×

B SL2(C). The isomorphism R5×SL2(C)
∼→ R5×SL2(C) given by (f, g) 7→ (g.f, g)

shows that R5×BSL2(C) is isomorphic to R5×(SL2(C)/B). Thus R+
5 ×BSL2(C) is a

vector subbundle of the trivial vector bundle R5×B SL2(C)/B over SL2(C)/B. �

Remark 6.2.3. Clearly, the proof of (b) does not depend on the special situ-
ation in the above setting. If V is a vector space with a linear action of the group
G, H ⊆ G a subgroup and W ⊆ V an H-stable subspace, then W ×H G is a
vector bundle over G/H, namely a vector subbundle of the trivial vector bundle
V ×H H ' V × (G/H).

It follows that the H-orbits in W correspond in a unique fashion to the G-orbits
in W ×H G. If O′ ⊆ W is an H-orbit, then O′ ×H G ⊆ W ×H G is a G-orbit, and
every G-orbit in W ×H G is of this form.

Altogether this gives us the following result (cf. section 5.4)

Proposition 6.2.4. (a) The space R+
5 ×B SL2(C) is a vector bundle over

SL2(C)/B ' P1 with typical fiber W .
(b) The set ρ−1(0) is the zero section S0 of the vector bundle R+

5 ×B SL2(C),

and ρ induces a bijection (R+
5 ×B SL2(C)) \ S0

∼→ N 5 \{0}.

SL2(C)/B
p←−−−− R+

5 ×B SL2(C) −−−−→ N 5∥∥∥ x⊆ x⊆
SL2(C)/B

p←−−−− R+
5 ×B SL2(C) \ S0

'−−−−→ N 5 \{0}

(The first assertion has already been noted and, as the proofs of the others
should create no difficulties, they are left to the reader.)

6.3. A geometric picture of N 5. Among other things, the proposition says
that the SL2(C)-orbits in N 5 and in R+

5 ×B SL2(C) can be put into one-to-one
correspondence. Moreover, the latter correspond for their part to the B-orbits in
R+

5 , cf. the above remark. We would now like to make this geometrically clear.
In order to do this let u, v, w be the coordinate functions on R+

5 relative to the
basis {x2y3, xy4, y5}. For f ∈ R+

5 one has B.f = {b.f | b ∈ B} = G.f ∩ R+
5 , see

Lemma 6.2.1(c). For b :=

[
t 0
c t−1

]
one has

b.x = t−1x− βy and b.y = ty.

From this one easily gets the following description of the B-orbits in R+
5 :

(a) B.y5 = Cy5 − {0} = the w-axis minus the origin.
(b) B.xy4 = {txy4 + by5 | t ∈ C∗, b ∈ C} = the vw-plane minus the w-axis

Cy5.
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(c) B.x2y3 = {tx2y3 + 2t2bxy4 + t3b2y5 | t ∈ C∗, b ∈ C} = the cone with the
equation 4uw − v2 = 0 minus the w-axis Cy5.

(d) B.xy3(x+ qy) = the surface with the equation 4uw− v2 + q2u6 = 0 minus
the w-axis Cy5.

Figure 3. The surface 4uw − v2 + q2u6 = 0

As might be expected, (b) and (c) are “limiting cases” of the family (d), namely
for q → ∞ resp. q → 0. All the orbits which occur in (b), (c) and (d) contain the
w-axis in their closures. This corresponds to the fact which was noted above that
the form y5 lies in the closure of the orbit of every non-zero nullform.

For the description of the SL2(C)-orbits Of := G.f we consider the subspaces
W ′ := Cxy4 ⊕ Cy5 and W ′′ := Cy5 of R+

5 , and the corresponding subbundles
W ′ := W ′ ×B SL2(C) and W ′′ = W ′′ ×B SL2(C) of W := R+

5 ×B SL2(C). Then ρ
induces bijections

W \W ′ ∼→
⋃
q∈C

Oxy3(x+qy), W ′ \W ′′ ∼→ Oxy4

W ′′ \ S0
∼→ Oy5 .

Corresponding to this we have the following decompositions into line bundles (see
section 4)

W ' O(−3)3, W ′ ' O(−4)2, W ′′ ' O(−5).

One can see this in the following way. We consider the isomorphism Cy3⊗CR2 → R+
5

given by multiplication, (by3, a1x
2 +a2xy+a3y

2) 7→ ba1x
2y3 +ba2xy

4 +ba3y
5. Now

one notes that the line bundle CX3 ×B SL2(C) is isomorphic to O(−3). Similar to
before one sees that R2 ×B SL2(C) is the trivial bundle O3 (cf. the proof of b) in
the Proposition). From the above isomorphism Cy3 ⊗C R2 →W one now gets

W ×B SL2(C) ' O(−3)⊗C O3 = O(−3)3.

The other cases can be shown in a similar way.
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Remark 6.3.1. The method we gave of describing nullforms using suitable vec-
tor bundles was further developed and refined by Wim Hesselink [Hes79]. Here
the essential tool is Kempf’s theory of optimal one-parameter subgroups ([Kem78],
cf. 5.5.2).

7. Deformations and Associated Cone

7.1. The associated cone. We consider again the general situation of a com-
plex vector space V on which an algebraic group G operates linearly and rationally,
i.e., a group homomorphism ρ : G→ GL(V ) is given so that the matrix coefficients
of ρ(g) with respect to any (and hence every) basis of V are regular functions on
G. Precise definitions are given in the next chapter. Instead of ρ(g)(v) we simply
write gv. For v ∈ V we denote by Ov := {gv | g ∈ G} the orbit of v under G.

As a generalization of the notion of nullforms from the last section we introduce
the following notion.

Definition 7.1.1. A vector v ∈ V and its orbit Ov, as well, are called unstable
if zero lies in the closure Ov of the orbit of v. Otherwise v and Ov are called
semistable. We use N V to denote the set of all unstable vectors in V

If Ov is a semistable orbit in V and λ ∈ C∗, then λOv = {λ · (gv) | g ∈ G}
is also a semistable orbit. In fact, λOv = Oλv since the action of G is linear, and
multiplication with λ is a homeomorphism, hence λOv = λOv 63 0.

For an arbitrary orbit O ⊆ V let

C∗Ō := {λv | λ ∈ C∗, v ∈ Ō} =
⋃
v∈Ō

C∗v

be the cone spanned by Ō. A subset of a vector space is called homogeneous or a
cone if it contains with every v the subset C∗v.

Definition 7.1.2. Let v ∈ V be semistable. The set of boundary points of the
cone C∗Ov is called the cone associated to Ov (or associated to Ov) and will be
denoted by COv:

COv := ∂(C∗Ov).

Example 7.1.3. Let V := C2, G := GL1 = C∗ and the operation be given by
t(x, y) := (t−1x, ty) for t ∈ C∗, (x, y) ∈ V . The unstable orbits are O(0,0), O(1,0) =
the x-axis minus zero, and O(0,1) = the y-axis minus zero. Thus N V is the union of

the two coordinate axes in C2. For ab 6= 0 the orbit O(a,b) is the hyperbola with the

equation xy − ab = 0, and C∗O(a,b) = {(u, v) | u, v 6= 0} = C2 \N V . It follows that

CO(a,b) = ∂(C∗O(a,b)) = N V .

Example 7.1.4. Let V := C2 ⊕ C2 'M2(C), G := SL2(C), and the operation
be given by left multiplication (cf. section ??). Choose v, w ∈ C2 which are linearly
independent. This means that the corresponding matrix [u, v] is nonsingular. Then
the orbit O(v,w) is closed, hence semistable. In fact, O(v,w) corresponds to the set
of matrices in M2(C) with determinant equal to det[u, v]. It follows that C∗O(v,w)

corresponds to the set of invertible matrices, i.e.

C∗O(v,w) = the set of all pairs of linearly independent vectors in C2,

which is open and dense in V . It follows that

CO(v,w) = {(v, w) ∈ V | v, w linearly dependen} = N V .

One can prove the following general result concerning the associated cone, cf.
II.4.2.
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Proposition 7.1.5. Suppose O is a semistable orbit. Then CO is a closed
G-stable cone contained in N V , and dim CO = dimO. Moreover, one has CO =
C∗O \ C∗O.

The dimension is to be understood in the sense of algebraic geometry, see
section AI.3.

Outline of Proof. Since the G-action is rational and hence continuous, not
only C∗O, but also C∗O is a G-stable cone. Thus so are the interior of C∗O and
also its boundary. Since C∗O consists only of semistable orbits, it follows that
N V ∩C∗O = ∅. From this it is obvious that CO ⊇ C∗O \ C∗O. From the first
part of the proposition, namely that CO ⊆ N V , it follows that CO = C∗O \ C∗O.
However, the inclusion CO ⊆ N V is not so easy to prove.

For the statement about the dimension, one first has to convince oneself that
dimC∗O = dimO + 1. (The map C∗ × O → C∗O, (t, v) 7→ tv, has finite fibers:
Namely, if it were true that tivi = ṽ for infinitely many different pairs (ti, vi) ∈
C∗×O, then vi = ṽ/ti ∈ C∗ṽ for infinitely many vi, and so the entire line Cṽ would
be in the closure of O.) Since under the boundary map the algebraic dimension
decreases by at least one, we find that dim CO ≤ dimO. For the inequality in the
other direction one needs a little more from the general dimension theory. �

7.2. Conjugacy classes of matrices. Here we study the example of matri-
ces. Let V = Mn(C) and G = GLn(C) acting by conjugation on V : A 7→ gAg−1

for A ∈ Mn(C) and g ∈ GLn(C) (cf. section 4). We already know that N V is
equal to the set of nilpotent matrices. Now suppose that A 6= 0 is semisimple, with
eigenvalues λ1, . . . , λs with multiplicities p1 ≥ p2 ≥ · · · ≥ ps. They form partition
p = (p1, . . . , ps) of n. The GLn(C)-orbit of A is the conjugacy class CA, and it is
closed, by assumption (see 5.5.2).

Now we would like to describe the associated cone CCA. In order to do this we
consider the dual partition p̂ = (p̂1, . . . , p̂t) of the partition p defined by

p̂i := #{j | pj ≥ i}.
If one describes the partition p by its Young diagram, i.e. an arrangement of boxes
with pi boxes in the i-th row, then the dual partition p̂ has pj boxes in the j-th
column:

p = (5, 4, 4, 2, 2, 2, 1) p̂ = (7, 6, 3, 3, 1)

Using this we can now describe the associated cone of a semisimple conjugacy
class CA. For a full proof of the following result one should consult [Kra78]. Recall
that every partition q = (q1, . . . , qt) of n defines a nilpotent conjugacy class Cq
given by the nilpotent matrix with Jordan blocks of size q1, q2, . . . , qt

Theorem 7.2.1. Suppose A 6= 0 is a semisimple matrix with eigenvalue multi-
plicities p1 ≥ p2 ≥ · · · ≥ ps, and suppose p̂ is the dual partition to p = {p1, ..., ps}.
Then for the cone associated to CA we have

CCA = Cp̂.



I.7. DEFORMATIONS AND ASSOCIATED CONE 27

Here Cp̂ denotes the nilpotent conjugacy class of the partition p̂.

Outline of Proof. If all the eigenvalues ofA are different, then p = (1, . . . , 1)
and p̂ = (n). The assertion then is that CCA is the set of all nilpotent matrices.
This is easy to check. If D ∈ CA is a diagonal matrix and

N :=


0 1

0 1
. .

. 1
0

 ∈ C(n),

then, as is known, tD + N ∈ CtD = CtA for every t ∈ C∗. Letting t → 0 gives
N ∈ CCA and thus the claim.

By means of an easy extension of this argument one can show that one has
the inclusion Cp̂ ⊆ CCA. The proof of the opposite inclusion Cp̂ ⊇ CCA is more
difficult. �

7.3. The case of binary forms of degree five. Let V := R5 be the space
of binary forms of degree 5 and G := SL2(C) with the operation of G on V as in the
last section. We know that f ∈ V is unstable precisely if f contains a linear factor
of multiplicity at least three. It follows that we can describe the unstable orbits by
means of their representatives

0 y5 xy4 x2y3 xy3(x+ qy) (q ∈ C∗).

•{0}

•Oy5

Oxy4Ox2y3

Oxy3(x+qy)

Figure 4. The null fiber N 5 of R5

Since dim SL2(C) = 3, every orbit has dimension less than or equal to three.

The stabilizer of y5 consists of the matrices

[
ζ β

ζ−1

]
with ζ5 = 1 and β ∈ C. The

stabilizers of the other non-zero representatives are finite. Thus it follows that

dimOy5 = 2 and dimOxy4 = dimOx2y3 = dimOxy3(x+qy) = 3.
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Since N 5 contains a one parameter family of 3-dimensional orbits, we find that
dimN 5 = 4. It is not difficult to see that every semistable orbit O is also three-
dimensional. From our Proposition 7.1.5 above it follows that

CO ⊆ N 5 and dim CO = dimO = 3.

Hence CO is a finite union of homogeneous orbits and thus one has

CO ⊆ {0} ∪Oy5 ∪Oxy4 ∪Ox2y3 = Oxy4 ∪Ox2y3 ,

and CO contains either xy4 or x2y3 or both. (One should note that the orbit of
xy3(x+ qy) for q ∈ C∗ is not a cone.)

Exercise 7.3.1. Show using an appropriate limiting process that

COx2y2(x+y) = Oxy4 ∪Ox2y3 .

The general result is the following.

Proposition 7.3.2. Suppose f ∈ R5 is a semistable form.

(1) The cone of Of contains xy4.
(2) If f has a linear factor of multiplicity 2, then one has

COf = Oxy4 ∪Ox2y3 .

(3) If f is squarefree, then one has

COf = Oxy4 .

Proof. (1) Since f is semistable, there must be a linear factor of f which
occurs with multiplicity one. Without loss of generality we assume that this is x.
Then f = a1xy

4 + a2x
2y3 + a4x

4y + a5x
5 where a1 6= 0. Then we get t3ft−1 =

a1xy
4 + a2t

2x2y3 + · · ·+ a5t
8x5. The claim in follows by letting t→ 0.

(2) If f has a linear factor of multiplicity two one can show in an analogous
way that x2y3 lies in COf , proving the claim.

(3) We prove this by contradiction. To do so assume that f = `1 · · · `5 with
pairwise linearly independent linear factors l1, · · · , l5, and that x2y3 ∈ COf . Hence
there is a sequence {gν}ν∈N in GL2(C) such that limν→∞ gν .f = x2y3.

Now we map the set of nonzero linear forms into the compact space P1 by letting
π(aX + bY ) := (a : b) ∈ P1. Set Pi := π(`i) and P νi := π(gν .`i) for i = 1, . . . , 5
and ν ∈ N. Without loss of generality we may now assume that {P νi } converges to
P0 := (1 : 0) = π(x) for i = 1, 3, 5, and to P∞ := (0 : 1) = π(y) for i = 2, 4 as
ν → ∞. We now use the invariance of the cross ratio under linear maps which is
defined by the formula

CR(P1, P2, P3, P4) =
(a1b3 − a3b1)(a2b4 − a4b2)

(a2b3 − a3b2)(a1b4 − a4b1)

where Pi = (ai : bi) ∈ P1. One has CR(P ν1 , P
ν
2 , P

ν
3 , P

ν
4 ) = CR(P1, P2, P3, P4) for

every ν ∈ N, and CR(P1, P2, P3, P4) 6= 0, because all points are different. On the
other hand CR(P0, P∞, P0, P∞) = 0, and we therefore get a contradiction. �

Remark 7.3.3. Later on we will see that the method we described here con-
cerning the associated cone has far-reaching applications (cf. section IV.5 and also
the original work [BK79], where this method was introduced). The passage to the
associated cone can also be understood as a kind of deformation. Roughly speaking
this process allows one to carry over “good properties” of the unstable orbits and
their closures to arbitrary orbits.
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8. Ternary Cubics

8.1. Normal forms. Let T := {f ∈ C[x, y, z] | f homogeneous of degree 3}
be the 10-dimensional (complex) vector space of ternary cubic forms. The group
GL3 acts on T by linear substitution of variables as in the case of binary forms
(see section 5). For the classification of the orbits under GL3 we associate to each
nonzero form f ∈ T its zero set V(f) in P2:

V(f) := {(x : y : z) ∈ P2 | f(x, y, z) = 0}.

This is a plane projective curve of degree 3. We first classify these curves up to
projective equivalence. This corresponds to the classification of the ternary cubics
with respect to the action of GL3. In each case we draw a “real” picture of the
curve.

Proposition 8.1.1. The following is a classification of the ternary cubic forms
up to linear substitutions.

(a) f is a product of 3 linear factors `1, `2, `3, i.e. V(f) is a union of 3 lines:
(a1) `1 = `2 = `3: f = x3.
(a2) `1 is linearly independent of `2 = `3: f = x2y.
(a3) `1, `2, `3 are linearly dependent, but pairwise linearly independent:

f = xy(x+ y).
(a4) `1, `2, `3 are linearly independent: f = xyz.

tripple line

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

double line

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

(b) f contains an irreducible factor q of degree 2, i.e. V(f) is a union of a
quadric Q and a line L:
(b1) The line L is tangent to the quadric Q: f = (x2 − yz)y.
(b2) The line L meets the quadric Q in two points: f = (x2 − yz)x.

-1.0 -0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c) f is irreducible, i.e. V(f) is an irreducible cubic C.
(c1) C has a cusp: f = y2z − x3

(c2) C has a double point: f = y2z − x3 − x2z
(c3) C is nonsingular: f = y2z−x3−ax2z−bxz2−cz3, a, b, c ∈ C. These

are the so-called elliptic curves.
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-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-1.0

-0.5

0.0

0.5

1.0

Note that some of these cases can be distinguished by the number of singular
points. E.g. the only case with exactly three singular points is (a4), and the only
one with exactly two singular points is (b2).

Outline of Proof. (a) This is easy and we leave it as an exercise to the
reader.

(b) We can assume that q = x2 − yz, hence f = (x2 − yz)`. The stabilizer of q
is the orthogonal group O(q) ⊆ GL3 which acts transitively on the vectors in C3 of
a fixed length. This implies that O(q) has two orbits in the set of lines in P2, the
tangent vectors to Q and the complement. Therefore, we can assume that ` = y in
case L is tangent to Q, and that ` = x otherwise, giving (b1) and (b2).

(c) If C has a singular point P , then we can assume that P = (0 : 0 : 1). If
the tangent cone in P consists of one line, one easily gets (c1). If the tangent cone
consists of two lines, then we get (c2).

Finally, if C is nonsingular, then one shows by using the Hessian that C has
point of inflection. Let this be (0 : 1 : 0) with tangent line z = 0. This implies that
f(x, 1, z) = az + bz2 + cxz + g(x, z) where a 6= 0 and g is homogenous of degree 3.
As a consequence, we get

f(x, y, 1) = ay2 + by + cxy + g(x, 1).

Replacing y by y′ := y − b+cx
2a we obtain f(x, y, 1) = ay2 + h(x), and the claim

follows easily. �

Exercise 8.1.2. Show that a nonsingular form f ∈ T is GL3-equivalent to one of the
following forms:

y2z − x3 − xz2, y2z − x3 − z3, y2z − x3 − rxz2 − rz3 with r ∈ C.

Remark 8.1.3. (1) The normal form given in (c3) is called Weierstrass
normal form. It contains the special cases (c1) and (c2). We also see that
this normal form defines a nonsingular cubic if and only if the polynomial
x3 + ax2 + bx+ c has no multiple roots.

(2) There is another normal form for the nonsingular cubics, the Hesse nor-
mal form

hs := x3 + y3 + z3 − sxyz.

This is nonsingular for s3 6= 27, and for s3 = 27 it is of type (a4), because
the corresponding curve has 3 singular points.
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Exercise 8.1.4. Show that if s′
3

= s3, then hs′ is GL3-equivalent to hs. However,
we will see later that, in general, there are 12 different values of c giving GL3-equivalent
forms hs.

Example 8.1.5. We want to show that every nonsingular cubic f ∈ T is GL3-
equivalent to a cubic of the form hs = x3 + y3 + z3− sxyz with s ∈ C. It is easy to
see that such a cubic is nonsingular if and only if s3 6= 27r3. Moreover, the point
S := (1 : −1 : 0) ∈ C is a point of inflection, with tangent line L : 3x+ 3y+ sz = 0.
This allows to calculate the Weierstrass normal form of hs by making successively
the following substitutions (where we assume s 6= 0):

z 7→ −3

s
x− 3

s
y +

1

s
z

x 7→ x− y

y 7→ y +
1

2
x

The first two transform the inflection point S to (1 : 0 : 0) and the tangent line L
to z = 0, and the last eliminates xyz from the resulting expression for hs:

hs 7→ y2z + (1− 27

s3
)x3 + (−1

4
+

27

s3
)x2z − 9

s3
xz2 − 1

s3
z3.

We see that this form only depends on s3, in accordance with Exercise 8.1.2 above.
Setting t := 27

s3 − 1 and using scalar multiplications and affine transformations
x 7→ αx+ β one can transform the polynomial in x into the form

x3 − 1

864
(144t+ 162)x− 1

864
(8t2 + 36t+ 27).

Now one can use Exercise 8.1.4 to conclude that all GL3-equivalence classes appear
in this way.

8.2. Classification with respect to SL3. The classification of the ternary
cubic forms with respect to the action of SL3 does not present any fundamental
difficulties. One only has to decide whether the multiples of normal forms given
in the above list are, with respect to SL3, equivalent to the original ones or not.
Doing this gives rise to an additional parameter in some of the cases. The details
of carrying this out are left to the reader.

Proposition 8.2.1. The SL3-orbits of the nonzero ternary cubics are repre-
sented by the forms from the following list.

(a1) f = x3 (a2) f = x2y (a3) f = xy(x+ y) (a4) f = txyz, t ∈ C∗

(b1) f = (x2 − yz)y (b2) f = t(x2 − yz)x, t ∈ C∗

(c1) f = y2z − x3 (c2) f = t(y2z − x3 − x2z), t ∈ C∗

(c3) f = y2z − x3 − ax2z − bxz2 − cz3, a, b, c ∈ C or

f = r(x3 + y3 + z3)− sxyz, r ∈ C∗, s ∈ C.

In particular, the forms corresponding to nonsingular cubics have 2 parameters,
those corresponding to a singular cubic with a double point, to a quadric with a
secant line or to the union of 3 lines in general position have one parameter, and
the remaining types form just one orbit.

As already mentioned, the forms in (c3) are nonsingular if and only if the
polynomial x3 + ax2 + bx+ c has no multiple roots, or if and only if s3 6= 27r3.
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8.3. Nullforms and degenerations. As in the case of binary forms, a cubic
form f ∈ T is called a nullform if the closure of the SL3-orbit Of contains the origin
0. It is easy to see that the types (a1), (a2), (a3), (b1), (c1) are nullforms. It is slightly
more difficult to show that these are all nullforms. This will be a consequence of
the following considerations.

Definition 8.3.1. A form h ∈ T is called a degeneration of a form f ∈ T if
h ∈ Of . Hence, f is a nullform if 0 is a degeneration of f . We will use the following
notation for this relation:

•

•

Oh

Of

•

•

h

f

or

On the following page we describe the degeneration behavior of the ternary
forms of degree 3. For this we have given the dimensions of the single orbits from
which one can read off the behavior under the transition to the associated cone
(one uses Theorem 6.2.2 from section 6). These are easily found by considering the
stabilizers of the forms, because the dimension of an orbit is the difference of the
dimension of the group and the dimension of the stabilizer, see .

Let us briefly discuss the degenerations claimed in the table.

(1)
•

•

t(y2z − x3 − x2z)x

2t(x2 − yz)x
i.e. 2t(x2 − yz)x ∈ Ot(y2z−x3−x2z)

This follows by making the substitution

x 7→ − 3
√

2x

y 7→ ε y +
3
√

2x and then letting ε→ 0.

z 7→ −(ε
3
√

2)−1z

(2)
•

•

y2z − x3

(x2 − yz)y
i.e. (x2 − yz)y ∈ Oy2z−x3

For ε ∈ C∗ the form fε := (x2 − yz)y + ε x3 is irreducible. Moreover, V(f) has
a singularity at the origin, and it is a vertex. Thus fε is of type (c1). The claim
follows by letting ε→ 0.

(3)
•

•

(x2 − yz)y

xy(x+ y)
i.e. xy(x+ y) ∈ O(x2−yz)y

One has xy(x+y) = x(xy+y2). For ε ∈ C∗ the quadratic form xy+y2 +ε z2 is
nondegenerate and has x = 0 as isotropic line. Thus x(xy+ y2 + ε z2) ∈ O(x2−yz)y,
and the claim follows by letting ε→ 0.

Obviously, this deformation can be seen geometrically like this:
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-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

−→

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

The arguments presented above in (1), (2) and (3) are enough to see that the
behavior given in the table holds, provided we now prove that the orbits of type
(a4) and (c3) are closed. In order to do this we use the following stronger form of
Hilbert’s Criterion from section 6.2.2; a proof for this is given in the third chapter,
6.2.2.

Proposition 8.3.2 (Hilbert’s Criterion). Suppose Oh is a closed orbit in
Of . Then there is a group homomorphism λ : C∗ → SL3 with the property that

limt→0 f
λ(t) exists and lies in Oh.

(4) If V(f) has no singularities, then Of is closed. If f is a product of three
linearly independent linear forms, then Of is likewise closed.

Proof. If Of were not closed, then by the Hilbert Criterion there would exist

a homomorphism λ : C∗ → SL3 with the property that the limit limt→0 f
λ(t) exists

but does not lie in Of . By making a change of coordinates we may, without loss of
generality, assume that

λ(t) =

tα tβ

tγ

 with α, β, γ ∈ Z, α ≥ β ≥ γ and α+ β + γ = 0.

First we consider the case where V(f) has no singularities. If β ≥ 0, then the
monomials xz2, yz2 and z3 cannot occur in f . For otherwise, as α+2γ < 0, β+2γ < 0
and 3γ < 0, the limit limt→0 f

λ(t) does not exist. But it follows from this that V(f)
has a singularity at the point (0, 0, 1). In the case β < 0 a similar argument shows
that a linear factor x can be split off f . Thus V(f) is also singular in this case.

Finally if f is a product of three linearly independent linear factors and if Of
were not closed, then for dimension reasons f would have to be a nullform. Similar
arguments to those above now lead to a contradiction. (We are again using the fact
that the closure of an orbit contains a unique closed orbit, see Theorem ??.) �

As we already established above, this completely proves the relationships given
in the table.

Remark 8.3.3. The corresponding, but essentially more difficult investigation
of ternary forms of fourth degree can be found in a work of G. Brackly [Bra79].

8.4. Invariants under SL3. We show now that the SL3-invariants give some
new insight and help to understand some of the behavior above. It is classically
known that the invariant ring O(T )SL3 of the ternary cubics is generated by two
algebraically independent invariants I4 and I6 of degree 4 and 6, and that the
discriminant has the expression

∆(f) = I6(f)2 − 1

6
I4(f)3
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(see [Wei23, §17]). The discriminant tells us whether a form f is nonsingular or
not. Therefore, the rational function

j(f) :=
I4(f)3

∆(f)

called j-invariant, is well defined for nonsingular forms f and only depends on
the GL3-equivalence class. The main result from classical invariant theory is the
following.

Proposition 8.4.1. (1) If f ∈ T is nonsingular and h ∈ T arbitrary,
then h is SL3-equivalent to f if and only if I4(h) = I4(f) and I6(h) =
I6(f).

(2) If f, h ∈ T are nonsingular, then h is GL3-equivalent to f if and only if
j(h) = j(f).

(3) f ∈ T is a nullform if and only if I4(f) = I6(f) = 0.

This can be reformulated in more geometric terms. For this consider the map

π : T → C2, f 7→ (I4(f), I6(f)).

It is clear that π is constant on SL3-orbits, because the two coordinate functions I4
and I6 are SL3-invariants. The proposition above can now be reformulated in the
following way.

Corollary 8.4.2. (1) If f ∈ T is nonsingular, then the fiber of π through
f is the SL3-orbit of f : π−1(π(f)) = Of .

(2) Treg := {f ∈ T | ∆(f) 6= 0} ⊆ T is the open subset of regular forms, and
the fibers of j : Treg → C are the GL3-orbits.

(3) The fiber ϕ−1(0) is the subset of nullforms.

8.5. Some computations. Using the symbolic method one can calculate ex-
plicitly these invariants in terms of the coefficients a1, a2, . . . , a10 of the form

f = a1x
3 + 3a2x

2y + 3a3x
2z + a4y

3 + 3a5xy
2 + · · ·+ 3a9yz

2 + 6a10xyz

(see section 6.2.2). E.g. one finds

I4 = 24(a4
10−2a3a6a

2
10−2a5a8a

2
10−2a2a9a

2
10−a1a4a7a10 +a2a5a7a10 +a3a4a8a10

+ 3a2a6a8a10 + 3a3a5a9a10 + a1a6a9a10 + a2
3a

2
6 + a2

5a
2
8 − a2a4a

2
8

+ a2
2a

2
9 − a1a5a

2
9 − a3a

2
5a7 + a2a3a4a7 − a2

2a6a7 + a1a5a6a7

− a1a
2
6a8 − a3a5a6a8 − a2

3a4a9 − a2a3a6a9 + a1a4a8a9 − a2a5a8a9)

For the Weierstrass normal form f = y2z− x3− ax2z− bxz2− cz3 the values of
these invariants are the following:

I4(Weierstrass) =
8

27
(a2 − 3b), I6(Weierstrass) =

8

243
(2a3 − 9ab+ 27c)

∆(Weierstrass) = − 64

2187
(a2b2 − 4b3 − 4a3c+ 18abc− 27c2),

j(Weierstrass) =
−8(a2 − 3b)3

9(a2b2 − 4b3 − 4a3c+ 18abc− 27c2)
.

Note that the last expression in ∆, a2b2− 4b3− 4a3c+ 18abc− 27c2, is equal to the
discriminant of the polynomial x3 + ax2 + bx+ c.
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For the Hesse normal form r(x3 + y3 + z3)− sxyz one finds

I4(Hesse) =
1

54
s(s+ 6)(s2 − 6s+ 36) =

1

54
s(s3 + 216),

I6(Hesse) =
1

972
(s2 − 6s− 18)(s4 + 6s3 + 54s2 − 108s+ 324) =

1

972
(s6 − 540s3 − 5832)

∆(Hesse) =
4

2187
(s− 3)3(s2 + 3s+ 9)3 = − 4

2187
(s3 − 27)3

j(Hesse) = − s
3(s3 + 316)3

288(s3 − 27)3

The form of the j-invariant shows that the dependence of the GL3-equivalence class
from the parameter s is complicated (see the graph below). In general, there are 12
different values of s giving the same GL3-equivalence class.

-20 -10 10 20

-40

-20

20

40

Remark 8.5.1. Without any computation it is clear that the number of differ-
ent s giving the same GL3-equivalence class is finite. In fact, the rational function
j restricted to the line H ⊆ T of Hesse normal forms is non-constant and thus has
finite fibers.

Exercises

For the convenience of the reader we collect here all exercises from Chapter I.
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Introduction. Now that we have studied several examples in detail in the first
chapter, we would like to turn to the basics. Linear algebraic groups, i.e. closed
subgroups of the general linear group GLn, and homomorphisms between them are
the basic notion for what follows. The definitions connected with this and a few
simple properties are treated in the first two sections.

As some of our main examples we then describe the classical groups GLn, SLn,
On, SOn, and Sp2m and give some of there properties. Finally, in the last section,
we define the Lie algebra of an algebraic group and give several examples and
applications.

There are many exercises included in the text, some of them with hints. The
reader is strongly advised to work out the solutions. At the end of each paragraph,
we recollect them for the convenience of the reader.

37
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1. Basic Definitions

1.1. Linear algebraic groups. The general linear group GLn = GLn(C) of
invertible complex n× n-matrices has a natural structure of an affine variety. It is
a special open set (A.1.5) of the vector space Mn(C) of n× n-matrices, namely

GLn = {A ∈ Mn(C) | detA 6= 0} = Mn(C)det,

with coordinate ring

O(GLn) = C[xij ]det = C[xij ,det−1], det := det(xij) ∈ C[xij ]

(cf. Example A.1.5.3). This is our basic object.

Exercise 1.1.1. (1) Show that the multiplication GLn×GLn → GLn is a mor-
phism of varieties.

(2) Show that left and right multiplication λA : B 7→ AB and ρA : B 7→ BA with a

fixed matrix A ∈ GLn are isomorphisms GLn
∼→ GLn of varieties.

(3) Show that inversion A 7→ A−1 is an isomorphism GLn
∼→ GLn of varieties.

(Hint: Use Cramer’s rule.)

Given a finite dimensional vector space V every choice of a basis induces an
isomorphism GL(V )

∼→ GLn. Thus GL(V ) carries the structure of an affine variety,
too, with coordinate ring

O(GL(V )) = O(End(V ))det ' O(GLn).

It is easy to see that this structure does not depend on the choice of the basis of
V . Subgroups of GLn are usually called matrix groups. Algebraic groups as defined
below are special cases of matrix groups. Recall that all topological notions are with
respect to the Zariski topology (A.1.2.5) unless otherwise stated.

Definition 1.1.2. A closed subgroup G ⊆ GLn is called an algebraic group or
a linear algebraic group. The identity matrix in GLn is denoted by En or E, and
the identity element of an arbitrary group G mostly by e or eG.

Examples 1.1.3. We start with some well-known examples of matrix groups.

(1) The special linear group SLn := V(det−1) ⊆ GLn consists of all matrices
with determinant 1. Its coordinate ring is O(SLn) = C[xij ]/(det−1). In
fact, det−1 is an irreducible polynomial.
(Proof: If det−1 = pq and if the variable xij occurs in p, then so do all
xik, k = 1, . . . n, and all xlj , l = 1, . . . , n, and none of these occur in q since
no monomial of the determinant contains a product of the form xijxik or
xijxlj). It follows that all variables occur in p, hence q is a constant.)
Similarly, we define SL(V ) ⊆ GL(V ).

(2) The multiplicative group C∗ := GL1 = (C \ {0}, ·).

(3) The additive group C+ :=

{[
1 a
0 1

]
| a ∈ C

}
⊆ GL2 is given by the equa-

tions x11 = x22 = 1, x21 = 0. Its coordinate ring O(C+) = C[s] is a
polynomial ring in one variable where s := x12|C+ . We will identify C+

with the underlying additive group (C,+) of the field C.

(4) The group of upper triangular unipotent matrices Un :=


1 ∗ · · ·

0 1
...

. . .




with 1’s along the diagonal. Its coordinate ring is the polynomial ring
C[x̄ij | i < j] where x̄ij := xij |Un .
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(5) The group of diagonal matrices Tn :=


∗ 0 · · ·

0 ∗
...

. . .


 with nonzero ele-

ments along the diagonal. Its coordinate ring is C[t1, t
−1
1 , . . . , tn, t

−1
n ] where

ti := xii|Tn

(6) The group of upper triangular matrices Bn :=


∗ ∗ · · ·0 ∗ · · ·
...

. . .


 with

nonzero elements along the diagonal. Then Bn = Tn · Un = Un · Tn and
Tn normalizes Un.

Exercise 1.1.4. Show that the map ϕ : Tn×Un → Bn, (t, u) 7→ tu is an isomorphism
of algebraic varieties.

Example 1.1.5. The group Pn ⊆ GLn of permutation matrices P , i.e., in every
row and every column of P there is exactly one nonzero entry which is 1. Thus

Pn =

{
Pσ :=

n∑
i=1

Eiσ(i) | σ a permutation of {1, . . . , n}

}
,

where Eij is that n×n-matrix which has a 1 as its (i, j)-entry and zeroes otherwise.
It is easy to verify that σ 7→ Pσ identifies the symmetric group Sn with Pn.

Since, by Cayley’s Theorem (cf. [Art91, Chap. 6, Theorem 1.3]), any finite
group is isomorphic to a subgroup of Sn for a suitable n, the last example shows
that every finite group can be considered as an algebraic group. (Recall that an
arbitrary finite set F is an affine variety in a unique way, setting O(F ) := CF , the
algebra of all C-valued functions on F , see Example A.1.4.2.)

Thus the theory of finite groups is part of the theory of algebraic groups. We
will see in the sequel that many concepts from finite group theory can be carried
over to algebraic groups, some of them easily, some others require more work. We
recommend the reader to keep the case of finite groups always in mind.

Exercise 1.1.6. (1) Show that every automorphism µ of the line C is an affine
transformation, i.e. µ(x) = ax+ b where a ∈ C∗ and b ∈ C.

(2) If an automorphism µ of C has two or more fixed points, then µ = id.

Exercise 1.1.7. (1) The subgroup µn := {t ∈ C∗ | tn = 1} ⊆ C∗ is finite and
cyclic of order n, and the µn’s exhaust all closed subgroups 6= C∗.

(2) The set {g ∈ Tn | g has finite order} is a Zariski dense subgroup of Tn.

Exercise 1.1.8. A strict closed subgroup of C+ is trivial.

Example 1.1.9. Let F ⊆ C be a finite subset of cardinality |F | ≥ 2. Then
Aut(C \ F ) is a finite group. In fact, an automorphism µ of C \ F is induced by a
Möbius transformation µA ∈ Aut(C(x)) (see Appendix A.3.7), and µA permutes
the discrete valuations of C(x). If a ∈ C \F and µ(a) = b, then µA(νa) = νb. Thus,
we get a homomorphism Aut(C \ F ) → Perm(F ∪ {∞}). An element µ from the
kernel fixes ν∞ and every point of F . It follows that µ is an automorphism of C
with fixed points F , hence µ = id by Exercise 1.1.6(2). It follows that Aut(C \ F )
is isomorphic to a subgroup of the symmetric group S|F |+1.

Exercise 1.1.10. If F ⊆ C is a finite subset of cardinality |F | ≥ 3 in “general
position”, then Aut(C \ F ) is trivial.
(In “general position” means that for every d ≥ 3 there is a dense open set U ⊆ Cd such
that the claim holds for any F from U .)
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Proposition 1.1.11. Let R be a finite dimensional associative C-algebra with
a unit element 1 ∈ R. Then the group R∗ of invertible elements of R is open in
R, and R∗ has the structure of an algebraic group given by the closed embedding
R∗ ↪→ GL(R), r 7→ λr := left multiplication with r.

Proof. Consider the map λ : R→ End(R), r 7→ λr where λr(s) := rs. This is
an injective linear map, hence an isomorphism onto its image λ(R), and it satisfies
λ(rs) = λ(r) ◦ λ(s). It follows that R∗ = λ−1(GL(R)) and that λ induces a group

isomorphism R∗
∼→ λ(R) ∩GL(R). Thus R∗ is open in R and λ : R∗ ↪→ GL(R) is a

closed embedding. �

The proof shows that R∗ is a special open set of R. In particular, R∗ is irre-
ducible of dimension dimR∗ = dimR.

1.2. Isomorphisms and products. It follows from our definition that an
algebraic group G is an affine variety with a group structure. These two struc-
tures are related in the usual way. Namely, the multiplication µ : G × G → G is
a morphism, right and left multiplication by a fixed element g ∈ G, ρg : h 7→ hg
and λg : g 7→ gh (h ∈ G), are isomorphisms of algebraic varieties, as well as taking
inverses ι : h 7→ h−1. In fact, this is clear for GLn (see Exercise 1.1.1), and follows
for arbitrary algebraic groups G ⊆ GLn by restriction.

Remark 1.2.1. We could take a more general point of view, like in the case of
topological groups, and define an algebraic group G to be an affine variety with a
group structure such that multiplication and inversion are morphisms. It turns out
that this leads to the same, i.e. any such “algebraic group object” is isomorphic to
a linear algebraic group, see Proposition III.2.4.6.

Definition 1.2.2. Two algebraic groups G and H are isomorphic if there is
a group homomorphism ϕ : G→ H which is an isomorphism of algebraic varieties.
Such a ϕ is shortly called an isomorphism, or an automorphism of G in case H = G.
The group of automorphisms of G will be denoted by Aut(G).

Examples 1.2.3. (1) For any g ∈ G the map Int g : G
∼→ G, h 7→ ghg−1,

is an automorphism called conjugation by g, or inner automorphism by g.
(2) If G is commutative, then ι : G→ G, g 7→ g−1, is an automorphism.
(3) The map A 7→ A−t is an automorphism of GLn and of SLn.
(4) The groups Un and U−n := {At | A ∈ Un} are isomorphic.
(5) The subgroup T ′n := Tn ∩ SLn is isomorphic to Tn−1.

Exercise 1.2.4. Give proofs for the claims (1)–(5) in the example above.

Exercise 1.2.5. The subgroup Int(G) ⊆ Aut(G) of inner automorphisms of a group
G is a normal subgroup.

Exercise 1.2.6. (1) For SL2, the automorphism A 7→ A−t is inner.
(2) Show that all automorphisms of SL2 are inner.
(3) For GLn, n ≥ 2, and for SLn, n ≥ 3, the automorphism A 7→ A−t it is not inner.

(Hint: For GLn, look at the determinant. For SLn, if A 7→ A−t is inner, then
the composition of both is an automorphism of GLn which is the identity on
SLn and the inverse on C∗En. This leads to a contradiction as soon as n > 2.)

There is an obvious embedding of the product GLn×GLm into GLn+m given by

(A,B) 7→
[
A 0
0 B

]
which identifies GLn×GLm with a closed subgroup of GLn+m.

This implies that the product G×H of any two algebraic groups is again an algebraic
group in a natural way. More general, the product G1 × G2 × · · · × Gn of a finite
number of algebraic groups Gi is an algebraic group.
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Examples 1.2.7. (1) (C∗)n := C∗ × C∗ × · · · × C∗ is isomorphic to Tn.
An algebraic group isomorphic Tn is called an n-dimensional torus. We
will discuss these groups in detail in section III.3.

(2) The subgroup

A =

 1 0 ··· 0 b1
1 ··· 0 b2
. . .

...
...

1 bn
1


 ⊆ Un+1 is isomorphic to (C+)n.

Exercise 1.2.8. Let V be a finite dimensional complex vector space. Then the un-
derlying additive group V + is an algebraic group and Aut(V +) = GL(V ).

The following result will be used at several occasions.

Lemma 1.2.9. Let H ⊆ GLn be an “abstract” subgroup. Then the ( Zariski)
closure H̄ ⊆ GLn is an algebraic group.

Proof. We have to show that H̄ ⊆ GLn is a subgroup. For any h ∈ H the
left multiplication λh : g 7→ hg induces a morphism H̄ → H̄, hence hH̄ ⊆ H̄ and
therefore HH̄ = H̄ which implies that H̄ H̄ = H̄. Similarly, we see that g 7→ g−1

induces an isomorphism H̄
∼→ H̄. �

Exercise 1.2.10. Let H ⊆ GLn be a commutative subgroup. Then H̄ is also com-
mutative. If H is solvable, the so is H̄.

Exercise 1.2.11. Let G be an algebraic group and A ⊆ B ⊆ G “abstract” subgroups.
If A is normal (resp. central) in B, then so is Ā in B̄.

1.3. Comultiplication and coinverse. The multiplication µ : G × G → G
induces in the usual way an algebra homomorphism (A.2.1)

µ∗ : O(G)→ O(G×G) = O(G)⊗O(G),

µ∗(f)(g, h) := f(µ(g, h)) = f(gh) for f ∈ O(G), g, h ∈ G
which is called comultiplication. Similarly, the isomorphism ι : G

∼→ G taking in-
verses determines the coinverse

ι∗ : O(G)→ O(G), ι∗(f)(g) := f(g−1).

Example 1.3.1. For G = GLn

µ∗ : C[xij ,det−1]→ C[xij ,det−1]⊗ C[xij ,det−1]

is given by

xij 7→
n∑
k=1

xik ⊗ xkj ,

and

ι∗ : C[xij ,det−1]→ C[xij ,det−1] is given by xij 7→ (−1)i+j det−1 ·detXji

where Xrs is the (n− 1)× (n− 1)-submatrix obtained from X = (xij) by removing
the rth row and the sth column. In particular, for G = C∗, we have

µ∗ : C[x, x−1]→ C[x, x−1]⊗ C[x, x−1], x 7→ x⊗ x,
and

ι∗ : C[x, x−1]→ C[x, x−1], x 7→ x−1,

and for G = C+

µ∗ : C[x]→ C[x]⊗ C[x], x 7→ x⊗ 1 + 1⊗ x,
and

ι∗ : C[x]→ C[x], x 7→ −x.
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We will see in section 4.3 (Corollary 4.3.5) that C∗ and C+ are the only one-
dimensional connected linear algebraic groups. A first result in this direction is
formulated in the following exercise. Another will be given in Example 1.4.8 below.

Exercise 1.3.2. (1) The only algebraic group structure on the affine line C
with identity element e = 0 is C+.
(Hint: If g ∗h is such a multiplication, then g ∗ z = a(g)z+ b(g) where a(g) ∈ C∗
and b(g) ∈ C. Show that (i) b(g) = g, (ii) a(g) is regular, hence a constant, and
(iii) a(g) = 1.)

(2) The only algebraic group structure on C \ {0} with identity e = 1 is C∗.
(Hint: Prove and use that every automorphism of C∗ is of the form z 7→ λz or
z 7→ λz−1 where λ ∈ C∗.)

(3) There is no algebraic group structure on C \ {z1, z2, . . . , zr} for r > 1.
(Hint: Use that Aut(C \ {z1, z2, . . . , zr}) is finite for r > 1, see Example 1.1.9.)

1.4. Connected component. Next we show that the underlying variety of
an algebraic group is nonsingular. More precisely, we have the following result.

Proposition 1.4.1. An algebraic group G is a smooth variety and the irre-
ducible components of G are its connected components, i.e. they are pairwise dis-
joint. In particular, G◦, the connected component of the identity, is a normal sub-
group of G which is both open and closed, the connected components of G are the
cosets of G◦, and the component group π0(G) := G/G◦ is finite.

Proof. There is an open dense subset U in G which consists only of nonsin-
gular points (Proposition A.4.4.2). Since left multiplication by an element g ∈ G is
an isomorphism, the open set gU also consists of nonsingular points, and the same
holds for

⋃
g∈G gU = G.

If h ∈ G lies in exactly one irreducible component of G, then so does gh for
every g ∈ G. Thus the irreducible components do not meet and are therefore the
connected components.

Since G, as an algebraic variety, has finitely many irreducible components, it
follows that G◦ is open and closed in G. For every g ∈ G the set gG◦g−1 is connected
and meets G◦, and so gG◦g−1 = G◦. For every g ∈ G◦ the closed subvariety gG◦ is
irreducible and meets G◦, hence gG◦ = G◦. Therefore, G◦ is a normal subgroup of
G of finite index.

Similarly, if C is an irreducible component of G and g ∈ C, then gG◦ is irre-
ducible and meets C, and so gG◦ = C. �

Example 1.4.2. The groups GLn and SLn are both connected. This is clear
for GLn, and follows for SLn from the fact that det−1 is an irreducible polynomial
(see Example 1.1.3(1)).

Remark 1.4.3. The following is clear.

(1) For algebraic groups the notions connected and irreducible are equivalent.
(2) All local rings OG,g (A.1.7.5) of an algebraic group G are isomorphic.
(3) Every closed subgroup H ⊆ G of finite index contains G◦. Every connected

closed subgroup H ⊆ G is contained in G◦.

Exercise 1.4.4. Let G be an algebraic group. For n ∈ N denote by G(n) ⊆ G the set
of elements of order n.

(1) Describe G(2) for G = GLn.

(2) Show that G(n) is closed in G. (Hint: For G = GLn the subsets G(n) are finite
unions of closed conjugacy classes.)

Proposition 1.4.5. Let G be an algebraic group with the property that all
elements have finite order. Then G is finite.
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Proof. We can assume that G is connected. By assumption, G =
⋃
nG

(n)

where G(n) is the set of elements of order n. By the previous Exercise 1.4.4 these
sets are closed and so G = G(n) for some n, because an irreducible complex variety
cannot be a countable union of strictly closed subsets (Proposition A.3.2.19). Thus
n = 1 and G = {e}. �

Exercise 1.4.6. Let G be a connected algebraic group. Then, for every n ∈ Z, n 6= 0,
the map G→ G, g 7→ gn, is dominant.
(Hint: Show that the fiber of e contains e as an isolated point.)

Exercise 1.4.7. If G is a commutative algebraic group, then G(n) is finite for all n.
(Hint: Use the previous exercise to show that the homomorphism g 7→ gn has a finite
kernel.)

Example 1.4.8. A connected one-dimensional algebraic group G is commu-
tative. In fact, by Proposition 1.4.5 above, the group G contains an element g of
infinite order, and so G = 〈g〉 which is a commutative group (Exercise 1.2.10).

The following lemma turns out to be very useful in many applications.

Lemma 1.4.9. Let G be an algebraic group and let X ⊆ G be a constructible
dense subset. Then G = X ·X−1 = X ·X.

Proof. X contains a subset U which is open and dense in G, and the same
holds for V := U ∩ U−1. This implies that gV ∩ V 6= ∅ for any g ∈ G, and so
g ∈ V · V −1 = V · V . �

Exercise 1.4.10. Let X ⊆ GLn be an irreducible constructible subset containing the
identity matrix E, and let H := 〈X〉 be the subgroup generated by X. Then H is closed
and connected, and H = X ·X · · ·X︸ ︷︷ ︸

N times

for N := 2 dimH.

Exercise 1.4.11. Let G be an algebraic group and R ⊆ G a subset such that G = 〈R〉.
Then there are finitely many element g1, g2, . . . , gm ∈ R such that G = 〈g1〉 · 〈g2〉 · · · 〈gm〉.

1.5. Exercises. For the convenience of the reader we collect here all exercises
from the first section.

Exercise. (1) Show that the multiplication GLn×GLn → GLn is a morphism
of varieties.

(2) Show that left and right multiplication λA : B 7→ AB and ρA : B 7→ BA with a

fixed matrix A ∈ GLn are isomorphisms GLn
∼→ GLn of varieties.

(3) Show that inversion A 7→ A−1 is an isomorphism GLn
∼→ GLn of varieties.

(Hint: Use Cramer’s rule.)

Exercise. Show that the map ϕ : Tn × Un → Bn, (t, u) 7→ tu is an isomorphism of
algebraic varieties.

Exercise. (1) Show that every automorphism µ of the line C is an affine trans-
formation, i.e. µ(x) = ax+ b where a ∈ C∗ and b ∈ C.

(2) If an automorphism µ of C has two or more fixed points, then µ = id.

Exercise. (1) The subgroup µn := {t ∈ C∗ | tn = 1} ⊆ C∗ is finite and cyclic
of order n, and the µn’s exhaust all closed subgroups 6= C∗.

(2) The set {g ∈ Tn | g has finite order} is a Zariski dense subgroup of Tn.

Exercise. A strict closed subgroup of C+ is trivial.

Exercise. If F ⊆ C is a finite subset of cardinality |F | ≥ 3 in “general position”,
then Aut(C \ F ) is trivial.
(In “general position” means that for every d ≥ 3 there is a dense open set U ⊆ Cd such
that the claim holds for any F from U .)
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Exercise. The subgroup Int(G) ⊆ Aut(G) of inner automorphisms of a group G is
a normal subgroup.

Exercise. (1) For SL2, the automorphism A 7→ A−t is inner.
(2) Show that all automorphisms of SL2 are inner.
(3) For GLn, n ≥ 2, and for SLn, n ≥ 3, the automorphism A 7→ A−t it is not inner.

(Hint: For GLn, look at the determinant. For SLn, if A 7→ A−t is inner, then
the composition of both is an automorphism of GLn which is the identity on
SLn and the inverse on C∗En. This leads to a contradiction as soon as n > 2.)

Exercise. Let V be a finite dimensional complex vector space. Then the underlying
additive group V + is an algebraic group and Aut(V +) = GL(V ).

Exercise. Let H ⊆ GLn be a commutative subgroup. Then H̄ is also commutative.
If H is solvable, the so is H̄.

Exercise. Let G be an algebraic group and A ⊆ B ⊆ G “abstract” subgroups. If A
is normal (resp. central) in B, then so is Ā in B̄.

Exercise. (1) The only algebraic group structure on the affine line C with
identity element e = 0 is C+.
(Hint: If g ∗h is such a multiplication, then g ∗ z = a(g)z+ b(g) where a(g) ∈ C∗
and b(g) ∈ C. Show that (i) b(g) = g, (ii) a(g) is regular, hence a constant, and
(iii) a(g) = 1.)

(2) The only algebraic group structure on C \ {0} with identity e = 1 is C∗.
(Hint: Prove and use that every automorphism of C∗ is of the form z 7→ λz or
z 7→ λz−1 where λ ∈ C∗.)

(3) There is no algebraic group structure on C \ {z1, z2, . . . , zr} for r > 1.
(Hint: Use that Aut(C \ {z1, z2, . . . , zr}) is finite for r > 1.)

Exercise. Let H ⊆ GLn be a commutative subgroup. Then H̄ is commutative. If H
is solvable, the so is H̄.

Exercise. Let G be an algebraic group and A ⊆ B ⊆ G “abstract” subgroups. If A
is normal (resp. central) in B, then so is Ā in B̄.

Exercise. Let G be an algebraic group and A ⊆ B ⊆ G “abstract” subgroups. If A
is normal (resp. central) in B, then so is Ā in B̄.

Exercise. Let G be an algebraic group. For n ∈ N denote by G(n) ⊆ G the set of
elements of order n.

(1) Describe G(2) for G = GLn.

(2) Show that G(n) is closed in G. (Hint: For G = GLn the subsets G(n) are finite
unions of closed conjugacy classes.)

Exercise. Let G be a connected algebraic group. Then, for every n ∈ Z, n 6= 0, the
map G→ G, g 7→ gn, is dominant.
(Hint: Show that the fiber of e contains e as an isolated point.)

Exercise. If G is a commutative algebraic group, then G(n) is finite for all n.
(Hint: Use the previous exercise to show that the homomorphism g 7→ gn has a finite
kernel.)

Exercise. Let X ⊆ GLn be an irreducible constructible subset containing the iden-
tity matrix E, and let H := 〈X〉 be the subgroup generated by X. Then H is closed and
connected, and H = X ·X · · ·X︸ ︷︷ ︸

N times

for N := 2 dimH.

Exercise. Let G be an algebraic group and R ⊆ G a subset such that G = 〈R〉.
Then there are finitely many element g1, g2, . . . , gm ∈ R such that G = 〈g1〉 · 〈g2〉 · · · 〈gm〉.
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2. Homomorphisms and Exponential Map

2.1. Homomorphisms. Let G,H be algebraic groups.

Definition 2.1.1. A map ϕ : G→ H is called a regular group homomorphism
if ϕ is group homomorphism and a morphism of algebraic varieties.

In the following a homomorphism between algebraic groups always means a
regular group homomorphism unless otherwise stated. A homomorphism ϕ is an
isomorphism (see 1.2.2) if and only if ϕ is bijective and ϕ−1 is regular. We will see
below that the second condition is automatically satisfied.

Examples 2.1.2. (1) The determinant det : GLn → C∗ is a surjective
homomorphism.

(2) For every n ∈ Z the map C∗ → C∗, z 7→ zn, is a homomorphism. For
n 6= 0 it is surjective with kernel µn := {z ∈ C∗ | zn = 1} which is a cyclic
subgroup of order n.

(3) For any a ∈ C\{0} the multiplication a · id : C+ → C+ is an isomorphism.
(4) If N ∈ Mn is a nonzero nilpotent matrix, then the exponential map

s 7→ exp(sN) :=

n−1∑
k=0

sk

k!
Nk

is an injective homomorphism C+ → GLn. We will discuss this in more
detail in Section 2.5.

(5) The canonical map

t1 ∗ ∗
. . . ∗

tn

 7→
t1 . . .

tn

 is a surjective homo-

morphism Bn → Tn with kernel Un.

Exercise 2.1.3. Every homomorphism α : C∗ → C+ is trivial, and the same holds
for every homomorphism β : C+ → C∗.

Proposition 2.1.4. Suppose G and H are algebraic groups and ϕ : G→ H is
a homomorphism. Then the kernel kerϕ is a closed subgroup of G and the image
imϕ = ϕ(G) is a closed subgroup of H. Moreover, if ϕ is bijective, then ϕ is an
isomorphism.

Proof. Clearly, the kernel kerϕ = ϕ−1(e) is a closed subgroup. For the im-

age we first remark that not only is ϕ(G) a subgroup of H, but ϕ(G) is as well

(Lemma 1.2.9). Also, ϕ(G) contains an open dense subset U of ϕ(G), cf. A.3.4. For

any h ∈ ϕ(G) the sets U and hU are open and dense in ϕ(G). Hence U ∩ hU 6= ∅.
Therefore there are elements u, v ∈ U with u = hv. But then h = uv−1 ∈ ϕ(G) and

so ϕ(G) = ϕ(G).
Now assume that ϕ is bijective. Then the induced homomorphism ϕ◦ : G◦ →

H◦ is bijective as well, hence birational (Appendix A, Proposition A.2.3.4). Thus

there are open sets U ⊆ G◦ and V := ϕ(U) ⊆ H◦ such that ϕ|U : U
∼→ V is an

isomorphism. But then, for every g ∈ G, ϕ|gU : gU → ϕ(g)V is an isomorphism as
well, and the claim follows because G =

⋃
g∈G gU . �

Exercise 2.1.5. For every m ∈ Z, m 6= 0, the map t 7→ tm : Tn → Tn is a surjective
homomorphism and a finite morphism.

Exercise 2.1.6. Let G be an algebraic group and let N,H ⊆ G be closed subgroups
where N is normal. If N ∩H = {e} and if G is generated by N ∪H, then G = NH = HN ,
and the multiplication N × H → G is an isomorphism of varieties. If, in addition, H is
also normal, then N and H commute, and G is isomorphic to the product N ×H.
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Example 2.1.7. The affine group Affn. An automorphism ϕ of Cn is called
an affine transformation if it is of the form

ϕ(x) = Ax+ b where A ∈ GLn and b ∈ Cn.
The group of affine transformations,

Affn := Affn(C) := {β(x) = Ax+ b | A ∈ GLn, b ∈ Cn},
has a natural structure of an algebraic group. In fact, the matrix group{[

A b
0 1

]
∈ GLn+1 | A ∈ GLn, b ∈ Cn

}
⊆ GLn+1

is canonically isomorphic to Affn, by the map

[
A b
0 1

]
7→ β : x 7→ Ax+ b. Similarly,

we define the group of affine transformations Aff(V ) for any finite dimensional
vector space V .

The translations tb : x 7→ x + b form a closed normal subgroup isomorphic to
(C+)n, and there is a split exact sequence

0 // (C+)n
ι // Affn

π // GLn //
σ
oo 1

where ι(b) := tb, π(β) := A if β(x) = Ax+ b, and σ(A)(x) := Ax.
Every automorphism of C is an affine transformation (see Exercise 1.1.6(1))

whereas for Cn, n > 1, this is not the case. E.g. for every polynomial f ∈ C[x] the
morphism (x, y) 7→ (x, y + f(x)) is an automorphism of C2.

Example 2.1.8. The projective linear group. Let ϕ : GLn → GL(Mn) be
the group homomorphism defined by g 7→ Int(g). It is not difficult to see that ϕ is
a morphism of varieties, hence a homomorphism of algebraic groups. For this, one
calculates

gEijg
−1 =

∑
k,`

fijk`Ek`

and shows that fijk` ∈ O(GLn).
Moreover, kerϕ = C∗E and so imϕ ' GLn /C∗. This group is the projective

linear group and is denoted by PGLn = PGLn(C).

Exercise 2.1.9. (1) Show that every morphism ϕ : C∗ → C∗ such that ϕ(1) =
1 is a group homomorphism. Determine the automorphism group of C∗ (as an
algebraic group).

(2) Show that every nontrivial group homomorphism C+ → C+ is an isomorphism
and determine the automorphism group of C+.

The proposition above has the following consequence which is the well-known
mapping property in standard group theory.

Proposition 2.1.10. Let G,G′, H be algebraic groups, ϕ : G→ G′ a surjective
homomorphism and µ : G → H a homomorphism such that kerµ ⊇ kerϕ. Then
there is a unique homomorphism µ′ : G′ → H such that µ = µ′ ◦ ϕ:

G
ϕ
//

µ
  

G′

µ′

��

H

Proof. Everything is clear except that µ′ is a morphism. Consider the homo-
morphism ψ : G→ G′×H, ψ(g) := (ϕ(g), µ(g)). Then the image ψ(G) ⊆ G′×H is a
closed subgroup, and kerψ = kerϕ. Therefore, the projection prG′ : G

′×H → Ḡ in-
duces a bijection p : ψ(G)→ G′. Hence, p is an isomorphism, and so µ′ = prH ◦p−1.
The claim follows. �
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At this point we do not know how to form quotient groups G/N for a closed
normal subgroup N ⊆ G, except if we can find a homomorphism ϕ : G → G′

with kernel N , as in Example 2.1.8 above. But we will see later in chapter IV (see
section IV.3.3) the for a so-called linearly reductive subgroup H ⊆ G the left and
the right cosets are affine varieties with the usual properties.

Exercise 2.1.11. Let H be an algebraic group, and let ϕ : SLn → H and λ : C∗ → H
be homomorphisms. Assume that the images λ(C∗) and ϕ(SLn) in H commute and that
λ(ζ) = ϕ(ζEn) for all ζ ∈ C∗ such that ζn = 1. Then there exists a homomorphism
ϕ̃ : GLn → H such that ϕ̃|SLn = ϕ and ϕ̃|C∗ = λ where we identify C∗ with C∗En ⊆ GLn.

2.2. Characters and the character group. Let G be an algebraic group.

Definition 2.2.1. A homomorphism χ : G → C∗ is called a character of G.
The set of characters is denoted by X (G):

X (G) := {χ : G→ C∗ | χ is a homomorphism}.
Characters can be multiplied, and so X (G) is a commutative group, the character
group of G. It is usually written additively: χ1 + χ2 : g 7→ χ1(g)χ2(g). Every char-
acter is an invertible regular function on G and so X (G) is a subgroup of the group
O(G)∗ of invertible functions on G.

Examples 2.2.2. (1) X (Tn) =
⊕n

i=1 Zεi where the characters εi are de-
fined by

εi(

[ t1
. . .

tn

]
) = ti.

This follows from the fact that O(Tn) = C[ε1, ε
−1
1 , . . . , εn, ε

−1
n ] which im-

plies that the invertible function of O(Tn) are of the form cεa1
1 · · · εann

where c ∈ C∗ and a1, . . . , an ∈ Z.
(2) X (Un) is trivial, because the coordinate ring O(Un) is a polynomial ring.
(3) X(GLn) = 〈det〉. In fact, if f ∈ C[x1, . . . , xn] is irreducible and non-

constant, then (C[x1, . . . , xn]f )∗ = C∗ 〈f〉. Another argument will be given
in Exercise 2.2.5 below.

Exercise 2.2.3. Show that X (Tn) ⊆ O(Tn) is a C-basis of the vector space O(Tn).

Exercise 2.2.4. Show that SL2 is generated by U2 and U−2 . In particular, the char-
acter group X (SL2) is trivial.
(Hint: U−2 U2 ⊆ SL2 is closed and irreducible of dimension 2, U2U

−
2 U2 is strictly larger

than U−2 U2, and therefore dense in SL2. Now use Lemma 1.4.9.)

Exercise 2.2.5. Show that X (SLn) is trivial and deduce that X (GLn) ' Z where
X (GLn) is generated by det : GLn → C∗.
(Hint: Use the previous Exercise 2.2.4 to show that T ′n := Tn ∩ SLn is contained in
〈U−n , Un〉. Since U−n T

′
nUn ⊆ SLn is dense, we get that X (SLn) is trivial. It follows that

every character of GLn vanishes on SLn, and thus factors through det : GLn → C∗.)

We have seen in Example 2.2.2(1) that the characters X (Tn) form a basis of
O(Tn). The linear independence is a well-known general fact, see the following
lemma. The fact that they linearly generate the coordinate ring characterizes the
so-called diagonalizable groups, see Section III.3.3.

Lemma 2.2.6. The subset X (G) ⊆ O(G) is linearly independent.

Proof. Let
∑n
i=1 aiχi = 0 be a nontrivial linear dependence relation of min-

imal length n > 1. Then 0 =
∑n
i=1 aiχi(hg) =

∑n
i=1 aiχi(h)χi(g) for all h, g ∈ G,

and so
∑n
i=1 aiχi(h)χi = 0 for all h ∈ G. Thus

0 = χ1(h)

n∑
i=1

aiχi −
n∑
i=1

aiχi(h)χi =

n∑
i=2

ai(χ1(h)− χi(h))χi,
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and this is, for a suitable h ∈ G, a nontrivial linear dependence relation of length
< n, contradicting the assumption. �

Every homomorphism ϕ : G→ H of algebraic groups induces a homomorphism
X (ϕ) : X (H) → X (G) of the character groups: X (ϕ) := ϕ∗ : χ 7→ χ ◦ ϕ. More
precisely, X is a contravariant functor from algebraic groups to abelian groups
which means that X (idG) = idX (G) and that X (ϕ ◦ ψ) = X (ψ) ◦ X (ϕ).

Proposition 2.2.7. The functor G 7→ X (G) is left exact, i.e. for every exact

sequence K
ψ−→ G

ϕ−→ H −→ 1 of algebraic groups the corresponding sequence of

the character groups 0 −→ X (H)
X (ϕ)−→ X (G)

X (ψ)−→ X (K) is exact.

Recall that a sequence A
ψ−→ B

ϕ−→ C of groups and homomorphisms is called
exact if kerϕ = imψ.

Proof. Clearly, if ϕ : G → H is surjective, then X (ϕ) : X (H) → X (G) is
injective. Moreover, if χ ∈ X (G) belongs to the kernel of X (ψ), then χ vanishes
on imψ = kerϕ, and so the claim follows from the mapping property (Proposi-
tion 2.1.10). �

Exercise 2.2.8. For two algebraic groups H,G we have X (H ×G) = X (H)⊕ X (G)
in a canonical way.

Exercise 2.2.9. If G is a finite commutative group, then X (G) ' G.
(Hint: Prove this first for a finite cyclic group G, and then use the previous exercise.)

Remark 2.2.10. Let G be an algebraic group and X (G) ⊆ O(G)∗ the subgroup
of characters. Then the linear span CX (G) ⊆ O(G) is a subalgebra, namely the
group algebra of X (G). We will see later that the character group X (G) is always
finitely generated, hence a free abelian if G is connected. Another interesting result
is that for a connected algebraic group G every invertible f ∈ O(G)∗ such that
f(e) = 1 is a character. Both results are due to Rosenlicht, and will be proved
in III.5.7.

2.3. Normalizer, centralizer, and center. Let H ⊆ G be a closed sub-
group.

Definition 2.3.1. The normalizer and the centralizer of H in G are defined
by

NG(H) := {g ∈ G | gHg−1 = H},
CG(H) := {g ∈ G | gh = hg for all h ∈ H},

and the centralizer or stabilizer of an element h ∈ G by

CG(h) := {g ∈ G | gh = hg}.

All three are closed subgroups of G, and H is normal in NG(H).
(In fact, for any h ∈ H define the morphism ϕh : G → G by ϕh(g) := ghg−1.
Then CG(h) = ϕ−1

h (h), CG(H) =
⋂
h∈H CG(h), and NG(H) = N ∩ N−1 where

N :=
⋂
h∈H ϕ

−1
h (H) = {g ∈ G | gHg−1 ⊆ H}.)

Remark 2.3.2. The centralizer CG(H) is closed for any subgroup H ⊆ G. This
does not hold for the normalizer as one sees from the example NGL2(C)(U2(Q)).

Moreover, for a closed subgroup H ⊆ G we have NG(H) = {g ∈ G | gHg−1 ⊆ H}
where again this might fail for arbitrary subgroups, e.g. for U2(Z) ⊆ GL2(C).

Example 2.3.3. We have NGLn(Un) = Bn and NGLn(Bn) = Bn.
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Proof. Using the row operations induced by left multiplication with matrices
from Un and the column operations induced by right multiplication with matrices
from Bn, we see that any g ∈ GLn can be reduced to a permutation matrix Pσ, i.e.
UngBn = UnPσBn for a suitable σ ∈ Sn. On the other hand, PσEijP

−1
σ = Eσi σj ,

and so Pσ normalizes Un or Bn if and only if σ = id. �

Exercise 2.3.4. Show that the normalizer Nn of Tn ⊆ GLn is generated by Tn and
the permutation matrices Pn: NGLn(Tn) = Pn · Tn = Tn · Pn, and this is a semidirect

product. In particular, N◦n = Tn and Nn/N
◦
n
∼→ Sn.

Exercise 2.3.5. Describe the normalizer N of T ′n := Tn ∩ SLn in SLn. Show that
N◦ = T ′n and that N/N◦ ' Sn. In this case, N is not a semidirect product, i.e. the exact
sequence 1→ N◦ → N → Sn → 1 does not split.

Exercise 2.3.6. Let G be an algebraic group. If h ∈ G and H := 〈h〉 ⊆ G, then
CG(H) = CG(h).

Exercise 2.3.7. Show that the centralizer of Tn in GLn is equal to Tn.

As is standard we define the center of a group G to be

Z(G) := {g ∈ G | gh = hg for every h ∈ G} = CG(G).

The center Z(G) of an algebraic group G is a closed characteristic subgroup of G.
(Recall that a subgroup H ⊆ G is called characteristic if H is stable under all
automorphisms of G.)

Example 2.3.8. Consider the group

O2(C) = O2 :=

{
A =

[
a b
c d

]
∈ GL2 | AtA = E

}
⊆ GL2 .

Obviously, det(O2) = {±1}, and so O2 is not connected. It is easy to determine the
center: Z(O2) = {±E}. Let

SO2(C) = SO2 := {A ∈ O2 | detA = 1} = O2 ∩SL2 = {
[
a b
−b a

]
| a2 + b2 = 1}.

Then O2 / SO2 ' Z/2Z and SO2 ' C∗ (see the exercise below). In particular, SO2

is connected. Therefore we see that

(O2)◦ = SO2, O2 = SO2 ∪
[
0 1
1 0

]
SO2, and

π◦(O2) = O2 / SO2 ' Z/2Z.

We will see in section 3.2 that similar results hold for all orthogonal groups.

Exercise 2.3.9. Show that the map SO2 → C∗ :

[
a b
−b a

]
7→ a + ib, defines an

isomorphism of algebraic groups.

2.4. Commutator subgroup. The subgroup of G generated by all commu-
tators (g, h) := ghg−1h−1, g, h ∈ G, is called the commutator subgroup (or derived
group) of G and will be denoted by (G,G). It is well-known that (G,G) is the
(unique) smallest normal subgroup of G such that the quotient group G/(G,G) is
commutative.

Proposition 2.4.1. The commutator subgroup (G,G) of an algebraic group G
is a closed subgroup of G.
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Proof. Let (G,G◦) denote the subgroup of G which is generated by commuta-
tors of the form (g, h) := ghg−1h−1 with g ∈ G and h ∈ G◦. This subgroup is normal
in G and has finite index in (G,G): Because the image of G◦ in G′ := G/(G,G◦)
is central and of finite index, it follow that the commutator subgroup (G′, G′) is
finite. (This is a general group theoretic fact, see Exercise 2.4.2(1) below.) Thus it
suffices to show that (G,G◦) is closed in G.

For any 2n-tuple (g1, ..., g2n) of elements of G we define the following subset of
(G,G◦):

K = K(g1, ..., g2n)

:= {(g1, h1)(g2, h2)−1(g3, h3) · · · (g2n, h2n)−1 | hi ∈ G◦}.

This subset K is the image of a morphism (G◦)2n → G, and so its closure K̄ is
irreducible, and K contains an open dense subset of K̄ (A.3.4). Choose a K =
K(g1, ..., g2n) with dim K̄ maximal. For an arbitrary tuple (g′1, ..., g

′
2m) one has

K(g′1, ...g
′
2m) ⊆ K(g′1, ..., g

′
2m, g1, ..., g2n)

and thus K(g′1, ..., g
′
2m) ⊆ K̄. Since (G,G◦) =

⋃
K(g′1, ..., g

′
2m) it follows that K̄ =

(G,G◦). In particular, K̄ is a closed subgroup (Lemma 1.2.9). If g ∈ (G,G◦), then

gK ∩K 6= ∅ since K contains an open dense subset of (G,G◦). This implies that

g ∈ KK−1 ⊆ (G,G◦) and thus (G,G◦) = (G,G◦). �

Exercise 2.4.2. (1) Let H be a (abstract) group and assume that the center
of H has finite index in H. Then the commutator subgroup (H,H) is finite.
(See [Hum75, VII.17.1 Lemma A].)

(2) Show that (GL2,GL2) = (SL2,SL2) = SL2 and that (B2, B2) = U2.

2.5. Exponential map. For every complex matrix A the exponential series
exp(A) :=

∑∞
k=0

1
k!A

k is a well-defined invertible matrix, and the map A 7→ exp(A)
has a number of nice properties, e.g. exp(A+B) = exp(A) exp(B) in case A and B
commute (cf. [Art91, Chap. 4, Sec. 8]). If N is nilpotent, then exp(N) is a finite
sum of at most n terms, and so the map exp: Nn → GLn is a morphism where
Nn ⊆ Mn denotes the closed subset of nilpotent matrices.

A matrix A is called unipotent if A − E is nilpotent, or equivalently, if all
eigenvalues are equal to 1. Thus the set Un = E+Nn ⊆ GLn of unipotent matrices
is a closed subset, and the image of Nn under exp is contained in Un.

Proposition 2.5.1. The exponential map N 7→
∑n−1
k=0

1
k!N

k induces an iso-
morphism

exp: Nn
∼→ Un

which commutes with conjugation: exp(gNg−1) = g exp(N)g−1.

The proof needs some preparation. Let R be a finite dimensional associative
C-algebra. Every polynomial p(x) ∈ C[x] defines a morphism of varieties p : R→ R,
r 7→ p(r). Now take R := C[t]/(tn), and let m := (t̄) ⊆ R be the maximal ideal
where t̄ := t + (tn) ∈ R. Then 1 + m is a closed subgroup of the group R∗ of

invertible elements of R, and the polynomial e(x) :=
∑n−1
k=0

1
k!x

k ∈ C[x] induces a

morphism e : m→ 1 + m, a 7→
∑n−1
k=0

1
k!a

k.

Lemma 2.5.2. The map e : m→ 1 + m is an isomorphism of algebraic groups.
Its inverse e−1 : 1 + m → m is of the form 1 + a 7→ l(a) with a polynomial l(x) of
degree < n. In particular, e(l(x)) = 1 + x mod xn and l(e(x)− 1) = x mod xn.

Proof. It is easy to see that e(a + b) = e(a)e(b) for a, b ∈ m, and so e : m →
1 + m is a homomorphism of algebraic groups. Moreover, e is injective, because
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e(ak t̄
k + higher degree) = 1 + ak t̄

k + higher degree. Since dim(1 + m) = dimm we
see that e is also surjective, hence an isomorphism.

Set l := e−1(1 + t̄) ∈ m. Then e(l) = 1 + t̄. If we consider l as a polynomial
in x of degree < n this means that e(l(x)) = 1 + x mod xn. Therefore, for any
h ∈ (x) ⊆ C[x], we have e(l(h)) = 1 +h mod xn which implies that e(l(a)) = 1 +a
for all a ∈ m. This shows that the map 1 + a 7→ l(a) is the inverse morphism to e.
Thus l(e(h)− 1) = h for all h ∈ m and so l(e(x)− 1) = x mod xn. �

Proof of Proposition 2.5.1. The lemma above shows that e(l(x)) = 1 + x
mod xn and l(e(x)− 1) = x mod xn. This implies that the maps exp: Nn → Un,
N 7→ e(N), and log : Un → N , 1 + M 7→ l(M) are inverse to each other, and the
claim follows. �

Remarks 2.5.3. (1) It is well-known that the inverse function log of ex

is given by log(1 + y) =
∑∞
k=1

(−1)k−1

k yk. It follows that log : Un → Nn is
given by

U 7→ log(U) :=

n−1∑
k=1

(−1)k−1

k
(U − 1)k.

Since we will not need this explicit formula we leave the proof to the reader
(see Exercise 2.5.4 below).

(2) Denote by nn ⊆ Mn the subspace of upper triangular nilpotent matrices.

It follows from the above that exp induces an isomorphism nn
∼→ Un. (In

fact, since exp and log are given by polynomials e and l it is obvious that
the image of an upper triangular matrix under both maps is again upper
triangular.)

Exercise 2.5.4. Define the polynomials

En(x) :=

n∑
k=0

1

k!
xk and Ln(x) :=

n∑
k=1

(−1)k−1

k
(x− 1)k

and show that E(L(x)) = x mod xn+1 and L(E(x)) = x mod xn+1.
(Hint: For all z ∈ C we have ez = Ln(z) + zn+1h(z) with a holomorphic function h, and
for all y in a neighborhood U of 1 ∈ C we have ln(y) = Ln(y) + (y − 1)n+1g(y) with g
holomorphic in U . Now use that eln y = y in U and ln(ez) = z in U ′ := ln(U).)

2.6. Unipotent elements. Let u ∈ GLn be a unipotent matrix 6= En. It is
clear that 〈u〉 and the closure 〈u〉 consist of unipotent matrices. In fact, the latter
is isomorphic to C+ as we will see now.

Proposition 2.6.1. For any nilpotent N ∈ Mn the map αN : C+ → GLn
given by s 7→ exp(sN) is a homomorphism with image 〈u〉 where u := exp(N), and
dαN (1) = N . For N 6= 0 it is an isomorphism onto its image. In addition, every

homomorphism α : C+ → GLn is of the form αN where N = α(s)−E
s |s=0.

Proof. Clearly, αN is a homomorphism. By definition, αN (s) = E + sN +
1
2s

2N2 + · · · , and so αN : C→ Mn is a closed immersion in case N 6= 0. Moreover,

dαN (1) = αN (s)−αN (0)
s |s=0 = N . The image contains u := αN (1) = exp(N) 6= E,

hence imαN = 〈u〉. This proves the first part of the proposition.
Now let α : C+ → GLn be an arbitrary homomorphism. The underlying mor-

phism α : C→ Mn has the form α(s) = A0 +sA1 +s2A2 + · · ·+smAm with suitable
matrices A0, A1, . . . , Am ∈ Mn. Since α(0) = E we get A0 = E, and α(2s) = α(s)2

gives the following relations:∑
0≤j≤k

AjAk−j = 2kAk for all k ≥ 0
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where Aj = 0 for j > m. It is not hard to see that this implies, by induction, that

Aj = 1
j!A

j
1, hence α = αA1

. �

Corollary 2.6.2. An element u ∈ GLn, u 6= E, is unipotent if and only if
〈u〉 ' C+.

This allows to define unipotent elements of an arbitrary algebraic group.

Definition 2.6.3. An element u of an algebraic group G is called unipotent
if either u = e or 〈u〉 ' C+. If all elements of G are unipotent, then G is called a
unipotent group.

Example 2.6.4. Clearly, the groups Un are unipotent, as well as every closed
subgroup of them. The vector groups V + where V is a finite dimensional C-vector
space are examples of commutative unipotent groups (see Exercise 1.2.8). We will
see later that every commutative unipotent group is isomorphic to a vector group
(Proposition III.4.3.2).

If ϕ : G→ H is a homomorphism and if u ∈ G is unipotent, then ϕ(u) ∈ H is
unipotent. Embedding G into GLn we also see that the set Gu ⊆ G of unipotent
elements of G is a closed subset. If G is commutative, then Gu is even a closed sub-
group, because the product of two commuting unipotent elements is again unipotent
(see Exercise 2.6.6 below).

Exercise 2.6.5. Let U be a unipotent group. Then the power maps pm : U → U for
m 6= 0 are isomorphisms of varieties .
(Hint: This is clear for U ' C+. From that one can deduce that pm is bijective, and the
claim follows, e.g. from Igusa’s Lemma A.5.6.5.)

Exercise 2.6.6. Let G be an algebraic group, and let u, v ∈ G be two commuting
unipotent elements. Then uv is unipotent.
(Hint: It suffices to prove this for G = GLn. Then u = E + N and v = E + M with
commuting nilpotent matrices N,M .)

Exercise 2.6.7. Let N ∈ Mn be nilpotent. Then the matrix N ′ := exp(N) − E is
conjugate to N .
(Hint: N ′ = Ng = gN with an invertible g ∈ GLn. Since g commutes with N it follows
that gN is conjugate to N .)

Exercise 2.6.8. (1) For GLn the power map pm : g 7→ gm is surjective for
m 6= 0.
(Hint: One can assume that g is in Jordan normal form, g = tu, where t is

diagonal, u unipotent, and tu = ut. Then there is a subtorus T ⊆ Tn, T
∼→ C∗r,

which commutes with u and contains t. Hence g ∈ T × 〈u〉 ∼→ C∗r × C+, and
the claim follows from the Exercises 2.6.5 and 2.1.5.)

(2) Let G be an abstract group and Z ⊆ G its center. If pm is surjective for G, then
so is for G/Z. If pm is surjective for Z and G/Z, then so is for G.

(3) Study the power maps pm for SL2. Are they surjective for m 6= 0?

2.7. Exercises. For the convenience of the reader we collect here all exercises
from the second section.

Exercise. Every homomorphism α : C∗ → C+ is trivial, and the same holds for every
homomorphism β : C+ → C∗.

Exercise. For every m ∈ Z, m 6= 0, the map t 7→ tm : Tn → Tn is a surjective
homomorphism.

Exercise. Let G be an algebraic group and let N,H ⊆ G be closed subgroups where
N is normal. If N ∩H = {e} and if G is generated by N ∪H, then G = NH = HN , and
the multiplication N × H → G is an isomorphism of varieties. If, in addition, H is also
normal, then G is isomorphic to the product N ×H.
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Exercise. Show that Aut(A1) = Aff1.

Exercise. (1) Show that every morphism ϕ : C∗ → C∗ such that ϕ(1) = 1
is a group homomorphism. Determine the automorphism group of C∗ (as an
algebraic group).

(2) Show that every nontrivial group homomorphism C+ → C+ is an isomorphism
and determine the automorphism group of C+.

Exercise. Let H be an algebraic group, and let ϕ : SLn → H and λ : C∗ → H be
homomorphisms. Assume that the images λ(C∗) and ϕ(SLn) in H commute and that
λ(ζ) = ϕ(ζEn) for all ζ ∈ C∗ such that ζn = 1. Then there exists a homomorphism
ϕ̃ : GLn → H such that ϕ̃|SLn = ϕ and ϕ̃|C∗ = λ where we identify C∗ with C∗En ⊆ GLn.

Exercise. Show that X (Tn) ⊆ O(Tn) is a C-basis of the vector space O(Tn).

Exercise. Show that SL2 is generated by U2 and U−2 . In particular, the character
group X (SL2) is trivial.
(Hint: U−2 U2 ⊆ SL2 is closed and irreducible of dimension 2, U2U

−
2 U2 is strictly larger

than U−2 U2, and therefore dense in SL2. Now use Lemma 1.4.9.)

Exercise. Show that X (SLn) is trivial and deduce that X (GLn) ' Z where X (GLn)
is generated by det : GLn → C∗.
(Hint: Use the previous Exercise 2.2.4 to show that T ′n := Tn ∩ SLn is contained in
〈U−n , Un〉. Since U−n T

′
nUn ⊆ SLn is dense, we get that X (SLn) is trivial. It follows that

every character of GLn vanishes on SLn, and thus factors through det : GLn → C∗.)

Exercise. For two algebraic groups H,G we have X (H × G) = X (H) ⊕ X (G) in a
canonical way.

Exercise. If G is a finite commutative group, then X (G) ' G.
(Hint: Prove this first for a finite cyclic group G, and then use the previous exercise.)

Exercise. Show that the normalizer Nn of Tn ⊆ GLn is generated by Tn and the
permutation matrices Pn: NGLn(Tn) = Pn ·Tn = Tn ·Pn, and this is a semidirect product.

In particular, N◦n = Tn and Nn/N
◦
n
∼→ Sn.

Exercise. Describe the normalizer N of T ′n := Tn ∩SLn in SLn. Show that N◦ = T ′n
and that N/N◦ ' Sn. In this case, N is not a semidirect product, i.e. the exact sequence
1→ N◦ → N → Sn → 1 does not split.

Exercise. Let G be an algebraic group. If g ∈ G and H := 〈g〉 ⊆ G, then CG(H) =
CG(g).

Exercise. Show that the centralizer of Tn in GLn is equal to Tn.

Exercise. Show that the map SO2 → C∗ :

[
a b
−b a

]
7→ a+ib, defines an isomorphism

of algebraic groups.

Exercise. (1) Let H be a (abstract) group and assume that the center of H
has finite index in H. Then the commutator subgroup (H,H) is finite.
(See [Hum75, VII.17.1 Lemma A].)

(2) Show that (GL2,GL2) = (SL2,SL2) = SL2 and that (B2, B2) = U2.

Exercise. Define the polynomials

En(x) :=

n∑
k=0

1

k!
xk and Ln(x) :=

n∑
k=1

(−1)k−1

k
(x− 1)k

and show that E(L(x)) = x mod xn+1 and L(E(x)) = x mod xn+1.
(Hint: For all z ∈ C we have ez = Ln(z) + zn+1h(z) with a holomorphic function h, and
for all y in a neighborhood U of 1 ∈ C we have ln(y) = Ln(y) + (y − 1)n+1g(y) with g
holomorphic in U . Now use that eln y = y in U and ln(ez) = z in U ′ := ln(U).)
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Exercise. Let U be a unipotent group. Then the power maps pm : U → U for m 6= 0
are isomorphisms of varieties .
(Hint: This is clear for U ' C+. From that one can deduce that pm is bijective, and the
claim follows, e.g. from Igusa’s Lemma A.5.6.5.)

Exercise. Let G be an algebraic group, and let u, v ∈ G be two commuting unipotent
elements. Then uv is unipotent.
(Hint: It suffices to prove this for G = GLn. Then u = E + N and v = E + M with
commuting nilpotent matrices N,M .)

Exercise. Let N ∈ Mn be nilpotent. Then the matrix N ′ := exp(N)−E is conjugate
to N .
(Hint: N ′ = Ng = gN with an invertible g ∈ GLn. Since g commutes with N it follows
that gN is conjugate to N .)

Exercise. (1) For GLn the power map pm : g 7→ gm is surjective for m 6= 0.
(Hint: One can assume that g is in Jordan normal form, g = tu, where t is

diagonal, u unipotent, and tu = ut. Then there is a subtorus T ⊆ Tn, T
∼→ C∗r,

which commutes with u and contains t. Hence g ∈ T × 〈u〉 ∼→ C∗r × C+, and
the claim follows from the Exercises 2.6.5 and 2.1.5.)

(2) Let G be an abstract group and Z ⊆ G its center. If pm is surjective for G, then
so is for G/Z. If pm is surjective for Z and G/Z, then so is for G.

(3) Study the power maps pm for SL2. Are they surjective for m 6= 0?

3. The Classical Groups

3.1. General and special linear groups. In order to describe a set of gen-
erators for GLn and SLn we consider the following matrices:

uij(s) := E + sEij ∈ U−n ∪ Un ⊆ SLn, 1 ≤ i, j ≤ n, i 6= j,

ti(t) := E + (t− 1)Eii ∈ Tn ⊆ GLn, 1 ≤ i ≤ n,
tij(t) := ti(t)tj(t

−1) ∈ T ′n ⊆ SLn, 1 ≤ i, j ≤ n, i 6= j,

uij(s) =


1

. . . s
. . .

1

 ti(t) =



1
. . .

t
. . .

1

 ,
Then we have

GLn = 〈uij(s), tk(t) | 1 ≤ i, j, k ≤ n, i 6= j, s, t ∈ C, t 6= 0〉,
SLn = 〈uij(s), tkl(t) | 1 ≤ i, j, k, l ≤ n, i 6= j, k 6= l, s, t ∈ C, t 6= 0〉,

Un = 〈uij(s) | i < j, s ∈ C〉, U−n = 〈uij(s) | i > j, s ∈ C〉.

Proof. The matrix A′ := uij(s)A is obtained from A by an elementary row
operation, i.e., by adding s times the jth row to the ith row and leaving all others
unchanged. Similarly, right multiplication by uij(s) corresponds to an elementary
column operation. This implies that

Un = 〈uij(s) | i < j, s ∈ C〉 and U−n = 〈uij(s) | i > j, s ∈ C〉.

The map U−n × Tn × Un → GLn, (u, t, v) 7→ utv, is injective, hence has a dense
image X := U−n · Tn · Un ⊆ GLn. By Lemma 1.4.9 we get X · X = GLn, and the
statement for GLn follows. Replacing Tn by T ′n we get the claim for SLn. �
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Remark 3.1.1. We know that SL2 = 〈u12(s), u21(s) | s ∈ C〉 (Exercise 2.2.4).
This implies that tij(t) ∈ 〈uij(s), uji(s) | s ∈ C〉, hence T ′n ⊆ 〈Un, U−n 〉. It follows
that

SLn = 〈uij(s) | 1 ≤ i, j ≤ n, i 6= j, s ∈ C〉.

For the centers of GLn and SLn, an easy calculation shows that

Z(GLn) = {λE | λ ∈ C∗} ' C∗ and Z(SLn) = {λE | λn = 1} ' Z/nZ.
This is also an immediate consequence of the Lemma of Schur (see Lemma 3.1.4
below). We call a subgroup G ⊆ GL(V ) irreducible if no nontrivial proper subspace
W $ V is stable under G (i.e. satisfies gW ⊆W for all g ∈ G).

Example 3.1.2. If G ⊆ GL2 is a noncommutative finite subgroup, then G is
irreducible. Otherwise, there is a one-dimensional G-stable subspace U = Cv ⊆ C2,
which admits a G-stable complement V = Cv ⊆ C2, because G is finite. With
respect to the new basis (u, v) the elements of G are diagonal matrices, contradicting
the assumption.

Other examples of irreducible subgroups G ⊆ GL(V ) are those where G acts
transitively on V \ {0}.

Exercise 3.1.3. Let G ⊆ GLn be irreducible. Then Gt := {gt | g ∈ G ⊆ GLn is
irreducible.
(Hint: If U ⊆ Cn is stable under Gt, then U⊥ := {v ∈ Cn | ut v = 0 for all u ∈ U} is
G-stable.)

Lemma 3.1.4 (Lemma of Schur). Let G ⊆ GL(V ) be an irreducible subgroup.
Then every linear map ϕ : V → V commuting with G is a scalar multiplication. In
particular, CGL(V )(G) = C∗ idV and Z(G) = G ∩ C∗ idV .

Proof. Let ϕ ∈ End(V ) commuting with G, and let W ⊆ V be the eigenspace
of ϕ corresponding to an eigenvalue λ. Since ϕ commutes with G the subspace W
is stable under all g ∈ G. In fact, if w ∈ W and g ∈ G, then ϕ(gw) = gϕ(w) =
g(λw) = λ(gw), and so gw ∈W . Hence W = V and so ϕ = λ idV . �

An interesting application is given in the following lemma. It will follow again
later in the context of representation theory (see Corollary III.1.2.5). For a subset
X ⊆ End(V ) we denote by 〈X〉 ⊆ End(V ) the linear span of X, i.e.

〈X〉 := {
∑
i

λixi | λi ∈ C, xi ∈ X}.

If G ⊆ GL(V ) is a subgroup, then 〈G〉 ⊆ End(V ) is a subalgebra which is stable
under left- and right multiplication by G.

Lemma 3.1.5. A subgroup G ⊆ GL(V ) is irreducible if and only if 〈G〉 =
End(V ).

Proof. We can assume that V = Cn, and so G ⊆ GLn.
(1) If A ∈ Mn is a matrix of rank 1, then 〈GAG〉 = Mn. In fact, A = uvt for

some nonzero vectors u, v ∈ Cn, and so 〈GAG〉 ⊇ 〈Gu〉 · 〈(Gtv)t〉. Since 〈Gu〉 =
Cn = 〈Gtv〉, this shows that 〈GAG〉 contains all matrices of rank 1, and the claim
follows.

(2) Denote by pi : Mn → Cn the projection onto the i-th column. If U ⊆ Mn is
stable under left multiplication by G, then the same holds for the image pi(U) and
for the kernel of pi|U . It follows that pi(U) = Cn or {0}. If U 6= (0) this implies
that U contains a subspace V which is stable under left multiplication with G such
that, for all i, pi|V : V → Cn is either an isomorphism or the zero map.

We claim that every nonzero matrix A ∈ V has rank 1. To prove this write
A = [a(1), . . . a(n)] as a matrix of column vectors a(i). If pi|V and pj |V are both
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isomorphisms, then the isomorphism pj |V ◦ (pi|V )−1 : Cn ∼→ Cn is given by a(i) 7→
a(j), and it commutes with G. Thus, by the Lemma of Schur, the nonzero columns
of A are multiples of each other, and the claim follows.

(3) The subspace 〈G〉 is stable under left- and right-multiplication. Hence, by
(2), it contains a matrix A of rank one, and so 〈G〉 = Mn, by (1). �

3.2. Orthogonal groups. Suppose that q : V → C is a nondegenerate qua-
dratic form on the finite dimensional vector space V where dimV ≥ 2. We define
the orthogonal group of the form q to be

O(V ) := O(V, q) := {g ∈ GL(V ) | q(gv) = q(v) for every v ∈ V }.

Denote by q( , ) the corresponding symmetric bilinear form, i.e.

q(v, w) :=
1

2
(q(v + w)− q(v)− q(w)).

Thus, for V = Cn, q(v, w) = vtQw where Q is the symmetric matrix (q(ei, ej))i,j .
In general, there is always a basis of V such that the form q is given by q(v) =
x2

1+x2
2+. . .+x2

n where (x1, . . . , xn) are the coordinates of v (cf. Proposition I.3.1.1).
Such a basis (v1, v2, . . . , vn) is called an orthonormal bases of V with respect to q,
i.e., we have q(vi, vj) = δij . It follows that O(V, q) is isomorphic to the classical
orthogonal group

On := On(C) := {g ∈ GLn | gtg = En},

and that any two orthogonal groups O(V, q), O(V, q′) are conjugate in GL(V ).
Furthermore, the special orthogonal group is defined in the following way:

SOn := SOn(C) := On ∩SLn,

SO(V ) := SO(V, q) := O(V, q) ∩ SL(V ).

We have On = SOn ∪
[−1

1
. . .

]
SOn, and so On / SOn ' Z/2Z.

Exercise 3.2.1. Describe O(V, q) and SO(V, q) for V := C2 and q(x, y) := xy.

Proposition 3.2.2. O(V ) is an irreducible subgroup of GL(V ), and SO(V ) is
irreducible for dimV > 2.

Proof. Let v1, v2 ∈ V such that q(v1) = q(v2) 6= 0 and put Vi := (Cvi)⊥ :=
{w ∈ V | q(vi, w) = 0}, i = 1, 2. Then V = Cvi ⊕ Vi and q|Vi is nondegenerate.
It follows that the linear map g : V → V which sends an orthogonal basis of V1 to
an orthogonal basis of V2 and v1 to v2 belongs to O(V ). We can even arrange that
g ∈ SO(V ). Thus SO(V ) acts transitively on the vectors of a fixed length 6= 0.

The vectors of length 6= 0 form a dense subset of V , namely the complement of
the closed set V(q) = {v ∈ V | q(v) = 0}). Therefore, any SO(V )-stable subspace
U $ V must be contained in V(q).

For every nonzero v ∈ V(q) we can find a w ∈ V such that q(v, w) 6= 0.
Then U := Cv ⊕ Cw is nondegenerate, i.e. q|U is nondegenerate, and we get an
inclusion O(U) ⊆ O(V ) by extending an h ∈ O(U) with the identity on U⊥. (In
case dimV > 2 there is an element h′ ∈ O(U⊥) such that O(U)h′ ⊆ SO(V ).) Since
O2 has no stable lines in C2, we see that O(U) is irreducible in GL(U). Hence, every
O(V )-stable subspace V ′ (resp. SO(V )-stable subspace V ′ in case dimV > 2) such
that v ∈ V ′ has to contain U . In particular, there is a vector of length 6= 0 in V ′,
and so V ′ = V by the first part of the proof. �
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Remark 3.2.3. The proof above shows that SO(V ) acts transitively on the
vectors v of a fixed length q(v) 6= 0. A vector v is called isotropic if q(v) = 0. We
leave it as an exercise to prove that O(V ) acts transitively on the nonzero isotropic
vectors.

It follows from Schur’s Lemma 3.1.4 and the proposition above that we get
the following description of the centers of On and SOn:

Z(On) = On ∩C∗En = {±En} and

Z(SOn) = SOn ∩C∗En =

{
{±En} for n even, n > 2,
{En} for n odd.

We remark that that

[
0 1
1 0

1
. . .

]
∈ On \ SOn for all n, and that −En ∈ On \ SOn

for odd n, but not for even n. In particular, On = {±En} × SOn for odd n.

Exercise 3.2.4. Let g ∈ On \ SOn. Show that the automorphism of SOn defined by
conjugation with g is inner for n odd, but not inner for n even.
(Hint: The kernel of the homomorphism Int : On → Aut(SOn) is equal to ±En, and so it
belongs to SOn for even n, but not for odd n.)

Recall that a subspace W ⊆ V is called isotropic if q|W is trivial, or, equiva-
lently, if W ⊆W⊥.

Lemma 3.2.5. Let V be of even dimension n = 2m. If W ⊆ V is a maximal
isotropic subspace, then dimW = m, and for every basis (w1, . . . , wm) of W there
exist w′1, . . . , w

′
m ∈ V such that W ′ := 〈w′1, . . . , w′m〉 is isotropic of dimension m,

and q(wi, w
′
j) = δij.

Proof. Let (w1, . . . , wr) be a basis of W . Since W is maximal isotropic there
exists a w′1 ∈ 〈w2, . . . , wr〉⊥ such that q(w1, w

′
1) = 1. Replacing w′1 by w′1 + aw1

for a suitable a ∈ C we can assume that w′1 is isotropic. Then U := Cw1 ⊕ Cw′1 is

nondegenerate with q|U given by

[
0 1
1 0

]
. Hence V = U⊕U⊥, and W1 := W ∩U⊥ =

〈w2, . . . , wr〉 is maximal isotropic in U⊥. Now the claim follows by induction. �

The lemma says that any basis (w1, . . . , wm) of a maximal isotropic subspace
W can be extended to a basis (w1, . . . , wm, w

′
1, . . . , w

′
m) of V such that the form q is

given by the matrix I :=

[
0 Em
Em 0

]
. This implies that all maximal isotropic sub-

spaces are equivalent under O(V ), and that we get a closed embedding GL(W ) ↪→

SO(V ) by g 7→
[
g 0
0 g−t

]
. Another way to see this is the following. The form q

defines an isomorphism W ′
∼→W ∗ by w′ 7→ q(w′, ?) which allows to identify V with

W ⊕W ∗ where the quadratic form on the latter is given by q(w, `) := 2`(w). Thus,
we obtain a closed embedding GL(W ) ↪→ SO(V ) by g 7→ (g, (g∗)−1).

Exercise 3.2.6. Let W ⊆ V be an maximal isotropic subspace and define H := {g ∈
O(V ) | g|W = idW }. Show that H is isomorphic to a vector group U+. In particular,
H ⊆ SO(V ).

(Hint: In the notation above the subgroup H consists of matrices of the form

[
Em B
0 Em

]
with suitable matrices B.)

Exercise 3.2.7. For even n there are two equivalence classes of maximal isotropic
subspaces with respect to SOn.
(Hint: Let W ⊆ V be a maximal isotropic subspace, and assume that for a given g ∈ O(V )
there is an h ∈ SO(V ) such that gW = hW . Then h−1gW = W , hence there is a
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m ∈ GL(W ) ⊆ SO(V ) such that mh−1g is the identity on W . Now the previous exercise
implies that mh−1g ∈ SO(V ), and so g ∈ SO(V ).)

Proposition 3.2.8. SOn is connected. Hence O◦n = SOn and On /O◦n ' Z/2Z.

Proof. This is clear for SO2 since SO2 ' C∗ (Example 2.3.8). So we can
assume that n ≥ 3. Let g ∈ SOn. We show that there is an irreducible closed subset
X ⊆ SOn containing g and En. Put v := ge1.

(a) If (v, e1) = 0, then U := Ce1 ⊕ Cv is nondegenerate, and there is an
h ∈ SO(U) such that hv = e1. It follows that hg belongs to the stabilizer of e1,

hg ∈ (SOn)e1 ' SOn−1, and so g ∈ X := SO(U) · (SOn)e1 which is, by induction,
an irreducible closed subset of SOn containing g and En.

(b) If (v, e1) 6= 0, then there is a w ∈ Cn such that |w| = 1 and that both
spaces U1 := Ce1 ⊕ Cw and U2 := Cu⊕ Cw are nondegenerate (see Exercise 3.2.9

below). Now, similarly as in case (a), g ∈ X := SO(U1) · SO(U2) · (SOn)e1 , and the
claim follows. �

Exercise 3.2.9. Let V be a finite dimensional C-vector space with a nondegenerate
quadratic form q. For any pair u, v ∈ V \ {0} there is a w ∈ V such that the subspaces
〈u,w〉 and 〈v, w〉 are nondegenerate, and one can even assume that q(w) = 1.

Exercise 3.2.10. O(V ) acts transitively on the set of isotropic vectors 6= 0, and the
same holds for SO(V ) for dimV > 2.
(Hint: This is clear for O2 and can be reduced to this case as in the second part of the
proof of Proposition 3.2.2, using the previous exercise. The claim for SO(V ) follows since
V(q) is irreducible for dimV > 2.)

3.3. Symplectic groups. Suppose β : V × V → C is a nondegenerate alter-
nating bilinear form, i.e. β(u, v) = −β(v, u). Such a form exists only if dimV is
even: n := dimV = 2m. The symplectic group with respect to β is then defined by

Sp(V ) := Sp(V, β) := {g ∈ GL(V ) | β(gu, gv) = β(u, v) for u, v ∈ V }.

We will see below that all such forms are equivalent under GL(V ). Therefore, with
respect to a suitable basis of V , the form β can be written as

β(x, y) =

m∑
i=1

(xiym+i − xm+iyi) = xtJy

with corresponding matrix J :=

[
0 Em
−Em 0

]
. Thus Sp(V, β) is isomorphic to the

classical symplectic group defined by

Sp2m := Sp2m(C) := {F ∈ M2m | F tJF = J}.

If we write F =

[
A B
C D

]
with A,B,C,D ∈ Mm(C), then one has

F ∈ Sp2m ⇐⇒
{
AtD − CtB = E,
AtC,BtD are symmetric.

There are other “standard” forms which appear in the literature, e.g.

m∑
i=1

(x2i−1y2i − x2iy2i−1) = xtJ ′y and

m∑
i=1

(xiy2m+1−i − x2m+1−iyi) = xtJ ′′y,
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with corresponding matrices

(∗) J ′ :=


0 1
−1 0

. . .

0 1
−1 0

 or J ′′ :=


1

1

. .
.

−1
−1


Proposition 3.3.1. (1) There is a basis of V such that β(x, y) = xtJy,

and so Sp(V, β) is isomorphic to Sp2m.
(2) Sp(V ) acts transitively on V \ {0}. In particular, Sp2m ⊆ GL2m is an

irreducible subgroup, and Z(Sp2m) = Sp2m ∩C∗E2m = {±E2m}.

Proof. (1) Since β is nondegenerate we can find two vectors v, w ∈ V such
that β(v, w) = 1. Then β restricted to U := Cv ⊕ Cw is given by the matrix[

0 1
−1 0

]
, hence is nondegenerate, and so V = U ⊕ U⊥. Now the claim follows

easily by induction on dimV .
(2) If v, w ∈ V are as in (1), then there is a g ∈ Sp(V ) such that gv = w. In

fact, Sp(U) × Sp(U⊥) ⊆ Sp(V ) and Sp(U) ' Sp2 = SL2 (see the exercise below).
The same argument works whenever β(v, w) 6= 0. In case β(v, w) = 0 one easily
shows that there is a u ∈ V such that β(v, u) 6= 0 and β(w, u) 6= 0, and the claim
follows. �

Exercise 3.3.2. Show that Sp2 = SL2.

Proposition 3.3.3. Sp2m is connected and is contained in SL2m.

Proof. This is clear for 2m = 2 (see the exercise above). By definition, det g =
±1 for g ∈ Sp2m, and so the second claim follows from the first.

Now we claim that Sp(V, β) acts transitively on the set

Y := {(v, w) ∈ V × V | β(v, w) = 1}.

In fact, if β(v, w) = 1, then U := Cv ⊕ Cw is nondegenerate and so V = U ⊕ U⊥.
Therefore, there is a basis (v1 := v, v2 := w, v3, . . . , v2m) of V with corresponding
matrix J ′, see (∗). The same construction applied to another (v′, w′) ∈ Y yields a
basis (v′1 := v′, v′2 := w′, v′3, . . . , v

′
2m) of V with corresponding matrix J ′. Hence the

map g : vi 7→ v′i belongs to Sp(V ), and the claim follows.
Since the function β − 1 is irreducible, the subset P ⊆ V × V is an irreducible

subvariety. It follows that Sp(V )◦ acts transitively on P , too (use Exercise 3.3.4
below applied to G := Sp(V ) ⊆ GL(V ⊕ V )). This implies that for every g ∈
Sp(V ), there is an h ∈ Sp(V )◦ such that hg(v) = v and hg(w) = w. Therefore, hg
belongs to the intersection if the two stabilizers of v and w. But Sp(V )v∩Sp(V )w =

Sp(U⊥) where U := Cv ⊕ Cw, hence g ∈ Sp(V )◦ · Sp(U⊥) which is, by induction,
an irreducible closed subset of Sp(V ) containing g and idV , and the proposition
follows. �

Exercise 3.3.4. Let G ⊆ GL(V ) be an algebraic group and let Y ⊆ V be a closed
subset which is stable under G, i.e. gy ∈ Y for all g ∈ G, y ∈ Y . If Y is irreducible and if
G acts transitively on Y , then so does G◦.
(Hint: Choose a v ∈ Y and consider the morphism ϕ : G → Y given by g 7→ gy. Then
show that every connected component Gi of G has a dense image in Y from which the
claim follows immediately.)
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3.4. Exercises. For the convenience of the reader we collect here all exercises
from the third section.

Exercise. Let G ⊆ GLn be irreducible. Then Gt := {gt | g ∈ G ⊆ GLn is irreducible.
(Hint: If U ⊆ Cn is stable under Gt, then U⊥ := {v ∈ Cn | ut v = 0 for all u ∈ U} is
G-stable.)

Exercise. Describe O(V, q) and SO(V, q) for V := C2 and q(x, y) := xy.

Exercise. Let W ⊆ V be an maximal isotropic subspace and define H := {g ∈
O(V ) | g|W = idW }. Show that H is isomorphic to a vector group U+. In particular,
H ⊆ SO(V ).
(Hint: Choosing a suitable basis of V the subgroup H consists of matrices of the form[
Em B
0 Em

]
.)

Exercise. For even n there are two equivalence classes of maximal isotropic subspaces
with respect to SOn.
(Hint: Let W ⊆ V be a maximal isotropic subspace, and assume that for a given g ∈ O(V )
there is an h ∈ SO(V ) such that gW = hW . Then h−1gW = W , hence there is a
m ∈ GL(W ) ⊆ SO(V ) such that mh−1g is the identity on W . Now the previous exercise
implies that mh−1g ∈ SO(V ), and so g ∈ SO(V ).)

Exercise. Let V be a finite dimensional C-vector space with a nondegenerate qua-
dratic form q. For any pair u, v ∈ V \ {0} there is a w ∈ V such that the subspaces 〈u,w〉
and 〈v, w〉 are nondegenerate, and one can even assume that q(w) = 1.

Exercise. O(V ) acts transitively on the set of isotropic vectors 6= 0, and the same
holds for SO(V ) for dimV > 2.
(Hint: This is clear for O2 and can be reduced to this case as in the second part of the
proof of Proposition 3.2.2, using the previous exercise. The claim for SO(V ) follows since
the space V(q) of isotropic vectors is irreducible for dimV > 2.)

Exercise. Show that Sp2 = SL2.

Exercise. Let G ⊆ GL(V ) be an algebraic group and let Y ⊆ V be a closed subset
which is stable under G, i.e. gy ∈ Y for all g ∈ G, y ∈ Y . If Y is irreducible and if G acts
transitively on Y , then so does G◦.
(Hint: Choose a v ∈ Y and consider the morphism ϕ : G → Y given by g 7→ gy. Then
show that every connected component Gi of G has a dense image in Y from which the
claim follows immediately.)

4. The Lie Algebra of an Algebraic Group

4.1. Lie algebras. The aim of this paragraph is to show that the tangent
space Te(G) of an algebraic group G at the identity element e ∈ G is a Lie algebra
in a natural way. This Lie algebra allows to “linearize” many questions concerning
the structure of G, the representation theory of G, and actions of G on varieties.
We will see a number of applications in the next chapter (see e.g. Section III.5).

Definition 4.1.1. A Lie algebra is a vector space L together with an alter-
nating bilinear map [ , ] : L × L → L, called the Lie bracket , which satisfies the
Jacobi identity:

[a, [b, c]] = [[a, b], c] + [b, [a, c]] for all a, b, c ∈ L.
The identity means that ad a : L→ L, ad a(b) := [a, b], is a derivation of L.

The standard example is an associative algebra A with Lie bracket defined by
[a, b] := ab − ba. We leave it to the reader to check the Jacobi-identity. A Lie
algebra is called commutative if [a, b] = 0 for all a, b. For an associative algebra A
this means that A is commutative as an algebra.
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Example 4.1.2. The vector fields Vec(X) on a variety X (see A.4.5.1) form a
Lie algebra. In fact, let α, β ∈ Vec(X) = Der(O(X)) be two derivations. Then one
easily checks that [α, β] := α ◦ β − β ◦α is again a derivation. E.g., for X = C2 one
gets

[x
∂

∂y
, y

∂

∂x
] = x

∂

∂y
y
∂

∂x
− y ∂

∂x
x
∂

∂y

= x
∂

∂x
+ xy

∂2

∂x∂y
− y ∂

∂y
− xy ∂2

∂x∂y

= x
∂

∂x
− y ∂

∂y
.

It should be clear what we mean by a Lie subalgebra of L, an ideal of L,
and a homomorphism of Lie algebras. For instance, a homomorphism A → B of
associative algebras is also a Lie algebra homomorphism with respect to the Lie
bracket [ , ] defined above.

Exercise 4.1.3. Suppose [ , ] : L× L→ L is an alternating bilinear map where L is
a two-dimensional vector space. Show that

(a) L is a Lie algebra, i.e., the Jacobi-identity is satisfied.
(b) If [ , ] 6= 0, then there is a basis {u, v} of L with [u, v] = v.

Thus all noncommutative two-dimensional Lie algebras are isomorphic.

Exercise 4.1.4. For a general C-algebra A a derivation is a linear map δ : A → A
such that δ(ab) = a δ(b) + δ(a) b for a, b ∈ A. Show that the vector space of derivations
Der(A) ⊆ EndC(A) is a Lie subalgebra of EndC(A). (This generalizes Example 4.1.2.)

4.2. The Lie algebra of GLn. The tangent space of GLn at the identity
matrix E is given by TEGLn = Mn, and similarly, Te GL(V ) = End(V ) (see Ex-
ample A.4.1.3). Both are associative algebras, and so these tangent spaces carry a
natural structure of a Lie algebra. This leads to the following definition of the Lie
algebra of GLn and of GL(V ):

Lie GLn := Mn

Lie GL(V ) := End(V )

}
with Lie bracket [A,B] := AB −BA.

We also use the notation gln and gl(V ).
Suppose G ⊆ GLn is a closed subgroup. Then TeG is a subspace of Mn. We

will show in section 4.4 that it is a Lie subalgebra of Mn, and we will denote it by
LieG or simply by the corresponding Gothic letter g. For the classical groups this
is easy (see section 4.3 below).

Exercise 4.2.1. Describe the tangent spaces in En of the subgroups Bn, Tn, Un ⊆
GLn and show that they are Lie subalgebras of Mn.

In the following we use the technique of “epsilonization” for calculations with
Lie algebras (cf. Appendix A.4.3). Let C[ε] := C ⊕ Cε, ε2 = 0, be the algebra of
dual numbers, and let GLn(C[ε]) be the group of invertible n × n-matrices with
coefficients in C[ε]. For a closed subgroup G ⊆ GLn define G(C[ε]) ⊆ GLn(C[ε]) to
be the subgroup consisting of those elements in GLn(C[ε]) which satisfy the same
polynomial equations as the elements of G, i.e. all polynomial equations from the
ideal I(G) ⊆ O(GLn). Then one has

LieG = {A ∈ Mn(C) | E + εA ∈ G(C[ε])}.
In addition, if µ : G → H is a homomorphism of algebraic groups, then µ induces
a group homomorphism µ : G(C[ε])→ H(C[ε]) which has the following description
(see Appendix A.4.6):

µ(e+ εA) = e+ εdµe(A).
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Example 4.2.2. Consider the multiplication µ : G × G → G, (g, h) 7→ gh. Its
differential dµ(e,e) : LieG ⊕ LieG → LieG is given by addition (A,B) 7→ A + B.
(One has (e+ εA)(e+ εB) = e+ ε(A+B) in Mn(C[ε]).)

Similarly, for the inverse ι : G → G, g 7→ g−1, we get dιe(A) = −A. It follows
that the differential of the power map pm : g 7→ gm at e is multiplication by m, and
so pm is dominant in case G is connected and m 6= 0 (cf. Exercise 1.4.6).

4.3. The classical Lie algebras. Next we describe the Lie algebras of the
classical groups.

(1) The special linear group SLn ⊆ GLn (3.1) is defined by det = 1. For the
matrices in M(C[ε]) we have

det(E + εA) = 1 + ε trA.

Thus the tangent space TE SLn is a subspace of {A ∈ Mn | trA = 0}.
Since SLn is of codimension 1 in GLn we get

n2 − 1 = dim SLn ≤ dimTE SLn

≤ dim{A ∈ Mn | trA = 0} = n2 − 1.

Thus we have equality everywhere, and so

n := Lie SLn = {A ∈ Mn | trA = 0}
which is a Lie subalgebra of gln, i.e. closed under the bracket [A,B] =
AB−BA. Similarly, (V ) := Lie SL(V ) ⊆ gl(V ) is the subalgebra of trace-
less endomorphisms.

(2) The orthogonal group On ⊆ GLn is given by AtA = E (see 3.2). Since
(E + εA)t(E + εA) = E + ε(At + A) we see that TE On is a subspace of
{A ∈ Mn | A skew-symmetric} which is of dimension

(
n
2

)
. On the other

hand, the condition AtA = E corresponds to
(
n+1

2

)
polynomial equations

in the entries of A ∈ Mn and so, by Krull’s Principal Ideal Theorem
(Proposition A.3.3.5), we get dim On ≥ n2 −

(
n+1

2

)
=
(
n
2

)
. Thus

Lie On = Lie SOn = {A ∈ Mn | A skew-symmetric}
which is a Lie subalgebra of gln, i.e. closed under the bracket [A,B] =
AB −BA. We will also use the notation son, so(V, q) or so(V ).

(3) The symplectic group Sp2m is defined by F tJF = J where J =
[

0 Em
−Em 0

]
(3.3). Since (E + εF )tJ(E + εF ) = J + ε(F tJ + JF ) we see that Lie Spn
is a subspace of {F ∈ M2m | F tJ + JF = 0}. The dimension of this
space is

(
2m+1

2

)
, because J t = −J and so the equation means that JF

is symmetric. On the other hand, the condition F tJF = J corresponds
to
(

2m
2

)
polynomial equations (both sides are skew symmetric), hence, as

above,
Lie Sp2m = {F ∈ M2m | F tJ + JF = 0}

which again is a Lie subalgebra of gl2m, i.e. it is closed under the bracket
[A,B] = AB−BA. The Lie algebra will also be denoted by sp2m, sp(V, β)
or sp(V ). Using the block form F = [ U V

W Z ] one finds

Lie Sp2m = {
[
U V
W −U t

]
∈ M2m | V,W symmetric}.

Remark 4.3.1. The considerations above imply that the polynomial equations
given by the conditions AtA = E for SOn, respectively F tJF = J for Sp2m, are
not only defining equations for the corresponding classical group G, but they even
generate the ideal of functions vanishing on G. For that, using Proposition A.4.8.3,
we have to show that these equations define the tangent space TgG ⊆ Mn for every
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g ∈ G. But this is clear, since the conditions in g ∈ G are gtA + Atg = 0, resp.
gtJA+AtJg = 0, which are both equivalent to g−1A ∈ LieG.

In addition, we have calculated the dimensions of the groups:

dim gln = dim GLn = n2, dimn = dim SLn = n2 − 1,

dim son = dim On = dim SOn =
(
n
2

)
,

dim sp2m = dim Sp2m =
(

2m+1
2

)
= m(2m+ 1)

We remark that these are precisely the dimensions (over R) of the corresponding
real groups GLn(R), SLn(R), SOn(R), and Sp2m(R) (cf. Appendix B.2.1).

Exercise 4.3.2. Let β : V ×V → C be a symmetric or alternating bilinear form which
might be degenerate. Define

G(β) := {g ∈ GLn | β(gv, gw) = β(v, w) for v, w ∈ V }.
Then

LieG(β) = {A ∈ End(V ) | β(Av,w) + β(v,Aw) = 0 for all v, w ∈ V },
and this is a Lie subalgebra of gl(V ).

Exercise 4.3.3. Consider the quadratic form q(x, y, z) := xz on C3 and define

G(q) := {g ∈ GL3 | q(ga) = q(a) for all a ∈ C3}
as in the previous exercise. Describe G(q) and its Lie algebra LieG(q). Is G(q) connected?
And what is dimG(q)?

4.4. The adjoint representation. We turn back to the general case of an
arbitrary algebraic group G. For any g ∈ G we denote by Int g : G → G the inner
automorphism h 7→ ghg−1 and by Ad g its differential at e ∈ G:

Ad g := (d Int g)e : TeG→ TeG.

For G = GLn we have Ad g(A) = gAg−1 (g ∈ GLn, A ∈ Mn) since Int g is a linear
map Mn → Mn. Moreover, g 7→ Ad g is a regular homomorphism Ad: GLn →
GL(Mn), because the entries of gAg−1 are regular functions on GLn. By restriction
the same holds for any closed subgroup G ⊆ GLn:

Ad g(A) = gAg−1 for g ∈ G ⊆ GLn and A ∈ TeG ⊆ Mn

and Ad: G → GL(TeG), g 7→ Ad g, is a homomorphism of algebraic groups. This
already shows that LieG ⊆ Mn is closed under conjugation with elements g ∈ G.

The homomorphism Ad is called the adjoint representation of G. Its differential
will be denoted by ad:

ad := (dAd)e : TeG→ End(TeG).

Proposition 4.4.1. For a closed subgroup G ⊆ GLn we have

adA(B) = [A,B] for A,B ∈ TeG ⊆ Mn .

In particular, TeG is a Lie subalgebra of Mn.

Proof. By definition, one has Ad(E + εA) = id +ε adA. On the other hand,

Ad(E + εA)B = (E + εA)B(E + εA)−1 = (E + εA)B(E − εA)

= B + ε(AB −BA) = B + ε[A,B]

= (id +ε[A,−])B,

and the claim follows. �

The proposition shows that for any algebraic group G ⊆ GLn the tangent
space TeG carries the structure of a Lie algebra with bracket [A,B] := adA(B). In
particular, this structure is independent of an embedding of G into GLn.
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Definition 4.4.2. The tangent space TeG together with this structure of a
Lie algebra is called the Lie algebra of G. It will be denoted by LieG or by the
corresponding Gothic letter g.

Corollary 4.4.3. Let N ⊆ G be a closed normal subgroup. Then LieN ⊆
LieG is an ideal, i.e. we have [A,B] ∈ LieN for A ∈ LieG and B ∈ LieN .

Proof. For every g ∈ G the inner automorphism Int g sends N isomorphically
onto N , hence Ad g(LieN) = LieN . This shows that LieN ⊆ LieG is stable
under the adjoint representation Ad: G→ GL(LieG). It follows that its differential
ad = dAde also stabilizes LieH, hence [A,B] = adA(B) ∈ LieN for A ∈ LieG
and B ∈ LieN . �

Proposition 4.4.4. Suppose µ : G → H is a homomorphism of algebraic
groups. Then the differential dµe : LieG→ LieH is a Lie algebra homomorphism,
i.e.,

dµe([A,B]) = [dµe(A), dµe(B)].

We will simply write dµ or sometimes Lieµ instead of dµe.

Proof. The adjoint representation Ad: G → GL(LieG) determines a mor-
phism ϕ : G × LieG → LieG by (g,A) 7→ Ad g(A). It is easy to calculate the
differential dϕ(e,B) : LieG× LieG→ LieG:

(3) dϕ(e,B)(A,C) = [A,B] + C.

In fact, one can reduce to G = GLn where ϕ(g,A) = gAg−1. Thus

ϕ(E + εA,B + εC) = (E + εA)(B + εC)(E + εA)−1

= B + ε(AB −BA+ C)

= B + ε dϕ(E,B)(A,C).

Since µ ◦ Int g = Intµ(g) ◦ µ we get dµ ◦ Ad g = Adµ(g) ◦ dµ for all g ∈ G. This
means that the diagram

G× LieG
ϕG−−−−→ LieG

µ×dµ
y ydµ

H × LieH
ϕH−−−−→ LieH

is commutative. Calculating the differential at (e,B), using equation (3), we find

dµ([A,B]) = dµ(dϕ(e,B)(A, 0)) = dϕ(e,dµ(B))(dµ(A), 0))

= [dµ(A), dµ(B)],

and the claim follows. �

Corollary 4.4.5. Under the assumptions of the proposition above we have

Lieµ(G) = dµ(LieG) and Lie(kerµ) = ker(dµ).

Proof. There is an open dense set U ⊆ G such that the differential dµg of
µ : G → µ(G) is surjective for all g ∈ U (Theorem A.4.9.1). By G-equivariance, it
is surjective everywhere. In particular, dµ : LieG → Lieµ(G) is surjective proving
the first claim. The second follows, because Lie kerµ ⊆ ker dµ and dim kerµ =
dimG− dimµ(G) = dim LieG− dim dµ(LieG) = dim ker dµ. �

Example 4.4.6. For g ∈ G consider the commutator mapping

γg : G→ G, h 7→ ghg−1h−1.

Then one has
(dγg)e = Ad g − Id .
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To see this one factors γg as the composition G
∆→ G × G

Int g×ι−→ G × G
µ→ G,

where ∆(g) := (g, g). The assertion then follows from Example 4.2.2. One could
also reduce to G = GLn and use epsilonization:

g(e+ εA)g−1(e+ εA)−1 = g(e+ εA)g−1(e− εA) = e+ ε(gAg−1 −A).

4.5. Invariant vector fields. It is well-known that the vector fields on a
manifold form a Lie algebra in a canonical way. This also holds for the algebraic
vector fields Vec(X) on an affine variety X (see Proposition A.4.5.12), and gives
us another way to define the Lie algebra structure on the tangent space TeG of an
algebraic group G.

Call a vector field δ ∈ Vec(G) left-invariant if it is invariant under left multi-
plication on G:

(dλg)h(δh) = δgh for all g, h ∈ G.
Given any A ∈ LieG one can construct a left-invariant vector field δA on G by
setting (δA)g := (dλg)eA.

Proposition 4.5.1. Given A ∈ LieG there is a unique left-invariant vector
field δA such that (δA)e = A. Moreover, δ[A,B] = [δA, δB ].

Proof. One easily reduces to the case G = GLn. Then, for A = (aij) ∈ Mn

and g = (gk`) ∈ GLn, we get (δA)g = gA =
∑
i,j(
∑
k gikakj)

∂
∂xij
|g, hence

δA =
∑
i,j

(
∑
k

xikakj)
∂

∂xij
=
∑
k

(XA)ij
∂

∂xij
where X = (xij).

It follows that δA is a regular left invariant vector field on GLn, and (δA)e = A. A
short calculation shows that δAδB − δBδA = δ[A,B]. �

There is a different way to understand this construction. Regard A ∈ LieG as
a derivation A : O(G)→ C in e ∈ G. Then

δA : O(G)
µ∗−−−−→ O(G)⊗O(G)

id⊗A−−−−→ O(G).

In fact, it is easy to see that δ := (id⊗A) ◦ µ∗ is a derivation of O(G), and that

δg = evg ◦δ = (evg ⊗A) ◦ µ∗ = A ◦ λ∗g = dλg(A)

where evg(f) = f(g) is the evaluation at g ∈ G.

Remark 4.5.2. If we us the action on G by right multiplication, (h, g) 7→
ρ(h, g) := gh−1, then, for any A ∈ LieG, we can construct in a similar way a

right-invariant vector field δ̃A on G:

(δ̃A)g := (dρg−1)eA ∈ TgG.

In this case we get δ̃[A,B] = [δ̃B , δ̃A] which shows thatA 7→ δ̃A is a anti-homomorphism
of Lie algebras. Replacing in the above description of δA the map id⊗A by A⊗ id
we get the following description of δ̃A:

δ̃A : O(G)
µ∗−−−−→ O(G)⊗O(G)

A⊗id−−−−→ O(G).

Exercise 4.5.3. Let µ : G→ H be a surjective homomorphism of algebraic groups.

(1) For any A ∈ LieG we have dµ(δA) = δB where B := dµ(A) ∈ LieH, i.e.
dµg(δA)g = (δB)µ(g) for all g ∈ G.

(2) Use (1) to give another proof that Lieµ is a homomorphism of Lie algebras.
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Exercises

For the convenience of the reader we collect here all exercises from Chapter II.

Exercise. Suppose [ , ] : L × L → L is an alternating bilinear map where L is a
two-dimensional vector space. Show that

(a) L is a Lie algebra, i.e., the Jacobi-identity is satisfied.
(b) If [ , ] 6= 0, then there is a basis {u, v} of L with [u, v] = v.

Thus all noncommutative two-dimensional Lie algebras are isomorphic.

Exercise. For a general C-algebra A a derivation is a linear map δ : A→ A such that
δ(ab) = a δ(b) + δ(a) b for a, b ∈ A. Show that the vector space of derivations Der(A) ⊆
EndC(A) is a Lie subalgebra of EndC(A). (This generalizes Example 4.1.2.)

Exercise. Describe the tangent spaces in En of the subgroups Bn, Tn, Un ⊆ GLn
and show that they are Lie subalgebras of Mn.

Exercise. Let β : V × V → C be a symmetric or alternating bilinear form which
might be degenerate. Define

G(β) := {g ∈ GLn | β(gv, gw) = β(v, w) for v, w ∈ V }.
Then

LieG(β) = {A ∈ End(V ) | β(Av,w) + β(v,Aw) = 0 for all v, w ∈ V },
and this is a Lie subalgebra of gl(V ).

Exercise. Consider the quadratic form q(x, y, z) := xz on C3 and define

G(q) := {g ∈ GL3 | q(ga) = q(a) for all a ∈ C3}
as in the previous exercise. Describe G(q) and its Lie algebra LieG(q). Is G(q) connected?
And what is dimG(q)?

Exercise. Let N ⊆ G be a closed normal subgroup. Show that LieN ⊆ LieG is an
ideal, i.e. [A,B] ∈ LieN for A ∈ LieG and B ∈ LieN .
(Hint: )

Exercise. Let µ : G→ H be a surjective homomorphism of algebraic groups.

(1) For any A ∈ LieG we have dµ(δA) = δB where B := dµ(A) ∈ LieH, i.e.
dµg(δA)g = (δB)µ(g) for all g ∈ G.

(2) Use (1) to give another proof that Lieµ is a homomorphism of Lie algebras.
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1. Group Actions on Varieties

1.1. G-Varieties. Let G be an algebraic group, e ∈ G its identity element,
and let X be an affine variety.

Definition 1.1.1. An action of G on X is a morphism µ : G ×X → X with
the usual properties:

(i) µ(e, x) = x for all x ∈ X;
(ii) µ(gh, x) = µ(g, µ(h, x)) for g, h ∈ G and x ∈ X.

We will shortly write gx for µ(g, x), so that the conditions above are the following:

ex = x for x ∈ X, and (gh)x = g(hx) for g, h ∈ G and x ∈ X.

An affine variety X with an action of G is called a G-variety. For any g ∈ G the
map x 7→ gx is an isomorphism µg : X

∼→ X, with inverse µg−1 .

Example 1.1.2. The map µ : GL(V ) × V → V given by µ(g, v) := gv is
a morphism and thus defines an action of GL(V ) on V . This is clear, because
End(V )× V → V is bilinear, hence regular.

This action is linear which means that µg : v 7→ gv is a linear map for all
g ∈ GL(V ). It follows that for any homomorphism ρ : G → GL(V ) we obtain a
linear action of G on V , given by gv := ρ(g)v.

Example 1.1.3. For an algebraic group G we have the following actions of G
on itself:

• By left multiplication: (g, h) 7→ λg(h) := gh;
• By right multiplication: (g, h) 7→ ρg(h) := hg−1;
• By conjugation: (g, h) 7→ ghg−1.

The inverse g−1 on the right of the products is necessary in order to satisfy condition
(ii) from the definition.

1.2. Fixed Points, Orbits and Stabilizers. Let X be a G-variety. We make
the usual definitions.

Definition 1.2.1. (1) An element x ∈ X is called fixed point if gx = x
for all g ∈ G. We denote by XG := {x ∈ X | x fixed point} the fixed point
set.

(2) For x ∈ X we define the orbit of x by Gx := {gx | g ∈ G} ⊆ X and the
orbit map µx : G→ X by g 7→ gx.

(3) The stabilizer of x ∈ X is defined by StG(x) := Gx := {g ∈ G | gx = x};
it is also called isotropy group of x. The stabilizer of a subset Y ⊆ X
is defined similarly by StG(Y ) := {g ∈ G | gy = y for all y ∈ Y } =⋂
y∈Y Gy.

(4) A subset Y ⊆ X is called G-stable if gY ⊆ Y for all g ∈ G.
(5) For a subset Y ⊆ X we define the normalizer of Y in G by NG(Y ) :=
{g ∈ G | gY = Y }.

(6) For two G-varieties X,Y a morphism ϕ : X → Y is called G-equivariant
if ϕ(gx) = gϕ(x) for all g ∈ G and x ∈ X.

Example 1.2.2. On the group G we have the two G-action, by left and by right
multiplication (Example 1.1.3). These two G-varieties are G-isomorphic where the
G-equivariant isomorphism is given by g 7→ g−1.

Proposition 1.2.3. Let X be a G-variety.

(1) The fixed point set XG is closed in X.
(2) For any x ∈ X and any subset Y ⊆ X the stabilizers Gx and StG(Y ) are

closed subgroups of G.
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(3) For any x ∈ X the orbit Gx is open in its closure Gx.
(4) If Y ⊆ X is closed, then the normalizer NG(Y ) is a closed subgroup of G.

Proof. (1) The morphism ηg : X → X × X, x 7→ (gx, x), shows that Xg =
η−1
g (∆X) is closed, and so XG =

⋂
g∈GX

g is also closed.

(2) Since Gx = µ−1
x (x) where µx is the orbit map, the stabilizer is a closed

subgroup. This implies that StG(Y ) =
⋂
y∈Y Gy is also a closed subgroup.

(3) The orbit Gx is the image of the morphism µx and thus contains a set U
which is open and dense in Gx. It follows that Gx =

⋃
g∈G gU is open in Gx.

(4) The set A := {g ∈ G | gY ⊆ Y } =
⋂
y∈Y µ

−1
y (Y ) is a closed subset of G,

and so NG(Y ) = A ∩A−1 is closed. �

Exercise 1.2.4. Let X be a G-variety, let H ⊆ G an “abstract” subgroup and H̄ ⊆ G
its closure. Then we have the following:

(1) XH = XH̄ ;
(2) If Y ⊆ X is closed and H-stable, then Y is also H̄-stable.

Is the closeness of Y necessary in (2)?

Exercise 1.2.5. Consider the action of GLn on the matrices Mn by conjugation.
Show that the stabilizers (GLn)A are connected for all A ∈ Mn.
(Hint: For A ∈ Mn, the subset RA := {X ∈ Mn | AX = XA} ⊆ Mn is a subalgebra. Now
use Proposition II.1.1.11.)

Definition 1.2.6. For an action of G on a variety X the stabilizer StG(X) is
called the kernel of the action. It is a closed normal subgroup (see Exercise 1.3.4
above). The action is called faithful if the kernel of the action is trivial. The action
is called free if the stabilizer Gx of any point x ∈ X is trivial.

If the G-variety X contains a point x with trivial stabilizer, then the action is
clearly faithful. However, it is not true that every faithful action contains points
with trivial stabilizer as we can see from the linear action of GL(V ) or SL(V ) on
V , for dimV ≥ 2.

Example 1.2.7. Let G be a finite group acting on an irreducible variety X. If
the action is faithful, then the set of points with trivial stabilizer, {x ∈ X | Gx =
{e}}, is open and dense in X.

Proof. If the action is faithful, then XH is a strict closed subset of X for
every nontrivial subgroup H ⊆ G. Since X is irreducible the union

⋃
H 6={e}X

H is

a strict closed subset, and its complement has the required property. �

Exercise 1.2.8. Give an example of a faithful action of a finite group G which does
not admit points with trivial stabilizer. Is this possible if G is commutative?

Exercise 1.2.9. Consider the standard action of O2 on C2. Then the curve H :=
V(x2 + y2 − 1) ⊆ C2 is stable under O2, and the action of O2 on H is faithful, transitive,
but not free.

Proposition 1.2.10. Let X be a G-variety, and suppose that there exists a
G-equivariant morphism ϕ : X → G where G acts by left multiplication on G. Then
there is a G-equivariant isomorphism G × ϕ−1(e)

∼→ X given by (g, y) 7→ gy. In
particular, the G-action on X is free.

Proof. One easily checks that the inverse morphism of (g, y) 7→ gy is given
by x 7→ (ϕ(x), ϕ(x)−1x). �

The proposition rises the interesting question whether a variety X with a free
action of an algebraic group G looks locally like G × S. The answer is yes for a
certain class of groups, the so-called reductive special groups G, but no in general,
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e.g. for finite groups. Examples of reductive special groups are tori, GLn, SLn and
Sp2m, and product of those. We will discuss the case of tori in Section 3.

Exercise 1.2.11. Consider the faithful action of C∗ on C2 given by t(x, y) := (tpx, tqy)
where p, q ∈ Z are coprime.

(1) Determine the (nonempty) open set U ⊆ C2 where the action is free.
(2) Show that U can be covered by at most two C∗-invariant special open sets

isomorphic to C∗ × S.

(Hint: The answers depend on whether |p| = |q| = 1 or not.)

Exercise 1.2.12. Show that a reductive special group G is connected.
(Hint: The action of G ⊆ GL(V ) on GL(V ) by left multiplication is free, and every open
set of GL(V ) is irreducible.)

1.3. Orbit map and dimension formula. Let X be a G-variety, x ∈ X,
and let µx : G → X be the orbit map. The image of µx is the orbit Gx and the
fibers are the left cosets of the stabilizer Gx:

µ−1
x (hx) = {g ∈ G | gx = hx} = hGx.

In particular, we obtain a bijection G/Gx
∼→ Gx between the left cosets G/Gx and

the orbit Gx. Therefore, we have the following dimension formula for orbits (see
Theorem A.3.4.1)

dimGx = dimGx = dimG− dimGx.

Note that the stabilizer of y = gx ∈ Gx is a conjugate subgroup of Gx, namely
Gy = Ggx = gGxg

−1.

Exercise 1.3.1. Let X be a G-variety and Y ⊆ X a G-stable subset. Then the closure
Ȳ is also G-stable.

Another consequence is the existence of closed orbits.

Corollary 1.3.2. Let X be a G-variety and x ∈ X. Then the orbit closure
Gx contains a closed orbit.

Proof. If Gx = Gx, we are done. Otherwise dim(Gx\Gx) < dimGx, because
Gx is open and dense in Gx (Proposition 1.2.3(3) and Exercise A.3.1.12), and we
can proceed by induction on dimGx, because Gx is G-stable (Exercise 1.3.1). �

Remark 1.3.3. IfG is connected andX aG-variety, then every irreducible com-
ponent of X is G-stable. In fact, every g ∈ G permutes the irreducible components
Xi, so that NG(Xi) ⊆ G has finite index, hence contains G◦ (Remark 1.4.3(3)).

Exercise 1.3.4. Let X be a G-variety.

(1) If N ⊆ G is a normal subgroup, then the fixed point set XN is G-stable.
(2) For any Y ⊆ X the stabilizer StG(Y ) is a normal subgroup of the normalizer

NG(Y ).

Exercise 1.3.5. Consider the standard representation of GL2 on C2. Describe the
orbits for the actions of the following closed subgroups G ⊆ GL2:

(a) G = SL2, (b) G = C+ = U2, (c) G = {
[
t
t−1

]
| t ∈ C∗}.

Which orbits are closed, and which one are contained in the closure of another orbit?

Exercise 1.3.6. Consider the action of GL2 (resp. SL2) by left-multiplication on the
matrices M2, and describe the orbits. Which orbits are closed and which are contained in
the closure of other orbits?
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1.4. Exercises. For the convenience of the reader we collect here all exercises
from the first section.

Exercise. Let X be a G-variety, let H ⊆ G an “abstract” subgroup and H̄ ⊆ G its
closure. Then we have the following:

(1) XH = XH̄ ;
(2) If Y ⊆ X is closed and H-stable, then Y is also H̄-stable.

Is the closeness of Y necessary in (2)?

Exercise. Consider the action of GLn on the matrices Mn by conjugation. Show
that the stabilizers (GLn)A are connected for all A ∈ Mn.
(Hint: For A ∈ Mn, the subset RA := {X ∈ Mn | AX = XA} ⊆ Mn is a subalgebra. Now
use Proposition II.1.1.11.)

Exercise. Give an example of a faithful action of a finite group G which does not
admit points with trivial stabilizer.

Exercise. Consider the standard action of O2 on C2. Then the curve H := V(x2 +
y2 − 1) ⊆ C2 is stable under O2, and the action of O2 on H is faithful, transitive, but not
free.

Exercise. Consider the faithful action of C∗ on C2 given by t(x, y) := (tpx, tqy)
where p, q ∈ Z are coprime.

(1) Determine the (nonempty) open set U ⊆ C2 where the action is free.
(2) Show that U can be covered by at most two C∗-invariant special open sets

isomorphic to C∗ × S.

(Hint: The answers depend on whether |p| = |q| = 1 or not.)

Exercise. Show that a special group G is connected.
(Hint: The action of G ⊆ GL(V ) on GL(V ) by left multiplication is free, and every open
set of GL(V ) is irreducible.)

Exercise. Let X be a G-variety and Y ⊆ X a G-stable subset. Then the closure Ȳ
is also G-stable.

Exercise. Let X be a G-variety.

(1) If N ⊆ G is a normal subgroup, then the fixed point set XN is G-stable.
(2) For any Y ⊆ X the stabilizer StG(Y ) is a normal subgroup of the normalizer

NG(Y ).

Exercise. Consider the standard representation of GL2 on C2. Describe the orbits
for the actions of the following closed subgroups G ⊆ GL2:

(a) G = SL2, (b) G = C+ = U2, (c) G = {
[
t
t−1

]
| t ∈ C∗}.

Which orbits are closed, and which one are contained in the closure of another orbit?

Exercise. Consider the action of GL2 (resp. SL2) by left-multiplication on the ma-
trices M2, and describe the orbits. Which orbits are closed and which are contained in the
closure of other orbits?

2. Linear Actions and Representations

2.1. Linear representation. Let G be an algebraic group and V a finite
dimensional C-vector space.

Definition 2.1.1. A representation of G on V is a homomorphism ρ : G →
GL(V ) of algebraic groups. A representation ρ : G → GL(Cn) = GLn(C) is some-
times called a matrix representation of G.

Two representations ρ : G→ GL(V ) and µ : G→ GL(W ) are called equivalent

if there is a linear isomorphism ϕ : V
∼→ W such that ϕ(ρ(g)v) = µ(g)ϕ(v) for all

g ∈ G, v ∈ V .



72 CHAPTER III. GROUP ACTIONS AND REPRESENTATIONS

In the literature one also finds the notion of a rational representation. We will
only use this when we have to talk about “abstract” representations, as in the
following easy lemma whose proof is left to the reader.

Lemma 2.1.2. Let G be an algebraic group and ρ : G→ GLn an abstract homo-
morphism of groups. Then ρ is a rational representation if and only if the matrix
coefficients ρij(g) are regular functions on G.

Example 2.1.3. Let ρ : C∗ → GL(V ) be an n-dimensional representation of
C∗. Then ρ is diagonalizable, i.e. there is a basis of V such that ρ(C∗) ⊆ Tn. Thus
ρ is equivalent to a matrix representation of the form

t 7→


tm1

tm2

. . .

tmn

 where m1,m2, . . . ,mn ∈ Z.

Proof. The elements of finite order form a dense subgroup F ⊆ C∗ and the
image ρ(F ) is commutative and consists of diagonalizable elements. This implies
that ρ(F ) is simultaneously diagonalizable, i.e., we can find a basis of V such that
ρ(F ) ⊆ Tn. Now the claim follows because ρ(F ) is dense in ρ(C∗). �

We can express this in a slightly different way. Define

Vk := {v ∈ V | ρ(t)(v) = tk · v for all t ∈ C∗}.

Then we get V =
⊕

k Vk, because ρ is diagonalizable. The subspace Vk is called
the weight space of weight k, and the direct sum decomposition is the weight space
decomposition.

We have seen in Example 1.1.2 that a representation ρ : G→ GL(V ) defines a
linear action of G on V . In general, a finite dimensional vector space V with a linear
action of G is called a G-module. It is easy to see with the lemma above that every
linear action of G on V defines a rational representation G→ GL(V ). Therefore, we
will not distinguish between a representation of G on V and the G-module V , and
will freely switch between these points of view, depending on the given situation.

A representation ρ : G→ GL(V ) is called faithful if ker ρ is trivial. This means
that the linear action of G on V is faithful (see Definition 1.2.6).

Example 2.1.4. We have seen in II.4.4 that the differential Ad g of the inner
automorphism Int g : h 7→ ghg−1 defines a linear action of G on its Lie algebra
LieG, the adjoint representation Ad: G→ GL(g). The orbits are usually called the
conjugacy classes in g. In case G = GLn where g = Mn this is the standard action
by conjugation on matrices.

Example 2.1.5. Let X be a G-variety. For every g ∈ G and every x ∈ X the
differential (dµg)x : TxX → TgxX of µg : x 7→ gx is a linear map with the usual
composition property (dµgh)x = (dµg)hx ◦ (dµh)x. Therefore, for every fixed point
x ∈ X we obtain a representation of G on TxX called the tangent representation
in the fixed point x. We will see later in Corollary 2.3.10 that this is a rational
representation of G.

Example 2.1.6. The representations ρ : C+ → GLn of the additive group C+

are in one-to-one correspondence with the nilpotent matrices in Mn. This follows
immediately from Proposition II.2.6.1 where we showed that ρ is of the form s 7→
exp(sN) with N ∈ Mn nilpotent. Moreover, two such representations are equivalent
if and only if the corresponding matrices are conjugate.
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Example 2.1.7. Let G be an algebraic group acting on Cn by affine transfor-
mations (Exercise II.2.1.7). Then the induced map ρ : G→ Affn is a homomorphism
of algebraic groups. In particular, every action of G on A1 is given by a homomor-
phism G→ Aff1.

Proof. By assumption, ρ(g)x = A(g)x + b(g), and we have to show that
A : G → GLn and b : G → Cn are morphisms. This is clear for b, because b(g) =
ρ(g)0. Since A(g)a = ρ(g)a − b(g) this implies that the map g 7→ A(g)a is a mor-
phism, for every a ∈ Cn. Now the claim follows, because A(g)ei is the ith row of
A(g). �

If ϕ : V →W is a linear map, then the transposed map ϕt : W ∗ → V ∗ is defined
in the usual way: ϕt(`) := ` ◦ ϕ. If ϕ is an isomorphism, we set ϕ∗ := (ϕt)−1. In

this way we get an isomorphism GL(V )
∼→ GL(V ∗) of algebraic groups. In fact,

choosing a basis in V and the dual basis in V ∗ the corresponding map GLn
∼→ GLn

is given by S 7→ S−t. Using the canonical identification (V ∗)∗ = V we see that
(g∗)∗ = g for all g ∈ GL(V ).

If W ⊆ V is a subspace, we define W⊥ := {` ∈ V ∗ | `|W = 0} ⊆ V ∗. It follows
that dimW + dimW⊥ = dimV and that (W⊥)⊥ = W . Moreover, if gW = W
for some g ∈ GL(V ), then g∗W⊥ = W⊥. All this is well-known, and the reader is
advised to check carefully the details.

2.2. Construction of representations and G-homomorphisms. Starting
with two representations ρ : G→ GL(V ) and µ : G→ GL(W ) we can construct new
representations in the usual way:

• The direct sum ρ⊕ µ : G→ GL(V ⊕W ), g 7→ ρ(g)⊕ µ(g),
• The tensor product ρ⊗ µ : G→ GL(V ⊗W ), g 7→ ρ(g)⊗ µ(g),
• The dual representation ρ∗ : G → GL(V ∗), g 7→ ρ(g)∗ := (ρ(g)t)−1, also

called the contragredient representation,
• The kth symmetric power Skρ : G→ GL(Sk(V )) for all k ≥ 0,

• The kth exterior power ∧kρ : G→ GL(
∧k

V ) for 0 ≤ k ≤ dimV .

If H ⊆ G is a closed subgroup and U ⊆ V an H-stable subspace, then we obtain
representations of H on the subspace U , a subrepresentation, and on the quotient
space V/U , a quotient representation:

ρ′ : H → GL(U), h 7→ ρ(h)|U and ρ̄ : H → GL(V/U), h 7→ ρ(h).

We leave it to the reader to check that all these representations are again rational.
(This follows immediately from Lemma 2.1.2 above by choosing a suitable basis.) In
the language of G-modules these constructions correspond to the direct sum and the
tensor product of two G-modules, the dual module, the symmetric and the exterior
power of a G-module, and submodules and quotient modules of a G-module.

The language of G-modules has the advantage that we can not only talk about
submodules and quotient modules, but more generally about homomorphisms be-
tween two G-modules V and W .

Definition 2.2.1. A G-equivariant linear map ϕ : V → W between two G-
modules V and W is called a G-homomorphism or a G-linear map. A bijective
G-homomorphism is called a G-isomorphism. Clearly, two G-modules V,W are G-
isomorphic if and only if the corresponding representations are equivalent.
The set of G-homomorphism has the structure of a C-vector space and will be
denoted by HomG(V,W ). In case of W = V we talk about G-endomorphisms and
use the notation EndG(V ).
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Example 2.2.2. Consider the standard representation of SL2 on V = C2 with
basis e1 := (1, 0), e2 := (0, 1). Then

Sk(V ) =
⊕
α∈N2

|α|=k

Ceα where eα = eα1
1 eα2

2 and |α| := α1 + α2,

and the linear action of g =

[
a b
c d

]
is given by geα = (ae1 + ce2)α1(be1 + de2)α2 .

For the dual representation V ∗ = Cx ⊕ Cy, we get Sk(V ∗) = C[x, y]m, the binary
forms of degree k, and the action of g is given by gx = dx − by, gy = ay − cx,
because

g−t =

[
d −c
−b a

]
:

{
x 7→ dx− by,
y 7→ ax− cy.

Exercise 2.2.3. Show that there is a matrix S ∈ GL2 such that SgtS−1 = g−1 for all
g ∈ SL2. Deduce from this that the SL2-representations Sm(V ) and Sm(V ∗) are equivalent
for all m ∈ N.

Exercise 2.2.4. The same statement as in the previous exercise does not hold for
GL2 and neither for SLn if n > 2.
(Hint: Apply the conjugation to the diagonal matrices!)

Exercise 2.2.5. Let V , W be two G-modules. Then there is a natural linear action
of G on the space of linear maps Hom(V,W ) given by (gϕ)(v) := g(ϕ(g−1v)). Show that

(1) Hom(V,W ) is a G-module.
(2) HomG(V,W ) = Hom(V,W )G.

(3) There is a G-linear isomorphism V ∗ ⊗W ∼→ Hom(V,W ).
(Hint: The isomorphism is induced by λ⊗ w 7→ ϕλ,w where ϕλ,w(v) = λ(v)w.)

2.3. The regular representation. If an abstract group G acts on a space
X then we get a representation of G on the C-valued functions on X in the usual
way: (g, f) 7→ gf where gf(x) := f(g−1x). This representation is called the regular
representation of G on the functions on X.

If G is an algebraic group acting on an affine variety X and if f is a regular
function on X, then gf is also regular. In fact, the action is given by a morphism
µ : G × X → X whose comorphism µ∗ : O(X) → O(G) ⊗ O(X) has the following
property: If µ∗(f) =

∑
i hi ⊗ fi, then

(∗) gf(x) = f(g−1x) =
∑
i

hi(g
−1)fi(x), and so gf =

∑
i

hi(g
−1)fi ∈ O(X).

Definition 2.3.1. An (abstract) representation of an algebraic group G on a
complex vector space F is said to be locally finite if for every f ∈ F the linear span
〈gf | g ∈ G〉 is finite dimensional. It is called rational if for every finite dimensional
G-stable subspace V ⊆ F the map G → GL(V ) is a homomorphism of algebraic
groups. Such a vector space F is called a locally finite rational G-module.

A linear map µ : F → F ′ between two locally finite rational G-modules is a
G-homomorphism if it is G-equivariant, i.e. µ(gv) = gµ(v) for all v ∈ F and all
g ∈ G.

Proposition 2.3.2. Let X be a G-variety. Then the representation of G on
the regular functions O(X) is locally finite and rational.

Proof. The formula (∗) above shows that 〈gf | g ∈ G〉 ⊆
∑
iCfi, and so the

representation is locally finite. Now let V ⊆ O(X) be a finite dimensional G-stable
subspace, and let f1, . . . fn be a basis of V . Writing O(V ) = V ⊕ W and using
again the formula (∗) one sees that µ∗(V ) ⊆ O(G) ⊗ V , i.e. gfj =

∑
i hij(g

−1)fi
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for j = 1, . . . , n. Thus the representation of G on V is given by the map g 7→ H(g)
where H(g) = (hij(g

−1))ij is an n × n matrix whose entries are regular functions
on G. �

Example 2.3.3. From the natural representation of GL(V ) on V we obtain the
regular representation on the graded algebra O(V ) =

⊕
d≥0O(V )d where O(V )d

are the homogeneous polynomial functions of degree d on V . These subspaces are
stable under GL(V ), and there is a canonical isomorphism O(V ) ' Sd(V ∗) of
GL(V )-modules.
In fact, the multilinear map V ∗ × · · · × V ∗ → O(V ) given by (`1, . . . , `d)(v) :=
`1(v) · · · `d(v) is GL(V )-equivariant and symmetric, and has its image in O(V )d.
Thus it defines a GL(V )-homomorphism Sd(V ∗) → O(V )d which is easily seen to
be an isomorphism by choosing a basis of V .

Exercise 2.3.4. Work out the proof indicated above in Example 2.3.3.

The proposition above has a number of interesting consequences. The first one
will be used quite often to reduce questions about general G-actions on varieties to
the case of linear representations on vector spaces.

Corollary 2.3.5. Let X be a G-variety. Then X is G-isomorphic to a G-stable
closed subvariety of a G-module V .

Proof. Choose a finite dimensional G-stable subspace W ⊆ O(X) which gen-
erates O(X). Then the canonical homomorphism p : S(W ) → O(X) is surjective
and G-equivariant. Since S(W ) = O(W ∗), the coordinate ring of the dual repre-
sentation W ∗ of W , it follows from the previous corollary that p is the comorphism
of a closed G-equivariant embedding µ : X ↪→W ∗. �

Exercise 2.3.6. Consider X := GL2 as a GL2-variety where GL2 acts by left-
multiplication. Find a GL2-module V which contains X as a GL2-stable closed subset.
(Hint: Look at pairs (g, h) ∈ M2⊕M2 such that gh = E2.)

Corollary 2.3.7. Let X,Y be G-varieties and ϕ : X → Y a morphism. Then
ϕ is G-equivariant if and only if ϕ∗ : O(Y )→ O(X) is a G-homomorphism.

Proof. This follows immediately from the two formulas

ϕ∗(gf)(x) = gf(ϕ(x)) = f(g−1ϕ(x)) and gϕ∗(f)(x) = f(ϕ(g−1x))

which show that ϕ is G-equivariant if and only if ϕ∗(gf) = gϕ∗(f) for all f ∈ O(Y )
and g ∈ G. �

Exercise 2.3.8. Let X,Y be G-varieties and ϕ : X → Y a morphism. Let W ⊆ O(Y )
be a finite dimensional G-stable subset which generates O(Y ). If ϕ∗ : W → O(X) is a
G-homomorphism, then ϕ is G-equivariant.

Corollary 2.3.9. Let ϕ : G � H be a surjective homomorphism, and let X
be a G-variety. Assume that kerϕ acts trivially on X. Then X is an H-variety.

Proof. We can assume that X is a G-stable closed subset of a G-module V .
By assumption, X ⊆ W := V kerϕ, and W is G-stable as well. Thus kerϕ ⊆ ker ρ
where ρ : G → GL(W ) is the corresponding representation of G on W . Now the
claim follows from the mapping property (Proposition II.2.1.10) which implies that
ρ factors through ϕ. �

Corollary 2.3.10. Let X be a G-variety and let x ∈ XG be a fixed point. Then
the maximal ideal mx and all its powers mdx are G-stable subspaces of O(X), and the
representation of G on mx/m

d
x is rational. In particular, the tangent representation

of G on TxX is rational, dual to the representation on mx/m
2
x.
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Proof. Most of the statements are clear. We only show that the canonical
map TxX = Derx(O(X))→ (mx/m

2
x)∗, δ 7→ δ′ := δ|mx/m2

x
, is G-equivariant. Recall

that the action on TxX is given by δ 7→ dµg(δ) where µg(y) = gy for y ∈ X. For
f ∈ mx and f̄ := f + m2

x we have

gδ′(f̄) = δ′(g−1f̄) = δ′(g−1f) = δ(g−1f) = δ(µ∗g(f)) = (dµg δ)(f),

hence (dµg δ)
′ = g δ′. �

Definition 2.3.11. Let X be a G-variety. A regular function f ∈ O(X) is
called G-invariant (shortly invariant) if f(gx) = f(x) for all g ∈ G and x ∈ X, i.e.
if f is constant on the G-orbits. The G-invariant functions form the fixed point set
O(X)G which is a subalgebra of O(X).

A semi-invariant is a regular function f ∈ O(X) with the property that the
subspace Cf ⊆ O(X) is stable under G. If f 6= 0, then there is a well-defined
character χ : G → C∗ such that f(gx) = χ(g) · f(x) for all g ∈ G and x ∈ X. We
express this by saying that f is a semi-invariant with character χ.

Let V be a finite dimensional vector space and α : V ×V → C a nondegenerate
bilinear form. Then α defines an isomorphism α̃ : V

∼→ V ∗ by α̃(v)(w) := α(w, v).
If we choose a basis (v1, . . . , vn) of V and the dual basis (v∗1 , . . . , v

∗
n) of V ∗, then

α̃ : Cn → Cn is given by the matrix A := (α(vi, vj))i,j .

Exercise 2.3.12. The isomorphism α̃ : V
∼→ V ∗ allows to define a nondegenerate

bilinear form α∗ on V ∗ in the obvious way. Show that α̃∗ ◦ α̃ = idV .
(Hint: With respect to the bases of V and V ∗ as above and identifying (V ∗)∗ with V the

linear map α̃∗ is given by the matrix A−1.)

Lemma 2.3.13. If V is a G-module and if α is G-invariant, then α̃ : V
∼→ V ∗

is G-isomorphism.

Proof. This follows from the equalities

α̃(gv)(w) = α(w, gv) = α(g−1w, v) = α̃(v)(g−1w) = (gα̃(v))(w)

for v, w ∈ V and g ∈ G. �

2.4. Subrepresentations of the regular representation. For a G-variety
X we might ask which representations of G occur in the regular representation on
O(X). For X = G (with respect to left or right multiplication) there is the following
partial answer.

Proposition 2.4.1. Let V be a G-module and assume that V ∗ is cyclic, i.e.
there is an ` ∈ V ∗ such that 〈G`〉 = V ∗. Then V occurs as a subrepresentation
of O(G), with respect to left or right multiplication. In particular, every simple
G-module occurs in O(G).

(Recall that a G-module V 6= {0} is simple if it does not have a submodule different
from {0} and V .)

Proof. Recall that O(G) as a G-module with respect to the left multiplication
is isomorphic to O(G) as a module with respect to the right multiplication where

the isomorphism is given by the coinverse ι : O(G)
∼→ O(G) (Example 1.2.2). Thus

it suffices to consider the left multiplication on G.
For ` ∈ V ∗ and v ∈ V define f`,v ∈ O(G) by f`,v(g) := `(g−1v). Now the map

v 7→ f`,v is a G-homomorphism ϕ` : V → O(G). In fact,

f`,hv(g) = `(g−1hv) = f`,v(h
−1g) = hf`,v(g).

It is easy to see that ϕ` is injective if ` generates V ∗ as a G-module (see the next
exercise). �
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Exercise 2.4.2. Show that the kernel of the map v 7→ f`,v is equal to 〈G`〉⊥ ⊆ V .

Corollary 2.4.3. Every G-module V of dimension ≤ n occurs as a submodule
of O(G)⊕n with respect to left or right multiplication.

Proof. We choose generators `1, . . . , `m of the G-module V ∗ and use the func-
tions f`i,v ∈ O(G) from the proof above to define a G-homomorphism ϕ : V →
O(G)⊕m, v 7→ (f`1,v, . . . , f`m,v). Since the `i generate V ∗ as a G-module it follows
that ϕ is injective. �

Exercise 2.4.4. If V ⊆ O(G) is a finite dimensional G-submodule, then V ∗ is cyclic.
(Hint: Look at the linear function ` := eve |V : v 7→ v(e).)

Exercise 2.4.5. Let W be a G-module W . If W ∗ can be generated, as a G-module, by
m elements, then there exists a G-equivariant embedding of W into O(G)⊕m. Conversely,
if W ⊆ O(G)m a finite dimensional submodule, then W ∗ can be generated, as a G-module,
by m elements.

Finally, we can prove now what we announced after the definition of an algebraic
group (Remark II.1.2.1), namely that a “group object” in the category of affine
varieties is an algebraic group in the sense of our definition.

Proposition 2.4.6. Let H be an affine variety with a group structure such that
the multiplication µ : H ×H → H and the inverse ι : H → H are morphisms. Then
H is isomorphic to a closed subgroup of some GL(V ).

Proof. We first remark that the notion of a group action on a variety and
of a locally finite and rational representation does not use that the group G is a
closed subgroup of some GLn. It makes perfectly sense for H, and the proof of
Proposition 2.3.2 carries over to H without any changes.

Now choose a finite dimensional linear subspace V ⊆ O(H) which is stable
under the action of H by right multiplication and which generates the coordinate
ring O(H). This defines a rational representation ρ : H → GL(V ). For v ∈ V define
the function fv ∈ O(GL(V )) by fv(g) := gv(e) where e ∈ H is the identity element.
Then

ρ∗(fv)(h) = fv(ρ(h)) = (ρ(h)v)(e) = v(h), hence ρ∗(fv) = v.

Thus the image of ρ∗ contains V . It follows that the comorphism ρ∗ : O(GL(V ))→
O(H) is surjective, and so ρ is a closed immersion. �

Remark 2.4.7. There is the following nice generalization of the above result
which is due to Palais, see [Pal78]. Let H be an affine variety with a group
structure. Assume that the left-multiplications and the right-multiplications with
elements from H are morphisms. Then H is an algebraic group.
The question goes back to Montgomery who proved this in the setting of topo-
logical groups with underlying complete metric spaces, see [Mon36].

If X is an irreducible G-variety, then G also acts on the field C(X) of rational
functions on X, by field automorphisms. In particular, if G is finite and the action
faithful, then C(X)/C(X)G is a Galois extension with Galois group G. In general,
C(X)G is a finitely generated field over C, and the transcendence degree of C(X)
over C(X)G is bounded by dimG. In fact, one can show that

tdegC(X)G C(X) = max{dimGx | x ∈ X}.
This is a consequence of a theorem of Rosenlicht, see [Spr89, IV.2.2 Satz von
Rosenlicht]. We will prove this in the next chapter (section IV.??) in a special
case, namely for the so-called linearly reductive groups G. The case of tori and
diagonalizable groups will be handled in the following section where we prove a
stronger result, see Proposition 3.6.1.
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2.5. Exercises. For the convenience of the reader we collect here all exercises
from the second section.

Exercise. Show that there is a matrix S ∈ GL2 such that SgtS−1 = g−1 for all
g ∈ SL2. Deduce from this that the SL2-representations Sm(V ) and Sm(V ∗) are equivalent
for all m ∈ N.
Finally show that this does not hold for GL2 and neither for SLn, n > 2.

Exercise. Let V , W be two G-modules. Then there is a natural linear action of G
on the space of linear maps Hom(V,W ) given by (gϕ)(v) := g(ϕ(g−1v)). Show that

(1) Hom(V,W ) is a G-module.
(2) HomG(V,W ) = Hom(V,W )G.

(3) There is a G-linear isomorphism V ∗ ⊗W ∼→ Hom(V,W ).
(Hint: The isomorphism is induced by λ⊗ w 7→ ϕλ,w where ϕλ,w(v) = λ(v)w.)

Exercise. ConsiderX := GL2 as a GL2-variety where GL2 acts by left-multiplication.
Find a GL2-module V which contains X as a GL2-stable closed subset.
(Hint: Look at pairs (g, h) ∈ M2⊕M2 such that gh = E2.)

Exercise. Let X,Y be G-varieties and ϕ : X → Y a morphism. Let W ⊆ O(Y )
be a finite dimensional G-stable subset which generates O(Y ). If ϕ∗ : W → O(X) is a
G-homomorphism, then ϕ is G-equivariant.

Exercise. Let α : V ×V → C be a nondegenerate bilinear form on a finite dimensional
vector space V . Then the corresponding isomorphism α̃ : V

∼→ V ∗ allows to define a
nondegenerate bilinear form α∗ on V ∗ in the obvious way, and thus an isomorphism
α̃∗ : V ∗ → (V ∗)∗ = V . Show that α̃∗ ◦ α̃ = idV .
(Hint: With respect to a basis of V and the dual basis of V ∗ the linear map α̃ is given by

the matrix A corresponding to the form α, and α̃∗ is given by the matrix A−1.)

Exercise. Show that the kernel of the map v 7→ f`,v is equal to 〈G`〉⊥ ⊆ V .

Exercise. If V ⊆ O(G) is a finite dimensional G-submodule, then V ∗ is cyclic.
(Hint: Look at the linear function ` := eve |V : v 7→ v(e).)

Exercise. Let W be a G-module W . If W ∗ can be generated, as a G-module, by
m elements, then there exists a G-equivariant embedding into O(G)⊕m. Conversely, if
V ⊆ O(G)m a finite dimensional submodule, then V ∗ can be generated, as a G-module,
by m elements.

3. Tori and Diagonalizable Groups

In this section we first study actions of the multiplicative group C∗ on an
affine variety X and prove the finite generation of the algebra of invariants O(X)C

∗

using Gordans’s Lemma. This allows to define an algebraic quotient π : X →
X//C∗, and we show some of its properties. In the remaining part we discuss tori
and diagonalizable groups, and prove the anti-equivalence between diagonalizable
groups and finitely generated abelian groups, given by D 7→ X (D), the character
group of D.

3.1. C∗-actions and quotients. Let X be a variety with an action of the
multiplicative group C∗. For k ∈ Z define

O(X)k := {f ∈ O(X) | tf = tk · f for all t ∈ C∗}.
These are the semi-invariants of weight k, see Definition 2.3.11. Since O(X) is a
locally finite and rational C∗-module the weight space decomposition for a repre-
sentation of C∗ (see Example 2.1.3) implies that we get a similar decomposition for
O(X),

O(X) =
⊕
k∈Z
O(X)k,



III.3. TORI AND DIAGONALIZABLE GROUPS 79

and this is a grading: O(X)k · O(X)m ⊆ O(X)k+m. In particular, O(X)0 =
O(X)C

∗
is the subalgebra of C∗-invariant functions, and every subspace O(X)k

is a O(X)C
∗
-module. Moreover, for any C∗-equivariant morphism ϕ : X → Y we

have ϕ∗(O(Y )k) ⊆ O(X)k for all k.

Example 3.1.1. For the standard action of C∗ on C and C \ {0} by left mul-
tiplication the weight space decomposition is given by

C[x] =
⊕
k≥0

Cxk and C[x, x−1] =
⊕
k∈Z

Cxk.

Note that the weight of Cxk is −k.

Exercise 3.1.2. Let V be a (nontrivial) two dimensional C∗-module with weights p, q,
i.e. t(x, y) := (tp · x, tq · y) for a suitable basis. Determine the weight space decomposition
and show the following.

(1) The invariant ring O(V )C
∗

is either C or a polynomial ring C[f ] in one variable.

(2) If O(V )C
∗

= C, then the weight spaces are finite dimensional.

(3) If O(X)C
∗
6= C, then the weight spaces are free O(X)C

∗
-modules of rank 1.

Example 3.1.3. Let X be a C∗-variety. Assume that O(X)i = 0 for all i < 0
and that O(X)0 = C. Then XC∗ = {x0} and m0 :=

⊕
i>0O(X)i is the maximal

ideal of x0. Moreover, if X is smooth in x0, then X is C∗-isomorphic to a C∗-module
with strictly negative weights.

Proof. The first part is clear; we only prove the last statement. Since X is
smooth in x0 we can find d := dimX homogeneous functions f1, . . . , fd ∈ m0 whose
images in m0/m

2
0 form a C-basis. Now we apply Lemma 2.3.3 to see that O(X) =

C[f1, . . . , fd]. Since dimX = d we see that the fi are algebraically independet, and
the claim follows. �

In general, we have the following statement about the invariants O(X)C
∗

of a
C∗-variety X.

Lemma 3.1.4. The subalgebra O(X)C
∗

is finitely generated.

Proof. Choose homogeneous generators fk ∈ O(X)mk , k = 1, . . . , n, for the
algebra O(X). For α ∈ Nn set fα := fα1

1 · · · fαnn ∈ O(X) which is homogeneous of
degree ω(α) :=

∑
k αkmk. It follows that

O(X)0 =
∑

α∈Nn, ω(α)=0

Cfα.

By Gordan’s Lemma (see below) the semigroup S := {α ∈ Nn |
∑
k αkmk = 0} is

finitely generated, and so O(X)0 is finitely generated as an algebra. �

Lemma 3.1.5 (Gordan’s Lemma). For any subgroup Γ ⊆ Zn, the semigroup
M := Γ ∩ Nn is finitely generated.

Proof. Let M ⊆ M be the set of minimal element where we use the partial
order on Zn defined by

a ≤ b ⇐⇒ ai ≤ bi for all i.

Clearly, M is a set of generators of M . In order to prove that M is finite we will
show now that any infinite sequence (a(i)) of elements from Nn contains a pair
i < j such that a(i) ≤ a(j). This is clear for n = 1. We can assume that the set

{a(i)
1 } ⊆ N is infinite, and then choose an infinite subsequence such that a

(i)
1 < a

(j)
1

for i < j. Now consider the sequence ā(i) ∈ Nn−1 where ā := (a2, . . . , an) ∈ Nn−1.
By induction, there exists a pair i < j such that ā(i) ≤ ā(j). Hence, a(i) ≤ a(j),

because a
(i)
1 < a

(j)
1 , and we are done. �
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Exercise 3.1.6. Show that every O(X)n is a finitely generated O(X)C
∗
-module.

(Hint: Modify the proof of Lemma 3.1.4 above.)

Since O(X)C
∗

is a finitely generated subalgebra of O(X) there is an affine
variety Y and a morphism π : X → Y such that the comorphism π∗ induces an
isomorphism O(Y )

∼→ O(X)C
∗
. Since Y is uniquely determined up to isomorphism,

we will use the notation X//C∗ for Y and πX : X → X//C∗ for the morphism, and
will call X//C∗ the quotient of X by C∗, and πX quotient morphism. This notion is
justified by the “universal property” formulated in the following proposition.

Proposition 3.1.7. Let X be a C∗-variety, and let πX : X → X//C∗ be the
quotient morphism.

• Universal property. For any C∗-invariant morphism ϕ : X → Y there
is a unique morphism ϕ̄ : X//C∗ → Y such that ϕ = ϕ̄ ◦ πX .

• G-closedness. If Z ⊆ X is closed and C∗-stable, then πX(Z) ⊆ X//C∗ is
closed. In particular, πX is surjective.

• G-separation. For any family (Zi)I of C∗-stable closed subsets of X,
we have πX(

⋂
i Zi) =

⋂
i πX(Zi). In particular, πX separates disjoint C∗-

stable closed subsets of X.

Proof. (1) If ϕ : X → Y is C∗-invariant, then ϕ∗(O(Y )) ⊆ O(X)C
∗
. Hence,

there is a homomorphism ρ : O(Y )→ O(X//C∗) such that ϕ∗ = π∗X ◦ρ. Since ρ = ϕ̄∗

for some morphism ϕ̄ : X//C∗ → Y , we get ϕ = ϕ̄ ◦ πX , and the claim follows.

(2) We can identify O(X//C∗) with O(X)0. For every ideal b ⊆ O(X)0 we have
O(X) · b =

⊕
nO(X)n · b, and so (O(X) · b) ∩ O(X)0 = b. Since Z is C∗-stable,

the ideal I(Z) ⊆ O(X) is graded. Moreover, πX(Z) ⊆ X//C∗ is the zero set of the

ideal I(Z)∩O(X)C
∗

= I(Z)0. For any y ∈ πX(Z), the corresponding maximal ideal
my ⊆ O(X)0 contains I(Z)0. This implies that

π−1
X (y) ∩ Z = VX(myO(X) + I(Z)) 6= ∅,

because (myO(X) + I(Z))∩O(X)0 = my + I(Z)0 = my $ O(X)0. Hence, πX(Z) =
πX(Z).

(3) The image πX(
⋂
i Zi) is closed, by (2), and it is equal to the zero set of

the ideal b := (
∑
i I(Zi))0. Since the ideals I(Zi) are graded we get b =

∑
i I(Zi)0,

and the zero set of the latter is
⋂
i πX(Zi) =

⋂
i πX(Zi), again by (2). The claim

follows. �

Example 3.1.8. Consider the linear action of C∗ on C2 given by t(x, y) :=
(tp ·x, tq ·y. The action is faithful if and only if p and q are coprime, and in this case
the action is free on C2 \ V(xy). If p, q > 0 or p, q < 0, then there are no invariants.

Now assume that p, q are coprime and p > 0 > q. Then f := x−qyp is an
invariant and C[x, y]C

∗
= C[f ]. Thus C2//C∗ ' C and the quotient morphism is

f : C2 → C. Moreover, f−1(0) = V(xy), the union of the x- and the y-axis, and
f : C2 \ V(xy) → C \ {0} is a trivial C∗-bundle. In fact, if r, s ∈ Z are such that
sp− rq = 1, then we have a C∗-equivariant isomorphism

ϕ : C∗ × C \ {0} ∼→ C2 \ V(xy), (t, z) 7→ (tpzr, tqzs).

The inverse map is given by (x, y) 7→ (xsy−r, f(x, y)). This will be generalized in
Corollary 3.1.10 below.

A first consequence is the following.

Corollary 3.1.9. For any y ∈ X//C∗, the fiber π−1
X (y) of the quotient mor-

phism πX : X → X//C∗ contains a unique closed orbit Oy. If Oy = {ỹ} where ỹ is

a fixed point, then π−1
X (y) = {x ∈ X | C∗x 3 ỹ}. Otherwise, π−1

X (y) = Oy.
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Proof. The first statement follows from the separation property and the fact
that every closed C∗-stable subvariety of X contains a closed orbit (Corollary 1.3.2).

The C∗-orbits O ⊆ X are either rational curves ' C \ {0} or fixed points. This
implies that Ō \O is either empty or a single fixed point.

If Oy = {ỹ} where ỹ ∈ XC∗ , and if x ∈ π−1
X (y), x 6= ỹ, then C∗x is not closed,

and so C∗x = C∗x ∪ {ỹ}.
Finally, if dimOy = 1, then every orbit in π−1

X (y) must be closed of dimension
1, hence equal to Oy. �

Another consequence is the following (cf. Proposition 3.6.1).

Corollary 3.1.10. Assume that XC∗ = ∅. Then all orbits are closed and
of dimension 1, and X//C∗ is the orbit space X/C∗. If the action is free, then
πX : X → X//C∗ is a principal C∗-bundle, locally trivial in Zariski-topology, i.e.
there is a finite covering X//C∗ =

⋃
i Ui by special open sets Ui ⊆ X//C∗ such that

π−1
X (Ui) ' C∗ × Ui.

Proof. The first part is clear. For the second, choose a closed orbit O and
fix an isomorphism µ : C∗ ∼→ O ⊆ X. We obtain a surjective C∗-homomorphism
µ∗ : O(X)→ C[t, t−1] which implies that there exist semi-invariants f1, f2 ∈ O(X)
with µ∗(f1) = t and µ∗(f2) = t−1. In fact, µ∗(O(X)k) ⊆ O(C∗)k = Ct−k for all k,
and so µ∗(O(X)−1) = Ct and µ∗(O(X)1) = Ct−1.

It follows that f1 : X → C is C∗-equivariant and maps O isomorphically onto
C∗ ⊆ C. Moreover, f := f1f2 is an invariant which does not vanish onO. Hence,O ⊆
Xf and f1 : Xf → C∗ is C∗-equivariant. Now Proposition 1.2.10 shows that Xf '
C∗ × f−1(1). Since f is an invariant, one easily sees that πX(Xf ) = (X//C∗)f =
Xf//C∗ (see the exercise below), and the claim follows. �

Exercise 3.1.11. Let X be a C∗-variety and πX : X → X//C∗ the quotient.

(1) If Z ⊆ X is closed and C∗-stable, then the induced morphism πX |Z : Z → πX(Z)
is the quotient of Z by C∗.

(2) If f ∈ O(X)C
∗

is an invariant, then πX(Xf ) = (X//C∗)f , and the induced
morphism πX |Xf : Xf → (X//C∗)f is the quotient of Xf by C∗.

3.2. Tori. An algebraic group isomorphic to C∗n is called an n-dimensional
torus. The character group X (T ) of a torus T is a torsionfree group of rank n =
dimT , i.e. X (T ) ' Zn (see II.2.2). Moreover, X (T ) ⊆ O(T ) is a C-basis of the
coordinate ring (Exercise II.2.2.3).

Lemma 3.2.1. Let T, T ′ be two tori. Then the map ϕ 7→ X (ϕ) := ϕ∗|X (T ) is a

bijective homomorphism Hom(T, T ′)
∼→ Hom(X (T ′),X (T )).

Proof. It is clear that this map is a homomorphism of groups and that it
is injective. In order to prove surjectivity we can assume that T ′ = Tn and so
X (T ′) = X (Tn) =

⊕n
i=1 Zεi. If ν : X (Tn) → X (T ) is a homomorphism and χj :=

ν(εj), j = 1, . . . , n, then the homomorphism χ := (χ1, . . . , χn) : T → Tn has the
property that X (χ) = ν. �

As a consequence we see that the choice of a Z-basis χ1, . . . , χn of X (T ) deter-

mines an isomorphism T
∼→ Tn, and vice versa.

Remark 3.2.2. Let T be an n-dimensional torus. For every positive integer
d ∈ N the subgroup {t ∈ T | td = e} is finite and isomorphic to (Z/dZ)n. Moreover,
the elements of finite order form a dense subset (Exercise II.1.1.7(2)).

Proposition 3.2.3. For a torus T there exist elements t ∈ T such that 〈t〉 = T .
In fact, this holds for any t such that χ(t) 6= 1 for all nontrivial characters χ.
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Proof. We can assume that T = Tn. Choose t = (t1, . . . , tn) ∈ Tn such that
α(t) = tα1

1 · · · tαnn 6= 1 for all α 6= 0, e.g., take the ti to be algebraically independent

over Q. We claim that for such an element t ∈ Tn we have 〈t〉 = Tn.
In fact, assume that f ∈ C[ε1, ε

−1
1 , . . . , εn, ε

−1
n ], f 6= 0, vanishes on the group

〈t〉. Then ft := f(t1ε1, . . . , tnεn) also vanishes on 〈t〉. Now choose such an f =∑
α∈I bαε

α which contains a minimal number of monomials εα = εα1
1 · · · εαnn . Then

ft =
∑
α∈I bαα(t)εα also vanishes on 〈t〉, and since all the element α(t) are different

it follows that the difference ft − cf , for a suitable c ∈ C, contains less monomials
than f . Hence, by assumption, ft = cf , and so f is a monomial which is clearly a
contradiction. �

3.3. Diagonalizable groups. There is a slightly larger class of algebraic
groups which share most of the properties of the tori, namely the closed subgroups
of tori.

Definition 3.3.1. An algebraic group D is called diagonalizable if D is iso-
morphic to a closed subgroup of Tn.

Since the restriction map O(Tn) → O(D) is surjective, the image of X (Tn)
in O(D) spans O(D) and therefore is equal to X (D), because the characters are
linearly independent (Lemma II.2.2.6). Thus, X (Tn) → X (D) is surjective and so
X (D) is a finitely generated abelian group. Moreover, O(D) is the group algebra
of X (D).

Exercise 3.3.2. Let d ∈ GL(V ) be a diagonalizable element. Then D := 〈d〉 is a
diagonalizable group, and D/D◦ is cyclic.

Proposition 3.3.3. An algebraic group D is diagonalizable if and only if O(D)
is linearly spanned by X (D). In this case X (D) is a C-basis of O(D), X (D) is
finitely generated, and O(D) is the group algebra of X (D).

Proof. We have just seen that for a diagonalizable groupD the subset X (D) ⊆
O(D) is a C-basis. Conversely, if X (D) linearly spans O(D), we can find finitely
many characters χ1, . . . , χn which generate O(D) as an algebra. This implies that
the homomorphism χ = (χ1, . . . , χn) : D → Tn is a closed immersion. �

Corollary 3.3.4. Let G be an algebraic group and D a diagonalizable group.
Then the map Hom(G,D)→ Hom(X (D),X (G)), ϕ 7→ X (ϕ), is bijective.

Proof. It is clear that for any homomorphism ϕ : G → D the comorphism
ϕ∗ : O(D) → O(G) is determined by X (ϕ) = ϕ∗|X (D), because X (D) ⊆ O(D)
is a basis. Now let ν : X (D) → X (G) be a homomorphism. Then ν induces an
algebra homomorphism of the group algebras ν : O(D) → C[X (G)] ⊆ O(G). It
remains to see that the corresponding morphism ϕ : G → D is a homomorphism,
i.e. that ν commutes with the comultiplication (II.1.3). This is clear because the
comultiplication sends a character χ to χ⊗χ (see the following Exercise 3.3.5). �

Exercise 3.3.5. Let G be an algebraic group and µ∗ : O(G) → O(G) ⊗ O(G) the
comultiplication (1.3). If χ is a character of G, then µ∗(χ) = χ⊗ χ.

3.4. Characterization of tori and diagonalizable groups. Among the
diagonalizable groups the tori are characterized by several properties.

Proposition 3.4.1. The following statements for a diagonalizable group D are
equivalent.

(i) D is a torus.
(ii) D is connected.



III.3. TORI AND DIAGONALIZABLE GROUPS 83

(iii) X (D) is torsion free.

Proof. The implication (i)⇒ (ii) is clear. If D is connected, then O(D) has no
zero divisors and so X (D) is torsion free, hence (ii) ⇒ (iii). If X (D) is torsion free
we choose a basis χ1, . . . , χn. Then O(D) is generated by χ1, . . . , χn, χ

−1
1 , . . . , χ−1

n ,
and so the homomorphism χ = (χ1, . . . , χn) : D → Tn is a closed immersion. By

construction, X (χ) : X (Tn)
∼→ X (D) is an isomorphism and so χ∗ : O(Tn)→ O(D)

is injective. If follows that χ is an isomorphism, hence (iii) ⇒ (i). �

Corollary 3.4.2. Let D be a diagonalizable group. Then D◦ is a torus, and
there is a finite subgroup F ⊆ D such that the multiplication D◦ × F ∼→ D is an
isomorphism.

Proof. By the previous proposition D◦ is a torus, and D/D◦ is a finite abelian
group which we write as a product of cyclic groups: D/D◦ =

∏
j〈dj〉. It suffices

to show that each dj ∈ D/D◦ has a representative in D of the same order. If dj
has order mj and if gj ∈ D is any representative of dj , then g

mj
j ∈ D◦. Since the

homomorphism g 7→ gmj : D◦ → D◦ is surjective (see Exercise II.2.1.5) there is an
hj ∈ D◦ such that h

mj
j = g

mj
j . Thus h−1

j gj ∈ D is a representative of dj of order
mj . �

Exercise 3.4.3. For a diagonalizable group D with D/D◦ cyclic there exist elements

d ∈ D such that D = 〈d〉.

Exercise 3.4.4. Let d =

[
a 0
0 b

]
∈ GL2(C). Describe D := 〈d〉 in terms of a and b.

What is D◦, and what is D/D◦?

Proposition 3.4.5. (1) A commutative algebraic group D is diagonaliz-
able, if and only if the subgroup Df of elements of finite order is dense.

(2) The image of a diagonalizable group under a homomorphism is diagonal-
izable.

(3) If D is diagonalizable and ρ : D → GLn a homomorphism, then the image
ρ(D) is conjugate to a subgroup of Tn.

Proof. We first remark that for a diagonalizable group D the subgroup Df

of elements of finite order is dense. This is clear for tori (see Exercise II.1.1.7(2)),
and thus follows for diagonalizable groups from Corollary 3.4.2 above.

Now let H ⊆ GLn be a commutative closed subgroup. If the subgroup Hf of
elements of finite order is dense in H, then H is conjugate to a subgroup of Tn. In
fact, the elements of Hf are simultaneously diagonalizable, i.e. there is a g ∈ GLn
such that gHfg

−1 ⊆ Tn, and so gHg−1 = gHfg
−1 = gHfg−1 ⊆ Tn. This proves

(3). Assertion (1) follows from this and what we said at the beginning of the proof,
and (2) follows from (1). �

Corollary 3.4.6. Let G be an algebraic group, let T be a torus and ϕ : G� T
a surjective homomorphism. If kerϕ is a diagonalizable group, then so is G.

Proof. Since there are only finitely many elements of a given order in a di-
agonalizable group it follows that G◦ commutes with every element of finite order
of D := kerϕ, hence G◦ commutes with D (Proposition 3.4.5(1)). But G = G◦ ·D,
because ϕ(G◦) = ϕ(G) = T , and so G commutes with D, i.e. D ⊆ Z(G). Choose an
element g ∈ G such that 〈ϕ(g)〉 is dense in T (Remark 3.2.2). Then 〈kerϕ, g〉 ⊆ G
is commutative and dense in G, hence G is commutative.

For any element t ∈ T of finite order, there is a preimage g ∈ G of finite order.
In fact, if g ∈ G is an arbitrary preimage, then gn ∈ D◦ for some n ≥ 1, and there is
a d ∈ D◦ such that dn = gn, because D◦ is a torus. Hence, g′ := gd−1 is a preimage



84 CHAPTER III. GROUP ACTIONS AND REPRESENTATIONS

of t of finite order. This implies that the elements of finite order are dense in G,
hence G is diagonalizable, by Proposition 3.4.5(1). �

Remark 3.4.7. Let ρ : D → GL(V ) be a representation of a diagonalizable
group D. For χ ∈ X (D) we define the weight space

Vχ := {v ∈ V | ρ(t)v = χ(t) · v for all t ∈ D} ⊆ V.

This is a D-stable subspace, and Vχ 6= (0) for only finitely many characters χ.
Moreover, we have

V =
⊕

χ∈X (D)

Vχ.

This is the so-called weight space decomposition, and the characters χ ∈ X (D) with
Vχ 6= (0) are called the weights of V .

Proof. It is clear that Vχ ⊆ V is a D-stable subspace and that the sum
∑
χ Vχ

is direct. Since every representation of a diagonalizable group is diagonalizable it
follows that

∑
χ Vχ = V . �

This weight space decomposition can be carried over to the coordinate ring
of a D-variety X, because the representation of D on O(X) is locally finite and
rational (Proposition 2.3.2). For the special case of the multiplicative group C∗ we
have discussed this in the first section 3.1.

Proposition 3.4.8. Let D be a diagonalizable group acting on a variety X.
Then we have the following weight space decomposition:

O(X) =
⊕

χ∈X (D)

O(X)χ, O(X)χ := {f ∈ O(X) | tf = χ(t) · f for all t ∈ D}.

This decomposition is a grading over X (D), i.e. O(X)χ · O(X)χ′ ⊆ O(X)χ+χ′ . In
particular, O(X)0 = O(X)D is the subalgebra of D-invariant functions, and each
O(X)χ is a O(X)D-module. Moreover, for any D-equivariant morphism ϕ : X → Y
we have ϕ∗(O(Y )χ) ⊆ O(X)χ.

Note that, according to our Definition 2.3.11, the elements from O(X)χ are the
semi-invariants with character χ (or with weight χ).

Denote by ΛX ⊆ X (D) the weights occurring in O(X). Clearly, an element
d ∈ D acts trivially on X if and only if χ(d) = 1 for all χ ∈ ΛX . This implies, as
we will see in the next section, that the action is faithful if and only if the Z-span
〈ΛX〉Z is equal to X (D) (see Theorem 3.5.2).

3.5. Classification of diagonalizable groups. In this section we will show
that there is an equivalence between diagonalizable groups and finitely generated
abelian groups which is given by the character group. We start with a description
of the vanishing ideal of a closed subgroup of a diagonalizable group D

Lemma 3.5.1. Let D be a diagonalizable group and E ⊆ D a closed subgroup.
Then the ideal of E is given by

I(E) = (χ− 1 | χ ∈ X (D) and χ|E = 1) ⊆ O(D).

In particular, E is equal to the kernel of a homomorphism D → Tm.

Proof. Consider the subgroup of characters vanishing on E,

XE := {χ ∈ X (D) | χ|E = 1} = ker(res : X (D)→ X (E)) ⊆ X (D).

Clearly, J := (χ − 1 | χ ∈ XE) ⊆ I(E). Assume that J 6= I(E), and choose
f ∈ I(E) \ J , f =

∑m
i=1 aiχi where m is minimal. We claim that this implies
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that χj |E 6= χk|E for every pair j 6= k. In fact, if χ1|E = χ2|E , then χ1 − χ2 =

χ2(χ1χ
−1
2 − 1) ∈ J , and so

f − a1(χ1 − χ2) = (a2 − a1)χ2 + a3χ3 + · · ·+ amχm ∈ I(E) \ J,
contradicting the minimality of m.

But if the characters χj |E are different, then they are linearly independent
(Lemma II.2.2.6), and so

∑m
i=1 aiχi|E = f |E = 0 implies that ai = 0 for all i. Thus

f = 0, contradicting the assumption that f /∈ J . �

Now we can show that there is an anti-equivalence between diagonalizable
groups and finitely generated abelian groups which is given by the character group.
We have already seen in Proposition II.2.2.7 that G 7→ X (G) is a left-exact con-
travariant functor on all algebraic groups.

Theorem 3.5.2. The functor D 7→ X (D) defines an anti-equivalence between
the diagonalizable groups and the finitely generated abelian groups. This means that
every finitely generated abelian group is isomorphic to the character group of a
diagonalizable group and that the natural map Hom(D,E)

∼→ Hom(X (E),X (D)) is
an isomorphism of groups. Moreover, a sequence of diagonalizable group

1→ D′ → D → D′′ → 1

is exact if and only if the induced sequence 0→ X (D′′)→ X (D)→ X (D′)→ 0 of
the character groups is exact.

Proof. (1) Let ∆ := Zn × F where F is finite and put D := Tn × F . Then
X (D) ' ∆ (see Exercises II.2.2.8 and II.2.2.9), and so every finitely generated
abelian group is isomorphic to the character group of some diagonalizable group.

(2) We have already seen in Corollary 3.3.4 that the map Hom(D,E)
∼→

Hom(X (E),X (D)) is a bijective group homomorphism.

(3) If 1 → D′
ϕ−→ D

ψ−→ D′′ → 1 is an exact sequence of diagonalizable

groups, then 0 → X (D′′)
X (ψ)−→ X (D)

X (ϕ)−→ X (D′) is exact (Proposition II.2.2.7).
Moreover, X (ϕ) is surjective, because ϕ∗ : O(D) → O(D′) is surjective and so the
image contains all characters.

(4) Conversely, if the sequence 0 → X (D′′)
X (ψ)−→ X (D)

X (ϕ)−→ X (D′) → 0 is
exact, then ϕ∗ is surjective and ψ∗ injective, hence ϕ is a closed immersion and ψ
is surjective. Moreover, the kernel of ψ is equal to ψ−1(e), and the maximal ideal
of me ⊆ O(D′′) is given by me = 〈χ − 1 | χ ∈ X (D′′)〉. Hence, the kernel kerψ is
the zero set of the ideal (ψ∗(χ) − 1 | χ ∈ X (D′′)). Since imX (ψ) = kerX (ϕ), we
finally get

(ψ∗(χ)− 1 | χ ∈ X (D′′)) = (η − 1 | η ∈ X (D), η|ϕ(D′) = 1} = I(ϕ(D′)),

by Lemma 3.5.1 above, and so kerψ = imϕ. �

Exercise 3.5.3. Let D be a diagonalizable group acting on a variety X, and denote
by 〈ΛX〉Z the Z-span of the weights of X. Show that X (D)/〈ΛX〉Z is the character group
of the kernel of the action of D on X.

3.6. Invariant rational functions. We finish this section by two results
about a variety X with an action of a diagonalizable group D relating the field
of D-invariant rational functions on X with the “generic” structure of X as a D-
variety.

Proposition 3.6.1. Let D be a diagonalizable group acting faithfully on an
irreducible variety X, and define X ′ := {x ∈ X | Dx is trivial}.

(1) X ′ is open and dense in X.
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(2) If D = T is a torus, then X ′ can be covered by T -stable special open sets
Ui which are T -isomorphic to T × Si.

(3) tdegC(X)D C(X) = dimD, and C(X)/C(X)D
◦

is purely transcendental.

Proof. (a) We start with the case where D is connected, hence D = T is a
torus. Let x ∈ X ′ and let O := Tx be the orbit of x. We first show that there
is a T -invariant special open set which contains O as a closed orbit. The ideal
a := I(Ō \ O) is T -stable and thus a direct sum of weight spaces: a =

⊕
χ aχ. It

follows that there exists a semi-invariant f ∈ aχ which does not vanish on O. This
implies that Xf is T -stable and that O ⊆ Xf is a closed orbit.

(b) Let T = Tn, let O := Tnx ⊆ X be a closed orbit for same x ∈ X ′, and let
µ : Tn → X be the orbit map. The comorphism µ∗ : O(X) → C[t1, t

−1
1 , . . . , tn, t

−1
n ]

is Tn-equivariant and surjective. Since the representation of Tn on O(X) is locally
finite and rational, we can find semi-invariants fi ∈ O(X) mapping onto ti under
µ∗. This implies that the morphism ϕ = (f1, . . . , fn) : X → Cn is Tn-equivariant
and maps O isomorphically onto Tn ⊆ Cn. By construction, O ⊆ ϕ−1(Tn) = Xf

where f = f1 · · · fn, and Proposition 1.2.10 implies that Xf ' Tn × S.

(c) From (a) and (b) we get statement (2) and, as a consequence, statement
(1) for a connected D. Moreover,

C(X)T = C(Xf )T = C(S) and C(X) = C(Xf ) = C(S)(t1, . . . , tn),

hence C(X) is purely transcendental over C(X)T of transcendence degree n =

dimT . Since C(X)D
◦
/C(X)D is a Galois extension with Galois group D/D◦ the

claims from (3) also follow.

(d) It remains to prove (1) for a diagonalizable group D. We already know that
X ′′ := {x ∈ X | (D◦)x is trivial} is open in X. Moreover, X ′′ \X ′ =

⋃
g 6=e(X

′′)g.

For any x ∈ X ′′ the stabilizer Dx maps injectively into D/D◦ which implies that if
(X ′′)g 6= ∅, then the order of g divides |D/D◦|. But D contains only finitely many
elements of a given order, hence the union

⋃
g 6=e(X

′′)g is a finite union of closed
sets, and we are done. �

Exercise 3.6.2. For every diagonalizable group D and every algebraic group G the
map

Hom(G,D)→ Hom(X (D),X (G)), ϕ 7→ ϕ∗|X (D),

is a bijective homomorphism of groups.

The second result concerns the case where there are no non-constant invariant
rational functions.

Proposition 3.6.3. Let T be a torus acting on an irreducible affine variety X.
The following assertions are equivalent.

(1) X consists of finitely many T -orbits.
(2) X contains a dense T -orbit.
(3) C(X)T = C.
(4) The multiplicities of O(X) are ≤ 1.

Proof. (i) ⇒ (ii): This is clear.

(ii) ⇒ (iii): This is again clear, since every T -invariant rational function f is
defined on an open dense set which meets the dense orbit. Hence f is constant.

(iii) ⇒ (iv): Assume that the dimension of the weight space O(X)χ is ≥ 2.
Then we can find two linearly independent p, q ∈ O(X)χ. It follows that r := p

q is

a non-constant rational invariant.
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(iv) ⇒ (i): O(X) is generated by finitely many weight vectors f1, . . . , fk, fi ∈
O(X)χi . It follows that every weight vector of O(X) is a scalar multiple of a mono-
mial in the fi. Setting f := f1 · · · fk we see that every weight vector of O(X)f is
invertible. We claim that this implies that Xf is a T -orbit. In fact, choose any point
x ∈ Xf and consider the orbit map µx : T → Xf , t 7→ tx. Then µ∗x : O(X)f → O(T )
is T -equivariant. Since every weight vector h is invertible, h cannot belong to the
kernel of µ∗x, and so µ∗x is injective. This implies that µx is dominant for every
x ∈ Xf , hence Xf is an orbit. �

The last step of the proof above also follows from the previous Proposition 3.6.1.
In fact, we can assume that the action of T is faithful, hence there is an orbit with
trivial stabilizer by Proposition 3.6.1(1). The last statement of this proposition says
that dimX = dimT , and so T has a dense orbit in X.

We already mentioned an important theorem of Rosenlicht which general-
izes both propositons above to an action of an arbitrary algebraic group G on an
irreducible variety X, see [Spr89, IV.2.2 Satz von Rosenlicht].

3.7. Exercises. For the convenience of the reader we collect here all exercises
from the third section.

Exercise. Let V be a (nontrivial) two dimensional C∗-module with weights p, q, i.e.
t(x, y) := (tp ·x, tq · y) for a suitable basis. Determine the weight space decomposition and
show the following.

(1) The invariant ring O(V )C
∗

is either C or a polynomial ring C[f ] in one variable.

(2) If O(V )C
∗

= C, then the weight spaces are finite dimensional.

(3) If O(X)C
∗
6= C, then the weight spaces are free O(X)C

∗
-modules of rank 1.

Exercise. Show that every O(X)n is a finitely generated O(X)C
∗
-module.

(Hint: Modify the proof of Lemma 3.1.4.)

Exercise. Let X be a C∗-variety and πX : X → X//C∗ the quotient.

(1) If Z ⊆ X is closed and C∗-stable, then the induced morphism πX |Z : Z → πX(Z)
is the quotient of Z by C∗.

(2) If f ∈ O(X)C
∗

is an invariant, then πX(Xf ) = (X//C∗)f , and the induced
morphism πX |Xf : Xf → (X//C∗)f is the quotient of Xf by C∗.

Exercise. Let d ∈ GL(V ) be a diagonalizable element. Then D := 〈d〉 is a diagonal-
izable group, and D/D◦ is cyclic.

Exercise. Let G be an algebraic group and µ∗ : O(G)→ O(G)⊗O(G) the comulti-
plication (1.3). If χ is a character of G, then µ∗(χ) = χ⊗ χ.

Exercise. For a diagonalizable group D with D/D◦ cyclic there exists an element

d ∈ D such that D = 〈d〉.

Exercise. Let d =

[
a 0
0 b

]
∈ GL2(C). Describe D := 〈d〉 in terms of a and b. What

is D◦, and what is D/D◦?

Exercise. Let D be a diagonalizable group acting on a variety X, and denote by
〈ΛX〉Z the Z-span of the weights of X. Show that X (D)/〈ΛX〉Z is the character group of
the kernel of the action of D on X.

Exercise. For every diagonalizable group D and every algebraic group G the map

Hom(G,D)→ Hom(X (D),X (G)), ϕ 7→ ϕ∗|X (D),

is a bijective homomorphism of groups.
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4. Jordan Decomposition and Commutative Algebraic Groups

4.1. Jordan decomposition. Let us first recall the following well-known re-
sult from linear algebra.

Proposition 4.1.1. Every matrix A ∈ Mn(C) admits a unique decomposition
A = As + An where As is diagonalizable, An is nilpotent, and AsAn = AnAs.
Similarly, every invertible matrix g ∈ GLn can be uniquely written in the form
g = gsgu where gs is diagonalizable, gu is unipotent, and gsgu = gugs.

These decompositions are called the additive resp. multiplicative Jordan de-
composition. They are clearly invariant under conjugation.

Example 4.1.2. Let G be one of the classical groups GLn, SLn, On, SOn, Sp2m.
Then, for any g ∈ G ⊆ GLn we have gs, gu ∈ G. This follows immediately from the
definition of these groups and the uniqueness of the Jordan decomposition (see
the following Exercises 4.1.3 and 4.1.4). We will see below in Corollary 4.1.6 that
this holds for every closed subgroup G ⊆ GLn.

Exercise 4.1.3. Let g = gsgu be the Jordan decomposition of some g ∈ GLn. Then
gt = gtsg

t
u and g−1 = g−1

s g−1
u are the Jordan decompositions as well.

Exercise 4.1.4. Let B ∈ Mn(C) be an invertible matrix. Define G(B) := {g ∈ GLn |
gtBg = B}. This is a closed subgroup of GLn. If g ∈ G(B) and g = gsgu its Jordan
decomposition in GLn, then gs, gu ∈ G(B).
(Hint: g ∈ G(B) if and only if BgB−1 = g−t.)

Proposition 4.1.5. For any g ∈ GLn with Jordan decomposition g = gsgu
we have 〈g〉 = 〈gs〉 · 〈gu〉 and 〈gs〉 ∩ 〈gu〉 = {e}. In particular, gs, gu ∈ 〈g〉.

Proof. Using the Jordan normal form we can assume that g is in upper
triangular form and that gs ∈ Tn and gu ∈ Un. Then 〈g〉 ⊆ 〈gs〉·〈gu〉 ⊆ TnUn = Bn,

and the projection Bn → Tn induces a surjective homomorphism ϕ : 〈g〉 → 〈gs〉. If

ϕ is an isomorphism, then 〈g〉 is a diagonalizable group, hence g is diagonalizable

by Proposition 3.4.5(3). Otherwise the kernel is a nontrivial subgroup of 〈gu〉 ' C+,

hence kerϕ = 〈gu〉, and so gu ∈ 〈g〉 and gs = gg−1
u ∈ 〈g〉. �

Corollary 4.1.6. Let G ⊆ GLn be a closed subgroup. For any g ∈ G, with
Jordan decomposition g = gsgu, we have gs, gu ∈ G.

Exercise 4.1.7. Let g ∈ GLn and denote by C[g] ⊆ Mn(C) the subalgebra generated
by g. If g = gsgu is the Jordan decomposition, then gs, gu ∈ C[g]. Moreover, there are
polynomials p(t), q(t) of degree ≤ n such that gs = p(g) and gu = q(g).

Exercise 4.1.8. With the notation of the previous exercise assume, in addition, that
g ∈ GLn(K) for a subfield K ⊆ C. Then gs, gu ∈ K[g] ⊆ Mn(K).
(Hint: K[g] ' K[t]/(mg) where mg is the minimal polynomial of g which has coefficients
in K. Moreover, there is a finite extension K′/K which contains gs and gu. Now use the
action of the Galois group and the uniqueness of the Jordan decomposition.)

Exercise 4.1.9. Let g ∈ GLn with Jordan decomposition g = gsgu. If the subspace
W ⊆ Cn is stable under g, then W is stable under gs and under gu.

4.2. Semisimple elements. We finally want to show that the Jordan de-
composition does not depend on the embedding G ⊆ GLn. For this we make the
following definition.

Definition 4.2.1. An element g of an algebraic group G is called semisimple
if 〈g〉 is a diagonalizable group.

Proposition 4.2.2. Let ϕ : G→ H be a homomorphism of algebraic groups.
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(1) If u ∈ G is unipotent, then so is ϕ(u) ∈ H.
(2) If s ∈ G is semisimple, then so is ϕ(s) ∈ H.
(3) An element g ∈ GLn is semisimple if and only if g is diagonalizable.

Proof. For any g ∈ G we have ϕ(〈g〉) = 〈ϕ(g)〉. Now (1) follows, because u ∈
G is unipotent if and only if either u = e or 〈u〉 ' C+ (Definition 2.6.3). Statement
(2) follows from Proposition 3.4.5(2), and (3) from Proposition 3.4.5(3). �

Corollary 4.2.3. Let G be an algebraic group and g ∈ G. Then the Jordan
decomposition g = gsgu is independent of the choice of an embedding G ⊆ GLn.

Proof. This is clear, because the decomposition 〈g〉 = 〈gs〉·〈gu〉 is independent
of the choice of the embedding, by the proposition above. �

Exercise 4.2.4. If g ∈ G is semisimple, then 〈g〉/〈g〉
◦

is cyclic.

Exercise 4.2.5. Let ϕ : G→ H be a homomorphism of algebraic groups. If u ∈ ϕ(G)
is unipotent, then ϕ−1(u) contains unipotent elements. If s ∈ ϕ(G) is semisimple, then
ϕ−1(s) contains semisimple elements.

4.3. Commutative algebraic groups. For any algebraic group G denote
by Gu ⊆ G the set of unipotent elements and by Gs ⊆ G the set of semisimple
elements. Embedding G into GLn we see that Gu ⊆ G is a closed subset whereas
Gs can be dense like in the case of G = GLn. However, for commutative groups the
situation is much nicer.

Let us first discuss the case of unipotent group. Recall that an algebraic group
U is called unipotent if every element of U is unipotent (Definition II.2.6.3).

Exercise 4.3.1. A unipotent group U is connected.

(Hint: For u ∈ U , u 6= e, the subgroup 〈u〉 ∩ U◦ has finite index in 〈u〉 ' C+.)

If W is a finite dimensional vector space, then the underlying additive group
W+ is a unipotent group. We claim that every commutative unipotent group has
this form.

Proposition 4.3.2. Let U be a commutative unipotent group of dimension m.
Then U is isomorphic to (C+)m = (Cm)+. More precisely, there is a canonical

isomorphism exp: LieU
∼→ U of algebraic groups, and it induces an isomorphism

GL(LieU)
∼→ Aut(U).

Proof. If U ′ ⊆ U is a closed subgroup and u ∈ U \ U ′, then 〈u〉 ∩ U ′ = {e}
and C+×U ′ ∼→ 〈u〉 ·U ′. Thus, by induction, there is an isomorphism (C+)m ' U . It
follows from Proposition II.2.6.1 that every A ∈ LieU belongs to the Lie algebra of
a subgroup isomorphic to C+. As a consequence, for every representation ρ : U →
GL(V ) the image dρ(A) is nilpotent for all A ∈ LieU .

Now choose a closed embedding ρ : U ↪→ GL(V ). Then LieU ⊆ End(V ) con-
sists of pairwise commuting nilpotent elements, and so exp: LieU → GL(V ) is
an injective homomorphism of algebraic groups (Proposition II.2.5.1). We know
from Proposition II.2.6.1 that for every nilpotent A ∈ End(V ), A 6= 0, there is
a unique one-dimensional unipotent subgroup U ′ ⊆ GL(V ) such that A ∈ LieU ′.
This implies that exp(LieU) = U . It is now easy to see that this isomorphism is
independent of the choice of the embedding of U into some GL(V ).

The last statement is clear, because End(C+) = C. �

Remark 4.3.3. The proof above shows that for every representation ρ : U →
GL(V ) of a commutative unipotent group U the image dρ(LieU) ⊆ End(V ) consists
of nilpotent endomorphisms. We will see later that this holds for any unipotent
group.
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Now we can describe the structure of commutative algebraic groups.

Proposition 4.3.4. Let H be a commutative algebraic group. Then Hu and
Hs are closed subgroups, Hs is a diagonalizable group and Hu a unipotent group,
Hs ∩ Hu = {e}, and the multiplication Hs × Hu

∼→ H is an isomorphism. In
particular, LieH = LieHs ⊕ LieHu.

Proof. We have already seen earlier that Hu is a closed subgroup (see Exer-
cise 2.6.6). We claim that Hs is also closed, hence a diagonalizable group (Propo-
sition 3.4.5). In fact, let F ⊆ Hs be the subgroup of elements of finite order. Since

the elements of finite order in 〈g〉 are dense for any semisimple element g ∈ H, we
see that Hs ⊆ F̄ ⊆ Hs, hence F̄ = Hs, and so Hs = Hs.

It follows that Hs∩Hu = {e}, and we obtain an injective homomorphism Hs×
Hu → H. Since any h ∈ H has a Jordan decomposition h = hshu with hs, hu ∈ H
we get hs ∈ Hs and hu ∈ Hu, and so Hs ×Hu

∼→ H is an isomorphism. �

Corollary 4.3.5. A one-dimensional connected algebraic group is isomorphic
to C∗ or to C+.

Proof. We know that a one-dimensional algebraic group is commutative (Ex-
ample 1.4.8). Thus the claim follows from the proposition above together with
Proposition 3.4.1. �

Exercise 4.3.6. A connected commutative algebraic group H is divisible, i.e., the
map h 7→ hm is surjective for every m ∈ Z \ {0}.

Exercise 4.3.7. Let g :=

[
5 −3
3 −1

]
. What is the structure of 〈g〉? Show that the

subgroup 〈g〉 ⊆ GL2 is defined by two linear equations.

We have seen that a representation of a diagonalizable group is diagonalizable.
This generalizes to commutative groups in the way that every representation is
“triagonalizable”. We will see later that this holds more generally for connected
solvable groups.

Proposition 4.3.8. Let ρ : H → GL(V ) be an n-dimensional representation
of a commutative group H. Then there is a basis of V such that ρ(H) ⊆ Bn,
ρ(Hs) ⊆ Tn, and ρ(Hu) ⊆ Un.

Proof. (a) First assume that H is unipotent. If h ∈ H is a nontrivial element
and W ⊆ V an eigenspace of h, then W is H-stable and W 6= V . By induction, we
can assume that the claim holds for the representation of H on W and on V/W ,
and the proposition follows in this case.

(b) In general, we decompose V into weight spaces with respect to the diago-
nalizable group Hs: V =

⊕
χ∈X (Hs)

Vχ, see Remark 3.4.7. Since every weight space

Vχ is stable under H, the claim follows from (a) applied to the representation of
Hu on Vχ. �

4.4. Exercises. For the convenience of the reader we collect here all exercises
from the forth section.

Exercise. Let g = gsgu be the Jordan decomposition of some g ∈ GLn. Then
gt = gtsg

t
u and g−1 = g−1

s g−1
u are the Jordan decompositions as well.

Exercise. Let B ∈ Mn(C) be an invertible matrix. Define G(B) := {g ∈ GLn |
gtBg = B}. This is a closed subgroup of GLn. If g ∈ G(B) and g = gsgu its Jordan
decomposition in GLn, then gs, gu ∈ G(B).
(Hint: g ∈ G(B) if and only if BgB−1 = g−t.)
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Exercise. Let g ∈ GLn and denote by C[g] ⊆ Mn(C) the subalgebra generated by
g. If g = gsgu is the Jordan decomposition, then gs, gu ∈ C[g]. Moreover, there are
polynomials p(t), q(t) of degree ≤ n such that gs = p(g) and gu = q(g).

Exercise. With the notation of the previous exercise assume, in addition, that g ∈
GLn(K) for a subfield K ⊆ C. Then gs, gu ∈ K[g] ⊆ Mn(K).
(Hint: K[g] ' K[t]/(mg) where mg is the minimal polynomial of g which has coefficients
in K. Moreover, there is a finite extension K′/K which contains gs and gu. Now use the
action of the Galois group and the uniqueness of the Jordan decomposition.)

Exercise. Let g ∈ GLn with Jordan decomposition g = gsgu. If the subspace
W ⊆ Cn is stable under g, then W is stable under gs and under gu.

Exercise. If g ∈ G is semisimple, then 〈g〉/〈g〉
◦

is cyclic.

Exercise. Let ϕ : G → H be a homomorphism of algebraic groups. If u ∈ ϕ(G)
is unipotent, then ϕ−1(u) contains unipotent elements. If s ∈ ϕ(G) is semisimple, then
ϕ−1(s) contains semisimple elements.

Exercise. A unipotent group U is connected.

(Hint: For u ∈ U , u 6= e, the subgroup 〈u〉 ∩ U◦ has finite index in 〈u〉 ' C+.)

Exercise. A connected commutative algebraic group H is divisible, i.e., the map
h 7→ hm is surjective for every m ∈ Z \ {0}.

Exercise. Let g :=

[
5 −3
3 −1

]
. What is the structure of 〈g〉? Show that the subgroup

〈g〉 ⊆ GL2 is defined by two linear equations.

5. The Correspondence between Groups and Lie Algebras

5.1. The differential of the orbit map. Consider a linear action of an
algebraic group G on a finite dimensional vector space V , given by a representation
ρ : G → GL(V ). It is easy to see that the differential of the action ρ : G × V → V
has the following form:

dρ(e,w) : LieG⊕ V → V, (A, v) 7→ dρ(A)w + v.

In fact, we can reduce to the case G = GL(V ) where the action extends to a bilinear
map End(V )× V → V . We will shortly right Aw for dρ(A)w.

In particular, the differential of the orbit map µ : G→ V , g 7→ gw, is given by

dµe : LieG→ V, A 7→ Aw.

This implies the first statement of the following lemma. The second is obtained by
considering the action G×W →W .

Lemma 5.1.1. (1) For a fixed point v ∈ V G we have Av = 0 for all
A ∈ LieG.

(2) If W ⊆ V is G-stable subspace, then AW ⊆W for all A ∈ LieG.

Example 5.1.2. Consider the action of GLn on the matrices Mn by conjuga-
tion, (g,A) 7→ gAg−1. In this case, dρ(A) = adA = [A,−] (Proposition 4.4.1), and
so the differential dρ(E,A) : gln⊕Mn → Mn is given by

(X,B) 7→ [X,A] +B = XA−AX +B.

It follows that the differential dµ of the orbit map in A ∈ Mn has image [gln, A],
and its kernel is L := {X ∈ gln | XA = AX} which is a subalgebra of the matrix
algebra Mn. This shows that the stabilizer of A in GLn is equal to L∗, the invertible
elements of L. Hence L = Lie(GLn)A, and [gln, A] = TACA where CA ⊆ Mn is the
conjugacy class of A. (The latter follows because the differential of the orbit map
is surjective on an open set of GLn, hence everywhere.) We will prove this for any
G-action on a variety in Lemma 5.1.5 below.
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Example 5.1.3. Let V be a finite dimensional vector space and W ⊆ V a
subspace. Define N := NGL(V )W to be the normalizer of W . Then N is a closed
connected subgroup and

LieN = {A ∈ End(V ) | AW ⊆W}.

Proof. N is a closed subgroup by Proposition 1.2.3, and LieN ⊆ L := {A ∈
End(V ) | AW ⊆ W} by the previous lemma. By definition, N = L ∩ GL(V ) and
thus N is a nonempty open subset of the vector space L. Therefore, N is connected
and dimN = dimL, and so LieN = L. �

Example 5.1.4. Let v ∈ V and let H := GL(V )v be the stabilizer of v. Then
H is connected and

LieH = {A ∈ End(V ) | Av = 0}.

Proof. The first statement is clear, since we can assume that v = e1. We
know from the lemma above that LieH ⊆ L := {A ∈ End(V ) | Av = 0}. Therefore
it suffices to show that dimH ≥ dimL. We can assume that v 6= 0 and choose a
basis of V containing v. Then H is defined by n = dimV equations whereas L is
defined by n linearly independent linear equations. Thus dimL = n2 − n ≤ dimH,
and so LieH = L. �

Now we extend these results to an arbitrary G-action on a variety X. Let x ∈ X
and consider the orbit map

µx : G→ X, g 7→ gx.

Lemma 5.1.5. For the differential dµe : Lie → TxX of the orbit map µ =
µx : G→ X we get

im dµe = Tx(Gx) = Tx(Gx) and ker dµe = LieGx.

Proof. G◦x is a connected component of Gx and so TxG
◦x = TxGx. Thus

we can assume that G is connected and that X = Gx is irreducible. Since dµg is
surjective on a dense open set of G (see A.4.9) it is surjective everywhere. Thus
im dµe = Tx(Gx) = Tx(Gx).

Now dim ker dµe = dim LieG− dimTxGx = dimG− dimGx = dimGx, by the
dimension formula for orbits (1.3). Since LieGx ⊆ ker dµe we finally get LieGx =
ker dµe. �

Exercise 5.1.6. Consider the action of SL2×SL2 on M2 defined by (g, h)A := gAh−1.
Calculate the differential of the orbit map in A, determine its image and its kernel, and
verify the claims of Lemma 5.1.5.

5.2. Subgroups and subalgebras. The following results show that there are
very strong relations between (connected) algebraic groups and their Lie algebras.

Proposition 5.2.1. (1) Let ϕ,ψ : G → H be two homomorphisms. If G
is connected, then dϕe = dψe implies that ϕ = ψ.

(2) If H1, H2 ⊆ G are closed subgroups, then Lie(H1 ∩H2) = LieH1 ∩LieH2.
In particular, if LieH1 = LieH2, then H◦1 = H◦2 .

(3) Let ϕ : G→ H be a homomorphism, and let H ′ ⊆ H be a closed subgroup.
Then

Lieϕ(G) = dϕe(LieG) and Lieϕ−1(H ′) = (dϕe)
−1(LieH ′).

In particular, Lie kerϕ = ker dϕe.
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Proof. (1) We define the following G-action on H: gh := ϕ(g)hψ(g)−1. Then
Ge = {g ∈ G | ϕ(g) = ψ(g)}. For the orbit map µ : G → H we get, by assump-
tion, that dµe(A) = dϕ(A) − dψ(A) = 0, and so LieGe = ker dµe = LieG, by
Lemma 5.1.5. Thus Ge = G, because G is connected, and the claim follows.

(2) Here we consider the action of H1×H2 on G given by (h1, h2)g := h1gh
−1
2 .

Then (H1×H2)e ' H1∩H2. For the orbit map µ : H1×H2 → G, (h1, h2) 7→ h1h
−1
2

we have dµe(A1, A2) = A1−A2, and so ker dµe ' LieH1 ∩LieH2. Again the claim
follows from Lemma 5.1.5 above.

(3) Now consider the action of G on H by gh := ϕ(g)h. Then ϕ is the orbit map
in e ∈ H, and so, again by Lemma 5.1.5, dϕe(LieG) = im dϕe = Teϕ(G) = Lieϕ(G)
and ker dϕe = Lie kerϕ. This proves the first claim and shows that the map dϕe has
rank dimϕ(G). Because of (2) we can replace H ′ by H ′∩ϕ(G). Then ϕ−1(H ′)→ H ′

is surjective with kernel kerϕ, and so both sides from the second equality have the
same dimension. Since dϕe(Lieϕ−1(H ′)) ⊆ LieH ′ the second claim follows also. �

Corollary 5.2.2. The correspondence H 7→ LieH between closed connected
subgroups of G and Lie subalgebras of LieG is injective and compatible with inclu-
sions and intersections.

5.3. Representations of Lie algebras. Let ρ : G → GL(V ) be a represen-
tation of the algebraic group G. Then the differential

dρ : LieG→ End(V )

is a representation of the Lie algebra LieG. This means that

dρ[A,B] = [dρ(A), dρ(B)] = dρ(A) ◦ dρ(B)− dρ(B) ◦ dρ(A) for A,B ∈ LieG.

In this way we obtain an action of LieG on V by linear endomorphisms which will
be shortly denoted by Av := dρ(A)v.

Exercise 5.3.1. Let G be a connected group and let ρ : G → GL(V ) and µ : G →
GL(W ) be two representations. Then ρ is equivalent to µ if and only if dρ : LieG →
End(V ) is equivalent to dµ : LieG→ End(W ).

Now we can extend Examples 5.1.3 and 5.1.4 to arbitrary representations.

Proposition 5.3.2. Let ρ : G → GL(V ) be a representation. For any v ∈ V
and any subspace W ⊆ V we have

LieGv = {A ∈ LieG | Av = 0} and Lie NG(W ) = {A ∈ LieG | AW ⊆W}.
If G is connected, then v is a fixed point (resp. W is G-stable) if and only if Av = 0
(resp. AW ⊆W ) for all A ∈ LieG.

Proof. Proposition 5.2.1(3) implies that we can replace G by its image in
GL(V ), hence can assume that G ⊆ GL(V ). Then Gv = GL(V )v∩G and NG(W ) =
NGL(V )(W ) ∩ G, and the claims follow from Proposition 5.2.1(2) and the Exam-
ples 5.1.3 and 5.1.4. �

Example 5.3.3. Let ρ : G→ GL(V ) be a representation, and let η ∈ End(V ).
Define Gη := {g ∈ G | ρ(g) ◦ η = η ◦ ρ(g)}. Then LieGη = {A ∈ LieG | [dρ(A), η] =
0}.

For any Lie algebra L we denote by

z(L) := {A ∈ L | [A,B] = 0 for all B ∈ L}
the center of L.

Exercise 5.3.4. Show that z(L) is a characteristic ideal of L, i.e. z(L) is stable under
every automorphism of the Lie algebra L.
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Corollary 5.3.5. The kernel of the adjoint representation Ad: G→ GL(LieG)
of a connected group G is the center Z(G) of G, and Lie Z(G) = z(LieG).

Proof. Since Ad g = d(Int g) we get from Proposition 5.2.1(1) that Ad g =
Ad e = id if and only if Int g = Int e = id which means that g ∈ Z(G). Hence
Z(G) = ker Ad, and so Lie Z(G) = ker ad = z(LieG), by Proposition 5.2.1(3). �

Corollary 5.3.6. A connected algebraic group G is commutative if and only
if its Lie algebra LieG is commutative.

Example 5.3.7. A one-dimensional connected algebraic group is commutative,
because a one-dimensional Lie algebra is commutative (cf. Example II.1.4.8).

Corollary 5.3.8. Let H ⊆ G be a connected subgroup. Then

Lie NG(H) = {A ∈ LieG | [A,LieH] ⊆ LieH}.
In particular, if G is connected, then H is normal if and only if LieH is an ideal
in LieG.

Proof. Applying Proposition 5.2.1(3) to the homomorphism Int g : H → G
we see that Lie gHg−1 = Ad g(LieH). Since H is connected this implies that
gHg−1 = H if and only if Ad g(LieH) = LieH. Hence NG(H) = NG(LieH),
and the claim follows from Proposition 5.3.2 applied to the adjoint representation
Ad: G→ GL(LieG). �

Exercise 5.3.9. LetG be a connected noncommutative 2-dimensional algebraic group.
Then

(1) Z(G) is finite;
(2) The unipotent elements Gu form a normal closed subgroup isomorphic to C+;
(3) There is a subgroup T ⊆ G isomorphic to C∗ such that G = T ·Gu.

(Hint: Study the adjoint representation Ad: G→ GL(LieG), and use Exercise 4.1.3.)

Exercise 5.3.10. Use the previous exercise to show that every 2-dimensional closed
subgroup of SL2 is conjugate to B′2 := B2 ∩ SL2.

5.4. Vector fields on G-varieties. Let X be a G-variety. To any A ∈ LieG
we associate a vector field ξA on X in the following way:

(ξA)x := dµx(A) for x ∈ X
where µx : G → X is the orbit map in x ∈ X. If X = V is a vector space and
G ⊆ GL(V ), then, for A ∈ LieG ⊆ End(V ) we get (ξA)v = Av ∈ V = TvV (5.1)
which corresponds to the derivation ∂Av,v ∈ TvV (see A.4.5 and Example A.4.5.2).
This shows that ξA is an algebraic vector field and that A 7→ ξA is a linear map. In
particular, for a linear function ` ∈ V ∗ we find

ξA`(v) = ∂Av,v ` =
`(v + εAv)− `(v)

ε
|ε=0 = `(Av).

Choosing a basis of V and identifying V with Cn and End(V ) with Mn we get
ξEij = xj

∂
∂xi

, and so

ξA =
∑
i,j

aijxj
∂

∂xi
=
∑
i

(Ax)i
∂

∂xi
.

In particular, for a linear function ` ∈ V ∗ we find ξA`(v) = `(Av). A simple calcu-
lation shows that ξ[A,B] = [ξB , ξA]. Thus we have proved the following result.

Proposition 5.4.1. For every A ∈ LieG the vector field ξA on X is algebraic,
and the map A 7→ ξA is an antihomomorphism LieG→ Vec(X) of Lie algebras.
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Example 5.4.2. Consider an action of an algebraic group G on affine n-space
Cn:

ρ(g)(x1, . . . , xn) = (f1(g, x1, . . . , xn), . . . , fn(g, x1, . . . , xn)) ∈ Aut(Cn).

Then, for any A ∈ LieG, the vector field ξA on Cn is given by

(ξA)x = Af1(x)
∂

∂x1
+ · · ·Afn(x)

∂

∂xn

where Afi(x) is the derivative of the function g 7→ fi(g, x) on G with respect to the
tangent vector A ∈ LieG. It is formally defined by

Afi(x) =
fi(e+ εA, x)− fi(e, x)

ε

∣∣∣
ε=0

.

Recall that the divergence of a vector field δ =
∑
i pi

∂
∂xi

is defined by

div δ :=
∑
i

∂pi
∂xi

.

We want to show that div ξA is a constant for any vector field ξA induced by an
action of an algebraic group.

If ϕ = (f1, . . . , fn) : Cn → Cn is an automorphism, then the Jacobian determi-
nant

jac(ϕ) := det


∂f1

∂x1
· · · ∂f1

∂xn
...

. . .
...

∂fn
∂x1

· · · ∂fn
∂xn


does not vanish in any point of Cn and thus is a nonzero constant. It is easy
to see that the map ϕ 7→ jac(ϕ) is a homomorphism of groups, and so the map
χ : g 7→ jac(ρ(g)) is a character of G. We claim that the differential of χ is given by

dχ(A) = div ξA =
∑
i

∂Afi(x)

∂xi
,

and thus div ξA ∈ C as we wanted to show.
In order to prove the claim, consider the morphism jac: (C[x]≤m)n → C[x]≤nm

where C[x]≤m := {f ∈ C[x1, . . . , xn] | deg f ≤ m}, and set e := (x1, . . . , xn). Then
we get

jac(x1 + εp1, . . . , xn + εpn) = det

1 + ε ∂p1

∂x1
· · · ε ∂p1

∂x1

...
. . .

...

ε∂pn∂x1
· · · 1 + ε ∂pn∂xn

 = 1 + ε
∑
i

∂pi
∂xi

,

and so the differential d jace : (C[x]≤m)n → C[x]≤nm is given by d jace(p1, . . . , pn) =∑
i
∂pi
∂xi

= div(
∑
i pi

∂
∂xi

), and the claim follows.

We have seen in Proposition 5.4.1 above that the map A 7→ ξA is an antihomo-
morphism of Lie algebras. This has the following simple explanation.

Proposition 5.4.3. Let X be a G-variety. Then the regular representation of
G on O(X) defines a locally finite representation of LieG on O(X) by derivations
which is given by A 7→ −ξA.

Proof. Again we can assume that X is a vector space with a linear represen-
tation of G. For any f ∈ O(V ) and A ∈ LieG ⊆ End(V ) we get

(e+ εA)f(v) = f((e+ εA)−1v) = f(v − εAv) = f(v)− ξAf

which shows that Af = −ξAf . �
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Exercise 5.4.4. Let X be a G-variety and assume that G is connected. A regular
function f ∈ O(X) is a G-invariant if and only if ξAf = 0 for all A ∈ LieG.
(Hint: Look at the regular representation of G on O(X) and use Proposition 5.3.2.)

As in II.4.5 there is another description of the vector field ξA. Denote by µ : G×
X → X the action of G on X, and consider A ∈ LieG as a derivation O(G) → C
in e. Then ξA, as a derivation of O(X), is given by the composition

ξA : O(X)
µ∗−−−−→ O(G)⊗O(X)

A⊗id−−−−→ O(X).

In fact, if µ∗(f) =
∑
i hi ⊗ fi, then µ∗x(f) =

∑
i hifi(x) ∈ O(G), and so

((A⊗ id)µ∗(f))(x) = (
∑
i

Ahi ⊗ f)(x) =
∑
i

Ahi · fi(x) = A(µ∗x(f)) = dµx(A)f.

We have seen in II.4.5 that the Lie algebra structure on TeG = LieG can be
obtained via left or right invariant vector fields on G. What is the relation with the
construction above? If we take the right action ρg : (g, h) 7→ hg−1 and construct

the vector field ξA as above, then ξA = δ̃A, where δ̃A is the right-invariant vector
field on G with (δ̃A)e = A (see Remark II.4.5.2). This explains again why we have
an antihomomorphism in Proposition 5.4.1.

Example 5.4.5. Let X be a G-variety and Y ⊆ X a closed G-stable subset.
Then (ξA)y ∈ TyY for all A ∈ LieG and all y ∈ Y . In particular, if x ∈ X is a fixed
point, then (ξA)x = 0 for all A ∈ LieG.

Exercise 5.4.6. Let X be a G-variety where G is connected. Then x ∈ X is a fixed
point if and only if (ξA)x = 0 for all A ∈ LieG.

Corollary 5.4.7. Let X be a G-variety where G is connected, and let Y ⊆ X
be an irreducible closed subset. Then Y is G-stable if and only if (ξA)y ∈ TyY for
all A ∈ LieG and y ∈ Y .

Proof. The differential of the dominant morphism ϕ : G × Y → GY is given
by

dϕ(e,y) : LieG⊕ TyY → TyGY , (A, v) 7→ (ξA)y + v.

By assumption, the image dϕ(e,y) is contained in TyY . On the other hand, there is
an open dense set U ⊆ G×Y where the differential is surjective (A.4.9), and by the
G-equivariance of ϕ there is a point of the form (e, y) such that dϕ(e,y) is surjective.

Hence, dimy GY = dimy Y and so Y = GY , because GY is irreducible. �

With almost the same argument we can show the following.

Corollary 5.4.8. Let X be a G-variety and Y ⊆ X a locally closed irreducible
subset. Assume that TyY ⊆ TyGy for all y ∈ Y . Then Y ⊆ Gy0 for a suitable
y0 ∈ Y .

Proof. We can assume that G is connected and that Y is a special open set
of Y , hence an affine variety. Consider the morphism µ : G× Y → GY ⊆ X and its
differential

dµ(e,y) : LieG⊕ TyY → Ty(GY ), (A, v) 7→ (ξA)y + v.

By assumption, we get im dµ(e,y) = Ty(Gy) for every y ∈ Y . As above we can find

a point y0 ∈ Y such that dµ(e,y0) is surjective. Hence, T(e,y0)(GY ) = im dµ(e,y0) =

T(e,y0)(Gy0) which implies that dimGY ≤ dimGy0. Since both varieties, GY and

Gy0, are irreducible, we finally get GY = Gy0, hence the claim. �
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5.5. G-action on vector fields. In section II.4.5 we showed that the G-
invariant vector fields on the group G can be used to define the Lie algebra structure
on the tangent space TeG. For an arbitrary G-variety X a vector field ξ ∈ Vec(X)
is called G-invariant if it is invariant under left multiplication µg : x 7→ gx for all
g ∈ G, i.e. if dµgξx = ξgx for all g ∈ G and x ∈ X.

Example 5.5.1. If V is a G-module and v, w ∈ V , then dµg∂v,w = ∂gv,gw. In
fact,

(dµg∂v,w)f = ∂v,w(µ∗gf) =
µ∗gf(v + εw)− µ∗gf(v)

ε

∣∣∣
ε=0

=
f(gv + εgw)− f(gv)

ε

∣∣∣
ε=0

= (∂gv,gw)f.

In particular, for A ∈ End(V ) we get dµg∂Av,v = ∂gAv,gv = ∂Ad g(A)gv,gv, hence the
vector field ∂A,v is G-invariant if and only if Ad g(A) = A for all g ∈ G.

More generally, we can define a linear action of G on the vector fields of a
G-variety X by setting

(gδ)gx := dµgδx, i.e. gδ = dµg ◦ δ ◦ µg−1

where we consider δ as section of the tangent bundle p : TX → X (A.4.5). If we
regard δ as a derivation, δ ∈ Vec(X) = Der(O(X)), then gδ := g ◦ δ ◦ g−1, i.e.
(gδ)f = g(δ(g−1f)) for f ∈ O(X).

In case of a linear representation of G on V we can identify Vec(V ) with O(V )⊗
V and find g∂v = ∂gv and g(f∂v) = (gf)(∂gv). This shows that the representation
of G on Vec(V ) is locally finite and rational. Moreover, we get g ∂Av,v = ∂Ad g(A)v,v

as we have already seen in Example 5.5.1 above.
Choosing an embedding of X into a representation space V we see that g(ξA) =

ξAd g(A), and that the action of G on Vec(X) is also locally finite and rational. In
fact, we have a canonical G-linear surjection VecX(V ) � Vec(X) where VecX(V ) ⊆
Vec(V ) is the G-stable subspace of those vector fields ξ ∈ Vec(V ) which satisfy
ξf |X = 0 for all f ∈ I(X) (Proposition A.4.5.4). This proves the following propo-
sition, except the description of the action of LieG on the vector fields.

Proposition 5.5.2. Let X be a G-variety. The action of G on the vector
fields Vec(X) is locally finite and rational, and the corresponding action of LieG
on Vec(X) is given by Aδ = −[ξA, δ]. For A ∈ LieG we have gξA = ξAd g(A), hence
the Lie algebra homomorphism ξ : LieG→ Vec(X) is G-equivariant.

Proof. As above, we can assume that X is a linear representation V , that
G ⊆ GL(V ) and that LieG ⊆ End(V ). With the identification Vec(V ) = O(V )⊗V
we find A(f∂v) = (Af)∂v+f∂Av. On the other hand, [ξA, f∂v] = (ξAf)∂v+f [ξA, ∂v].
We claim that [ξA, ∂v] = −∂Av. In fact, choosing coordinates, one reduces to the
cases A = Eij and v = ek, i.e. ξA = xj

∂
∂xi

and ∂v = ∂
∂xk

. But then an easy

calculation shows that [ξEij , ∂ek ] = 0 for k 6= j and [ξEij , ∂ej ] = −∂ei , and the
claim follows. Thus, using Proposition 5.4.3, we finally get

[ξA, f∂v] = (ξAf)∂v + f [ξA, ∂v] = (−Af)∂v − f∂Av = −A(f∂v).

�

Exercise 5.5.3. Let f ∈ C[y] be a polynomial.

(1) The map C+ × C2 → C2, s(x, y) := (x+ sf(y), y), is an action of C+ on C2.
(2) Describe the orbits and the fixed points of this action.
(3) Determine the differential of the orbit maps and verify the results of (2).
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Finally we prove the following generalization of the fact that a representation
of a connected group G on a vector space V is uniquely determined by the represen-
tation of the Lie algebra LieG on V (see Proposition 5.2.1(1), cf. Exercise 5.3.1).

Proposition 5.5.4. Let G be a connected algebraic group and X a variety.
An action of G on X is uniquely determined by the Lie algebra homomorphism
LieG→ Vec(X).

Proof. Let ρ(1), ρ(2) be two actions of G on X and assume that the cor-

responding vector fields ξ
(1)
A and ξ

(2)
A are equal for all A ∈ LieG. Define an ac-

tion ρ̃ on X × X by ρ̃(g)(x, y) := (ρ(1)(g)x, ρ(2)(g)y). For A ∈ LieG we get

ξ̃A = (ξ
(1)
A , ξ

(2)
A ) ∈ Vec(X × X) = Vec(X) ⊕ Vec(X). Hence (ξ̃A)(x,x) ∈ T(x,x)∆X

where ∆X ⊆ X × X is the diagonal. Therefore, by Corollary 5.4.7, ∆X is stable
under G and so ρ(1) = ρ(2). �

5.6. Jordan decomposition in the Lie algebra. Let G be an algebraic
group and g := LieG its Lie algebra.

Definition 5.6.1. An element A ∈ g is called semisimple resp. nilpotent if for
every representation ρ : G → GL(V ) the image dρ(A) ∈ End(V ) is diagonalizable
resp. nilpotent.

We have seen in Proposition 5.4.3 that for a G-variety X the Lie algebra g acts
on O(X) by locally finite derivations. This implies the following characterization of
semisimple and of nilpotent elements.

Lemma 5.6.2. The following statements for an element A ∈ LieG are equiva-
lent:

(i) A is semisimple (resp. nilpotent).
(ii) For every G-variety X the vector field ξA on X is a semisimple (resp.

nilpotent) derivation of O(X).
(iii) There is a faithful representation ρ : G → GL(V ) such that dρ(A) ∈

End(V ) is diagonalizable (resp. nilpotent).

Example 5.6.3. For a diagonalizable group D every A ∈ LieD is semisimple,
because every representation of D is diagonalizable (Proposition 3.4.5). On the
other hand, every element of LieC+ is nilpotent, because every representation of
C+ is of the form s 7→ exp(sN) where N is nilpotent (Proposition II.2.6.1).

We will see later in chapter IV (section ??) that for every unipotent group
U the Lie algebra LieU consists of nilpotent elements. We already know this for
commutative unipotent groups (Remark 4.3.3).

Proposition 5.6.4. (1) If A ∈ LieG is semisimple, then there is a torus
T ⊆ G such that A ∈ LieT ⊆ LieG.

(2) If N ∈ LieG is nilpotent, then there is a closed subgroup U ⊆ G, U
∼→ C+,

such that N ∈ LieU .

Proof. We can assume that G ⊆ GLn, hence LieG ⊆ Mn, and that A ∈ Mn

is a nonzero diagonal matrix and N a nonzero nilpotent matrix.
(1) We have LieTn ∩ LieG ⊇ CA, and so T := (G ∩ Tn)◦ is a torus with

LieT ⊇ CA, by Proposition 5.2.1(2).
(2) We know that the homomorphism αN : C+ → GLn, s 7→ exp(sN), induces

an isomorphism C+ ∼→ U := αN (C+) and that N ∈ LieU (Proposition II.2.6.1). It
follows that LieU = CN ⊆ LieG and so U ⊆ G, again by Proposition 5.2.1(2). �
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The next result is the analogue of the Jordan decomposition in algebraic
groups for Lie algebras.

Proposition 5.6.5. Let G be an algebraic group and g its Lie algebra. Then
every A ∈ LieG has a unique decomposition A = As + An where As, An ∈ LieG,
As is semisimple, An is nilpotent, and [As, An] = 0.

Proof. Let G ⊆ GLn, A ∈ LieG ⊆ Mn, and let A = As +An be the additive
Jordan decomposition in Mn. We have to show that As, An ∈ LieG.

We can assume that As is a diagonal matrix. Define D := {t ∈ Tn | t◦An = An◦
t}, and U := αAn(C+) ⊆ GLn where αN (s) := exp(sN), see Proposition II.2.6.1.
Then As ∈ LieD (Example 5.3.3), An ∈ LieU , and so A ∈ Lie(D · U) = LieD +
LieU ⊆ Mn. Define H := D · U ∩ G ⊆ GLn. Since H is commutative we have
H = Hs · Hu and LieH = LieHs ⊕ LieHu (Proposition 4.3.4). This implies that
A = A′ + A′′ where A′ ∈ LieHs ⊆ LieG and A′′ ∈ LieHu ⊆ LieG. Therefore
A′ is diagonal, A′′ is nilpotent and [A′, A′′] = 0. Now the claim follows from the
uniqueness of the additive Jordan decomposition in Mn. �

Here is a nice application. We know that a commutative algebraic group con-
sisting of semisimple elements is a diagonalizable group (Proposition 4.3.4). We
want to extend this to an arbitrary (connected) group.

Proposition 5.6.6. Let G be a connected algebraic group. Assume that all
elements of G are semisimple. Then G is a torus.

Proof. We have to show that G is commutative. We can assume that G ⊆
GLn. Proposition 5.6.4 above implies that g := LieG ⊆ Mn does not contain
nilpotent elements, hence consists of diagonalizable elements, by Proposition 5.6.5.
We first claim that every subtorus T ⊆ G lies in the center Z(G) of G. In fact,
we can decompose g under the action of T by conjugation, g =

⊕m
j=1 gχj where

χj ∈ X (T ) are characters of T . If A ∈ gχj , then Ak ∈ (Mn)(k·χj) and so A is
nilpotent in case χj 6= 0. Thus g = g0, i.e. T commutes with g and hence with G.

If g ∈ G, then 〈g〉 is a diagonalizable group and so, for a suitable m ≥ 1, gm

belongs to a subtorus of G, hence to the center Z(G). This implies that the image
of G under the adjoint representation Ad: G→ GL(LieG) is a connected algebraic
group whose elements all have finite order, because the kernel of Ad is the center
of G (Corollary 5.3.5). Therefore, by Proposition II.1.4.5, Ad(G) is trivial and thus
G is commutative. �

Exercise 5.6.7. Use the proposition above to give another proof of Corollary 3.4.6
which says that an extension of a torus by a diagonalizable group is diagonalizable.

5.7. Invertible functions and characters. Let T be an n-dimensional torus.
Then O(T ) ' C[t1, t

−1
1 , . . . , tn, t

−1
n ], and this implies that the group O(T )∗ of in-

vertible functions of O(T ) has the form

O(T )∗ = C∗ · X (T ).

In particular, an invertible element f ∈ O(T )∗ with f(e) = 1 is a character. We
will show now that this holds for every connected algebraic group G. We start with
the following lemma.

Lemma 5.7.1. Let G be an algebraic group, and let G′ := 〈Gu〉 be the closure
of the subgroup generated by all unipotent elements of G.

(1) There are finitely many unipotent elements u1, u2, . . . , uN ∈ G such that

G′ = 〈u1〉 · 〈u2〉 · · · 〈uN 〉.
(2) G′ is a connected normal subgroup of G.
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(3) LieG′ contains all nilpotent elements of LieG.
(4) If f ∈ O(G)∗ is invertible, then f is constant on G′.

Proof. For (1) see Exercises II.1.4.11.
(2) This follows from (1) and the fact that the set Gu of unipotent elements is

stable under conjugation by G.
(3) If A ∈ LieG is nilpotent, then there is one-dimensional unipotent subgroup

U ⊆ G such that A ∈ LieU (Proposition 5.6.4(2)).
(4) It follows from (1) that there is a surjective morphism CN → G′, and so

every invertible function on G′ is a constant. �

Example 5.7.2. If G = SLn, SOn (n ≥ 3) or Spn then G = 〈Gu〉.

Proof. (a) Let U := U2 ⊆ SL2, and put X := U · U t · U . Then dimX = 3,
because U t ·U is closed of dimension 2 and does not contain X. Thus X ·X = SL2

by Lemma 1.4.9, and so 〈(SL2)u〉 = SL2.

(b) For every pair 1 ≤ i < j ≤ n there is an embedding SL2 ↪→ SLn given

by

[
a b
c d

]
7→ (a − 1)Eii + bEij + cEji + (d − 1)Ejj + E. This implies that 〈Gu〉

contains the diagonal elements tij(t) which, together with the unipotent elements
uij(s), generate SLn (see II.3.1).

(c) Similarly, one shows that SOn for n ≥ 3 and Spn are generated by homo-
morphic images of SL2. �

The following result is due to Rosenlicht, see [KKV89, Prop. 1.2 and 1.3].

Proposition 5.7.3. Let G be an algebraic group.

(1) The character group X (G) is finitely generated.
(2) If G is connected, then every f ∈ O(G)∗ with f(e) = 1 is a character, i.e.
O(G)∗ = C∗ · X (G).

Proof. We can assume that G is connected since the map X (G)→ X (G◦) is

injective. Let T ⊆ G be a torus of maximal dimension, and set G′ := 〈Gu〉. The
proposition follows if we show that G = T · G′ = G′ · T . In fact, if f ∈ O(G)∗

with f(e) = 1, then f |T : T → C∗ is a homomorphism, and so f : G → C∗ is a
homomorphism, because f |G′ = 1 by Lemma 5.7.1 above. In addition, X (G) →
X (T ) is injective, and so X (G) is finitely generated.

It remains to show that G = T ·G′, or, equivalently, that LieG = LieG′+LieT .
We decompose g := LieG into weight spaces with respect to the adjoint action of T :
g = g0⊕

⊕
χ 6=0 gχ. Embedding G into GLn we see as in the proof of Proposition 5.6.6

above that the elements from gχ are nilpotent if χ 6= 0. Thus gχ ⊆ LieG′ for χ 6= 0.
Moreover, g0 = Lie CG(T ) and so G = CG(T ) ·G′. If g ∈ CG(T ), g = gsgu, then gs
has finite order since otherwise T · 〈gs〉 ⊆ G contains a torus of dimension > dimT .

It follows that for every element in g ∈ G there is an n ∈ N such that gn ∈ T ·G′.
Since G is connected this implies that G = T · G′. In fact, G =

⋃
n∈N p

−1
n (T · G′)

where pn : G → G is the power map g 7→ gn. Hence G = p−1
n (T · G′) for some n,

and the claim follows because pn is dominant for n 6= 0 (Exercise II.1.4.6). �

5.8. C+-actions and locally nilpotent vector fields. In this section we
study actions of the additive group C+ and relate them to locally nilpotent vector
fields. For more details we refer to the book [Fre06] of Gene Freudenburg.

Definition 5.8.1. Let X be a variety. A vector field δ ∈ Vec(X) is called
locally nilpotent if for every f ∈ O(X) there is an m > 0 such that δmf = 0. The
subspace of locally nilpotent vector fields will be denoted by Vecln(X) ⊆ Vec(X).
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Consider an action ρ of C+ on X. Then, for any a ∈ LieC+ = C the vector
field ξa is locally nilpotent. In fact, for a representation ρ : C+ → GL(V ) the matrix
A := dρ(a) ∈ End(V ) is nilpotent (Proposition 2.6.1), and for a linear function
` ∈ V ∗ we have ξa`(v) = `(Av) (see 5.4). Thus the action is locally nilpotent
on V ∗ and thus on O(V ). Embedding X as a C+-stable closed subvariety into a
C+-module V we see that the same holds for O(X).

For an action ρ of C+ on a variety X we denote by ξρ ∈ Vec(X) the vector field
corresponding to 1 ∈ LieC+ = C. This means that

ξρf =
d

ds
f(ρ(s)x)|s=0.

Lemma 5.8.2. For f ∈ O(X) we have

f(ρ(s)x) =
∑
k≥0

skξkρf ∈ O(X)[s].

Proof. Set f(ρ(s)x) =
∑
k≥0 s

kfk(x) ∈ O(X)[s]. Setting s = 0 we get f0(x) =

f(x). Using f(ρ(s′ + s)x) = f(ρ(s′)(ρ(s)x) =
∑
k≥0 fk(ρ(s)x) and expanding (s′ +

s)k we get

fk(ρ(s)x) =
∑
j≥0

(
k + j

j

)
sjfk+j(x)

which implies that ξρfk = d
dtf(ρ(s)x)|s=0 = k!fk+1 for all k ≥ 0. �

Proposition 5.8.3. Let X be a variety. The map ρ 7→ ξρ is a bijection

{C+-actions on X} '−→ Vecln(X).

Proof. By Proposition 5.5.4 the map is injective. We have seen in 5.4 that
for A ∈ End(V ) = Lie GL(V ) the corresponding vector field ξA is given by (ξA)v =
Av ∈ V = TvV , and thus, for a linear function ` ∈ V ∗ ⊆ O(V ), we get ξA`(v) =
`(Av). Equivalently, ξA` = At` where At : V ∗ → V ∗ is the dual map to A.

Now assume that δ ∈ Vec(X) is a locally nilpotent vector field, and choose a
finite dimensional subspace W ⊆ O(X) which is stable under δ and generates O(X).
Set V := W ∗ and A := (δ|W )t ∈ End(V ). Identifying V ∗ with W , we get a closed
immersion X ↪→ V such that δ = ξA|X . In fact, ξA` = At` = δ(`) for ` ∈ V ∗ = W ,
by construction. Proposition 2.6.1 now shows that there is a linear representation
α : C+ → GL(V ) such that dα(1) = A. This implies that ξα = ξA ∈ Vec(X), hence
X is stable under the action of C+ defined by α, by Corollary 5.4.7, and ξα = δ. �

Remark 5.8.4. There is a more abstract way to construct a C+-action from a
locally nilpotent vector field ξ. Define a linear map (see the formula in Lemma 5.8.2
above)

τ : O(X)→ C[s]⊗O(X), τ(f) :=
∑
k

sk

k!
⊗ ξkf.

One easily shows that τ is an algebra homomorphism, and thus defines a morphism

ρ : C × X → X with the property that f(ρ(s, x)) =
∑
k
sk

k! ξ
kf for all s ∈ C and

x ∈ X. From this it is not difficult to deduce that ρ is a C+-action, and the
corresponding vector field is ξ, by Lemma 5.8.2.

Example 5.8.5. Consider an action of C+ on affine n-space Cn:

ρ(s)(x1, . . . , xn) = (f1(s, x1, . . . , xn), . . . , fn(s, x1, . . . , xn)).

Then the corresponding vector field is

ξρ =

(
∂f1

∂s

)
s=1

∂

∂x1
+ · · ·+

(
∂fn
∂s

)
s=1

∂

∂xn
.
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Since jac(ρ(s)) = 1 for all s ∈ C+ we see that div ξρ = 0 (Example 5.4.2).

Let ρ be a C+-action on a variety X and let ξρ ∈ Vecln be the corresponding

locally nilpotent vector field. Then O(X)C
+

= ker ξρ (Exercise 5.4.4). It is known
that the invariants are not always finitely generated, see [Nag59].

If f ∈ O(X)C
+

, hence ξρf = 0, then the vector field fξρ is again locally
nilpotent, hence corresponds to another action ρ̃ of C+ on X which is called a
modification of ρ.

Exercise 5.8.6. Let ρ be a C+-action on X, and let f ∈ O(X)C
+

be an invariant.
Define ρ̃(s)x := ρ(f(x)s)x. Then we have the following.

(1) ρ̃ is a C+-action on X, and ξρ̃ = fξρ.
(2) The orbits if ρ̃ are contained in the orbits of ρ.
(3) For the fixed points we have X ρ̃ = Xρ ∪ VX(f).
(4) If X is irreducible and f 6= 0 then O(X)ρ̃ = O(X)ρ.

A closed subvariety Z ⊆ X of a C+-variety is called a global section if the
morphism C+ × Z → X, (s, z) 7→ ρ(s)z, is an isomorphism. In particular, every
orbit O meets Z transversally in a unique point s which means O ∩ S = {s} and
that TsX = TsO ⊕ TsS. The next lemma shows that the hypersurface VX(f) is a
section if ξρf = 1.

Lemma 5.8.7. For f ∈ O(X) the map f : X → C+ is C+-equivariant if and

only if ξρf = 1. In this case, the map C+ × VX(f)
∼→ X, (s, z) 7→ ρ(s)z, is an

isomorphism, i.e. VX(f) is a global section.

Proof. Lemma 5.8.2 shows that ξρf = 1 is equivalent to f(ρ(s)x) = f(x) + s
which means that f : X → C+ is C+-equivariant. The second part follows from
Proposition 1.2.10. �

Local sections can be constructed in the following way. Start with a function
f ∈ O(X) which not an invariant, i.e. ξρf 6= 0. Then there is a k > 0 such that
q := ξkρf 6= 0 and ξk+1

ρ f = 0. This implies that q is a nonzero invariant, and setting

p := ξkρf we get ξρ
p
q = 1. This shows that f := p

q ∈ O(Xq) defines a global section

of the C+-invariant open set Xq ⊆ X.
The following theorem collects some of the main properties of C+-varieties.

Theorem 5.8.8. Let X be a variety with a non-trivial C+-action on X.

(1) All orbits in X are closed.
(2) If X is not an orbit, then there exist nonconstant invariants.
(3) If x ∈ X is an isolated fixed point, then {x} is a connected component of

X.
(4) X admits local sections.

Now assume in addition that X is irreducible.

(5) We have C(X)C
+

= Quot(O(X)C
+

).

(6) The field extension C(X)/C(X)C
+

is purely transcendental of degree 1.

(7) The invariant ring O(X)C
+

is multiplicatively closed: If a product f1f2 is
an invariant, the f1 and f2 are both invariants.

For the proof we will use the following easy lemma.

Lemma 5.8.9. Let Y $ X be a C+-stable closed nonempty subvariety. Then

there is a nonzero invariant f ∈ O(X)C
+

which vanishes on Y .

Proof. The ideal I(Y ) ⊆ O(X) is nonzero and stable under C+, hence stable
under ξρ. Since ξρ is locally nilpotent, there exist nonzero elements f ∈ I(Y ) such
that ξρf = 0. This means that f is a nonzero invariant vanishing on Y . �
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Proof of Theorem 5.8.8. (1) Let O ⊆ X be an orbit and Ō ⊆ X its closure.
If Y := Ō \O is nonempty, then, by the lemma above, there is a nonzero invariant
on Ō vanishing on Y , contradicting the fact that every invariant on Ō is constant.

(2) By (1) every orbit is a closed and C+-stable subset 6= X, and so the claim
follows again from the lemma above.

(3) Assume that there exists an irreducible C+-variety X of positive dimension
containing an isolated fixed point x ∈ X. Choose such an X of minimal dimension
> 0. Then {x} $ X is a C+-stable closed nonempty subset, hence there is a
nonzero invariant f such that f(x) = 0. Every irreducible component of VX(f) has
dimension dimX − 1, and one of them contains x as an isolated fixed point. Hence

dimX = 1, by the minimality of dimX. But then X is either an orbit, or X = XC+

,
and in both cases we end up with a contradiction.

(4) The existence of local sections was shown just before the theorem.

(5) Let r ∈ C(X)C
+

be an invariant rational function. Then the ideal of denom-
inators a := {q ∈ O(X) | qr ∈ O(X)} is C+-stable, and thus contains a nonzero
invariant q (see the proof of Lemma 5.8.9). It follows that qr is also an invariant,

and so r ∈ Quot(O(X)C
+

).

(6) The construction of local sections given above shows that there exist an
invariant q and a function f = p

q ∈ O(Xq) such that Z := VXq (f) is a global

section of Xq. This implies that O(Xq) = O(Xq)
C+

[f ], hence

C(X) = C(Xq) = Quot(O(Xq)) = Quot(O(Xq)
C+

)(f)

and the claim follows, because O(Xq)
C+

= (O(X)C
+

)q, and so Quot(O(Xq)
C+

) =

Quot(O(X)C
+

) = C(X)C
+

, by (5).

(7) Let f1f2 be a nonzero invariant and set Y := VX(f1f2). Then f1f2 is a
nonzero constant on every orbit O ⊆ X \Y . This implies that f1|O is also constant,
because otherwise f1 would take all values on O, in particular the value zero. Thus
f1 is an invariant on the dense open set X \ Y , hence an invariant on X. �

Exercise 5.8.10. Let A ⊆ O(C+) = C[s] be a subalgebra stable under C+. Then
either A = C or A = C[s].

Exercise 5.8.11. Use the previous exercise to give another proof that C+-orbits are
closed.

Exercises

For the convenience of the reader we collect here all exercises from Chapter III.

Exercise. Consider the action of SL2× SL2 on M2 defined by (g, h)A := gAh−1.
Calculate the differential of the orbit map in A, determine its image and its kernel, and
verify the claims of Lemma 5.1.5.

Exercise. Let G be a connected group and let ρ : G→ GL(V ) and µ : G→ GL(W )
be two representations. Then ρ is equivalent to µ if and only if dρ : LieG → End(V ) is
equivalent to dµ : LieG→ End(W ).

Exercise. Show that z(L) is a characteristic ideal of L, i.e. z(L) is an ideal of L, and
it is stable under every automorphism of the Lie algebra L.

Exercise. Let G be a connected, noncommutative 2-dimensional algebraic group.
Then

(1) Z(G) is finite;
(2) The unipotent elements Gu form a normal closed subgroup isomorphic to C+;
(3) There is a subgroup T ⊆ G isomorphic to C∗ such that G = T ·Gu = Gu · T .
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(Hint: Study the adjoint representation Ad: G→ GL(LieG), and use Exercise 4.1.3.)

Exercise. Use the previous exercise to show that every 2-dimensional closed sub-
group of SL2 is conjugate to B2 ∩ SL2.

Exercise. Let X be a G-variety and assume that G is connected. A regular function
f ∈ O(X) is a G-invariant if and only if ξAf = 0 for all A ∈ LieG.
(Hint: Look at the regular representation of G on O(X) and use Proposition 5.3.2.)

Exercise. Let X be a G-variety where G is connected. Then x ∈ X is a fixed point
if and only if (ξA)x = 0 for all A ∈ LieG.

Exercise. Let f ∈ C[y] be a polynomial.

(1) The map C+ × C2 → C2, s(x, y) := (x+ sf(y), y), is an action of C+ on C2.
(2) Describe the orbits and the fixed points of this action.
(3) Determine the differential of the orbit maps and verify the results of (2).

Exercise. Use Proposition 5.6.6 to give another proof of Corollary 3.4.6 which says
that an extension of a torus by a diagonalizable group is diagonalizable.

Exercise. Let ρ be a C+-action on X, and let f ∈ O(X)C
+

be an invariant. Define
ρ̃(s)x := ρ(f(x)s)x. Then we have the following.

(1) ρ̃ is a C+-action on X, and ξρ̃ = fξρ.
(2) The orbits if ρ̃ are contained in the orbits of ρ.
(3) For the fixed points we have X ρ̃ = Xρ ∪ VX(f).
(4) If X is irreducible and f 6= 0 then O(X)ρ̃ = O(X)ρ.

Exercise. Let A ⊆ O(C+) = C[s] be a subalgebra stable under C+. Then either
A = C or A = C[s].

Exercise. Use the previous exercise to give another proof that C+-orbits are closed.
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Introduction. This fourth chapter is the main part of the book and is where
we prove the so-called finiteness theorem. This asserts that for a rational represen-
tation of a linearly reductive group G on a vector space V the ring of G-invariant
regular functions on V is a finitely generated C-algebra. Here an algebraic group
G is called linearly reductive if every rational representation of G is completely
reducible. This allows us to define the algebraic quotient X//G of a G-variety X
which is, in some sense, the best approximation to the orbit space X/G which in
general does not have a reasonable structure due to the existence of non-closed
orbits.
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We give the main properties of the quotient map πX : X → X//G and develop
some tools to construct and determine quotients. Using these results we give a
couple of additional properties and some characterizations of linear reductive and
semi-simple groups. The third section ends with a section on finite groups G, where
it is possible to sharpen the results of this chapter. This follows an account of Emmy
Noether [Noe15].

In the last sections we turn to some examples and applications. First we prove a
geometric version of the so-called first fundamental theorem for GLn. This form of
the fundamental theorem for classical groups is due to Thierry Vust [Vus76]. As
well we describe the “method of the associated cone”. Roughly speaking, this allows
one to carry the “good” properties of the zero fiber over to the other fibers. The last
part of the chapter contains an outline of structure statements and properties which
“push down” for quotient maps, together with some results on invariant rational
functions.

The finiteness result has a long and interesting history. In the preface we al-
ready discussed the period up to 1900. For a complete account we refer to the
encyclopedia report of F. Meyer [Mey99] in 1899. This first period ended with the

two pioneering articles of D. Hilbert “Über die Theorie der algebraischen Formen”
[Hil90] and “Über die vollen Invariantensysteme” [Hil93] in 1890 and 1893 which
brought the theory to a certain conclusion. Some people even speak of the death of
the theory, for example Ch.S. Fisher in his exposition: “A Study in the Sociology
of Knowledge” [Fis66] (see also [DC71, DC70]). The “Vorlesungen über Invari-
antentheorie” [Sch68] of Issai Schur in 1928 give a small glimpse into the types
of questions current then, and in this book the theory of binary forms underlies the
whole approach. A modern account of this can be found in T.A. Springer’s Lecture
Notes “Invariant Theory” [Spr77].

The fundamental work of Issai Schur, Hermann Weyl, and Élie Cartan
on the theory of semisimple Lie groups and their representations brought a new im-
petus to the subject. Weyl gave a proof for the finiteness theorem and the so-called
first and second fundamental theorems for all classical groups. In the orthogonal
case the finiteness theorem had already been proved by Hurwitz [Hur97]. (In this
regard see Appendix B). A complete account of the state of the theory around 1940
can be found in Hermann Weyl’s famous book “Classical Groups” [Wey39].

Even quite early the question of a general finiteness theorem had been asked,
i.e. whether the ring of G-invariant functions for an arbitrary group G is finitely
generated. In his address to the I.M.C. in Paris in 1900 D. Hilbert devoted the
fourteenth of his famous twenty three problems to a generalization of this question.
He was basing this on Maurer’s proof of the finiteness theorem for groups. This
work later turned out to be false, and the finiteness question remained open for
some time, until in 1959 Masayoshi Nagata found a counterexample ([Nag59];
see also [DC71, DC70, Chap. 3.2]). In our proof of the finiteness theorem for linear
reductive groups G we follow Nagata’s account [Nag64].

The use of invariants for classification problems via geometry was established
by D. Mumford in his book “Geometric Invariant Theory” [MFK94] whose first
edition appeared in 1965. It turns out to be a useful tool in the study of the clas-
sification question and the associated “moduli spaces”, e.g. in the case of curves,
abelian varieties and vector bundles. This fundamental work from 1965 marks the
beginning of the “third blossoming” of invariant theory and also caused a reawak-
ening of interest in the classical literature. It had a great influence on the further
development of algebraic geometry and even today lies at the foundation of a great
deal of research.
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1. Isotypic Decomposition

1.1. Completely reducible representations. The concepts of irreducible
and completely reducible representations are certainly known from classical group
theory. They carry over to representations of algebraic groups without any changes.

Definition 1.1.1. A representation ρ : G → GL(V ), V 6= {0}, is called irre-
ducible if {0} and V are the only G-stable subspaces of V . Otherwise it is called
reducible. The representation ρ is called completely reducible if V admits a decom-
position V = V1⊕V2⊕· · ·⊕Vm into G-stable irreducible subrepresentations Vi ⊆ V .
A G-module V is called simple if the corresponding representation ρ is irreducible,
and semisimple if ρ is completely reducible.

Example 1.1.2. The natural representations of the classical groups GL(V ),
SL(V ), O(V, q), Sp(V, β) on V are irreducible, and the same holds for SO(V, q) in
case dimV ≥ 3. In fact, these groups are irreducible subgroups of GL(V ) as defined
and proved in section II.3.

Example 1.1.3. Every representation of a finite group G is completely re-
ducible. This is the famous Theorem of Maschke, see [Art91, Chap. 9, Corollary
4.9].

A one-dimensional representation of an algebraic group G is clearly irreducible
and it is the same as a character, because GL(V ) = C∗ if dimV = 1. Moreover,
if ρ : G → GL(V ) is a representation and χ ∈ X (G) a character, then the product
χρ : G→ GL(V ) given by g 7→ χ(g)ρ(g) is again a representation. In the language of
G-modules this is the tensor product Cχ⊗V where Cχ denotes the one-dimensional
G-module corresponding to the character χ. Clearly, χρ is irreducible (resp. com-
pletely reducible) if and only if ρ is irreducible (resp. completely reducible).

Example 1.1.4. Every representation of ρ : C∗ → GL(V ) is completely re-
ducible, and the irreducible representations of C∗ are one-dimensional and are of
the form t 7→ tj for some j ∈ Z (Example III.2.1.3). This implies that we get the
following canonical decomposition of the C∗-module V which is called the weight
space decomposition (cf. Remark III.3.4.7):

V =
⊕
j∈Z

Vj , Vj := {v ∈ V | tv = tj · v}

(s · v denotes the scalar multiplication).

A homomorphism λ : C∗ → G is called a one-parameter subgroup of G, shortly a
1-PSG. These subgroups will play an important role in connection with the Hilbert
Criterion in section ??. If ρ : G→ GL(V ) is a representation of G, then every 1-PSG
λ : C∗ → G gives rise to a weight decomposition of V :

V =
⊕
j∈Z

Vλ,j , Vλ,j := {v ∈ V | ρ(λ(t))v = tj · v}.

Proposition 1.1.5. For any G-module V the following statements are equiva-
lent.

(i) V is semisimple.
(ii) V is generated by simple submodules.
(iii) Every submodule W ⊆ V has a G-stable complement, i.e. there is a sub-

module W ′ ⊆ V such that V = W ⊕W ′.

Proof. We will constantly use the fact that every non-zero G-module contains
a simple submodule.

(i) → (ii): This is obvious from the definition.
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(ii) → (iii): If W ⊆ V is a strict submodule, then there is a simple submodule
U ⊆ V not contained in W . It follows that U ∩W = {0}, and so W +U = W ⊕U .
By induction we can assume that W ⊕U has a G-stable complement, and the claim
follows.

(iii) → (i): Let W ⊆ V be a semisimple submodule of maximal dimension,
and let W ′ be a G-stable complement. If W ′ 6= {0}, then W ′ contains a simple
submodule U , and so W +U = W ⊕U is semisimple, contradicting the maximality
of W . �

Corollary 1.1.6. Every submodule and every quotient module of a semisimple
G-module is semisimple.

Proof. The image of a simple module under a G-homomorphism is either triv-
ial or a simple. Hence a quotient module of a semisimple module V is semisimple,
by Proposition 1.1.5(ii). If W ⊆ V is a submodule, then W has a G-stable com-
plement, by Proposition 1.1.5(iii), and so W is isomorphic to a quotient module of
V . �

Exercise 1.1.7. Let G ⊆ GL(V ) be an arbitrary subgroup and Ḡ ⊆ GL(V ) its
closure. Then V is a simple (resp. semisimple) G-module if and only if V is a simple (resp.
semisimple) Ḡ-module.

1.2. Endomorphisms of semisimple modules. The Lemma of Schur al-
ready occurred earlier when we studied the classical groups (see section II.3.1).

Proposition 1.2.1 (Lemma of Schur). Let V , W be two simple G-modules.

(1) Every G-homomorphism ϕ : V →W is either an isomorphism or trivial.
(2) We have EndG(V ) = C where we identify c ∈ C with c · idV .

Proof. If ϕ : V → W is a G-homomorphism between two G-modules, then
kerϕ is a submodule of V and ϕ(V ) a submodule of W . This implies the first
claim. If ϕ : V → V is an G-endomorphism and c ∈ C an eigenvalue, then ϕ−c · idV
is a G-endomorphism with a non-trivial kernel. Thus the second claim follows from
the first. �

An immediate consequence of Schur’s Lemma is the following description of
the G-homomorphisms between direct sums V ⊕n := V ⊕ V ⊕ · · · ⊕ V︸ ︷︷ ︸

n copies

of a simple

module V .

Corollary 1.2.2. Let V be a simple G-module. For n,m ≥ 1 we have a canon-
ical isomorphism Mm×n(C)

∼→ HomG(V ⊕n, V ⊕m) where the G-endomorphism de-
fined by an m× n-matrix A = (aij) is given by

(v1, . . . , vn) 7→ (. . . ,

n∑
j=1

aijvj , . . .).

Corollary 1.2.3. Let V be a simple G-module and W a simple H-module.
Then V ⊗W is a simple G×H-module where the linear action of G×H on V ⊗W is
defined by (g, h)(v⊗w) := gv⊗hw. Similarly, Hom(V,W ) is a simple G×H-module
where the action is given by (g, h)ϕ := h ◦ ϕ ◦ g−1.

Proof. As a G-module, V ⊗W is semisimple and isomorphic to V ⊕m where
m = dimW . It follows from the corollary above that the simple G-submodules
of V ⊗W are isomorphic to V and of the form V ⊗ w with a suitable non-zero
w ∈ W . Since 〈Hw〉 = W we see that the G×H-module generated by any simple
G-submodule of V ⊗W is V ⊗W , hence the first claim. The second follows, because
Hom(V,W ) ' V ∗ ⊗W as G×H-modules (cf. Exercise III.2.2.5(3)). �
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Remark 1.2.4. We will see later that every simple G × H-module is of the
form V ⊗W (Corollary 1.3.2).

Corollary 1.2.5. Let G ⊆ GLn be an subgroup and denote by 〈G〉 ⊆ Mn(C)
the linear span of the elements of G. Then 〈G〉 is a subalgebra, and 〈G〉 = Mn(C)
if and only if G is an irreducible subgroup, i.e., the matrix representation of G on
Cn is irreducible.

Proof. It is clear from the definition that C[G] is a subalgebra. The group
G × G acts linearly on Mn by (g, h)A := gAh−1, and C[G] is a G × G-stable
subspace. As a G × G-module, we have an isomorphism Mn(C) ' Cn ⊗ (Cn)∗.
Hence, by the corollary above, Mn(C) is a simple G × G-module in case Cn is
an irreducible representation of G. On the other hand, if G is reducible, then, by
choosing a suitable basis, the elements of G have block form with a zero block in
the lower left corner, and so C[G] $ Mn(C). �

1.3. Isotypic decomposition. The decomposition of a semisimple module
into simple modules is in general not unique, as we have seen in the previous section.
However, one obtains a canonical decomposition by collecting the isomorphic simple
submodules, as we are going to define now.

Let G be an algebraic group and let ΛG denote the set of isomorphism classes
of simple G-modules. If λ ∈ ΛG, then a module W ∈ λ is called simple of type
λ. We use 0 ∈ ΛG to denote the isomorphism class of the one-dimensional trivial
module.

If V is a G-module and λ ∈ ΛG we define

Vλ :=
∑

W⊆V,W∈λ

W ⊆ V.

This submodule of V is semisimple and is called isotypic component of type λ. By
definition, V0 = V G = {v ∈ V | gv = v for all g ∈ G}.

Proposition 1.3.1. (1) Every simple submodule W ⊆ Vλ is of type λ. In
particular, Vλ 'W d.

(2) If W is simple of type λ, then

HomG(W,V )⊗W ∼→ Vλ, µ⊗ w 7→ µ(w),

is an isomorphism of G-modules.
(3) The sum of the isotypic components is direct:

⊕
λ∈ΛG

Vλ ⊆ V , and this
sum contains every semisimple submodule of V . In particular, V is semisim-
ple if and only if V =

⊕
λ∈ΛG

Vλ.

(4) If ϕ : V → U is a G-homomorphism, then ϕ(Vλ) ⊆ Uλ.

Proof. (1) Since Vλ is semisimple, a simple submodule W ⊆ Vλ has a G-stable
complement: Vλ = W ⊕W ′. Therefore, there is a G-equivariant linear projection
p : Vλ → W . Since Vλ is spanned by simple modules of type λ, one of them maps
non-trivially to W , and the claim follows from Schur’s Lemma (Proposition 1.2.1).

(2) It is clear that µ ⊗ w 7→ µ(w) defines a G-homomorphism HomG(W,V ) ⊗
W

∼→ Vλ. In order to prove that this is an isomorphism, we first replace V by Vλ
and then Vλ by W d.

(3) It is clear that M :=
∑
λ∈ΛG

Vλ ⊆ V is the largest semisimple submodule

of V . For each λ the submodule Vλ ⊆M has a G-stable complement V ′. It follows
that every simple submodule W ⊆ V which is not of type λ must be contained in
V ′. Hence the claim.

(4) This is clear, since the image of a simple module of type λ is either (0) or
simple of type λ. �
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Corollary 1.3.2. Every simple G ×H module is of the form V ⊗W with a
simple G-module V and a simple H-module W .

Proof. Let U be a simple G×H module and W ⊆ U a simple H-submodule.
Considering U as a G-module we see that HomH(W,U) is a G-module and that
the map HomH(W,U) ⊗W → U from Proposition 1.3.1(2) is an injective G ×H-
homomorphism. �

The decomposition V =
⊕

λ Vλ of a semisimple module V is called decompo-
sition into isotypic components or shortly isotypic decomposition. In general, the
submodule Vsoc :=

⊕
λ Vλ ⊆ V is called the socle of V .

The isotypic decomposition carries over to locally finite and rationalG-modules,
in particular to the coordinate rings of affineG-varieties. As in the finite dimensional
case such a module is called semisimple if it is a sum of simple submodules.

Proposition 1.3.3. Let X be a G-variety and denote by O(X)soc ⊆ O(X) the
sum of all simple submodules. Then

O(X)soc =
⊕
λ∈ΛG

O(X)λ

where O(X)λ is the sum of all simple submodules of O(X) of type λ. Moreover,
O(X)0 = O(X)G is a subalgebra, and each O(X)λ is a O(X)G-module.

Proof. Since the G-action on O(X) is locally finite the first part follows im-
mediately from the proposition above.

For the second part we remark that G acts on O(X) by algebra automorphisms,
i.e. we have g(f1f2) = (gf1)(gf2) for g ∈ G and f1, f2 ∈ O(X). Hence, if f1 ∈
O(X)G, then the linear map f 7→ f1f is a G-homomorphism, proving the second
part of the proposition. �

Exercise 1.3.4. Let V be locally finite rational G-module. If V is semisimple, then
every submodule W ⊆ V has a G-stable complement in V .

Definition 1.3.5. A function f ∈ O(X) is called G-invariant (shortly invari-
ant) if f is constant on orbits, i.e. f(gx) = f(x) for all g ∈ G, x ∈ X. Thus
O(X)0 = O(X)G is the subalgebra of G-invariant functions. The O(X)G-modules
O(X)λ are classically called modules of covariants.

Example 1.3.6. The regular representation of G = GL(V ) or SL(V ) on O(V )
stabilizes the homogeneous componentsO(V )d. We claim that the O(V )d are simple
G-modules, so that O(V ) =

⊕
d≥0O(V )d is the isotypic decomposition.

Proof. Fix a basis of V so that V = Cn and O(V ) = C[x1, . . . , xn], and let
W ⊆ C[x1, . . . , xn]d be a submodule. Then W is stable under LieG. The matrix
Eij ∈ LieG, i 6= j, operates as the differential operator xj

∂
∂xi

(see III.5.4). If f ∈W ,

f 6= 0, then, applying successively the operators x1
∂
∂xi

, we first see that xd1 ∈ W
and then, applying the operators xj

∂
∂x1

, it follows that all monomials of degree d
belong to W . �

Exercise 1.3.7. Let V,W be two semisimple G-modules and let ϕ : V → W be a
surjective G-homomorphism. Then ϕ(Vλ) = Wλ for all λ ∈ ΛG. Give an example which
shows that this does not hold if V is not semisimple.
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2. Invariants and Algebraic Quotients

2.1. Linearly reductive groups. We now introduce a special class of groups
which share a number of important properties.

Definition 2.1.1. An algebraic group G is linearly reductive if every repre-
sentation ρ : G → GL(V ) is completely reducible. Equivalently, every G-module is
semisimple.

Example 2.1.2. A diagonalizable group D is linearly reductive. In fact, every
representation of ρ : D → GL(V ) is diagonalizable which means that there is a
basis of V such that ρ(D) ⊆ Tn (Proposition II.3.4.5). The isotypic decomposition
is given by

V =
⊕

χ∈X (D)

Vχ where Vχ = {v ∈ V | ρ(d)v = χ(d) · v for all d ∈ D}.

Example 2.1.3. A finite group G is linearly reductive, by the Theorem of
Maschke (see [Art91, Chap. 9, Corollary 4.9]).

Exercise 2.1.4. If G,H are algebraic groups, then G×H is linearly reductive if and
only if G and H are both linearly reductive.

Example 2.1.5. Every representation ρ : C+ → GL(V ), V 6= {0}, contains
the trivial representations, because ρ is of the form s 7→ exp(sN) with a nilpotent
matrix N (see Proposition II.2.6.1). Thus C+ has a unique simple module, namely

the trivial one-dimensional module. In particular, Vsoc = V C+

and so C+ is not
linearly reductive.

Proposition 2.1.6. Let G be an algebraic group. The following statements are
equivalent:

(i) G is linearly reductive.
(ii) The representation of G on O(G) (by left or right multiplication) is com-

pletely reducible.
(iii) For every surjective G-homomorphism ϕ : V �W we have ϕ(V G) = WG.

Proof. It is clear that (i) implies (ii) and (iii) (see Exercise 1.3.7). Moreover,
(ii) implies (i), because every G-module occurs as a submodule of O(G)⊕n (Exer-
cise III.2.4.3).

For the implication (iii) → (i) we show that every submodule W ⊆ V has a G-
stable complement (Proposition 1.1.5). Consider theG-homomorphism Hom(V,W )→
End(W ), ϕ 7→ ϕ|W which is clearly surjective. Thus HomG(V,W ) → EndG(W ) is
also surjective, and so there is ϕ : V → W such that ϕ|W = idW , hence V =
W ⊕ kerϕ. �

Remark 2.1.7. If G is linearly reductive and ϕ : V � W a surjective G-
homomorphism of locally finite and rational G-modules, then we also have ϕ(V G) =
WG. In fact, if w ∈ WG and v ∈ V a preimage of w, then V ′ := 〈Gv〉 is a finite
dimensional G-module, and ϕ(V ′) contains w.

Exercise 2.1.8. Use the proposition above to give another proof that a diagonalizable
group D is linearly reductive (Example 2.1.2) by showing that O(D) is a direct sum of
one-dimensional submodules.

Exercise 2.1.9. Give an example of a surjective C+-homomorphism ϕ : V →W such

that ϕ(V C+

) 6= WC+

.

Exercise 2.1.10. Show that G is linearly reductive if and only if there is a G-
equivariant linear operator I : O(G)→ C such that I(c) = c for c ∈ C.
(This operator can be thought of as the “integral” f 7→

∫
G
fdg.)
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2.2. The coordinate ring of a linearly reductive group. Let G be an
algebraic group, and consider G as a G×G-variety with the usual action given by
(g1, g2)h := g1hg

−1
2 . Recall that the simple G×G-modules are of the form V ⊗W

where V,W are simple G-modules (Corollary 1.3.2). In particular, V ∗ ⊗ V is a
simple G×G-module which is canonically isomorphic to End(V ):

V ∗ ⊗ V ∼→ End(V ) is induced by `⊗ v 7→ ϕ`,v

where ϕ`,v(w) := `(w) · v. The corresponding representation ρ : G → GL(V ) gives
a G×G-equivariant morphism ρ : G→ End(V ) and thus a G×G-homomorphism
ρ∗ : End(V )∗ → O(G) which is injective because End(V ) is simple. It is also clear
that for two equivalent representations ρ1 : G → GL(V1) and ρ2 : G → GL(V2) we
get the same images ρ∗1(End(V1)∗) = ρ∗2(End(V2)∗).

For every isomorphism class λ ∈ ΛG we choose a simple module of type λ and
denote it by V (λ).

Proposition 2.2.1. Let G be a linearly reductive group. Then the isotypic
decomposition of O(G) as a G×G-module has the form

O(G) =
⊕

λ∈ΛG×Λ

O(G)λ

where O(G)λ ' End(V (λ))∗ ' V (λ)⊗ V (λ)∗.

Proof. Let W ⊆ O(G) be a simple G-submodule, with respect to the right
action of G, and let ρ : G→ GL(W ) denote the corresponding representation. The
claim follows if we show that W is contained in the image of ρ∗ : End(W )∗ → O(G).
For f ∈ W define the linear map `f : End(W ) → C by `f (ϕ) := ϕ(f)(e). Then
ρ∗(`f )(h) = `f (ρ(h)) = (ρ(h)f)(e) = f(eh) = f(h) and so ρ∗(`f ) = f . �

If G is a finite group, then dimO(G) = |G|, and we rediscover the famous
formula

|G| =
∑
λ

d 2
λ

where dλ is the dimension of the irreducible representation of type λ.

Corollary 2.2.2. The isotypic decomposition of O(G) with respect to the left
action of G has the form

O(G) '
⊕
λ∈ΛG

V (λ)⊕dλ

where dλ := dimV (λ).

Corollary 2.2.3. Let X be a G-variety containing a dense orbit Gx ⊆ X.
Then the isotypic decomposition of O(X) has the form

O(X) '
⊕
λ∈ΛG

V (λ)mλ where mλ ≤ dim(V (λ)∗)Gx .

Proof. The orbit map µx : G → X is G-equivariant and dominant, and so
µ∗x : O(X) → O(G) is an injective G-homomorphism. Since µx is invariant with
respect to the right action of the stabilizer Gx, µx(gh−1) = µx(g) for all g ∈ G and
h ∈ Gx, we see that the image of µ∗x is contained in the invariants O(G)Gx with
respect to the right action. Hence, µ∗x : O(X)λ ↪→ V (λ)⊗ (V (λ)∗)Gx . �

Let X be a G-variety. If the isotypic component O(X)λ is finite dimensional,
then O(X)λ ' V (λ)mλ . The exponent mλ is called the multiplicity of λ ∈ ΛG in
X and will be denoted by mλ(X). If the isotypic component O(X)λ is not finite
dimensional, then we set mλ(X) :=∞.
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Definition 2.2.4. We say that aG-varietyX has finite multiplicities ifmλ(X) <
∞ for all λ, and that X is multiplicity-free if mλ(X) ≤ 1 for all λ.

We will see later in chapter V that multiplicity freeness has an interesting
geometric interpretation.

2.3. Hilbert’s Finiteness Theorem. The next result is the famous Finite-
ness Theorem of Hilbert [Hil90, Hil93].

Theorem 2.3.1. Let G be a linearly reductive group and X a G-variety. Then
the subalgebra O(X)G ⊆ O(X) of invariant functions is finitely generated. More-
over, the isotypic components O(X)λ are finitely generated O(X)G-modules.

Before giving the proof we make some general remarks. Consider the isotypic
decomposition O(X) =

⊕
λ∈ΛG

O(X)λ and the linear projection

R : O(X)→ O(X)G

called the Reynolds-operator. The linear mapR is aG-equivariantO(X)G-homomorphism,
i.e. R(pf) = pR(f) for p ∈ O(X)G and f ∈ O(X). In particular, R(V ) = V G for
every G-stable subspace V ⊆ O(X). As a consequence, we get for every ideal
a ⊆ O(X)G:

O(X)a ∩ O(X)G = R(O(X)a) = a.

This already implies that O(X)G is a Noetherian algebra (see A.1.6).
If b ⊆ O(X) is a G-stable ideal, then p : O(X)→ O(X)/b induces a surjection

O(X)G → (O(X)/b)G with kernel b ∩ O(X)G = bG. Finally, if (Vi)i∈I is a family
of G-stable subspaces of O(X), then (

∑
i Vi)λ =

∑
i(Vi)λ for all λ ∈ ΛG. Thus

we have proved statements (3)–(5) of the following proposition. The Finiteness
Theorem above is contained in the first two statements which we will prove below.

Proposition 2.3.2. Put B := O(X) and A := O(X)G ⊆ B.

(1) A is a finitely generated C-algebra.
(2) For every λ ∈ ΛG the isotypic component Bλ is a finitely generated A-

module.
(3) For every G-stable ideal b ⊆ B we have A/(bG)

∼→ (B/b)G.
(4) For every ideal a ⊆ A we have Ba∩A = a. In particular, A is Noetherian.
(5) If (bi)i∈I is a family of G-stable ideals of B, then

∑
i b
G
i = (

∑
i bi)

G ⊆ A.

For the proof we will need the following useful lemma.

Lemma 2.3.3. Let A =
⊕

i≥0Ai be a graded C-algebra, n :=
⊕

i>0Ai, and
let a1, . . . , an be homogeneous elements of n. Then the following statements are
equivalent:

(i) A = A0[a1, . . . , an].
(ii) n =

∑
iAai.

(iii) n/n2 =
∑
iA0āi where āi := ai + n2.

In particular, if A is Noetherian, then A is finitely generated over A0.

Proof. The implications (i) → (ii) and (ii) → (iii) are easy. We leave their
proof to the reader.

(iii) → (i): By assumption, we have n =
∑
iA0ai + n2 and so, by induction,

nk =
∑

∑
ki=k

A0a
k1
1 · · · aknn + nk+1

for all k ≥ 1. This shows that A = A0[a1, . . . , an] + nk for all k ≥ 1. Now the claim
follows, because both sides are graded and nk has no elements in degree < k. �
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Proof of Proposition 2.3.2. (1) If X = V is a G-module, then O(V ) =⊕
i≥0O(V )i is a graded C-algebra where each graded component is G-stable. Thus

O(V )G =
⊕

i≥0O(V )Gi is again graded, with O(V )G0 = O(V )0 = C. Since O(V )G

is Noetherian (Proposition 2.3.2(3)) the lemma above implies that O(V )G is finitely
generated.

In general, the G-variety X is isomorphic to a G-stable closed subvariety of
a G-module V . Therefore, we obtain a G-equivariant surjective homomorphism
O(V ) � O(X) and thus a surjection O(V )G � O(X)G (Proposition 2.1.6).

(2) Let W be a simple G-module of type λ. Then O(X × W )G is a finitely
generated graded C-algebra:

O(X ×W )G =
⊕
i≥0

(O(X)⊗O(W )i)
G = O(X)G ⊕ (O(X)⊗W ∗)G ⊕ · · · .

It follows that (O(X)⊗W ∗)G is a finitely generated O(X)G-module. Now we have
seen in Proposition 1.3.1(2) that

(O(X)⊗W ∗)G ⊗W = HomG(W,O(X))⊗W ∼→ O(X)λ,

and it is easy to see that this linear map is a O(X)G-module homomorphism. �

A nice application of the lemma above is the following result about smooth
cones.

Example 2.3.4. Let X ⊆ Cn be a closed cone Assume that X is non-singular
in 0. Then X is a linear subspace of Cn.

Proof. By assumption,O(X) is graded,O(X) =
⊕

i≥0O(X)i whereO(X)0 =

C, and m0 :=
⊕

i>0O(X)i is the maximal ideal of 0 ∈ X. Since X is smooth in

0 we know that dimm0/m
2
0 = dimX. Thus we can find d := dimX homogeneous

elements f1, . . . , fd ∈ m0 whose images in m0/m
2
0 form a C-basis. Then Lemma 2.3.3

implies that O(X) = C[f1, . . . , fd]. Since dimX = d, the fi are algebraically in-
dependent. It remains to see that deg fi = 1 for all i. But this is clear, because
m2

0 =
⊕

i>1O(X)i. �

2.4. Algebraic quotient. We start with the definition of an algebraic quo-
tient of a G-variety X which turns out to be the best algebraic approximation to
an orbit space X/G. In the following we assume that G is a linearly reductive.

Definition 2.4.1. Let X be a G-variety. A morphism π : X → Z is called
algebraic quotient (shortly a quotient) if the comorphism π∗ : O(Z)→ O(X) induces

an isomorphism O(Z)
∼→ O(X)G.

It follows from Hilbert’s Finiteness Theorem 2.3.1 that algebraic quotients
exist. They can be constructed in the following way. Choose a set of generators
f1, . . . , fn of the invariants O(X)G, consider the morphism

π := (f1, . . . , fn) : X → Cn,

and define Z := π(X). Then π : X → Z is an algebraic quotient. It is also clear that
a quotient map π : X → Y is G-invariant, i.e. π is constant on orbits: π(gx) = π(x)
for all g ∈ G, x ∈ X.
(In fact, if π(gx) 6= π(x), then there is an f ∈ O(Z) such that f(π(gx)) 6= f(π(x))
which is a contradiction, because π∗(f) is a G-invariant function.)
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2.5. Properties of quotients. Let us now collect the main properties of
algebraic quotients.

Universal Mapping Property: Let π : X → Z be an algebraic quotient.
If ϕ : X → Y is an invariant morphism, i.e. ϕ is constant on orbits, then
there is a unique ϕ̄ : Z → Y such that ϕ = ϕ̄ ◦ π:

X
π //

ϕ
  

Z

ϕ̄

��

Y

Proof. Since ϕ is invariant we have ϕ∗(O(Y )) ⊆ O(X)G, and thus
there is a uniquely defined homomorphism µ : O(Y ) → O(Z) such that
π∗◦µ = ϕ∗. Then the corresponding morphism ϕ̄ : Z → Y has the required
property. �

Existence and uniqueness: An algebraic quotient exists and is unique up
to unique isomorphisms.

Proof. This follows immediately from the universal property. �

Thus we can safely talk about “the” quotient, and we will use the notation

πX : X → X//G

where we identify O(X//G) = O(X)G.

G-closedness: If X ′ ⊆ X is a closed G-stable subset, then πX(X ′) ⊆ X//G
is closed, and the induced morphism π : X ′ → πX(X ′) is an algebraic
quotient.

Proof. Let b := I(X ′) ⊆ O(X) be the ideal of X ′. Then the ideal

of the closure πX(X ′) is given by b ∩ O(X)G = bG. Since O(X)G/bG
∼→

(O(X)/b)G by Proposition 2.3.2(3) we see that π : X ′ → πX(X ′) is an
algebraic quotient. It remains to show that an algebraic quotient πX : X →
X//G is surjective.

Let y ∈ X//G be a point and my ⊆ O(X)G the corresponding maximal
ideal. SinceO(X)my∩O(X)G = my by Proposition 2.3.2(4), it follows that

O(X)my is strict ideal of O(X) and so the fiber π−1
X (y) is not empty. �

G-separation: Let (Ci)i∈I be a family of closed G-stable subsets of X. Then

πX(
⋂
i∈I

Ci) =
⋂
i∈I

πX(Ci).

In particular, the images under the πX of two disjoint G-stable closed
subsets of X are disjoint.

Proof. Let bi := I(Ci) ⊆ O(X) be the ideal of Ci. Then
⋂
i∈I Ci is

defined by
∑
i∈I bi and its image in πX(

⋂
i∈I Ci) ⊆ X//G by (

∑
i∈I bi)

G.

By Proposition 2.3.2(4), the latter is equal to the ideal
∑
i∈I b

G
i which

defines the closed subset
⋂
i∈I πX(Ci). Thus πX(

⋂
i∈I Ci) =

⋂
i∈I πX(Ci)

as claimed. �
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2.6. Some consequences. The properties of a quotient map πX : X → X//G
formulated above have a number of important consequences.

Corollary 2.6.1. The quotient map πX : X → X//G is submersive, i.e. it is
surjective and X//G carries the quotient topology.

Proof. Let U ⊆ X//G be a subset such that π−1
X (U) is open in X. Then

A := X \ π−1
X (U) is closed and G-stable and so, by G-closeness, πX(A) ⊆ X//G is

closed. Thus U = X//G \ πX(A) is open in X//G. �

Corollary 2.6.2. Let πX : X → X//G be the quotient and let f ∈ O(X)G be
a non-zero divisor. Then πX(Xf ) = (X//G)f , and Xf → (X//G)f is a quotient.

Proof. We have O(Xf ) = O(X)f . Since f is G-invariant we get (O(X)f )G =
(O(X)G)f = O((X//G)f ) (see Exercise 2.6.3 below), and the claim follows. �

Exercise 2.6.3. Let A be an algebra and G a group acting on A by algebra auto-
morphisms. If f ∈ AG is a non-zero divisor, then (Af )G = (AG)f .

Example 2.6.4. Let X be a G-variety and πX : X → X//G the algebraic quo-
tient. If η : Y → X//G is any morphism, then the fiber product Y ×X//G X (A.2.6)
is a G-variety in a natural way, and the induced morphism p : Y ×X//GX → Y is a
quotient:

Y ×X//G X
q−−−−→ X

p

y yπX
Y

η−−−−→ X//G

In fact, Y ×X//G X is a closed G-stable subvariety of Y × X where G acts only
on X, and so the quotient is induced by the morphism ϕ := idY ×πX : Y × X →
Y × (X//G). Since ϕ(Y ×X//G X) ⊆ Y × (X//G) coincides with the graph of the

morphism η, the projection onto Y induces an isomorphism ϕ(Y ×X//G X)
∼→ Y .

Corollary 2.6.5. Every fiber of the quotient map πX : X → X//G contains a
unique closed orbit. In particular, the closure of an orbit Gx ⊆ X contains a unique
closed orbit.

Proof. Since a fiber π−1
X (y) is closed an G-stable it contains a closed orbit.

Because of G-separation it cannot contain more than one closed orbit. �

The last corollary shows that the quotient X//G parametrized the closed orbits
in X. So if all orbits are closed, e.g. if the group G is finite, then X//G can be
identified with the orbit space X/G.

Definition 2.6.6. A quotient πX : X → X//G is called a geometric quotient
if every fiber of πX is an orbit. This is the case if and only if all orbits in X are
closed.

Corollary 2.6.7. Let G be a finite group and X a G-variety. Then πX : X →
X//G is a geometric quotient, and πx is a finite morphism.

Proof. Since all G-orbits are closed the quotient is geometric. In order to see
that πX is a finite morphism, we simply remark that every f ∈ O(X) satisfies
the monic equation

∏
g∈G(x − gf) = 0 whose coefficients are G-invariants (see

Lemma A.3.2.10). �

In general, if x, x′ ∈ X belong to the same fiber π−1
X (y) of the quotient map,

then the orbit closures Gx and Gx′ both contain a closed orbit which is the unique
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closed orbit of the fiber, and so Gx∩Gx′ 6= ∅. This shows that X//G is the quotient
space of X with respect to the equivalence relation

x ∼ x′ ⇐⇒ Gx ∩Gx′ 6= ∅.
This also explains the notation X//G with two slashes.

If V is a G-module with quotient map πV : V → V//G, then we get

N V := π−1
V (πV (0)) = {v ∈ V | Gv 3 0} ⊆ V.

The subset N V is a G-stable closed cone in V and is called the null fiber or the null
cone of V .

Example 2.6.8. Consider the action of C∗ on C2 defined by t(x, y) := (t ·
x, t−1 · y). Then

π : C2 → C, (x, y) 7→ xy

is the quotient, and all fibers are orbits except the null fiber N = π−1(0) which
consists of three orbits, namely π−1(0) = C∗(1, 0) ∪ C∗(0, 1) ∪ {0}. It follows that
π : C2 \ π−1(0)→ C \ {0} is a geometric quotient.

Exercise 2.6.9. Let X be a G-variety and Y an H-variety where G,H are both
linearly reductive. Then X × Y is a G×H-variety, and πX × πY : X × Y → X//G× Y//H
is the quotient.

2.7. The case of finite groups. We already noted that a finite group is
linearly reductive (Theorem of Maschke; cf. 2.1.3) Some of the results proved for
linearly reductive groups can be sharpened considerably in the finite case.

The following result was already proved in the previous section (Corollary 2.6.7).

Proposition 2.7.1. Suppose that G is finite and X is a G-variety. Then the
quotient π : X → X//G is geometric and π is a finite morphism.

The Finiteness Theorem (Theorem 2.3.1) can be strengthened to the extent
that we can give an explicit system of generators.

To do this let V be a G-module, (v1, . . . , vn) a basis of V and (x1, . . . , xn) the
dual basis where xi ∈ V ∗ ⊆ O(V ). For every µ ∈ Nn we set xµ := xµ1

1 xµ2

2 · · ·xµnn ∈
O(V ), and we consider the homogeneous invariants

Jµ :=
∑
g∈G

gxµ ∈ O(V )G

of degree |µ| := µ1 + · · · + µn. The following result is due to Emmy Noether
[Noe15].

Theorem 2.7.2. The invariant ring O(V )G is linearly spanned by the invari-
ants Jµ, and is generated by those Jµ with |µ| ≤ |G|.

Thus one sees that the invariants of degree ≤ |G| generate the invariant ring.
The number of these is less than (

dimV + |G|
dimV

)
,

but this estimate is far too big. A much better bound was found by Derksen
[Der01].

Corollary 2.7.3. The module O(V ) is generated as an O(V )G-module by the
homogeneous elements of degree < |G|.

For the proof we need the following result about symmetric functions, see Ex-
ercise I.2.2.2.
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Lemma 2.7.4. The subalgebra A ⊆ C[T1, ..., Td] of symmetric functions is gen-
erated by the power sums

ψj := T j1 + T j2 + · · ·+ T jd , j = 1, 2, . . . , d.

Proof. We have to show that the elementary symmetric functions s1, . . . , sd
can be expressed in ψ1, . . . , ψd. This follows by induction from the following formula
of Newton:

(∗) ψj−s1ψj−1 +s2ψj−2−· · ·+(−1)j−1sj−1ψ1 +(−1)jsj ·j = 0, j = 1, 2, . . . , d.

(a) The formula for j = d is clear if we set

f(Z) :=

d∏
i=1

(Z − Ti) = Zd +

d∑
I=1

(−1)isiZ
d−i,

because this implies

0 =

d∑
r=1

f(Tr) = ψd +

d∑
i=1

(−1)isiψd−i where s0 := d.

(b) In the case j < d we note that the left hand side of (∗) is a symmetric
function of degree ≤ j and thus is a polynomial p(s1, . . . , sj) in s1, . . . , sj .
Now we set Tj+1 = · · · = Td = 0 and denote this process by means of
a bar. Clearly, si for i ≤ j is the ith elementary symmetric function in
T1, . . . , Tj , and ψi = T i1 + · · ·+ T ij . From (a) it follows that the left hand
side of (∗) becomes 0 under this process, and hence p(s1, . . . , sj) = 0. Now
s1, . . . , sj are algebraically independent and thus p = 0.

�

Proof of Theorem 2.7.2. If f =
∑
aµX

µ is an invariant, then

|G| · f =
∑
g∈G

gf =
∑

aµJµ.

Thus we get O(V )G =
∑
µ CJµ. We have to show that each Jρ with |ρ| > |G| can

be expressed as a polynomial in the Jµ with |µ| ≤ |G|. To do this we consider the
expressions

Sj(X,Z) :=
∑
g∈G

(gX1 · Z1 + gX2 · Z2 + · · ·+ gXn · Zn)j , for j ∈ N,

with indeterminates Z1, . . . , Zn. Clearly

Sj(X,Z) =
∑
ρ∈Nn
|ρ|=j

Jρ · Zρ.

By Lemma 2.7.4 above the Sj(X,Z) for j > |G| can be expressed as polynomials
in the Sj(X,Z) with j ≤ |G|, and thus the Jρ with |ρ| > |G| are polynomials in the
Jµ with |µ| ≤ |G|. �

Proof of Corollary 2.7.3. It suffices to show that every isotypical com-
ponent of O(V ) is generated as an O(V )G-module by elements of degree < |G|.
Suppose W is a simple G-module of type λ. Then, as we have just seen, O(V ⊕W )G

is generated by elements of degree ≤ |G|. Now

O(V ⊕W )G = (O(V )⊗O(W ))G =
⊕
i≥0

(O(V )⊗O(W )i)
G

= O(V )G ⊕ (O(V )⊗W ∗)G ⊕ · · ·
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is a grading, and thus the O(V )G-module (O(V )⊗W ∗)G is generated by elements
of degree ≤ |G|, i.e. by

⊕
i<|G|(O(V )i ⊗W ∗)G. The canonical O(V )G-module iso-

morphism (see Proposition 1.3.1(2))

(O(V )⊗W ∗)G ⊗W ' O(V )λ

maps (O(V )i ⊗W ∗)G ⊗W onto (O(V )λ)i, and the claim follows. �

If we consider the usual permutation representation of the symmetric group
Sn on Cn, then the invariant ring is generated by the invariants of degree ≤ n.
One also knows that the coordinate ring O(Cn) is generated, as a module over the
invariants C[s1, . . . , sn], by homogeneous elements of degree

(
n
2

)
. Here the bounds

are substantially smaller than those given in the theorem and its corollary above.
The situation is different in the case of the cyclic group G = 〈g〉 of order

n with the representation ρ : G → GL1 = C∗, g 7→ exp (2πi/n). Here the smallest
homogeneous invariant is of degree n, and 1, x, x2, . . . , xn−1 form a basis for O(C) =
C[x] over O(C)G = C[xn]. These are exactly the bounds given by the theorem and
its corollary.

In this context there is an interesting result of Barbara Schmid [Sch89]. Let
us first define the β-invariant of a finite group G. If V is a G-module, then

β(G,V ) := min{d | O(V )G is generated by invariants of degree ≤ d},
and

β(G) := max{β(G,V ) | V a G-module}.
It follows from classical invariant theory that β(G) = β(G,Vreg) where Vreg is the
regular representation of G. Here is one of the general results of Schmid.

Proposition 2.7.5. If G is a non-cyclic finite group, then β(G) < |G|.

Explicit calculations show that β(S3) = 4 and β(S4) ≤ 12.

3. The Quotient Criterion and Applications

3.1. Properties of quotients. Let G be a linearly reductive group, X a
G-variety and πX : X → X//G the quotient.

Proposition 3.1.1. If X is irreducible, then X//G is likewise irreducible. If X
is normal, then so is X//G.

Proof. The first statement is clear since πX is surjective. For the second let
f ∈ C(X//G) be integral over O(X//G) = O(X)G. Then f is integral over O(X),
and so f ∈ O(X) ∩ C(X//G) ⊆ O(X) ∩ C(X)G = O(X)G. �

Remark 3.1.2. If X is normal, then the proof shows that O(X//G) = O(X)G is
integrally closed in C(X)G. It follows easily from this that C(X//G) is algebraically
closed in C(X)G.

But it is possible that C(X)G % C(X//G) holds. Suppose, for example, that
X = C2 and G = C∗ with the action given by

t(x, y) := (t · x, t · y) for t ∈ C∗ and (x, y) ∈ C2.

Then O(X//G) = C, while f = x/y ∈ C(X)G is a non-constant invariant rational
function.

Remark 3.1.3. If G is also connected , then O(X//G) is integrally closed in
O(X) and C(X//G) is algebraically closed in C(X).
(In fact, consider the integrality equation resp. the minimal equation. This only has
finitely many solutions and the solution set is stable under G. Since G is connected,
G leaves every solution fixed.)
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Proposition 3.1.4. Suppose G is connected and has trivial character group.
If V is a G-module and πV : V → V//G the quotient, then O(V//G) = O(V )G is
factorial and C(V//G) = C(V )G.

Proof. Suppose f ∈ O(V )G and f =
∏s
i=1 f

si
i is the prime factorization of

f in O(V ). We are going to show that fi ∈ O(V )G. One has gf =
∏s
i=1(gfi)

si

and thus gfi = µi(g)fj for some suitable j and µi(g) ∈ C∗. Furthermore, G′ :=
{g ∈ G | gfi ∈ C∗fi} is a closed subgroup of G with finite index: [G : G′] <
#{irreducible factors of f}. Since G is connected, this implies G = G′ and so gfi ∈
C∗fi. It follows that µi(gh) = µi(g)µi(h) for g, h ∈ G, i.e. µi is a character of G.
Thus, by assumption, one must have µi(g) = 1 for every g ∈ G, and so the prime
factorization of f in O(V ) yields a prime factorization of f in O(V )G. This proves

the first claim. For the second, let r ∈ O(V )G and write r = f
h where f, h ∈ O(V )

without common factor. Then, for all g ∈ G, r = gr = gf
gh , and so gf ∈ C∗f and

gh ∈ C∗h. As above, this implies that g, h ∈ O(V )G. �

Remark 3.1.5. Instead of requiring that V is a vector space, it is enough to
assume that O(V ) is factorial with group of units C∗. (The second condition can
also be eliminated.) Also it is not necessary that G is linearly reductive.

Remark 3.1.6. If X is an irreducible G-variety and m := max{dimGx} is the
maximal orbit dimension, then the quotient π : X → X//G satisfies

dimX//G ≤ dimX −m.
Under the additional assumption that C(X//G) = C(X)G one has equality, and
almost every fiber of π contains a dense orbit.
(We know that the set {x ∈ X | dimGx = m} is open and dense in X (??) and so
almost every fiber of the quotient map πX contains an orbit of dimension m. Now
the inequality follows from Theorem A.3.4.1. The proof of the second assertion is
essentially more difficult (see ??).

3.2. Some examples revisited. We will now have another look at some
examples form the first chapter, using the concept of quotients introduced above.

Example 3.2.1. Suppose Qn is the C-vector space of quadratic forms in n
variables with the standard action of SLn (cf. I.3.1):

gq(x) = q(g−1x) for g ∈ SLn and x ∈ Cn.
Now Proposition I.3.3.1 shows that the discriminant ∆: Qn → C is the quotient of
Qn by SLn. We would like to look at this in a different way.

First of all ∆ is an invariant, hence constant on the orbits. From the universal
mapping property of the quotient π : Qn → Qn//SLn we therefore get a commuta-
tive diagram

Qn
π //

ϕ
$$

Qn//SLn

δ

��

C

resp. O(Qn) O(Qn)SLnπ∗oo

C[∆]

δ∗

OO

ϕ∗

ee

The map δ is surjective, and for c ∈ C \ {0} the set ∆−1(c) is a closed orbit. Thus
δ−1(c) = π(∆−1(c)) is a point. Hence δ is birational, i.e. C(Y ) = C(∆). This implies
that δ is an isomorphism (see the following exercise).

Exercise 3.2.2. Let C be an affine irreducible curve and δ : C → C a birational
surjective morphism. Then δ is an isomorphism by Igusa’s Lemma A.5.6.5.
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Exercise 3.2.3. All fibers of the quotient ∆: Qn → C are reduced, the null fiber
∆−1(0) is normal and the other fibers are smooth.
(Hint: For the normality use the Serre Criterion A.5.7.1.)

The next proposition shows that the structure statement about quotients in the
above example, namely the isomorphism Qn//SLn

∼→ C, follows once one knows the
dimensions of the orbits.

Proposition 3.2.4. If G acts linearly on a vector space V and if G has an
orbit of codimension ≤ 1, then the quotient V//G is either a point or is isomorphic
to C.

Proof. By Proposition 3.1.1 the quotient Y := V//G is irreducible and nor-
mal, and Remark 3.1.6 shows that dimY ≤ dimV − maxv∈V dimGv ≤ 1. If
dimY = 0, then Y is a point. Now suppose dimY = 1. Then Y has no singu-
larities (Proposition A.5.6.1). Moreover, O(Y ) = O(V )G =

⊕
i≥0O(V )Gi is graded

with O(V )G0 = C, and m :=
⊕

i>0O(V )Gi is the maximal ideal corresponding to

π(0) ∈ Y . Now m/m2 is one-dimensional and thus O(V )G = C[x] for a homogeneous
x ∈ m \m2 (Lemma 2.3.3). �

Remark 3.2.5. The proof above shows that a one-dimensional quotient V//G
is isomorphic to C. But more is true. Assume that Z is a normal rational G-variety,
G is reductive. If dimZ//G = 1 and O(Z)∗ = C∗, then Z//G ' C.

Example 3.2.6. (See section I.4) The group GLn acts on the n×n-matrices Mn

by conjugation. We consider the n symmetric functions in the eigenvalues S1, . . . , Sn
as functions on Mn. Because

(∗) det(tE −A) = tn − S1(A)tn−1 + · · ·+ (−1)nSn(A),

the functions S1, . . . , Sn are regular on Mn. We have seen in Proposition I.4.1.2
that the invariants O(Mn)GLn are generated by S1, . . . , Sn and that the Sj are
algebraically independent. Thus the morphism

S : Mn → Cn, A 7→ (S1(A), · · · , Sn(A))

is a quotient of Mn by GLn. Like in the previous example we want to look at this
in a slightly different way.

Let π := πMn : Mn → Mn //GLn be the quotient. Since the Sj are invari-
ant functions the universal mapping property implies that we have the following
commutative diagram:

Mn
π //

S
%%

Mn //GLn

S̄

��

Cn

The matrix A ∈ Mn has n distinct eigenvalues if and only if the discriminant of
the characteristic polynomial (∗) does not vanish, and in this case S−1(S(A)) is
the conjugacy class of A. This shows that on a dense open set U ⊆ Cn the fibers
of S are orbits, and so S̄−1(a) is a single point of Mn //GLn for all a ∈ U . As a
consequence, the morphism S̄ is birational and surjective. We will see in the next
section that this implies that S̄ is an isomorphism (Quotient Criterion 3.4), hence
S : Mn → Cn is the quotient.
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3.3. Cosets and quotient groups. Suppose G is an algebraic group and
H ⊆ G is a linearly reductive subgroup. We have the two actions of H on G, namely
by right and by left multiplication:

λ, ρ : H ×G→ G, λ(h, g) := hg and ρ(h, g) := gh−1.

Under both of these actions all orbits are closed and isomorphic to H. Thus the
corresponding quotient is geometric (Definition 2.6.6). We will denote it in the
following by

π = πλ : G→ H\G resp. π = πρ : G→ G/H,

and we talk as usual about the right cosets and the left cosets.
Left multiplication of G on itself induces an action of G on G/H, and the

quotient map πρ : G → G/H is G-equivariant. An analogous statement holds for
the right multiplication and the right coset space H\G.

If H is in addition a normal subgroup, then G/H is an algebraic group with
coordinate ring O(G/H) = O(G)H . In fact, by the universal mapping property, the
multiplication and the inverse define a multiplication and an inverse on G/H, so
that G/H is an algebraic group (Proposition 2.4.6). It is the quotient group of G
by H and has the usual universal property (cf. Proposition II.2.1.10).

Exercise 3.3.1. Let H ⊆ G be a reductive subgroup of an algebraic group G. Show
that there is an isomorphism of G-varieties G/H

∼→ H\G.

Exercise 3.3.2. Let G be reductive. Consider the action of G on G × G by left
multiplication: g(h1, h2) := (gh1, gh2). Then the quotient is given by π : G × G → G,
(h1, h2) 7→ h−1

1 h2. What is the quotient if G acts by left multiplication on the product of
n copies of G?

Exercise 3.3.3. Let X be a G-variety, and let H ⊆ G be a closed normal reductive
subgroup. If H acts trivially on X, then the induced action of G/H on X is regular.

Exercise 3.3.4. Let X be a G-variety and let x ∈ X be a point whose stabilizer
Gx is reductive. Then the orbit Gx is an affine variety and the orbit map induces an
isomorphism G/Gx

∼→ Gx.
(Hint: Use Zariski’s Main Theorem A.5.6.7.)

Exercise 3.3.5. Let T ⊆ GL2 be the torus of diagonal matrices. Describe the quo-
tients T\M2/T and T\SL2 /T .

3.4. A criterion for quotients. Let X be an irreducible G-variety where G
is linearly reductive. If ϕ : X → Y is an invariant morphism, i.e. ϕ is constant on
orbits, we want to find a criterion which guarantees that ϕ is the quotient.

Proposition 3.4.1. Assume that Y is normal and that ϕ is surjective. If there
is a dense open set U ⊆ Y such that for every y ∈ U the fiber ϕ−1(y) contains a
unique closed orbit, then ϕ is the quotient.

Proof. The universal mapping property gives a commutative diagram

X
π //

ϕ
""

X//G

ϕ̄

��

Y

By assumption, ϕ̄ is surjective. Moreover, ϕ̄−1(y) is one point for every y ∈ U .
Thus ϕ̄ is surjective and has degree 1, hence is an isomorphism, because Y is
normal (Igusa’s Lemma A.5.6.5). �
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Remark 3.4.2. The formulation of Igusa’s Lemma A.5.6.5 used in the proof
above shows that the surjectivity of ϕ can be replaced by the assumption that
codimY Y \ ϕ(X) ≥ 2.

In order to apply the criterion above to a G-variety X we have to proceed as
follows (cf. Examples 3.2.1 and 3.2.6 above).

Quotient Criterion

(1) Find an invariant morphism ϕ : X → Y which is a candidate for the
quotient. (Quite often ϕ : X → Cn is given by invariant functions and
Y ⊆ Cn is the image of X.)

(2) Show that codimY Y \ ϕ(X) ≥ 2.
(3) Show that Y is normal. (This might be difficult.)
(4) Prove that, on an open dense set of Y , the fibers of ϕ contain a unique

closed orbit (e.g. a dense orbit).

Example 3.4.3. Consider the space Qn of quadratic forms with the linear
action of the special orthogonal SOn ⊆ GLn by substitution (I.3.3). We can identify
Qn with the symmetric matrices Symn ⊆ Mn where the linear action of SOn given
by A 7→ gAgt = gAg−1 (I.3.1). This shows that every invariant of Mn under
conjugation by GLn defines an On-invariant of Qn. In particular, the quotient map
πMn : Mn → Cn of Mn by GLn restricted to Qn = Symn is SOn-invariant.

We claim that the induced morphism

πQn : Qn → Cn, q = qA 7→ (S1(A), . . . , Sn(A))

is the quotient of Qn by SOn (and by On).

Proof. Since Symn contains the diagonal matrices, the map πQn is surjective.
We claim that a symmetric n×n-matrix A with n distinct eigenvalues is conjugate,
under SOn, to a diagonal matrix. This implies that on an open dense set of Cn the
fibers of πQn are orbits and so πQn is the quotient map by the Quotient Criterion.

In order to prove the claim, we first remark the two eigenvectors v, w of A with
different eigenvalues λ 6= µ are orthogonal. In fact, vtAw = (vtAw)t = wtAv, and
vtAw = µvtw whereas wtAv = λwtv = λvtw. As a consequence, at least one of the
eigenvectors vi of A is not isotropic, so we can assume that vt1v1 = 1. Now choose
a g ∈ SOn such that gv1 = e1. Then gAg−1 = gAgt has the form

λ1 0 · · · 0
0
... A′

0


where A′ is a symmetric (n − 1) × (n − 1)-matrix with n − 1 distinct eigenvalues.
Now the claim follows by induction. �

Example 3.4.4. Here we look at pairs of quadratic forms, Qn ⊕ Qn, with
the diagonal linear action of SOn given by (qA, qB) 7→ (gqA, gqB). Consider the
homogeneous polynomial

fA,B(s, t) := det(sA+ tB) =

n∑
i=0

fi(A,B)sitn−i

which is invariant under the action (A,B) 7→ (gAgt, gBgt).

We claim that the morphism

π : Qn ⊕Qn → Cn+1, (qA, qB) 7→ (f0(A,B), . . . , fn(A,B))

is the quotient of Qn ⊕Qn by SLn.
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Proof. Restricting π to pairs of diagonal matrices we see that π is surjective.
Now consider the following open dense subset of Qn ⊕Qn:

U := {(qA, qB) | qB non-degenerate and fA,B without multiple factors}.

Any (qA, qB) ∈ U is equivalent under SLn to some (qA′ , qcE), c 6= 0, and A′ has n
distinct eigenvalues, because χA′(t) = fA′,cE(−1, tc ) = fA,B(−1, tc ). The stabilizer
of qcE is On, and so (qA′ , qcE) is equivalent to a pair (qD, qcE) where D is a diagonal
matrix (see Example 3.4.3 above). Since fD,cE(s, t) =

∏n
i=1(λis+ct) we see that all

pairs in the fiber through (qA, qB) are equivalent to (qD, qcE), and the claim follows
from the quotient criterion. �

4. The First Fundamental Theorem for GLn

4.1. A Classical Problem. We consider the vector space V = Cn with the
natural linear GLn-action. For every pair r, s of natural numbers we get a repre-
sentation of GLn on the space

Lr,s := V r ⊕ (V ∗)s

with the contragradient representation on V ∗: (g`)(v) = `(g−1v) for ` ∈ V ∗, g ∈
GLn and v ∈ V .

Classical Problem: Describe the invariant ring O(Lr,s)
GLn by generators and

relations.

Example 4.1.1. For r = s = 1 we have the map

π = 〈 , 〉 : V ⊕ V ∗ → C, (v, `) 7→ 〈v, `〉 := `(v).

Clearly, π is constant on the orbits: π(g(v, `)) = 〈gv, g`〉 = (g`)(gv) = `(g−1gv) =
`(v) = π(v, `). With the help of the Quotient Criterion (3.4) it is easy to see that
π is a quotient. It follows that O(V ⊕ V ∗)GLn is a polynomial ring in one variable:

O(V ⊕ V ∗)GLn = C[〈 , 〉].

Next we would like to find a candidate for the quotient space Lr,s//GLn. To
do this we give a “coordinate free” description of Lr,s. Suppose U , V , W are three
finite dimensional vector spaces. Let

L := L(U, V )× L(V,W )

where we have used the following notation:

L(U, V ) := HomC(U, V ),

Lp(U, V ) := {ρ ∈ L(U, V ) | rk ρ ≤ p},
L′p(U, V ) := {ρ ∈ L(U, V ) | rk ρ = p}.

The group G := GL(V ) acts linearly on L by

g(α, β) := (g ◦ α, β ◦ g−1).

If one takes U := Cr, V := Cn and W := Cs, then it is obvious that L and Lr,s are
canonically GL(V )-isomorphic.

Now we consider the following bilinear map.

π : L→ L(U,W ), (α, β) 7→ β ◦ α.

Clearly, π is constant on the orbits and

π(L) = Lt(U,W ), t := min(dimU,dimV,dimW ).
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4.2. First Fundamental Theorem. For a complete proof of the following
theorem we need a result from the fifth chapter. However, we can handle some
special cases, see Proposition 4.3.1 below.

Theorem 4.2.1 (First Fundamental Theorem for GLn). The mapping

π : L(U, V )× L(V,W )→ Lt(U,W ), (α, β) 7→ β ◦ α,

where t := min(dimU,dimV,dimW ), is the quotient by GL(V ).

Proof. By the Quotient Criterion (3.4) it suffices to show the following:

(i) The space Lt(U,W ) is normal. This will be proved in ??, using the method
of U -invariants. The irreducibility and a formula for the dimension of
Lt(U,W ) is given in Lemma 4.2.2 below.

(ii) Every fiber of π contains exactly one closed orbit. This is the assertion of
Corollary 5.5.2 below.

�

Lemma 4.2.2. The set Lp(U,W ) := {ρ ∈ L(U,W ) | rk ρ ≤ p} ⊆ L(U, V ) is
irreducible and closed and has dimension

dimLp(U,W ) =

{
dimU · dimW for p ≥ m
(dimU + dimW − p)p for p ≤ m

where m := min(dimU,dimW ).

Proof. Clearly, Lp(U,W ) is isomorphic to the set of all dimU × dimW -
matrices for which (p + 1) × (p + 1)-minors vanish. This implies that Lp(U,W )
is closed in L(U,W ).

The group H := GL(U)×GL(W ) acts on L(U,W ) by (h, k)ρ := k ◦ ρ ◦ h−1. A
standard result from linear algebra tells us that ρ and ρ′ belong to the same H-orbit
exactly when they have the same rank. The sets L′p(U,W ), p ≤ m, are thus the
orbits of H. One can easily see from this that

(∗) L′p(U,W ) =
⋃
i≤p

L′i(U,W ) = Lp(U,W ).

Thus Lp(U,W ), as the closure of an orbit of the connected group H, is irreducible.
Suppose p ≤ m and let U = U ′ ⊕ U ′′ be a splitting of U into a direct sum with
dimU ′ = p. We consider the surjective map µ : Lp(U,W ) → L(U ′,W ), ρ 7→ ρ|U ′
and determine its fibers over the dense subset L′p(U

′,W ) of L(U ′,W ):

µ−1(τ) = {ρ ∈ L(U,W ) | ρ|U ′ = τ and ρ(U ′′) ⊆ τ(U ′)}
' L(U ′′, τ(U ′)).

From the dimension formula (A.3.4.7) we now get

dimLp(U,W ) = dimL(U ′,W ) + dimL(U ′′, τ(U ′))

= dimW · p+ (dimU − p)p = (dimU + dimW − p)p.

�

Remark 4.2.3. The inclusions of the closures of the H-orbits in L(U, V ) is
given by the following diagram, where m = min(dimU,dimW ) as above, see (∗).
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• L′0(U, V ) = {0}

• L′1(U, V )

• L′2(U, V )

• L′m−1(U, V )

• L′m(U, V )

Figure 1. Degenerations of orbits in L(U, V )

4.3. A special case. Under certain additional assumptions on the dimensions
of U, V and W we can now give a complete proof of the First Fundamental Theorem.

Proposition 4.3.1. If dimV ≥ max(dimU,dimW ), then

π : L(U, V )× L(V,W )→ L(U,W )

is the quotient by GL(V ).

Proof. Clearly, π is surjective and L(U,W ) is normal.

(a) First suppose U = V = W and let

π0 : End(V )× End(V )→ End(V )

be the multiplication map. For ρ ∈ GL(V ) one has

π−1
0 (ρ) = {(α, β) | β ◦ α = ρ} = {(g, ρg−1) | g ∈ GL(V )}.

This shows that over the open dense subset GL(V ) of End(V ) the fiber of π0 consists
of exactly one G-orbit, and the claim follows from the Quotient Criterion (3.4).

(b) If U and W are arbitrary with dimU,dimW ≤ dimV , then we choose a
surjection τ : V � U and an injection σ : W ↪→ V . We thus have a commutative
diagram

L(U, V )× L(V,W )
Φ−−−−→
⊆

End(V )× End(V )yπ yπ0

L(U,W )
Ψ−−−−→
⊆

End(V )

where the two injective linear maps Φ and Ψ are defined by

Φ(α, β) := (α ◦ τ, σ ◦ β), Ψ(ρ) := σ ◦ ρ ◦ τ.
Clearly, Φ is G-equivariant and hence identifies L(U, V )×L(V,W ) with a G-stable
closed subset of End(V )× End(V ) whose image under π0 is equal to Ψ(L(U,W )).
The result now follows from the G-closedness of quotient maps (2.5). �

4.4. Orbits in L(U, V ). In the rest of this section we study the fibers of π a
little closer, in particular, their GL(V )-structure and the question of irreducibility
and normality. In the following lemma we present a few simple facts whose proofs
are left to the reader.

Lemma 4.4.1. For ρ, ρ′ ∈ L(U,W ) one has:
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(a) ker ρ = ker ρ′ ⇐⇒ ∃k ∈ GL(W ) such that ρ′ = k ◦ ρ;
(b) im ρ = im ρ′ ⇐⇒ ∃h ∈ GL(U) such that ρ′ = ρ ◦ h1.

For ρ ∈ L(U,W ), α ∈ L(U, V ) and β ∈ L(V,W ) one has:

(c) kerα ⊆ ker ρ⇐⇒ ∃β′ ∈ L(V,W ) such that β′ ◦ α = ρ;
d) imβ ⊇ imα⇐⇒ ∃α′ ∈ L(U, V ) such that β ◦ α′ = ρ

Now we come to the description of the orbits in L = L(U, V )× L(V,W ) and their
closures.

Proposition 4.4.2. Suppose (α, β) and (α′, β′) are in L := L(U, V )×L(V,W ).
Then

(a) (α′, β′) ∈ GL(V )(α, β)⇐⇒ β′◦α′ = β◦α, kerα′ = kerα and imβ′ = imβ.

(b) (α′, β′) ∈ GL(V )(α, β)⇐⇒ β′◦α′ = β◦α, kerα′ ⊇ kerα and imβ′ ⊆ imβ.
(c) GL(V )(α, β) is closed if and only if kerα = ker(β◦α) and imβ = im(β◦α).

Proof. (a) The implication “=⇒” is clear. For the other direction we may
assume that α′ = α (Lemma 4.4.1(a)). We consider the following decompositions

V = V0 ⊕ V1 ⊕ V2 ⊕ V3 = V0 ⊕ V1 ⊕ V ′2 ⊕ V ′3
where imα = V0 ⊕ V1, kerβ = V1 ⊕ V2, and kerβ′ = V1 ⊕ V ′2 . Then β|V0⊕V3

and
β′|V0⊕V ′3 are both injective with the same image β(V ) = β′(V ). By Lemma 4.4.1(b)
there is thus an isomorphism

σ : V0 ⊕ V3
∼→ V0 ⊕ V ′3

such that (β′|V0⊕V ′3 )◦σ = β|V0⊕V3
. Since β and β′ agree on V0, it follows that σ|V0

=

idV0
. If we now choose any isomorphism τ : V2

∼→ V ′2 , then we get an automorphism

h : V
∼→ V , defined by

h(v0, v1, v2, v3) := (v0, v1, τ(v2), σ(v3)) (vi ∈ Vi),

which, by construction, gives us what we want, namely

h|imα = idimα and β = β′ ◦ h.

(b) Again the implication “=⇒′′ is clear, because α′ ∈ GL(V ) ◦ α and β′ ∈
β ◦GL(V ) and thus kerα′ ⊇ kerα and imβ′ ⊆ imβ. Therefore, for a fixed ρ, the
set {(α, β) | β ◦ α = ρ} is a fiber of π and so it is closed.

For the other direction let ρ := β ◦ α = β′ ◦ α′. There are decompositions

U = U0 ⊕ U1 ⊕ kerα and W = W0 ⊕W1 ⊕ imβ′

where

U1 ⊕ kerα = kerα′ and W1 ⊕ imβ′ = imβ.

Because kerα′ ⊆ ker ρ and im ρ ⊆ imβ′ the following diagram is commutative for
all ε ∈ C:

U0 ⊕ U1 ⊕ kerα
ρ−−−−→ W0 ⊕W1 ⊕ imβ′

τε:=

x(id,ε·id,id) σε:=

y(id,ε·id,id)

U0 ⊕ U1 ⊕ kerα
ρ−−−−→ W0 ⊕W1 ⊕ imβ′

Thus we have

ρ = σε ◦ ρ ◦ τε = (σε ◦ β) ◦ (α ◦ τε) = βε ◦ αε,
where αε := α ◦ τε and βε := σε ◦ β. For ε 6= 0 one clearly has kerαε = kerα and
imβε = imβ. By (a) it thus follows that (αε, βε) ∈ GL(V )(α, β) for every ε 6= 0.

Hence (α0, β0) ∈ GL(V )(α, β). Because kerα0 = kerα′ and imβ0 = imβ′ it again
follows from (a) that (α′, β′) ∈ GL(V )(α0, β0) and the result is clear.
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(c) Suppose ρ := β ◦ α, kerα = ker ρ and imβ = im ρ. For some (α′, β′) ∈
GL(V )(α, β) we get by (b) the inclusions kerα′ ⊇ ker ρ and imβ′ ⊆ im ρ. On the
other hand, since β′ ◦ α′ = ρ we have that ker ρ ⊇ kerα′ and im ρ ⊆ imβ′. From
(a) it therefore follows that (α′, β′) ∈ GL(V )(α, β) and thus GL(V )(α, β) is closed.

Now suppose conversely that GL(V )(α, β) is closed. Clearly, one always has
a decomposition ρ = β′ ◦ α′ with kerα′ = ker ρ and imβ′ = im ρ. From (b) it

follows that (α′, β′) ∈ GL(V )(α, β) = GL(V )(α, β). Thus kerα = ker ρ and imβ =
im ρ. �

The proofs of the following two corollaries are left as an exercise.

Corollary 4.4.3. There is exactly one closed orbit in the fiber π−1(ρ), namely
GL(V )(α0, β0) where ρ = β0 ◦ α0, ker ρ = kerα0, and im ρ = imβ0.

Corollary 4.4.4. The orbit of (α, β) is closed if and only if V = imα⊕kerβ.

This is fulfilled, for example, if α is surjective and β is injective.

4.5. Degenerations of orbits. For a vector space M over C we now define
the Grassmann manifold also called Grassmannian.

Grassd(M) := set of all subspaces of M of dimension d,

and

Grass(M) := set of all subspaces of M =

dimM⋃
d=0

Grassd(M).

If ρ ∈ π(L) and Fρ := π−1(ρ) is the fiber of ρ, then we consider the map

Φ: Fρ → Grass(ker ρ)×Grass(W/ im ρ), (α, β) 7→ (kerα, imβ/ im ρ).

By Proposition 4.4.2(a), the fibers of Φ are exactly the GL(V )-orbits in Fρ.

Lemma 4.5.1. The image of Φ consists exactly of those pairs (U0,W0) which
satiesfy

() codimρ U0 + dimW0 ≤ dimV − rk ρ.

(Here codimρ U0 := dim ker ρ− dimU0.)

Proof. Suppose ρ := β ◦α, U0 = kerα and W0 = imβ/ im ρ. Since α(ker ρ) ⊆
kerβ it follows that codimρ U0 ≤ dim kerβ and thus

codimρ U0 + dimW0 ≤ dim kerβ + dim imβ − rk ρ = dimV − rk ρ.

This proves (1).

Conversely suppose U0 ⊆ ker ρ andW0 ⊆W/ im ρ are given by (1). Let W̃0 ⊆W
be the preimage of W0. Then ρ can be factored as follows:

U −−−−→ U/U0
ρ̃−−−−→ W̃0 −−−−→ W

We have to show that there is a injection α̃ : U/U0 → V and a surjection β̃ : V → W̃0

with ρ̃ = β̃ ◦ α̃. Such a pair (α̃, β̃) obviously exists if and only if

dimV ≥ dim(U/U0 + dim(W̃0/ im ρ̃).

But the right hand side of this inequality is equal to rk ρ + codimρ U0 + dimW0,
and the claim follows. �

Corollary 4.5.2. The fiber Fρ is a closed orbit under GL(V ) exactly if ρ is
bijective or if rk ρ = dimV .
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Table 1. Fibers of ρ with finitely many Hρ-orbits

Proof. If dimV = rk ρ and ρ = β ◦ α, then α must be surjective and β
injective, and the result follows from Corollary 4.4.4. If ρ = β ◦ α is bijective, then
we get kerα = (0) = ker ρ and imβ = W = im ρ, and the result follows from
Proposition 4.4.2(c).

Conversely if Fρ consists of exactly one orbit and if dimV > rk ρ, then it follows
from Lemma 4.5.2 above that ker ρ = (0) and im ρ = W . �

Corollary 4.5.3. The fiber Fρ consists of finitely many orbits under the action
of GL(V ) if and only if either rk ρ = dimV or dim ker ρ and codimW im ρ ≤ 1 hold.

(This follows easily from Lemma 4.5.1 and the fact that Grass(M) is finite precisely
when dimM ≤ 1.)

Remark 4.5.4. On Grass(ker ρ)×Grass(W/ im ρ) we consider the ordering ≺
given by

(U0,W0) ≺ (U1,W1)⇐⇒ U0 ⊇ U1 and W0 ⊆W1.

Then, by Proposition 4.4.2, one has for (α0, β0), (α1, β1) ∈ Fρ

(α0, β0) ∈ GL(V )(α1, β1)⇐⇒ Φ(α0, β0) ≺ Φ(α1, β1).

If we denote by Fρ/GL(V ) the set of orbits in Fρ, along with the ordering given
by the closure of the orbits, then the mapping

Φ: Fρ → Grass(ker ρ)×Grass(W/ im ρ)

induces an order preserving isomorphism

Fρ/GL(V )
∼→ Φ(Fρ) = {(U,W ) | codimρ U + dimW ≤ dimV − rk ρ}.

In Table 1 we present the various cases for which Fρ only has a finite number of
orbits under Hρ. To do this we have provided the individual orbits in the inclusion
diagram with a pair of integers (n,m), which are defined by the following mapping:

θ : Fρ → N× N, (α, β) 7→ (codimρ kerα, rkβ − rk ρ).

One has

θ(α, β) = (codimρ U0,dimW0)
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where (U0,W0) = Φ(α, β), and by Lemma 4.5.1

θ(Fρ) := {(n,m) | n ≤ dim ker ρ,m ≤ dimW − rk ρ, n+m ≤ dimV − rk ρ}.

Thus the set of orbits in θ−1(n,m) ⊆ Fρ for a fixed (n,m) is parametrized by
Grassdim ker ρ−n(ker ρ)×Grassm(W/ im ρ).

4.6. The subgroup Hρ. Now we want to see that these subsets correspond
to the orbits of a particular subgroup Hρ of GL(U)×GL(V )×GL(W ). To do this
we choose decompositions U = ker ρ⊕ U1, W = im ρ⊕W1 and set

Hρ := GL(ker ρ)×GL(V )×GL(W1) ⊆ GL(U)×GL(V )×GL(W ).

(Every automorphism of ker ρ (resp. of W1) is extended to all of U (resp. to all of
W ) by defining it to be the identity map on U1 (resp. on im ρ).)

This group Hρ acts linearly on L = L(U, V )× L(V,W ) by

(h, g, k)(α, β) := (g ◦ α ◦ h−1, k ◦ β ◦ g−1).

This action coincides on the subgroup GL(V ) ⊆ Hρ with the given action of GL(V )
on L. Since Hρ induces the identity on U1 and on im ρ, the set Fρ is stable under
Hρ.

Proposition 4.6.1. The mapping θ : Fρ → N× N induces a bijection between
Fρ/Hρ, the set of Hρ-orbits in Fρ, and its image Nρ := θ(Fρ). Moreover, θ is order

preserving, i.e. one has (α′, β′) ∈ Hρ(α, β) if and only if θ(α′, β′) ≺ θ(α, β).

(As before, (n′,m′) ≺ (n,m) if n′ ≤ n and m′ ≤ m.)

Proof. We have to show that Hρ acts transitively on θ−1(n,m). Now θ : Fρ →
N× N is the composition

θ = θ̄ ◦ Φ: Fρ
Φ−−−−→ Grass(ker ρ)×Grass(W/ im ρ)

θ̄−−−−→ N× N,

where

θ̄(U0,W0) := (codimρ U0,dimW0).

Clearly GL(ker ρ)×GL(W1) acts transitively on

θ̄−1(m,n) = {(U0,W0) | dimU0 = dim ker ρ− n, dimW0 = m},

and the first claim follows.
The second assertion follows easily from Proposition 4.4.2. �

As a consequence we see that the fiber F = Fρ contains only finitely many
Hρ-orbits. The inclusion diagram for the closures of the Hρ-orbits is given by the
set Nρ ⊆ N× N with the product ordering on N× N which was just defined.

Example 4.6.2. Suppose dim ker ρ = 3 = dimW − rk ρ. Then we get the
following inclusion diagrams of the closure of the Hρ-orbits in Fρ (depending on
the quantity h := dimV − rk ρ):
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In particular, in this example Fρ is irreducible if either dimV = rk ρ or dimV ≥
rk ρ+ 6.

Exercise 4.6.3. (1) The number of irreducible components of Fρ is given by

max(min(h+ 1, n0 + 1,m0 + 1, n0 +m0 − h+ 1), 1)

where h := dimV − rk ρ, n0 := dim ker ρ and m0 = dimW − rk ρ:

(2) For the zero fiber F0 one has:
(i) F0 is irreducible ⇐⇒ dimU + dimW ≤ dimV .
(ii) Suppose m := min(dimU,dimW ) ≤M := max(dimU,dimW ). Then

# irreducible components =


dimV + 1 if m ≥ dimV,

m+ 1 if m ≤ dimV ≤M,

max(M +m− dimV + 1, 1) if M ≤ dimV.

4.7. Structure of the fiber Fρ.

Proposition 4.7.1. The fiber Fρ is irreducible if and only if one of the following
conditions is fulfilled:

(a) rk ρ ≥ dimU + dimW − dimV ,
(b) rk ρ = dimV ,
(c) ρ is injective or surjective.

Proof. Clearly Fρ is irreducible exactly if Nρ has a largest element (Proposi-
tion 4.6.1). Set

h := dimV − rk ρ, n0 := dim ker ρ, m0 := dimW − rk ρ.
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Then Nρ = {(n,m) ≤ (n0,m0) | n+m ≤ h}. Thus Nρ has a largest element if and
only if one of the following cases occurs:

(a) n0 +m0 ≤ h; then the largest element is (n0,m0).
(b) h = 0; then the largest element is (0, 0).
(c) n0 = 0 resp. m0 = 0; then the largest element is (d, 0) resp. (0, d) with

d = min(n0, h) resp. d = min(m0, h).

These three cases correspond exactly to the three cases given in the statement of
the proposition. For (a) one should note the relation

n0 +m0 = dim ker ρ+ dimW − rk ρ = dimU + dimW − 2 rk ρ.

�

Remark 4.7.2. Recall that in case (b) the fiber Fρ is a closed orbit (Corol-
lary 4.5.2).

Corollary 4.7.3. The fibers of π are irreducible on the open, dense subset
L′t(U,W ) of π(L) = Lt(U,W ) where t := min(dimU,dimV,dimW ).

Proof. Suppose ρ ∈ L′t(U,W ), i.e. rk ρ = t. We distinguish three cases.

(1) max(dimU,dimW ) ≤ dimV . This implies rk ρ = t ≥ dimU + dimW −
dimV and Fρ is irreducible by Proposition 4.7.1(a).

(2) dimV ≤ min(dimU,dimW ). This implies rk ρ = dimV , and Fρ is irre-
ducible by Proposition 4.7.1(b).

(3) dimU ≤ dimV ≤ dimW resp. dimU ≥ dimV ≥ dimW . This implies
rk ρ = dimU resp. rk ρ = dimW , and so ρ is injective (resp. surjective).
By Proposition 4.7.1(c) the set Fρ is irreducible.

�

It remains the question if these fibers are normal or even smooth. A first answer
is the following.

Proposition 4.7.4. If

rk ρ ≥ dimU + dimW − dimV,

then the fiber Fρ is a normal complete intersection (AI.5.7) of dimension

dimFρ = (dimU + dimW ) · dimV − dimU · dimW.

For the proof we want to use the normality criterion of Serre (see AI.5.7.5)
and thus we must determine the points (α, β) ∈ L where the tangent map

dπ(α,β) : L→ L(U,W ), (X,Y ) 7→ (β ◦X + Y ◦ α)

is surjective. (As usual we have set T(α,β)(L) = L and Tρ(L(U,W )) = L(U,W ),
where ρ = β ◦ α. Then

π(α+ εX, β + εY ) = (β + εY ) ◦ (α+ εX) = β ◦ α+ ε(β ◦X + Y ◦ α),

and so dπ(α,β)(X,Y ) = β ◦X + Y ◦ α.)

Lemma 4.7.5. The differential dπ(α,β) : L → L(U,W ) is surjective if and only
if α is injective or β is surjective.

Proof. We set δ := dπ(α,β) and thus δ(X,Y ) = β ◦X +Y ◦α. If α is injective
(resp. β is surjective), then dimU ≤ dimV (resp. dimV ≥ dimW ) and every
homomorphism in L(U,W ) factors through α (resp. β). On the other hand, for
every σ ∈ δ(L) one clearly has σ(kerα) ⊆ imβ. Thus, if δ is surjective, then one
must either have kerα = (0) or imβ = W . �
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Proof of Proposition 4.7.4. By the lemma above and Serre’s Criterion
(Proposition AI.5.7.5) it suffices to show that

F ′ρ := {(α, β) ∈ Fρ | α is injective or β surjective} ⊆ Fρ
has a complement of codimension ≥ 2. Set n0 := dim ker ρ, m0 := dimW − rk ρ.
By assumption, the subset

Nρ = {(n,m) ∈ N× N | n ≤ n0 and m ≤ m0} ⊆ N× N
has the form given in Figure 2 below where O := θ−1(n0,m0), O1 = θ−1(n0−1,m0)
and O2 = θ−1(n0,m0 − 1) are Hρ-orbits, see Proposition 4.7.1(a).
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Figure 2. Hρ-orbits in the fiber Fρ

By the lemma above we have (α, β) ∈ F ′ρ if and only if θ(α, β) is either of the
form (n0,m) or (n,m0). In particular,

F ′ρ ⊇ (O ∪O1 ∪O2) and Fρ \O = O1 ∪O2.

This implies

dim(Fρ \ F ′ρ) ≤ dim (Fρ \ (O ∪O1 ∪O2)) < dim(Fρ \O) < dimFρ,

and thus codimFρ(Fρ \ F ′ρ) ≥ 2. �

Remark 4.7.6. All irreducible fibers of π are normal. In fact, if ρ satisfies (b)
or (c) of Proposition 4.7.1, then Fρ is even smooth.
(In case (b) the set Fρ is a GL(V )-orbit and in case (c) one has Fρ = F ′ρ.)

5. Sheets, General Fiber and Null Fiber

We consider a linear representation ρ : G→ GL(V ) of a reductive group G and
denote by π : V → Y = V//G the quotient of V by G. In this section we present a
few connections between the geometry of the null fiber (also called the null cone)

N = N V := π−1(π(0))

and the geometry of a general fiber of π. It will be shown that the null fiber in
a certain sense is the “worst” of all the fibers, or otherwise stated, the “good”
properties of the null fiber also occur in all the other fibers. In order to study this
transformation of a general fiber into the null fiber we first introduce the concept
of sheets.
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5.1. Sheets. Suppose G is an algebraic group and Z is a G-variety. We con-
sider the union of the G-orbits of a fixed dimension n ∈ N:

Z(n) := {z ∈ Z | dimGz = n}.

These sets are obviously G-stable subsets of Z.

Proposition 5.1.1. The subsets Z(n) ⊆ Z are locally closed and G-stable. The
subset Zmax of orbits of maximal dimension is open in Z.

Proof. It is enough to show that for every n ∈ N the subset {z ∈ Z | dimGz >
n} is open in Z. This follows from the dimension formula dimGz+dimGz = dimG
(see III.1.3) with the help of the following lemma. �

Lemma 5.1.2. The function z 7→ dimGz is upper semi-continuous, i.e., for
every n ∈ N the set {z ∈ Z | dimGz < n} is an open subset of Z.

Proof. Since we can embed Z equivariantly into a vector space with a linear
action of G (Corollary III.2.3.5) it suffices to prove the lemma for Z = V . Now
LieG also acts on V (see III.5.3), and for v ∈ V one has

LieGv = (LieG)v := {X ∈ LieG | Xv = 0}

(Proposition III.5.3.2). We consider the linear mapping

V → HomC(LieG,V ), v 7→ sv,

where sv : LieG → V is given by X 7→ Xv. It follows that (LieG)v = ker sv for
every v ∈ V , and we have to show that v 7→ dim(ker sv) is upper semi-continuous.
But this is a well-known fact from linear algebra. �

Definition 5.1.3. Suppose G is connected. Then the irreducible components
of Z(n) are called the sheets of Z. Thus the sheets are locally closed, irreducible
G-stable subsets of Z.

The notion of sheets arose in the study of conjugacy classes in Lie algebras and
goes back to Dixmier (cf. the original literature [?], [?], [?]). If we consider the
classical case of conjugacy classes of matrices (i.e. the operation of GLn on Mn by
conjugation), then one can prove the following.

(a) The sheets of Mn are pairwise disjoint.
(b) Every sheet S contains semi-simple conjugacy classes and exactly one

nilpotent conjugacy class.
(c) The sheets of Mn are smooth.

None of these claims is true, in general. For instance, if we consider the adjoint
representation of a classical group G = SOn or G = Spn on its Lie algebra g, then
the sheets in g are not disjoint. Moreover, there are strata which are made up of
only one nilpotent conjugacy class, namely the sheets of minimal dimension. And
singular sheets occur, for example, in the Lie algebra of the exceptional group G2.
But it was shown by Andreas Im Hof that the sheets in the classical Lie algebras
are smooth .Compare this with the investigation in [?].

Example 5.1.4. Sheets in the Lie algebra of SL3.
Let G = SL3 act on its Lie algebra

sl3 = {X ∈ M3 | trX = 0},

by conjugation. (This example was studied in detail in ??.) Then sl3 consists of
three disjoint sheets having orbit dimensions 0, 4 and 6:

sl3 = S0 ∪ S4 ∪ S6,
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where S0 is just the zero matrix, S4 consists of the semi-simple matrices which have

an eigenvalue λ 6= 0 of multiplicity together with the conjugacy class of
[

0 1 0
0 0 0
0 0 0

]
while S6 contains the rest. Thus it is made up of the semi-simple matrices with

three different eigenvalues, the conjugacy classes of the matrices
[
λ 1 0
0 λ 0
0 0 −2λ

]
with

λ 6= 0, and the conjugacy class of
[

0 1 0
0 0 1
0 0 0

]
. Even in this rather simple example it is

not obvious that the sheet S4 has no singularities!

Example 5.1.5. Sheets in the Lie algebra of Sp4.
The group Sp4 acts by conjugation on its Lie algebra sp4, and sp4 has conjugacy

classes of dimensions 8, 6, 4 and 0. One gets one sheet S8 = sp
(8)
4 = spmax

4 of
dimension 10, the so–called regular or maximal sheet (= the sheet of maximal orbit
dimension). The closure of S8 contains two sheets S′6 and S′′6 with orbit dimension 6
which are the so-called subregular sheets. These are each 7–dimensional, and S′6∩S′′6
consists of the nilpotent conjugacy class of dimension 6 with partition (2, 2). The
sheet S4 lies in the closure of S′6 and S′′6 ; this only contains the nilpotent conjugacy
class with partition (2, 1, 1), see Figure 3.
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nilpotent conjugacy classes
in the sheet given by

Figure 3. The sheets in the Lie algebra of Sp4

Example 5.1.6. Sheets in pairs of vectors.
The group SL2 acts on the space of 2 × 2-matrices M2 by multiplication from the
left (cf. I.5.1). Then M2 consists of 3 disjoint sheets of orbit dimensions 3, 2 and 0:

M2 = S3 ∪ S2 ∪ {0}
where

S3 := GL2 ⊆M2, S2 := {m ∈ M2 | m 6= 0 and detm = 0}.
The set S3 consists exactly of the closed orbits which are not equal to zero. For
every orbit O ⊆ S2 one has O = O ∪ {0} and O ' C2 where C2 carries the natural
representation of SL2.

Example 5.1.7. Sheets in binary forms. We have a natural action of SL2

on the binary forms Rn := On(C2) (cf. I.6.1). The space R1 = (C2)∗ is isomorphic
to the natural representation and has two sheets, both consisting in one orbit. The
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space R2 is isomorphic to the adjoint representation of SL2. It also has two sheets,
{0} and the complement S2 := R2 \ {0} consisting of 2-dimensional orbits.

For n ≥ 3 the representation Rn consists of three disjoint sheets of orbit di-
mensions 3, 2, and 0:

Rn = S3 ∪ S2 ∪ {0}.
Let us describe S2 = R

(2)
n :

(a) For n odd:

S2 = {`n | ` ∈ R1 \ {0}} = Oxn := orbit of xn ⊆ NRn

(b) For n = 2m even:

S2 = {(`1 · `2)m | `i ∈ R1 \ {0}} = Ox2m ∪
⋃
λ∈C∗

Oλxmym .

5.2. Finitely many orbits. In this section we prove a first result showing
that a “good” property of the null fiber carries over to all fibers of the quotient
morphism π : V → V//G.

Proposition 5.2.1. Assume that the null fiber N V = π−1(π(0)) only contains
a finite number of orbits. Then

(1) Every fiber of π contains only finitely many orbits.
(2) π : V → V//G is equidimensional, i.e. the irreducible components of all

fibers of π have the same dimension.
(3) Every irreducible component C of a fiber contains a dense orbit of G◦.
(4) We have dimC = maxv∈V dimGv = dimV − dimV//G.

Proof. We may assume that G is connected.

(1) If the fiber F := π−1(w) contains infinitely many orbits of dimension d
for some w ∈ V//G, then there is an irreducible component X of Fd := {v ∈ F |
dimGv ≤ d} which contains infinitely many orbits of dimension d. In particular,
one has dimX ≥ d + 1. Now consider C∗X := {λX | λ ∈ C∗, x ∈ X} and its
closure Z := C∗X. Both sets are irreducible, G-stable and are contained in Vd :=
{v ∈ V | dimGv ≤ d}. By Lemma 5.1.2 the set Vd is closed. Clearly, 0 ∈ Z and
ρ := π|Z : Z → π(Z) ⊆ V//G is a quotient, because of the G-closedness of algebraic
quotients (2.5). Since X lies in a fiber of the quotient ρ, one has λX ⊆ ρ−1(ρ(λx))
for every λ ∈ C∗ and x ∈ X. This implies dim ρ−1(ρ(z)) ≥ dimX ≥ d+ 1 for every
z in the dense subset C∗X of Z, hence dim ρ−1(ρ(0)) ≥ d + 1 by the dimension
formula AI.3.4.7. Because ρ−1(ρ(0)) ⊆ Vd, the fiber ρ−1(ρ(0)) must contain an
infinite number of orbits, which contradicts the assumption.

(2) Let m be the maximal orbit dimension in V . By Proposition 5.1.1 the set
V (m) = {v ∈ V | dimGv = m} is open (and dense) in V . Thus π(V (m)) is dense in
V//G, and for every w ∈ π(V (m)) the fiber π−1(w) contains an orbit of dimension
m. Thus dimπ−1(w) ≥ m. By (1) every fiber F of π contains only a finite number
of orbits. Thus dimF ≤ m. Using again the dimension formula AI.3.4.7 one gets
dimC = m for every irreducible component of F , and the claim follows.

(3) Let C be an irreducible component of a fiber F . By (1), it contains only
finitely many orbits, and by (2) it has dimension m. Hence C contains a dense orbit
of dimension m.

(4) This follows from the above and the dimension formula AI.3.4.7. �

The same proof yields the following variant of the proposition above.

Proposition 5.2.2. If every component of the null fiber N V contains a dense
orbit, then this is true for every fiber of π : V → V//G, and π is equidimensional.
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Example 5.2.3. Let C∗ act on C2 by t(x, y) := (t · x, t−1 · y). Then

π : C2 → C, (x, y) 7→ xy,

is the quotient of C2 by this C∗-action. The null fiber consists of three orbits,

N V = V(xy) = (x-axis \ {0}) ∪ (y-axis \ {0}) ∪ {0}.
The other fibers are hyperbolas

Fc := π−1(c) = V(xy − c) where c ∈ C∗,
and they are closed orbits.

•
N V

F1

F1

F−1

F−1

Figure 4. General fiber and null fiber

5.3. The associated cone. Now we would like to study the transformation
from a general fiber to the null fiber a little closer. Let

R := O(V ) =
⊕
i≥0

Ri

be the coordinate ring of V with its usual grading given by the total degree of the
polynomials.

Definition 5.3.1. If f ∈ R, f =
∑d
i=0 fi, where fi ∈ Ri and fd 6= 0, then we

set
gr f := fd = homogeneous part of highest degree of f.

If T ⊆ R is a subspace, then

grT := 〈gr f | f ∈ T 〉 = subspace of R spanned by all gr f, f ∈ T.
If a ⊆ R is an ideal, then gr a is called the associated graded ideal.

The following properties are easy to verify. The task of doing this is left to the
reader as an exercise. For (2) one uses the fact that R has no zero divisors.
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Lemma 5.3.2 (Properties of the associated graded ideal). Let a, b ⊆ R be ideals.

(1) gr a is a homogeneous ideal in R. One has gr a = a if and only if a is
homogeneous.

(2) gr(fR) = (gr f)R for every f ∈ R.
(3) If a ⊆ b, then gr a ⊆ gr b.
(4) If a is G-stable, then gr a is also G-stable.
(5) gr a · gr b ⊆ gr(a · b) ⊆ gr a ∩ gr b.
(6) gr

√
a ⊆ √gr a.

Definition 5.3.3. Suppose X is an arbitrary subset of V . Then we define the
cone associated to X to be

CX := V(gr(I(X)))

where I(X) is the ideal of X.

Proposition 5.3.4. Let X ⊆ V be a subset.

(1) CX = CX̄, and this is a closed cone in V .
(2) The transformation X 7→ CX preserves inclusions, takes G-stable subsets

to G-stable closed cones and satisfies

C(X ∪ Y ) = CX ∪ CY.

(3) CX ⊆ C∗X and dim CX = dim X̄.
(4) If X is closed and irreducible, then CX is equidimensional, i.e. all irre-

ducible components have the same dimension.

Proof. The first two statements follow directly from the definitions. The first
part of (3) is also clear, because I(C∗X) is a homogeneous ideal which is contained
in I(X) and thus also in gr(I(X)). For the proof of the remaining assertion, we
may assume that X is closed.

Consider the vector space V ⊕ C with coordinate ring O(V ⊕ C) = R[t], along
with the grading

R[t]d :=

d∑
i=0

Ri · td−i.

Set

X ′ := C∗(X × {1}) = {(λx, λ) ∈ V ⊕ C | λ ∈ C, x ∈ X} ⊆ Z := X ′ ⊆ V ⊕ C,

and let η : Z → C be the map induced by the projection pr : V ⊕ C→ C. We want
to show that the following holds:

(i) η−1(λ) = λX × {λ} ∼= X for λ 6= 0.
(ii) η−1(0) = CX × {0} ∼= CX.

Proof of (i). For a homogeneous element f =
∑d
i=1 fit

d−i ∈ R[t]d one has

f(λx, λ) = λd ·
∑d
i=1 fi(x) for λ ∈ C. Thus f ∈ I(Z) implies

∑d
i=0 fi ∈ I(X) and

conversely. Since I(Z) is homogeneous, an element (z, λ) ∈ Z for λ 6= 0 is contained
in η−1(λ) if and only if z = λx for some x ∈ X. This implies (i). �

Proof of (ii). For g =
∑d
i=0 gi ∈ R, gd 6= 0, set g̃ :=

∑d
j=0 gjt

d−j . Then

I(X ′) = 〈g̃ | g ∈ I(X)〉, and g̃(v, 0) = (gr g)(v). For v ∈ V this implies

(v, 0) ∈ Z ⇐⇒ g̃(v, 0) = 0 for every g ∈ I(X)

⇐⇒ (gr g)(v) = 0 for every g ∈ I(X)

⇐⇒ v ∈ CX,

i.e. Z ∩ (V × {0}) = CX × {0} which verifies (ii). �
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By construction X ′ ' X × C∗. If X is irreducible, then so is Z, and one has
dimZ = dimX + 1. Because CX × {0} $ Z, we therefore get dim CX ≤ dimX.
Conversely, it follows from (i) and (ii) that every irreducible component of CX has
dimension ≥ dimX (dimension formula AI.3.4.7). Thus CX is equidimensional of
dimension dimX. Because C(X∪Y ) = CX∪CY by (2), it also is true for a reducible
X ⊆ V that dim CX = dimX. �

Most of all we want to use this “cone construction” CX in the situation where X
is a fiber of a quotient map. In this case CX has a very simple geometric description.
(Cf. ??; there X is a semi-stable orbit.)

Proposition 5.3.5. Suppose X ⊆ V is contained in a fiber F of the quotient
map π : V → V//G which is different from the null fiber N V . Then

CX = C∗X ∩N V = C∗X \ C∗X.

Proof. We will prove the following statements which imply the claim.

(i) CX ⊆ N V ;
(ii) N V ∩C∗X = ∅;
iii) C∗X = C∗X ∪ CX.

(i) The ideal m :=
⊕

i>0R
G
i is the maximal ideal of RG corresponding to π(0),

and N V = V(m). One has to show m ⊆ gr I(X). To do this suppose f ∈ m, f 6= 0 is
homogeneous. Since f is an invariant, f = c ∈ C on X. It follows that f − c ∈ I(X)
and thus gr(f − c) = f ∈ gr I(X), i.e. m ⊆ gr I(X).

(ii) Suppose z ∈ N V ∩C∗X, i.e. z = λx for some λ ∈ C∗ and x ∈ X. Since
N V is a cone, we get x = λ−1z ∈ N V ∩X. Thus π(x) = π(0), contradicting the
assumption.

(iii) Suppose z ∈ C∗X \ C∗X. Since C∗X is dense in C∗X there exist λi ∈ C∗
and xi ∈ X such that z = limi→∞ λixi (cf. Proposition B.1.5.1). By taking a
subsequence we may assume that the sequence λi converges. (Note that |λi| → ∞
is not possible, because in this case xi → 0, and thus 0 ∈ X, contradicting the
hypothesis.) Suppose limi→∞ λi = λ. If λ 6= 0, then

λ−1z = lim
i→∞

λ−1
i λixi = lim

i→∞
xi ∈ X, i.e. z ∈ C∗X,

contradicting the assumptions. Thus limi→∞ λi = 0.
Now we will show that z ∈ CX, i.e. (gr f)(z) = 0 for every f ∈ I(X). Suppose

f =
∑d
j=0 fj ∈ I(X) where fd 6= 0, hence gr f = fd. If we set fλ :=

∑d
i=0 λ

d−ifi
for λ ∈ C∗, then it follows that fλi(λixi) = λdi f(xi) = 0, and thus

0 = lim
i→∞

fλi(λixi) = ( lim
i→∞

fλi)( lim
i→∞

λixi) = (gr f)(z).

This finishes the proof of the proposition. �

Corollary 5.3.6. One has dimN V ≥ dimF for every fiber F of π. In par-
ticular, π is equidimensional if and only if dimN V is minimal, i.e. if and only
if

dimN V = dimV − dimV//G.

(This follows directly from Proposition 5.3.5 above and Proposition 5.3.4.)

5.4. The coordinate ring of the associated cone. Now we would like to
compare the coordinate rings of X and of CX. As before, we set R := O(V ) =⊕

i≥0Ri. Then we have

O(X) = R/I(X) and O(CX) = R/
√

gr I(X).
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Suppose a ⊆ R is an ideal, and set R̄ := R/a. Define R≤j :=
⊕

i≤j Ri (hence

R≤j = {0} for j < 0). Setting

R̄(j) := (R≤j + a)/a ⊆ R/a,

we get an ascending filtration

R̄(0) := C ⊆ R̄(1) ⊆ R̄(2) ⊆ · · · ⊆ R̄

such that R̄(i) ·R̄(j) ⊆ R̄(i+j). Therefore, the multiplication in R̄ defines a C-algebra
structure on

gr R̄ :=

∞⊕
i=0

R̄(i)/R̄(i−1).

Lemma 5.4.1. (1) There is a canonical isomorphism R/ gr a
∼→ gr(R/a).

(2) If a is G-stable, then R/a and R/ gr a are isomorphic G-modules.

Proof. (1) For fi ∈ Ri we denote by f̄i the image of fi in

R̄(i)/R̄(i−1) = (R≤i + a)/(R≤i−1 + a).

We get a homogeneous surjective C-algebra homomorphism

ρ : R→ gr(R̄), f =
∑
i≥0

fi 7→
∑
i≥0

f̄i.

We find

(ker ρ) ∩Ri = (R≤i−1 + a) ∩Ri
= {gr f | f ∈ a,deg f = i}
= (gr a)i

and thus ker ρ = gr a.

(2) If a is G-stable, then so are all the R̄(i). Because of the semisimplicity of
the G-modules, there is a G-stable complement Ei of R̄(i−1) in R̄(i):

R̄(i) = Ei ⊕ R̄(i−1) for every i ∈ N.

Thus gr(R̄) =
⊕∞

i=0 R̄
(i)/R̄(i−1) is isomorphic, as a G-module, to

⊕∞
i=0E

i = R̄.

Since the isomorphism R/ gr a
∼→ gr R̄ constructed in (1) is also G-equivariant, we

finally see that R/ gr a and R̄ are isomorphic as G-modules. �

If X is an affine G-variety such that O(X)G = C, then the multiplicities of
the simple modules in O(X) are finite, by Hilbert’s Finiteness Theorem 2.3.1 (cf.
5.5.2); they are denoted by mλ(X) for λ ∈ ΛG.

Proposition 5.4.2. If X is a G-stable closed subset of V , then the multiplicities
satisfy the following inequalities:

mλ(X) ≥ mλ(CX) for every λ ∈ ΛG.

Proof. We have seen in Lemma 5.4.1 above that O(X) = R/I(X) is G-
isomorphic to R/ gr I(X). The claim now follows from the surjectivity of the canon-
ical G-equivariant homomorphism

R/ gr I(X) � R/
√

gr I(X) = O(CX).

�
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5.5. Reducedness and normality. The main result of this section is the
following theorem. We look again at the quotient map π : V → V//G where V is a
G-module.

Theorem 5.5.1. If the null fiber N V is reduced and irreducible of dimension
dimV − dimV//G, then all fibers of π are reduced and irreducible, and π is equidi-
mensional. If, in addition, N V is normal, then so are all the fibers of π.

Proof. (a) For z ∈ V//G let mz ⊆ RG denote the maximal ideal corresponding
to w. Then one has m0 :=

⊕
i>0R

G
i ⊆ grmz. In fact, for a homogeneous f ∈ m0

one has f − f(z) ∈ mz, hence f = gr(f − f(z)) ∈ grmz.
Suppose now that C is an irreducible component of F := π−1(z). Then it follows

that mzR ⊆ I(C), and CC = N V . In fact, N V is irreducible and dimN V = dim CC
by Corollary 5.3.6. Since N V is reduced, one even has I(N V ) = m0R. Altogether
we get

m0R ⊆ grmzR ⊆ gr I(C) ⊆
√

gr I(C) = I(N V ) = m0R,

and thus grmzR = gr I(C). Since mwR ⊆ I(C) we finally get mwR = I(C) by
Lemma 5.3.2. Thus mwR = I(F ), i.e. the fiber F is reduced and irreducible.

(b) Suppose now that N V is also normal. If we set R̄ = O(F ) = R/I(F ), then
it follows from the above and Lemma 5.4.1(1) that

gr R̄ ' R/ gr I(F ) = O(N V ),

i.e. gr R̄ is a normal integral domain. We want to conclude from this that R̄ R̄ is
also normal. For f ∈ R̄ set

deg f :=

{
d if f 6= 0 and f ∈ R̄(d) \ R̄(d−1)

−∞ if f = 0

(We are using the notation which was introduced above in section 5.4.) Since gr R̄
is an integral domain one has

deg(fg) = deg f + deg g for every f, g ∈ R̄.

Now let K := Quot(R̄) be the quotient field of R̄, and let t = f/g ∈ K. Then

deg t := deg f − deg g

is well-defined, i.e. independent of the representation of t as a quotient in K. On
K we get the filtration

· · · ⊆ K(i) ⊆ K(i+1) ⊆ K(i+2) ⊆ · · · i ∈ Z,

where K(i) := {t ∈ K | deg t ≤ i}. Then we get

(i) K(i) ∩ R̄ = R̄(i);
(ii) K(i) ·K(j) ⊆ K(i+j);

(iii) deg(rs) = deg r + deg s for r, s ∈ K.

Because of (ii), we see that grK :=
⊕

i∈ZK
(i)/K(i−1) is a C-algebra, and it follows

from (i) and (iii) that grK has no zero divisors and that gr R̄ ⊆ grK. We claim
that grK is contained in the quotient field of gr R̄:

gr R̄ ⊆ grK ⊆ Quot(gr R̄).

In fact, if s ∈ grK, s ∈ K(i)/K(i−1), then s = f/h + K(i−1) where f, h ∈ R̄,
with d := deg h = deg f − 1. Thus (grh) · s = (h + K(d−1)) · (f/h + K(i−1)) =
f +K(d+i−1) = gr f , and hence

s =
(gr f)

(grh)
∈ Quot(gr R̄).
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Now suppose that S ⊆ K is the integral closure of R̄ in K. Then S inherits the
filtration from K, i.e. S(i) := S ∩K(i), and one has

gr R̄ ⊆ grS ⊆ grK ⊆ Quot(gr R̄).

Now the integral closure S of R̄ in K is a finitely generated R̄-module (Proposi-
tion A.5.2.1). Hence, there is an r ∈ R̄, r 6= 0, with rS ⊆ R̄ Because there are no
zero divisors in grS, it thus follows that gr(rS) = (gr r)(grS) ⊆ gr R̄. Since gr R̄
is noetherian, grS is a finitely generated (gr R̄)-module and hence is integral over
gr R̄. By assumption we have grS = gr R̄, and therefore R̄ = S by Lemma 5.3.2(3).
i.e. R̄ is normal. �

Corollary 5.5.2. If

N ′V := {v ∈ N V | (dπ)v : V → Tπ(0)(V//G) is surjective}

is not empty and codimNV N V \ N V ′ ≥ 2, then all fibers of π are reduced and
normal, the quotient map π is equidimensional, and the quotient V//G is an affine
space.

Proof. If v ∈ N ′V , then

dimvN V ≤ dimTv(N V ) ≤ dim ker(dπ)v = dimV − dimTπ(0)(V//G)

≤ dimV − dimπ(0) V//G = dimV − dimV//G ≤ dimvN V .

Thus dimTπ(0)(V//G) = dimV//G, i.e. π(0) is a regular point of V//G, and N V is

smooth in N ′V , hence N V is reduced and normal, by Serre’s Criterion A.5.7.5.
Now the theorem above implies the first two claims.

It remains to see that the quotient is an affine space. Since O(V//G) = O(X)G is
positively graded, with homogeneous maximal ideal mπ(0), this is Example III.3.1.3.

�

Example 5.5.3 (First Fundamental Theorem). Suppose dimU + dimW ≤
dimV . Then all fibers of the quotient map

π : L(U, V )× L(V,W )→ L(U,W ), (α, β) 7→ β ◦ α

are reduced and normal.

Proof. This follows immediately from Proposition 4.7.4. We give here a direct
proof using the corollary above. The null fiber is given by N := {(α, β) | β ◦α = 0}.
Hence, it is given by dimU ·dimW equations. Since dimU ·dimW is the dimension
of the quotient it follows that π is equidimensional. It is easy to see that the tangent
in (α, β) ∈ N is surjective, if either α is injective or β is surjective.

�

Remark 5.5.4. Results analogous to our Theorem 5.5.1 can be proved for other
properties of the null fiber, e.g. for the Cohen-Macaulay property or the property
of having rational singularities.

6. The Variety of Representations of an Algebra

6.1. The variety ModnA. In the following let A be a finitely generated asso-
ciative unitary C-algebra, and let {a1, ..., as} be a set of generators of A. A finite
dimensional A-module M is a finite dimensional C-vector space V together with
an action of A on V given by a homomorphism ρ : A → End(V ) of C-algebras.
Therefore, the isomorphism classes of finite dimensional A-modules correspond in
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a unique way to the equivalence classes of finite dimensional representations of the
algebra A. Now fix n ∈ N and define

ModnA := {ρ : A→ Mn(C) | ρ a C-algebra homomorphism}.

For ρ ∈ ModnA we denote by Mρ the corresponding A-module with underlying vector
space Cn.

Proposition 6.1.1. The set ModnA of representations of A on Cn has a natural
structure of an affine variety with an action of GLn. The orbits are the equivalence
classes of representations, and they correspond bijectively to the isomorphism classes
of n-dimensional A-modules.

Proof. The homomorphism ρ : A → Mn is determined by the images of the
generators a1, . . . , as of A. Thus we get an embedding

ι = ι{a1,...,as} : ModnA ↪→ (Mn)s, ρ 7→ (ρ(a1), . . . , ρ(as)).

The image of ModnA is the closed subvariety of the vector space (Mn)s defined by the
same equations in the matrices ρ(ai) as those which are satisfied by the generators
ai in A. In order to see that this does not depend on the generators, it suffices
to consider a second set of generators of the form {a1, . . . , as, b} with an arbitrary
element b ∈ A. Then b = p(a1, . . . , as) where p is a linear combination of monomials
in the ai, and we get the following commutative diagram

(Mn)s
ψ−−−−→ (Mn)s+1 pr−−−−→ (Mn)s

⊆
xι(a1,...,as) ⊆

xι(a1,...,as,b) ⊆
xι(a1,...,as)

ModnA ModnA ModnA

where ψ(A1, . . . , As) := (A1, . . . , As, p(A1, . . . , As)). Since pr ◦ψ = id it follows that

ψ induces an isomorphism ι{a1,...,an}(ModnA)
∼→ ι{a1,...,an,b}(ModnA).

We let GLn act by conjugation on (Mn)s. Clearly, the image of ModnA is stable
under this action. In fact, along with ρ : A → Mn the map gρ : A → Mn, a 7→
gρ(a)g−1, is also an algebra homomorphism. The remaining statements are now
obvious. �

For ρ ∈ ModnA we will denote by Cρ the orbit of ρ under the action of GLn. By
the above every n-dimensional A-module M defines an orbit in ModnA which will
be denoted by CM .

Example 6.1.2. Let A = C[x], the polynomial ring in one variable x. Then
ModnA ' Mn, and the isomorphism classes of the n-dimensional A-modules are in
one-to-one correspondence with the conjugacy classes in Mn.

Remark 6.1.3. For the stabilizer (GLn)ρ of a representation ρ ∈ ModnA we
have in a canonical way

(GLn)ρ = AutA(Mρ).

Proof. If g : Mρ → Mρ is an isomorphism of A-modules for some g ∈ GLn,
then one has g(am) = a(gm) for every a ∈ A,m ∈Mρ. By definition, am = ρ(a)m
and thus g(ρ(a)m) = ρ(a)g(m) for all m ∈ Mρ. This implies gρ(a) = ρ(a)g for
every a ∈ A, hence gρ = ρg, i.e. g ∈ (GLn)ρ. The claim follows easily. �
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6.2. Geometric properties. Now one might wonder about the connection
between algebraic properties of an A-module M and geometric properties of the
associated orbit CM . A first result in this direction is the following. Recall that an
A-module is semisimple if it is a direct sum of simple A-modules.

Proposition 6.2.1. An A-module M of finite dimension is semisimple if and
only if the associated orbit CM is closed.

The proposition will be a consequence of a more general result (Theorem 6.3.2).
For the proof we need some new tools which we will develop now.

Definition 6.2.2. A filtration F of an A-module M is a finite chain

F : M = M0 ⊇M1 ⊇ · · · ⊇Mt = {0}

of submodules. The associated graded A-module is defined to be

grFM :=

t−1⊕
i=0

Mi/Mi+1.

Remark 6.2.3. Every finite dimensional A-module M has a composition se-
ries, i.e. a filtration with all the factors Mi/Mi+1 being simple. The simple factors
which occur, as well as their multiplicities, are independent of the particular series
by the famous Theorem of Jordan-Hölder. One calls these simple factors the
composition factors or the Jordan-Hölder-factors.

Lemma 6.2.4. Suppose ρ, ρ′ ∈ ModnA. Then the following are equivalent.

(i) There exists a one-parameter subgroup λ : C∗ → GLn such that

lim
t→0

λ(t)ρ = ρ′.

(ii) There exists a filtration F of the A-module Mρ such that grFMρ ' Mρ′

as A-modules.

Proof. (i) ⇒ (ii): We decompose the underlying vector space V = Cn of Mρ

according to its weights with respect to λ:

V =
⊕
i

Vi, Vi := {v ∈ V | λ(t)v = tiv for t ∈ C∗}.

Define Mj :=
⊕

i>j Vi. We claim that the Mj ⊆ Mρ are submodules forming a
filtration F of Mρ such that grFMρ 'Mρ′ .

Let ιi : Vi ↪→ V (resp. pi : V � Vi) be the canonical injections (resp. projec-
tions) of the weight space decomposition V =

⊕
i Vi. For a ∈ A and ρ(a) ∈ EndC(V )

one has ρ(a) = (pk ◦ ρ(a) ◦ ιi) = (ρ(a)ik) with ρ(a)ik : Vi → Vk. We find that
pk ◦ (λ(t)ρ)(a) ◦ ιi = pk ◦ (λ(t)ϕλ(t)−1) ◦ ιi = pkt

kρ(a)t−iιi = tk−iρ(a)ik:

Vi
ρ(a)ik−−−−→ Vk

λ(t)−1

x yλ(t)

Vi
tk−iρ(a)ik−−−−−−−→ Vk

Since, by assumption, limt→0(λ(t)ρ)(a) exists, this implies the following:

(1) One has ρ(a)ik = 0 for k < i. In particular, Mj is an A-submodule of Mρ

for every j.
(2) ρ′(a)ik = limt→0 pk ◦ (λ(t)ρ)(a) ◦ ιi = 0 for k > i.
(3) ρ′(a)ii = ρ(a)ii for every i.
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Thus ρ′(a) is given by the matrix
. . . 0

ρ(a)ii

0
. . .


and the claim follows.

(ii) ⇒ (i): Given the filtration F : Mρ = M0 ⊇M1 ⊇ . . . ⊇Mt = {0} it suffices
to find a suitable one-parameter subgroup λ which induces the filtration F (in the
sense of the first part of the proof). There exist subspaces Vi ⊆ Mrho, i = 0, . . . , t

such that V =
⊕t

i=0 Vi and Mj =
⊕t

i=j Vi. Now define λ to be λ(t) := ti · IdVi on
Vi for i = 0, . . . , t. Then it is easy to see that this one-parameter subgroup satisfies
the stated conditions, i.e. the coresponding filtration is F . �

Example 6.2.5. The matrix

[
α 1
0 α

]
defines to a C[x]-module structure M on

C2. Let {e1, e2} be the standard basis of C2. Clearly, M contains the submodule
Ce1. The graded C[x]-module associated to the filtration F : M = C2 ⊇ Ce1 ⊇ {0}
is Ce1 ⊕ C2/Ce1 ' C ⊕ C where the action of x induced on this is given by the

matrix

[
α 0
0 α

]
. Moreover, for t ∈ C∗ one has[
t 0
0 t−1

] [
α 1
0 α

] [
t−1 0
0 t

]
=

[
α t2

0 α

]
t→0−→

[
α 0
0 α

]
This shows that F is the filtration associated to the 1-PSG λ : t 7→

[
t 0
0 t−1

]
.

6.3. Degenerations. Suppose M,M ′ are two A-modules of the same dimen-
sion. If the orbit CM ′ of M ′ lies in the closure of the orbit CM of M , then one calls
M ′ a specialization or a degeneration of M . This property will be indicated by

•

•

M ′

M

Remark 6.3.1. The above lemma implies that the graded module grFM as-
sociated to the filtration F of M is a specialization of M . However, not every spe-
cialization can be obtained in this way. For a counterexample we refer the reader
to [Kra82, Chap. II.4.6, remark 2]

The next theorem serves to clarify and extend Proposition 6.2.1.

Theorem 6.3.2. (1) The closed orbits in ModnA are in one-to-one corre-
spondence with the semisimple A-modules of dimension n.

(2) If M is an A-module of dimension n, then the closure CM of the corre-
sponding orbit contains exactly one closed orbit. This corresponds to the
module grFM where F is a composition series.

•

•

grFM

M

Proof. (1) Suppose M is an A-module whose orbit CM ⊆ ModnA is closed, and
let F be a composition series of M . By Lemma 6.2.4 one has CgrF M ⊆ CM = CM .
Thus grFM 'M , and so M is semisimple.



IV.6. THE VARIETY OF REPRESENTATIONS OF AN ALGEBRA 147

Conversely suppose M is a semisimple module. In order to show that CM is
closed we make use of the Hilbert Criterion which we are going to prove later on
in V.3. It says that for every closed orbit CN ⊆ CM and every ρ ∈ CM there exists a
one-parameter subgroup λ : C∗ → GLn such that limt→0 λ(t)ρ ∈ CN . By the above
lemma this means that for a suitable filtration F of M the module N is isomorphic
to grFM . Since M is semisimple, we have grFM 'M and thus CN = CM .

(2) The remaining point is the uniqueness of the closed orbit in CM , but this
is just the Jordan-Hölder Theorem, see Remark 6.2.4. �

Remark 6.3.3. We already know that the closure of an orbit contains a unique
closed orbit, see Corollary 2.6.5. In the setting above, this give a geometric proof
of the Jordan-Hölder Theorem.

Example 6.3.4. Suppose A = C[x]. An A-moduleM of dimension n is semisim-
ple if and only if the associated matrix in Mn is semisimple. Thus the above claim
was already verified in I.5.5.2. If the associated matrix is given in Jordan normal
form, then the transformation M 7→ grFM corresponds to “setting to zero” the
elements of the matrix which lie above the diagonal.

Example 6.3.5. For A = C[ε] we get ModnA = {N ∈ Mn | N2 = 0}. This is
the closure of a single conjugacy class, namely of the class of the nilpotent matrix
with partition p = (2, 2, . . . , 2) in case n is even and p = (2, 2, . . . , 2, 1) in case n
is odd. This follows from Proposition I.4.4.3. In particular, ModnA is normal and
Cohen-Macaulay with rational singularities, as a consequence of the main result in
[KP79].

6.4. Tangent spaces and extensions. To conclude this section we would
like to give a module theoretic interpretation of the tangent spaces of ModnA, or,
more precisely, of the normal spaces of the orbits CM

If M and N are two A-modules, then by an extension of N by M one means a
short exact sequence of A-modules of the form

ζ : 0→M → P → N → 0.

If ζ ′ : 0 → M → P ′ → N → 0 is another extension, then we say that ζ and ζ ′ are
equivalent, if there exists an isomorphism ϕ : P

∼→ P ′ which induces the identity on
M and N :

0 −−−−→ M −−−−→ P −−−−→ N −−−−→ 0∥∥∥ '
yϕ ∥∥∥

0 −−−−→ M −−−−→ P ′ −−−−→ N −−−−→ 0

The set of equivalence classes of extensions of N by M is denoted by Ext1
A(N,M).

We now give another description of Ext1
A(N,M). The A-module structures on

M and N are given by ρ : A→ EndC(M) and σ : A→ EndC(N). In the extension ζ
the space P is isomorphic, as a vector space, to M ⊕N . Thus one gets the middle
term P of ζ by endowing the vector space M ⊕ N with an A-module structure
µ : A→ EndA(M ⊕N) such that M = Mρ is a submodule and N = Nσ is a coset

module of P = (M ⊕N)µ. This is exactly the case if µ has the form

[
ρ τ
0 σ

]
for a

suitable τ : A → HomC(N,M). For this one must have µ(ab) = µ(a)µ(b) for every
a, b ∈ A, i.e.,

(∗) τ(ab) = ρ(a)τ(b) + τ(a)σ(b).

Define

Z(N,M) := {τ : A→ HomC(N,M) | τ satisfies (∗)}
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which is a subspace of Hom(N,m). If τ, τ ′ are elements of Z(N,M) and µ :=[
ρ τ
0 σ

]
, µ′ :=

[
ρ τ ′

0 σ

]
, then (M ⊕N)µ and (M ⊕N)µ′ yield equivalent extensions

if and only if there is an isomorphism ϕ : (M ⊕ N)µ
∼→ (M ⊕ N)µ′ of the form

ϕ =

[
id β
0 id

]
where β ∈ HomC(N,M). This means that ϕ(µ(a)q) = µ′(a)ϕ(q) for

a ∈ A and q ∈ M ⊕N , hence τ(a) + βσ(a) = ρ(a)β + τ ′(a) for every a ∈ A. This
shows that τ and τ ′ define equivalent extensions if and only if τ − τ ′ ∈ B(N,M)
where

B(N,M) := {δ : A→ HomC(N,M) | δ(a) = ρ(a)β − βσ(a)

for all a ∈ A and some β ∈ HomC(N,M)}.

Thus we get the following description

Ext1
A(N,M) = Z(N,M)/B(N,M).

From this one sees that Ext1
A(N,M) is a finite dimensional vector space and that

an extension ζ : 0 → M → P
p→ N → 0 is zero if and only if it “splits”, i.e., if the

projection p has a section and thus P
∼→ N ⊕M as an A-module.

Theorem 6.4.1. For every ρ ∈ ModnA there is a natural injection

Tρ(ModnA)/Tρ(CMρ
) ↪→ Ext1

A(M,M).

Proof. If ξ ∈ Tρ(ModnA), then ρ+ εξ : A→ Mn(C[ε]) is an algebra homomor-
phism. A simple calculation shows that

ξ(ab) = ρ(a)ξ(b) + ξ(a)ρ(b) holds for every a, b ∈ A.

This means that ξ, as a linear map A→ Mn = End(Mρ), satisfies the condition (∗)
from above, hence Tρ(ModnA) ⊆ Z(Mρ,Mρ).

Now we consider the orbit map µ : GLn → CMρ
⊆ (Mn)s, g 7→ gρ. (Here

we identify ρ ∈ ModnA with (ρ(a1), . . . , ρ(as)) ∈ (Mn)s where GLn acts by si-
multaneous conjugation.) The differential (dµ)e : Lie GLn → Tρ(CMρ

) is surjective
(Lemma III.5.1.5), and for X ∈ Lie GLn = Mn we have

(E + εX)ρ(ai)(E − εX) = ρ(ai) + ε(Xρ(ai)− ρ(ai)X).

Therefore,

dµ(X)(a) = Xρ(a)− ρ(a)X for every a ∈ A.
It follows that Tρ(CMρ) = B(Mρ,Mρ), and the claim follows. �

Remark 6.4.2. The natural map Tρ(ModnA)/Tρ(CMρ) ↪→ Ext1
A(M,M) might

be a strict inclusion. As an example, take the algebra A = C[ε]. Then Mod1
C[ε] is a

single orbit

There are a number of interesting consequences of the theorem. We just mention
a few. The interested reader can find a more detailed account of these topics with
many examples and references to the literature in [Kra82].

Corollary 6.4.3. Let M be an n-dimensional A-module. If Ext1
A(M,M) = 0,

then the orbit CM is open in ModnA, and thus CM is an irreducible component. In
particular, the projective (injective) A-modules in ModnA form a finite union of open
orbits.

The proof is easy and is left as an exercise.
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Corollary 6.4.4. Let A be a finitely generated algebra with the property that
all finite dimensional A-modules are semisimple. Then there are only finitely many
isomorphism classes of A-modules of a given dimension. More precisely, the ModnA
is a finite union of open and closed orbits for every n.

This follows from the previous corollary, because Ext1(N,M) = 0 for all finite
dimensional A-modules N,M . Typical examples of such algebras are the envelop-
ping algebras of finite dimensional semisimple Lie algebras.

7. Structure of the Quotient

In this section we gather together a few general results about algebraic quotients
π : Z → Z//G where Z a G-variety and G is a reductive group. Some of these we
will either be prove or have already been proved. But our methods are not sufficient
for all of them, and in those cases we refer to the literature and might give some
ideas for the proof.

7.1. Inheritance properties. We start by recalling some properties which
are carried over from Z to the quotient Z//G, see section 3.

(1) If Z is irreducible or normal, then so is Z//G (Proposition 3.1.1).
(2) If Z is factorial and G is semisimple, i.e. connected with trivial character

group, then Z//G is factorial (Proposition 3.1.4 and Remarl 3.1.5).
(3) If Z is smooth, then Y has the Cohen-Macaulay property.

(This result is due to Hochster-Roberts [HR74]; the proof is very
complicated and was later simplified by Kempf.)

(4) If Z has rational singularities, then so does Z//G.
(Theorem of Boutot [Bou87]; this generalizes the result of Hochster-
Roberts mentioned above.)

7.2. Singularities in the quotient. Suppose V is a vector space with a
linear G-action and π : V → Y := V//G is the quotient.

Lemma 7.2.1. If π(0) ∈ Y is a smooth point, then Y ' Cm for some m ∈ N.

Proof. (Cf. Example 3.1.3) This follows directly from Lemma 2.3.3: The alge-
bra A = O(Y ) is graded with A0 = C, and n := mπ(0) is the homogeneous maximal
ideal. If we now choose homogeneous a1, . . . , am ∈ n with the property that the im-
ages ai ∈ n/n2 form a basis, then A = C[a1, . . . , am]. Since dimA = dim n/n2 = m
we see that the ai are algebraically independent. �

This result can also be viewed within a more general framework. First we note
that the scalar multiplication on V induces a C∗-action on the quotient V//G:

λπ(v) := π(λv).

(The proof that this is indeed a C∗-action is left as an exercise.) This C∗-action is
the geometric interpretation of the grading of the invariant ring O(V )G, a property
which we have already used before more than once.

Proposition 7.2.2. Let Z ⊆ V be a G-stable closed cone and π : Z → Z//G
the quotient. Then the singular (resp. the non-normal) points in Z//G form a closed
cone. In particular, Z//G is smooth (resp. normal) if and only if π(0) is a smooth
(resp. normal) point of Z//G.

(Here we are calling a subset of V resp. V//G a cone if it is C∗-stable. It is then
clear that the singularities resp. the non-normal points of Z//G form a cone; the
closedness follows from Corollary A.4.10.6 resp. from Proposition A.5.2.6.)

The C∗-action on the quotient V//G is a special case of the following result.
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Lemma 7.2.3. Suppose Z is a G-variety on which another group H acts com-
patibly with G. Then H also acts on the quotient Z//G and π : Z → Z//G is H-
equivariant.

Proof. Since the H-action commutes with the G-action it follows that the
H-action on O(Z) respects the isotypic components. In particular, H induces an
action on the invariants O(Z)G, hence on Z//G. �

We now give another criterion in order for a quotient to have no singularities.
For the sake of simplicity we again consider a vector space V together with a linear
G-action.

Proposition 7.2.4. If the null fiber N V has dimension dimV −dimV//G and
if N V is reduced at some smooth point z ∈ N V , then the quotient V//G is an affine
space.

Outline of the Proof. By assumption, the differential dπ has maximal rank
in z ∈ N V and thus also in some neighborhood U of z in V . This implies that
π|U : U → π(U) is a smooth mapping, i.e. it looks locally in the analytic sense like
the projection of a vector space onto a subspace. Since the quotient V//G is normal,
and, in particular, unibranched, the image π(U) is an open subset of V//G which
contains π(0). The result now follows with the help of Lemma ??. �

Remark 7.2.5. It is conjectured that the dimension assumption, i.e., the equidi-
mensionality of the quotient map π (see Corollary 5.3.6), is enough to imply that
the quotient is an affine space. This came to be known as the “Russian Conjec-
ture”. The conjecture holds for irreducible representations of simple groups as a
consequence of the classification results of G. Schwarz [Sch78, Sch79], and also
for irreducible representations of semisimple groups due to the classification results
of P. Littelmann [Lit89].

7.3. Smooth quotients. We have already established that a one-dimensional
quotient V//G is isomorphic to the affine line C (Remark 3.2.5). If V//G is two-
dimensional, then it follows from the normality of V//G and the lemma above that
either π(0) ∈ V//G is an isolated singularity or V//G is the affine plane C2.

The example C2//(Z/2) where Z/2 acts by ± id shows that V//G can indeed be
singular. However, for a semisimple group G this does not happen, as conjectured
by V.L. Popov.

Proposition 7.3.1 (G. Kempf [Kem80]). If G is semisimple and V is a
G-module with dimV//G = 2, then V//G is isomorphic to C2.

Remark 3: In this connection there are a number of classification results: (V.
Kac, V.L. Popov, E.B. Vinberg, G. Schwarz, M. Sato, T. Kimura,... 1; cf. [?], [?], [?],
[?], [?], [?], [?]). Among other things one can find the list of all representations V
of simple2 groups G in [?] with the property that V//G is an affine space (coregular
representations) 3 and in [?] the list of all irreducible representations of semi–simple
groups with the property that V ◦ only contains a finite number of orbits (observable
representations, cf. [?]).

1 Popov, p.145: cf. O.M. Adamovich - E.O. Golovina [?], O.M. Adamovich [?]–Footnote
of the Russian editor.

2 Popov, p.145: connected–footnote of the Russian editor.
3 Popov, p.145: The general method of determining such representations such that V//G

is an affine space (i.e. the algebra of invariants is free), was first worked out by V. Kac, V.L.

Popov and E.B. Vinberg in [?], where this was found with the help of irreducible representations
of connected simple groups. In [?] G. Schwarz, by applying this method, analyzed the reducible

case also. Simultaneously and independently this case was investigated by O.M. Adamovich -
E.O. Golovina [?].–footnote of the Russian editor.



IV.7. STRUCTURE OF THE QUOTIENT 151

7.4. Semi-continuity statements. In studying the quotient map π : Z →
Z//G one is often interested in whether the set of points y ∈ Z//G for which the
fiber π−1(y) has a certain property is open in Z//G. We now want to discuss this
problem.

Lemma 7.4.1. The function d : Z//G→ N, y 7→ dim π−1(y) is upper semi–
continuous.

Proof: We have to show that for every n ∈ N the set

Y ′ := {y ∈ Z//G | dim π−1(y) ≥ n}

is closed in Z//G. By the Theorem of Chevalley (??) the set

Z ′ := {z ∈ Z | dimz π
−1(π(z)) ≥ n}

is closed in Z. As well Z ′ is G–stable and Y ′ = π(Z ′). The result now follows from
the G–closedness of quotients (??).

As an application we have the following result.

Theorem 7.4.2. Suppose π : Z → Z//G is a quotient. Then the set

{y ∈ Z//G | π−1(y) consists of finitely many orbits}

is open in Z//G.

Proof: Suppose S ⊆ Z is a stratum (??; w.l.o.g. assume G is connected) made
up of orbits of dimension n and let S be its closure. Then π(S) ⊆ Z//G is closed
and π′ : S → π(S) is a quotient (??). Suppose y ∈ π(S). If dim π′−1(y) > n, then
π−1(y) contains infinitely many orbits of dimension n. Conversely, if π−1(y) contains
infinitely many orbits of dimension n, then dim π′−1(y) > n. The complement of
the set which is given in the statement of the theorem is thus the union of the sets

{y ∈ π(S) | dim(π−1(y) ∩ S) > nS},

where S runs through all strata and nS is the orbit dimension of S. By Lemma
7.4.1 these are all closed and the result follows.

Theorem 7.4.3. Under the same assumptions as in Theorem 7.4.2 the set

{y ∈ Z//G | the fiber π−1(y) is reduced and normal }

is open in Z//G.

Outline of the Proof: This assertion rests on the following result ([?, IV,
12.1.7]): If η : Z → Y is a morphism, then the set

Z ′ := {z ∈ Z | η−1(η(z)) is reduced and normal at z}

is open in Z. In the above situation the set Z ′ is thus G–stable and the assertion
follows from the G–closedness of quotients (??) applied to Z − Z ′.

Remark 4: There is a whole list of other properties for which the analogue
to Theorem 7.4.3 holds, e.g. reduced, no singularities, Cohen–Macaulay, rational
singularities, etc. (cf. [?, IV, 12.1.7] and [?]).
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7.5. Generic fiber. Here it is a question of which properties of a general fiber
carried over a priori via the quotient map.

Theorem 7.5.1 (Luna, Popov). Suppose G is semi–simple, V is a G–module
and π : V → V//G is the quotient. Then the generic fiber contains a dense orbit.4

Moreover, the generic orbit is closed if and only if it is affine.

Corollary 7.5.2. If the generic stabilizer is finite, i.e. the maximal orbit
dimension is equal to dim G, then the generic fiber of π is a closed orbit.

Outline of the Proof: For the first assertion of the theorem we refer to the
literature ([?, III.4]; cf. ?? E). Concerning the second assertion5, if the generic fiber
is closed, then it is naturally affine. Conversely, suppose the generic orbit is affine. If
it were not closed, then the complement would be of codimension one in its closure.
Then the union of these complements would have a G–stable hypersurface H in V
as closure and this would be the zero set of an invariant function f . This is clearly
a contradiction, since π(H) is dense in V//G. The result is now clear.

Various results can be found in the literature about generic orbits, stabilizers and
fibers (E.M. Andreev, E.B. Vinberg, A.G. Elashvili, A.M. Popov, ... cf. [?], [?]).6

E. Invariant Rational Functions

An important result of Rosenlicht7 says that in every irreducible G–variety Z there
is an open, dense G–stable subset Z ′ whose orbits are separated by the G–invariant
rational functions defined on Z ′, i.e. there is a morphism

ϕ : Z ′ → Y 8,

whose fibers are exactly the orbits. (Note that Z ′ is, in general, not affine.) In
particular, the transcendence degree of C(Z)G is equal to the “dimension” of the
family of orbits of maximal dimension:

tr degC C(Z)G = dim Z −max
z∈Z

(dim Gz)

(cf. [?, III.4]). We would now like to give a general proof for a special case of this
result. Note that we already know this in the setting of tori (?? Theorem ??).

Theorem 7.5.3. Suppose Z is an irreducible G–variety. Then C(Z)G = C
if and only if Z contains a dense orbit.

Proof: (by D. Luna) If Gz ⊆ Z is a dense orbit, then every rational invariant
function is constant on Gz and thus on Z. Hence one direction of the proof is clear.
For the converse consider the map

ϕ : G× Z → Z × Z, (g, z) 7→ (gz, z).

We want to show that ϕ is dominant, i.e. that

ϕ∗ : O(Z)⊗O(Z)→ O(G)⊗O(Z)

4 Popov, p.147: To say that some property is satisfied generically in a variety X means that
in X there is a dense, open subset Ω, which depends on the condition under consideration, such

that for every point x ∈ Ω the condition holds. In the given case this means that there is an

open, dense subset Ω in V//G such that for every ξ ∈ Ω the fiber π−1(ξ) contains a dense orbit.
The notions of generic orbit and generic stabilizer have analogous interpretations.–footnote of the

Russian translator.
5 Popov, p.147: See V.L. Popov [?].–Footnote of the Russian translator.
6 Popov, p.147: See also the works [?],[?],[?],[?]–footnote of the Russian editor.
7 Popov, p. 147: cf. [?]–footnote of the Russian editor.
8 Popov, p.147: Here Y is a certain variety which is different, generally speaking, from Z//G.–

footnote of the Russian editor.
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is injective. By definition one has

ϕ∗(f ⊗ h)(g, z) = f(gz) · h(z) = ((g−1f) · h)(z).

Now suppose ϕ∗ (
∑s
i=1 fi ⊗ hi) = 0, where w.l.o.g. we may assume that the f1, ..., fs

are linearly independent over C. Then

(*)

s∑
i=1

(gfi) · hi = 0 for every g ∈ G.

Suppose V = 〈f1, ..., fs〉 ⊆ C(Z). Since C is the fixed field of G in C(Z), the theorem
of Artin (cf. [?, Chap. V, §7, théorème 1)]) asserts that there exist s := dim V
elements g1, ..., gs ∈ G whose restrictions gi|V : V → C(Z) are linearly independent
over C(Z). This means that the matrix (gjfi)

s
i,j=1 has rank s.9 Hence in (*) one

has hi = 0 for every i and thus ϕ∗ is injective and ϕ is dominant.
Now for g ∈ G and z ∈ Z

ϕ−1(ϕ(g, z)) = { (h, z) | hz = gz} ∼→ Gz,

where the isomorphism is given by (h, z) 7→ g−1h. By the dimension formula for
fibers (??)10 one thus has

min
z∈Z

dimGz = dim G− dim Z

and thus
max
z∈Z

dim Gz = dim Z,

i.e., Z has a dense orbit.

7.6. A finiteness theorem. In conclusion we give a result of Hilbert ([?,
Kap.I, §4]). This shows how information about the zero fiber V ◦ can lead to infor-
mation about the ring of invariants.

Theorem 7.6.1. Suppose G is linear reductive and connected and V is a
G–module. If f1, ..., ft are homogeneous invariant functions, which define the zero
fiber V ◦, i.e. V(f1, ..., ft) = V ◦, then O(V )G is a finite module over C[f1, ..., ft],
namely the integral closure of C[f1, ..., ft] in O(V ).11

Proof: We set

R := O(V )G =
⊕
i≥0

Ri, m :=
⊕
i>0

Ri.

By the Nullstellensatz (??) one has
√∑

iRfi = m. Thus mN ⊆
∑t
i=1Rfi for some

N > 0. Letting di := deg fi one then gets from this

Rn ⊆
t∑
i=1

fiRn−di for n ≥ N.

Therefore we consider the finite dimensional vector space B :=
⊕N−1

i=0 Ri, and by
induction on n we get

Rn ⊆ C[f1, ..., ft] ·B for every n

9 Popov, p.148: over the field C(Z).–footnote of the Russian editor.
10 Popov, p.149: In view of the dominance of the morphism ϕ the minimum dimension of

the fiber of this morphism is equal to dim(G× Z)− dim(Z × Z) = dim G− dim Z.–Footnote of
the Russian editor.

11 Popov, p.149: The converse is also true: If O(V )G is integral over a subalgebra generated
by a system I of homogeneous non–constant invariants, then

V ◦ = {v ∈ V | f(v) = 0 for every f ∈ I}
–Footnote of the Russian editor.
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and the result follows from this. (cf. ?? Remark 2).

8. Quotients for Non-Reductive Groups

(Separating morphisms, Rosenlicht, generic fibers, . . .)

Exercises

For the convenience of the reader we collect here all exercises from Chapter VI.
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1. Representations of Linearly Reductive Groups

1.1. Commutative and Diagonalizable Groups. Recall our previous no-
tation: Bn ⊆ GLn(C) denotes the subgroup of upper triangular matrices, Tn ⊆ Bn
the subgroup of diagonal matrices and Un ⊆ Bn the subgroup of unipotent matrices
(with 1’s along the diagonal).

Bn :=



∗ ∗ · · · ∗
∗ · · · ∗

. . .

∗

 ∈ GLn(C)

 , Tn :=


∗ . . .

∗

 ∈ GLn(C)

 ,

Un :=




1 ∗ · · · ∗
1 · · · ∗

. . .

1

 ∈ GLn(C)

 ,

We have an obvious surjective homomorphism p : Bn → Tn which is the identity
on Tn and has kernel Un, and so Bn = TnUn = UnTn and the multiplication
Tn × Un → Bn is an isomorphism of varieties.

Lemma 1.1.1. Let H ⊆ GLn(C) be an arbitrary commutative subgroup.

(1) There is a g ∈ GLn(C) such that gHg−1 ⊆ Bn.

155
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(2) If H consists of semisimple elements, then there is a g ∈ GLn(C) such
that gHg−1 ⊆ Tn.

Proof. �

Proposition 1.1.2. Let H be a commutative algebraic group. Define

Hu := {h ∈ H | h unipotent}, Hs := {h ∈ H | h semisimple}.
Then Hu, Hs ⊆ H are closed subgroups and the multiplication induces an iso-
mophism Hs ×Hu

∼→ HsHu = H.

Proof. �

Recall the definition of the character group of an algebraic group G:

X(G) := {χ : G→ C∗ | χ is a homomorphism} ⊆ O(G)∗.

Lemma 1.1.3. The subset X(G) ⊆ O(G) is linearly independent and the linear
span 〈X(G)〉 ⊆ O(G) is the group algebra of X(G).

Exercise 1.1.4. If G is connected, then X(G) is torsion free.

Exercise 1.1.5. Show that X(G) is a finitely generated abelian group of rank ≤
dimG.

It is easy to see that X(G) is a contravariant functor from algebraic groups to
abelian groups and that X(G×H) = X(G)×X(H). Moreover, the comultiplication
µ∗ : O(G) → O(G) ⊗ O(G) induces the diagonal map on X(G) → X(G) ×X(G):
µ∗(χ) = χ⊗ χ.

Proposition 1.1.6. An algebraic group H is diagonalizable, i.e. isomorphic to
a closed subgroup of Tn, if and only if O(H) = 〈X(H)〉.

Theorem 1.1.7. The functor X defines an anti-equivalence between the diag-
onalizable groups and the finitely generated abelian groups. This means that every
finitely generated abelian group is isomorphic to the character group of a diago-
nalizable group and that the natural map Hom(D,E)

∼→ Hom(X(E), X(D)) is an
isomorphism of groups. Moreover, a sequence of diagonalizable group

1→ D′ → D → D′′ → 1

is exact if and only if the induced sequence 0→ X(D′′)→ X(D)→ X(D′)→ 0 is
exact.

1.2. Unipotent Groups.

1.3. Solvable Groups.

1.4. Representation theory of GLn.

1.5. Representation theory of reductive groups.

2. Characterization of Reductive Groups

2.1. Definitions.

Definition 2.1.1. An algebraic group G is called linearly reductive if every
representation of G is completely reducible.

There is also the notion of a reductive group which we will not introduce here.
In our situation where the base field has characteristic zero the two definitions are
equivalent. This allows us to use the shorter notion “reductive” instead of “linearly
reductive”.
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Example 2.1.2. (1) The multipliative group C∗ is reductive. More gen-
erally, every diagonalizable D group is reductive, because every represen-
tation of D is diagonalizable (see Proposition 3.4.5(3)).

(2) The famous Theorem of Maschke says that every finite G group is re-
ductive. (One shows that for every representation ρ : G → GLn(C) there
exists an G-invariant unitarien scalar product on V .)

(3) The additive group C+ ' U2 is not reductive. (The standard representa-
tion on C2 is not completely reducible, because Ce1 is the only U2-stable
subspace.)

The next lemma is a very useful criterion for reductivity. We say that a locally
finite and rational representation of G on W is completely reducible if every finite
dimensional G-stable subspace of W is semisimple. Clearly, if G is reductive and X
a G-variety, then the regular representation of G on O(X) is completley reducible.

Lemma 2.1.3. Let G be an algebraic group and V a faithful G-module, i.e.
CG(V ) = {e}. The following assertions are equivalent:

(i) G is reductive.
(ii) The regular representation of G on O(G) is completely reducible.
(iii) For all n ≥ 1 the G-module V ⊗n := V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸

n times

is semisimple.

Proposition 2.1.4. (1) Let G be a reductive group and N a closed nor-
mal subgroup. Then N is reductive.

(2) Let 1 → N → G → H → 1 be an exact sequence of algebraic groups.
Then G is reductive if and only if N and H are both reductive.

(3) A product of algebraic groups is reductive if and only if each factor is
reductive.

Exercise 2.1.5. A connected solvable algebraic group is reductive if and only if it is
isomorphic to a torus Tn.

2.2. Images and kernels. We first study the behavior of linearly reductive
groups under homomorphisms.

Proposition 2.2.1. Let G be an algebraic group, ϕ : G→ H a homomorphism,
and N ⊆ G a closed normal subgroup.

(1) If G is linearly reductive, then so are N and ϕ(G).
(2) If kerϕ and ϕ(G) are both linearly reductive, then so is G.

Proof. (a) It is clear that every homomorphic image of G is again linearly re-
ductive. Suppose H ⊆ G is a normal subgroup. The restriction map O(G)→ O(H)
is a surjective H-homomorphism. Because of Proposition 2.1.6 above it suffices
to prove that O(G) is a semisimple H-module. To do this consider the socle
S := O(V )soc ⊆ O(G), i.e. the sum of all simple H-submodules of O(G). Since
H is normal in G, the socle is G-stable. In fact, if V is a simple H-submodule of
O(G), then so is gV , for every g ∈ G. It follows that S has a G-stable complement
S′ (Exercise 1.3.4). Hence S = O(G) and the assertion is proved.

(b) Let N := kerϕ and Ḡ := ϕ(G). It suffices to show that for every surjec-
tive G-homomorphism ϕ : V → W the fixed points are also surjectively mapped
onto themselves. By assumption ϕN : V N → WN is surjective, and this is also a
homomorphism of Ḡ-modules (Corollary III.2.3.9). Because of V G = (V H)Ḡ and

WG = (WH)Ḡ, the result now follows. �

Corollary 2.2.2. An algebraic group G is linearly reductive if and only if its
connected component of the identity G◦ is linearly reductive.
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Corollary 2.2.3. A commutative algebraic group G is linearly reductive if
and only if G is diagonalizable.

Proof. We already know that a diagonalizable group is linearly reductive
(Example 2.1.2). For the other implication we recall that a commutative algebraic
group G is a product G = GsGu where Gs is diagonalizable and Gu unipotent
(Proposition III.4.3.4). If Gu 6= {0}, then G contains a normal subgroup isomorphic
to C+, contradicting the linear reductivity. �

Corollary 2.2.4. Let G be a linearly reductive group. If G is solvable, then
G◦ is a torus.

Recall that a group G is solvable if there is a normal series G = G0 ⊇ G1 ⊇
· · · ⊇ Gm−1 ⊇ Gm = {e} such that Gi/Gi+1 is commutative. In particular, (G,G)
is a strict subgroup of G. We will discuss solvable algebraic groups in detail in
chapter V.

Proof. We can assume that G is connected. We proceed by induction on
dimG. If dimG = 1 then G is commutative (1.4.8), and we are done by the previous
corollary. In general, (G,G) is a connected normal subgroup which is again solvable.
Hence, by induction, (G,G) is a torus. Since G/(G,G) is commutative and reductive
it is also a torus. Thus G is a torus, by Corollary 3.4.6. �

2.3. Semisimple groups.

Definition 2.3.1. A linearly reductive group G is semisimple if G is connected
and has no non-trivial character, i.e. the character group X (G) is trivial.

We will show in the following section 2.4 that the classical groups SLn(C),
SOn(C) for n ≥ 3, and Sp2m(C) are semisimple. They all have a finite center. This
is a general fact.

Proposition 2.3.2. For a connected linearly reductive group G the following
statements are equivalent:

(i) G is semisimple.
(ii) The commutator subgroup satisfies (G,G) = G.

(iii) The center Z(G) of G is finite.

For the proof we need the following lemma.

Lemma 2.3.3. If G is linearly reductive, then its Lie algebra satisfies

LieG = [LieG,LieG]⊕ z(LieG).

Proof. We may assume that G is connected. Now a := [LieG,LieG] is an
ideal in g := LieG and thus is stable under the adjoint representation of G on g
(see Proposition III.5.3.2). Choose a G-stable splitting g = a⊕b. Then b is an ideal
of g, and one has [g, b] ⊆ b∩ [g, g] = (0). This implies b ⊆ z(g) and thus g = a+z(g).
In particular, [g, g] = [a, a].

We still have to prove that z(g) ∩ a = z(a) = (0). Not only is a stable under
G, but also z(a). Thus there is a G-stable splitting a = z(a) ⊕ c. But this implies
a = [a, a] = [c, c] ⊆ c and the result follows. �

Remark 2.3.4. One has Lie(G,G) ⊇ [LieG,LieG], since on the one hand
G/(G,G) is commutative and on the other hand [g, g] is the smallest ideal a of
LieG so that LieG/a is commutative (Exercise III.5.3.4). Thus the lemma above
implies that for a connected linearly reductive G one has G = (G,G) · Z(G)◦.
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Proof of Proposition 2.3.2. (i)⇒ (ii): Since G/(G,G) is commutative and
linearly reductive by Proposition 2.2.1 above, it is a connected diagonalizable group
(Corollary 2.2.3), hence a torus. Thus G = (G,G), because G has no non-trivial
characters.

(ii) ⇒ (iii): If ρ : G → GL(V ) is an irreducible representation, then the center
Z(G) acts by scalars on V . On the other hand, because G = (G,G), one has
ρ(G) ⊆ SL(V ). This implies ρ(Z(G)) ⊆ SL(V ) ∩ C∗ Id and thus ρ(Z(G)) is finite.
Because of the complete reducibility this is true for every representation of G and
the assertion follows by considering a faithful representation G ↪→ GLn.

(iii) ⇒ (i): One has z(LieG) = Lie(Z(G)) = (0) (Corollary III.5.3.5) and thus
LieG = [LieG,LieG] by Lemma 2.3.3 above. If χ : G → C∗ is a character, then
dχe : LieG → C is a Lie algebra homomorphism with commutative image and so
LieG = [LieG,LieG] ⊆ ker dχe. This implies that dχe = 0 and hence χ is trivial.
(Proposition III.5.2.1). �

Proposition 2.3.5. Suppose G is linearly reductive and connected. Then

(1) (G,G) and G/Z(G) are both semisimple;
(2) Z((G,G)) = Z(G) ∩ (G,G) is finite;
(3) G = (G,G) · Z(G)◦;
(4) Lie(G,G) = [LieG,LieG].

Proof. Let G′ := (G,G).
(1) Then (G′, G′) is a normal subgroup of G and the quotient group G/(G′, G′)

is solvable and linearly reductive and therefore a torus (Corollary 2.2.4). This im-
plies (G′, G′) = G′ which proves that (G,G) is semi-simple (Proposition 2.3.2).

Because of G = (G,G) · Z(G) (Remark 2.3.4) one has for G := G/Z(G) the
relation (G,G) = G, and hence G is also semi-simple.

(2) Since Z(G) ∩ (G,G) is the center of (G,G), it is finite (Proposition 2.3.2).
(3) is already stated in Remark 2.3.4.
(4) By (2) we have Lie(G,G)∩Lie Z(G) = (0). Since Lie(G,G) ⊇ [LieG,LieG]

(Remark 2.3.4) the claim follows from Lemma 2.3.3. �

2.4. The classical groups. Now we show that the classical groups are all
linearly reductive. We begin with two lemmas.

Lemma 2.4.1. Let G be an algebraic group and V a faithful G-module. If all
the tensor powers V ⊗m, m ∈ N, are semisimple, then G is linearly reductive.

Proof. By assumption, the tensor algebra T (V ) :=
⊕

j≥0 V
⊗j is semisimple

as well as its quotient module S(V ), the symmetric algebra. Now consider End(V )
as a G-module with respect to the right multiplication: End(V ) = V ⊗V ∗ = (V ∗)⊕n

where n = dimV . Then O(End(V )) = O((V ∗)⊕n) = S(V )⊗n, and thus O(End(V ))
is a semisimple G-module as well.

Since V is a faithful G-module we have an embedding G ⊆ GL(V ) ⊆ End(V )
which is G × G-equivariant. If we denote by χ ∈ X (G) the character induced by
det : GL(V )→ C∗, we have O(G) = O(End(V ))χ. Now let W be any representation
of G. Then W occurs in O(G)⊕m as a G-submodule (with respect to the right
multiplication) for some m > 0 (2.4.3). This implies that for a large enough k the
module Ckχ ⊗W occurs in O(End(V ))⊕m and thus W is semisimple. �

In the next lemma we use hermitian forms 〈v, w〉 on complex vector spaces V ,
see [Art91, 7.4].

Lemma 2.4.2. Let V be a G-module, and let 〈v, w〉 be a hermitian form on V .
Assume that there is a map ∗ : G → G such that 〈gv, w〉 = 〈v, g∗w〉 for all g ∈ G
and v, w ∈ V . Then the tensor powers V ⊗m are semisimple G-modules.
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Proof. The hermitian form on V induces a hermitian form on all tensor pow-
ers V ⊗m in the usual way,

〈v1 ⊗ v2 ⊗ · · · ⊗ vm, w1 ⊗ w2 ⊗ · · · ⊗ wm〉 := 〈v1, w1〉 · 〈v2, w2〉 · · · 〈vm, wm〉,
which again satisfies 〈gp, q〉 = 〈p, g∗q〉 for g ∈ G and p, q ∈ V ⊗m. Now it follows
that for every G-stable subspace W ⊆ V ⊗m the orthogonal complement W⊥ with
respect to the hermitian form is G-stable. Hence V ⊗m is semisimple. �

Theorem 2.4.3. The classical groups GLn, SLn, On, SOn and Sp2m are lin-
early reductive.

Proof. For A ∈ Mn define A∗ := Āt, the conjugate transpose of A. If 〈v, w〉
is the standard hermitian form on Cn, we have

〈Av,w〉 = (Av)
t
w = (v̄)tA∗w = 〈v,A∗w〉.

Moreover, (AB)∗ = B∗A∗. Using the two lemmas above it remains to check that
for every classical group G ⊆ Mn we have g∗ ∈ G for any g ∈ G. This is obvious
for GLn. For the others it suffices to show that gt ∈ G and that G ⊆ Mn is defined
by equations with real coefficients. This is clear for the SLn, On and SOn. For
Sp2m we remark that the equation gtJg = J together with J−1 = −J implies that
gtJ = (−gJ)−1 and so gtJ and gJ commute. Thus gJgtJ = gtJgJ = J2 = −E
and so gtJg = J . �

Corollary 2.4.4. The classical groups SLn, SOn (n ≥ 3) and Sp2m are
semisimple.

In fact, we have seen in II.3 that these groups are connected and have a finite
center. Thus the claim follows from Theorem 2.4.3 above and Proposition 2.3.2.

2.5. Reductivity of the classical groups.

3. Hilbert’s Criterion

3.1. One-parameter subgroups.

3.2. Torus actions.

3.3. Hilbert’s Criterion for GLn.

3.4. Hilbert’s Criterion for reductive groups.

4. U-Invariants and Normality Problems

Exercises

For the convenience of the reader we collect here all exercises from Chapter V.



APPENDIX A

Basics from Algebraic Geometry

In this appendix we gather together some notions and results from algebraic
geometry which have been used in the text. We concentrate on affine algebraic
geometry which simplifies a lot the notational part and makes the subject much
easier to access in a first attempt. In the second appendix, we discuss the relation
between the Zariski topology and the C-topology. With its help we are able to use
certain compactness arguments replacing the corresponding results from projective
geometry.

The appendix assumes a basic knowledge in commutative algebra. Although
we give complete proofs for almost all statements they are mostly rather short.
This was done on purpose. For advanced readers we only wanted to recall briefly
the basic facts, while beginners are going to find a more detailed study of alge-
braic geometry is necessary. We recommend the text books [Har77], [Mum99],
[Mum95], [Sha94a, Sha94b] and the literature cited below. As a substitute we
have presented many examples which should make the new ideas clear and with
which one can check the results. In addition, a number of exercises are included.
The reader is advised to look at them carefully; some of them will be used in the
proofs.
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1. Affine Varieties

1.1. Regular functions. Our base field is the field C of complex numbers.
Every polynomial p ∈ C[x1, . . . , xn] can be regarded as a C-valued function on Cn
in the usual way:

a = (a1, . . . , an) 7→ p(a) = p(a1, . . . , an).

These functions will be called regular. More generally, let V be a C-vector space of
dimension dimV = n <∞.

Definition 1.1.1. A C-valued function f : V → C is called regular if f is given
by a polynomial p ∈ C[x1, . . . , xn] with respect to one and hence all bases of V .
This means that for a given basis v1, . . . , vn of V we have

f(a1v1 + · · ·+ anvn) = p(a1, . . . , an)

for a suitable polynomial p. The algebra of regular functions on V will be denoted
by .

By our definition, every choice of a basis (v1, v2, . . . , vn) of V defines an isomor-

phism C[x1, . . . , xn]
∼→ O(V ) by identifying xi with the i-th coordinate function on

V defined by the basis, i.e.,

xi(a1v1 + a2v2 + · · ·+ anvn) := ai.

Another way to express this is by remarking that the linear functions on V are
regular and thus the dual space V ∗ := Hom(V,C) is a subspace of O(V ). So if
(v1, v2, . . . , vn) is a basis of V and (x1, x2, . . . , xn) the dual basis of V ∗, then O(V ) =
C[x1, x2, . . . , xn] and the linear functions xi are algebraically independent.

Example 1.1.2. Denote by Mn = Mn(C) the complex n × n-matrices so
that O(Mn) = C[xij | 1 ≤ i, j ≤ n]. Consider det(tEn − X) as a polynomial in
C[t, xij , i, j = 1, . . . , n] where X := (xij). Developing this as a polynomial in t we
find

det(tEn −X) = tn − q1t
n−1 + q2t

n−2 − · · ·+ (−1)nqn

with polynomials qk in the variables xij . This defines regular functions qk ∈ O(Mn)
which are homogeneous of degree k. Of course, we have q1(A) = tr(A) = a11 + · · ·+
ann and qn(A) = det(A) for any matrix A ∈ Mn.

The same construction applies to End(V ) for any finite dimensional vector
space V and defines regular function sk ∈ O(End(V )).

Example 1.1.3. Consider the the space of unitary polynomials of degree n:

Pn := {tn + a1t
n−1 + a2t

n−2 + · · ·+ an | a1, · · · , an ∈ C} ' Cn.
There is a regular function Dn ∈ O(Pn), the discriminant, with the following prop-
erty: Dn(p) = 0 for a p ∈ Pn if and only if p has a multiple root. E.g.

D2(a1, a2) = a2
1 − 4a2, D3(a1, a2, a3) = a2

1a
2
2 − 4a3

2 − 4a3
1a3 + 18a1a2a3 − 27a2

3.

Proof. Expanding
∏n
i=1(t − yi) = tn − s1(y)tn−1 + · · · + (−1)nsn(y) we see

that the polynomials sj(y) are the elementary symmetric polynomials in n variables
y1, . . . , yn, i.e.

sk(y) = σk(y1, . . . , yn) :=
∑

i1<i2<···<ik

yi1yi2 · · · yik .

Define D̃n :=
∏
i<j(yi−yj)2. Since D̃n is symmetric it can be (uniquely) written as a

polynomial in the elementary symmetric functions sk(y) (see Proposition I.2.2.1, cf.

[Art91, Chap. 14, Theorem 3.4]), D̃n(y1, . . . , yn) = Fn(s1, s2, . . . , sn) with a suit-
able polynomial Fn. If λ1, . . . , λn are the roots of f ∈ Pn, then ai = (−1)isi(λ1, . . . , λn),
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and so the regular function Dn(a1, . . . , an) := Fn(−a1, a2,−a3, . . . , (−1)nan) has
the required property. �

Example 1.1.4. We denote by Altn ⊆ Mn the subspace of alternating matrices:

Altn := {A ∈ Mn | At = −A}.
There is a regular function Pf ∈ O(Alt2m), the Pfaffian, with the following property:
det(A) = Pf(A)2 for all A ∈ Alt2m. Usually, the sign of the Pfaffian is determined

by requiring that Pf(

[
J
. . .

J

]
) = 1 where J :=

[
0 1
−1 0

]
. E.g.

Pf(
[

0 x12
−x12 0

]
) = x12, Pf

([ 0 x12 x13 x14
−x12 0 x23 x24
−x13 −x23 0 x34
−x14 −x24 −x34 0

])
= x14x23 − x13x24 + x12x34

Proof. It is well-known that for any alternating matrix A with entries in an
arbitrary field K there is a g ∈ GLn(K) such that

(4) gAgt =



J
. . .

J
0

. . .

 .

Now take K = C(xij | 1 ≤ i < j ≤ n = 2m) and put

A :=


0 x12 x13 · · · x1n

−x12 0 x23 · · · x2n

−x13 −x23 0 · · · x3n

...
...

. . .
...

−x1n −x2n −x3n · · · 0

).

Then there is a g ∈ GLn(K) such that gAgt has the form given in (4). It follows
that the polynomial det(A) ∈ K[xij | 1 ≤ i < j ≤ n] equals det(g)−2, the square of
a rational function, hence the claim. �

Exercise 1.1.5. For a = (a1, a2, . . . , an) ∈ Cn denote by eva : O(Cn) → C the
evaluation map f 7→ f(a). Then the kernel of eva is the maximal ideal

ma := (x1 − a1, x2 − a2, . . . , xn − an).

Exercise 1.1.6. Let W ⊆ O(V ) a finite dimensional subspace. Then the linear func-
tions evv|W for v ∈ V span the dual space W ∗.

1.2. Zero sets and Zariski topology. We now define the basic object of
algebraic geometry, namely the zero set of regular functions. Let V be a finite
dimensional vector space.

Definition 1.2.1. If f ∈ O(V ), then we define the zero set of f by

V(f) := {v ∈ V | f(v) = 0} = f−1(0).

More generally, the zero set of f1, f2, . . . , fs ∈ O(V ) or of a subset S ⊆ O(V ) is
defined by

V(f1, f2, . . . , fs) :=

s⋂
i=1

V(fi) = {v ∈ V | f1(v) = · · · = fs(v) = 0}

or

V(S) := {v ∈ V | f(v) = 0 for all f ∈ S}.
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Remark 1.2.2. The following properties of zero sets follow immediately from
the definition.

(1) Let S ⊆ O(V ) and denote by a := (S) ⊆ O(V ) the ideal generated by S.
Then V(S) = V(a).

(2) If S ⊆ T ⊆ O(V ), then V(S) ⊇ V(T ).
(3) For any family (Si)i∈I of subset Si ⊆ O(V ) we have

V(
⋃
i∈I

Si) =
⋂
i∈I
V(Si).

Example 1.2.3. (1) SLn(C) = V(det−1) ⊆ Mn(C).
(2) On(C) = V(

∑n
ν=1 xiνxjν − δij | 1 ≤ i ≤ j ≤ n).

(3) If f = f(x, y) ∈ C[x, y] is a nonconstant polynomial in 2 variables, then
V(f) ⊆ C is called a plane curve. In order to visualize a plane curve, we
usually draw a real picture ⊆ R2.

Lemma 1.2.4. Let V be a finite dimensional vector space and let a, b be ideals
in O(V ) and (ai | i ∈ I) a family of ideals of O(V ).

(1) If a ⊆ b, then V(a) ⊇ V(b).
(2)

⋂
i∈I V(ai) = V(

∑
i∈I ai).

(3) V(a) ∪ V(b) = V(a ∩ b) = V(a · b).
(4) V(0) = V and V(1) = ∅.

Proof. Properties (1) and (2) follow from Remark 1, and property (4) is easy.
So we are left with property (3). Since a ⊇ a ∩ b ⊇ a · b, it follows from (1) that
V(a) ⊆ V(a ∩ b) ⊆ V(a · b). So it remains to show that V(a · b) ⊆ V(a) ∪ V(b). If
v ∈ V does not belong to V(a)∪V(b), then there are functions f ∈ a and h ∈ b such
that f(v) 6= 0 6= h(v). Since f · h ∈ a · b and (f · h)(v) 6= 0 we see that v /∈ V(a · b),
and the claim follows. �

Definition 1.2.5. The lemma shows that the subsets V(a) where a runs
through the ideals of O(V ) form the closed sets of topology on V which is called
Zariski topology . From now on all topological terms like “open”, “closed”, “neigh-
borhood”, “continuous”, etc. will refer to the Zariski topology.

Example 1.2.6. (1) The nilpotent cone N ⊆ Mn consisting of all nilpo-
tent matrices is closed and is a cone, i.e. stable under multiplication with
scalars. E.g. for n = 2 we have

N = V(x11 + x22, x11x22 − x12x21) ⊆ M2 .

(2) The subset M(r)
n ⊆ Mn of matrices of rank ≤ r are closed cones.

(3) The set of polynomials f ∈ Pn with a multiple root is closed (see Exam-
ple 1.1.3).

(4) The closed subsets of C are the finite sets together with C. So the non-
empty open sets of C are the cofinite sets.

Exercise 1.2.7. Show that the subset A := {(n,m) ∈ C2 | n,m ∈ Z and m ≥ n ≥ 0}
is Zariski-dense in C2.

Definition 1.2.8. Let X ⊆ V be a closed subset. A regular function on X is
defined to be the restriction of a regular function on V :

O(X) := {f |X | f ∈ O(V )}.
The kernel of the (surjective) restriction map res : O(V ) → O(X) is called the
vanishing ideal of X, or shortly the ideal of X:

I(X) := {f ∈ O(V ) | f(x) = 0 for all x ∈ X}.
Thus we have a canonical isomorphism O(V )/I(X)

∼→ O(X).
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Exercise 1.2.9. A regular function f ∈ O(V ) is called homogeneous of degree d if
f(tv) = tdf(v) for all t ∈ C and all v ∈ V .

(1) A polynomial f ∈ C[x1, . . . , xn] is homogeneous of degree d as a regular function
on Cn if and only if all monomials occurring in f have degree d.

(2) Assume that the ideal a ⊆ O(V ) is generated by homogeneous functions. Then
the zeros set V(a) ⊆ V is a cone.

(3) Conversely, if X ⊆ V is a cone, then the ideal I(X) can be generated by homoge-
neous functions. More precisely, if f |X = 0, then fd|X = 0 for every homogeneous
component fd of f .

Remark 1.2.10. Every finite dimensional C-vector space V carries a natural
topology given by the choice of a norm or a hermitian scalar product. We will call it
the C-topology. Since all polynomials are continuous with respect to the C-topology
we see that the C-topology is finer than the Zariski topology.

Exercise 1.2.11. Show that every non-empty open set in Cn is dense in the C-
topology. (Hint: Reduce to the case n = 1 where the claim follows from Example 1.2.6(4).)

Remark 1.2.12. In the Zariski topology the finite sets are closed. This follows
from the fact that for any two different points v, w ∈ V one can find a regular
function f ∈ O(V ) such that f(v) = 0 and f(w) 6= 0. (One says that the regular
functions separate the points.) But the Zariski topology is not Hausdorff (see the
following exercise).

Exercise 1.2.13. Let U,U ′ ⊆ Cn be two non-empty open sets. Then U ∩ U ′ is non-
empty, too. In particular, the Zariski topology is not Hausdorff.

Exercise 1.2.14. Consider a polynomial f ∈ C[x0, x1, . . . , xn] of the form f =
x0 − p(x1, . . . , xn), and let X = V(f) be its zero set. Then I(X) = (f) and O(X) '
C[x1, . . . , xn].

1.3. Hilbert’s Nullstellensatz. The famous Nullstellensatz of Hilbert ap-
pears in many different forms which are all more or less equivalent. We will give
some of them which are suitable for our purposes.

Definition 1.3.1. If a is an ideal of an arbitrary ring R, its radical
√
a is

defined by √
a := {r ∈ R | rm ∈ a for some m > 0}.

Clearly,
√
a is an ideal and

√√
a =

√
a. Moreover,

√
a = R implies that a = R.

The ideal a is called perfect if a =
√
a. The ring R is called reduced if

√
(0) = (0),

or, equivalently, if R contains no nonzero nilpotent elements. Also, if a ⊆ O(V ) is
an ideal, then V(a) = V(

√
a), hence I(X) is perfect for every X ⊆ V .

Theorem 1.3.2 (Hilbert’s Nullstellensatz). Let a ⊆ O(V ) be an ideal and
X := V(a) ⊆ V its zero set. Then

I(X) = I(V(a)) =
√
a.

A first consequence is that every proper ideal has a non-empty zero set, because
X = V(a) = ∅ implies that

√
a = I(X) = O(V ) and so a = O(V ).

Corollary 1.3.3. For every ideal a 6= O(V ) we have V(a) 6= ∅.

Let m ⊆ C[x1, . . . , xn] be a maximal ideal and a = (a1, . . . , an) ∈ V(m) which
exists by the previous corollary. Then m ⊆ (x1− a1, . . . , xn− an), and so these two
are equal.

Corollary 1.3.4. Every maximal ideal m of C[x1, . . . , xn] is of the form

m = (x1 − a1, . . . , xn − an).
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Another way to express this is by using the evaluation map evv : O(V ) → C
(see Exercise 1.1.5).

Corollary 1.3.5. Every maximal ideal of O(V ) equals the kernel of the eval-
uation map evv : O(V )→ C at a suitable v ∈ V .

Exercise 1.3.6. If X ⊆ V is a closed subset and m ⊆ O(X) a maximal ideal, then
O(X)/m = C. Moreover, m = ker(evx : f 7→ f(x)) for a suitable x ∈ X.

Proof of Theorem 1.3.2. We first prove Corollary 1.3.4 which implies Corol-
lary 1.3.5 as we have seen above. It also implies Corollary 1.3.3, because every proper
ideal is contained in a maximal ideal.

Let m ⊆ C[x1, . . . , xn] be a maximal ideal and denote by K := C[x1, . . . , xn]/m
its residue class field. Then K contains C and has a countable C-basis, because
C[x1, . . . , xn] does. If K 6= C and p ∈ K \ C, then p is transcendental over C. It
follows that the elements ( 1

p−a | a ∈ C) from K form a non-countable set of linearly

independent elements over C. This contradiction shows that K = C. Thus xi+m =
ai + m for a suitable ai ∈ C (for i = 1, . . . , n), and so m = (x1 − a1, . . . , xn − an).
This proves Corollary 1.3.4.

To get the theorem, we use the so-called trick of Rabinowich. Let a ⊆
C[x1, . . . , xn] be an ideal and assume that the polynomial f vanishes on V(a). Now
consider the polynomial ring R := C[x0, x1, . . . , xn] in n+ 1 variables and the ideal
b := (a, 1−x0f) generated by 1−x0f and the elements of a. Clearly, V(b) = ∅ and
so 1 ∈ b, by Corollary 1.3.3. This means that we can find an equation of the form∑

i

hifi + h(1− x0f) = 1

where fi ∈ a and hi, h ∈ R. Now we substitute 1
f for x0 and find∑

i

hi(
1

f
, x1, . . . , xn)fi = 1.

Clearing denominators finally gives
∑
i h̃ifi = fm, i.e., fm ∈ a, and the claim

follows. �

Corollary 1.3.7. For any ideal a ⊆ O(V ) and its zero set X := V(a) we have
O(X) = O(V )/

√
a.

Exercise 1.3.8. Let a ⊆ R be an ideal of a (commutative) ring R. Then a is perfect
if and only if the residue class ring R/a has no nilpotent elements different from 0.

Example 1.3.9. Let f ∈ C[x1, . . . , xn] be an arbitrary polynomial and con-

sider its decomposition into irreducible factors: f = pr11 p
r2
2 · · · prss . Then

√
(f) =

(p1p2 · · · ps) and so the ideal (f) is perfect if and only if the polynomial f it
is square-free. In particular, if f ∈ C[x1, . . . , xn] is irreducible, then O(V(f)) '
C[x1, . . . , xn]/(f). A closed subset of the form V(f) is called a hypersurface.

Example 1.3.10. We have O(SLn(C)) ' O(Mn)/(det−1), because the poly-
nomial det−1 is irreducible.

Proof. For a fixed i0, the polynomial det−1 is linear in the xi01, . . . , xi0n.
Thus, if det−1 = f1 · f2, then all of them appear in one factor and none in the
other. The same argument applied to x1j0 , . . . , xnj0 finally shows that one of the
factors is a constant. �

Example 1.3.11. Consider the plane curve C := V(y2 − x3) which is called

Neil’s parabola. Then O(C) ' C[x, y]/(y2−x3)
∼→ C[t2, t3] ⊆ C[t] where the second

isomorphism is given by ρ : x 7→ t2, y 7→ t3.
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Proof. Clearly, y2 − x3 ∈ ker ρ. For any f ∈ C[x, y] we can write f = f0(x) +
f1(x)y + h(x, y)(y2 − x3). If f ∈ ker ρ, then 0 = ρ(f) = f0(t2) + f1(t2)t3 and so
f0 = f1 = 0. This shows that ker ρ = (y2 − x3), and the claim follows. �

Exercise 1.3.12. Let C ⊆ C2 be the plane curve defined by y − x2 = 0. Then
I(C) = (y − x2) and O(C) is a polynomial ring in one variable.

Exercise 1.3.13. Let D ⊆ C2 be the zero set of xy−1. Then O(D) is not isomorphic

to a polynomial ring, but there is an isomorphism O(D)
∼→ C[t, t−1].

Exercise 1.3.14. Consider the “parametric curve”

Y := {(t, t2, t3) ∈ C3 | t ∈ C}.

Then Y is closed in C3. Find generators for the ideal I(Y ) and show that O(Y ) is isomor-
phic to the polynomial ring in one variable.

Another important consequence of the “Nullstellensatz” is a one-to-one corre-
spondence between closed subsets of Cn and perfect ideals of the coordinate ring
C[x1, . . . , xn].

Corollary 1.3.15. The map X 7→ I(X) defines a inclusion-reversing bijection

{X ⊆ V closed} ∼→ {a ⊆ O(V ) perfect ideal}

whose inverse map is given by a 7→ V(a). Moreover, for any finitely generated
reduced C-algebra R there is a closed subset X ⊆ Cn for some n such that O(X) is
isomorphic to R

Proof. The first part is clear since V(I(X)) = X and I(V(a)) =
√
a for any

closed subset X ⊆ V and any ideal a ⊆ O(V ).
If R is a reduced and finitely generated C-Algebra, R = C[f1, . . . , fn], then R '

C[x1, x2, . . . , xn]/a where a is the kernel of the homomorphism defined by xi 7→ fi.
Since R is reduced we have

√
a = a and so O(V(a)) ' C[x1, . . . , xn]/a ' R. �

Exercise 1.3.16. Let X ⊆ V be a closed subset and f ∈ O(X) a regular function
such that f(x) 6= 0 for all x ∈ X. Then f is invertible in O(X), i.e. the C-valued function
f−1 : x 7→ f(x)−1 is regular on X.

Exercise 1.3.17. Every closed subset X ⊆ Cn is quasi-compact, i.e., every covering
of X by open sets contains a finite covering. Is this also true for open or even locally closed
subsets of Cn?

Exercise 1.3.18. Let X ⊆ Cn be a closed subset. Assume that there are no non-
constant invertible regular function on X. Then every nonconstant f ∈ O(X) attains all
values in C, i.e. f : X → C is surjective.

Exercise 1.3.19. Consider the curve

Y := {(t3, t4, t5) ∈ C3 | t ∈ C}

cf. Exercise 1.3.14. Then Y is closed in C3. Find generators for the ideal I(Y ) and show
that I(Y ) cannot be generated by two polynomials.
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(Hint: Define the weight of a monomial in x, y, z by wt(x) := 3,wt(y) := 4,wt(z) := 5.
Then the ideal I(Y ) is linearly spanned by the differences m1 −m2 of two monomials of
the same weight. This occurs for the first time for the weight 8, and then also for the
weights 9 and 10. Now show that for any generating system of I(Y ) these three differences
have to occur in three different generators.)

1.4. Affine varieties. We have seen in the previous section that every closed
subset X ⊆ V (or X ⊆ Cn) is equipped with an algebra of C-valued functions,
namely the coordinate ring O(X). We first remark that O(X) determines the topol-
ogy of X. In fact, define for every ideal a ⊆ O(X) the zero set in X by

VX(a) := {x ∈ X | f(x) = 0 for all f ∈ a}.
Clearly, we have VX(a) = V(ã) ∩ X where ã ⊆ O(V ) is an ideal which maps
surjectively onto a under the restriction map. This shows that the sets VX(a) are the
closed sets of the topology on X induced by the Zariski topology of V . Moreover,
the coordinate ring O(X) also determines the points of X since they are in one-to-
one correspondence with the maximal ideals of O(X):

x ∈ X 7→ mx := ker evx ⊆ O(X)

where evx : O(X)→ C is the evaluation map f 7→ f(x). This leads to the following
definition of an affine variety.

Definition 1.4.1. A set Z together with a C-algebra O(Z) of C-valued func-
tions on Z is called an affine variety if there is a closed subset X ⊆ Cn for some n
and a bijection ϕ : Z

∼→ X which identifiesO(X) withO(Z), i.e., ϕ∗ : O(X)→ O(Z)
given by f 7→ f ◦ ϕ, is an isomorphism.

The functions from O(Z) are called regular , and the algebra O(Z) is called
coordinate ring of Z or algebra of regular functions on Z.

The affine variety Z has a natural topology, also called Zariski topology, the
closed sets being the zero sets

VZ(a) := {z ∈ Z | f(z) = 0 for all f ∈ a}
where a runs through the ideals of O(Z). If follows from what we said above that

the bijection ρ : Z
∼→ X is a homeomorphism with respect to the Zariski topology.

Clearly, every closed subset X ⊆ V or X ⊆ Cn together with its coordinate
ring O(X) is an affine variety. More generally, if X is an affine variety and Y ⊆ X
a closed subset, then Y together with the restrictions O(Y ) := {f |Y | f ∈ O(X)} is
an affine variety, called a closed subvariety. Less trivial examples are the following.

Example 1.4.2. Let M be a finite set and define O(M) := CM = Maps(M,C)
to be the set of all C-valued functions on M . Then (M,O(M)) is an affine variety
and O(M) is isomorphic to a product of copies of C. This follows immediately from
the fact that any finite subset N ⊆ Cn is closed and that O(N) = Maps(N,C).

Example 1.4.3. Let X be a set and define the symmetric product Symn(X)
to be the set of unordered n-tuples of elements from X, i.e.,

Symn(X) = X ×X × · · · ×X/ ∼
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where (a1, a2, . . . , an) ∼ (b1, b2, . . . , bn) if and only if one is a permutation of the
other.

In case X = C we define O(Symn(C)) to be the symmetric polynomials in n
variables and claim that Symn(C) is an affine variety.

To see this consider the map

Φ: Cn → Cn, a = (a1, . . . , an) 7→ (σ1(a), σ2(a), . . . , σn(a))

where σ1, . . . , σn are the elementary symmetric polynomials (see Example 1.1.3). It
is easy to see that Φ is surjective and that Φ(a) = Φ(b) if and only if a ∼ b. Thus,

Φ defines a bijection ϕ : Symn(C)
∼→ Cn, and the pull-back of the regular functions

on Cn are the symmetric polynomials: ϕ∗ : C[x1, . . . , xn]
∼→ O(Symn(C)).

In general, one defines

O(X ×X × · · · ×X︸ ︷︷ ︸
n copies

) := C[f1f2 · · · fn | fi ∈ O(X)]

and

O(Symn(X) := {f ∈ O(X ×X × · · · ×X) | f symmetric}.

Exercise 1.4.4. Let Z be an affine variety with coordinate ring O(Z). Then every
polynomial f ∈ O(Z)[t] with coefficients in O(Z) defines a function on the product Z ×C
in the usual way:

f =

m∑
k=0

fkt
k : (z, a) 7→

m∑
k=0

fk(z)ak ∈ C

Show that Z × C together with O(Z)[t] is an affine variety.

(Hint: For any ideal a ⊆ C[x1, . . . , xn] there is a canonical isomorphism C[x1, . . . , xn, t]/(a)
∼→

(C[x1, . . . , xn]/a)[t].)

Exercise 1.4.5. For any affine variety Z there is a inclusion-reversing bijection

{A ⊆ Z closed} ∼→ {a ⊆ O(Z) perfect ideal}

given by A 7→ I(A) := {f ∈ O(Z) | f |A = 0} (cf. Corollary 1.3.15).

For the last example we start with a reduced and finitely generated C-algebra
R. Denote by the set of maximal ideals of R:

specR := {m | m ⊆ R a maximal ideal}.

We know from Hilbert’s Nullstellensatz (see Exercise 5.8) that R/m = C for
all maximal ideals m ∈ specR. This allows to identify the elements from R with
C-valued functions on specR: For f ∈ R and m ∈ specR we define

f(m) := f + m ∈ R/m = C.

Proposition 1.4.6. Let R be a reduced and finitely generated C-algebra. Then
the set of maximal ideals specR together with the algebra R considered as functions
on specR is an affine variety.

Proof. We have already seen earlier that every such algebra R is isomorphic
to the coordinate ring of a closed subset X ⊆ Cn. The claim then follows by using
the bijection X

∼→ specO(X), x 7→ mx = ker evx, and remarking that for f ∈ O(X)
and x ∈ X we have f(x) = evx(f) = f + mx, by definition. �

Exercise 1.4.7. Denote by Cn the n-tuples of complex numbers up to sign, i.e.,
Cn := Cn/ ∼ where (a1, . . . , an) ∼ (b1, . . . , bn) if ai = ±bi for all i. Then every polynomial
in C[x2

1, x
2
2, . . . , x

2
n] is a well-defined function on Cn. Show that Cn together with these

functions is an affine variety.
(Hint: Consider the map Φ: Cn → Cn, (a1, . . . , an) 7→ (a2

1, . . . , a
2
n) and proceed like in

Example 1.4.3.)
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Although every affine variety is isomorphic to a closed subset of Cn for a suitable
n, there are many advantages to look at these objects and not only at closed subsets.
In fact, an affine variety can be identified with many different closed subsets of this
form (see the following Exercise 1.4.8), and depending on the questions we are
asking one of them might be more useful than another. We will even see in the
following section that certain open subsets are affine varieties in a natural way.

On the other hand, whenever we want to prove some statements for an affine
variety X we can always assume that X = V(a) ⊆ Cn so that the regular functions
on X appear as restrictions of polynomial functions. This will be helpful in the
future and quite often simplify the arguments.

Exercise 1.4.8. Let X be an affine variety. Show that every choice of a generating
system f1, f2, . . . , fn ∈ O(X) of the algebra O(X) consisting of n elements defines an
identification of X with a closed subset V(a) ⊆ Cn.
(Hint: Consider the map X → Cn given by x 7→ (f1(x), f2(x), . . . , fn(x)).)

1.5. Special open sets. Let X be an affine variety and f ∈ O(X). Define
the open set Xf ⊆ X by

Xf := X \ VX(f) = {x ∈ X | f(x) 6= 0}.
An open set of this form is called a special open set.

Lemma 1.5.1. The special open sets of an affine variety X form a basis of the
topology.

Proof. If U ⊆ X is open and x ∈ U , then X \ U is closed and does not
contain x. Thus, there is a regular function f ∈ O(X) vanishing on X \U such that
f(x) 6= 0. This implies x ∈ Xf ⊆ U . �

Given a special open set Xf ⊆ X we see that f(x) 6= 0 for all x ∈ Xf and so
the function 1

f is well-defined on Xf .

Proposition 1.5.2. Denote by O(Xf ) the algebra of functions on Xf generated
by 1

f and the restrictions h|Xf of regular functions h on X:

O(Xf ) := C[
1

f
, {h|Xf | h ∈ O(X)}] = O(X)|Xf [

1

f
].

Then (Xf ,O(Xf )) is an affine variety and O(Xf ) ' O(X)[t]/(f · t− 1).

Proof. Let X = V(a) ⊆ Cn and define

X̃ := V(a, f · xn+1 − 1) ⊆ Cn+1.

It is easy to see that the projection pr : Cn+1 → Cn onto the first n coordinates
induces a bijective map X̃

∼→ Xf whose inverse ϕ : Xf
∼→ X̃ is given by

ϕ(x1, . . . , xn) = (x1, . . . , xn, f(x1, . . . , xn)−1).

The following commutative diagram now shows that ϕ∗(O(X̃)) is generated by
ϕ∗(xn+1) = 1

f and the restrictions h|Xf (h ∈ O(X)).

X̃ X̃
⊆−−−−→

closed
Cn+1

ϕ

x' y ypr

Xf
⊆−−−−→

open
X

⊆−−−−→
closed

Cn

This proves the first claim. For the second, we have to show that the canonical
homomorphism O(X)[t]/(f · t − 1) → O(X̃) is an isomorphism. In other words,
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every function h =
∑m
i=0 hit

i ∈ O(X)[t] which vanishes on X̃ is divisible by f ·t−1.
Since f |X̃ is invertible we first obtain

∑
i hif

m−i = 0 which implies

h = h− tm
m∑
i=0

hif
m−i =

m−1∑
i=0

hit
i(1− fm−itm−i),

and the claim follows. �

Example 1.5.3. The group is a special open set of Mn(C), hence GLn(C) is
an affine variety with coordinate ring O(GLn(C)) = C[{xij | 1 ≤ i, j ≤ n}, 1

det ]. In

particular, C∗ := GL1 = C \ {0} is an affine variety with coordinate ring C[x, x−1].

Exercise 1.5.4. Let R be an arbitrary C-algebra. For any element s ∈ R define
Rs := R[x]/(s · x− 1).

(1) Describe the kernel of the canonical homomorphism ι : R→ Rs.
(2) Prove the universal property: For any homomorphism ρ : R→ A such that ρ(s)

is invertible in A there is a unique homomorphism ρ̄ : Rs → A such that ρ̄◦ι = ρ.
(3) What happens if s is a zero divisor and what if s is invertible?

1.6. Decomposition into irreducible components. We start with a purely
topological notion.

Definition 1.6.1. A topological space T is called irreducible if it cannot be
decomposed in the form T = A ∪ B where A,B $ T are proper closed subsets.
Equivalently, every non-empty open subset is dense.

Lemma 1.6.2. Let X ⊆ Cn be a closed subset. Then the following are equivalent:

(i) X is irreducible.
(ii) I(X) is a prime ideal.

(iii) O(X) is a domain, i.e., has no zero-divisor.

Proof. (i)⇒(ii): If I(X) is not prime we can find two polynomials f, h ∈
C[x1, . . . , xn] \ I(X) such that f · h ∈ I(X). This implies that X ⊆ V(f · h) =
V(f) ∪ V(h), but X is neither contained in V(f) nor in V(h). Thus X = (V(g) ∩
X) ∪ (V(h) ∩ X) is a decomposition into proper closed subsets, contradicting the
assumption.

(ii)⇒(iii): This is clear since O(X) = C[x1, . . . , xn]/I(X).
(iii)⇒(i): If X = A ∪ B is a decomposition into proper closed subsets there

are nonzero functions f, h ∈ O(X) such that f |A = 0 and h|B = 0. But then f · h
vanishes on all of X and so f · h = 0. This contradicts the assumption that O(X)
does not contain zero-divisor. �

Example 1.6.3. Let f ∈ C[x1, . . . , xn]. Then the hypersurface V(f) is irre-
ducible if and only if f is a power of an irreducible polynomial. This follows from
Example 1.3.9 and the fact that the ideal (f) is prime if and only if f is irreducible.
More generally, if f = pr11 p

r2
2 · · · prss is the primary decomposition, then

V(f) = V(p1) ∪ V(p2) ∪ · · · ∪ V(pn)

where each V(pi) is irreducible, and this decomposition is irredundant, i.e., no term
can be dropped.

Theorem 1.6.4. Every affine variety X is a finite union of irreducible closed
subsets Xi:

(5) X = X1 ∪X2 ∪ · · · ∪Xs.

If this decomposition is irredundant, then the Xi’s are the maximal irreducible sub-
sets of X and are therefore uniquely determined.
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The maximal Xi’s are called the irreducible components of X and the unique
irredundant decomposition of X in the form (5) is called decomposition into irre-
ducible components.

For the proof of the theorem above we first recall that a C-algebra R is called
Noetherian if the following equivalent conditions hold:

(i) Every ideal of R is finitely generated.
(ii) Every strictly ascending chain of ideals of R terminates.

(iii) Every non-empty set of ideals of R contains maximal elements.

(The easy proofs are left to the reader; for the equivalence of (ii) and (iii) one has
to use Zorn’s Lemma.)

The famous “Basissatz” of Hilbert implies that every finitely generated C-
algebra is Noetherian (see [Art91, Chap. 12, Theorem 5.18]). In particular, this
holds for the coordinate ring O(X) of any affine variety X. Using the inclusion
reversing bijection between closed subsets of X and perfect ideals of O(X) (see
Corollary 1.3.15 and Exercise 1.4.5) we get the following result.

Proposition 1.6.5. Let X be an affine variety. Then

(1) Every closed subset A ⊆ X is of the form VX(f1, f2, . . . , fr).
(2) Every strictly descending chain of closed subsets of X terminates.
(3) Every non-empty set of closed subsets of X contains minimal elements.

Remark 1.6.6. It is easy to see that for an arbitrary topological space T the
properties (2) and (3) from the previous proposition are equivalent. If they hold,
then T is called Noetherian.

Proof of Theorem 1.6.4. We first show that such a decomposition exists.
Consider the following set

M := {A ⊆ X | A closed and not a finite union of irreducible closed subsets}.
IfM 6= ∅, then it contains a minimal element A0. Since A0 is not irreducible, we can
find proper closed subset B,B′ ( A0 such that A0 = B ∪B′. But then B,B′ /∈M
and so both are finite unions of irreducible closed subsets. Hence A0 is a finite union
of irreducible closed subsets, too, contradicting the assumption.

To show the uniqueness let X = X1∪X2∪· · ·∪Xs where all Xi are irreducible
closed subsets and assume that the decomposition is irredundant. Then, clearly,
every Xi is maximal. Let Y ⊆ X be a maximal irreducible closed subset. Then
Y = (Y ∩X1)∪ (Y ∩X2)∪ · · · ∪ (Y ∩Xs) and so Y = Y ∩Xj for some j. It follows
that Y ⊆ Xj and so Y = Xj because of maximality. �

Remark 1.6.7. The algebraic counterpart to the decomposition into irreducible
components is the following statement about radical ideals in finitely generated
algebras R: Every radical ideal a ⊆ R is a finite intersection of prime ideals:

a = p1 ∩ p2 ∩ · · · ∩ ps.

If this intersection is irredundant, then the pi’s are the minimal prime ideals con-
taining a. (The easy proof is left to the reader.)

Example 1.6.8. Consider the two hypersurfaces H1 := V(xy − z), H2 :=
V(xz − y2) in C3 and their intersection X := H1 ∩H2. Then

X = V(y, z) ∪ C where C := {(t, t2, t3) | t ∈ C},
and this is the irreducible decomposition.

In fact, it is obvious that the x-axis V(y, z) is closed and irreducible and belongs
to X, and the same holds for the curve C (see Exercise 1.3.14). If (a, b, c) ∈ X \
V(y, z), then either b or c is 6= 0. But then b 6= 0 because ab = c. Hence a = cb−1 and
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so b2 = ac = c2b−1 which implies that c2 = b3. Thus b = (cb−1)2 and c = (cb−1)3,
i.e. (a, b, c) ∈ C.

Another way to see this is by looking at the coordinate ring:

C[x, y, z]/(xy − z, xz − y2)
∼→ C[x, y]/(x2y − y2).

On the level of ideals we get (x2y − y2) = (y(x − y2)) = (y) ∩ (x − y2), and the
ideals (y) and (x− y2) are obviously prime, with residue class ring isomorphic to a
polynomial ring in one variable. This shows that X has two irreducible components,
both with coordinate ring isomorphic to C[t].

Exercise 1.6.9. The closed subvariety X := V(x2 − yz, xz − x) ⊆ C3 has three
irreducible components. Describe the corresponding prime ideals in C[x, y, z].

Example 1.6.10. The group O2 := {A ∈ M2 | AAt = E} has two irreducible

components, namely SO2 := O2 ∩ SL2 and

[
0 1
1 0

]
· SO2, and the two components

are disjoint.

In fact, the condition AAt = E for A =

[
a b
c d

]
implies that

[
a
b

]
= ±

[
d
−c

]
.

Since det

[
a b
−b a

]
= a2+b2 we see that SO2 = {

[
a b
−b a

]
| a2+b2 = 1} is irreducible

as well as

[
0 1
1 0

]
· SO2 = {

[
a b
b −a

]
| a2 + b2 = 1}, and the claim follows.

Exercise 1.6.11. Let X = X1 ∪X2 where X1, X2 ⊆ X are closed and disjoint. Then
one has a canonical isomorphism O(X)

∼→ O(X1)×O(X2).

Exercise 1.6.12. Let X =
⋃
iXi be the decomposition into irreducible components.

Let Ui ⊆ Xi be open subsets and put U :=
⋃
i Ui ⊆ X.

(1) Show that U is not necessarily open in X.
(2) Find sufficient conditions to ensure that U is open in X.
(3) Show that U is dense in X if and only if all Ui are non-empty.

1.7. Rational functions and local rings. If X is an irreducible affine va-
riety, then O(X) is a domain by Lemma 1.6.2. Therefore, we can form the field of
fractions Quot(O(X)) of O(X) which is called the field of rational functions on X
and will be denoted by . Clearly, if X = Cn, then C(X) = C(x1, x2, . . . , xn), the
rational function field. An irreducible affine variety X is called rational if its field
of rational functions C(X) is isomorphic to a rational function field.

A rational function f ∈ C(X) can be regarded as a function “defined almost
everywhere” on X. In fact, we say that f is defined in x ∈ X if there are p, q ∈ O(X)
such that f = p

q and q(x) 6= 0.

Example 1.7.1. Consider again Neil’s parabola C := V(y2 − x3) ⊆ C2 from
Example 1.3.11 and put x̄ := x|C and ȳ := y|C . Then the rational function f :=
ȳ
x̄ ∈ C(C) is not defined in (0, 0). Note that f2 = x̄. The interesting point here is
that f has a continuous extension to all of C with value 0 at (0, 0), even in the
C-topology.

Proof. There is an isomorphism O(C)
∼→ C[t2, t3] (see Example 1.3.11) which

maps x̄ to t2 and ȳ to t3, and so f = ȳ
x̄ is mapped to t. Since t /∈ C[t2, t3] the first

claim follows from Lemma 1.7.3 above. The second part is easy, because the map
C→ C : t 7→ (t2, t3) is a homeomorphism even in the C-topology. �

Exercise 1.7.2. If f ∈ C(C2) = C(x, y) is defined in C2 \ {(0, 0)}, then f is regular.
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For a rational function f on the irreducible affine variety X we denote by
Def(f) ⊆ X the set of points where f is defined. By definition, Def(f) ⊆ X is an
open set. Moreover, we have the following result.

Lemma 1.7.3. Def(f) = X if and only if f is regular on X.

Proof. Consider the “ideal of denominators” a := {p ∈ O(X) | p ·f ∈ O(X)}.
If Def(f) = X, then V(a) = ∅. Hence 1 ∈ a, and so f ∈ O(X). �

Exercise 1.7.4. Let f ∈ C(V ) be a nonzero rational function on the vector space V .
Then Def(f) is a special open set in V .

Assume that X is irreducible and let x ∈ X. Define

OX,x := {f ∈ C(X) | f is defined in x}.
It is easy to see that OX,x is the localization of O(X) at the maximal ideal mx.
(For the definition of the localization of a ring at a prime ideal and, more generally,
for the construction of rings of fractions we refer to [Eis95, I.2.1].) This example
motivates the following definition.

Definition 1.7.5. Let X be an affine variety and x ∈ X an arbitrary point.
Then the localization O(X)mx of the coordinate ring O(X) at the maximal ideal in
x is called the local ring of X at x. It will be denoted by OX,x, its unique maximal
ideal by mX,x. ,

We will see later that the local ring of X at x completely determines X in a
neighborhood of x (see Proposition 2.3.1(3)).

Exercise 1.7.6. If X is irreducible, then O(X) =
⋂
x∈X OX,x.

Exercise 1.7.7. Let X be an affine variety, x ∈ X a point and X ′ ⊆ X the union
of irreducible components of X passing through x. Then the restriction map induces a
natural isomorphism OX,x

∼→ OX′,x.

Exercise 1.7.8. Let R be an algebra and µ : R→ RS the canonical map r 7→ r
1

where
RS is the localization at a multiplicatively closed subset 1 ∈ S ⊆ R (0 /∈ S).

(1) If a ⊆ R is an ideal and aS := RS µ(a) ⊆ RS , then

µ−1(µ(a)) = µ−1(aS) = {b ∈ R | sb ∈ a for some s ∈ S}.

Moreover, (R/a)S̄
∼→ RS/aS where S̄ is the image of S in R/a.

(Hint: For the second assertion use the universal property of the localization.)
(2) If m ⊆ R is a maximal ideal and S := R \ m, then mS is the maximal ideal of

RS and the natural maps R/mk
∼→ RS/m

k
S are isomorphisms for all k ≥ 1.

(Hint: The image S̄ in R/mk consists of invertible elements.)

Exercise 1.7.9. Let p < q be positive integers with no common divisor and define
Cp,q := {(tp, tq) | t ∈ C} ⊆ C2. Then Cp,q is a closed irreducible plane curve which is
rational, i.e. C(Cp,q) ' C(t). Moreover, O(Cp,q) is a polynomial ring if and only if p = 1.

Exercise 1.7.10. Consider the elliptic curve E := V(y2−x(x2−1)) ⊆ C2. Show that
E is not rational, i.e. that C(E) is not isomorphic to C(t).
(Hint: If C(E) = C(t), then there are rational functions f(t), h(t) which satisfy the equation
f(t)2 = h(t)(h(t)2 − 1).)
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2. Morphisms

2.1. Morphisms and comorphisms. In the previous sections we have de-
fined and discussed the main objects of algebraic geometry, the affine varieties. Now
we have to introduce the “regular maps” between affine varieties which should be
compatible with the concept of regular functions.

Definition 2.1.1. Let X,Y be affine varieties. A map ϕ : X → Y is called
regular or a morphism if the pull-back of a regular function on Y is regular on X:

f ◦ ϕ ∈ O(X) for all f ∈ O(Y ).

Thus we obtain a homomorphism ϕ∗ : O(Y ) → O(X) of C-algebras given by
ϕ∗(f) := f ◦ ϕ, which is called comorphism of ϕ.

A morphism ϕ is called an isomorphism if ϕ is bijective and the inverse map
ϕ−1 is also a morphism. If, in addition, Y = X, then ϕ is called an automorphism.

Example 2.1.2. A map ϕ = (f1, f2, . . . , fm) : Cn → Cm is regular if and only if
the components fi are polynomials in C[x1, . . . , xn]. This is clear, since ϕ∗(yj) = fj
where y1, y2, . . . , ym are the coordinate functions on Cm.

More generally, let X be an affine variety and a ϕ = (f1, . . . , fm) : X → Cm a
map. Then ϕ is a morphism if and only if the components fj are regular functions
on X. (This is clear since fj = ϕ∗(yj).)

Example 2.1.3. The morphism t 7→ (t2, t3) from C → C2 induces a bijective
morphism C→ C := V(y2−x3) which is not an isomorphism (see Example 1.3.11).

Similarly, for the curve D := V(y2 − x2 − x3) there is a morphism ψ : C → D
given by t 7→ (t2 − 1, t(t2 − 1)). This time ψ is surjective, but not injective since
ψ(1) = ψ(−1) = (0, 0).

Exercise 2.1.4. Let g ∈ GLn be an invertible matrix. Then left multiplication A 7→
gA, right multiplication A 7→ Ag and conjugation A 7→ gAg−1 are automorphisms of Mn.

If a morphism ϕ = (f1, f2, . . . , fm) : Cn → Cm maps a closed subset X ⊆
Cn into a closed subset Y ⊆ Cm, then the induced map ϕ̄ : X → Y is clearly
a morphism, just by definition. This holds in a slightly more general setting, as
claimed in the next exercise.

Exercise 2.1.5. Let ϕ : X → Y be a morphism. If X ′ ⊆ X and Y ′ ⊆ Y are closed
subvarieties such that ϕ(X ′) ⊆ Y ′, then the induced map ϕ′ : X ′ → Y ′, x 7→ ϕ(x), is again
a morphism. The same holds if X ′ and Y ′ are special open sets.

These examples have the following converse which will be useful in many ap-
plications.

Lemma 2.1.6. Let X ⊆ Cn and Y ⊆ Cm be closed subvarieties and let ϕ : X →
Y be a morphism. Then there are polynomials f1, . . . , fm ∈ C[x1, . . . , xn] such that
the following diagram commutes:

Cn Φ:=(f1,...,fm)−−−−−−−−−→ Cmx⊆ x⊆
X

ϕ−−−−→ Y

Proof. Let y1, . . . , ym denote the coordinate functions on Cm. Put ȳj := yj |Y
and consider ϕ∗(ȳj) ∈ O(X). Since X ⊆ Cn is closed there exist fj ∈ C[x1, . . . , xn]
such that f̄j |X = ϕ∗(ȳj), for j = 1, . . . ,m. We claim that the morphism Φ :=
(f1, . . . , fm) : Cn → Cm satisfies the requirements of the lemma. In fact, let a ∈
X ⊆ Cn and set ϕ(a) =: b = (b1, . . . , bm). Then

bj = yj(b) = ȳj(b) = ȳj(ϕ(a)) = ϕ∗(ȳj)(a) = f̄j(a) = fj(a),
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and so ϕ(a) = Φ(a). �

Exercise 2.1.7. (1) Every morphism C→ C∗ is constant.
(2) Describe all morphisms C∗ → C∗.
(3) Every nonconstant morphism C→ C is surjective.
(4) An injective morphism C→ C is an isomorphism, and the same holds for injec-

tive morphisms C∗ → C∗.

Exercise 2.1.8. Let ϕ : Cn → Cm be a morphism and define

Γϕ := {(a, ϕ(a)) ∈ Cn+m}.

which is called the graph of the morphism ϕ. Show that Γϕ is closed in Cn+m, that

the projection prCn : Cn+m → Cn induces an isomorphism p : Γϕ
∼→ Cn and that ϕ =

prCm ◦ p−1.

Proposition 2.1.9. Let X,Y be affine varieties. The map ϕ 7→ ϕ∗ induces a
bijection

Mor(X,Y )
∼→ AlgC(O(Y ),O(X)).

between the morphisms from X to Y and the algebra homomorphism from O(Y ) to
O(X).

Remark 2.1.10. The mathematical term used in the situation above is that
of a contravariant functor from the category of affine varieties and morphisms to
the category of finitely generated reduced C-algebras and homomorphism, given by
X 7→ O(X) and ϕ 7→ ϕ∗. In particular, we have ϕ∗(IdX) = IdO(X) and (ϕ ◦ ψ)∗ =
ψ∗ ◦ϕ∗ whenever the expressions make sense. The proposition above then says that
this functor is an equivalence, the inverse functor being R 7→ specR defined in
Proposition 1.4.6. It will be helpful to keep this “functorial point of view” in mind
although it will not play an important role in the following.

Proof. (a) If ϕ∗1 = ϕ∗2, then, for all f ∈ O(Y ) and all x ∈ X, we get

f(ϕ1(x)) = ϕ∗1(f)(x) = ϕ∗2(f)(x) = f(ϕ2(x)).

Hence, ϕ1(x) = ϕ2(x) since the regular functions separate the points (Remark 1.2.12).
(b) Let ρ : O(Y ) → O(X) be an algebra homomorphism. We want to con-

struct a morphism ϕ : X → Y such that ϕ∗ = ρ. For this we can assume that
Y ⊆ Cm is a closed subvariety. Let ȳj := yj |Y be the restrictions of the coor-
dinate functions on Cm and define fj := ρ(ȳj) ∈ O(X). Then we get a mor-
phism Φ := (f1, . . . , fm) : X → Cm such that Φ∗(yj) = fj (see Example 2.1.2). If
h = h(y1, . . . , ym) ∈ I(Y ), then

h(f1, . . . , fm) = h(ρ(ȳ1), . . . , ρ(ȳm)) = ρ(h(ȳ1, . . . , ȳm)) = 0

because h(ȳ1, . . . , ȳm) = h|Y = 0 by assumption. Therefore h(Φ(a)) = 0 for all
a ∈ X and all h ∈ I(Y ) and so Φ(X) ⊆ Y . This shows that Φ induces a morphism
ϕ : X → Y such that ϕ∗(ȳj) = Φ∗(yj) = fj = ρ(ȳj), and so ϕ∗ = ρ. �

Example 2.1.11. Let X be an affine variety, V a finite dimensional vector space
and ϕ : X → V a morphism. The linear functions on V form a subspace V ∗ ⊆ O(V )
which generates O(V ). Therefore, the induced linear map ϕ∗|V ∗ : V ∗ → O(X)
completely determines ϕ∗, and we get a bijection

Mor(X,V )
∼→ Hom(V ∗,O(X)) ϕ 7→ ϕ∗|V ∗ .

The second assertion follows from Proposition 2.1.9 and the well-known “Sub-
stitution Principle” for polynomials rings (see [Art91, Chap. 10, Proposition 3.4]).

Exercise 2.1.12. Show that for an affine variety X the morphisms X → C∗ corre-
spond bijectively to the invertible functions on X.
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Exercise 2.1.13. Let X,Y be affine varieties and ϕ : X → Y , ψ : Y → X morphisms
such that ψ ◦ ϕ = IdX . Then ϕ(X) ⊆ Y is closed and ϕ : X

∼→ ϕ(X) is an isomorphism.

2.2. Images, preimages and fibers. It is easy to see that morphisms are
continuous. In fact, the Zariski topology is the finest topology such that regular
functions are continuous, and since morphisms are defined by the condition that
the pull-back of a regular function is again regular, it immediately follows that
morphisms are continuous. We will get this result again from the next proposition
where we describe images and preimages of closed subsets under morphisms.

Proposition 2.2.1. Let ϕ : X → Y be a morphism of affine varieties.

(1) If B := VY (S) ⊆ Y is the closed subset defined by S ⊆ O(Y ), then
ϕ−1(B) = VX(ϕ∗(S)). In particular, ϕ is continuous.

(2) Let A := V(a) ⊆ X be the closed subset defined by the ideal a ⊆ O(X).
Then the closure of the image ϕ(A) is defined by ϕ∗−1(a) ⊆ O(Y ):

ϕ(A) = VY (ϕ∗−1(a)).

Proof. For x ∈ X we have

x ∈ ϕ−1(B) ⇐⇒ ϕ(x) ∈ B ⇐⇒ f(ϕ(x)) = 0 for all f ∈ S,
and this is equivalent to ϕ∗(f)(x) = 0 for all f ∈ S, hence to x ∈ VX(ϕ∗(S)),
proving the first claim.

For the second claim, let f ∈ O(Y ). Then

f |
ϕ(A)

= 0 ⇐⇒ f |ϕ(A) = 0 ⇐⇒ ϕ∗(f)|A = 0 ⇐⇒ ϕ∗(f) ∈ I(A) =
√
a

The latter is equivalent to the condition that a power of f belongs to ϕ∗−1(a). Thus

the zero set of ϕ∗−1(a) equals the closed set ϕ(A). �

Exercise 2.2.2. If ϕ1, ϕ2 : X → Y are two morphisms, then the “kernel of coinci-
dence”

ker(ϕ1, ϕ2) := {x ∈ X | ϕ1(x) = ϕ2(x)} ⊆ X
is closed in X

Exercise 2.2.3. Let ϕ : X → Y be a morphism of affine varieties.

(1) If X is irreducible, then ϕ(X) is irreducible.
(2) Every irreducible component of X is mapped into an irreducible component of

Y .
(3) If U ⊆ Y is a special open set, then so is ϕ−1(U).

Exercise 2.2.4. Let ϕ : Cn → Cm be a morphism, ϕ = (f1, f2, . . . , fm) where fi ∈
C[x1, x2, . . . , xn], and let Y := ϕ(Cn) be the closure of the image of ϕ. Then

I(Y ) = (y1 − f1, y2 − f2, . . . , ym − fm) ∩ C[y1, y2, . . . , ym]

where both sides are considered as subsets of C[x1, . . . , xn, y1, . . . , ym]. So I(Y ) is obtained
from the ideal (y1 − f1, . . . , ym − fm) by eliminating the variables x1, . . . , xn.
(Hint: Use the graph Γϕ defined in Exercise 2.1.8 and show that the ideal I(Γϕ) is generated
by {yj − fj | j = 1, . . . ,m}.)

Exercise 2.2.5. Let ϕ : X
∼→ X be an automorphism and Y ⊆ X a closed subset

such that ϕ(Y ) ⊆ Y . Then ϕ(Y ) = Y and ϕ|Y : Y → Y is an automorphism, too.
(Hint: Look at the descending chain Y ⊇ Y1 := ϕ(Y ) ⊇ Y2 := ϕ(Y1) ⊇ · · · . If Yn = Yn+1,
then ϕ(Yn−1) = Yn = ϕ(Yn) and so Yn−1 = Yn.)

Definition 2.2.6. A morphism ϕ : X → Y is called a closed immersion if
ϕ(X) ⊆ Y is closed and the induced map X → ϕ(X) is an isomorphism.

Lemma 2.2.7. A morphism ϕ : X → Y is a closed immersion if and only if the
comorphism ϕ∗ : O(Y )→ O(X) is surjective.



A.2. MORPHISMS 179

Proof. If ϕ is a closed immersion, then O(X) ' O(ϕ(X)) and the regular
functions on ϕ(X) are restrictions from regular functions on Y , hence ϕ∗ is surjec-
tive.

Now assume that ϕ∗ is surjective, and put a := kerϕ∗. This is a radical ideal
and so a = I(A) where A := VX(a). By definition, ϕ∗ has the decomposition

O(Y ) � O(A)
∼→ O(X), i.e. ϕ induces an isomorphism X

∼→ A ⊆ Y . �

Exercise 2.2.8. Let ϕ : X → Y and ψ : Y → Z be morphisms, and assume that the
composition ψ ◦ ϕ is a closed immersion. Then ϕ is a closed immersion.

A special case of preimages are the fibers of a morphism ϕ : X → Y . Let y ∈ Y .
Then

ϕ−1(y) := {x ∈ X | ϕ(x) = y}
is called the fiber of y ∈ Y . By the proposition above, the fiber of y is a closed
subvariety of X defined by ϕ∗(my):

ϕ−1(y) = VX(ϕ∗(my)).

Of course, the fiber of a point y ∈ Y can be empty. In algebraic terms this means
that ϕ∗(my) generates the unit ideal (1) = O(X).

Exercise 2.2.9. Describe the fibers of the morphism ϕ : M2 → M2, A 7→ A2.
(Hint: Use the fact that ϕ(gAg−1) = gϕ(A)g−1 for g ∈ GL2.)

Definition 2.2.10. Let ϕ : X → Y be a morphism of affine varieties and
consider the fiber F := ϕ−1(y) of a point y ∈ ϕ(X) ⊆ Y . Then the fiber F is called
reduced if ϕ∗(my) generates a perfect ideal in O(X), i.e. if√

O(X) · ϕ∗(my) = O(X) · ϕ∗(my).

The fiber F is called reduced in the point x ∈ F if this holds in the local ring OX,x,
i.e. √

OX,x · ϕ∗(my) = OX,x · ϕ∗(my).

Example 2.2.11. Look again at the morphism ϕ : C→ C := V(y2− x3) ⊆ C2,

t 7→ (t2, t3). Then ϕ∗ is the injection O(C)
∼→ C[t2, t3] ↪→ C[t] and so

C[t] · ϕ∗(m(0,0)) = (t2, t3) (
√

(t2, t3) = (t).

Thus the zero fiber ϕ−1(0) is not reduced. On the other hand, all other fibers
are reduced. In fact, ϕ induces an isomorphism of C∗ with the special open set
C \ {(0, 0)}(= Cx̄ = Cȳ), where the inverse map is given by (a, b) 7→ b

a .

The following lemma shows that reducedness is a local property.

Lemma 2.2.12. Let ϕ : X → Y be a morphism and F := ϕ−1(y) the fiber of
y ∈ Y .

(1) If F is reduced in x ∈ F , then F is reduced in a neighborhood of x.
(2) If F is reduced in every x ∈ F , then F is reduced.

Proof. We will use here some standard facts related to “localization”, see
[Eis95, I.2.1]. Set R := O(X)/ϕ∗(my)O(X), and let r :=

√
(0) ⊆ R denote the

nilradical.
(1) Since Rmx is reduced, the ideal r is in the kernel of the map R → Rmx . It

follows that there is an element s /∈ mx such that r belongs to the kernel of R→ Rs,
i.e. Rs is reduced. This means that the fiber F is reduced in every point of Fs.

(2) If F is reduced in every point, it follows from (1) that there are finitely many
si ∈ R such that Rsi is reduced for all i and that (s1, . . . , sm) = R. This implies that
sNi · r = (0) for all i and some N > 0, hence r = (0), because 1 ∈ (s1, . . . , sm). �
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Exercise 2.2.13. Show that all fibers of the morphism ψ : C→ D := V(y2−x2−x3) ⊆
C2, t 7→ (t2 − 1, t(t2 − 1)), are reduced and that ψ induces an isomorphism C \ {1,−1} ∼→
D \ {(0, 0)}.

Exercise 2.2.14. Consider the morphism ϕ : SL2 → C3, ϕ(

[
a b
c d

]
) := (ab, ad, cd).

(1) The image of ϕ is a closed hypersurface H ⊆ C3 defined by xz − y(y − 1) = 0.

(2) The fibers of ϕ are the left cosets of the subgroup T := {
[
t

t−1

]
| t ∈ C∗}.

(3) All fibers are reduced.

(Hint: Show that the left multiplication with some g ∈ SL2 induces an automorphism λg
of H and isomorphisms ϕ−1(y)

∼→ ϕ−1(λg(y)) for all y ∈ H. This implies that it suffices
to study just one fiber, e.g. ϕ−1(ϕ(E)).)

Exercise 2.2.15. Consider the morphism ϕ : C2 → C2 given by ϕ(x, y) := (x, xy).

(1) ϕ(C2) = C2 \ {(0, y) | y 6= 0} which is not locally closed.
(2) What happens with the lines parallel to the x-axis or parallel to the y-axis?
(3) ϕ−1(0) = y-axis. Is this fiber reduced?

(4) ϕ induces an isomorphism C2 \ y-axis
∼→ C2 \ y-axis.

2.3. Dominant morphisms and degree. Let ϕ : X → Y be a morphism of
affine varieties, x a point of X and y := ϕ(x) its image in Y . Then ϕ∗(my) ⊆ mx,
and so ϕ∗ induces a local homomorphism

ϕ∗x : OY,y → OX,x.

(A homomorphism between local rings is called local if it maps the maximal ideal
into the maximal ideal.)

The next proposition tells us that, in a neighborhood of a point x ∈ X, a
morphism ϕ is uniquely determined by the local homomorphism ϕ∗x.

Proposition 2.3.1. (1) Let ϕ,ψ : X → Y be two morphisms and x ∈ X
a point such that ϕ(x) = ψ(x) and ϕ∗x = ψ∗x. Then ϕ and ψ coincide on
every irreducible component of X which contains x.

(2) If x ∈ X, y ∈ Y and if ρ : OY,y → OX,x is a local homomorphism, then
there is a special open sets X ′ ⊆ X containing x and a morphism ϕ : X ′ →
Y such that ϕ∗x = ρ.

(3) If x ∈ X, y ∈ Y and ρ : OY,y
∼→ OX,x an isomorphism, then there exist

special open sets X ′ ⊆ X and Y ′ ⊆ Y containing x and y, respectively,
and an isomorphism ϕ : X ′

∼→ Y ′ such that ϕ∗x = ρ.

Proof. (1) Let R be a finitely generated reduced C-algebra and m ⊆ R a
maximal ideal. The canonical map µ : R→ Rm is injective if and only if m contains
all minimal prime ideals of R. (In fact, kerµ = {r ∈ R | sr = 0 for some s ∈ R\m}.)

Denote by X̄ ⊆ X the union of irreducible components passing through x and
by Ȳ ⊆ Y the union of irreducible components passing through ϕ(x). Then ϕ(X̄) ⊆
Ȳ , because the image of an irreducible component of X is contained in an irreducible
component of Y (see Exercise 2.2.3). Thus we obtain a morphism ϕ̄ : X̄ → Ȳ with
the following commutative diagram of C-algebras and homomorphisms which shows
that ϕ̄ is completely determined by ϕ∗x:

O(Y ) −−−−→ O(Ȳ )
⊆−−−−→ OȲ ,ϕ(x) = OY,ϕ(x)yϕ∗ yϕ̄∗ yϕ∗x

O(X) −−−−→ O(X̄)
⊆−−−−→ OX̄,x = OX,x



A.2. MORPHISMS 181

(2) We can assume that all irreducible components of X pass through x and all
irreducible components of Y pass through y. Then

O(Y ) ⊆ OY,y → OX,x ⊇ O(X).

Let h1, . . . , hm ∈ O(Y ) be a set of generators and put gj := ρ(hj). Then we can find
an element t ∈ O(X) \ mx such that gj ∈ O(X)t for all j, i.e. ρ(O(Y )) ⊆ O(X)t.
Hence there is a morphism ϕ : Xt → Y such that ϕ∗ = ρ|O(X)t , and so ϕ∗x = ρ.

(3) By (2) we can assume that there is a morphism ϕ : X → Y such that ϕ∗x = ρ,

i.e. ρ(O(Y )) ⊆ O(X). Let f1, . . . , fn ∈ O(X) be generators. Then fi = ρ(hi)
ρ(s) where

hi ∈ O(Y ) and s ∈ O(Y )\my. This implies that ρ(O(Y )s) = O(X)t where t = ρ(s).

Thus ρ induces an isomorphism O(Y )s
∼→ O(X)t, and the claim follows. �

Definition 2.3.2. LetX,Y be irreducible affine varieties. A morphism ϕ : X →
Y is called dominant if the image is dense in Y , i.e. ϕ(X) = Y . This is equivalent
to the condition that ϕ∗ : O(Y )→ O(X) is injective (see Proposition 2.2.1(2)).

It follows that every dominant morphism ϕ : X → Y induces a finitely generated
field extension ϕ∗ : C(Y ) ↪→ C(X). If this is a finite field extension of degree d :=
[C(X) : C(Y )] we will say that ϕ is a morphism of finite degree d. If d = 1, i.e. if

ϕ∗ induces an isomorphism C(Y )
∼→ C(X), then ϕ is called a birational morphism.

Exercise 2.3.3. Let ϕ : C→ C be a nonconstant morphism. Then ϕ has finite degree
d, and there is a non-empty open set U ⊆ C such that #ϕ−1(x) = d for all x ∈ U .

There is a similar result as the second part of Proposition 2.3.1 saying that
affine varieties with isomorphic function fields are locally isomorphic.

Proposition 2.3.4. Let X and Y be irreducible affine varieties and assume
that we have an isomorphism ρ : C(Y )

∼→ C(X). Then there exist special open sets

X ′ ⊆ X and Y ′ ⊆ Y and an isomorphism ψ : X ′
∼→ Y ′ such that ρ = ψ∗.

Proof. Since O(Y ) ⊆ C(Y ) is finitely generated, there is an f ∈ O(X)
such that ρ(O(Y )) ⊆ O(X)f . Replacing X by Xf we can therefore assume that
ρ(O(Y )) ⊆ O(X). By the same argument we can find an h ∈ O(Y ) such that
ρ−1(O(X)) ⊆ O(Y )h. Thus ρ(O(Y )h) ⊆ O(X)ρ(h) and ρ−1(O(X)ρ(h)) ⊆ O(Y )h.

Hence ρ(O(Y )h) = O(X)ρ(h), and we get an isomorphism ψ : Xρ(h)
∼→ Yh with

ψ∗ = ρ. �

2.4. Rational varieties and Lüroth’s Theorem. An irreducible affine va-
riety X is called rational if its field of rational functions C(X) is a purely tran-
scendental extension of C (section 1.7). By Proposition 2.3.4 this means that X
contains a special open set U which is isomorphic to a special open set of Cn.

Proposition 2.4.1. Let ϕ : X → Y be a dominant morphism where X is ra-
tional and dimY = 1. Then Y is a rational curve.

Proof. We can assume thatX is a special open set of Cn. Then there is a line L
in Cn such that ϕ(L∩X) ⊆ Y is dense. This implies that C(C) ⊆ C(L∩X)

∼→ C(x),
and the claim follows from the Lüroth’s Theorem below. �

Theorem 2.4.2 (Lüroth’s Theorem). Let K ⊆ C(x) be a subfield which con-
tains C. Then there is an h ∈ K such that K = C(h).

Proof. We can assume that K 6= C. Any f(t) ∈ C(x)[t] can be written in

the form f(t) = p(x,t)
q(x) where p(x, t) ∈ C[x, t], q(x) ∈ C[x], and p, q are relatively

prime. Define the degree of f by deg(f) := max{degx p,degx q}. It is easy to see
that deg(f) = deg(f1) + deg(f2) in case f = f1f2 and both factors fi are monic as
polynomials in t.
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Let h ∈ K \ C be an element of minimal degree d, h = r(x)
s(x) where r, s ∈ C[x].

We can assume that r, s are monic and that degx s < degx r = d. Set f = f(t) :=
r(t) − hs(t) ∈ K[t] ⊆ C(x)[t]. Then degt f = d and f(x) = 0. We claim that f is
irreducible in K[t]. This implies that f is the minimal polynomial of x over K, but
also the minimal polynomial of x over C(h), hence K = C(h).

It remains to see that f is irreducible as a polynomial in K[t]. If f(t) =
f1(t)f2(t), then deg(f) = deg(f1) + deg(f2) since f is monic. If deg(f1) = 0, then
f1(t) ∈ C[t], and thus f1(t) divides r(t) and s(t), because h is purely transcendental
over C. Therefore, we can assume that 0 < deg(f1) < d. But then one of the coef-
ficients of f1(t) belongs to K \C and has height < d, contradicting the minimality
of d. �

2.5. Products. If f is a function on X and h a function on Y , then we denote
by f · h the C-valued function on the defined by (f · h)(x, y) := f(x) · h(y).

Proposition 2.5.1. The product X × Y of two affine varieties together with
the algebra

O(X × Y ) := C[f · h | f ∈ O(X), h ∈ O(Y )]

of C-valued functions is an affine variety. Moreover, the canonical homomorphism
O(X)⊗O(Y )→ O(X × Y ), f ⊗ h 7→ f · h, is an isomorphism.

Proof. Let X ⊆ Cn and Y ⊆ Cm be closed subvarieties. Then X×Y ⊆ Cn+m

is closed, namely equal to the zero set V(I(X) ∪ I(Y )). So it remains to show that
O(X × Y ) = C[x1, . . . , xn, y1, . . . , ym]/I(X × Y ) is generated by the products f · h
and that f · h ∈ O(X × Y ) for f ∈ O(X) and h ∈ O(Y ). But this is clear since
x̄i = xi|X×Y = xi|X · 1 and ȳj = yj |X×Y = 1 · yj |Y , and f |X · h|Y = (fh)|X×Y for
f ∈ C[x1, . . . , xn] and h ∈ C[y1, . . . , ym].

For the last claim, we only have to show that the map O(X)⊗O(Y )→ O(X×
Y ), f ⊗ h 7→ f · h, is injective. For this, let (fi | i ∈ I) be a basis of O(Y ). Then
every element s ∈ O(X)⊗O(Y ) can be uniquely written as s =

∑
finite si ⊗ fi. If s

is in the kernel of the map, then
∑
si(x)fi(y) = 0 for all (x, y) ∈ X ×Y and so, for

every fixed x ∈ X,
∑
si(x)fi is the zero function on Y . This implies that si(x) = 0

for all x ∈ X and so si = 0 for all i. Thus s = 0 proving the claim. �

Example 2.5.2. (1) By definition, we have Cm × Cn = Cm+n.
(2) The two projections prX : X×Y → X, (x, y) 7→ x, and prY : X×Y → Y ,

(x, y) 7→ y, are morphisms with comorphisms pr∗X(f) = f ·1 and pr∗Y (h) =
1 · h.

(3) If ϕ : X → X ′ and ψ : Y → Y ′ are morphisms, then so is

ϕ× ψ : X × Y → X ′ × Y ′, (x, y) 7→ (ϕ(x), ψ(y)).

(4) Diagonal: ∆: X → X × X, x 7→ (x, x) is a closed immersion where
∆(X) ⊆ X ×X is the closed subset defined by {f · 1− 1 · f | f ∈ O(X)}.

(5) Graph: Let ϕ : X → Y be a morphism. Then

Γ(ϕ) := {(x, ϕ(x)) | x ∈ X} ⊆ X × Y
is a closed subset. Moreover, the projection prX induces an isomorphism

p : Γ(ϕ)
∼→ X and ϕ = prY ◦p−1.

(6) Matrix multiplication: The composition of linear maps

µ : Hom(U, V )×Hom(V,W )→ Hom(U,W ), (A,B) 7→ B ◦A
is a morphism. Choosing coordinates we find µ∗(zij) =

∑
k yikxkj .

Exercise 2.5.3. Show that the ideal of the diagonal ∆(X) ⊆ X ×X is generated by
the function f · 1− 1 · f , f ∈ O(X) (see Example 2.5.2(4)).
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Lemma 2.5.4. The projection prX : X × Y → X is an open morphism, i.e. the
image of an open set under prX is open.

Proof. It suffices to show that the image of a special open set U := (X×Y )g is
open. Writing g =

∑
fi ·hi with linearly independent hi one gets prX(U) =

⋃
iXfi

and the claim follows. �

Proposition 2.5.5. If X,Y are irreducible affine varieties, then X × Y is
irreducible.

Proof. Assume that X × Y = A ∪B with closed subsets A,B. Define

XA := {x ∈ X | {x} × Y ⊆ A} and XB := {x ∈ X | {x} × Y ⊆ B}
Since Y is irreducible we see that X = XA∪XB . Now we claim that XA and XB are
both closed in X and so one of them equals X, say XA = X. But then A = X × Y
and we are done. To prove the claim we remark that X \ XA = prX(X × Y \ A)
which is open by Lemma 2.5.4 above. �

Corollary 2.5.6. If X =
⋃
iXi and Y =

⋃
j Yj are the irreducible decompo-

sitions of X and Y , then X × Y =
⋃
i,j Xi × Yj is the irreducible decomposition of

the product.

Remark 2.5.7. In terms of algebras, Proposition 2.5.5 above says that a tensor
product A⊗B of two finitely generated domains is a domain.

2.6. Fiber products. Let X,Y, S be affine varieties and let ϕ : X → S,
ψ : Y → S two morphisms. Then

X ×S Y := {(x, y) ∈ X × Y | ϕ(x) = ψ(y)} ⊆ X × Y
is a closed subset. In fact, it is the inverse image (ϕ× ψ)−1(∆(S)) of the diagonal
∆(S) ⊆ S×S which is a closed subset (Example 2.5.2(4)). We have the commutative
diagram

X ×S Y
q−−−−→ Y

p

y yψ
X

ϕ−−−−→ S
where the morphisms p and q are induced by the projections X × Y → X and
X ×Y → Y . The affine variety is called the fiber product of X,Y over S. It has the
following universal property which defines it up to unique isomorphisms.

Proposition 2.6.1. If α : Z → X and β : Z → Y are two morphisms such that
ϕ ◦ α = ψ ◦ β, then there is a unique morphism (α, β) : Z → X ×S Y such that
p ◦ (α, β) = α and q ◦ (α, β) = β:

Z
(α,β)

##

β

��

α

))

X ×S Y

p

��

q
// Y

ψ

��

X
ϕ

// S

Proof. Clearly, the morphism z 7→ (α(z), β(z)) ∈ X × Y has its image in
X ×Z Y and satisfies the conditions. It is also obvious that it is unique. �

Example 2.6.2. (1) If ϕ : X ↪→ S is a closed immersion, then q is a closed
immersion with image ψ−1(X).
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(2) If s ∈ S and X = {s} ↪→ S, then {s} ×S Y = ψ−1(s).
(3) If f ∈ O(S) and ϕ : X = Sf ↪→ S, then Sf ×S Y = Yψ∗(f) ⊆ Y .

Example 2.6.3. We look again at the curve D := V(y2 − x2 − x3) and the
morphism ψ : C → D given by t 7→ (t2 − 1, t(t2 − 1)) from Example 2.1.3 (see
also Exercise 2.2.13). Then C ×D C = ∆ ∪ {(1,−1), (−1, 1)} ⊆ C2 where ∆ is the
diagonal.

Exercise 2.6.4. Show that O(X ×S Y ) ' (O(X) ⊗O(S) O(Y ))red where Rred :=

R/
√

(0).

Example 2.6.5. Let f : Cn → C be a morphism defined by a homogeneous
polynomial f ∈ C[x1, . . . , xn] of degree d. Then all fibers f−1(λ) for λ 6= 0 are
isomorphic and smooth. They are irreducible if and only if f is not a power of
another polynomial.

Proof. The first part is clear, because
∑
i
∂f
∂xi

xi = d ·f . It is also obvious that
f − 1 is reducible, if f is a power of another polynomial. So assume that f − 1 is
reducible, and consider the polynomial F (x1, . . . , xn, z) := f(x1, . . . , xn)−zd. Then
the zero set V(F ) is the fiber product

V(F ) = C×C Cn q−−−−→ Cn

p

y yf
C ?d−−−−→ C

and V(F ) \ p−1(C∗) ' C∗ × f−1(1), because f is homogeneous of degree d. This
shows that V(F ) and hence F is reducible. Considering F as a polynomial F =
f − zn ∈ K[z] where f ∈ K := C[x1, . . . , xn], we can use a standard result from
Galois theory to deduce that f is a power (Exercise 2.6.6). �

Exercise 2.6.6. Let K be a field of characteristic zero which contains the roots of
unity. Let d ∈ N and assume that a ∈ K \

⋃
p|dK

p. Then the polynomial zd − a ∈ K[z] is

irreducible.
(Hint: If bd = a, then zd − a =

∏
j(z − ζ

jb) where ζ ∈ K is a primitive d-th root of unity.

It follows that K[b]/K is a Galois extension, and that the Galois group G embeds into

the group µd ⊆ K of d-th roots of unity by σ 7→ σ(b)
b

. Thus G is cyclic, and if the order is
m|d, then the power of bm is fixed by G.)

3. Dimension

3.1. Definitions and basic results. If k is a field and A a k-algebra, then a
set a1, a2, . . . , an ∈ A of elements from A are called algebraically independent over
k if they do not satisfy a non-trivial polynomial equation F (a1, a2, . . . , an) = 0
where F ∈ k[x1, . . . , xn]. Equivalently, the canonical homomorphism of k-algebras
k[x1, . . . , xn]→ A defined by xi 7→ ai is injective.

In order to define the dimension of a variety we will need the concept of tran-
scendence degree tdegkK of a field extension K/k. It is defined to be the maximal
number of algebraically independent elements in K. Such a set is called a tran-
scendence basis, and all such bases have the same number of elements. We refer to
[Art91, Chap. 13, Sect. 8] for the basic properties of transcendental extensions.

Definition 3.1.1. Let X be an irreducible affine variety and C(X) its field of
rational functions. Then the dimension of X is defined by

dimX := tdegC C(X).
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If X is reducible and X =
⋃
Xi the irreducible decomposition (see 1.6), then

dimX := max
i

dimXi.

Finally, we define the local dimension of X in a point x ∈ X =
⋃
Xi to be

dimxX := max
Xi3x

dimXi.

Example 3.1.2.

(1) We have dimCn = n. More generally, if V is a complex vector space of
dimension n, then dimV = n.
(In fact, x1, . . . , xn is a transcendence basis of the field C(x1, . . . , xn).)

(2) If U ⊆ X is a special open subset which is dense in X, then dimU =
dimX.
(This is obvious if X is irreducible. If Xi ⊆ X is an irreducible component,
then Ui := U∩Xi is a special open set and U =

⋃
i Ui is the decomposition

into irreducible components.)
(3) Every maximal set of algebraically independent elements of O(X) consists

of dimX elements.
(For an irreducible X this is clear, and one easily reduces to this case.)

Exercise 3.1.3. If ϕ : X
∼→ Y is an isomorphism, then dimxX = dimϕ(x) Y for all

x ∈ X.

Exercise 3.1.4. Let G ⊆ GLn be a closed subgroup. Then dimg G = dimG for all
g ∈ G.
(Hint: Use the fact that left multiplication with g is an isomorphisms G

∼→ G.)

Lemma 3.1.5. For affine varieties X,Y we have dim(X×Y ) = dimX+dimY .

Proof. It suffices to consider the case where X,Y are irreducible, see Corol-
lary 2.5.6. Then O(X) ⊗ O(Y ) is a domain as well as C(X) ⊗ C(Y ). Now C(X)
is finite over a subfield C(x1, . . . , xn) where n = dimX, and C(Y ) is finite over
a subfield C(y1, . . . , ym) where m = dimY . Hence C(X) ⊗ C(Y ) is finitely gener-
ated over C(x1, . . . , xn)⊗C(y1, . . . , ym). Since C(X × Y ) is the field of fractions of
C(X)⊗ C(Y ), it follows that it is finite over C(x1, . . . , xn, y1, . . . , ym) which is the
field of fractions of C(x1, . . . , xn)⊗ C(y1, . . . , ym). �

Exercise 3.1.6. Let X be an affine variety. Assume that O(X) is generated by r
elements. Then dimX ≤ r, and if dimX = r, then X ' Cr.

Exercise 3.1.7. The function x 7→ dimxX is upper semi-continuous on X. (This
means that for all α ∈ R the set {x ∈ X | dimxX < α} is open in X.)

Lemma 3.1.8. Let f ∈ C[x1, . . . , xn] be a nonconstant polynomial and X :=
V(f) ⊆ Cn its zero set. Then dimX = n− 1.

Proof. We can assume that f is irreducible and that the variable xn occurs
in f . Denote by x̄i ∈ O(X) = C[x1, . . . , xn]/(f) the restrictions of the coordi-
nate functions xi. Then C(X) = C(x̄1, x̄2, . . . , x̄n). Since f(x̄1, x̄2, . . . , x̄n) = 0 we
see that x̄n ∈ C(X) is algebraic over the subfield C(x̄1, x̄2, . . . , x̄n−1). Therefore,
tdegC(X) = tdegC(x̄1, x̄2, . . . , x̄n−1) ≤ n− 1. On the other hand, the composition

C[x1, . . . , xn−1] ↪→ C[x1, . . . , xn]
res−−→ O(X)

is injective, since the kernel is the intersection (f) ∩ C[x1, . . . , xn−1] which is zero.
Thus, tdegC(X) ≥ n− 1, and the claim follows. �

The first part of the proof above, namely that dimV(f) < n = dimCn has the
following generalization.
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Lemma 3.1.9. If X is irreducible and Y $ X a proper closed subset, then
dimY < dimX.

Proof. We can assume that Y is irreducible. If h1, . . . , hm ∈ O(Y ) are alge-

braically independent where m = dimY , and hi = h̃i|Y for h̃1, . . . , h̃m ∈ O(X),

then h̃1, . . . , h̃m are algebraically independent, too, and so dimX ≥ dimY . If
dimY = dimX, then every f ∈ O(X) is algebraic over C(h̃1, . . . , h̃m). Choose
f ∈ O(X) in the kernel of the restriction map, i.e. f |Y = 0. Then f satisfies an
equation of the form

fk + p1f
k−1 + · · ·+ pk−1f + pk = 0

where pj ∈ C(h̃1, . . . , h̃m) and k is minimal. Multiplying this equation with a suit-

able q ∈ C[h̃1, . . . , h̃m] we can assume that pj ∈ C[h̃1, . . . , h̃m]. But this implies
that pk|Y = 0. Thus pk = 0 and we end up with a contradiction. �

Example 3.1.10. We have dimX = 0 if and only if X is finite, and this is
equivalent to dimCO(X) <∞.
(This is clear: If X is irreducible of dimension 0, then C(X) is algebraic over C and
so C = O(X) = C(X), and the claim follows.)

Exercise 3.1.11. Let A be a finitely generated algebra. Then the following statements
are equivalent.

(i) A is finite dimensional.

(ii) Ared := A/
√

(0) is finite dimensional.
(iii) The number of maximal ideals in A is finite.

Exercise 3.1.12. Let U ⊆ X be a dense open set. Then dimX \ U < dimX.

Proposition 3.1.13. Let X be an irreducible affine variety of dimension n.
Then there is a special open set U ⊆ X which is isomorphic to a special open set
of a hypersurface V(h) ⊆ Cn+1.

Proof. The existence of a primitive element implies that the field of rational
functions C(X) has the form

C(X) = C(x1, . . . , xn)[f ]

where f satisfies a minimal equation: fm+p1f
m−1+· · ·+pm = 0, pj ∈ C(x1, . . . , xn),

see [Art91, Chap. 14, Theorem 4.1]. Multiplying with a suitable polynomial from
C[x1, . . . , xn] we can assume that all pj belong to C[x1, . . . , xn]. Then the polyno-
mial h := ym + p1y

n−1 + · · · + pm ∈ C[x1, . . . , xn, y] is irreducible and defines a
hypersurface H := V(h) ⊆ Cn+1 whose field of rational functions C(H) is isomor-
phic to C(X), by construction. Now the claim follows from Proposition 2.3.4. �

3.2. Finite morphisms. Finite morphisms will play an important role in the
following. In particular, they will help us to “compare” an arbitrary affine variety X
with an affine space Cn of the same dimension by using the famous Normalization
Lemma of Noether.

Definition 3.2.1. Let A ⊆ B be two rings. We say that B is finite over A if
B is a finite A-module, i.e. there are b1, . . . , bs ∈ B such that B =

∑
j Abj .

A morphism ϕ : X → Y between two affine varieties is called finite if O(X) is
finite over ϕ∗(O(Y )).

If A ⊆ B ⊆ C are rings such that B is finite over A and C is finite over B, then
C is finite over A. In particular, if ϕ : X → Y and ψ : Y → Z are finite morphisms,
then the composition ψ ◦ ϕ : X → Z is finite, too. Another useful remark is the
following: If ϕ : X → Y is finite and X ′ ⊆ X, Y ′ ⊆ Y closed subsets such that
ϕ(X ′) ⊆ Y ′, then the induced morphism ϕ′ : X ′ → Y ′ is also finite.



A.3. DIMENSION 187

Example 3.2.2. Typical examples of finite morphisms are the ones given in
Example 2.1.3, namely ϕ : C→ C = V(y2−x3) ⊆ C2 and ψ : C→ D = V(y2−x2−
x3) ⊆ C2. In both cases, the morphisms are the so-called normalizations, a concept
which we will discuss later.

On the other hand, the inclusion of a special open set Xf ↪→ X is not finite if
f is neither invertible nor zero.

Exercise 3.2.3. Every nonconstant morphism ϕ : C→ C is finite, and the same holds
for the nonconstant morphisms ψ : C∗ → C∗.

The basic geometric property of a finite morphism is given in the next propo-
sition.

Proposition 3.2.4. Let ϕ : X → Y be a finite morphism. Then ϕ is closed and
has finite fibers.

Proof. If y ∈ Y , then ϕ−1(y) = VX(ϕ∗(my)) (see 2.2). If ϕ−1(y) 6= ∅, then
the induced morphism ϕ−1(y) → {y} is finite, too, and so O(ϕ−1(y)) is a finite
dimensional C-algebra. Thus, the fiber ϕ−1(y) is finite (Example 3.1.10) proving
the second claim.

For the first claim it suffices to show that ϕ(X) = ϕ(X). Hence we can assume

that ϕ(X) = Y , i.e. that ϕ∗ : O(Y ) → O(X) is injective. If ϕ−1(y) = ∅, then
O(X)my = O(X) where we identify my with its image ϕ∗(my). The Lemma of
Nakayama (see Lemma 3.2.5 below) now implies that (1 + a)O(X) = 0 for some
a ∈ my which is a contradiction since 1 + a 6= 0. �

Lemma 3.2.5 (Lemma of Nakayama). Let R be a ring, a ⊆ R an ideal and
M a finitely generated R-module. If aM = M , then there is an element a ∈ a such
that (1 + a)M = 0. In particular, if M is torsionfree and a 6= R, then M = 0.

Proof. Let M =
∑k
j=1Rmj . Then mi =

∑
j aijmj for all i where aij ∈ a.

If A denotes the k × k-matrix (aij)i,j and m the column vector (m1, . . . ,mk)t this
means that m = A ·m. Thus (E − A)m = 0, and so det(E − A)mj = 0 for all j.
But

det(E −A) = det

1− a11 −a12 · · ·
−a21 1− a22 · · ·
...

. . .

 = 1 + a where a ∈ a.

and the claim follows. �

Exercise 3.2.6. Define ϕ : C∗ → C by t 7→ t+ 1
t
. Show that his morphism is closed,

has finite fibers, but is not finite. Thus the converse statement of the Proposition 3.2.4
above is not true.

Exercise 3.2.7. Let X be an affine variety and x ∈ X. Assume that f1, . . . , fr ∈ mx
generate the ideal mx modulo m2

x, i.e., mx = (f1, . . . , fr) + m2
x. Then {x} is an irreducible

component of VX(f1, . . . , fr).
(Hint: If C ⊆ VX(f1, . . . , fr) is an irreducible component containing x and m ⊆ O(C) the
maximal ideal of x, then m2 = m. Hence m = 0 by the Lemma of Nakayama above.)

Exercise 3.2.8. Let ϕ : X → Y be a finite surjective morphism. Then dimX =
dimY .

Exercise 3.2.9. Let X be an affine variety and X =
⋃
iXi the irreducible decompo-

sition. A morphism ϕ : X → Y is finite if and only if the restrictions ϕ|Xi : Xi → Y are
finite for all i.

The following easy lemma will be very useful in sequel.
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Lemma 3.2.10. Let A ⊆ B be rings and b ∈ B. Assume that b satisfies an
equation of the form

(6) bm + a1b
m−1 + a2b

m−2 + · · ·+ am = 0

where a1, a2, . . . , am ∈ A. Then the subring A[b] ⊆ B is finite over A.

Proof. It follows from the equation satisfied by b that for N ≥ m we have

bN = −a1b
N−1 − a2b

N−2 − · · · − ambN−m,

and so, by induction, that A[b] =
∑m−1
i=0 Abi. �

Definition 3.2.11. An element b ∈ B satisfying an equation of the form (6)
is called integral over A.

The next result is usually called the “Normalization Lemma”. It is due to Emmy
Noether, but was first formulated, in a special case, by David Hilbert.

Theorem 3.2.12 (Normalization Lemma). Let K be an infinite field and A
a finitely generated K-algebra. Then there are algebraically independent elements
a1, . . . , an ∈ A such that A is finite over K[a1, . . . , an]

Proof. We proceed by induction on the number m of generators of A as a K-
algebra. If m = 0, then A = K and there is nothing to prove. If A = K[b1, . . . , bm]
and if b1, . . . , bm are algebraically independent, we are done, too. So let’s assume
that F (b1, . . . , bm) = 0 where F ∈ K[x1, . . . , xm] is a nonzero polynomial. We can
also assume that xm occurs in F . Write

F =
∑

r1,r2,...,rm

αr1r2...rmx
r1
1 x

r2
2 · · ·xrmm

and put r := max{r1 + r2 + · · ·+ rm | αr1r2...rm 6= 0}. Substituting xj = x′j + γjxm
for j = 1, . . . ,m− 1, we find

(7) F = (
∑

r1+r2+···+rm=r

αr1...rmγ
r1
1 · · · γ

rm−1

m−1 )xrm +H(x′1, . . . , x
′
m−1, xm)

where xm occurs in H with an exponent < r. Since K is infinite we can find
γ1, . . . , γm−1 ∈ K such that

∑
r1+···+rm=r αr1...rmγ

r1
1 · · · γ

rm−1

m−1 6= 0. Setting b′j :=

bj − γjbm for j = 1, . . . ,m − 1, we get A = K[b′1, b
′
2, . . . , b

′
m−1, bm]. Now equa-

tion (7) implies that bm satisfies an equation of the form (6), hence A is finite over
K[b′1, . . . , b

′
m−1] by Lemma 3.2.10, and the claim follows by induction. �

Remark 3.2.13. The proof above shows the following. If A = K[b1, . . . , bm],
then there is a number n ≤ m and n linear combinations ai :=

∑
j γijbj ∈ A

such that a1, . . . , an are algebraically independent over K and that A is finite over
K[a1, . . . , an].

A first consequence is the following result which is usually called Noether’s
normalization.

Proposition 3.2.14. Let X is an affine variety of dimension n. Then there is
a finite surjective morphism ϕ : X → Cn.

Proof. It follows from the Normalization Lemma (Theorem 3.2.12) that there
exist f1, . . . , fn ∈ O(X) such that O(X) is finite over the subring C[f1, . . . , fn].
Hence dimX = n (Example 3.1.2(3)), and the morphism ϕ = (f1, . . . , fn) : X → Cn
is finite and surjective (Proposition 3.2.4). �

This result can be improved, using Remark 3.2.13 above.
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Proposition 3.2.15. Let X ⊆ Cm be a closed subvariety of dimension n ≤ m.
Then there is a linear projection λ : Cm → Cn such that λ|X : X → Cn is finite and
surjective.

In fact, more is true: There is an open dense set U ⊆ Hom(Cm,Cn) such that
the proposition above holds for any λ ∈ U . We will not give a proof here since it
does not follow immediately from our previous results. A special case is given in
Exercise 3.2.18 below.

Example 3.2.16. Let f1, f2, . . . , fm ∈ C[x1, . . . , xn] be nonconstant homoge-
neous polynomials, and put A := C[f1, f2, . . . , fm]. Then the following statements
are equivalent:

(i) C[x1, . . . , xn]/(f1, f2, . . . , fm) is a finite dimensional algebra.
(ii) There is a k ∈ N such that (x1, x2, . . . , xn)k ⊆ (f1, f2, . . . , fm).
(iii) C[x1, . . . , xn] is finite over A.

Proof. Let m := (x1, . . . , xn) ⊆ C[x1, . . . , xn] be the homogeneous maximal
ideal.

(i)⇒(ii): Since R := C[x1, . . . , xn]/(f1, f2, . . . , fm) is graded and finite dimen-

sional we have mk = 0 for some k where m ⊆ R is the image of m. Hence
mk ⊆ (f1, . . . , fm).

(ii)⇒(iii): Set V :=
⊕k−1

i=0 C[x1, . . . , xn]i ⊆ C[x1, . . . , xn]. We will show, by
induction, that m` ⊆ AV for all `, hence AV = C[x1, . . . , xn]. Clearly, m` ⊆ AV for
` < k. If ` ≥ k and f ∈ m`, then f =

∑m
i=1 hifi where we can assume that all hi are

homogeneous. Therefore, deg hi < `, hence hi ∈ AV by induction, and so f ∈ AV .

(iii)⇒(i): If C[x1, . . . , xn] is finite over A, then C[x1, . . . , xn]/(f1, . . . , fm) is
finite over A/(f1, . . . , fm) = C, hence the claim. �

Exercise 3.2.17. Assume that the morphism ϕ : Cn → Cm is given by nonconstant
homogeneous polynomials f1, · · · , fm. If ϕ−1(0) is finite, then ϕ−1(0) = {0} and ϕ is a
finite morphism.
(Hint: Use the example above together with Exercise 3.1.11.)

Exercise 3.2.18. Let X ⊆ Cn be a closed cone and λ : Cn → Cm a linear map. If
X∩kerλ = {0}, then λ|X : X → Cm is finite. Moreover, the set of linear maps λ : Cn → Cm
such that λ|X is finite is open in Hom(Cn,Cm) = Mm,n(C).

Noether’s normalization often allows to reduce problems about general affine
varieties X to the case X = Cn. One useful application is the following, and more
will follow in the next sections.

Proposition 3.2.19. An irreducible affine variety X cannot be covered by a
countable set of proper closed subsets.

Proof. This is clear for X = C. Now let X =
⋃
i∈I Xi where I is countable

and all Xi ⊆ X are closed. If X = Cn, then, by induction, every linear subspace of
dimension n − 1 is contained in one of the Xi. Since there are uncountable many
such subspaces, there are infinitely many of them contained in the same Xi. Thus
Xi = Cn, because the union of infinitely many linear subspace of codimension 1 is
Zariski-dense in Cn. In fact, a polynomial vanishing on such a union is divisible by
infinitely many linear functions.

In general, choose a finite surjective morphism ϕ : X → Cn (Proposition 3.2.14).
Then Cn =

⋃
i∈I ϕ(Xi), and so ϕ(Xi0) = Cn for some i0, because all ϕ(Xi) are

closed (Proposition 3.2.4). But then dimXi0 = n = dimX and so Xi0 = X. �
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3.3. Krull’s principal ideal theorem. We have seen in Lemma 3.1.8 that
the dimension of a hypersurface V(f) ⊆ Cn is equal to n− 1, i.e. codimCn V(f) = 1
where the codimension of a closed subvariety Y ⊆ X is defined by codimX Y :=
dimX − dimY . We want to generalize this to arbitrary affine varieties X. First we
prove a converse of Lemma 3.2.10.

Lemma 3.3.1. Let A ⊆ B be rings. Assume that A is Noetherian and that B is
finite over A. Then every b ∈ B is integral over A, i.e., b satisfies an equation of
the form

bm + a1b
m−1 + a2b

m−2 + · · ·+ am = 0

where a1, a2, . . . , am ∈ A.

Proof. Since A is Noetherian the subalgebra A[b] ⊆ B is finite over A. There-
fore, the sequence A ⊆ A+ Ab ⊆ A+ Ab+ Ab2 ⊆ · · · ⊆ A+ Ab+ · · ·+ Abk ⊆ · · ·
becomes stationary. Hence, there is am ≥ 1 such that bm ∈ A+Ab+· · ·+Abm−1. �

Exercise 3.3.2. Let r ∈ C(x1, . . . , xn) satisfy an equation of the form

rm + p1r
m−1 + · · ·+ pm = 0 where pj ∈ C[x1, . . . , xn].

Then r ∈ C[x1, . . . , xn]. In particular, if A ⊆ C(a1, . . . , an) is a subalgebra which is finite
over C[a1, . . . , an], then A = C[a1, . . . , an].

Lemma 3.3.3. Let A be a C-domain and K its field of fractions. Let a1, . . . , an ∈
A be algebraically independent such that A is finite over C[a1, . . . , an]. Denote by
N : K → C(a1, . . . , an) the norm. Then

(1) N(A) ⊆ C[a1, . . . , an];

(2) For all a ∈ A we have
√
Aa ∩ C[a1, . . . , an] =

√
C[a1, . . . , an]N(a).

Proof. For a ∈ A denote by a(1) := a, a(2), . . . , a(r) ∈ K̄ the conjugates of
a over C(a1, . . . , an) where K̄ is the algebraic closure of K. Since a is integral
over C[a1, . . . , an], the same holds for all a(j). This implies, by Lemma 3.2.10, that

the subalgebra Ã := C[a1, . . . , an][a(1), . . . , a(r)] ⊆ K̄ is finite over C[a1, . . . , an].

Therefore, N(a) = a(1)a(2) · · · a(r) belongs to Ã ∩ C(a1, . . . , an) which is equal to
C[a1, . . . , an] by Exercise 5.8 above. This prove the first claim.

Now we have ∏
j

(t− a(j)) = tr + h1t
r−1 + · · ·+ hr−1t+ hr

where hj ∈ Ã ∩ C(a1, . . . , an) = C[a1, . . . , an] and hr = (−1)rN(a). It follows that
N(a) = ab where b = (−1)r−1(ar−1 + h1a

r−2 + · · ·+ hr−1) ∈ A and so N(a) ∈ Aa.
Thus, C[a1, . . . , an]N(a) ⊆ Aa ∩ C[a1, . . . , an].

In order to see that Aa∩C[a1, . . . , an] ⊆
√

C[a1, . . . , an]N(a) we choose an ele-
ment sa ∈ Aa∩C[a1, . . . , an]. Then N(sa) = (sa)r, and since N(sa) = N(s)N(a) ∈
C[a1, . . . , an]N(a) we finally get sa ∈

√
C[a1, . . . , an]N(a). �

Theorem 3.3.4 (Krull’s Principal Ideal Theorem). Let X be an irreducible
affine variety and f ∈ O(X), f 6= 0. Assume that VX(f) is non-empty. Then every
irreducible component of VX(f) has codimension 1 in X. In particular, dimVX(f) =
dimX − 1.

Proof. Let VX(f) = C1 ∪ C2 ∪ · · · ∪ Cr be the irreducible decomposition.
Choose an h ∈ O(X) vanishing on C2 ∪ C3 ∪ · · · ∪ Cr which does not vanish on
C1. Then VXh(f) = C1 ∩ Xh is irreducible. Thus, it suffices to consider the case
where VX(f) ⊆ X is irreducible. By the Normalization Lemma (Theorem 3.2.12)
there is a finite surjective morphism ϕ : X → Cn, n = dimX. By Lemma 3.3.3(2)
we get ϕ(VX(f)) = V(N(f)), and so dimVX(f) = dimV(N(f)) = n − 1 (see
Lemma 3.1.8). �
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It is easy to see that this result also holds for equidimensional varieties (i.e.
varieties X where all irreducible components have the same dimension) in case f
is a nonzero divisor. For a general X and a nonzero divisor f ∈ O(X), we can only
say that every irreducible component of VX(f) has dimension ≤ dimX − 1.

A first consequence is the following result.

Proposition 3.3.5. Let X be an irreducible variety and f1, f2, . . . , fr ∈ O(X).
If the zero set VX(f1, . . . , fr) is non-empty, then every irreducible component C of
VX(f1, . . . , fr) has dimension dimC ≥ dimX − r.

Proof. We proceed by induction on dimX. Define Y := VX(f1), and let
Y = Y1 ∪ · · · ∪ Ys be the decomposition into irreducible components. Then

VX(f1, · · · , fr) =
⋃
j

VYj (f2, . . . , fr)

Since dimYj = dimX − 1 for all j we see, by induction, that every irreducible
component of VYj (f2, . . . , fr) has dimension ≥ (dimX − 1)− (r − 1) = dimX − r,
and the claim follows. �

Exercise 3.3.6. Let X be an affine variety and f ∈ O(X) a nonzero divisor. For any
x ∈ VX(f) we have dimx VX(f) = dimxX − 1.
(Hint: If f is a nonzero divisor, then f is nonzero on every irreducible component Xi of
X and so VXi(f) is either empty or every irreducible component has codimension 1. Now
the claim follows easily.)

Another consequence of Krull’s Principal Ideal Theorem is the following
which gives an alternative definition of the dimension of a variety.

Proposition 3.3.7. Let X be an irreducible variety and Y $ X a closed irre-
ducible subset. Then there is a strictly decreasing chain of length n := dimX,

Xn = X % Xn−1 % · · · % Xd = Y % · · · % X1 % X0

of irreducible closed subsets Xj. In particular, dimX equals the length of a maximal
chain of irreducible closed subsets.

Proof. By induction, we only have to show that Y is contained in an irre-
ducible hypersurface H ⊆ X. Let f ∈ I(Y ) be a nonzero function. Then X ⊇
VX(f) ⊇ Y and so Y is contained in an irreducible component of VX(f) which all
have codimension 1 by Theorem 3.3.4. �

Remark 3.3.8. This result allows to define the dimension dimA of a C-algebra
A as the maximal length of a chain of prime ideal p0 ⊆ p1 ⊆ · · · ⊆ pm ⊆ A. If A is
finitely generated, then dimA is finite, and every maximal chain has length dimA.
Moreover, dimA = dimAred where Ared := A/

√
(0), and so dimA = dimX where

X is an affine variety with coordinate ring isomorphic to Ared.
We also see that for a variety X and a point x ∈ X we have dimxX = dimOX,x.

Corollary 3.3.9. Let A be a finitely generated C-algebra and let a ∈ A be
a nonzero divisor. Then dimA/Aa ≤ dimA − 1, and equality holds if Ared is a
domain.

Proof. Put Ā := A/(a) and denote by a′ ∈ Ared the image of a. Then a′ is a

nonzero divisor in Ared and so dimAred/
√

(a′) ≤ dimAred − 1 by Theorem 3.3.4.

Since Āred ' Ared/
√

(a′) we finally get dim Ā = dim Āred ≤ dimAred−1 = dimA−
1 �
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3.4. Decomposition Theorem and dimension formula. Let ϕ : X → Y
be a dominant morphism where X,Y are both irreducible. We want to show that
the dimension of a non-empty fiber ϕ−1(y) is always ≥ dimX−dimY and that we
have equality on a dense open set of Y . A crucial step is the following Decomposition
Theorem for a morphism.

Theorem 3.4.1. Let X and Y be irreducible varieties and ϕ : X → Y a domi-
nant morphism. There is a non-empty special open set U ⊆ Y and a factorization
of ϕ of the form

ϕ−1(U)
ρ
//

ϕ

%%

U × Cr

prU

��

U

where ρ is a finite surjective morphism and r := dimX − dimY . In particular, the
fibers ϕ−1(y) = ρ−1({y} × Cr) have the same dimension for all y ∈ U , namely
dimX − dimY .

Remark 3.4.2. We will see later in Proposition 3.4.7 that the fibers ϕ−1(y) for
y ∈ U are equidimensional, i.e., all irreducible components have the same dimension,
namely dimX − dimY .

Proof. Since ϕ is dominant we will regard O(Y ) as a subalgebra of O(X).
Let K = C(Y ) be the quotient field of O(Y ) and put A := K · O(X) ⊆ C(X), the
K-algebra generated by K and O(X). Then A is finitely generated over K and so
we can find algebraically independent elements h1, . . . , hr ∈ A such that A is finite
over K[h1, . . . , hr] (Theorem 3.2.12). It follows that r = dimX − dimY .

We claim that there is an f ∈ O(Y ) such that hi = ai
f with ai ∈ O(X) for all

i and that O(Xf ) = O(X)f is finite over O(Yf )[h1, . . . , hr]. The first statement is
clear, and we can therefore assume that h1, . . . , hr ∈ O(X).

For the second statement, let b1, . . . , bs be generators of A over K[h1, . . . , hr].
Multiplying with a suitable element of O(Y ) ⊆ K we can first assume that bj ∈
O(X) and then, by adding more elements if necessary, that b1, . . . , bs generate O(X)

as a C-algebra. Now bibj =
∑
k c

(ij)
k bk where c

(ij)
k ∈ K[h1, . . . , hr]. Thus we can find

an f ∈ O(Y ) such that f · c(ij)k ∈ O(Y )[h1, . . . , hr]. It follows that∑
j

O(Yf )[h1, . . . , hr] bj ⊆ O(X)f = O(Xf )

is a subalgebra containing O(X) and 1
f , hence is equal to O(Xf ), and the claim

follows.
Setting U := Yf we get ϕ−1(U) = Xf and obtain a morphism

ρ = ϕ× (h1, . . . , hr) : Xf → Yf × Cr, x 7→ (ϕ(x), h1(x), . . . , hr(x))

which satisfies the requirements of the proposition.
The last statement is clear (see Exercise 3.2.8). �

Example 3.4.3. Let f ∈ C[x, y] be a nonconstant polynomial. Then there is a
finite morphism ρ : C2 → C2 such that f = pr1 ◦ρ:

C2 ρ
//

f
!!

C2

pr1

��

C
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Proof. We can assume that the variable y occurs in f . Consider the iso-
morphism Φ: C2 ∼→ C2 given by (x, y) 7→ (x, y + xn) and choose n large enough

so that f̃ = Φ∗(f) = f(x, y + xn) has leading term axN where a ∈ C∗. Then

C[x, y] is finite over C[f̃ , y], hence defines a finite surjective morphism ρ̃ : C2 → C2,

(x, y) 7→ (f̃(x, y), y), and we get the following commutative diagram:

C2 Φ−−−−→
'

C2

ρ̃

y f

y
C2 pr1−−−−→ C

Now the claim follow with ρ := ρ̃ ◦ Φ−1. �

Example 3.4.4. In this example we work out the decomposition of Theo-
rem 3.4.1 for the morphism ϕ : M2(C)→ M2(C), A 7→ A2, i.e., we want to find an
f ∈ O(M2) such that the induced morphism ϕ−1(M2(C)f )→ M2(C)f is finite and
surjective.

Let A =

[
a b
c d

]
, so that O(M2) = C[a, b, c, d] and

R := ϕ∗(O(M2)) = C[a2 + bc, d2 + bc, b(a+ d), c(a+ d)] ⊆ C[a, b, c, d].

We have tr(A)2 − tr(A2) = 2 det(A), hence tr(A) satisfies the integral equation

(8) x4 − 2 tr(A2)x2 = 4 det(A2)− tr(A2)2,

over R, showing that R[tr(A)] is finite over R and contains det(A). Since R contains
the elements tr(A)b, tr(A)c and a2 − b2 = tr(A)(a− b) it follows that

R[tr(A)]tr(A) = C[a, b, c, d]tr(A).

Moreover, equation (8) has the two solutions ± tr(A), and that the other two so-
lutions satisfy the equation x2 − tr(A2) = −2 det(A). It follows that the norm of
tr(A) which is N(tr(A)) = tr(A2)2 − 4 det(A2), has in R[tr(A)] the decomposition

N(tr(A)) = tr(A)2(2 det(A)− tr(A2)),

hence R[tr(A)]N(tr(A)) ⊇ R[tr(A)]tr(A). This implies that the induced morphism

ϕ−1(M2(C)N(tr(A)))→ M2(C)N(tr(A)) is finite and surjective of degree 4. Note that

N(tr(A)) 6= 0 is equivalent to the condition that A2 has distinct eigenvalues.

Exercise 3.4.5. Work out the decomposition of Theorem 3.4.1 for the morphisms

ϕ : SL2 → C3, ϕ(

[
a b
c d

]
) := (ab, ad, cd) (see Exercise 2.2.14). What is the degree of the

finite morphism ρ?

Corollary 3.4.6. If ϕ : X → Y is a morphism, then there is a set U ⊆ ϕ(X)

which is open and dense in ϕ(X).

Proof. If X is irreducible, this is an immediate consequence of Theorem 3.4.1.
In general, let X =

⋃
i∈I Xi be the decomposition into irreducible components.

Then, for a suitable subset J ⊆ I, we can assume that ϕ(X) =
⋃
j∈J ϕ(Xj) is the

decomposition into irreducible components. For each j ∈ J there is a proper closed
subset Aj $ ϕ(Xj) such that ϕ(Xj) \Aj ⊆ ϕ(Xj). Hence ϕ(X) \

⋃
j Aj is an open

dense subset of ϕ(X) contained in the image ϕ(X). �

Proposition 3.4.7 (Dimension formula for morphisms). Let X and Y be ir-
reducible varieties and ϕ : X → Y a dominant morphism. If y ∈ ϕ(X) and C is an
irreducible component of the fiber ϕ−1(y), then

dimC ≥ dimX − dimY,
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with equality for all y from a dense open set U ⊆ Y .

Proof. Set m := dimY and let ψ : Y → Cm be a finite surjective morphism
(Theorem 3.2.12). If we denote by ϕ̃ : X → Cm the composition ψ ◦ ϕ, then every
fiber of ϕ̃ is a finite union of fibers of ϕ. Hence it suffices to prove the claim for the
morphism ϕ̃ = (f1, . . . , fm) : X → Cm. If a = (a1, . . . , am) ∈ ϕ̃(X), then ϕ̃−1(a) =
VX(f1 − a1, f2 − a2, . . . , fm − am), and the claim follows from Proposition 3.3.5,
a consequence of Krull’s Principal Ideal Theorem. The last part is Theorem 3.4.1
above. �

One might believe that the two propositions above imply that for any morphism
ϕ : X → Y the function y 7→ dimϕ−1(y) is upper-semicontinuous. This is not true
as one can show by examples (see Exercise 3.4.8). However, a famous theorem of
Chevalley says that the function x 7→ dimx ϕ

−1(ϕ(x)) is upper-semicontinuous
on X. The proof is quite involved, and we will not present it here.

Exercise 3.4.8. Consider the morphism ϕ : C2 → C2 given by (x, y) 7→ (x, xy). Show
that the image ϕ(C2) is not locally closed in C2 and that the map a 7→ dimϕ−1(a) is not
upper-semicontinuous.

Another application of the above is the following density result. We call a
morphism ϕ : X → Y strongly dominant if for every irreducible component C ⊆ X
the closure ϕ(C) is an irreducible component of Y . In case X and Y are both
irreducible, this is equivalent to dominant. Note that for a morphism ϕ : X → Y
with dense image it is not true in general that the inverse image of a dense open
set is dense. But this holds for a strongly dominant morphisms where we have the
following much stronger result.

Proposition 3.4.9. Let ϕ : X → Y be a strongly dominant morphism. If D ⊆
Y is a dense subset, then ϕ−1(D) is dense in X.

Proof. We can assume that X,Y are both irreducible and that all fibers
have the same dimension d := dimX − dimY . Consider the closed subset X ′ :=
ϕ−1(D) ⊆ X and denote by C1, . . . , Ck the irreducible components of X ′. Define,
for i = 1, . . . , k,

Di := {y ∈ D | dimCi ∩ ϕ−1(y) = d}.
Clearly, D =

⋃
iDi, and so there is an index i0 such that Y = Di0 . This implies

that the induced morphism ϕi0 : Ci0 → Y is dominant and that dimϕ−1
i0

(y) = d for
all y of the dense set Di0 ⊆ Y . Therefore, dimCi0 = dimY + d = dimX (see the

following Exercise 3.4.10), hence X = Ci0 ⊆ ϕ−1(D). �

Exercise 3.4.10. Let X and Y be irreducible varieties and ϕ : X → Y a dominant
morphism. If D ⊆ Y is a dense subset such that dimϕ−1(y) = d for all y ∈ D, then
dimX = dimY + d.

3.5. Constructible sets. Recall that a subset A ⊆ X of a variety X is called
locally closed if A is the intersection of an open and a closed subset, or, equivalently,
if A is open in its closure Ā. We have seen in Exercise 3.4.8 that images of morphisms
need not to be locally closed. However, we will show that images of morphisms are
always “constructible” in the following sense.

Definition 3.5.1. A subset C of an affine variety X is called constructible if
it is a finite union of locally closed subsets.

Exercise 3.5.2. (1) Finite unions, finite intersections and complements of con-
structible sets are again constructible.

(2) If C is a constructible, then C contains a set U which is open and dense in C̄.
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Proposition 3.5.3. If ϕ : X → Y is a morphism, then the image of a con-
structible subset is constructible.

Proof. Since every open set is the union of finitely many special open sets
it suffices to show, in view of the exercise above, that the image of a morphism is
constructible. By Corollary 3.4.6 there is a dense open set U ⊆ ϕ(X) contained in

the image ϕ(X). Then the complement Y ′ := ϕ(X)\U is closed and dimY ′ < dimY

(Exercise 3.1.12). By induction on dimϕ(X), we can assume that the claim holds for
the morphism ϕ′ : X ′ := ϕ−1(Y ′)→ Y ′ induced by ϕ. But then ϕ(X) = U ∪ϕ′(X ′)
and we are done. �

Exercise 3.5.4. Let X be an irreducible affine variety and C ⊆ X a dense con-
structible subset. Then C can written in the form

C = C0 ∪
m⋃
j=1

Cj

where C0 ⊆ X is open and dense, Cj is locally closed, Cj is irreducible of codimension
≥ 1, and Cj ∩ C0 = ∅.

3.6. Degree of a morphism. Recall that a dominant morphism ϕ : X → Y
between irreducible varieties is called of finite degree d if dimX = dimY and
d = [C(X) : C(Y )] (see 2.3). This has the following geometric interpretation.

Proposition 3.6.1. Let X,Y be irreducible affine varieties and ϕ : X → Y a
dominant morphism of finite degree d. Then there is a dense open set U ⊆ Y such
that #ϕ−1(y) = d for all y ∈ U .

Proof. We have C(X) = C(Y )[r] where r satisfies the minimal equation

rd + a1r
d−1 + · · ·+ ad = 0.

Replacing Y and X by suitable special open sets Yf and Xf (f ∈ O(Y ) ⊆ O(X))
we can assume that

(1) r ∈ O(X);
(2) a1, . . . , ad ∈ O(Y );
(3) O(X) is finite over O(Y ) (Theorem 3.4.1);
(4) O(X) = O(Y )[r].

In fact, (1) and (2) are clear and so A := O(Y )[r] =
⊕d−1

i=0 O(Y )ri ⊆ O(X). For
S := O(Y ) \ {0} we get AS = C(Y )[r] = C(X) = O(X)S , we can find an s ∈ S
such that As = O(X)s, hence (3) and (4). In particular

O(X) =

d−1⊕
j=0

O(Y )rj
∼← O(Y )[t]/(td + a1t

d−1 + · · ·+ ad)

and so, for every y ∈ Y , we get

O(X)/O(X)my ' C[t]/(td + a1(y)td−1 + · · ·+ ad(y))

This means that the number of elements in the fiber ϕ−1(y) is equal to the number
of different solutions of the equation

(9) td + a1(y)td−1 + · · ·+ ad(y) = 0.

Let Dd be the discriminant of an equation of degree d (see Example 1.1.3) and
define f(y) := D(a1(y), . . . , ad(y)). Then f ∈ O(Y ), and f(y) 6= 0 if and only if
equation (9) has d different solutions, or, equivalently, the fiber ϕ−1(y) has d points.
Thus, the special open set U := Yf ⊆ Y has the required property. �
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Remark 3.6.2. One can show that the open set U constructed in the proof
has the property that the morphism ϕ−1(U) → U is an unramified covering with
respect to the C-topology.

Exercise 3.6.3. What is the degree of the morphism Mn → Mn given by A 7→ Ak?

Exercise 3.6.4. Let ϕ : X → Y be a dominant morphism where X and Y are ir-
reducible. If there is an open dense set U ⊆ X such that ϕ|U is injective, then ϕ is
birational.

Exercise 3.6.5. Let ϕ : X → Y be a quasi-finite morphism, i.e. all fibers are finite.

Then dimϕ(X) = dimX.

3.7. Möbius transformations. Let f ∈ C(z) \ C, f = p
q where p, q ∈ C[z]

are prime. Define deg f := max{deg p,deg q}.
Lemma 3.7.1. [C(z) : C(f)] = deg f .

Proof. The rational function f defines a dominant morphism f : C\V(q)→ C,
corresponding to the embedding C(z) ↪→ C(z) given by z 7→ f . For α ∈ C we find

f − α =
p

q
− α =

p− αq
q

.

For a general α ∈ C the numerator p − αq has degree deg f and has no multiple
roots. Thus, by Proposition 3.6.1, the map f has degree deg f . �

For any matrix A =

[
a b
c d

]
∈ GL2(C) the corresponding Möbius transforma-

tion µA : C(z)
∼→ C(z) is defined by

µA(z) =
az + b

cz + d
.

Lemma 3.7.1 above shows that µA is an isomorphism, and a easy calculation gives
µA ◦ µB = µAB for all A,B ∈ GL2(C). It is also clear that µA = µB if and only
if B = λA for some λ ∈ C∗. Finally, again by Lemma 3.7.1, every automorphism
of the field C(z) is a Möbius transformation. Thus we have proved the following
result.

Proposition 3.7.2. The map A 7→ µA is a surjective group homomorphism

µ : GL2(C) � Aut(C(z))

with kernel C∗E2.

4. Tangent Spaces, Differentials, and Vector Fields

4.1. Zariski tangent space. A tangent vector δ in a point x0 of an affine
variety X is “rule” to differentiate regular functions, i.e., it is a C-linear map
δ : O(X)→ C satisfying

(10) δ(f · g) = f(x0) δ(g) + g(x0) δ(f) for all f, g ∈ O(X).

Such a map is called a derivation of O(X) in x0. For n ≥ 0 we have δ(fn) =
nfn−1(x0) · δ(f), and so, for any polynomial F = F (y1, . . . , ym), we get

δ(F (f1, . . . , fm)) =

m∑
j=1

∂F

∂yj
(f1(x0), . . . , fm(x0)) · δ(fj).

This implies that a derivation in x0 is completely determined by its values on a
generating set of the algebra O(X). Moreover, a linear combination of derivations
in x0 is again a derivation in x0. As a consequence, the derivations in x0 form a
finite dimensional subspace of Hom(O(X),C).
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Definition 4.1.1. The Zariski tangent space Tx0
X of a variety X in a point

x0 is defined to be the set of all tangent vectors in x0:

Tx0
X := Derx0

(O(X)) := {δ : O(X)→ C | δ a C-linear derivation in x0}.

We have already seen above that Tx0X is a finite dimensional linear subspace of
Hom(O(X),C).

Exercise 4.1.2. Let δ ∈ TxX be a tangent vector in x. Then

(1) δ(c) = 0 for every constant c ∈ O(X).

(2) If f ∈ O(X) is invertible, then δ(f−1) = − δf

f(x)2
.

Example 4.1.3. If X = Cn and a = (a1, . . . , an) ∈ Cn, then

TaCn =
⊕
i

C
∂

∂xi

∣∣∣∣
a

where ∂
∂xi

∣∣∣
a

(f) := ∂f
∂xi

(a). Thus we have a canonical isomorphism TaCn ' Cn by

identifying δ ∈ Dera(C[x1, . . . , xn]) with (δx1, . . . , δxn) ∈ Cn.

More generally, if V is a finite dimensional vector space and x0 ∈ V we define,
for every v ∈ V , the tangent vector ∂v,x0

: O(V )→ C in x0 by

∂v,x0
(f) :=

f(x0 + tv)− f(x0)

t

∣∣∣∣
t=0

,

and thus obtain a canonical isomorphism V
∼→ Tx0V , for every x0 ∈ V . We will

mostly identify Tx0
V with V .

Let δ ∈ TxX be a tangent vector. Since O(X) = C ⊕ mx we see that δ is
determined by its restriction to mx. Moreover, formula (10) above shows that δ
vanishes on m2

x. Hence, δ induces a linear map δ̄ : mx/m
2
x → C.

Lemma 4.1.4. Given an affine variety X and a point x ∈ X there is a canonical
isomorphism

TxX
∼→ Hom(mx/m

2
x,C).

given by δ 7→ δ̄ := δ|mx .

Proof. We have already seen that δ 7→ δ̄ is injective. On the other hand, let
C ⊆ mx be a complement of m2

x so that O(X) = C⊕C⊕m2
x. If λ : C → C is linear,

then one easily sees that the extension of λ to a linear map δ on O(X) by putting
δ|C⊕m2

x
= 0 is a derivation in x. �

Exercise 4.1.5. The canonical homomorphism O(X) → OX,x induces an isomor-

phism mx/m
2
x
∼→ m/m2 where m ⊆ OX,x is the maximal ideal.

If U = Xf ⊆ X is a special open set and x ∈ U , then TxU = TxX in a canonical
way. In fact, a derivation δ′ of O(U) induces a derivation δ of O(X) by restriction:
δ(h) := δ′(h|U ), and every derivation δ of O(X) “extends” to a derivation δ′ of

O(U) = O(X)f by setting δ′( h
fm ) = − f(x)·δh−mg(x)·δf

f(x)m+1 (see Exercise 4.1.2; one has

to check that every derivation vanishes on the kernel of the map O(X)→ O(Xf )).
The same result follows from Exercise 4.1.5 using Lemma 4.1.4.

Exercise 4.1.6. If Y ⊆ X is a closed subvariety and x ∈ Y , then dimTxY ≤ dimTxX.
(Hint: The surjection O(X)→ O(Y ) induces a surjection mx,X/m

2
x,X → mx,Y /m

2
x,Y .)

Proposition 4.1.7. dimTxX ≥ dimxX.
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Proof. If C ⊆ X is an irreducible component passing through x we have
dimTxC ≤ dimTxX (Exercise 4.1.6). Thus we can assume that X is irreducible.
Choose f1, . . . , fr ∈ mx such that the residue classes modulo m2

x form a basis of
mx/m

2
x, hence r = dimTxX, by Lemma 4.1.4. Since the zero set VX(f1, . . . , fr)

has {x} as an irreducible component (see Exercise 3.2.7) it follows from Proposi-
tion 3.3.5 that

0 = dim{x} ≥ dimX − r = dimX − dimTxX.

Hence the claim. �

Definition 4.1.8. The variety X is called nonsingular or smooth in x ∈ X if
dimTxX = dimxX. Otherwise it is singular in x. The variety X is called nonsin-
gular or smooth if it is nonsingular in every point. We denote by Xsing the set of
singular points of X.

Proposition 4.1.9. For x ∈ X and y ∈ Y there is a canonical isomorphism

T(x,y)(X × Y )
∼→ TxX ⊕ TyY.

Proof. Every derivation δ of O(X × Y ) in (x, y) induces, by restriction,
derivations δX of O(X) in x and δY of O(Y ) in y. This defines a linear map
T(x,y)X×Y → TxX⊕TyY which is injective, because δ(f ·h) = h(y)·δXf+f(x)·δY h
for f ∈ O(X) and h ∈ O(Y ).

In order to see that the map is surjective we first claim that given two deriva-
tions δ1 ∈ TxX and δ2 ∈ TyY there is a unique linear map δ : O(X × Y )→ C such
that δ(f · h) = h(y) · δ1f + f(x) · δ2h. This follows from Proposition 2.5.1 and the
universal property of the tensor product. Now it is easy to see that this map δ is a
derivation in (x, y) and that δX = δ1 and δY = δ2. �

4.2. Tangent spaces of subvarieties. Let X ⊆ V be closed subvariety of
the vector space V and x0 ∈ X. If δ ∈ Tx0V = V is a tangent vector which vanishes
on I(X) = ker(res : O(V ) → O(X)), then the induced map δ̄ : O(X) → C is a
derivation in x0, and vice versa. Thus we have the following result.

Proposition 4.2.1. If X ⊆ V is a closed subvariety and x0 ∈ X, then

Tx0X = {v ∈ V | ∂v(f) = 0 for all f ∈ I(X)} ⊆ V = Tx0V.

More explicitly, let V = Cn and assume that the ideal I(X) is generated by f1, . . . , fs ∈
C[x1, . . . , xn]. Then, for x0 ∈ X, we get

TxX = {a = (a1, . . . , an) ∈ Cn |
n∑
j=1

∂fi
∂xj

(x)aj = 0 for i = 1, . . . , s}.

In particular,

dimTxX = n− rk

(
∂fi
∂xj

(x)

)
(i,j)

.

The s× n-matrix

Jac(f1, . . . , fs) :=

(
∂fi
∂xj

)
(i,j)

with entries in C[x1, . . . , xn] is called the Jacobian matrix of f1, . . . , fs. We get

Tx(X) = ker Jac(f1, . . . , fm)x.

The proposition above gives the following criterion for smoothness.
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Proposition 4.2.2 (Jacobi-Criterion). Let X ⊆ Cn be a closed subvariety
where I(X) = (f1, . . . , fs). Then x ∈ X is non-singular if and only if

rk(Jac(f1, . . . , fs)x) ≥ n− dimxX.

Example 4.2.3. Consider the plane curve C = V(y2−x3) ⊆ C2. Then I(C) =
(y2−x3) and so the tangent space in an arbitrary point x0 = (a, b) ∈ C is given by
T(a,b)C = {(u, v) ∈ C2 | −3a2u+ 2bv = 0}. Since (a, b) = (t2, t3) for some t ∈ C we
get

T(t2,t3)C =


C2 for t = 0,

C

[
2

3t

]
for t 6= 0.

In particular, C is singular in (0, 0) and smooth elsewhere.

Example 4.2.4. LetH := V(f) ⊆ Cn be a hypersurface where f ∈ C[x1, . . . , xn]

is square-free. Then Hsing = {a ∈ H | ∂f∂xi (a) = 0 for all i} = V(f, ∂f∂x1
, . . . , ∂f∂xn ). It

follows that dimHsing < dimH = n− 1. In fact, no irreducible component C of H

belongs to Hsing, because no prime divisor p of f divides all ∂f
∂xi

.

Exercise 4.2.5. Calculate the tangent spaces of the plane curves C1 := V(y − x2)
and C2 = V(y2 − x2 − x3) in arbitrary points (a, b).

4.3. R-valued points and epsilonization. Let X ⊆ Cn be a closed subva-
riety. For any C-algebra R we define the R-valued points of X by

X(R) := {a = (a1, . . . , an) ∈ Rn | f(a) = 0 for all f ∈ I(X)}.

This definition does not depend on the embedding X ⊆ Cn, because we have a
canonical bijection AlgC(O(X), R)

∼→ X(R) given by ρ 7→ (ρ(x̄1), . . . , ρ(x̄n)).
Now consider the C-algebra C[ε] := C[t]/(t2) where ε := t+ (t2) which is called

the algebra of dual numbers. By definition, we have C[ε] = C ⊕ Cε and ε2 = 0.
If X is an affine variety and ρ : O(X) → C[ε] an algebra homomorphism, then
an easy calculation shows that ρ is of the form ρ = evx⊕δx ε for some x ∈ X
where evx is the evaluation map f 7→ f(x) and δx is a derivation in x, i.e., ρ(f) =
f(x)+δx(f) ε. Conversely, if δx is a derivation in x, then ρ := evx⊕δx ε is an algebra
homomorphism. Hence

(11) X(C[ε]) = {(x, δ) | x ∈ X and δ ∈ TxX}.

This formula is very useful for calculating tangent spaces as we will see below. This
method is sometimes called epsilonization.

If X = V is a vector space, then the homomorphisms ρ : O(V ) → C[ε] are in
one-to-one correspondence with the elements of V ⊕V ε. In fact, there are canonical
bijections

V (C[ε])
∼→ AlgC(O(V ),C[ε])

∼→ V ⊕ V ε.
The inverse map to AlgC(O(V ),C[ε])

∼→ V ⊕ V ε associates to x+ vε ∈ V ⊕ V ε the
algebra homomorphism ρ : f 7→ f(x+ vε), and since

f(x+ vε) = f(x) + ∂v,xf ε

it follows again from the above that TxV can be canonically identified with V .

Example 4.3.1. (a) The tangent space of GLn at E is the space of all n× n-
matrices and the tangent space of SLn at E ∈ SLn is the subspace of traceless
matrices:

TE SLn =n:= {X ∈ Mn | trX = 0} ⊆ TE GLn = gln := Mn .
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In fact, I(SLn) = (det−1), and an easy calculation shows that det(E + Xε) =
1 + (trX)ε which implies, by Proposition 4.2.1, that X ∈ Mn belongs to TE SLn if
and only if trX = 0.

(b) Next we look at the orthogonal group On := {A ∈ Mn | AAt = E}.
As a closed subset On is defined by

(
n+1

2

)
quadratic equations and so dim On ≥

n2 −
(
n+1

2

)
=
(
n
2

)
. On the other hand, we have

(E +Xε)(E +Xε)t = E + (X +Xt)ε

which shows that TE On ⊆ {X ∈ Mn | X skew symmetric}. Since this space has
dimension

(
n
2

)
and since dimE On = dim On (Exercise 3.1.4) it follows from Propo-

sition 4.1.7 that

TE On = TE SOn = son := {X ∈ Mn | X skew symmetric}.

Exercise 4.3.2. If X,Y ⊆ Cn are closed subvarieties and z ∈ X∩Y , then Tz(X∩Y ) ⊆
TzX ∩ TzY ⊆ Cn. Give an example where Tz(X ∩ Y ) $ TzX ∩ TzY .

4.4. Nonsingular varieties. We want to show that every variety X contains
an open dense set of smooth points. Later in Corollary 4.10.6 we will even see that
the smooth points form a open set.

Example 4.4.1. LetH := V(f) ⊆ Cn be a hypersurface where f ∈ C[x1, . . . , xn]
is square-free and nonconstant, and so I(H) = (f). Then the tangent space in a
point x0 ∈ H is given by

Tx0
H := {a = (a1, . . . , an) |

∑
i

ai
∂f

∂xi
(x0) = 0},

and so

Hsing = V(f,
∂f

∂x1
,
∂f

∂x2
, · · · , ∂f

∂xn
) ⊆ H.

It follows that Hsing is a proper closed subset whose complement is dense. (This is

clear for irreducible hypersurfaces since a nonzero derivative ∂f
∂xi

cannot be a mul-

tiple of f and so V(f, ∂f∂x1
, · · · , ∂f∂xn ) is a proper closed subset of V(f). This implies

that every irreducible component of H contains a non-empty open set of nonsingular
points which does not meet the other components, and the claim follows.)

It is also interesting to remark that a common point of two or more irreducible
components of H is always singular. We will see that this true in general (Corol-
lary 4.10.6).

Proposition 4.4.2. Let X be an irreducible affine variety. Then the set Xsing

of singular points of X is a proper closed subset of X whose complement is dense.

Proof. We can assume that X is an irreducible closed subvariety of Cn of
dimension d. If I(X) = (f1, . . . , fs), then, by Proposition 4.2.1,

Xsing = {x ∈ X | rk
(
∂fj
∂xi

(x)

)
(i,j)

< n− d}

which is the closed subset defined by the vanishing of all (n − d) × (n − d) mi-
nors of the Jacobian matrix Jac(f1, . . . , fs). In order to see that Xsing has a dense
complement, we use the fact, that every irreducible variety contains a special open
set which is isomorphic to a special open set of an irreducible hypersurface H (see
Proposition 3.1.13). Since H contains a dense open set of nonsingular points (see
Example 4.4.1 above) the claim follows. �
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We will see later in Corollary 4.10.6 that the proposition above holds for every
variety. At this moment we only know that there is always a dense open set U ⊆ X
consisting of nonsingular points.

Exercise 4.4.3. If X is an affine variety such that all irreducible components have
the same dimension. Then Xsing is closed and has a dense complement.

Exercise 4.4.4. The hypersurface H = V(xz − y(y − 1)) ⊆ C3 from Exercise 2.2.14
is nonsingular.

Exercise 4.4.5. Let q ∈ C[x1, . . . , xn] be a quadratic form and Q := V(q) ⊆ Cn. Then
0 is a singular point of Q. It is the only singular point if and only if q is nondegenerate.

Exercise 4.4.6. Determine the singular points of the plane curves

Ep := V(y2 − p(x))

where p(x) is an arbitrary polynomial, and deduce a necessary and sufficient condition for
Ep to be smooth.

Exercise 4.4.7. Let X ⊆ Cn be a closed cone (see Exercise 1.2.9). Then Xsing is a
cone, too. Moreover, 0 ∈ X is a nonsingular point if and only if X is subspace.

Exercise 4.4.8. Let X be an affine variety such that the group of automorphisms
acts transitively on X. Then X is smooth.

4.5. Tangent bundle and vector fields. Let X be an affine variety. Denote
by TX :=

⋃
x∈X TxX the disjoint union of the tangent spaces and by p : TX → X

the natural projection, δ ∈ TxX 7→ x. We call TX the tangent bundle of X. We
will see later that TX has a natural structure of an affine variety and that p is a
morphism.

A section ξ : X → TX of p, i.e. p ◦ ξ = IdX , is a collection (ξx)x∈X of tangent
vectors ξx ∈ TxX. It is usually called a vector field and can be considered as an
operator on regular functions f ∈ O(X):

(ξf)(x) := ξxf for x ∈ X.

Definition 4.5.1. An algebraic vector field on X is a section ξ : X → TX with
the property that ξf ∈ O(X) for all f ∈ O(X). The space of algebraic vector fields
is denoted by Vec(X).
In the following, we will mostly talk about “vector fields” and omit the term “al-
gebraic” whenever it is clear from the context.

Thus a vector field ξ can be considered as a linear map ξ : O(X)→ O(X), and
so Vec(X) is a subspace of EndC(O(X)). More generally, the vector fields form a
module over O(X) where the product fξ for f ∈ O(X) is defined in the obvious
way: (fξ)x := f(x)ξx.

Example 4.5.2. Let X = V be a C-vector space and fix a vector v ∈ V . Then
∂v ∈ Vec(V ) is defined by x 7→ ∂v,x. It follows that

∂vf :=
f(x+ tv)− f(x)

t

∣∣∣∣
t=0

∈ O(X)

which implies that this vector field is indeed algebraic. We claim that every algebraic
vector field on V is of this form. In fact, if V = Cn, then

Vec(Cn) =

n⊕
i=1

C[x1, . . . , xn]
∂

∂xi

which means that every algebraic vector field ξ on Cn is of the form ξ =
∑
i hi

∂
∂xi

where hi ∈ C[x1, . . . , xn] = O(Cn). (This follows from the two facts that every
vector field ξ on Cn is of this form with arbitrary functions hi and that ξ(xi) = hi.)
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Another observation is that for every vector field ξ on X the corresponding
linear map ξ : O(X)→ O(X) is a derivation, i.e. ξ is a linear differential operator:

ξ(fh) = f ξh+ h ξf for all f, h ∈ O(X).

Proposition 4.5.3. The map sending a vector field to the corresponding linear
differential operator defines a bijection Vec(X)

∼→ Der(O(X),O(X)) ⊆ End(O(X)).

Proof. It remains to show that every derivation ξ : O(X)→ O(X) is given by
an algebraic vector field. For this, define ξx := evx ◦ξ. Then the vector field (ξx)x∈X
is algebraic and the corresponding linear map is ξ. �

Example 4.5.2 above shows that for X = V we have a canonical bijection
TV ' V × V , using the identifications TvV = V ' {x} × V . Then p : TV → V
becomes the projection prV , and algebraic vector fields are section of prV , i.e.
morphisms ξ : V → V × V of the form ξ(x) = (x, ξx). We will mostly identify TV
with V × V .

Proposition 4.5.4. Let X ⊆ V be a closed subset.

(1) If ξ ∈ Vec(V ), then ξ|X defines a vector field on X (i.e. ξx ∈ TxX for all
x ∈ X) if and only if (ξf)|X = 0 for all f ∈ I(X). Moreover, it suffices
to test a system of generators of the ideal I(X).

(2) There is a canonical bijection TX
∼→ {(x, δ) | δ ∈ TxX ⊆ V } where the

latter is a closed subset of X ×V . Thus TX has the structure of an affine
variety. Using coordinates, we get

TX
∼→ {(x, a1, . . . , an) |

n∑
i=1

ai
∂f

∂xi
(x) = 0 for all f ∈ I(X)} ⊆ X × Cn

(3) A vector field ξ on X is algebraic if and only if ξ : X → TX is a morphism.

Proof. (1) We have ξx ∈ TxX for all x ∈ X if and only if ξxf = 0 for all x
and all f ∈ I(X) which is equivalent to (ξf)|X = 0 for all f ∈ I(X).

(2) We can assume that V = Cn and O(V ) = C[x1, . . . , xn]. If I(X) =
(f1, . . . fm), then, by (1),

T ′ := {(x, δx) ∈ X × V | δ ∈ TxX}

= {(x, a1, . . . , an) |
n∑
i=1

ai
∂fj
∂xi

(x) = 0 for j = 1, . . . ,m} ⊆ X × Cn

which shows that this is a closed subspace of X × Cn. Now (2) follows easily.

(3) Using the identification of TX with the closed subvariety T ′ above, an
arbitrary section ξ : X → TX has the form ξx =

∑
hi(x) ∂

∂xi
with arbitrary func-

tions hi on X. Set x̄i := xi|X . Then the vector field ξ is algebraic if and only if
hi = ξx̄i is regular on X which is equivalent to the condition that ξ : X → TX is a
morphism. �

Remark 4.5.5. We will see later in Proposition 4.6.7 that the structure of TX
as an affine variety does not depend on the embedding X ⊆ V .

Example 4.5.6. Consider the curve H := V(xy − 1) ⊆ C2. Then I(H) =
(xy − 1). For a vector field ξ = a(x, y)∂x + b(x, y)∂y on C2 we get

ξ(xy − 1) = a(x, y)y + b(x, y)x.

Thus ξ(xy − 1)|H = 0 if and only if ay + bx = 0 on H. It follows that x∂x − y∂y
defines a vector field ξ0 on H and that Vec(H) = O(C)ξ0. (In fact, setting h :=
ay|H = −bx|H we get a|H = h · x|H and b|H = −h · y|H .)
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The tangent bundle TH ⊆ H × C2 has the following description (see Proposi-
tion 4.5.4(1)):

TH = {(t, t−1, α, β) | αt−1 + βt = 0} = {(t, t−1,−βt2, β | t ∈ C∗, β ∈ C} ∼→ H ×C.

Example 4.5.7. Consider Neil’s parabola C := V(y2 − x3) ⊆ C2 (see Exam-
ple 1.3.11). Then a vector field a∂x + b∂y defines a vector field on C if and only
if

−3ax2 + 2by = 0 on C.

To find the solutions we use the isomorphism O(C)
∼→ C[t2, t3], x 7→ t2, y 7→ t3 (see

Example 2.2.11). Thus we have to solve the equation 3āt = 2b̄ in C[t2, t3]. This is
easy: Every solution is a linear combination (with coefficients in C[t2, t3]) of the
two solutions (2t2, 3t3) and (2t3, 3t4). This shows that

ξ0 := (2x∂x + 3y∂y)|D and ξ1 := (2y∂x + 3x2∂y)|D
are vector fields on C and that Vec(C) = O(C)ξ0 +O(C)ξ1. Moreover, x̄2ξ0 = ȳξ1.

Our calculation also shows that every vector field on C vanishes in the singular
point 0 of the curve. For the tangent bundle we get

TC = {(t2, t3, α, β) | −3αt4 + 2βt3 = 0} ⊆ C × C2

which has two irreducible components, namely

TC = {(t2, t3, 2α, 3αt) | t, α ∈ C} ∪ {(0, 0)} × C2

Exercise 4.5.8. Determine the vector fields on the curve D := V(y2−x2−x3) ⊆ C2.
Do they all vanish in the singular point of D?

Exercise 4.5.9. Determine the vector fields on the curves D1 := {(t, t2, t3) ∈ C3 |
t ∈ C} and D2 := {(t3, t4, t5) ∈ C3 | t ∈ C}.
(Hint: For D2 one can use that O(D2) ' C[t3, t4, t5] = C⊕

⊕
i≥3 Ct

i.)

If the variety X is smooth, then all fibers of p : TX → X are vector spaces of
the same dimension. We will show now that in this case TX is a vector bundle of
rank r := dimX over X. This means that for every point x ∈ X there is a special
open neighborhood U of x in X and an isomorphism p−1(U)

∼→ ψU : U × Cr over

U which is linear in the fibers, i.e. ψ : TuU = p−1(u)
∼→ {u} × Cr = Cr is a linear

map.

Proposition 4.5.10. If X is smooth and irreducible, then TX → X is a vector
bundle of rank r = dimX

Proof. We can assume thatX ⊆ Cn is a closed subset where I(X) = (f1, . . . , fm).
Denote by J = Jac(f1, . . . , fm) the Jacobian matrix, with entries in C[x1, . . . , xn].
Then kerJ(x) = Tx(X) ⊆ Cn (Proposition ??), and, by assumption, rk(J(x)) =
n−r for all x ∈ X. Fix x0 ∈ X and choose n−r columns of J(x0) which are linearly
independent. Then this holds for all x in an special open neighborhood U of x0.
Let 1 ≤ i1 < · · · < ir ≤ n be the indices of the remaining columns and denote by
q : Cn → Cr the corresponding linear projection. Then q induces an isomorphism
ker J(x)

∼→ Cr for all x ∈ U . �

In general, the fibers of TX → X have different dimensions, and the minimal
dimension is reached on the smooth points of X which form an open set of X. The
next result generalizes this. It is a special case of a famous theorem of Chevalley
saying that for every morphism Z → X the function z 7→ dimz ϕ

−1(ϕ(z)) is upper-
semicontinuous, see section A.3.4.

Proposition 4.5.11. The function x 7→ dimTxX is upper-semicontinuous.

Proof. �
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The next result is well-known in differential geometry; for the definition of a
Lie algebra we refer to section II.4.1.

Proposition 4.5.12. The vector fields Vec(X) on X form a Lie algebra with
Lie bracket

[ξ, η] := ξ ◦ η − η ◦ ξ.

Proof. By Proposition 4.5.3 it suffices to show that for any two derivations
ξ, η of O(X) the commutator ξ ◦η−η ◦ ξ is again a derivation. But this is a general
fact and holds for any associative algebra, see the following Exercise 4.5.14. �

Exercise 4.5.13. Let A be an arbitrary associative C-algebra. Then A is a Lie algebra
with Lie bracket [a, b] := ab− ba, i.e., the bracket [ , ] satisfies the Jacobi identity

[a, [b, c]] = [[a, b], c] + [b, [a, c]] for all a, b, c ∈ A.

Exercise 4.5.14. Let R be an associative C-algebra. If ξ, η : R → R are both C-
derivations, then so is the commutator ξ ◦ η − η ◦ ξ. This means that the derivations
Der(R) form a Lie subalgebra of EndC(R).

Exercise 4.5.15. Let X ⊆ Cn be a closed and irreducible. Then dimTX ≥ 2 dimX.
If X is smooth, then TX is irreducible and smooth of dimension dimTX = 2 dimX.
(Hint: If I(X) = (f1, . . . fm), then TX ⊆ Cn × Cn is defined by the equations

fj = 0 and

n∑
i=1

yi
∂fj
∂xi

(x) = 0 for j = 1, . . . ,m.

The Jacobian matrix of this system of 2m equations in 2n variables x1, . . . , xn, y1, . . . , yn
has the following block form[

Jac(f1, . . . , fm) 0
∗ Jac(f1, . . . , fm)

]
and thus has rank ≥ 2 · rk Jac(f1, . . . , fm) = 2(n− dimX).)

4.6. Differential of a morphism. Let ϕ : X → Y be a morphism of affine
varieties, and let x ∈ X.

Definition 4.6.1. The differential of ϕ in x is the linear map

dϕx : TxX → Tϕ(x)Y

defined by δ 7→ dϕx(δ) := δ ◦ ϕ∗.

If Z ⊆ X is a closed subvariety and z ∈ Z, then we get for the induced
morphism ϕ|Z : Z → Y that d(ϕ|Z)z = dϕz|TzZ . Another obvious remark is that
the differential of a constant morphism is the zero map.

Remark 4.6.2. Set y := ϕ(x). The comorphism ϕ∗ : O(Y ) → O(X) defines a
homomorphism my → mx and thus a linear map ϕ̄∗ : my/m

2
y → mx/m

2
x. It is easy to

see that the differential dϕx corresponds to the dual map of ϕ̄∗ under the isomor-
phisms TxX ' Hom(mx/m

2
x,C) and TyY ' Hom(my/m

2
y,C) (see Lemma 4.1.4).

Example 4.6.3. Using the identification T(x,y)(X × Y ) = TxX ⊕ TyY (see
Proposition 4.1.9) one easily sees that the differential d(prX)x : T(x,y)(X × Y ) →
TxX coincides with the linear projection prTxX .

Proposition 4.6.4. Consider a morphism ϕ = (f1, . . . , fm) : Cn → Cm, fj ∈
O(Cn) = C[x1, . . . , xn]. Then the differential

dϕx : TxCn = Cn → Tϕ(x)Cm = Cm

of ϕ in x ∈ Cn is given by the Jacobian matrix

Jac(f1, . . . , fm)x =

(
∂fi
∂xj

(x)

)
(i,j)

.
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Proof. The identification of the tangent space TxCn = Derx(O(Cn)) with Cn
is given by δ 7→ (δx1, . . . , δxn) (see Example 4.1.3). This implies that

dϕx(δ) = ((δ ◦ ϕ∗)(y1), . . . , (δ ◦ ϕ∗)(ym)) = (δf1, . . . , δfm).

Now the claim follows since

δfj =

n∑
i=1

∂fj
∂xi

(x) · δxi.

�

Proposition 4.6.5. Let ϕ : X → Y be a morphism, and let X0 ⊆ X and
Y0 ⊆ Y be closed subvarieties such that ϕ(X0) ⊆ Y0. Denote by ϕ0 : X0 → Y0

the induced morphism. Then, for all x ∈ X0, we have dϕx(TxX0) ⊆ Tϕ(x)Y0, and
dϕ0 = dϕ|TX0

: TX0 → TY0.

Proof. We know that δ ∈ TxX belongs to TxX0 if and only if δ(f) = 0 for
all f ∈ IX(X0) (Proposition 4.2.1), and similarly for Y . Since ϕ(X0) ⊆ Y0 we have
ϕ∗(IY (Y0)) ⊆ IX(X0). Thus, for δ ∈ TxX0 we obtain

dϕx(δ)(h) = δ(ϕ∗(h)) = 0 for all h ∈ IY (Y0),

and the claim follows. �

Exercise 4.6.6. Let ϕ : X → Y and ψ : Y → Z be morphisms of affine varieties and
let x ∈ X. Then

d(ψ ◦ ϕ)x = dψy ◦ dϕx

where y := ϕ(x) ∈ Y .

For any morphism ϕ : X → Y the differentials dϕx define a map dϕ : TX → TY
of the tangent bundles in the obvious way. Embedding X and Y into vector spaces,
the tangent bundle inherits the structure of an affine variety (Proposition 4.5.4).

Proposition 4.6.7. The differential dϕ : TX → TY , (x, δ) 7→ (ϕ(x), dϕx(δ),
is a morphism of varieties. In particular, the structure of TX as an affine variety
is independent of the embedding of X into a vector space.

Proof. Consider first the case X = Cn, Y = Cm and ϕ = (f1, . . . , fn). Then
dϕ : TCn = Cn × Cn → TCm = Cm × Cm is given by

dϕ(x, a1, . . . , an) = (f1(x), . . . , fm(x),

n∑
i=1

∂f1

∂xi
(x)ai, . . . ,

n∑
i=1

∂fm
∂xi

(x)ai)

(Proposition 4.6.4) which is clearly a morphism.
Now choose embeddings X ⊆ Cn and Y ⊆ Cm, and extend the morphism ϕ to

a morphism Φ: Cn → Cm (Lemma 2.1.6):

X
⊆−−−−→ Cn

ϕ

y yΦ

Y
⊆−−−−→ Cm

The claim follows from Proposition 4.6.5 above. �
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4.7. Epsilonization. In order to calculate explicitly differentials of morphisms
we will again use the epsilonization (4.3). Recall that for δ ∈ TxX the map
ρ := evx⊕δε : O(X) → C[ε] is a homomorphism of algebras and vice versa. If
ϕ : X → Y is a morphism and x ∈ X, y := ϕ(x) ∈ Y , then we obtain, by definition,
the following commutative diagram:

O(X)
evx⊕δε // C[ε]

O(Y )

ϕ∗

OO

evy ⊕dϕx(δ)ε

77

If X := V and Y := W are vector spaces, then a homomorphism ρ : O(V ) → C[ε]
corresponds to an element x⊕ vε ∈ V ⊕ V ε where ρ(f) = f(x+ vε), and so ρ ◦ ϕ∗
corresponds to the element ϕ(x + vε) ∈ W ⊕Wε. Thus we obtain the following
result which is very useful for calculating differentials of morphisms.

Lemma 4.7.1. Let ϕ : V → W be a morphism between vector spaces, and let
x ∈ V and v ∈ TxV = V . Then we have

ϕ(x+ εv) = ϕ(x) + dϕx(v) ε

where both sides are considered as elements of W ⊕Wε.

Example 4.7.2. The differential of the morphism ?m : Mn → Mn, A 7→ Am,
in E is m · Id. In fact, (E +Xε)m = E +mXε.

The differential of ϕ : M2 → M2, A 7→ A2, in an arbitrary matrix B is given by
dϕB(X) = BX +XB, because (B +Xε)2 = B2 + (BX +XB)ε.

The differential of the matrix multiplication µ : Mn×Mn → Mn in (E,E) is
the addition: (E +Xε)(E + Y ε) = E + (X + Y )ε.

Exercise 4.7.3. Consider the multiplication µ : M2×M2 →M2 and show:

(1) dµ(A,B) is surjective, if A or B is invertible.
(2) If rkA = rkB = 1, then dµ(A,B) has rank 3.
(3) We have rk dµ(A,0) = rk dµ(0,A) = 2 rkA.

Exercise 4.7.4. Calculate the differential of the morphism ϕ : End(V ) × V → V
given by (ρ, v) 7→ ρ(v), and determine the pairs (ρ, v) where dϕ(ρ,v) is surjective.

4.8. Tangent spaces of fibers. Let ϕ : X → Y be a morphism, x ∈ X and
F := ϕ−1(ϕ(x)) the fiber through x. Since ϕ|F is the constant map, its differential
in any point is zero and so TxF ⊆ ker dϕx. This proves the first part of the following
result.

Proposition 4.8.1. Let ϕ : X → Y be a morphism, x ∈ X and F := ϕ−1(ϕ(x))
the fiber through x.

(1) TxF ⊆ ker dϕx.
(2) If the fiber F is reduced in x, then TxF = ker dϕx.
(3) If X is smooth in x and rk dϕx = dimxX − dimx F , then F is reduced

and smooth in x.

Proof. (2) Put y := ϕ(x) ∈ Y . By definition the fiber is reduced in x if and
only if the ideal in the local ring OX,x generated by ϕ∗(my) is perfect which means
that OF,x = OX,x/ϕ∗(my)OX,x (see Definition 2.2.10).

Now let δ ∈ TxX be a derivation of O(X) in x. If δ ∈ ker dϕx, then δ ◦ ϕ∗ = 0.
Hence δ, regarded as a derivation ofOX,x, vanishes on ϕ∗(my)OX,x and thus induces
a derivation of OF,x in x, i.e., δ ∈ TxF .
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(3) Set R := O(X)/ϕ∗(my)O(X) ⊇ m := mx/ϕ
∗(my)O(X). Clearly, Rred =

O(F ), and the composition my/m
2
y → mx/m

2
x � m/m2 is the zero map. Since X is

smooth in x we get dimmx/m
2
x = dimxX, and since the first map is dual to dϕx it

has rank dimxX − dimx F . It follows that dimm/m2 ≤ dimx F = dimRm. Now it
follows from Proposition 4.10.5 that Rm is a domain, hence Rm = OF,x, and that
F is smooth in x, because dimTxF = dimm/m2 ≤ dimx F . �

Example 4.8.2. Let X ⊆ Cn be a closed subset and I(X) = (f1, . . . , fm).
Consider the morphism ϕ = (f1, . . . , fm) : Cn → Cm. Then X = ϕ−1(0), and this
fiber is reduced in every point. Thus, for every x ∈ X,

TxX = ker dϕx = ker Jac(f1, . . . , fm)x

as we have already seen in Proposition 4.2.1. The following result is a partial inverse.

Proposition 4.8.3. Let Z = V(f1, . . . , fm) ⊆ Cn be a closed subset. Assume
that rk Jac(f1, . . . , fm)z = n− dimz Z for all z ∈ Z. Then Z is smooth and I(Z) =
(f1, . . . , fm).

Proof. Consider the morphism ϕ = (f1, . . . , fm) : Cn → Cm. Then Z =
ϕ−1(0), and dϕz = Jac(f1, . . . , fm)z : Cn → Cm. Thus TzZ ⊆ ker Jac(f1, . . . , fm)z,
and we have equality, because dimz Z ≤ dimTzZ ≤ dim ker Jac(f1, . . . , fm)z =
dimz Z. Now Proposition 4.8.1(3) shows that the fiber ϕ−1(0) is reduced and smooth
in every point z, hence the claim. �

Exercise 4.8.4. For every point (x, y) ∈ X × Y we have TxX = ker d(prY )(x,y)

and TyX = ker d(prX)(x,y) where prX ,prY are the canonical projections (see Proposi-
tion 4.1.9).

Exercise 4.8.5. For the closed subset N ⊆ M2 of nilpotent 2 × 2-matrices we have
I(N) = (tr,det).

Proposition 4.8.6. Let ϕ : X → Y be a dominant morphism of irreducible
varieties, and let x ∈ X and y := ϕ(x) ∈ Y . Assume that the fiber F := ϕ−1(y) is
reduced and smooth in x and that dimx F = dimX − dimY .

(1) If Y is smooth in y, then X is smooth in x.
(2) If X is smooth in x and Y normal in y, then Y is smooth in y.

Proof. By Proposition 4.8.1(2) we have an exact sequence of vector spaces

0 −−−−→ TxF
⊆−−−−→ TxX

dϕx−−−−→ TyY

where dimTxF = dimx F = dimX − dimY .

(1) If Y is smooth in y, then dimTyY = dimY , hence dimTxX ≤ dimTxF +
dimTyY = dimx F+dimY = dimX, and so X is smooth in x and dϕx is surjective.

(2) This is more complicated; the statement can be found in [GKM+13,
Lemma 2.22]. We will give a proof later in section 4.11. �

The normality assumption in the statement (2) is necessary, as shown by Ex-
ercise 2.2.13.

4.9. Morphisms of maximal rank. The main result of this section is the
following theorem.

Theorem 4.9.1. Let ϕ : X → Y be a dominant morphism between two ir-
reducible varieties X and Y . Then there is a dense open set U ⊆ X such that
dϕx : TxX → Tϕ(x)Y is surjective for all x ∈ U .

We first work out an important example which will be used in the proof of the
proposition above.
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Example 4.9.2. Let Y be an irreducible affine variety and X ⊆ Y × C an ir-
reducible hypersurface. Assume that I(X) = (f) where f =

∑n
i=0 fit

i ∈ O(Y )[t] =
O(Y × C) and fn = 1. Consider the following diagram:

X
⊆
//

p
##

Y × C
prY

��

Y

Then the differential dp(y,a) : T(y,a)X → TyY is surjective if
∂f

∂t
(y, a) 6= 0, and this

holds on a dense open set of X.

Proof. We have T(y,a)X ⊆ T(y,a)Y ×C = TyY ⊕C, and this subspace is given
by T(y,a)X = {(δ, λ) | (δ, λ)f = 0}, because I(X) = (f). Now we have

(δ, λ)f =

n∑
i=0

(δfi · ai + fi(y) · i · ai−1 · λ) =

n∑
i=0

δfi · ai +
∂f

∂t
(y, a) · λ

Since dp(y,a)(δ, λ) = δ we see that dp(y,a) is surjective if ∂f
∂t (y, a) 6= 0 which proves

the first claim. But ∂f
∂t cannot be a multiple of f and thus does not vanish on X,

proving the second claim. �

The next lemma shows that the situation described in the example above always
holds on an open set for every morphism of finite degree.

Lemma 4.9.3. Let X,Y be irreducible affine varieties and ϕ : X → Y a mor-
phism of finite degree. Then there is a special open set U ⊆ Y and a closed embedding
γ : ϕ−1(U) ↪→ U × C with the following properties:

(i) I(γ(U)) = (f) where f =
∑n
i=0 fit

i ∈ O(U)[t];
(ii) prU ◦γ = ϕ|ϕ−1(U).

ϕ−1(U)

γ

((' //

ϕ

&&

VU×C(f)

p

��

⊆
// U × C

prU
yy

U

Proof. We have to show that there is a nonzero s ∈ O(Y ) such that O(X)s '
O(Y )s[t]/(f) with a polynomial f ∈ O(Y )s[t]. Then the claim follows by setting
U := Ys.

By assumption, the field C(X) is a finite extension of C(Y ) of degree n, say,

C(X) = C(Y )[h] ' C(Y )[t]/(f)

where f =
∑n
i=0 fit

i, fi ∈ C(Y ) and fn = 1. There is a nonzero element s ∈ O(Y )
such that

(a) fi ∈ O(Y )s for all i,
(b) h ∈ O(X)s and

(c) O(X)s = O(Y )s[h] =
⊕n−1

i=0 O(Y )sh
i.

In fact, (a) and (b) are clear. For (c) we first remark thatO(Y )s[h] =
⊕n−1

i=0 O(Y )sh
i ⊆

O(X)s, because of (a) and (b). If h1, . . . , hm is a set of generators of O(X) we can
find a nonzero s ∈ O(Y ) such that hi ∈ O(Y )s[h], proving (c).

Setting U := Ys we get ϕ−1(U) = Xs and O(Xs) = O(Ys)[t]/(f), by (c), and
the claim follows. �
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Proof of Theorem 4.9.1. By the Decomposition Theorem (Theorem 3.4.1)
we can assume that ϕ is the composition of a finite surjective morphism and a
projection of the form Y × Cr → Y . Since the differential of the second morphism
is surjective in any point we are reduced to the case of a finite morphism. Now the
claim follows from Lemma 4.9.3 above and the Example 4.9.2. �

Lemma 4.9.4. Let ϕ : X → Y be a morphism, x ∈ X and y := ϕ(x) ∈ Y .
Assume that X is smooth in x and dϕx is surjective.

(1) Y is smooth in y.
(2) The fiber ϕ−1(y) is reduced and smooth in x, and dimx F = dimxX −

dimy Y .

Proof. By assumption,

dimTxF ≤ dim ker dϕx = dimTxX − dimTyY ≤ dimX − dimY ≤ dimx F

which implies that we have equality everywhere. In particular, F is smooth in x
and Y is smooth in y.

If we denote by m̄ ⊆ O(X)/myO(X) the maximal ideal corresponding to
x ∈ F one easily sees that m̄/m̄2 is the cokernel of the natural map my/m

2
y →

mx/m
2
x induced by ϕ∗. The duality between mx/m

2
x and TxX (see Lemma 4.1.4

and Remark 4.6.2) implies that dim ker dϕx = dimC m̄/m̄2. Since dim ker dϕx =
dimx F = dimO(X)x/myO(X)x it follows that O(X)x/myO(X)x is a domain
(Proposition 4.10.5), and so F is reduced in x. �

Corollary 4.9.5. For every morphism ϕ : X → Y there is a dense special
open set U ⊆ X such that all fibers of the morphism ϕ|U : U → Y are reduced and
smooth.

Proof. One easily reduces to the case where X is irreducible. Then there is
a special open set U ⊆ X which is smooth (Corollary 4.10.6) and such that dϕx is
surjective for all x ∈ U (Theorem 4.9.1). Now the claim follows from the previous
Lemma 4.9.4. �

Corollary 4.9.6 (Lemma of Sard). Let ϕ : Cn → Cm be a dominant mor-

phism and set S := {x ∈ Cn | dϕx is not surjective}. Then S is closed and ϕ(S) is
a proper closed subset of Cm. In particular, there is a dense open set U ⊆ Cm such
that all fibers ϕ−1(y) for y ∈ U are reduced and smooth of dimension n−m.

Proof. If ϕ = (f1, . . . , fm), then S = {x ∈ Cn | rk Jac(f1, . . . , fm)(x) < m}
and so S is closed in Cn. Moreover, the differential of ϕ|S : S → Cm at any point
of S is not surjective. Therefore, by Theorem 4.9.1, the closure of the image ϕ(S)
has dimension strictly less than m. �

Exercise 4.9.7. Let f ∈ C[x1, . . . , xn] be a nonconstant polynomial. Then V(f − λ)
is a smooth hypersurface for almost all λ ∈ C.

Corollary 4.9.8. If ϕ : X → Y is a morphism such that dϕx = 0 for all
x ∈ X, then the image ϕ(X) is finite. In particular, if X is connected, then ϕ is
constant.

Proof. If X ′ ⊆ X is an irreducible component and Y ′ := ϕ(X ′), then the
induced morphism ϕ′ : X ′ → Y ′ has the same property, namely dϕ′x = 0 for all
x ∈ X ′. It follows now from Theorem 4.9.1 that dimY ′ = 0. Hence ϕ is constant
on X ′. �

Example 4.9.9. Let V be a vector space and W ⊆ V a subspace. If X ⊆ V is
a closed irreducible subvariety such that TxX ⊆W for all x ∈ X, then X ⊆ x+W
for any x ∈ X.
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(This follows from the previous corollary applied to the morphism ϕ : X → V/W
induced by the linear projection V → V/W .)

4.10. Associated graded algebras. Let R be C-algebra and a ⊆ R an ideal.
The associated graded algebra is defined in the following way. Consider the C-vector
space

graR :=
⊕
i≥0

ai/ai+1 = R/a⊕ a/a2 ⊕ a2/a3 ⊕ · · ·

and define the multiplication of (homogeneous) elements by

(f + ai+1) · (h+ aj+1) := fh+ ai+j+1

for f ∈ ai, h ∈ aj . It is easy to see that this defines a multiplication on graR.
By definition, R/a is a subalgebra of graR, and graR is generated by a/a2 as a
R/a-algebra. In particular, if R is finitely generated as a C-algebra, then so is graR.

We want to use this construction to give the following characterization of non-
singular points.

Theorem 4.10.1. Let X be an affine variety. A point x ∈ X is nonsingular
if and only if the associated graded algebra grmx O(X) is a polynomial ring. In
particular, the local ring OX,x of a nonsingular point x is a domain and so x
belongs to a unique irreducible component of X.

Before we can give the proof we have to explain some technical results from
commutative algebra. Let R be a C-algebra and m ⊆ R a maximal ideal. Consider
the subalgebra R̃ of R[t, t−1] generated as an R-algebra by t and mt−1:

R̃ := R[t,mt−1] = · · · ⊕m2t−2 ⊕mt−1 ⊕R⊕Rt⊕Rt2 ⊕ · · · ⊆ R[t, t−1].

In the following lemma we collect some basic properties of this construction.

Lemma 4.10.2. (1) If R is finitely generated, then so is R̃.

(2) There is a canonical isomorphism R̃/R̃t
∼→ grmR.

(3) If a ⊆ m is an ideal and ã := a[t, t−1] ∩ R̃, then R̃/ã
∼→ R̃/a.

(4) If n ⊆ R is the nilradical, then ñ := n[t, t−1] ∩ R̃ is the nilradical of R̃,

and R̃/ñ
∼→ R̃/n.

(5) Assume that R is a finitely generated domain. Then R̃ is a domain, and
we have

dim R̃ = dimR+ 1 and dim R̃/R̃t = dimR.

(6) Assume that R finitely generated and that the minimal primes p1, . . . , pr
are all contained in m. Then the p̃1, . . . , p̃r are the minimal primes of R̃.

Proof. (1) If R = C[h1, · · · , hm] and m = (f1, . . . , fn), then

R̃ = C[h1, . . . , hm, t, f1t
−1, . . . , fnt

−1],

and so R̃ is finitely generated.

(2) By definition, we have

R̃t = · · · ⊕m3t−2 ⊕m2t−1 ⊕m⊕Rt⊕Rt2 ⊕ · · · .
Hence

R̃/R̃t = · · · ⊕ (m2/m3)t−2 ⊕ (m/m2)t−1 ⊕R/m
and the claim follows.

(3) The canonical map π : R[t, t−1]→ (R/a)[t, t−1] induces, by our construction,

a surjective homomorphism π̃ : R̃→ R̃/a with kernel kerπ ∩ R̃ = a[t, t−1] ∩ R̃.
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(4) Put Rred := R/n. Then Rred[t, t−1] is reduced, i.e. without nilpotent ele-

ments 6= 0, and so is R̃red. Since the kernel of the map R[t, t−1] → Rred[t, t−1] is
equal to n[t, t−1] and consists of nilpotent elements the claim follows from (3).

(5) The first part is clear since R[t, t−1] is a domain. Since R̃t = R[t, t−1] we

get dim R̃ = dimR[t, t−1] = dimR[t] = dimR+ 1. Moreover, by the Principal Ideal

Theorem (Theorem 3.3.4) we have dim R̃/R̃t = dim R̃− 1.

(6) It follows from (3) and (5) that the ideals p̃i are prime. Since
⋂
i pi = n we

obtain from (2) ⋂
i

p̃i =
⋂
i

pi[t, t
−1] ∩ R̃ = n[t, t−1] ∩ R̃ = ñ.

Since p̃i∩R[t] = pi[t] there are no inclusions p̃i ⊆ p̃j for i 6= j, and the claim follows.
(We use here the well-know fact that the minimal primes in a finitely generated
C-algebra are characterized by the condition

⋂
pi = n, cf. Remark 1.6.7.) �

In the next lemma we give some properties of the associated graded algebra
grmR where m is a maximal ideal of R.

Lemma 4.10.3. Let R be a C-algebra and m ⊆ R a maximal ideal.

(1) Assume that
⋂
j m

j = (0). If grmR is a domain, then so is R.

(2) Denote by mRm ⊆ Rm the maximal ideal of the localization Rm. There is

a natural isomorphism grmR
∼→ grmRm

Rm of graded C-algebras.

Proof. (1) If ab = 0 for nonzero elements a, b ∈ R, we can find i, j ≥ 0 such
that a ∈ mi \ mi+1 and b ∈ mj \ mj+1. Thus ā := a + mi+1 and b̄ := b + mj+1 are
nonzero elements in grmA, and āb̄ = ab + mi+j+1 = 0. This contradiction proves
the claim.

(2) Set M := mRm ⊆ Rm. The image of S := R\m in R/mk consists of invertible
elements and so R/mk → Rm/M

k is surjective. It is also injective, because Rm/M
k

can be identified with the localization of R/mk at S. Thus R/mk
∼→ Rm/M

k and

so mi/mi+1 ∼→Mi/Mi+1 for all i ≥ 0. �

Finally, we need the following result due to Krull. It implies that in a local
Noetherian C-algebra R with maximal ideal m we have

⋂
j≥0 m

j = (0).

Lemma 4.10.4 (Krull). Let R be a Noetherian C-algebra, a ⊆ R an ideal and
b :=

⋂
j≥0 a

j. Then ab = b. In particular, there is an a ∈ a such that (1 + a)b = 0.

Proof. The second claim follows from the first and the Lemma of Nakayama
(Lemma 3.2.5). Let a = (a1, . . . , as) and put

I := 〈f | f ∈ R[x1, . . . , xs] homogeneous and f(a1, . . . , as) ∈ b〉 ⊆ R[x1, . . . , xs].

It is easy to see that I is an ideal of R[x1, . . . , xs] and so I = (f1, . . . , fk) where the
fj are homogeneous. Choose an n ∈ N, n > deg fj for all j. By definition, b ⊆ an and
so, for every b ∈ b, there is a homogeneous polynomial f ∈ R[x1, · · · , xs] of degree
n such that f(a1, . . . , as) = b. It follows that f =

∑
j hjfj where the hj are homo-

geneous of degree > 0, and so b = f(a1, . . . , as) =
∑
j hj(a1, . . . , as)fj(a1, . . . , as) ∈

ab. �

The next proposition is a reformulation of our main Theorem 4.10.1. For later
use we will prove it in this slightly more general form.

Proposition 4.10.5. Let R be a finitely generated C-algebra and let m ⊆ R
be a maximal ideal. Then dim grmR = dimRm. Moreover, dimC m/m2 = dimRm if
and only if grmR is a polynomial ring. If this holds, then Rm is a domain.
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Proof. Inverting an element fromR\m does not change grmR (Lemma 4.10.3(2)).
Therefore we can assume that all minimal primes of R are contained in m. In partic-
ular, we have dimRm = dimR = maxi dimR/pi where p1, . . . , pr are the minimal
prime ideals. Moreover, every element from R \m is a nonzero divisor.

Now consider the C-algebra R̃ = R[t,mt−1] ⊆ R[t, t−1] introduced above. It

follows from Lemma 4.10.2 that R̃ has the following two properties:

(i) R̃/R̃t
∼→ grmR, by (2).

(ii) dim R̃/R̃t = dimR, by (5) and (6).

Hence, dim grmR = dimRm, proving the first claim.

Assume now that dimC m/m2 = dimRm =: n. Then we obtain a surjective
homomorphism

ρ : C[y1, . . . , yn]→ grmR

by sending y1, . . . , yn to a C-basis of m/m2. But every proper residue class ring of
C[y1, . . . , yn] has dimension < n, and so the homomorphism ρ is an isomorphism.

On the other hand, if grmR is a polynomial ring, then dimRm = dim grmR =
dimC m/m2. Moreover,

⋂
j>0 m

j = (0) by Lemma 4.10.4, because every element

from R \m is a nonzero divisor, and so R is a domain by Lemma 4.10.3(1). �

Corollary 4.10.6. If X is an affine variety, then Xsing ⊆ X is a closed subset
whose complement is dense in X.

Proof. Let X =
⋃
iXi is the decomposition of X into irreducible components.

A point x ∈ Xi is a singular point of X if and only if it is either a singular point of
Xi or it belongs to two different irreducible components. Thus

Xsing =
⋃
i

(Xi)sing ∪
⋃
j 6=k

Xj ∩Xk,

and the claim follows easily. �

4.11. m-adic completion. Let us denote by ÔX,x the mx-adic completion of
the local ring OX,x. It is defined to be the inverse limit

ÔX,x := lim
←−
O(X)/mkx.

(We refer to [Eis95, I.7.1 and I.7.2] for more details and some basic properties.)

Since
⋂
mkx = {0} we have a natural embedding OX,x ⊆ ÔX,x. Moreover, ÔX,x is

Noetherian, and it is flat over OX,x ([Eis95, Theorem 7.1 and 7.2]).
If X = Cn and x = 0, then the completion coincides with the algebra of formal

power series in n variables:

ÔCn,0 = C[[x1, . . . , xn]].

The next result is an easy consequence of Theorem 4.10.1 above.

Corollary 4.11.1. The point x ∈ X is nonsingular if and only if ÔX,x is
isomorphic to the algebra of formal power series in dimxX variables.

Remark 4.11.2. A famous result of Auslander-Buchsbaum states that the
local ring OX,x in a nonsingular point of a variety X is always a unique factorization
domain. For a proof we refer to [Mat89, §20, Theorem 20.3].

We might ask here which properties of a local ring OX,x are carried over to the

completion ÔX,x. The following important result is due to Zariski. A proof can
be found in [ZS60, Ch.VIII, §13, Theorem 32].

Proposition 4.11.3. If OX,x is normal, then so is ÔX,x.
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As an application we have the following proposition about smoothness in the
target of a morphism.

Proposition 4.11.4 (Zariski). Let ϕ : X → Y be a dominant morphism of
irreducible varieties, and let x ∈ X be a point with the properties that the fiber
F := ϕ−1(ϕ(x)) is reduced and smooth in x and that dimx F = dimX − dimY . If
Y is normal in y, then y := ϕ(x) is a smooth point of Y .

Proof. Let S ⊆ X be an irreducible transversal slice in x ∈ X to the fiber F ,
i.e.,

(1) dimS = dimY and ψ := ϕ|S : S → Y is dominant;
(2) x is a smooth point of S;
(3) The tangent map dψx : TxS → TyY is injective.

Then we have an inclusion of local rings ψ∗ : OY,y ↪→ OS,x of the same dimen-
sion, and mS,x = Sψ∗(my) by (3). This implies that the induced homomorphism

ψ̂∗ : ÔY,y → ÔS,x is surjective. By (2) ÔS,x is an algebra of formal power series

(Corollary 4.11.1), and by Zariski’s proposition above the completion ÔY,y is nor-
mal, hence an intergral domain. Since dimx S = dimy Y by (1), it follows that the

map ψ̂∗ has a trivial kernel, i.e. ÔY,y is an algebra of formal power series and so y
is a smooth point of Y . �

Remark 4.11.5. The normality assumption in the previous proposition is es-
sential. Consider the normalization η : C→ C of the cusp C := V(y2−x3−x2) ⊆ C2.
Then the fiber η−1(0) is reduced and smooth, but 0 ∈ C is a singular point.

5. Normal Varieties and Divisors

5.1. Normality.

Definition 5.1.1. Let A ⊆ B be rings. An element b ∈ B is integral over A if
b satisfies an equation of the form

bn =

n−1∑
i=0

aib
i where ai ∈ A.

Equivalently, b ∈ B is integral over A if and only if the subring A[b] ⊆ B is a finite
A-module.

If every element from B is integral over A we say that B is integral over A.

Exercise 5.1.2. Let A ⊆ B be rings. If A is Noetherian and B finite over A, then B
is integral over A.

Lemma 5.1.3. Let A ⊆ B ⊆ C be rings and assume that A is Noetherian.

(1) If B is integral over A and C integral over B, then C is integral over A.
(2) The set

B′ := {b ∈ B | b is integral over A}
is a subring of B.

Proof. (1) Let c ∈ C. Then we have an equation cm =
∑m−1
j=0 bjc

j with bj ∈ B.
In particular, the coefficients bj are integral over A and so, by induction, A1 :=
A[b0, b1, . . . , bm−1] is a finitely generated A-module. Moreover, A1[c] is a finitely
generated A1-module, hence a finitely generated A-module. But then A[c] ⊆ A1[c]
is also finitely generated.

(2) Let b1, b2 ∈ B′. Then A[b1] is integral over A and b2 is integral over A, hence
integral over A[b1], and so A[b1, b2] is integral over A[b1]. Thus, by (1), A[b1, b2] is
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integral over A which implies that b1 + b2 and b1b2 are both integral over A, hence
belong to B′. �

Exercise 5.1.4. Let f ∈ C[x] be a nonconstant polynomial. Then C[x] is integral
over the subalgebra C[f ].

Definition 5.1.5. Let A be a domain with field of fraction K. We call A
integrally closed if the following holds:

If x ∈ K is integral over A, then x ∈ A.

An affine variety X is normal if X is irreducible and O(X) is integrally closed. We
say that X is normal in x ∈ X if the local ring OX,x is integrally closed.

Example 5.1.6. A unique factorization domain A is integrally closed. In par-
ticular, Cn is a normal variety.
(Let K be the field of fractions of A and x ∈ K integral over A: xn =

∑n−1
i=0 aix

i

where ai ∈ A. Write x = a
b where a, b ∈ A have no common divisor. Then

an = b(
∑n−1
i=0 aib

n−i−1ai) which implies that b is a unit in A and so x ∈ A.)

Exercise 5.1.7. If the domain A is integrally closed, then so is every ring of fraction
AS where 1 ∈ S ⊆ A is multiplicatively closed.

Lemma 5.1.8. Let X be an irreducible variety. Then X is normal if and only
if all local rings OX,x are integrally closed.

Proof. If X is normal, then OX,x = O(X)mx is integrally closed (see the
Exercise above), and the reverse implication follows from O(X) =

⋂
x∈X OX,x

(Exercise 1.7.6). �

5.2. Integral closure and normalization.

Proposition 5.2.1. Let A be a finitely generated C-algebra with no zero-
divisors 6= 0 and with field of fractions K, and let L/K be a finite field extension.
Then

A′ := {x ∈ L | x is integral over A} ⊇ A
is a finitely generated C-algebra which is finite over A.

Proof. We already know that A′ is a C-algebra (Lemma 5.1.3(2)).

(a) We first assume that A = C[z1, . . . , zm] is a polynomial ring and K =
C(z1, . . . , zm). Let L = K[x] where x is integral over A and [L : K] =: n. Denote by
x1 := x, x2, . . . , xn the conjugates of x in some Galois extension L′ of K. Clearly,
all xj are integral over A, because they satisfy the same equation as x.

If y =
∑n−1
i=0 cix

i (ci ∈ K) is an arbitrary element of L we obtain the “conju-
gates” of y in L′ in the form

yj =

n−1∑
i=0

cix
i
j for j = 1, . . . , n.

The n× n-matrix X := (xij) has determinant d =
∏
j<k(xj − xk) which is integral

over A. Obviously, d2 is symmetric, hence fixed under the Galois group of L′/K, and
so d2 ∈ K. Since d2 is also integral over A we finally get d2 ∈ A. From Cramer’s
rule we obtain c1...

cn

 = X−1

y1

...
yn

 =
1

d
Adj(X)

y1

...
yn


This shows that if y is integral over A, then so is dci for all i, hence d2ci ∈ A for all
i. This implies that d2A′ ⊆

∑n−1
i=0 Ax

i, and so A′ is a finitely generated A-module.
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(b) For the general case we use Noether’s Normalization Lemma (Theo-
rem 3.2.12) which states that A contains a polynomial ring A0 = C[x1, . . . , xm] such
that A is finite over A0. Thus A is integral over A0 and therefore, by Lemma 5.1.3(1)

A′ = {x ∈ L | x is integral over A0}.
It follows from part (a) that A′ is a finitely generated A0-module, hence also a
finitely generated A-module. �

Definition 5.2.2. Let A be a finitely generated C-algebra with no zero-divisors
6= 0. If L is a finite field extension of the field of fractions of A, then

A′ := {x ∈ L | x is integral over A} ⊇ A
is called the integral closure of A in L. Clearly, A′ is integrally closed.

Let X be an irreducible affine variety and denote by O(X)′ ⊆ C(X) the integral
closure of O(X) in its field of fractions C(X). By Proposition 5.2.1 there is a normal

variety X̃ and a finite birational morphism η : X̃ → X such that O(X̃) ' O(X)′.
More precisely, we have the following result.

Lemma 5.2.3. Let X be an irreducible variety and η : X̃ → X a morphism with
the following two properties:

(1) X̃ is normal;
(2) η is finite and birational.

Then O(X̃) is the integral closure of η∗(O(X)) in C(X̃) = η∗(C(X)), and we have
the following universal property:

If Y is a normal affine variety, then every dominant morphism ϕ : Y → X
factors through η: There is a uniquely determined ϕ̃ : Y → X̃ such that
ϕ = η ◦ ϕ̃:

X̃

η

��

Y
ϕ

//

ϕ̃

88

X

Proof. Since η is birational we have η∗(O(X)) ⊆ O(X̃) ⊆ C(X̃) = η∗(C(X)).

By (2) O(X̃) is finite, hence integral over η∗(O(X)), and by (1) it is the integral
closure of η∗(O(X)).

If Y is normal affine variety and ϕ : Y → X a dominant morphism, then

O(X)
∼→ ϕ∗(O(X)) ⊆ O(Y ) ⊆ C(Y ).

Denote by O(X)′ the integral closure of O(X) in C(X). Since O(Y ) is integrally
closed it follows that ϕ∗(O(X)′) ⊆ C(Y ) is contained in O(Y ). Since η∗ induces

an isomorphism O(X)′
∼→ O(X̃) there is a uniquely determined homomorphism

ρ : O(X̃)→ O(Y ) which makes the following diagram commutative:

O(X̃)

ρ

~~

O(X)′

'

OO

vv

O(Y ) O(X)
ϕ∗

oo
?�

⊆

OO
η∗

\\

Clearly, the corresponding morphism ϕ̃ : Y → X̃ is the unique morphism such that
ϕ = η ◦ ϕ̃. �
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Definition 5.2.4. The morphism η : X̃ → X constructed above is called nor-
malization of X. It follows from Lemma 5.2.3 that it is unique up to a uniquely
determined isomorphism.

Exercise 5.2.5. If ϕ : X → Y is a finite surjective morphism where X is irreducible
and Y is normal, then #ϕ−1(y) ≤ degϕ for all y ∈ Y . (See Proposition 3.6.1 and its
proof.)

Proposition 5.2.6. Let X be an irreducible variety. Then the set

Xnorm := {x ∈ X | X is normal in x}
is open and dense in X.

Proof. Let O(X)′ ⊆ C(X) be the integral closure of O(X) and define

a := {f ∈ O(X) | fO(X)′ ⊆ O(X)}.
Then a is a nonzero ideal of O(X), because O(X)′ is finite over O(X), and Xnorm =
X \ VX(a). In fact, for S := O(X) \mx we have

OX,x = O(X)S ⊆ O(X)′S

and the latter is the integral closure of OX,x. On the other hand, O(X)S = O(X)′S
if and only if S ∩ a 6= ∅ which is equivalent to x /∈ VX(a). �

Exercise 5.2.7. Consider the morphism ϕ : C2 → C4, (x, y) 7→ (x, xy, y2, y3).

(1) ϕ is finite and ϕ : C2 → Y := ϕ(C2) is the normalization.
(2) 0 ∈ Y is the only non-normal and the only singular point of Y .
(3) Find defining equations for Y ⊆ C4 and generators of the ideal I(Y ).

Exercise 5.2.8. If X is a normal variety, then so is X × Cn.

New part from 4.2.2015:

We know that for a dominant morphism ϕ : X → Y of finite degree d there is an
open dense set U ⊆ Y such that every fiber ϕ−1(y), y ∈ U , has exactly d points (Propo-
sition 3.6.1). Under stronger assumptions this can be improved.

Proposition 5.2.9. Let ϕ : X → Y be a finite surjective morphism where X,Y are
irreducible and Y is normal. Then |ϕ−1(y)| ≤ degϕ for all y ∈ Y . Moreover, the set

{y ∈ Y | |ϕ−1(y)| = degϕ} ⊆ Y
is open and dense in Y .

Proof. (a) Let ϕ−1(y0) = {x1, . . . , xk}. Choose an f ∈ O(X) such that f(xi) 6=
f(xj) for i 6= j. Let F = tm + h1t

m−1 + · · · + hm be the minimal equation of f over
C(Y ). Then m ≤ degϕ, and the coefficients hi belong to O(Y ) since they are integral over
O(Y ). It follows that f(x1), . . . , f(xk) are distinct roots of the polynomial F (y0, t), hence
k ≤ m ≤ degϕ, proving the first claim.

(b) Now assume that the fiber of y0 has d := degϕ points. We know that such points
exist, see Proposition 3.6.1. With the notation above we see that F (y0, t) has degree d and
that f(x1), . . . , f(xd) are the d distinct roots of F (y0, t). In particular, the discriminant of
F does not vanish in y0, hence there is an open neighborhood U of y0 such that F (y, t)
has d distinct roots for all y ∈ U . We will show that |ϕ−1(y)| = d for y ∈ U which proves
the second claim.

Consider the finite morphism ϕ × f : X → Y × C, and denote by X ′ ⊆ Y × C its
image. We have inclusions O(Y ) ⊆ O(X ′) ⊆ O(X). Since f belongs to O(X ′) and has a
minimal equation of degree d over C(Y ) we get C(X ′) = C(X), i.e. the induced morphism
ϕ′ : X → X ′ is birational. Moreover, X ′ ⊆ VY×C(F ) ⊆ Y × C, hence coincides with an
irreducible component of the hypersurface Z := VY×C(F ), because Z has codimension 1,
by Krull’s Theorem 3.3.4.

We claim that Z is irreducible. Let Z = Z1 ∪ · · · ∪ Zk be the decomposition into
irreducible components where Z1 = X ′. By Krull’s Theorem 3.3.4, all Zi have the same
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dimension, namely dimY . Since p := prY |Z : Z → Y is finite, we get p(Zi) = Y for all i.
Moreover, p−1(y) = {(y, a) | F (y, a) = 0}, hence |p−1(y)| ≤ d for all y ∈ Y . On the other
hand, p′ := p|X′ : X ′ = Z1 → Y has degree d, and so there is a dense open set U ′ ⊆ Y

such that |p′−1
(y)| = d for all y ∈ U ′ (Proposition 3.6.1). Therefore, p−1(U ′) ⊆ Z1, hence

Z = Z1, because p−1(U ′) is dense in Z.
As a consequence, we obtain a factorization

ϕ : X
ϕ′−−−−−→ Z = VY×C(F )

p−−−−−→ Y

where both maps ϕ′ and p are finite and surjective. Since |p−1(y)| = d for y ∈ U , we get
|ϕ−1(y)| ≥ d for y ∈ U , hence |ϕ−1(y)| = d by (a), and the claim follows. �

(end of new part)

5.3. Analytic normality. We might ask which properties of a local ringOX,x
are carried over to the completion ÔX,x. The following important result is due to
Zariski. A proof can be found in [ZS60, Ch.VIII, §13, Theorem 32].

Proposition 5.3.1. If OX,x is normal, then so is ÔX,x.

In general, a local ring is called analytically normal if the completion R̂ is
normal. It is not true that every normal local ring is analytically normal Nagata
example

As an application we have the following proposition about smoothness in the
target of a morphism.

Proposition 5.3.2 (Zariski). Let ϕ : X → Y be a dominant morphism of
irreducible varieties, and let x ∈ X be a point with the properties that the fiber
F := ϕ−1(ϕ(x)) is reduced and smooth in x and that dimx F = dimX − dimY . If
Y is normal in y, then y := ϕ(x) is a smooth point of Y .

Proof. Let S ⊆ X be an irreducible transversal slice in x ∈ X to the fiber F ,
i.e.,

(1) dimS = dimY and ψ := ϕ|S : S → Y is dominant;
(2) x is a smooth point of S;
(3) The tangent map dψx : TxS → TyY is injective.

Then we have an inclusion of local rings ψ∗ : OY,y ↪→ OS,x of the same dimen-
sion, and mS,x = Sψ∗(my) by (3). This implies that the induced homomorphism

ψ̂∗ : ÔY,y → ÔS,x is surjective. By (2) ÔS,x is an algebra of formal power series

(Corollary 4.11.1), and by Zariski’s proposition above the completion ÔY,y is nor-
mal, hence an intergral domain. Since dimx S = dimy Y by (1), it follows that the

map ψ̂∗ has a trivial kernel, i.e. ÔY,y is an algebra of formal power series and so y
is a smooth point of Y . �

Remark 5.3.3. The normality assumption in the previous proposition is essen-
tial. Consider the normalization η : C→ C of the cusp C := V(y2 − x3 − x2) ⊆ C2.
Then the fiber η−1(0) is reduced and smooth, but 0 ∈ C is a singular point.

5.4. Discrete valuation rings and smoothness. Let K be a field.

Definition 5.4.1. A discrete valuation of the field K is a surjective map
ν : K∗ := K \ {0} → Z with the following properties:

(a) ν(xy) = ν(x) + ν(y);
(b) ν(x+ y) ≥ min(ν(x), ν(y)).

To simplify the notation one usually defines ν(0) :=∞.



218 APPENDIX A. BASICS FROM ALGEBRAIC GEOMETRY

Example 5.4.2. Let K = Q and p ∈ N a prime number. Define νp(x) := r ∈ Z
if p occurs with exponent r in the rational number x 6= 0. Then νp : Q∗ → Z is a
discrete valuation of Q.

The following lemma collects some facts about discrete valuations. The easy
proofs are left to the reader.

Lemma 5.4.3. Let K be a field and ν : K∗ → Z a discrete valuation.

(1) A := {x ∈ K | ν(x) ≥ 0} is a subring of K.
(2) m := {x ∈ K | ν(x) > 0} ⊆ A is a maximal ideal of A.
(3) {x ∈ K | ν(x) = 0} are the units of A.
(4) For every nonzero x ∈ K we have x ∈ A or x−1 ∈ A.
(5) m = (x) for every x ∈ K with ν(x) = 1.
(6) mk = {x ∈ K | ν(x) ≥ k} and these are all nonzero ideals of A.
(7) If m = (x), then every z ∈ K has a unique expression of the form z = txk

where k ∈ Z and t is a unit of A.

Definition 5.4.4. A domain A is called a discrete valuation ring, shortly DVR,
if there is a discrete valuation ν of its field of fractions K such that A = {x ∈ K |
ν(x) ≥ 0}. In particular, A has all the properties listed in Lemma 5.4.3 above.
Clearly, ν is uniquely determined by A.

Exercise 5.4.5. Let A be a discrete valuation ring with field of fraction K. If B ⊆ K
is a subring containing A, then either B = A or B = K.

In the sequel we will use the following characterization of a discrete valuation
rings (see [AM69, Proposition 9.2]).

Proposition 5.4.6. Let A be a Noetherian local domain of dimension 1, i.e.
the maximal ideal m 6= (0) and (0) are the only prime ideals in A. Then the following
statements are equivalent:

(i) A is a discrete valuation ring.
(ii) A is integrally closed.
(iii) The maximal ideal m is principal.
(iv) dimA/m m/m2 = 1.
(v) Every nonzero ideal of A is a power of m.

(vi) There is an x ∈ A such that every nonzero ideal of A is of the form (xk).

Proof. (i)⇒(ii): If x ∈ K and x /∈ A, then A[x] = K which is not finite over
A.

(ii)⇒(iii): Let a ∈ m, a 6= 0. Then mk ⊆ (a) and mk−1 6⊆ (a) for some k > 0.
Choose an element b ∈ mk−1 \ (a) and put x := a

b . Then x−1m = 1
abm ⊆

1
am

k ⊆ A.

If x−1m ⊆ m, then x−1 would be integral over A and so x−1 ∈ A, contradicting the
construction. Thus x−1m = A and so m = (x).

(iii)⇒(iv): If m = (x), then m/m2 = A/m · (x+ m2), and m2 6= m.

(iv)⇒(v): Let a ⊆ A be a nonzero ideal. Then
√
a = m and so mk ⊆ a for some

k ∈ N. Put Ā := A/mk and denote by m̄ ⊆ Ā the image of m. Since m = (x) + m2

we get m = (x) + mk for all k ∈ N and so m̄ = (x̄) ⊆ Ā. Now it is easy to see that
ā = m̄r for some r ≤ k, and so a = mr.

(v)⇒(vi): We have m 6= m2. Choose x ∈ m\m2. Then, by assumption, (x) = mk

for some k ≥ 1, and so m = (x).

(vi)⇒(i): By assumption, every element a ∈ A has a unique expression of the
form a = txk where k ∈ N and t a unit of A. Define ν(a) := k. This has a well-
defined extension to K∗ by setting ν(ab ) := ν(a) − ν(b) for a, b ∈ A, b 6= 0. One
easily verifies that ν is a discrete valuation of K and that A is the corresponding
valuation ring. �
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Let X be an irreducible variety and H ⊆ X an irreducible hypersurface, i.e.
codimX H = 1. The ideal p := I(H) of H is a minimal prime ideal 6= (0) and thus
the localization OX,H := O(X)p is a local Noetherian domain of dimension 1. If
X is normal it follows from Proposition 5.4.6 that OX,H is a discrete valuation
ring which corresponds to a discrete valuation νH : C(X)∗ → Z. In this case, νH
vanishes on the nonzero constants, i.e. νH is a discrete valuation of C(X)/C.

Example 5.4.7. If f ∈ C[x1, . . . , xn] is a nonconstant irreducible polynomial
and H := V(f), then the valuation νH has the following description: For a rational
function r ∈ C(x1, . . . , xn) we have νH(r) = m if f occurs with exponent m in a
primary decomposition of r.

Exercise 5.4.8. Let K/k be a finitely generated field extension, and let A ⊆ K be a
discrete valuation ring with maximal ideal m, field of fraction K and containing k. Then
tdegk A/m < tdegkK.
(Hint: If tdegk R/m = tdegkK, then R contains a field L with tdegk L = tdegkK. This
implies that K is a finitely generated R-module which is impossible.)

5.5. The case of curves. If Y is an irreducible curve, then the local rings
OY,y = O(Y )my satisfy the assumptions of the proposition above. The equivalence
of (i), (ii) and (iv) then gives the following result. (In fact, we do not need to assume
that Y is irreducible; cf. Theorem 4.10.1.)

Proposition 5.5.1. Let Y be an affine variety and y ∈ Y such that dimy Y = 1.
Then the following statements are equivalent:

(i) The local ring OY,y is a discrete valuation ring.
(ii) Y is normal in y.

(iii) Y is smooth in y.

In particular, a normal curve is smooth and an irreducible smooth curve is normal.

Now assume that C is a normal curve. Every point c ∈ C determines a discrete
valuation νc of the field of rational functions C(C), with corresponding DVR the
local ring Ac := OC,c. Clearly, Ac contains the constants C, and the point c ∈ C
is determined by Ac. Moreover, O(C) =

⋂
c∈Y Ac. On the other hand, if ν is a

discrete valuation such that the corresponding DVR A contains O(C), then ν = νc
for a suitable point c ∈ C. (In fact, A/m = C (Exercise 5.4.8) and so m∩O(C) is a
maximal ideal mc. It follows that OC,c ⊆ A, hence they are equal, by Exercise 5.4.5).

As a consequence, we get the following special case of Zariski’s Main Theorem
from section 5.6 below.

Proposition 5.5.2. Let ϕ : C → D be a birational morphism of irreducible
affine curves where D is normal. Then ϕ is an open immersion.

Proof. (a) Let us first assume that ϕ is surjective and C is normal. Identifying
C(D) with C(C) via ϕ∗ we get O(D) ⊆ O(C). For c ∈ C and d := ϕ(c) ∈ D we
get OC,c ⊆ OD,d, hence OC,c = OD,d, by Exercise 5.4.5. Therefore, c is uniquely
determined by d, and so ϕ is bijective. It follows that

O(D) =
⋂
d∈D

OD,d =
⋂
c∈C
OC,c = O(C),

i.e. ϕ is an isomorphism.
(b) In general, the image ϕ(C) ⊆ D is open. Choose a special open set C ′ ⊆

ϕ(C) and consider the morphism ϕ′ : D′ → C ′ where D′ → ϕ−1(C ′) is the normal-
ization. Hence, by (a), ϕ′ is an isomorphism, and the claim follows. �

Let us describe now the discrete valuations of the field C(x) of rational functions
on the affine line C. For a ∈ C we get νa(f) := ord(x−a) f , the order of the factor
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(x − a) in f , and the corresponding DVR is Aa := C[x](x−a). In addition, there is
the discrete valuation ν∞ : C(x)∗ → Z where ν∞(f) = −deg f , with corresponding
DVR A∞ := C[x−1](x−1).

Lemma 5.5.3. The set of discrete valuations ν of the field C(x) which vanish
on the nonzero constants C \ {0} is given by {νa | a ∈ C ∪ {∞}}. In particular,⋂
ν Aν = C.

Proof. Let ν : C(x)∗ → Z be a discrete valuation with valuation ring A ⊇ C
and maximal ideal m ⊆ A.

(a) If ν(x) ≥ 0, then C[x] ⊆ A and m∩C[x] is a maximal ideal of C[x], because
A/m = C (Exercise 5.4.8). Thus m ∩ C[x] = ma for some a ∈ C and so Aa ⊆ A.
This implies that A = Aa (Exercise 5.4.5), hence ν = νa.

(b) If ν(x) < 0, then, setting y := x−1, we get ν(y) > 0, hence A = C[y](y) =
A∞, by (a).

(c) The last statement is clear:
⋂
ν Aν = C[x] ∩ C[x−1] = C. �

As a consequence, we can classify the smooth rational curves.

Proposition 5.5.4. Let C be a smooth rational curve. Then C is isomorphic
to C \ F where F ⊆ C is a finite set.

Proof. By assumption, we have C(C) = C(x). Denote by Ω the set of discrete
valuations of C(x) corresponding to points of C. Since

⋂
a∈CAa = O(C) it follows

from Lemma 5.5.3 at least one discrete valuation νa does not belong to Ω.
If ν∞ /∈ Ω, then O(C) =

⋂
ν∈ΩAν ⊇

⋂
a∈CAa = C[x]. Thus we get a rational

map C → C which is an open immersion by Proposition 5.5.2.
If νa /∈ Ω for some a ∈ C, then y := 1

x−a ∈ Ab for all b 6= a, hence C[y] ⊆⋂
b∈ΩAb = O(C), and the claim follows as above. �

Example 5.5.5. Let C be a normal curve, and assume that there is a dominant
morphism ϕ : Cn → C. Then C ' C. In fact, C is a rational curve by Lüroth’s
Theorem (see Proposition 2.4.1), hence C

∼→ C \ F . But every invertible function
on C defines an invertible function on Cn, and so F is empty.

5.6. Zariski’s Main Theorem. We start with the following generalization
of the previous result saying that normal curves are smooth (Proposition 5.5.1).
Recall that the singular points Xsing of an affine variety form a closed subset with
a dense complement (Proposition 4.10.6).

Proposition 5.6.1. Let X be a normal affine variety. Then codimX Xsing ≥ 2.

Proof. (a) Let H ⊆ X be an irreducible hypersurface and assume that I(H) =
(f). We claim that if x ∈ H is a singular point of X, then x is a singular point of
H, too. In fact, O(H) = O(X)/(f) and mH,x = mx/fO(X). Thus mH,x/m

2
H,x =

(mx/m
2
x)/C · f̄ and so dimTxH ≥ dimTxX − 1 > dimX − 1 = dimH.

(b) Now assume that codimX Xsing = 1, and let H ⊆ Xsing be an irreducible
hypersurface of X. If p := I(H) is a principal ideal it follows from (a) that H
consists of singular points. But this contradicts the fact that the smooth points of
an irreducible variety form a dense open set.

In general, the localization OX,H is a discrete valuation ring and therefore its
maximal ideal pOX,H is principal (Proposition 5.4.6). This implies that we can
find an element s ∈ O(X) \ p such that the ideal pO(X)s ⊆ O(X)s = O(Xs) is
principal. Since pO(X)s = I(H ∩ Xs) we arrive again at a contradiction, namely
that all points of H ∩Xs are singular. �
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Another important property of normal varieties is that regular functions can
be extended over closed subset of codimension ≥ 2.

Proposition 5.6.2. Let X be a normal affine variety and f ∈ C(X) a rational
function which is defined on an open set U ⊆ X. If codimX X \U ≥ 2, then f is a
regular function on X.

Proof. Define the ”ideal of denominators” a := {q ∈ O(X) | q · f ∈ O(X)}.
By definition U ⊆ V \ VX(a) and so, by assumption, codimX VX(a) ≥ 2.

Using Noether’s Normalization Lemma (Theorem 3.2.12) we can find a finite
surjective morphism ϕ : X → Cn. We have ϕ(VX(a)) = V(a ∩ C[x1, . . . , xn]) and
dimϕ(VX(a)) = dimV(a∩C[x1, . . . , xn]) ≤ n−2. This implies that we can find two
polynomials q1, q2 ∈ a ∩ C[x1, . . . , xn] with no common divisor (see the following

Exercise 5.6.3). As a consequence, we have f =
p1

q1
=
p2

q2
for suitable p1, p2 ∈ O(X).

If f (1) := f, f (2), . . . , f (d) are the conjugates of f in some finite field extension
L/C(x1, . . . , xn) of degree d containing C(X) we have

f (i) =
pi1
q1

=
pi2
q2

for i = 1, . . . , d

where the p
(i)
1 are the conjugates of p1 and the p

(i)
2 the conjugates of p2. The element

f ∈ C(X) satisfies the equation

d∏
i=1

(t− f (i)) = td +

d∑
j=1

bjt
n−j = 0

where the coefficients bj ∈ C(x1, . . . , xn) are given by the elementary symmetric
functions σj in the following form:

bj = ±σj(f (1), . . . , f (d)) = ± 1

qj1
σj(p

(1)
1 , . . . , p

(d)
1 ) = ± 1

qj2
σj(p

(1)
2 , . . . , p

(d)
2 ).

Since p1, p2 ∈ O(X) are integral over C[x1, . . . , xn] we see that both σj(p
(1)
1 , . . . , p

(d)
1 )

and σj(p
(1)
2 , . . . , p

(d)
2 ) belong to C[x1, . . . , xn]. Since q1 and q2 have no common

factor this implies that bj ∈ C[x1, . . . , xn]. As a consequence, f is integral over
C[x1, . . . , xn] and thus belongs to O(X). �

Exercise 5.6.3. Let a ⊆ C[x1, . . . , xn] be an ideal with the property that any two
elements f1, f2 ∈ a have a non-trivial common divisor. Then there is a nonconstant h
which divides every element of a.

Corollary 5.6.4. If X is a normal variety, then O(X) =
⋂

pO(X)p where p

runs through the minimal prime ideals 6= (0).

Proof. Let r ∈
⋂

pO(X)p and define a := {q ∈ O(X) | q · r ∈ O(X)}. It

follows that a 6⊆ p for all minimal primes p 6= 0, and so VX(a) does not contain an
irreducible hypersurface. This implies that codimX VX(a) ≥ 2 and so r is regular
by the Proposition 5.6.2 above. �

We thus have the following characterization of normal varieties. An irreducible
variety X is normal if and only if the following two condition hold:

(a) For every minimal prime p 6= (0) the local ring O(X)p is a discrete valu-
ation ring;

(b) O(X) =
⋂

pO(X)p where p runs through the minimal prime ideals 6= (0).

We have seen in examples that there are bijective morphisms which are not
isomorphisms. This cannot happen if the target variety is normal, as the following
result due to Igusa shows (cf. [Igu73, Lemma 4, page 379]).
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Lemma 5.6.5 (Igusa’s Lemma). Let X be an irreducible and Y a normal affine
variety and let ϕ : X → Y be a dominant morphism. Assume

(a) codimY Y \ ϕ(X) ≥ 2, and
(b) degϕ = 1.

Then ϕ is an isomorphism.

Proof. By assumption (b), we have the following commutative diagram:

O(Y )
⊆−−−−→ O(X)

⊆
y ⊆

y
C(Y ) C(X)

IfH ⊆ Y is an irreducible hypersurface, then, by assumption (a),H meets the image

ϕ(X) in a dense set and so ϕ(ϕ−1(H)) = H. This implies that there is an irreducible

hypersurface H ′ ⊆ X such that ϕ(H ′) = H. If we denote by p := I(H) ⊆ O(Y ) and
p′ := I(H ′) ⊆ O(X) the corresponding minimal prime ideals we get p′ ∩O(Y ) = p.
Thus

O(Y )p ⊆ O(X)p′ $ C(Y ) = C(X).

Since O(Y )p is a discrete valuation ring this implies O(Y )p = O(X)p′ (see Exer-
cise 5.4.5). Thus, by Corollary 5.6.4,

O(X) ⊆
⋂
p′

O(X)p′ =
⋂
p

O(Y )p = O(Y ),

and the claim follows. �

Example 5.6.6. Let X be an irreducible variety and ϕ : X → Cn a dominant
morphism of degree 1 with finite fibers. Then ϕ(X) ⊆ Cn is a special open set and

ϕ : X
∼→ ϕ(X) is an isomorphism.

Proof. Let Y := Cn \ ϕ(X) ⊆ Cn. If H ⊆ Y is an irreducible hypersurface,
H = V(f), then ϕ−1(H) has codimension ≥ 2 in X. Since ϕ−1(H) = VX(ϕ∗(f)),
it follows from Krull’s Principal Ideal Theorem A.3.3.4 that ϕ−1(H) = ∅, and
so ϕ(X) ⊆ Cnf . Repeating this we finally end up with a special open set U ⊆ Cn

such that ϕ(X) ⊆ U and codimU \ ϕ(X) ≥ 2. Now the claim follows from Igusa’s
Lemma 5.6.5 above. �

This example generalizes to the following result called Zariski’s Main Theo-
rem.

Theorem 5.6.7. Let X be an irreducible affine variety and ϕ : X → Y a dom-
inant morphism with finite fibers. Then there is a finite morphism η : Ỹ → Y and
an open immersion ι : X ↪→ Ỹ such that ϕ = η ◦ ι:

X
� � ι //

ϕ
��

Ỹ

η

��

Y

In particular, if Y is normal and degϕ = 1, then ϕ is an open immersion.

Proof. Replacing Y by its normalization Ỹ in the field extension C(X)/C(Y )
we can assume that degϕ = 1, and have to show that ϕ is an open immersion.
Let H ⊆ Y be an irreducible hypersurface such that H ∩ ϕ(X) has codimension
≥ 2 in H. The ideal of H is a minimal prime p ⊆ O(Y ) and O(Y )p is a discrete
valuation ring. Since ϕ−1(H) has codimension ≥ 2 in X we see that VX(p) = ∅,
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and so ϕ(X) ⊆ Y \H. It follows that there are finitely many hypersurfaces Hi ⊆ Y
such that ϕ(X) ⊆ Y ′ := Y \

⋃
iHi and that Y ′ \ ϕ(X) has codimension ≥ 2. Now

we apply Igusa’s Lemma 5.6.5 to a covering of Y ′ by special open sets to see that
ϕ(X) = Y ′ and that ϕ : X

∼→ Y ′ is an isomorphism. �

5.7. Complete intersections. There is a partial converse of Proposition 5.6.1
which is a special case of Serre’s-Criterion (see below) which we now formulate
without giving a proof.

Proposition 5.7.1. Let H ⊆ Cn be an irreducible hypersurface. If the singular
points Hsing have codimension ≥ 2 in H, then H is normal.

Example 5.7.2. Let Qn := V(x2
1 + x2

2 + · · ·+ x2
n) ⊆ Cn. Then dimQn = n− 1

and 0 ∈ Qn is the only singular point. Thus Qn is normal for n ≥ 3.

Exercise 5.7.3. Show that the nilpotent cone N := {A ∈ M2 | A nilpotent} is a
normal variety.

Definition 5.7.4. A closed subvariety X ⊆ Cn of codimension d is called a
complete intersection if the ideal I(X) can be generated by d elements.

Note that every irreducible component of the zero set X := I(f1, . . . , fd) of d
polynomials fi ∈ C[x1, . . . , xn] has codimension ≤ d (Proposition 5.5.2), but even if
codimX = d this does not imply that X is a complete intersection. Such a variety
is called a set-theoretic complete intersection. The first part of the following result
gives a criterion to test if such a zero set is a complete intersecion.

Proposition 5.7.5 (Serre’s Criterion). Let X ⊆ Cn be the zero set of f1, . . . , fr ∈
C[x1, . . . , xn]: X := V(f1, . . . , fr). Define

X ′ := {x ∈ X | rk Jac(f1, . . . , fr)(x) < r}.
(1) If X \ X ′ is dense in X, then I(X) = (f1, . . . , fr) and X ′ = Xsing. In

particular, X is a complete intersection.
(2) If codimX X \X ′ ≥ 2, then X is normal.

Example 5.7.6. Let N := {A ∈ Mn | A nilpotent} be the nilpotent cone in
Mn. Then N is a normal variety. This result goes back to a fundamental paper of
Kostant, see [Kos63].

Proof. Consider the morphism π : Mn → Cn, π(A) := (trA, trA2, . . . , trAn).
Then N = π−1(0). If P ∈ N is a nilpotent element of rank n− 1, then rk dπP = n.
In fact, tr(P + εX)k = tr(P k + εkP k−1X) = εk tr(P k−1X). Taking P in Jordan
normal form one easily sees that dπP : X 7→ (trX, trPX, trP 2X, . . . , trPn−1X)
is surjective. It follows that rk Jac(f1, . . . , fn)(P ) = n for the functions fj(A) :=
trAj and for P ∈ N ′ := {nilpotent matrices of rank n − 1}. Now one shows that
codimN N \N ′ = 2. �

5.8. Divisors. Let X be a normal affine variety. Define

H := {H ⊆ X | H irreducible hypersurface}.

Definition 5.8.1. A divisor on X is a finite formal linear combination

D =
∑
H∈H

nH ·H where nH ∈ Z.

We write D ≥ 0 if nH ≥ 0 for all H ∈ H. The set of divisors forms the divisor group

DivX =
⊕
H∈H

Z ·H.
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Recall that for any irreducible hypersurface H ∈ H we have defined a discrete
valuation νH : C(X)∗ → Z whose discrete valuation ring is the local ring OX,H (see
section 5.4).

Definition 5.8.2. For f ∈ C(X)∗ we define the divisor of (f) by

(f) :=
∑
H∈H

νH(f) ·H.

Such a divisors is called a principal divisor.

Remarks 5.8.3. (1) (f) is indeed a divisor, i.e. νH(f) 6= 0 only for finitely
many H ∈ H.
(This is clear for f ∈ O(X) \ {0}, because νH(f) > 0 if and only if
H ⊆ V(f), and follows for a general f = p

q , because (f) = (p) − (q), by

definition.)
(2) (f · h) = (f) + (h) for all f, h ∈ C(X).
(3) (f) ≥ 0 if and only if f ∈ O(X).

(We have νH(f) ≥ 0 if and only if f ∈ OX,H . Since
⋂
H∈HOX,H = O(X)

the claim follows.)
(4) (f) = 0 if and only if f is invertible in O(X).

(If (f) = 0, then, by (3), f ∈ O(X) and f−1 ∈ O(X).)

Definition 5.8.4. Two divisors D,D′ ∈ DivX are called linearly equivalent,
written D ∼ D′, if D −D′ is a principal divisor. The set of equivalence classes is
the divisor class group of X:

ClX := DivX/{principal divisors}

It follows that we have an exact sequence of commutative groups

1→ O(X)∗ → C(X)∗ → DivX → ClX → 0

Remark 5.8.5. We have ClX = 0 if and only if O(X) is a unique factorization
domain. In fact, a unique factorization domain is characterized by the condition
that all minimal prime ideals p 6= (0) are principal.

Example 5.8.6. Let C ⊆ C2 be a smooth curve. If f ∈ O(C) and f̃ ∈ C[x, y]
a representative of f , then

(f) =
∑

P∈C∩V(f̃)

mP · P,

and the integers mP > 0 can be understood as the intersection multiplicity of C and
V(f̃) in P . For example, if the intersection is transversal, i.e., if TPC∩TPV(f̃) = (0),
then mP = 1 (see the following Exercise 5.8.7).

Exercise 5.8.7. Let C,E ⊆ C2 be two irreducible curves, I(C) = (f) and I(E) = (h).
If P ∈ C ∩ E define mP := dimC C[x, y]/(f, h). Show that

(1) If C is smooth and h̄ = h|C ∈ O(C), then (h̄) =
∑
P∈C∩EmP · P

(2) If P ∈ C ∩ E and TPC ∩ TPE = (0), then mP = 1.

Exercise 5.8.8. (1) For the parabola C = V(y − x2) we have ClC = (0).
(2) For an elliptic curve E = V(y2−x(x2−1)) every divisor D is linearly equivalent

to 0 or to P for a suitable point P ∈ E.
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Exercises

For the convenience of the reader we collect here all exercises from Appendix A.

Exercise. For a = (a1, a2, . . . , an) ∈ Cn denote by eva : O(Cn) → C the evaluation
map f 7→ f(a). Then the kernel of eva is the maximal ideal

ma := (x1 − a1, x2 − a2, . . . , xn − an).

Exercise. Let W ⊆ O(V ) a finite dimensional subspace. Then the linear functions
evv|W for v ∈ V span the dual space W ∗.

Exercise. Show that the subset A := {(n,m) ∈ C2 | n,m ∈ Z and m ≥ n ≥ 0} is
Zariski-dense in C2.

Exercise. A regular function f ∈ O(V ) is called homogeneous of degree d if f(tv) =
tdf(v) for all t ∈ C and all v ∈ V .

(1) A polynomial f ∈ C[x1, . . . , xn] is homogeneous of degree d as a regular function
on Cn if and only if all monomials occurring in f have degree d.

(2) Assume that the ideal a ⊆ O(V ) is generated by homogeneous functions. Then
the zeros set V(a) ⊆ V is a cone.

(3) Conversely, if X ⊆ V is a cone, then the ideal I(X) can be generated by homoge-
neous functions. More precisely, if f |X = 0, then fd|X = 0 for every homogeneous
component fd of f .

Exercise. Show that every non-empty open set in Cn is dense in the C-topology.
(Hint: Reduce to the case n = 1 where the claim follows from Example 1.2.6(4).)

Exercise. Let U,U ′ ⊆ Cn be two non-empty open sets. Then U ∩ U ′ is non-empty,
too. In particular, the Zariski topology is not Hausdorff.

Exercise. Consider a polynomial f ∈ C[x0, x1, . . . , xn] of the form f = x0−p(x1, . . . , xn),
and let X = V(f) be its zero set. Then I(X) = (f) and O(X) ' C[x1, . . . , xn].

Exercise. If X ⊆ V is a closed subset and m ⊆ O(X) a maximal ideal, then
O(X)/m = C. Moreover, m = ker(evx : f 7→ f(x)) for a suitable x ∈ X.

Exercise. Let a ⊆ R be an ideal of a (commutative) ring R. Then a is perfect if and
only if the residue class ring R/a has no nilpotent elements different from 0.

Exercise. Let C ⊆ C2 be the plane curve defined by y−x2 = 0. Then I(C) = (y−x2)
and O(C) is a polynomial ring in one variable.

Exercise. Let D ⊆ C2 be the zero set of xy − 1. Then O(D) is not isomorphic to a

polynomial ring, but there is an isomorphism O(D)
∼→ C[t, t−1].

Exercise. Consider the “parametric curve”

Y := {(t, t2, t3) ∈ C3 | t ∈ C}.
Then Y is closed in C3. Find generators for the ideal I(Y ) and show that O(Y ) is isomor-
phic to the polynomial ring in one variable.

Exercise. Let X ⊆ V be a closed subset and f ∈ O(X) a regular function such
that f(x) 6= 0 for all x ∈ X. Then f is invertible in O(X), i.e. the C-valued function
f−1 : x 7→ f(x)−1 is regular on X.

Exercise. Every closed subset X ⊆ Cn is quasi-compact, i.e., every covering of X
by open sets contains a finite covering. Is this also true for open or even locally closed
subsets of Cn?

Exercise. Let X ⊆ Cn be a closed subset. Assume that there are no nonconstant
invertible regular function on X. Then every nonconstant f ∈ O(X) attains all values in
C, i.e. f : X → C is surjective.

Exercise. Consider the curve

Y := {(t3, t4, t5) ∈ C3 | t ∈ C}
cf. Exercise 1.3.14. Then Y is closed in C3. Find generators for the ideal I(Y ) and show
that I(Y ) cannot be generated by two polynomials.
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(Hint: Define the weight of a monomial in x, y, z by wt(x) := 3,wt(y) := 4,wt(z) := 5.
Then the ideal I(Y ) is linearly spanned by the differences m1 −m2 of two monomials of
the same weight. This occurs for the first time for the weight 8, and then also for the
weights 9 and 10. Now show that for any generating system of I(Y ) these three differences
have to occur in three different generators.)

Exercise. Let Z be an affine variety with coordinate ring O(Z). Then every poly-
nomial f ∈ O(Z)[t] with coefficients in O(Z) defines a function on the product Z × C in
the usual way:

f =

m∑
k=0

fkt
k : (z, a) 7→

m∑
k=0

fk(z)ak ∈ C

Show that Z × C together with O(Z)[t] is an affine variety.

(Hint: For any ideal a ⊆ C[x1, . . . , xn] there is a canonical isomorphism C[x1, . . . , xn, t]/(a)
∼→

(C[x1, . . . , xn]/a)[t].)

Exercise. For any affine variety Z there is a inclusion-reversing bijection

{A ⊆ Z closed} ∼→ {a ⊆ O(Z) perfect ideal}

given by A 7→ I(A) := {f ∈ O(Z) | f |A = 0} (cf. Corollary 1.3.15).

Exercise. Denote by Cn the n-tuples of complex numbers up to sign, i.e., Cn :=
Cn/ ∼ where (a1, . . . , an) ∼ (b1, . . . , bn) if ai = ±bi for all i. Then every polynomial
in C[x2

1, x
2
2, . . . , x

2
n] is a well-defined function on Cn. Show that Cn together with these

functions is an affine variety.
(Hint: Consider the map Φ: Cn → Cn, (a1, . . . , an) 7→ (a2

1, . . . , a
2
n) and proceed like in

Example 1.4.3.)

Exercise. Let X be an affine variety. Show that every choice of a generating system
f1, f2, . . . , fn ∈ O(X) of the algebraO(X) consisting of n elements defines an identification
of X with a closed subset V(a) ⊆ Cn.
(Hint: Consider the map X → Cn given by x 7→ (f1(x), f2(x), . . . , fn(x)).)

Exercise. Let R be an arbitrary C-algebra. For any element s ∈ R define Rs :=
R[x]/(s · x− 1).

(1) Describe the kernel of the canonical homomorphism ι : R→ Rs.
(2) Prove the universal property: For any homomorphism ρ : R→ A such that ρ(s)

is invertible in A there is a unique homomorphism ρ̄ : Rs → A such that ρ̄◦ι = ρ.
(3) What happens if s is a zero divisor and what if s is invertible?

Exercise. The closed subvariety X := V(x2 − yz, xz− x) ⊆ C3 has three irreducible
components. Describe the corresponding prime ideals in C[x, y, z].

Exercise. Let X = X1 ∪ X2 where X1, X2 ⊆ X are closed and disjoint. Then one
has a canonical isomorphism O(X)

∼→ O(X1)×O(X2).

Exercise. Let X =
⋃
iXi be the decomposition into irreducible components. Let

Ui ⊆ Xi be open subsets and put U :=
⋃
i Ui ⊆ X.

(1) Show that U is not necessarily open in X.
(2) Find sufficient conditions to ensure that U is open in X.
(3) Show that U is dense in X if and only if all Ui are non-empty.

Exercise. If f ∈ C(C2) = C(x, y) is defined in C2 \ {(0, 0)}, then f is regular.
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Exercise. Let f ∈ C(V ) be a nonzero rational function on the vector space V . Then
Def(f) is a special open set in V .

Exercise. If X is irreducible, then O(X) =
⋂
x∈X OX,x.

Exercise. Let X be an affine variety, x ∈ X a point and X ′ ⊆ X the union of
irreducible components of X passing through x. Then the restriction map induces a natural
isomorphism OX,x

∼→ OX′,x.

Exercise. Let R be an algebra and µ : R→ RS the canonical map r 7→ r
1

where RS
is the localization at a multiplicatively closed subset 1 ∈ S ⊆ R (0 /∈ S).

(1) If a ⊆ R is an ideal and aS := RS µ(a) ⊆ RS , then

µ−1(µ(a)) = µ−1(aS) = {b ∈ R | sb ∈ a for some s ∈ S}.

Moreover, (R/a)S̄
∼→ RS/aS where S̄ is the image of S in R/a.

(Hint: For the second assertion use the universal property of the localization.)
(2) If m ⊆ R is a maximal ideal and S := R \ m, then mS is the maximal ideal of

RS and the natural maps R/mk
∼→ RS/m

k
S are isomorphisms for all k ≥ 1.

(Hint: The image S̄ in R/mk consists of invertible elements.)

Exercise. Let p < q be positive integers with no common divisor and define Cp,q :=
{(tp, tq) | t ∈ C} ⊆ C2. Then Cp,q is a closed irreducible plane curve which is rational, i.e.
C(Cp,q) ' C(t). Moreover, O(Cp,q) is a polynomial ring if and only if p = 1.

Exercise. Consider the elliptic curve E := V(y2 − x(x2 − 1)) ⊆ C2. Show that E is
not rational, i.e. that C(E) is not isomorphic to C(t).
(Hint: If C(E) = C(t), then there are rational functions f(t), h(t) which satisfy the equation
f(t)2 = h(t)(h(t)2 − 1).)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-1.0

-0.5

0.0

0.5

1.0

Exercise. Let g ∈ GLn be an invertible matrix. Then left multiplication A 7→ gA,
right multiplication A 7→ Ag and conjugation A 7→ gAg−1 are automorphisms of Mn.

Exercise. Let ϕ : X → Y be a morphism. If X ′ ⊆ X and Y ′ ⊆ Y are closed
subvarieties such that ϕ(X ′) ⊆ Y ′, then the induced map ϕ′ : X ′ → Y ′, x 7→ ϕ(x), is
again a morphism. The same holds if X ′ and Y ′ are special open sets.

Exercise. (1) Every morphism C→ C∗ is constant.
(2) Describe all morphisms C∗ → C∗.
(3) Every nonconstant morphism C→ C is surjective.
(4) An injective morphism C→ C is an isomorphism, and the same holds for injec-

tive morphisms C∗ → C∗.

Exercise. Let ϕ : Cn → Cm be a morphism and define

Γϕ := {(a, ϕ(a)) ∈ Cn+m}.
which is called the graph of the morphism ϕ. Show that Γϕ is closed in Cn+m, that

the projection prCn : Cn+m → Cn induces an isomorphism p : Γϕ
∼→ Cn and that ϕ =

prCm ◦ p−1.

Exercise. Show that for an affine variety X the morphisms X → C∗ correspond
bijectively to the invertible functions on X.

Exercise. Let X,Y be affine varieties and ϕ : X → Y , ψ : Y → X morphisms such
that ψ ◦ ϕ = IdX . Then ϕ(X) ⊆ Y is closed and ϕ : X

∼→ ϕ(X) is an isomorphism.
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Exercise. If ϕ1, ϕ2 : X → Y are two morphisms, then the “kernel of coincidence”

ker(ϕ1, ϕ2) := {x ∈ X | ϕ1(x) = ϕ2(x)} ⊆ X
is closed in X

Exercise. Let ϕ : X → Y be a morphism of affine varieties.

(1) If X is irreducible, then ϕ(X) is irreducible.
(2) Every irreducible component of X is mapped into an irreducible component of

Y .
(3) If U ⊆ Y is a special open set, then so is ϕ−1(U).

Exercise. Let ϕ : Cn → Cm be a morphism, ϕ = (f1, f2, . . . , fm) where fi ∈
C[x1, x2, . . . , xn], and let Y := ϕ(Cn) be the closure of the image of ϕ. Then

I(Y ) = (y1 − f1, y2 − f2, . . . , ym − fm) ∩ C[y1, y2, . . . , ym]

where both sides are considered as subsets of C[x1, . . . , xn, y1, . . . , ym]. So I(Y ) is obtained
from the ideal (y1 − f1, . . . , ym − fm) by eliminating the variables x1, . . . , xn.
(Hint: Use the graph Γϕ defined in Exercise 2.1.8 and show that the ideal I(Γϕ) is generated
by {yj − fj | j = 1, . . . ,m}.)

Exercise. Let ϕ : X
∼→ X be an automorphism and Y ⊆ X a closed subset such that

ϕ(Y ) ⊆ Y . Then ϕ(Y ) = Y and ϕ|Y : Y → Y is an automorphism, too.
(Hint: Look at the descending chain Y ⊇ Y1 := ϕ(Y ) ⊇ Y2 := ϕ(Y1) ⊇ · · · . If Yn = Yn+1,
then ϕ(Yn−1) = Yn = ϕ(Yn) and so Yn−1 = Yn.)

Exercise. Let ϕ : X → Y and ψ : Y → Z be morphisms, and assume that the
composition ψ ◦ ϕ is a closed immersion. Then ϕ is a closed immersion.

Exercise. Describe the fibers of the morphism ϕ : M2 → M2, A 7→ A2.
(Hint: Use the fact that ϕ(gAg−1) = gϕ(A)g−1 for g ∈ GL2.)

Exercise. Show that all fibers of the morphism ψ : C→ D := V(y2−x2−x3) ⊆ C2,

t 7→ (t2 − 1, t(t2 − 1)), are reduced and that ψ induces an isomorphism C \ {1,−1} ∼→
D \ {(0, 0)}.

Exercise. Consider the morphism ϕ : SL2 → C3, ϕ(

[
a b
c d

]
) := (ab, ad, cd).

(1) The image of ϕ is a closed hypersurface H ⊆ C3 defined by xz − y(y − 1) = 0.

(2) The fibers of ϕ are the left cosets of the subgroup T := {
[
t

t−1

]
| t ∈ C∗}.

(3) All fibers are reduced.

(Hint: Show that the left multiplication with some g ∈ SL2 induces an automorphism λg
of H and isomorphisms ϕ−1(y)

∼→ ϕ−1(λg(y)) for all y ∈ H. This implies that it suffices
to study just one fiber, e.g. ϕ−1(ϕ(E)).)

Exercise. Consider the morphism ϕ : C2 → C2 given by ϕ(x, y) := (x, xy).

(1) ϕ(C2) = C2 \ {(0, y) | y 6= 0} which is not locally closed.
(2) What happens with the lines parallel to the x-axis or parallel to the y-axis?
(3) ϕ−1(0) = y-axis. Is this fiber reduced?

(4) ϕ induces an isomorphism C2 \ y-axis
∼→ C2 \ y-axis.

Exercise. Let ϕ : C → C be a nonconstant morphism. Then ϕ has finite degree d,
and there is a non-empty open set U ⊆ C such that #ϕ−1(x) = d for all x ∈ U .

Exercise. Show that the ideal of the diagonal ∆(X) ⊆ X ×X is generated by the
function f · 1− 1 · f , f ∈ O(X) (see Example 2.5.2(4)).

Exercise. Show that O(X ×S Y ) ' (O(X)⊗O(S) O(Y ))red where Rred := R/
√

(0).

Exercise. Let K be a field of characteristic zero which contains the roots of unity.
Let d ∈ N and assume that a ∈ K \

⋃
p|dK

p. Then the polynomial zd − a ∈ K[z] is

irreducible.
(Hint: If bd = a, then zd − a =

∏
j(z − ζ

jb) where ζ ∈ K is a primitive d-th root of unity.
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It follows that K[b]/K is a Galois extension, and that the Galois group G embeds into

the group µd ⊆ K of d-th roots of unity by σ 7→ σ(b)
b

. Thus G is cyclic, and if the order is
m|d, then the power of bm is fixed by G.)

Exercise. If ϕ : X
∼→ Y is an isomorphism, then dimxX = dimϕ(x) Y for all x ∈ X.

Exercise. Let G ⊆ GLn be a closed subgroup. Then dimg G = dimG for all g ∈ G.

(Hint: Use the fact that left multiplication with g is an isomorphisms G
∼→ G.)

Exercise. Let X be an affine variety. Assume that O(X) is generated by r elements.
Then dimX ≤ r, and if dimX = r, then X ' Cr.

Exercise. The function x 7→ dimxX is upper semi-continuous on X. (This means
that for all α ∈ R the set {x ∈ X | dimxX < α} is open in X.)

Exercise. Let A be a finitely generated algebra. Then the following statements are
equivalent.

(i) A is finite dimensional.

(ii) Ared := A/
√

(0) is finite dimensional.
(iii) The number of maximal ideals in A is finite.

Exercise. Let U ⊆ X be a dense open set. Then dimX \ U < dimX.

Exercise. Every nonconstant morphism ϕ : C→ C is finite, and the same holds for
the nonconstant morphisms ψ : C∗ → C∗.

Exercise. Define ϕ : C∗ → C by t 7→ t + 1
t
. Show that his morphism is closed, has

finite fibers, but is not finite. Thus the converse statement of the Proposition 3.2.4 above
is not true.

Exercise. Let X be an affine variety and x ∈ X. Assume that f1, . . . , fr ∈ mx
generate the ideal mx modulo m2

x, i.e., mx = (f1, . . . , fr) + m2
x. Then {x} is an irreducible

component of VX(f1, . . . , fr).
(Hint: If C ⊆ VX(f1, . . . , fr) is an irreducible component containing x and m ⊆ O(C) the
maximal ideal of x, then m2 = m. Hence m = 0 by the Lemma of Nakayama above.)

Exercise. Let ϕ : X → Y be a finite surjective morphism. Then dimX = dimY .

Exercise. Let X be an affine variety and X =
⋃
iXi the irreducible decomposition.

A morphism ϕ : X → Y is finite if and only if the restrictions ϕ|Xi : Xi → Y are finite for
all i.

Exercise. Assume that the morphism ϕ : Cn → Cm is given by nonconstant homo-
geneous polynomials f1, · · · , fm. If ϕ−1(0) is finite, then ϕ−1(0) = {0} and ϕ is a finite
morphism.
(Hint: Use the example above together with Exercise 3.1.11.)

Exercise. Let X ⊆ Cn be a closed cone and λ : Cn → Cm a linear map. If X∩kerλ =
{0}, then λ|X : X → Cm is finite. Moreover, the set of linear maps λ : Cn → Cm such that
λ|X is finite is open in Hom(Cn,Cm) = Mm,n(C).

Exercise. Let r ∈ C(x1, . . . , xn) satisfy an equation of the form

rm + p1r
m−1 + · · ·+ pm = 0 where pj ∈ C[x1, . . . , xn].

Then r ∈ C[x1, . . . , xn]. In particular, if A ⊆ C(a1, . . . , an) is a subalgebra which is finite
over C[a1, . . . , an], then A = C[a1, . . . , an].

Exercise. Let X be an affine variety and f ∈ O(X) a nonzero divisor. For any
x ∈ VX(f) we have dimx VX(f) = dimxX − 1.
(Hint: If f is a nonzero divisor, then f is nonzero on every irreducible component Xi of
X and so VXi(f) is either empty or every irreducible component has codimension 1. Now
the claim follows easily.)

Exercise. Work out the decomposition of Theorem 3.4.1 for the morphisms ϕ : SL2 →

C3, ϕ(

[
a b
c d

]
) := (ab, ad, cd) (see Exercise 2.2.14). What is the degree of the finite mor-

phism ρ?
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Exercise. Consider the morphism ϕ : C2 → C2 given by (x, y) 7→ (x, xy). Show that
the image ϕ(C2) is not locally closed in C2 and that the map a 7→ dimϕ−1(a) is not
upper-semicontinuous.

Exercise. Let X and Y be irreducible varieties and ϕ : X → Y a dominant mor-
phism. If D ⊆ Y is a dense subset such that dimϕ−1(y) = d for all y ∈ D, then
dimX = dimY + d.

Exercise. (1) Finite unions, finite intersections and complements of constructible
sets are again constructible.

(2) If C is a constructible, then C contains a set U which is open and dense in C̄.

Exercise. Let X be an irreducible affine variety and C ⊆ X a dense constructible
subset. Then C can written in the form

C = C0 ∪
m⋃
j=1

Cj

where C0 ⊆ X is open and dense, Cj is locally closed, Cj is irreducible of codimension
≥ 1, and Cj ∩ C0 = ∅.

Exercise. What is the degree of the morphism Mn → Mn given by A 7→ Ak?

Exercise. Let ϕ : X → Y be a dominant morphism where X and Y are irreducible.
If there is an open dense set U ⊆ X such that ϕ|U is injective, then ϕ is birational.

Exercise. Let ϕ : X → Y be a quasi-finite morphism, i.e. all fibers are finite. Then

dimϕ(X) = dimX.

Exercise. Let δ ∈ TxX be a tangent vector in x. Then

(1) δ(c) = 0 for every constant c ∈ O(X).

(2) If f ∈ O(X) is invertible, then δ(f−1) = − δf

f(x)2
.

Exercise. The canonical homomorphism O(X) → OX,x induces an isomorphism

mx/m
2
x
∼→ m/m2 where m ⊆ OX,x is the maximal ideal.

Exercise. If Y ⊆ X is a closed subvariety and x ∈ Y , then dimTxY ≤ dimTxX.
(Hint: The surjection O(X)→ O(Y ) induces a surjection mx,X/m

2
x,X → mx,Y /m

2
x,Y .)

Exercise. Calculate the tangent spaces of the plane curves C1 := V(y − x2) and
C2 = V(y2 − x2 − x3) in arbitrary points (a, b).

Exercise. If X,Y ⊆ Cn are closed subvarieties and z ∈ X ∩ Y , then Tz(X ∩ Y ) ⊆
TzX ∩ TzY ⊆ Cn. Give an example where Tz(X ∩ Y ) $ TzX ∩ TzY .

Exercise. If X is an affine variety such that all irreducible components have the
same dimension. Then Xsing is closed and has a dense complement.

Exercise. The hypersurface H = V(xz − y(y − 1)) ⊆ C3 from Exercise 2.2.14 is
nonsingular.

Exercise. Let q ∈ C[x1, . . . , xn] be a quadratic form and Q := V(q) ⊆ Cn. Then 0 is
a singular point of Q. It is the only singular point if and only if q is nondegenerate.

Exercise. Determine the singular points of the plane curves

Ep := V(y2 − p(x))

where p(x) is an arbitrary polynomial, and deduce a necessary and sufficient condition for
Ep to be smooth.

Exercise. Let X ⊆ Cn be a closed cone (see Exercise 1.2.9). Then Xsing is a cone,
too. Moreover, 0 ∈ X is a nonsingular point if and only if X is subspace.

Exercise. Let X be an affine variety such that the group of automorphisms acts
transitively on X. Then X is smooth.
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Exercise. Determine the vector fields on the curve D := V(y2 − x2 − x3) ⊆ C2. Do
they all vanish in the singular point of D?

Exercise. Determine the vector fields on the curves D1 := {(t, t2, t3) ∈ C3 | t ∈ C}
and D2 := {(t3, t4, t5) ∈ C3 | t ∈ C}.
(Hint: For D2 one can use that O(D2) ' C[t3, t4, t5] = C⊕

⊕
i≥3 Ct

i.)

Exercise. Let A be an arbitrary associative C-algebra. Then A is a Lie algebra with
Lie bracket [a, b] := ab− ba, i.e., the bracket [ , ] satisfies the Jacobi identity

[a, [b, c]] = [[a, b], c] + [b, [a, c]] for all a, b, c ∈ A.

Exercise. Let R be an associative C-algebra. If ξ, η : R→ R are both C-derivations,
then so is the commutator ξ ◦ η − η ◦ ξ. This means that the derivations Der(R) form a
Lie subalgebra of EndC(R).

Exercise. Let X ⊆ Cn be a closed and irreducible. Then dimTX ≥ 2 dimX. If X
is smooth, then TX is irreducible and smooth of dimension dimTX = 2 dimX.
(Hint: If I(X) = (f1, . . . fm), then TX ⊆ Cn × Cn is defined by the equations

fj = 0 and

n∑
i=1

yi
∂fj
∂xi

(x) = 0 for j = 1, . . . ,m.

The Jacobian matrix of this system of 2m equations in 2n variables x1, . . . , xn, y1, . . . , yn
has the following block form[

Jac(f1, . . . , fm) 0
∗ Jac(f1, . . . , fm)

]
and thus has rank ≥ 2 · rk Jac(f1, . . . , fm) = 2(n− dimX).)

Exercise. Let ϕ : X → Y and ψ : Y → Z be morphisms of affine varieties and let
x ∈ X. Then

d(ψ ◦ ϕ)x = dψy ◦ dϕx
where y := ϕ(x) ∈ Y .

Exercise. Consider the multiplication µ : M2×M2 →M2 and show:

(1) dµ(A,B) is surjective, if A or B is invertible.
(2) If rkA = rkB = 1, then dµ(A,B) has rank 3.
(3) We have rk dµ(A,0) = rk dµ(0,A) = 2 rkA.

Exercise. Calculate the differential of the morphism ϕ : End(V )× V → V given by
(ρ, v) 7→ ρ(v), and determine the pairs (ρ, v) where dϕ(ρ,v) is surjective.

Exercise. For every point (x, y) ∈ X×Y we have TxX = ker d(prY )(x,y) and TyX =
ker d(prX)(x,y) where prX , prY are the canonical projections (see Proposition 4.1.9).

Exercise. For the closed subset N ⊆ M2 of nilpotent 2×2-matrices we have I(N) =
(tr, det).

Exercise. Let f ∈ C[x1, . . . , xn] be a nonconstant polynomial. Then V(f − λ) is a
smooth hypersurface for almost all λ ∈ C.

Exercise. Let A ⊆ B be rings. If A is Noetherian and B finite over A, then B is
integral over A.

Exercise. Let f ∈ C[x] be a nonconstant polynomial. Then C[x] is integral over the
subalgebra C[f ].

Exercise. If the domain A is integrally closed, then so is every ring of fraction AS
where 1 ∈ S ⊆ A is multiplicatively closed.

Exercise. If ϕ : X → Y is a finite surjective morphism where X is irreducible and
Y is normal, then #ϕ−1(y) ≤ degϕ for all y ∈ Y . (See Proposition 3.6.1 and its proof.)

Exercise. Consider the morphism ϕ : C2 → C4, (x, y) 7→ (x, xy, y2, y3).

(1) ϕ is finite and ϕ : C2 → Y := ϕ(C2) is the normalization.
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(2) 0 ∈ Y is the only non-normal and the only singular point of Y .
(3) Find defining equations for Y ⊆ C4 and generators of the ideal I(Y ).

Exercise. If X is a normal variety, then so is X × Cn.

Exercise. Let A be a discrete valuation ring with field of fraction K. If B ⊆ K is a
subring containing A, then either B = A or B = K.

Exercise. Let K/k be a finitely generated field extension, and let A ⊆ K be a
discrete valuation ring with maximal ideal m, field of fraction K and containing k. Then
tdegk A/m < tdegkK.
(Hint: If tdegk R/m = tdegkK, then R contains a field L with tdegk L = tdegkK. This
implies that K is a finitely generated R-module which is impossible.)

Exercise. Let a ⊆ C[x1, . . . , xn] be an ideal with the property that any two elements
f1, f2 ∈ a have a non-trivial common divisor. Then there is a nonconstant h which divides
every element of a.

Exercise. Show that the nilpotent cone N := {A ∈ M2 | A nilpotent} is a normal
variety.

Exercise. Let C,E ⊆ C2 be two irreducible curves, I(C) = (f) and I(E) = (h). If
P ∈ C ∩ E define mP := dimC C[x, y]/(f, h). Show that

(1) If C is smooth and h̄ = h|C ∈ O(C), then (h̄) =
∑
P∈C∩EmP · P

(2) If P ∈ C ∩ E and TPC ∩ TPE = (0), then mP = 1.

Exercise. (1) For the parabola C = V(y − x2) we have ClC = (0).
(2) For an elliptic curve E = V(y2−x(x2−1)) every divisor D is linearly equivalent

to 0 or to P for a suitable point P ∈ E.
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The Strong Topology on Complex Affine Varieties

In this appendix we define the C-topology (or strong topology) on affine vari-
eties and prove some basic properties, e.g. that finite morphisms are proper in the
C-topology and that irrreducible varieties are connected in the C-topology. Then
we show the complete reducibility of the representations of the classical groups
GLn,SLn,On,SOn,Spn by using Weyl’s “unitary trick” ([Wey39, Chap. VIII B]).

The classical groups G contain subgroups K consisting of unitary matrices
which are Zariski dense and are compact with respect to the C-topology. By means
of a Haar measure one gets the complete reducibility of the representations of the
compact groups K (Theorem of Hurwitz-Schur [?]). Since K is Zariski dense in
G, this implies the linear reductivity of G. At the end we give a brief description
of the Cartan and Iwasawa decompositions of reductive groups.
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1. C-Topology on Varieties

The affine n-space Cn carries a natural topology coming from the standard
metric on Cn = R2n. We call this the strong topology or the C-topology in or-
der to distinguish from the Zariski-topology. Since polynomials are continuous in
the strong topology we see that every affine variety X carries a strong topology,
independent of the embedding into affine n-space. As the name suggests, the C-
topology is stronger then the Zariski-topology: Zariski-open sets are open in the
C-topology, shortly C-open, and Zariski-closed sets are closed in the C-topology,
shortly C-closed. The same argument shows that morphisms are continuous in the
C-topology, shortly C-continous.

1.1. Smooth points. A first result we have in this context is the following.

Proposition 1.1.1. Let X be an affine variety and x ∈ X a smooth point. Then
X is a complex manifold in a neighborhood of x, i.e. there is a C-open neighborhood
U of x which is C-homeomorphic to Cd where d = dimxX.

Proof. Let X be a closed subset of Cn, and let f1, · · · , fm be generators
of the ideal I(X) ⊆ C[x1, . . . , xn]. Then, by assumption, the Jacobian matrix
J(f1, . . . , fm) has rank d in x. We can assume that the matrix

∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xd
...

... · · ·
...

∂fd
∂x1

∂fd
∂x2

· · · ∂fd
∂xd


is invertible. By the complex implicit function theorem this implies that the pro-
jection p : Cn → Cd onto the first d coordinates induces local homeomorphism
p : X → Cd in a neighborhood of x ∈ X. �

Remark 1.1.2. The complex implicit function theorem is much stronger than
what we used above. It implies that the open set of smooth points of an algebaic
variety is a complex manifold.

1.2. Proper morphisms. Next we want to show that finite morphisms are
closed in the C-topology, shortly C-closed. For this we use the fact that Cn is a
(Zariski-) open subset of the n-dimensional projective space Pn which is compact
in the C-topology. (The C-topology on Pn is obtained as usual from a covering by
n+ 1 copies of Cn.)

Lemma 1.2.1. Let ϕ : X → Y be a finite morphism and ψ : X → Z an arbitrary
morphism. Then the image of X under that map (ϕ,ψ) : X → Y × Z is Zariski-
closed.

Proof. This follows immediately from the following commutative diagram,
because the upper horizontal map has a retraction and thus is a closed immersion,
and the vertical map on the right is finite.

X
(id,ϕ,ψ)−−−−−→ X × Y × Zy yϕ×idY×Z

Y × Z closed−−−−→
⊆

Y × Y × Z

�

Proposition 1.2.2. A finite morphism ϕ : X → Y is a closed map with respect
to the C-topology.
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Proof. We can assume that X is a closed subset of Cn. Now consider the
embedding ψ : X ↪→ Cn ↪→ Pn. By the previous lemma, the image of X in Y × Pn
is closed, and the claim follows, because the projection Y ×Pn → Y is a closed map
with respect to the C-topology. �

1.3. Connectedness. Here we want to prove the following result.

Proposition 1.3.1. An irreducible variety X is connected in the C-topology.

In his book [Sha94b, Chap. VII, section 2] Shafarevich gives two proofs of
this result (pages 123–130). We believe that our proof is more elementary, although
there is some overlap with Shafarevich’s second proof.

Proof. (a) If we have a surjective morphism ϕ : Y → X and if Y is C-
connected, then so is X. Moreover, every non-empty Z-open set of X meets every
C-connected component of X. This follows because the Z-closure and the C-closure
of a Z-open set are equal (see ???).

(b) By Noether’s normalization we can find a finite surjective morphism ϕ : X →
An. Replacing X by a Z-open set of a suitable ramified finite covering we can assume
that X is smooth and that we have a finite unramified Galois-covering ψ : X → U
where U ⊆ An is a Z-open set. In particular, X is a complex manifold (see ???),
and for every C-connected component Xi of X the induced map ψi : Xi → U is an
unramified covering. It follows that the Galois group Γ permutes the C-connected
components transitively. Denote by Γ0 ⊆ Γ the normalizer of Xi and set Y := X/Γ0.
Then Y is smooth, has the same number of C-connected components Yi as X, and
the induced morphism ψ̄ : Y → U is again an unramified Galois-covering with
Galois group Γ̄ := Γ/Γ0. By construction, each Yi is mapped bijectively, hence bi-

holomorphically, onto U under ψ̄, i.e. ψ̄i := ψ̄|Yi : Yi
∼→ U is biholomorphic. Thus

the number of connected components of X and Y is equal to d := [C(Y ) : C(U)].

(c) Choose a regular function f ∈ O(Y ) which generates the field extension

C(Y )/C(U). Then f satisfies an equation fd +
∑d−1
i=0 rif

i = 0 where ri ∈ C(U).
Clearly, the holomorphic functions fi := f |Yi satisfy the same equation, as well as
the pull-backs hi := (ψ̄∗)−1(fi) which are holomorphic functions on U . By Propo-

sition 1.4.1 below the hi are rational functions on U . Since td +
∑d−1
i=0 rit

i is an
irreducible polynomial, we see that d = 1, hence X is C-connected. �

1.4. Holomorphic functions satisfying an algebraic equation.

Proposition 1.4.1. Let U ⊆ Cn be a Z-open set, and let h be a holomorphic

function on U . If h satisfies an algebaic equation hd +
∑d−1
i=0 rih

i = 0 with rational
coefficents ri ∈ C(U), then h is rational.

Proof. We can assume that Cn\U = V(f) for some polynomial f ∈ C[x1, . . . , xn].
Multiplying h with a suitable rational function we can also assume that the co-
efficients ri of the equation are polynomials. Since h(x) is an eigenvalue of the
d× d-matrix

B(x) :=


0 0 · · · 0 −r0(x)
1 0 · · · 0 −r1(x)
0 1 · · · 0 −r2(x)
...

...
. . .

...
...

0 0 · · · 1 −rd−1(x)


we see that |h(x)|2 ≤ ‖B(x)‖2 =

∑d−1
i=0 |ri(x)|2 + (d − 1) by Lemma 1.4.2 below.

In particular, |f(x)h(x)| ≤ |f(x)| · ‖B(x)‖ which implies that fh extends to a
continuous function on Cn with value zero on the complement V(f) of U in Cn. Now



236 APPENDIX B. THE STRONG TOPOLOGY ON COMPLEX AFFINE VARIETIES

we use Cauchy’s integral theorem on polydisks to see that fh defines a holomorphic
function on Cn. Then Lemma 1.4.3 implies that fh is a polynomial. �

The next lemma is well-known.

Lemma 1.4.2. Let A be a complex n×n-matrix. For any eigenvalue λ of A we

have |λ| ≤ ‖A‖ where ‖A‖ :=
√∑

i,j |aij |2.

Proof. Choose an eigenvector v of length ‖v‖ = 1. Then Av = λv implies
that

|λ| = ‖λv‖ = ‖Av‖ ≤ ‖A‖ · ‖v‖ = ‖A‖.
�

Lemma 1.4.3. Let h be a holomorphic function on Cn which is polynomially
bounded, i.e. there is an m > 0 and a C > 0 such that |h(x)| ≤ C(‖x‖m + 1) for all
x ∈ Cn. Then h is a polynomial.

Proof. For z ∈ C and x ∈ Cn define the holomorphic function h̃(z, x) :=
h(zx). Then we have

h̃(z, x) =
∞∑
k=0

hk(x)zk.

Since

hk(x) =
∑

i1,...,ik

1

k!

∂kh̃

∂xi1∂xi2 · · · ∂xik

∣∣∣∣∣
z=0

xi1xi2 · · ·xik

we see that the coefficients hk(x) are homogenous polynomials of degree k. We
claim that hk(x) = 0 for k > m. In fact,

|hk(x)| =
∣∣∣∣ 1

2π

∫ 2π

0

e−ikθh(eiθx)dθ

∣∣∣∣ ≤ 1

2π

∫ 2π

0

|e−ikθh(eiθx)|dθ ≤ C(‖x‖m + 1),

and the claim follows. �

1.5. Closures in Zariski- and C-topology. The main result here is the
following.

Proposition 1.5.1. Let X be an affine variety and C ⊆ X a constructible
subset. Then the closure C

c
of C in the C-topology is equal to the closure C in the

Zariski-topology.

Proof. Since every constructible subset C contains a set U ⊆ C which is open
and dense in C̄ we can assume that X = C̄ and thatC ⊆ X is open. Moreover, one
easily reduces to the case of an irreducible X. If dimX = 1, then C = X \ F for a
finite set F .

�

2. Reductivity of the Classical Groups

2.1. Maximal compact subgroups.

Exercises

For the convenience of the reader we collect here all exercises from Appendix B.
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1. Introduction: Local Cross Sections and Slices

Luna’s famous Slice Theorem gives a “local description” of an action of a
reductive group G on an affine variety. It is modeled on the case of compact trans-
formation groups, but one has to take into account the existence of non-closed
orbits. Also one has to modify the concept of “local” and of “open neighborhoods”
which make the whole story much more complicated. We first describe the situation
of a compact group acting continuously on a nice topological space.

1.1. Free actions and cross sections. Let K be a compact group and let
X be a K-space, i.e. a Hausdorff topological space with a continuous action of G.
Then the orbit space X/G is again Hausdorff and the quotient map π : X → X/G
is open, closed and proper.

Assume that the point x ∈ X has a trivial stabilizer. Then one might expect
that in a suitable neighborhood of the orbit Kx the action is free and X looks like
K×U where K acts by left multiplication on K. This is indeed the case under very
mild assumptions, e.g. if K is a compact Lie group and X is locally compact.

A cross section is a continuous map σ : X/G→ X such that π◦σ is the identity
onX/G. A local cross section defined on U ⊆ X/G is a cross section of π−1(U)→ U .
A first result for compact transformation groups in this setting is the following, see
[Bre72, Chap. II, Theorem 5.4].

Proposition 1.1.1. Assume that K is a compact Lie group and that X is
locally compact. If x ∈ X has a trivial stabilizer, Kx = {e}, then there is a local
cross section σ in a neighborhood U of π(x) such that π−1(U) ' K × U . Thus a
free action of K on X looks locally like K × U .

Example 1.1.2. Let us look at an algebraic example. Take the finite group
G = Z/2 acting on X := C by ± id. Then the orbit space X/G can be identified
with C where the quotient map π : X → C is given by π(z) := z2. Removing the

origin {0} ∈ X, the action is free and the quotient π : Ẋ := X \ {0} → Ċ := C \ {0}
is a 2-fold covering. This is clearly locally trivial in the C-topology, but not locally
trivial in the Zariski-topology. However, looking at the two fiber products

F = C ∪ C −−−−→ Xyπ̃ yπ
C z 7→z2

−−−−→ C

Ḟ = Ċ ∪ Ċ −−−−→ Ẋyπ̃ yπ
Ċ z 7→z2

−−−−→ Ċ

we find that F ' V(xy) ⊆ C2, the union of two lines intersecting in the origin, and

that Ḟ is the disjoint union of two copies of Ċ, interchanged by G and each one
mapped isomorphically to Ċ under π̃. Thus the quotient π can be trivialized, not
with an open covering of Ċ, but with the “étale” surjective map Ċ→ Ċ, z 7→ z2.

1.2. Associated bundles and slices. Assume again that K is a compact
group and X a K-space. What can we say if the action is not free? More precisely,
how does X look like in a neighborhood of an orbit O ' K/H? In order to explain
this we make the following construction. Consider an H-space Y and define

X := K ×H Y := (K × Y )/H

where H acts freely on the product K×Y by h(g, y) := (gh−1, hy). We will denote
the orbit of (g, y) by [g, y] ∈ K ×H Y . This space is called twisted product or
associated bundle. It has a number of remarkable properties. First of all, we have
an action of K on K×HY induced by the left multiplication on K: g′[g, y] := [g′g, y].
Then, there is a natural closed embedding Y ↪→ K ×H Y , y 7→ [e, y].



C.2. FLAT AND ÉTALE MORPHISMS 239

Proposition 1.2.1. (1) There is a canonical bijection between the K-
orbits in K ×H Y and the H-orbits in Y given by O = K[g, y] 7→ Hy =

O∩Y . This map induces a homeomorphism of orbit spaces (G×HY )/G
∼→

Y/H, the inverse map is given by Hy 7→ G[e, y].
(2) The projection K × Y → K induces a K-equivariant map p : K ×H Y →

K/H which is a locally trivial bundle with fiber Y : p−1(gH) = gY .

Except for the last statement, the proofs are easy exercises and are left to the
reader. For the last statement, one has to use the fact that the projection K → K/H
admits local cross sections.

Example 1.2.2. Let us give again an algebraic example. Take G := C∗ and
H := {±1} ⊆ C∗, and consider the action of H on Y := C by ± id as in the example
above. Then the associated bundle G×H Y has the following description:

C∗ ×H C ∼→ C∗ × C, [t, z] 7→ (t2, tz),

the C∗-action on C∗ × C is given by t(s, x) = (t2s, tx), and the closed embedding
C ↪→ C∗ ×C is z 7→ (1, z). Thus C∗(s, x) ∩C = {±x} and (C∗ ×C)/C∗ ' C where
the quotient map π : C∗ × C → C is given by (s, x) 7→ x2. Finally, p : C∗ × C →
C∗/H ' C∗ is the projection prC∗ and so p is a trivial bundle with fiber C.

Remark 1.2.3. There is an easy criterion to show that a given K-space X is an
associated bundle. Assume that there is a K-equivariant map p : X → K/H with
some closed subgroup H ⊆ K. Then Y := p−1(eH) is an H-space, and we have a
canonical homeomorphism

ϕ : K ×H Y
∼→ X, [g, y] 7→ gy.

In fact, ϕ is continuous and bijective, and the inverse map is given by x 7→
[p(x), p̃(x)

−1
x] where p̃(x) ∈ K is a representative of p(x). We use here again

the fact that K → K/H has local cross sections.

Now we can formulate the local structure theorem for actions of compact
groups, see [Bre72, Chap. II, Theorem 5.4].

Theorem 1.2.4. Let K be a compact Lie groups and X a locally compact
K-space. For any x ∈ X there is a locally closed and Kx-stable subset S ⊆ X
containing x such that

(1) KS is an open neighborhood of Kx,
(2) K ×Kx Y → KY , [g, y] 7→ gy, is a homeomorphism.

Such an S ⊆ X is called a slice in x, and KS is called a tube about Kx. The
theorem together with Proposition 1.2.1 above tells us that the action of K in a
neighborhood of an orbit O = Kx is completely determined by the action of Hx on
a slice in x.

2. Flat and Étale Morphisms

In this section we discuss the concept of “local” in algebraic geometry. Since
there are no “small” open neighborhoods in the Zariski-topology we will replace
them by so-called “étale neighborhoods”. For this we have to define étale morphisms
and to describe their basic properties. In the smooth case, a morphism is étale in a
point if and only if its differential is an isomorphism. In general, one has to ask in
addition that the morphism is flat.

In this section, we will use some results from the literature, and we refer to
[Har77, III.9], [Mat89, 3.7 and 8], and [Eis95, Section 6] for more details and
proofs. Our approach is based on ”standard étale morphisms” (Example 2.2.1)
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2.1. Unramified and étale morphisms. Let ϕ : X → Y be a morphism,
let x ∈ X and set y := ϕ(x) ∈ Y . Then the morphism ϕ induces a homomorphism
ϕ∗ : OY,y → OX,x of local rings, i.e. ϕ∗(my) ⊆ mx.

Definition 2.1.1. The morphism ϕ is unramified in x ∈ X if mx = ϕ∗(my)OX,x.
More geometrically, this means that x is an isolated point of the fiber F := ϕ−1(y)
and F is reduced in x.

Recall that the differential dϕx : TxX → TyY vanishes on TxF ⊆ TxX, and
that TxF = ker dϕx in case the fiber is reduced in x. It follows that ϕ is unramified
in x if and only if the differential dϕx is injective. A immediate consequence is that
an unramified morphism ϕ : X → Y has finite reduced fibers.

Exercise 2.1.2. Show that the subset {x ∈ X | ϕ is unramified in x} ⊆ X is open.
(Hint: )

Another important concept is flatness. It will play a central rôle in all what
follows. Unfortunately, there is no easy “geometric meaning” of flatness; it is a
purely algebraic concept.

Definition 2.1.3. If R is a ring, then an R-module M is called flat if the
functor N 7→ N ⊗R M , N an R-module, is left exact. A morphism ϕ : X → Y is
called flat in x ∈ X if OX,x is a flat OY,ϕ(x)-module (with respect to ϕ∗ : OY,ϕ(x) →
OX,x).

We have the following ”Local Criterion for Flatness”, see [Eis95, Theorem 6.8].

Lemma 2.1.4. Let ϕ : X → Y be a morphism, let x ∈ X and set y := ϕ(x) ∈ Y .
Then ϕ is flat in x if and only if the map my ⊗OY,y OX,x → OX,x is injective.

Exercise 2.1.5. Show that the projection prY : X × Y → Y is flat.

Exercise 2.1.6. If ϕ : X → Y is flat in x ∈ X, then ϕ∗ : OY,ϕ(x) → OX,x is injective.
(Hint: For h ∈ mϕ(x) denote by ah ⊆ OY,ϕ(x) the kernel of µh : f 7→ hf . Then we get an

exact sequence 0 → ah ⊗OY,ϕ(x)
OX,x → OX,x

µh→ OX,x. Hence µh|OX,x = 0 if and only if

h = 0.)

Finally, we define étale morphisms which will be the algebraic-geometric re-
placement for local isomorphisms.

Definition 2.1.7. The morphism ϕ : X → Y is étale in x ∈ X if ϕ is unramified
and flat in x. Equivalently, ϕ∗ induces an isomorphism my⊗OY,y OX,x

∼→ mx where
y := ϕ(x).

Examples 2.1.8. (1) An open immersion X ↪→ Y is étale.
(This is clear since OX,x = OY,x for all x ∈ X.)

(2) If ϕ : X → Y is étale in x ∈ X, then the differential dϕx : TxX → Tϕ(x)Y
is an isomorphism.
(Since mny ⊗OY,y OX,x

∼→ mnx for all n (see the following exercise) it follows

that my/m
2
y
∼→ mx/m

2
x is an isomorphism.)

(3) If ϕ : X → Y is étale in x ∈ X and y := ϕ(x), then X is smooth in x if
and only if Y is smooth in y.
(The following exercise implies that the canonical maps mny/m

n+1
y →

mnx/m
n+1
x are isomorphisms for all n ≥ 0. Hence grmy OY,y ' grmx OX,x,

and the claim follows from Theorem A.4.10.1.)

Exercise 2.1.9. If ϕ : X → Y is étale in x ∈ X, then the maps mny ⊗OY,y OX,x → mnx
are isomorphisms for all n ≥ 0.

In case X and Y are smooth, there is simple criterion for ϕ to be étale, see
[Har77, III. Proposition 10.4 and Exercise 10.3].
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Proposition 2.1.10. Assume that X is smooth in x and Y is smooth in y. Then
ϕ is étale in x if and only if the differential dϕx : TxX → TyY is an isomorphism.

Using the implicit function theorem it follows that an étale morphism between
smooth varieties is a local homeomorphism in the C-topology. We will see that this
holds in general for any étale morphism, as a consequence of Proposition 2.2.2.

Let us recall some basic properties of flat and étale morphisms. We refer to
[Har77, III.9], [Mat89, 3.7 and 8], and [Eis95, Section 6] for more details and
proofs.

Lemma 2.1.11. (1) Let ψ : X
η→ Y

ϕ→ Z be a composition. If η and ϕ are
flat (resp. étale), then ψ is flat (resp. étale). If ψ and η are flat (resp.
étale) and η is surjective, then ϕ is flat (resp. étale).

(2) If ϕ : X → Y is flat in x ∈ X, then ϕ∗ : OY,ϕ(x) → OX,x is injective, and
for every ideal a ⊆ OY,ϕ(x) we have aOX,x ∩ OY,ϕ(x) = a. In particular,
OX,x/aOX,x is flat over OY,ϕ(x)/a and dimOX,x = dimOY,ϕ(x).

(3) For an arbitrary morphism ϕ : X → Y the set of points x ∈ X where ϕ is
flat (resp. étale) is open in X.

(4) A flat morphism ϕ : X → Y is open and equidimensional, i.e., if ϕ is flat
in x ∈ X, then dimxX = dimϕ(x) Y + dimx ϕ

−1(ϕ(x)).

Proof. (1) This is an easy exercise which we leave to the reader.

(2) This follows immediately from the definition, see [Mat89, Theorem 7.5].

(3) For flatness this is [Mat89, Theorem 24.3]. For the étaleness one remarks
that the set of points x ∈ X where the differential dϕx is injective is open, see
Exercise 2.1.2.)

(4) See [Har77, Chap. III, Exercise 9.1 and Proposition 9.5] or [Mat89, The-
orem 15.1]. �

A morphism ϕ : X → Y is called faithfully flat if it is flat and surjective. If
X and Y are affine this is equivalent to the following condition: A homomorphism
N →M of O(Y )-modules is injective if and only if O(X)⊗O(Y )N → O(X)⊗O(Y )M
is injective. Here is a useful application, on the level of rings.

Lemma 2.1.12. Let A be a ring, and let R be an A-algebra. Let B/A be faithfully
flat and assume that B ⊗A R is a finitely generated B-algebra. Then R is finitely
generated over A.

This behavior is usually expressed in the following way. If an A-algebra R
becomes finitely generated under a faithfully flat base change, then R is finitely
generated. We might ask here which other properties of an A-algebra behave in a
similar way. E.g. being an integral domain or being reduced are such properties.

Proof. The ring R is the union of finitely generated A-subalgebras Rν . Since
the tensor product commutes with direct limits, lim−→(B ⊗A Rν)

∼→ B ⊗A lim−→Rν =

B ⊗A R, there is a ν such that B ⊗A Rν
∼→ B ⊗A R. Since B/A is faithfully flat,

this implies that Rν = R. �

2.2. Standard étale morphisms. The following example gives a general
construction of an étale morphism reflecting what we usually have in mind. Unfor-
tunately, the proof is not easy and needs some work.

Example 2.2.1 (standard étale morphism). Let U be an affine variety, and
let F ∈ O(U)[t] be a monic polynomial. Then the projection onto U induces a
morphism η : VU×C(F )→ U , and the following holds:
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(1) The morphism η is étale in any (u, a) ∈ VU×C(F ) such that F ′(u, a) 6= 0,
where F ′ := dF

dt ∈ O(U)[t].

(2) Define Z := VU×C(F )F ′ . Then O(U)[t]F ′/(F )
∼→ O(Z) is an isomor-

phism, i.e. the ideal (F ) ⊆ O(U)[t]F ′ is perfect.

Proof. (a) The morphism p : VU×C(F )→ U is finite and surjective, and Z ⊆
VU×C(F ) is open. Set R := O(U)[t]F ′/(F ) so that O(Z) = R/

√
(0). For any u ∈

p(Z) we get R/muR = C[t]/(F (u, t) and this is a product of copies of C. It follows
that R/muR = O(Z)/muO(Z). Hence p : Z → U has discrete and reduced fibers,
and so p : Z → U is unramified. Clearly, R is flat over O(U). So if we show that R
is reduced, then (2) follows, and η : Z → U is flat, hence (1).

(b) From (b) we see that m̃z := mzR ⊆ R is a maximal ideal, and that we get
surjective homomorphisms

mp(z)/m
2
p(z) � mz/m

2
z � m̃z/m̃

2
z.

This implies that Rm̃z is a regular local ring in case p(z) ∈ U is a smooth point.
Hence Rm̃z = OZ,z, because a regular local ring is an integral domain.

(c) Now we look at the canonical map ϕ : R →
∏
z∈Z′ Rm̃z where Z ′ := {z ∈

Z | p(z) smooth in U}. We want to show that ϕ is injective which implies that
R is reduced. If r ∈ kerϕ, then, for every z ∈ Z ′, there is an sz /∈ m̃z such that
szr = 0. This implies that Ann(r) * m̃z for all z ∈ Z ′. If r 6= 0, then Ann(r)
is contained in an associated prime of R. Since every irreducible component of Z
contains smooth points, it follows that every minimal prime of R is contained in
m̃z for some z ∈ Z ′. So it remains to see that R has no embedded primes, i.e. every
zero divisor is contained in a minimal prime.

(d) It suffices to prove this for the algebra A := O(U)[t]/(F ). Let p ⊆ A be an
associated prime which is not minimal, and let p′ ⊆ p be a minimal prime. Then
p′ ∩ O(U) $ p ∩ O(U). If a ∈ p ∩ O(U) \ p′ ∩ O(U), then multiplication with a is
injective on O(U), but has a kernel on A. This contradicts the fact that A is flat
over O(U). �

A morphism of the form η : Z → U as above is called a standard étale morphism.
These morphisms have many nice properties, e.g. a standard étale morphism is a
local homeomorphism in the C-topology. In fact, this is obvious for U = Cn by the
implicit function theorem, and using a closed embedding U ↪→ Cn one gets a fiber
product of the form

VU×C(F )F ′
⊆−−−−→ VCn×C(F̃ )F̃ ′y y

U
⊆−−−−→ Cn

where F̃ ∈ O(Cn)[t] is a lift of F ∈ O(U)[t]. Another point is the following. If
F ∈ O(U)[t] has degree d as a polynomial in t, then the standard étale morphism
η : VU×C(F )F ′ → U has also degree d. In particular, if η is injective, then d = 1,
hence F is linear, and so η is an open immersion. We will see below that this holds
for every étale morphism.

The next result shows that every étale morphism is ”locally standard”.

Proposition 2.2.2. Let ϕ : X → Y be a morphism, and assume that ϕ is étale
in x0 ∈ X. Then there is an affine open neighborhood U of ϕ(x0), a standard étale
morphism η : Z → U and an open immersion of a neighborhood V of x0 into Z
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such that ϕ(V ) ⊆ U and ϕ|V = η|V : V → U :

X
⊇←−−−−

open
V

⊆−−−−→
open

Zyϕ ϕ|V =

yη|V yη
Y

⊇←−−−−
open

U U

Let us first recall the following ”Local Criterion for Flatness”, see [Eis95, The-
orem 6.8].

Lemma 2.2.3. Let ϕ : X → Y be a morphism, let x ∈ X and set y := ϕ(x) ∈ Y .
Then ϕ is flat in x if and only if the map my ⊗OY,y OX,x → OX,x is injective.

As a consequence we get the next lemma which will be used in the final part
of the proof of Proposition 2.2.2.

Lemma 2.2.4. Let µ : Z1 → Z2 and η2 : Z2 → U be morphisms. Assume that
η1 := η2 ◦ µ is flat in z1 ∈ Z1 and that η2 is étale in z2 := µ(z1). Then µ is flat in
z1.

Z1
µ
> Z2

U

η2

∨η1 >

If η1 is étale in z1 (and η2 étale in z2), then µ is étale in z1.

Proof. Since η2 is étale in z2, we get muOZ2,z2 = mz2 where u := η2(z2). It
follows that the first map in the composition

mu ⊗OU,u OZ1,z1 → mz2 ⊗OZ2,z2
OZ1,x1

→ OZ1,z1

is surjective. Since η1 is flat in z1 the composition is injective, hence the second map
is injective, and this implies, by the lemma above, that µ is flat in z1. The second
claim follows, because µ is unramified in z1 in case η1 is unramified in z1. �

Remark 2.2.5. Lemma 2.2.3 has the following generalization, see [Mat89,
Theorem 22.3]. Let ϕ : X → Y be a morphism, let x ∈ X and set y := ϕ(x) ∈ Y ,
and let I ⊆ OY,y be an ideal. Then ϕ is flat in x if and only if the following holds:
(i) OX,x/IOX,x is flat over OY,y/I, and (ii) the map I⊗OX,x → OX,x is injective.
This has the following nice application, generalizing Lemma 2.2.4.

Proposition 2.2.6. Consider the diagram

X1
µ
> X2

Y

ϕ2

∨ϕ1 >

where ϕ1 is flat. Assume that for every y ∈ Y the induced morphism of the
(schematic) fibers ϕ−1

1 (y)→ ϕ−1
2 (y) is flat. Then µ is flat.

Proof. Choose x1 ∈ X1, and put x2 := η(x1) and y := ϕ1(x1) = ϕ2(x2).
Set I := myOX2,x2

⊆ OX2,x2
. Then the local ring of the schematic fiber ϕ−1

2 (y) in
x1 is OX1,x1

/IOX1,x1
which is flat over the local ring OX2,x2

/I of the schematic

fiber ϕ−1
2 (y) in x2, by assumption. Moreover, my ⊗OY,y OX1,x1

→ I ⊗OX2,x2
OX1,x1

is surjective, and the composition with ι : I ⊗OX2,x2
OX1,x1

→ OX1,x1
is injective,

because ϕ1 is flat in x1. Thus ι is injective, and the claim follows from the remark
above. �



244 APPENDIX C. FIBER BUNDLES, SLICE THEOREM AND APPLICATIONS

Proof of Proposition 2.2.2. We can assume that every irreducible compo-
nent of X contains x0.

(a) There is an open embedding X ↪→ X̃ and a finite morphism ϕ̃ : X̃ → Y
such that ϕ̃|X = ϕ. Thus we can assume that ϕ is finite and surjective.

(b) There exists an affine open neighborhood U ⊆ Y of y0 := ϕ(x0) and a
closed embedding ρ : V := ϕ−1(U) ↪→ U × C of the form x 7→ (ϕ(x), h(x)) where
h(x0) = 1.

(c) There is an F ∈ O(U)[t] with the following properties: (i) F vanishes on
the image of Y ; (ii) F ′(y0, 1) 6= 0; (iii) the leading term of F does not vanish in y0.
Localizing U at the leading term of F we can assume that F is monic.

Now we can finish the proof. By (c) we have a closed immersion V ↪→ VU×C(F ).
Since F ′(y0, 1) 6= 0 we can replace V by the open set V ′ = V ∩VU×C(F )F ′ contain-
ing x0, and we get a closed immersion V ′ ↪→ VU×C(F )F ′ . Moreover, the induced
morphism VU×C(F )F ′ → U is a standard étale map. Thus we are in the situation
of Lemma 2.2.4 which implies that the image of V ′ is open in VU×C(F )F ′ . �

Let us draw some important consequences.

Proposition 2.2.7. (1) Consider the following fiber product.

U ×Y X
η̃−−−−→ Xyϕ̃ yϕ

U
η−−−−→ Y

If η is étale, then the fiber product is reduced and η̃ is étale.
(2) An injective étale morphism is an open immersion.

Proof. (1) We can assume that X, Y and U are affine. If X → Y is a standard
étale morphism, O(X) = O(Y )[t]F ′/(F ) where F ∈ O(Y )[t] is a monic polynomial,
then O(U) ⊗O(Y ) O(X) ' O(U)[t]G′/(G) where G = η∗(F ), hence U ×Y X is
reduced and U ×Y X → U is also a standard étale morphism. Now the claim
follows from Proposition 2.2.2 above.

(2) We have seen above that an injective standard étale morphism is an open
immersion. Hence the claim follows from Proposition 2.2.2 �

2.3. Étale base change. The situation of the first statement of Proposi-
tion 2.2.7 above is a special case of the following setup. Let S be a variety, let
p : X → S and q : Y → S two S-varieties, and let ϕ : X → Y be an S-morphism,
i.e. q ◦ϕ = p. If η : S′ → S is a morphism we obtain S′-varieties X ′ := S′×SX and
Y ′ := S′×S Y and an induced S′-morphism ϕ′ : X ′ → Y ′, as shown in the following
diagram:

(∗)

X ′
ηX

> X

Y ′
ηY

>

ϕ′

>

Y

ϕ

>

S′

q′

∨
η

>

p′

>

S

q

∨

p

>

This is usually expressed by saying that ϕ′ : X ′ → Y ′ is obtained from ϕ : X → Y
by the base change η : S′ → S. A basic question is what happens in case of a flat or
étale base change. E.g. the first statement of Proposition 2.2.7 above says that for
a an étale base change η : S′ → S, the fiber products X ′ and Y ′ are reduced and
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ηX , ηY are again étale. We will have more statements of this form later, but let us
first prove the following useful result.

Lemma 2.3.1. Let ϕ : X → Y be an abstract map between varieties. If η : X ′ →
X is an étale and surjective morphism such that the composition ϕ◦η is a morphism,
then ϕ is a morphism.

X ′
η
> X

Y

ϕ

∨η◦ϕ >

Proof. Denote by Γϕ ⊆ X × Y the graph of the map ϕ. We have to show
that Γϕ is closed and that the induced map p : Γϕ → X is an isomorphism. By
assumption, the composition ψ := η ◦ ϕ is a morphism, and we get the following
commutative diagram:

(12)

Γψ
⊆−−−−→ X ′ × Y pr−−−−→ X ′

γ:=

y(η×idY )|Γψ

yη×idY

yη
Γϕ

⊆−−−−→ X × Y pr−−−−→ X

Since η is surjective we see that (η × idY )−1(Γϕ) = Γψ. It follows that X × Y \ Γϕ
is the image of the open set X ′ × Y \ Γψ which is open, because η × idY is flat.
Hence Γϕ is closed. Now the outer diagram of (12) is a fiber product, hence γ is
étale and surjective, and the induced horizontal map Γψ → X ′ is an isomorphism.
Therefore, Γϕ → X is a bijective étale morphism, by Lemma 2.1.11(1), and thus
an isomorphism, by Proposition 2.2.7(2). �

Examples 2.3.2. (1) If an S-variety X becomes smooth under an étale
surjective base change S′ → S, thenX is also smooth (see Example 2.1.8(3)).

(2) If an S-morphism ϕ : X → Y becomes an isomorphism under an étale
surjective base change S′ → S, then ϕ is an isomorphism. (This follows
from the lemma above applied to the map ϕ−1.)

(3) If a variety X becomes affine under an étale surjective base change, then
X is also affine. (The proof is base on the following result. If X is a variety,
S′ → S an étale morphism of affine varieties, and X ′ := S′×SX the fiber
product, then the canonical mapO(S′)⊗O(S)O(X)

∼→ O(X ′) is an isomor-
phism. If X ′ is affine, then O(X) is finitely generated (Lemma 2.1.12), and
we have a canonical morphism ϕ : X → X̄ where X̄ is the affine variety
with ccordinate ring O(X). Now the claim follows from (2).)

Exercise 2.3.3. Proof the following special case of part (3) of the Example above.
Assume that X = X1 ∪X2 where X1, X2, X1 ∩X2 ⊆ X are affine open subsets. If S′ → S
is a flat morphism of affine varieties, and X ′ := S′×SX, then O(S′)⊗O(S)O(X)

∼→ O(X ′)
is an isomorphism.
(Hint: There is an exact sequence of O(S)-modules

0→ O(X)→ O(X1)×O(X2)→ O(X1 ∩X2)

which remains exact after tensoring with O(S′). Since O(S′)⊗O(S) O(U)
∼→ O(S′ ×S U)

for every affine open set U ⊆ X, the claim follows.)

The next example is a special case of the Slice Theorem for finite groups.

Example 2.3.4. Let G be a finite group acting on the affine variety X, and
denote by π : X → X/G the quotient. Define X ′ := {x ∈ X | Gx = {e}}. Then

(1) X ′ is open in X and π(X ′) is open in X/G.



246 APPENDIX C. FIBER BUNDLES, SLICE THEOREM AND APPLICATIONS

(2) The map (g, x) 7→ (x, gx) : G × X ′ → X ′ ×π(X′) X
′ is a G-equivariant

isomorphism:

G×X ′ '−−−−−−−−→
(g,x)7→(x,gx)

X ′ ×π(X′) X
′ −−−−→ X ′yprX′

yp yπ|X′
X ′ X ′

π|X′−−−−→ X/G

(3) The induce morphism π|X′ : X ′ → X/G is étale.

Proof. (1) The first statement is clear since X \X ′ =
⋃
g 6=eX

g.

(2) For any g ∈ G the morphism ιg : X ′ → X ′ ×π(X′) X
′, x 7→ (x, gx), is a

closed immersion, because p ◦ ιg = idX′ . Hence the fiber product X ′ ×π(X′) X
′ is

the disjoint union of copies of X ′, proving (2).

(3) For the last statement we can embed X as a closed G-stable subset into
a representation V of G and thus assume that X = V . The following argument
was indicated to us by G.W. Schwarz. We claim that for any x ∈ V ′ there exist
n := dimV invariant functions p1, . . . , pn vanishing in x such that the differentials
(dp1)x, . . . , (dpn)x form a basis of the cotangent space (TxV )∗ = mx/m

2
x. In fact, the

following Exercise 2.3.6 shows that for a given cotangent vector ξ ∈ (TxV )∗ there
is an f ∈ O(V ) vanishing on Gx such that dfgx = gξ for all g ∈ G. It is easy to
that gf has the same property for all g ∈ G and so the invariant p := 1/|G|

∑
g gf

vanishes at x and satisfies dpx = ξ.
It follows that the G-invariant morphism p := (p1, . . . , pn) : V → Cn is unram-

ified in gx for all g ∈ G. Replacing V by a suitable G-stable affine open neigh-
borhood U of x we can assume that the fiber p−1(p(x)) is equal to Gx and is
therefore reduced. This means that the ideal I(Gx) ⊆ O(U) is generated by the
invariants p1, . . . , pn. But then, the maximal idea mπ(x) = I(Gx) ∩ O(U)G is also
generated by p1, . . . , pn, showing that π(x) is a smooth point of U/G and that
dπx : TxU → Tπ(x)U/G is an isomorphism. Now the claim follows from Proposi-
tion 2.1.10. �

Exercise 2.3.5. (1) Let a ⊆ O(X) be an ideal. For any x /∈ VX(a) we have
mx ∩ a + m2

x = mx, i.e. the map mx ∩ a→ mx/m
2
x is surjective.

(2) Let x1, . . . , xn ∈ X be n different points. Then the canonical map

mx1 ∩mx2 ∩ · · · ∩mxn →
⊕
i

mxi/m
2
xi

is surjective.
(Hint: Use (1) with a := m2

x2
∩ · · · ∩ m2

xn to show that the image of this map

contains mx1/m
2
x1
⊕ (0) · · · ⊕ (0).)

Exercise 2.3.6. Use the previous exercise to show that for a finite set of points
x1, . . . , xn ∈ X and cotangent vectors ξi ∈ (TxiX)∗ there is an f ∈ O(X) such that
dfxi = ξi for all i = 1, . . . n.

3. Fiber Bundles and Principal Bundles

Fiber bundles with fiber F are morphisms ϕ : B → X which look locally like
U × F . In order to get a useful concept, one has to replace the Zariski-open
neighborhoods of a point x ∈ X by étale neighborhoods which are defined as étale
morphisms η : U → X such that x ∈ η(U). One can define intersections of étale
neighborhoods by taking the fiber product, and one can even introduce an étale
topology.



C.3. FIBER BUNDLES AND PRINCIPAL BUNDLES 247

3.1. Additional structures, s-varieties. In many applications we are deal-
ing with varieties with an additional structure, e.g. a vector space, a quadratic space
(i.e. a vector space with a nondegenerate quadratic form), an affine space, an alge-
braic group G, a G-variety (i.e. a variety with an action of an algebraic group G),
or a G-module. These objects will be called s-varieties. We will not give a formal
definition, but we will need that in all examples it is clear what an isomorphism
between two such s-varieties is. In particular, for every s-variety F the automor-
phism group Aut(F ) is a well-defined subgroup of Aut(|F |) where |F | denotes the
underlying variety.

In the examples above, we see that Aut(F ) ⊆ Aut(|F |) is a closed subgroup
in case |F | is affine. E.g., for a vector space V we have Aut(V ) = GL(V ), for a
quadratic space (Q, q) we have Aut(Q, q) = O(Q, q), and for an affine space A we
have get Aut(A) = Aff(A), the group of affine transformations. For an affine G-
variety X we have Aut(X) = AutG(|X|) = Aut(|X|)G, the group of G-equivariant
automorphisms of X, and for a G-module M we get Aut(M) = GL(M)G.

Remark 3.1.1. In many cases, the s-variety F is determined by the pair
(|F |,Aut(F )). This means the following: F is isomorphic to E as an s-variety if

and only if there is an isomorphism ϕ : |F | ∼→ |E| of varieties which induces an

isomorphism Aut(F )
∼→ Aut(E) by g 7→ ϕ ◦ g ◦ ϕ−1. A necessary and sufficient

condition for this is that Aut(F ) ⊆ Aut(|F |) is self-normalizing. As an exercise,
the interested reader might check that the following subgroups of Aut(Cn) are
self-normalizing: GLn,On,C∗.

Lemma 3.1.2. Let G be a reductive group acting on an affine variety X. If all
invariants are constant, then EndG(X) and DomG(X) are affine algebraic semi-
groups, and AutG(X) is an affine algebraic group. Moreover, AutG(X) is closed in
DomG(X) and DomG(X) is open in EndG(X).

(Here Dom(X) denotes the semigroups of dominant endomorphisms.)

Proof. First it is clear that EndG(X) ⊆ End(X) and AutG(X) ⊆ Aut(X)
are both closed. Since there are no invariants the isotypic components of O(X) are
finite dimensional. This implies that we can find a finite direct sum W ⊆ O(X)
of isotypic components of O(X) which generates O(X). Thus, we get an injective
morphism ι : EndG(X) ↪→ EndG(W ), and a commutative diagram

EndG(X)
ι−−−−→ EndG(W )

⊆−−−−→ HomG(W,O(X))y⊆ y⊆ y⊆
End(X)

↪→−−−−→ Hom(W,O(X)) Hom(W,O(X))

which shows that ι is a closed immersion. Hence EndG(X) an algebraic semigroup.
Similarly, we see that DomG(X) is an algebraic semigroup and that AutG(X) is an
algebraic group. For the remaining claims we use [FK16, Proposition 3.2.1] which
shows that, for any affine variety X, Aut(X) is closed in Dom(X) and Dom(X) is
open in End(X). �

3.2. Fiber bundles. Let F be an affine s-variety.

Definition 3.2.1. A fiber bundle over Y with fiber F is a morphism p : B → Y
with the following properties:

(1) Every fiber p−1(y) is an s-variety isomorphic to F ;
(2) For every point y ∈ Y there is an étale neighborhood η : U → Y such

that U ×Y B is U -isomorphic to U × F . This means that there is an
isomorphism ϕU : U × F ∼→ U ×X B such that the induced morphisms
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F
∼→ {u} × F

ϕU→ p−1(η(u)) are isomorphisms of s-varieties, for every
u ∈ U .

The set of isomorphism classes of fiber bundles over X with fiber F is denoted by
H1(X,F ). This is a pointed set where the distinguished element ? is the class of
the trivial bundle. Note that (2) implies that p is an open morphism and that the
fibers of p are reduced.

In our definition, every fiber of p has given the structure of F , by (1), and
condition (2) makes sure that this structure is “locally trivial” in the étale topology.
This also implies that the s-structure is defined on the bundle B, as one can see in
the following examples.

Example 3.2.2. (1) If V is a (finite dimensional) vector space and V → Y
a fiber bundle with fiber V , then the additon V ×Y V → V and the scalar
multiplication C × V → V are morphisms. These fiber bundles are called
vector bundles. We will see later that the vector bundles are locally trivial
in the Zariski-topology.

(2) If G is an algebraic group and G → Y a fiber bundle with fiber G, then
the multiplication G ×Y G → G and the inverse G → G are morphisms.
This means that such a fiber bundle is a group scheme over Y .

(3) Let F be the affine n-space An(= Cn) with associated vector space Cn.
The usual definition of an affine map between affine spaces shows that
Aut(An) = Affn, the groups of affine transformations x 7→ Bx + c where
B ∈ GLn and c ∈ Cn. A fiber bundle with fiber An will be called an affine
space bundle.

A stronger condition would be that a fiber bundle is locally trivial in the Zariski-
topology. We denote by H1

Zar(Y, F ) ⊆ H1(Y, F ) the subset of isomorphism classes
of those fiber bundles which are locally trivial in the Zariski-topology.

Remark 3.2.3. (1) It is clear from the definition that for b ∈ B and
y := p(b) ∈ Y the tangent map dpb : TbB → TyY is surjective with kernel
ker dpb = Tbp

−1(y). In particular, B is smooth in b if and only if the fiber
p−1(y) ' F is smooth in b and Y is smooth in y.

(2) If F and Y are both affine varieties, then a fiber bundle P → X with fiber
F is also an affine variety, see Example 2.3.2(3).

Example 3.2.4. Let F be an s-variety such that Aut(F ) is trivial. Then every
fiber bundle ϕ : B → Y with fiber F is trivial. In fact, for every fiber p−1(y) there

is a unique isomorphism ψy : p−1(y)
∼→ F , and this collection (ψy)y∈Y defines a

map ψ : B → F . We claim that ψ is a morphism and that (ψ,ϕ) : B → F ×Y is an
isomorphism. If the bundle B → Y is trivial over the étale neighborhood η : U → Y ,
we get the following commutative diagram:

F F FxprF

xψ◦ηB xψ
U × F '−−−−→ U ×X B

ηB−−−−→ B

prU

y y yϕ
U U

η−−−−→ X

Thus, ψ ◦ ηB is a morphism, and so ψ|ϕ−1(U) is a morphism, by Lemma 2.3.1. The
claim follows.
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Example 3.2.5. Take F = Cn considered as an Affn-variety with the standard
action of Affn. Then Aut(F ) = AutAffn(Cn) is trivial, because a regular automor-
phism of Cn commuting with all affine transformations is trivial.
(To see this, one first shows that a regular automorphism of Cn commuting with
the scalar multiplications is linear. From that the claim follows immediately.)
As a consequence, every fiber bundle with fiber the Affn-variety Cn is trivial.

Example 3.2.6. We have mentioned above (Example 5.5.2) that a vector bun-
dle is locally trivial in the Zariski-topology. The same is true if F = An considered as
affine n-space. If Y is affine, then every affine space bundle over Y has the structure
of a vector bundle, but this does not hold in general. E.g., define B := P1 × P1 \∆
where ∆ ⊆ P1 × P1 is the diagonal, and let p : B → P1 be the morphism induced
by the projection onto the first factor. Then B is an affine line bundle, trivial over
P1 \{0} and P1 \{∞}, but it cannot be a line bundle, because B is an affine variety
and so p has no section.

A weaker concept is that of a fibration with fiber F by what we mean a flat
surjective morphism p : B → X with the condition that every fiber is (reduced
and) isomorphic to F . A famous unsolved problem here is whether every fibration
with fiber Cn is a fiber bundle, see [KR14, Section 5]. This is not the case if the
base X is not normal. It is known to be true for n = 1 and X normal, and for
n = 2 and X a smooth curve. In these cases, the bundle is even locally trivial in
the Zariski-topology.

Remark 3.2.7. Assume that the fiber F is a G-variety. Then one has a canon-
ical G-action on the total space B of every fiber bundle B → X with fiber F .
In fact, there is an action of G on every fiber, and therefore a well-defined “abstract”
action of G on B which becomes a regular action under an étale base change, by
condition (2). Hence, the claim follows from the next lemma.

Lemma 3.2.8. Let Z be a variety with an “abstract” action of an algebraic
group G. Assume that there is G-variety Z̃ and a surjective étale and G-equivariant
morphism ξ : Z̃ → Z. Then the action of G on Z is regular.

Proof. Consider the following commutative diagram

Ỹ := G× Z̃ ϕ̃−−−−→
'

G× Z̃

idG×ξ
y yidG×ξ

Y := G× Z ϕ−−−−→
bijective

G× Z

where ϕ(g, z) := (g, gz) and ϕ̃(g, z̃) := (g, gz̃). Then idG×ξ is étale and surjective,
and the composition ϕ ◦ (idG×ξ) is a morphism, and so the claim follows from
Lemma 2.3.1. �

3.3. Principal bundles. An important special case is the following. Take
F := G, an algebraic group considered as a G-variety where G acts by right mul-
tiplication. A fiber bundle with fiber G is called a principal G-bundle. The usual
definition is the following which is equivalent, by Lemma 3.2.8 above.

Definition 3.3.1. Let G be an algebraic group. A principal G-bundle over X is
a variety P together with a right action by G and a G-invariant morphism ρ : P →
X with the following property: For every x ∈ X there is an étale neighborhood
η : U → X such that the fiber product U ×X P is G-isomorphic to U ×G over U .

We denote by H1(X,G) the set of isomorphism classes of principal G-bundles
over X and by H1

Zar(X,G) ⊆ H1(X,G) the subset of those which are locally trivial
in the Zariski-topology.
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Note that the principal G-bundle ρ : P → X is trivial, i.e. G-isomorphic to
prX : X ×G→ X if and only if ρ has a section.

Example 3.3.2. A typical example is the following. LetH be an algebraic group
and let G ⊆ H be a closed subgroup. It is known that the left cosets H/G := {hG |
h ∈ H} form a smooth quasi-projective variety with the usual universal properties,
see [Bor91, Chap. II, Theorem 6.8]. It follows that the projection π : H → H/G is
a principal G-bundle. In fact, we have

H ×G '−−−−−−−−→
(h,g) 7→[h,hg]

H ×H/G H
π̃−−−−−−→

[h,h′]7→h′
HyprH

y yπ
H H

π−−−−→ H/G

i.e., the fiber product H×H/GH is G-isomorphic to H×G, hence a trivial principal
G-bundle over H. Since the differential dπh is surjective for all h ∈ H, the next
lemma shows that for every h ∈ H there is a locally closed smooth subvariety
S ⊆ H such that p|S : S → H/G is étale. Clearly, S ×H/G H ' S × G, and the
claim follows.

Lemma 3.3.3. Let ϕ : X → Y be a morphism of smooth varieties. Assume that
dϕx : TxX → Tϕ(x)Y is surjective for some x ∈ X. Then there is a closed subvariety
S ⊆ X, containing x and smooth in x, such that ϕ|S : S → Y is étale in x.

Proof. We can assume that X and Y are both affine. By assumption, ϕ∗

induces an injection my/m
2
y ↪→ mx/m

2
x. Thus we can find a subspace W ⊆ mx of

dimension r = dimX − dimY such that mx = W ⊕ ϕ∗(my) ⊕ m2
x. Define S :=

VX(W ) ⊆ X. Then dimS ≥ dimX − r = dimY , by Krull’s Theorem, and
my/m

2
y → mx,S/m

2
x,S is surjective, because mx/m

2
x → mx,S/m

2
x,S is surjective and

W is in the kernel. Since dimmy/m
2
y = dimY , it follows that dimS = dimY , that

S is smooth in x and that my/m
2
y
∼→ mx,S/m

2
x,S is an isomorphism. This shows that

ϕ|S : S → Y is étale in x, by Proposition 2.1.10. �

Proposition 3.3.4. Every principal C+-bundle over an affine variety is trivial.

Proof. Let p : P → X be a principal C+-bundle where X is an affine variety.
We know that P is also an affine variety and that the C+-action on P corresponds
to a locally nilpotent derivation δ : O(P )→ O(P ) such that ker δ = O(X). In par-
ticular, δ is an O(X)-module homomorphism. The bundle is trivial, if and only if
there is an f ∈ O(P ) such that δ(f) = 1. Since the principal bundle P becomes
trivial over a surjective étale morphism X ′ � X we can find a faithfully flat exten-
sion R/O(X) such that the induced derivation δR on R ⊗O(X) O(P ) contains the
element 1 in its image. Now the claim follows from the next lemma. �

Lemma 3.3.5. Let B → A be a faithfully flat homomorphism of finitely gener-
ated C-algebras. Let ϕ : M → N be a homomorphism of A-modules and let N ′ ⊆ N
be a submodule. If B ⊗A N ′ ⊆ ϕ(B ⊗AM), then N ′ ⊆ ϕ(M).

Proof. By assumption we have

B ⊗A ((N ′ + ϕ(M))/ϕ(M)) = (B ⊗A N ′ +B ⊗A ϕ(M))/B ⊗A ϕ(M)

= (B ⊗A N ′ + ϕ(B ⊗AM))/ϕ(B ⊗AM) = (0),

hence (N ′ + ϕ(M))/ϕ(M) = (0) by faithful flatness, and the claim follows. �
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[Wei23] Roland Weitzenböck, Invariantentheorie, P. Noordhoff, Groningen, 1923. 8.4

[Wey39] Hermann Weyl, The Classical Groups. Their Invariants and Representations, Prince-
ton University Press, Princeton, N.J., 1939. MR MR0000255 (1,42c) 5.4, IV, B

[Wey97] , The classical groups, Princeton Landmarks in Mathematics, Princeton Uni-

versity Press, Princeton, NJ, 1997, Their invariants and representations, Fifteenth
printing, Princeton Paperbacks. MR MR1488158 (98k:01049) 2.2.2

[ZS60] Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series

in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-
New York, 1960. MR 0120249 (22 #11006) 4.11, 5.3





Index

(G,G), 49

1-PSG, 108

Bn, 39

G-equivariant, 68

G-invariant, 76, 115

G-module, 72

G-stable, 68

G-variety, 68

G(C[ε]), 61

G◦, 42

I(X), 165

R∗, 40, 50

Sk(V ), 73

Tn, 39

Un, 38

V (λ), 113

X ×S Y , 183

Ad g, 63

Affn, Aff(V ), 46

Altn, 164

Aut(G), 40

Bez(p), 10

CR, 28

CG(H), 48

ClX, 224

Def(f), 175

DivX, 223

EndG(V ), 73

GLn(C), 172

GLn, GL(V ), 38

GLn(C[ε]), 61

HomG(V,W ), 73

Int(G), 40, 44

Int g, 63

Iso(E), 2, 4

Jac(f1, . . . , fm), 204

LieG, 64

Lie GLn, Lie GL(V ), 61

Lie SOn, 62

Lie Spn, 62

Mn, 163

Mn(C), 163

NV , 25

NG(H), 48

O2, 49, 174

On, O(V, q), O(V ), 56

PGLn, 46

Pf(A), 164

Quot, 174

SLn, Lie SL(V ), 62

SLn, SL(V ), 38

SOn, SO(V, q), SO(V ), 56

Sp2m, Sp(V, β), Sp(V ), 58

Z(G), 49

adA, 63

gln, gl(V ), 61

graR, 210

λg , 68

C(X), 174

C[ε], 61

C+, 38

P1, 17

P1(C), 17

O(V ), 163

OX,x, 175

Pn, 15, 39

Sn, 39

V(S), 164

V(f), 164

g, 64

mX,x, 175

π◦(G), 42

ρg , 68

n, (V ), 62

son, so(V ), so(V, q), 62

specR, 170

sp2m, sp(V ), sp(V, β), 62

Symn(X), 169

ξA, 94

z(L), 93

e, eG, 38

mλ(X), 113

C∗, 38

Cohen-Macaulay, 149

A-module, 143

action, 68

additive Jordan decomposition, 88, 99

additive group C+, 38

adjoint representation, 63

affine group Affn, 46

affine transformation, 46

affine variety, 169

algebraic group, 38

algebraic quotient, 115

algebraic vector field, 201

255



256 C. INDEX

algebraically independent, 184

alternating bilinear form, 58

antihomomorphism, 94

associated cone, 139

associated vector field, 94

Auslander-Buchsbaum, 212

automorphism group, 40

Basissatz of Hilbert, 173

blowing down, 18

Cayley’s Theorem, 39

center, 49

center of a Lie algebra, 93

centralizer, 48

character, 47

character group, 47

characteristic subgroup, 49

closed subvariety, 169
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Möbius transformation, 196

morphism, 176

morphisms of maximal rank, 207
multiplicative Jordan decomposition, 88

multiplicative group C∗, 38
multiplicity, 113

Nakayama, 187

natural representation, 75
Neil’s parabola, 167, 203

Newton functions, 8

nilpotent cone, 165
nilpotent element, 98

Noether’s normalization, 188
Noetherian, 173
nondegenerate, 56

nonsingular, 198

Normalization Lemma, 188
normalizer, 48, 68

nullform, 20
Nullstellensatz of Hilbert, 166

one-parameter subgroup, 1-PSG, 108

orbit, 68
orbit map, 68

orthogonal group, 56

orthonormal bases, 56

perfect, 166

perfect ideal, 166

permutation matrix, 39

product, 40

product X × Y , 182

projective linear group, 46

quadratic form, 10, 56, 121

quotient, 115

quotient group, 47, 123

quotient map, 115

quotient module, 73

quotient morphism, 115

quotient representation, 73

R-valued points, 199

radical, 166

rational representation, 72, 74

rational singularities, 147

rational variety, 174, 181

reduced fiber, 179

reduced ring, 166

reducible, 108

regular, 163, 165

regular function, 163, 165

regular representation, 74

representation, 71

representation of a Lie algebra, 93

Reynolds operator, 114

right cosets, 123

Rosenlicht, 87

Rosenlicht’s Theorem, 77

Schur’s Lemma, 55, 109

semi-invariant, 76

semi-invariant with character χ, 76

semialgebraic set, 4

semisimple, 88, 111

semisimple A-module, 145

semisimple G-module, 108

semisimple element, 88, 98

Serre’s Criterion, 223

simple G-module, 108

singular, 198

smooth, 198

socle, 111

special group, 70

special linear group SLn, 38

special open set, 171

special orthogonal group, 56

stabilizer, 48, 68
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torus, n-dimensional torus, 41, 81
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