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Introduction. In this first chapter, we introduce and discuss a few simple
and sometimes well-known geometric examples. Since we don’t develop the basics
and the methods until the following chapters, we sometimes have to refer to later

1



2 CHAPTER I. FIRST EXAMPLES AND BASIC CONCEPTS

and must be satisfied with an intuitive justification and notions introduced ad hoc.
Nevertheless, it is still worth while to make a detailed study of these examples at
this point. One recognizes the necessity of making the intuitive notions and the
basics precise and also of developing new methods. Moreover, in the remaining part
of the book we can test our newly won knowledge on the examples which are given
here.

There are also a number of exercises included in the text, some with hints. The
reader is strongly advised to work out the solutions. At the end of each paragraph,
we recollect them for the convenience of the reader.

1. Elementary Euclidean Geometry

1.1. Triangles. We denote by F := R? the Euclidean plane endowed with the
standard metric where the distance of two points P = (z,y) and P’ = (2/,y’) is
defined by |P — P'| := \/(x — 2")2 + (y — ¥')%. A triangle A is given by its vertices
Py, Py, P3 and will be denoted by A(Py, Py, P3). Thus the set T := E? describes all
triangles in the plane F, including the degenerated ones where all vertices are on a
line or even partially coincide.

yl

Q2

P

@

151

X

Two triangles A and A’ are called congruent if there is an isometry ¢ of the plane
such that p(A) = A’. Recall that an isometry ¢ of the plane E' is amap ¢p: E — E
which preserves lengths: |¢(P) — ¢(Q)| = |P — Q| for all P,Q € E (see [Art91,
Chapter 5.1]). The isometries form a group, the isometry group which we denote
by . Using the description of the triangles by their vertices, we have the following
definition.

DEFINITION 1.1.1. Two triangles A(Py, Py, P3) and A(Q1, Q2, Q3) are congru-
ent,

A(Pla P27 P3) ~ A(Qla QQa Q3)7
if there is an isometry 8 € Iso(E) and a permutation o € S such that Q,;) = 5(F;)
for i =1,2,3.

In terms of coordinates this means the following. Let P; = (x;,y;) and Q; =
(xf,yl), i = 1,2,3. Then there is an orthogonal matrix A € Os(R), a vector ¢t =
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(tz ty) € R? and a permutation o € S5 such that
x' . ,

o) = A [“3] T [tw} fori=1,2,3.
Yo(i) Yi ty

1.2. Invariants. A well-known classical result says that two triangles are con-
gruent if and only if their edges have the same lengths. This statement has two parts.
Firstly, it says that the set of lengths of the edges of a triangle is an “invariant”
of the congruence class, and secondly that this invariant completely determines the
triangle up to congruence. To be more precise let us make the following definition.

DEFINITION 1.2.1. An invariant of the triangles is a map f: ¥ — R with the
following property: If A, A’ € T are congruent, A ~ A’ then f(A) = f(A").

This means that the map f is invariant under isometries and permutations, i.e.
F(B(P1), B(P2),B(Ps)) = f(Pr1, Py, P3) for B € Iso(E), and f(Py1), Pr2); Pr(3)) =
f(Py, Py, P3) for o € Ss. Clearly, the invariants form a subalgebra of the algebra of
real functions on ¥, and this algebra is closed under substitution, i.e. if h: R — R
is any function and f an invariant, then sois ho f: A — h(f(A)).

EXAMPLES 1.2.2. (a) The circumference of a triangle A = A(Py, P, P3), given
by
u(A) = |P1 — Po| + |P — P3| + |Ps — Pi| = b2 + l23 + 31,
is an invariant. Here (;; := |P; — Pj| = \/(z; — ;)2 + (vi — y;)>.
(b) The area F(A) of the triangle A = A(Py, Py, P3) is an invariant. It is given
by the formula

1 T Y1 1 1
F(A) = gdet |22 y2 1)) = 5(932—fl)(y:s—yl)—(333—331)(312—2/1) :
3 y3 1

Note that the length /;; of a single edge of A is not an invariant in the sense
of our definition; only the symmetric functions of the three lengths f1o, {23, {31
are invariants! The classical result mentioned above can now be formulated in the
following way.

PrOPOSITION 1.2.3. The congruence class of a triangle A € ¥ is completely
determined by the three invariants
J1(A) :==u(A), f2(A) = lialaz + lialzy + Lozlzy, f3(A) = l1ala3l3
which are the elementary symmetric functions in the lengths of the edges.
EXERCISE 1.2.4. Verify the formula for the area of a triangle given in Example 1.2.2(b).
EXERCISE 1.2.5. Using the identification T = R® show that a function f: R® — R is
an invariant if and only if the following three conditions hold:

(1) flz1,y1,22,92,%3,43) = [(To(1), Yo(1)s To(2), Yo(2)s To(3), Yo(3)) for all permuta-
tions o € Ss;

(2) flzryn 02,92, 25, ys) = f(21 = 23,41 — Y3, 22 — 23,42 — 3, 0,0);
(3) S nimsnn) = S hfnhonh) i [1f] = 4 7] for i = 12,3
and A € O2(R).
EXERCISE 1.2.6. Consider the following set of triples of real numbers:
D :={(a,b,c) € R? | a, b, c are the lengths of the edges of a triangle}.

Describe D as a subset of R® by inequalities and show that there is a homeomorphism
(Rzo)g = D which is equivariant with respect to permutations from Ss.
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1.3. Congruence classes. It turns out that all the formulas become nicer
and easier to handle if we replace the lengths /;; of the edges by their squares

G = (wi —25)” + (i —y5)*
Then, for a triangle A = A(Py, Py, P3) € X, the three elementary symmetric func-

tions in (25, (35,03, are homogeneous polynomials in z1,y1, T2, y2, ¥3,ys of degree
2, 4 and 6:

s1(A) := 07y + 035 + 03,
52(A) = 5?2@3 + 03505, + O5505,,
53(A) =

As above, s1(A), s2(A), s3(A) are invariants of A, and they determine A up to
congruence. Here is a first example.

ExXAMPLE 1.3.1. For the square of the area F(A) of the triangle A we have the
following expression:

16 F(A)? = 4(07,05; + (o3 + £3505,) — (Bo + 035 + €3,)% = 455(A) — s1(A)%.
In particular, F/(A) is a polynomial in the first two elementary symmetric functions
of 13,,03,,03,.

EXERCISE 1.3.2. Verify the polynomial expression for F((A)? given above. Give an
expression of F(A)? as a polynomial in £35 + €35 + £3, and €1, + €33 + £3;.

Now consider the map
% — RS, A~ (Sl(A),Sg(A),Sg(A)).

Proposition 1.2.3 says that A ~ A’ if and only if 7(A) = w(A’). In other words,
the fiber 7=1(7(A)) is equal to the congruence class Ca of A. Therefore, we can
identify the image m(%) with the set of congruence classes:

T T =) =T/~

In this way the set of congruence classes T/~ appears as a subset of R3. It is
an interesting task to work out the shape of this subset. E.g. the image of a non-
degenerate triangle is an interior point of 7 (%) where as the image of a degenerate
triangle is a boundary point.

REMARK 1.3.3. Since 7 is a polynomial map the image 7(¥) C R? is a which
is defined by certain inequalities (see [PS85]). We will see below (Remark 1.4.2)
that the quotient topology on 7(¥) coincides with the topology induced from the
embedding 7(T) C R3. As a consequence, every continuous invariant f: T — R is a
continuous function in sy, s9,53: f(A) = f(s1(A), s2(A), s3(A)) where f: R?* — R
is continuous. (This follows from TIETZE'’s extension theorem which asserts that
for a closed subset A of a normal topological space X every continuous function
f+ A — R extends to a continuous function on X.)

1.4. Orbit space and quotient map. We now give a different description of
the congruence classes, namely as orbits under a certain group action. The group
of isometries of the plane E is the semidirect product of the orthogonal group O2(R)
and the subgroup of translations T ~ (R, )?: Iso(E) = O3(R) x T. This group acts
simultaneously on any number of copies of E, in particular on T = E3:

LP(P17P27P3) = (@(Pl)vw(P2)7@(P3))

There is also an action of the symmetric group Sz on E3 by permuting the factors,
U(P17 P27P3) = (Pafl(l)a P0'71(2)7P071(3))7
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and these two actions obviously commute. Thus we obtain an action of the product
G :=TIso(F) x S5

on T = E3 whose orbits are the congruence classes (see Definition 1.1.1). Therefore,
the space T/~ can be regarded as the orbit space /G, and the map

1T =R A (s1(A),52(A), s3(A))

already considered above identifies the image 7(%) with the orbit space T/G. Let
us call such a map 7 a quotient map. A more precise definition will be given later
in the algebraic context.

We have already mentioned above that the invariants si, so, s3 are polynomials.
Denote by R[] = R[z1, y1, X2, Y2, T3, y3] the algebra of polynomial functions on ¥.

PROPOSITION 1.4.1. The algebra R[T|E of invariant polynomial functions on
T is a polynomial ring generated by si, sa, s3. More precisely, the pull-back map of
the quotient map,
7 Rlz,y,2] = R[T], p—>pom,
satisfies 7 (x) = s1,7*(y) = $2,7*(2) = s3, and it induces an isomorphism

R[z,y, 2] = R[‘I]G.

PRrROOF. Consider the three polynomial maps

T=F 2 g2 2, R D, RS
defined in the following way:
T (P1, Py, P3) := (Py — P3, P1 — P3),

m2(Q1,Q2) == (|Q11%, Q2% 1Q1 — Q2[*),
m3(a,b,c) == (a + b+ c,ab+ ac + be, abe).

It is easy to see that he composition 73 o T3 o w7 is equal to 7.

(a) The map m: E2 — E? is linear with kernel {(P,P,P) | P € E}, and
so the fibers are the orbits of the normal subgroup T" C Iso(E) of translations.
Hence m is a surjective quotient map with respect to T'. Also, 7 is equivariant with
respect to the linear actions of O2(R) on E? and EZ2. It is also equivariant with
respect to the action of S3 which, on E?, is given by (1,2)(Q1,Q2) = (Q2, Q1) and
(1,3)(Q1,Q2) = (Q1 — Q2,—Q2). One easily sees that 77 identifies R[E?] with the
invariants R[E3]T C R[E3)].

(b) The map m: Ey — R? is a quotient with respect to O2(R), and 7} iden-
tifies R[a, b, ¢] with the invariants R[E?]92(®). The first statement is easy whereas
the second needs some work (see Exercise 1.4.3). Moreover, 7, is equivariant with
respect to the Sz-action on E? and R3.

(c) The map 73 : R? — R3 is a quotient map with respect to Sz, and 73 identifies
R[x,y, 2] with the symmetric polynomials R[a, b, ¢]%¢. This will be discussed in the
following paragraph (see Proposition 2.2.1).

Clearly, (a), (b) and (c) imply that the composition m = mgomg 0 is a quotient
with respect to G, and that 7* identifies R[z,y, z] with the invariants R[E3]¢. In
particular, R[E®]% is a polynomial ring generated by s, sz, s3. O

REMARK 1.4.2. In the notation of the proof above we see that m; is a linear
surjective map, hence open, whereas the composition 73 o w5 : E? — R3 is given by
invariants under the compact group S5 x O2(R). It follows that this map is proper
and that the image carries the quotient topology ([Sch75]; cf. [PS85, Proposi-
tion 0.4]). As already mentioned above this implies that every continuous invariant
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f:% — R is a continuous function in s1, $2, s3. In particular, we did not loose any
information by restricting to polynomial functions!

EXERCISE 1.4.3. Let E :=R", n > 2, be the n-dimensional Euclidean space with the
standard scalar product (x,%y) := 2191 + - -+ + TnYn, and denote by R[E] and R[E?] the
real polynomial functions on E and E? := E x E respectively. We want to determine the
invariant polynomials under O, (R) and SO, (R).

(1) We have R[E]5°" = R[E]°" = R[s] where s(z) := |z|* := (z, z).

(2) We have R[E?|°" = R[s1, 52, s12] where s1(z,y) := |z|?, s2(z,9) = |y|* and

s12(x,y) := (,y).

(3) For n > 3 we have R[E?]%°" = R[E?]°". What happens for n = 27
(Hint: Restricting an invariant polynomial f € R[E?]°»® to D := Re; x Res we get
flp = f(z1,y2) = q(2%,93), and so the invariant f; := f — q(s1, s2) vanishes on D and
thus on O, (R) - D which is the zeros set of s12 in E2. In order to see that f; is divisible by
s12 one complexifies the spaces and shows that O, (R) - D is ZARISKI dense in the complex
zeros set Ve(s12) C Eé)

1.5. Summary. This example is typical for many classification problems. We
start with certain mathematical objects M which we want to classify up to a given
equivalence. For example, we want to classify algebras, modules, representations
etc. up to isomorphisms. The objects are described by a set X, i.e. to every x € X
there is an object M (z) associated to z. In addition, there is a group G acting on
X such that M(x) is equivalent to M (z') if and only if there is a ¢ € G such that
gr = z'. As a consequence, the set of equivalence classes of these objects equals the
orbit space X/G. Moreover, there is a natural map 7x: X — X/G, the quotient
map, which sends any z € X to its orbit Gz.

In general, there might be several different descriptions of our objects, so that
the set X is not uniquely determined. It is an important task to find a description
suitable and adapted to the given situation. Moreover, the set X usually has some
additional structure, e.g. a topology which allows to say if two objects are close
to each other, and to define continuous families of objects. Then the set of equiva-
lence classes inherits, via the quotient map 7: X — X/G, a topology, the so-called
quotient topology.

In order to distinguish non-equivalent objects we are looking for invariant func-
tions f: X — R, i.e. R-valued functions which the property that f(z) = f(a')
whenever x and z’ belong to the same orbit. If we can even find enough invariants
{f1, f2,- -, fn} so that they separate the orbits, i.e. for z,2’ not in the same orbit
there is an f; such that f;(z) # f;(2’), then we can define the map m: X — R",
x = (fi(x),..., fa(x)), whose image can be identified with the orbits space X/G.
If X is a topological space and all f; are continuous, then 7 is continuous, and
one can hope that quotient topology on m(X) ~ X/G coincides with the induced
topology from R™. If this is the case and if, in addition, the image is closed, then we
know from Tietzes extension theorem that every continuous invariant function f is
a continuous function in fi,..., fn, i.e., f(x) = q(f1(x),..., fu(x)) for a continuous
function ¢: R™ — R.

In our situation, the set X will be an algebraic variety, and the equivalence re-
lation on X will be given by the action of an algebraic group on X. So an important
question is whether the orbit space X/G also carries the structure of an algebraic
variety. In general, this is not the case, as we will see in some later examples in
this Chapter. One of the main difficulties is that even continuous functions cannot
separate all orbits, because there exist non-closed orbits. (This did not happen in
the example above since the action of the translations T was free and the group
G := G/T was compact.) Therefore, we have to study very carefully the invariant
regular functions. They will help us to get around some of these difficulties.
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2. Symmetric Product and Symmetric Functions

2.1. Symmetric product. Given a set X we denote by X" the n-fold carte-
sian product, i.e., the set of ordered n-tuples of elements from X:

X=X x X x-x X ={(x1,72,...,7,) | z; € X}

However, there are many examples where the ordering does not make sense, e.g.
the vertices of triangle, the roots of a polynomial, etc. This leads to the definition
of the symmetric product. Denote by S, the symmetric group on n letters.

DEFINITION 2.1.1. Let X be a set. On X" define the following equivalence
relation

(1,22, .. 2n) ~ (Y1,Y2, -, Yn) <= F0 € Sp 1 Y = To() for i =1,...,n.

The n-th symmetric product is then defined by X(™ := X"/~. It is the set of
unordered n-tuples of elements from X.

There is an action of the symmetric group S, on X™, defined by

O'((El, T2y ,ZL’n) = (.’Ea—l(l), :EU—1(2), ey xa—l(n)),
whose orbits are the equivalence classes, and so the symmetric product equals the
orbit space: S"X = X/S,. (Note that we have to use o1 in order to get a left
action of Sy,.)

EXAMPLE 2.1.2. The unordered pairs of real numbers R(?) can be described by
using the symmetric functions = + y and zy. In fact, the fibers of the map

7:R? = R2 (z,y) = (z +y,zy).
are the equivalence classes and the image is given by {(u,v) | u> — 4v > 0} which

is homeomorphic to R x Rxq. Thus m: R? = R x Rxq, (z,y) — (z+vy, (z —y)?) is
the quotient map (see Exercise 2.1.4 below).

EXAMPLE 2.1.3. We have C®) ~ C? where the quotient map m: C> — C? is
given by (z,y) — (z 4y, zy). In fact, this morphism is surjective and the fibers are
exactly the orbits under S,. If (a,b) € C? and z1,x are the roots of t? — at + b,
then 771(a,b) = {(z1,22), (x2,21)}. In particular, the fiber of (a,b) contains only
one element if and only if a® — 4b = 0.

EXERCISE 2.1.4. Show that the map 7: C* — C? of Example 2.1.3 is proper and open
in the standard C-topology. Deduce from this that the same assertions hold for the map
7: R? — R?/~ C R? given in Example 2.1.2.

2.2. Symmetric functions. The symmetric group S, of permutations of

{1,2,...,n} has a natural representation on C" which is given by o(e;) := e,(),
i=1,2,...,n. In terms of coordinates we have

U(al,az, e ,an) = (ao-—l(l), aa—l(Q), cee 7(J,U—l(n)).
The corresponding matrices P, are called permutation matrices (see [Art91, Chap.
1.4]). The induced action on the polynomial functions C[z1, ..., z,] on C" is given
by o0x; = 53y, i = 1,...,n, and the invariant polynomial function Clzy,... T ]S
are the symmetric polynomials. The elementary symmetric functions s1, 82, ...,y

are defined by

sk(T1,. ., 80) 1= E Liy Ly« Ly, -
11 <ig< - <ig
In particular,

s1(x1, ..y p) =21+ 22+ + 2, and $p(T1,...,Tn) = T1X2 - Ty
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PROPOSITION 2.2.1. The elementary symmetric functions si, Sa, ..., Sy, are al-
gebraically independent and generate the algebra of of symmetric polynomials:

Clzy,...,2,]%" = Cls1, 52, ..., 5]
In particular, every symmetric polynomial can be uniquely written as a polynomial
in the s;.

PRrOOF. (1) We prove this by induction on n, the case n = 1 being obvious.

Define s, := $;|z,=0. Then si,...,s],_; are the elementary symmetric functions

y On—
in the variables z1,...,2,-1 and s/, = 0. Assume that p(s1,...,s,) = 0 where
p =p(t1,...,t,) is a polynomial of minimal degree > 0 with this property. Then 0 =
p(S1,- -y 8n)|z,=0 = p(s1,-..,8,_1,0). Hence, by induction, p(t1,...,tn—1,0) = 0.
Thus p is divisible by t,, which contradicts the minimality of p.

Let f € C[xy,...,2,)°" be symmetric. Then f(z1,...,2,_1,0) is symmetric
in z1,...,2,—1 and so, by induction, f(x1,...,2,-1,0) = q(s},...,s],_;) with a
suitable polynomial ¢. Define g := f — ¢(s1,...,8,—1). Then g is symmetric and
9le,—0 = 0. It follows that g is divisible by x,,, hence by all z;’s, and so g = s, fo
where fj is symmetric and of smaller degree than g. The claim follows by induction
on deg f. O

EXERCISE 2.2.2. Consider the symmetric polynomials ¢; := mjl + x% +---42J, which
are called power sums or NEWTON functions. Prove the following formulas due to NEWTON,

(=1)s; = 5 — s1thj1 + sothja — - + (=1) 'sj_agp for j=1,...,n,
and deduce that the power sums 11, ¥2, . . . , ¥, generate the algebra of symmetric functions
Clz1, ..., za)°%".

(Hint: The case j = n is easy: Consider f(t) :=[[,(t — ;) and calculate ), f(x;) which
is equal to 0. For j < n, the right hand side is a symmetric function of degree < j, hence
can be expressed as a polynomial in s1,...,s;. Now put zj41 = ... = , = 0 and use
induction on n. Another proof can be found in [Wey97, Chap. II A.3].)

EXERCISE 2.2.3. Show that every rational symmetric function is a rational function in
S1y...,8n. In particular, the field extension C(z1,...,2n)/C(s1,...,5») is a finite Galois
extension of degree n! with Galois group Sy.

EXERCISE 2.2.4. Show that

Clz1,...,2zn)°" ' =Clz1, ..., 20 1] [zn] = Clz1, ..., 20" [zn]
n—1
— @C[:ch A mn]s"xi
j=0

(Hint: If f € Clz1,...,2,)°" and f = Z]. f5xd, then f; € Clz1, ..., 2zn_1]5"—1. This gives
the second equality. For the last one uses that x, satisfies an integral equation of degree
n, see (1) in the following section 2.3.)

EXERCISE 2.2.5. Show that

Sn o s i
Clzy,...,zn] = @ Clz, ..., zn] " alws® - xy.
0<ip<k
In particular, C[z1,...,z,] is a free module over C[zy,. .., mn]s" of rank n!.
(Hint: By induction, C[z1,...,Tn-1] = @0§ik<k Clz1,. .., xn_l]snflx?m? -z, ", hence
i i in_ .
Clz1,...,zn] = Do<iy, <x Clz1, -1, x,]5n1a2xl - 2. Now use the previous exer-

cise.)

EXERCISE 2.2.6. The orbit sum of a polynomial f € C[z1,...,x,] is defined by sy :=
Eheof h where Oy C Clz1,...,xn] is the orbit of f under Sn. E.g. Sz 00...x, = Sx and

s,; = ;. Show that C[ml,...,xn]‘dg" has a basis consisting of the orbit sums of the
1
monomials zi'x5? - - - 2l where p = (p1,p2,- - ,pn) runs through the partitions of d into

n elements, i.e. p1 > p2 >+ >pp >0and p1 +p2+---+pp =d.
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2.3. Roots of polynomials. It is well-known that the coefficients of a monic
polynomial are the elementary symmetric functions of the roots, up to sign. More
precisely, we have the following identity

(t—ai) =t" —si(z1, ...,z )t" "+ so(@1, ... @)t 2=

(1)

—-

=1

(1) "sp(z1, .., ).
where both sides are considered as elements of the polynomial ring Clxz1, ..., 2y, .

ExAMPLE 2.3.1. The polynomial Hiq (z; — z;)? is symmetric, hence can be
written as a polynomial in the elementary symmetric functions sy:

H(J?l — Z‘j)2 = l)(Sl7 ceey Sn)

i<j
The polynomial D has degree n(n — 1) and is called discriminant. By definition,
D(by,...,b,) = 0 if and only if the polynomial t" — by t" =1 4+ byt" 2 — ...+ (—1)"b,
has multiple roots.

EXERCISE 2.3.2. For any pair n > m there is a polynomial R, . € (C[m,,,,,mn, Yiy - - ,ym}
with the following property: Two monic polynomials f = t™ + a1t" ' +-- -+ a, and g =
"™ + b t™ ' +... 4+ b, have a common root if and only if Rnm(ai,...,an,b1,...,bm) =0.

(The polynomial Ry . is called the resultant.)
Consider the following polynomial map
m: C" = C", (a1,...,an) = (s1(@1,...,ap),...,8n(a1,...,0a,)).

It follows from the above that 7 is surjective and that the fibers are the S,-orbits.
In fact, an element A = (A1,..., \) of the fiber of (by,...,b,) consists of the roots
(with multiplicities) of the polynomial t"* — byt"~! + byt" =2 — ... + (=1)"b,. But
more is true:

PROPOSITION 2.3.3. (1) The morphism m: C" — C™ is surjective and its
fibers are the S, -orbits.
(2) The morphism w is finite and therefore closed in the ZARISKI topology.
(3) The morphism w is proper and therefore closed in the standard C-topology.

PROOF. We just proved (1), and (2) follows from Exercise 2.2.5. A proof of the
last statement (3) can be found in [Sch75]. O

The proposition shows that the polynomial map 7: C* — C" is a quotient map
with the additional property that the image carries the quotient topology. Therefore,
every continuous invariant function f factors through 7: f = 7*(f) := f o with a
continuous function f: C* — C. And the same holds for the polynomial functions,
because

7 (Cly1, ..., yn]) = Cls1,. .., 5] = Cla1, ..., z,]5".
In particular, the symmetric product C™ can be identified with C™ by using the
elementary symmetric functions. It turns out that the more general symmetric
products (C*)(™ are much more complicated, and they are not really understood
so far. Let us look at the first non-trivial case.

EXAMPLE 2.3.4. In order to describe (C?)) we first calculate the algebra of
invariants Clx1,y1, 22, y2]5? where (1) = 2o and o(y;) = yo. It is generated by
the following five invariants

a1 =T + T2, a2 := Y1 + Y2,
az = (x1 — xz)Q, as = (y1 — y2)2, as == (21 — 22)(y1 — ¥2)
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which satisfy the relation azas = a?. In fact, using the new generators
Z11=21 + T2, 22 =Y1 T Y2, 23 1=T1— T2, 24 =Y1 — Y2

we get for a monomial m = z{'25%25%2;* that o(m) = (—=1)"%"m, and so the
invariants are generated by z1, 29, 23, 23, 2324, as claimed. One can deduce from this
that the morphism

7 C?*xC?=C°
given by the five invariants has image X := V(y3y4 —y2) C C® and that the induced
map 7: C? x C? — X has all the properties of a quotient map, i.e. (C?)(?) ~ X.
The details will be discussed later, see ?77.

REMARK 2.3.5. If we restrict the morphism 7 to the real points R* C C™
then the map 7|g»: R™ — R™ is not anymore surjective. In fact, the image m(R")
corresponds to those real polynomials all of whose roots are real. For example, the
quadratic polynomial ¢2 — bt +c has real roots if and only if b2 —4c > 0. This implies
that m(R?) = {(b,¢) | b* — 4c > 0}.

Is there a similar description for real polynomials of higher degree? In fact,
there is a beautiful result due to Sylvester (see [PS85]). For a polynomial p =

" — bt 4 byt" "2 — ... + (—=1)"b,, define the Bezoutian matriz by
Bez(p) == (Yivj—2(b1, - bn)); i1
where (b1, ..., b,) are the power sums in the roots of p expressed as polynomials

in the coefficients of p (see Exercise 2.2.2). Then we have the following result (see
[Pro78], cf. [PS85]).

PROPOSITION 2.3.6. Let p € R[zy,...,x,] be a real monic polynomial.

(1) The roots of p are all real if and only if Bez(p) is positive semidefinite.
(2) The rank of Bez(p) equals the number of distinct roots, and its signature
equals the number of distinct real roots.

EXERCISE 2.3.7. Let G C GL,(C) be a finite subgroup. Then the G-invariant poly-
nomials Clz1,. .., xn]G separate the G-orbits on C", i.e. for any two orbits O1, Oz there
is an invariant function which takes different values on O; and Oa.

More generally, if X is an affine variety and G C Aut(X) a finite group of regular auto-
morphisms of X, then the G-invariant regular functions O(X )G separate the G-orbits on
X.

(Hint: First construct a function f € O(X) which vanishes on one orbit, but is non-zero
on any point of the other. Then ngc g*(f) is invariant and separates the two orbits.
Here g*(f) = f o g is the pull-back.)

3. Quadratic Forms

3.1. Equivalence classes. A (complex) quadratic form ¢ is a homogeneous
polynomial function of degree two:

q(l’l, ey xn) = Zcijxil'j; Cij e C.
1<j
Two such forms are called equivalent it they are obtained from each other by
a linear substitution of the variables. The quadratic forms form a vector space
Qn := Clz1,...,x,]2 of dimension (”+1 which can be identified with the complex

2
symmetric n X n-matrices Sym,, (C): For A = (a;;) € Sym,,(C) we set

n
qa = (o1, .., x0) AT, an) = Z ;T
ij=1
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The inverse map is given in the following way. Define the associated bilinear form
By(z,y) := 3(q(x +y) — q(z) — q(y)) and put A, := (B(e;, €;)). This identification
allows to define the rank rk ¢ and the discriminant A q of a quadratic form ¢:

rkqg:=1kA,, Agqg:=detA,.

Clearly, the two forms g4 and gp are equivalent if and only if there is an invertible
g € GL,(C) such that B = gAg’. In particular, the rank is an invariant, but
the discriminant is not: Agg = (det g)?Aga. We have the following well-known
classification result.

ProprosITION 3.1.1. Two quadratic forms are equivalent if and only if they
have the same rank. In particular, a quadratic q form of rank r is a equivalent to

qr :$%++m%7 7’:071,...,”.

ProOOF. We prove by induction on n that there is a basis (v1,...,v,) of C"
such that B, (v;,v;) = 0 except for i = j and i < r =rkgq. If ¢ = 0 there is nothing
to prove. Otherwise there is a v € C™ such that g(v1) = By(v1,v1) = 1. Define
V' :={w € C" | By(v1,w) = 0}. Then C* = Cv @ V'. By induction, there is a basis
(va,...,vy,) of V' with the required property, which proves the second part of the
proposition. O

3.2. Closures of equivalence classes. We have seen above that there is an
action of the general linear group GL,(C) on Sym,,(C) given by (g, A) — gAg?,
and that the orbits of this action are precisely the equivalence classes. Considering
a quadratic forms ¢ as a function on C™ there is the following natural linear action
of GL,,(C) on Qy:

(9,q) = g - q where (g-q)(z) == q(g ).
An easy calculation shows that this action corresponds to the following linear action
on the symmetric matrices: (g, A) — g *Ag~!. Note that this is not an equivalent
representation to the previous one given by (g, A) — gAg’. But it has the same
orbits, since it is obtained from the previous one by the outer automorphism g —
gt of GL,(C).

Denote by Cy C @y, the equivalence class of the form ¢ and by C4 C Sym,, the
equivalence class of the symmetric matrix A. We want to study the closures ﬁqc
in the C-topology which turn out to be equal to the closures ?q in the ZARISKI
topology, see Exercise 3.2.2. Since the equivalence classes C; are the orbits of the
(linear) action of GL,,(C) and since this action is continuous we see that the closure

ﬁqc is stable under GL,,(C), hence a union of equivalence classes. In fact, we have
the following result.

PROPOSITION 3.2.1. For the equivalence classes Cy of quadratic forms we have
——C _—<C ——C
{0} < Cq1 c qu c "'an = Qn.
PROOF. Since the rank function is lower semicontinuous (see Exercise 3.2.3
. ———C
below) we know that the unions |J,., Cy, are closed and so Cy.~ C |J,;-, Cq-
Moreover, for all & # 0 the form x2 +---+x? | +ex? is equivalent to ¢, this implies
that ¢.—1 € Cy, . Since the closure of an equivalence class is a union of equivalence
classes the claim follows. (]

This observation has the following consequence. Fvery continuous invariant
function f: Q, — C is constant. In particular, continuous invariant functions can-
not separate the orbits.
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EXERCISE 3.2.2. Show that CT;C equals the closure C, in the ZARISKI topology.

EXERCISE 3.2.3. The rank function rk: M, (C) — R is lower semicontinuous. This
means that for all & € R the set {A € M, (C) | rk A < a} is closed in M, (C).

3.3. Other equivalence relations. We can study other equivalence relations
on @, by looking at subgroups G C GL,,(C), e.g. the special linear group SL,,(C) or
the orthogonal groups O,,(C) or SO, (C). In the case G = SL,,(C), the discriminant
A is an invariant. In fact, we have the following result. (We denote by C[Q,] the
complex polynomial functions on @,.)

PROPOSITION 3.3.1. C[Q,]5"(©) = C[A].
For ¢ € Q,, we denote by O, the orbit of ¢ under SL,,(C).

ProrosiTiON 3.3.2. Consider the morphism A: @, — C.
(1) For A € C\ {0} the fiber A™*()\) is a single SLy,-orbit, namely the orbit
O, of the form qN =X 42 422,
(2) A_I(O) = anﬂ U an72 U---u Oq1 U {0}
(3) For 0 < i <n we have Oy, 2 O,,_,. In particular, A~*(0) = O,, _,
(4) Every C-continuous invariant function f on @, is a C-continuous func-
tion of the discriminant A.

PROOF OF PROPOSITION 3.3.1 AND 3.3.2. For a quadratic form ¢ of rank n

there is a g € GL,,(C) such that ¢- ¢ = 2% + - -- + 22, by Proposition 3.1.1. Writing
w

g in the form g =

1 h where ;1 = detg and so h € SL,(C) we see that
1

h-q=Ax3+ -+ 22 where A\ = A(q). This proves (1). The same argument shows
that for ¢ < n the SL,-orbit of ¢; equals the GL,,-orbit which was denoted above
by C,,. Thus (2) and (3) follow from Proposition 3.2.1.

The morphism s: C — Q,, given by s(\) := ¢ is a section of A, i.e. Aos =
Idc. Moreover, U := SL,, -s(C) C @), contains all orbits except Og, ,,...,O0q4,{0}.
Hence, by (3), U is dense in Q,. Now let f: @, — C be an invariant polynomial
function. Define f()\) := f(s()\)). Then f € Cly] and f o A equals f on s(C). Since
both functions are invariant they coincide on U, hence are equal: f = f o A. This
proves Proposition 3.3.1, and a similar argument for a C-continuous f gives (4). O

The result shows that invariant polynomial functions can describe equivalence
classes “generically”, but for special values there might be several classes with the
same polynomial invariants. And this cannot be avoided as long as we work with
continuous functions. We will see many other examples below and later in the book.

REMARK 3.3.3. It is well-known that every real quadratic form is equivalent
under O, (R) to a “diagonal form” aj2? + agx3 + - - - + a,x2 where the coefficients
are unique up to permutations. Equivalently, every real symmetric matrix can be
diagonalized with an orthogonal matrix and the diagonal form is unique up to
permutations. This does not hold if we consider complex quadratic forms with
respect to the complex orthogonal group. In fact, the symmetric matrix H jl] is
nilpotent. However, it is true “generically”: There is an open dense set U C @Q,, such
that every form in U can be diagonalized with a complex orthogonal transformation.

We will discuss this in detail in Chapter IV (see Example 1V.3.4.3).
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4. Conjugacy Classes of Matrices

4.1. Adjoint representation. Let M,, = M,,(C) denote the vector space of
complex n x n-matrices. Two matrices A, B € M,, are called conjugate or similar if
there is a g € GL,,(C) such that B = gAg~'. Thus the equivalence relation is given
by a group action (g, A) — gAg~! called the adjoint representation, whose orbits
are the conjugacy classes Ca := {gAg~"' | g € GL,(C)}.

EXAMPLE 4.1.1. Every complex 2 x 2-matrix A is conjugate to one of the

following:
A0 . Al
0 ul % o alr

If A has two different eigenvalues A # u, then its conjugacy class is determined by

A, . If A has a twofold eigenvalue A then it is either conjugate to or equal

Al

0 A

to [6\ ?\} . This occurs if and only if (tr A)2—4det A = 0. Looking at the morphism
m: My — C?, A s (tr A, det A),

this implies that the fibers over K := V(2? — 4y) consist of two conjugacy classes
whereas all other fibers form a single class.

Denote by
xA(t) :=det(tE — A) =t" —at" '+ apt" % — -+ (=1)"a,
the characteristic polynomial of A. Its coefficients ay, aso, . .., a, are the elementary

symmetric functions in the eigenvalues of A. If we consider the matrix X = (z;;)
with indeterminate entries x;;, then x x(t) := det(tE — X)) is a homogeneous poly-
nomial in the variables t, z;;:
xx(t) ;==det(tE — X) =" — S (X)t" 1 + Sp(X)t" % — - + (=1)"S,(X).
It follows that the coefficients Si(X) are invariant polynomial functions on M,,(C),
Si € O(M,,)S(©) and that they are homogeneous of degree k. In particular,
S1(A)=trA and S,(A)=detA.

More generally, S;(D) = s;(A1, ..., An) (see section 2.2) in case D is an upper trian-
gular matrix with diagonal entries A1, ..., \,. Now define the following morphism

m: M, = C", A (51(4),S2(A4),...,S.(4)),

which associates to every matrix A the elementary symmetric functions of the
eigenvalues of A.

PROPOSITION 4.1.2. (1) O(M,,(C))EEn(©) =[Sy, Sa, ..., Sy], and the S;
are algebraically independent.
(2) Every C-continuous invariant function f on M, is a C-continuous func-
tion in S1,...,Sy.

PROOF. For a given polynomial p(t) = t" + c1t" =1 4 cot" "2 + - - - + ¢,, consider
the companion matriz R defined by

00 -+ 0 —c
1 0 -+ 0 —chq

(2) R=R(c1,¢0,...,¢p) := RPN : e M, (C).
0 —C9
1 —C1
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Its characteristic polynomial equals p(t) (see Exercise 4.1.3 below) and so the mor-

phism s: C* — M,, given by s(ay,...,a,) := R(—ai,a2,—as,...,(—1)"a,) is a
section of 7, i.e. mos = Idcn. Moreover, every matrix A with n different eigenvalues
is conjugate to a matrix R(cy,...,c,), and so the set

GL,, -s(C") = {gRg™"' | g € GL,,, R a companion matrix} C M,

contains all matrices with n different eigenvalues and is therefore dense in M,,
(Exercise 4.1.4). Now the two claims follow as in the proof of Proposition 3.3.2. O

00 -0 —cpn
1 0 -+ 0—cp_1
EXERCISE 4.1.3. Show that the characteristic polynomial of R =
0 —c2
1 —c

equals t" 4+ c1t" ! F et" 2+ -+ cp.
(Hint: Calculate det(tE — R) by expansion on the first column.)

EXERCISE 4.1.4. Show that in every C-neighborhood of a matrix A there is a matrix
with n different eigenvalues.
(Hint: This is clear for upper triangular matrices.)

4.2. The geometry of n: M, — C". Proposition 4.1.2 above shows that
every invariant polynomial function f: M, — C factors through m: There is a
polynomial f € C[xy,...,x,] such that f = f ow. Let us now study the geometry
of the conjugacy classes and of the morphism 7: M,, — C". Recall that every
matrix A € M, has a well-defined Jordan decomposition A = As; + A,, where Ay is
semisimple (i.e. diagonalizable), A,, is nilpotent and AsA, = A, A;.

LEMMA 4.2.1. Let A= A+ A, be the Jordan decomposition of A € M,

(1) As is in the closure of the conjugacy class of A: As € Cy .
(2) The conjugacy class of A is closed if and only if A is semisimple.

PrOOF. The first statement follows from the fact that A, + A, is conjugate
to As + €A, for all € # 0. This also implies that a closed conjugacy class must be
semisimple.

In order to obtain the inverse implication we first remark that every fiber of 7
contains a unique semisimple conjugacy class. Secondly, one knows that a matrix A
is semisimple if and only if its minimal polynomial p 4 has no multiple roots. Now let
A be semisimple with minimal polynomial p4. Clearly, every matrix in C4 has the
same minimal polynomial, and so p4(B) = 0 for all B € CiA(C. As a consequence,
B is semisimple, too, and B is conjugate to A because 7(B) = 7(A4). O

The next proposition is an easy consequence from what we have said so far.

ProrosITION 4.2.2. Consider the morphism m: M,, — C" given by the coeffi-
cients of the characteristic polynomial.

(1) 7 is surjective.

(2) The fiber 7=1(b) is a single conjugacy class C = Ca if and only if D(b) # 0
where D is the discriminant. In this case A is semisimple with n different
eigenvalues.

(3) Ewery fiber F' of w contains a unique closed conjugacy class C = Cyg where
H is semisimple. Moreover,

F={AeM, | As is conjugate to H}.

In particular, every fiber contains finitely many conjugacy classes.
(4) ©#=1(0) equals the set N of milpotent matrices.
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One can say much more, but the proofs of the following statements are also
more involved and will not be given here.

PROPOSITION 4.2.3. FEwvery fiber of the morphism w: M, — C" is reduced,
irreducible and normal of dimension n® — n. Moreover, the ideal I(m=1(b)) of the
fiber m=1(b) equals (S1 — by, So — ba, -+, S, — by), and so the fibers are complete
intersections (see AL5.7 and Exzample AL5.7.6)..

4.3. Cyclic matrices. Our Proposition 4.2.2 above has a number of inter-
esting interpretations. Since every fiber contains a single closed conjugacy class
which is semisimple, we can say that the morphism m: M,, — C™ parametrizes the
semisimple conjugacy classes.

On the other hand we have seen that 7(A4) = w(B) if and only if A, is conjugate
to By which in turn is equivalent to C4 NCp # (). So we can say that the morphism
w: M,, — C™ is the quotient with respect to the equivalence relation

A~B <+ CyNnCp#0.

For the last interpretation, we recall that a matrix A is called cyclic or regular
if there is an element v € C™ such that C" is linearly spanned by the images
{A*v | k € N}. It follows that (v, Av, A%v,..., A" v) is a basis of C", and so A
is conjugate to a companion matrix (2). It is not difficult to see that the cyclic
matrices are also characterized by the condition, that in its Jordan normal form
there is only one Jordan block for every eigenvalue. From all this one can deduce
the following result. The reader ist advised to work out the details, starting with
Mj and M3 (see Exercise 4.3.2 below).

PROPOSITION 4.3.1. Let A € M,,(C).
(1) The map 7: M,, — C" is of mazimal rank in A if and only if A is cyclic.
(2) If A is cyclic, then Ca is dense in the fiber 71 (7(A)).
(3) A is cyclic if and only if the centralizer Z4 := {g € GL,, | gA = Ag} is a
commutative algebraic group of dimension n.
(4) The cyclic matrices form an open dense set M, and the induced map

n 7’

m: M]% — C™ identifies C™ with the orbit space.

EXERCISE 4.3.2. (1) Every cyclic matrix is conjugate to a companion matrix.
(2) The conjugacy class Cn of a cyclic nilpotent matrix N is dense in N.
(3) Every fiber of 7 contains a dense conjugacy class which is the class of a cyclic
matrix.
(4) The differential dam of 7 in a cyclic matrix A is of maximal rank n.

4.4. The nilpotent cone. The set \,, C M,, of nilpotent matrices equals the
fiber 7=1(0) which is defined by the vanishing of the coefficients of the characteristic
polynomial, and also defined by the n? equations X™ = 0 where X = (x;;);; is the
n X n-matrix with entries x;;:

N =V(S1,...,5,) = V(X™).

It follows that A is a closed cone, i.e. closed and stable under multiplication with
A € C. It consists of finitely many conjugacy classes which are represented by the
Jordan normal forms. Using the sizes of the Jordan blocks we can be parametrized
the nilpotent conjugacy classes by the partitions of n, i.e. by the set

Pri={(p= (1, .,pn) EN" [p1 =y >+ > ppn, ¥ _pi =n}.
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EXAMPLE 4.4.1. The partitions p of 4 are (4),(3,1),(2,2),(2,1,1),(1,1,1,1)
(we leave out the trailing zeroes), and the corresponding classes C), are those of the
matrices N, given by

0 1 0 1
01 0 1
0 1|’ 0 ’ 0 1|’ 0 ’ 0
0 0 0 0 0
In general, C,) is the conjugacy class of the regular nilpotent matrix N, and
Ca.,....1) = {0}. The closure of a nilpotent class C, is stable under conjugation,
hence is a finite union of nilpotent classes:

@:chg-
J

EXERCISE 4.4.2. For n = 4 the inclusion order in A/, is given by
{0} =C11,1) €Cra1,1) € Ca,2) € Cispy € Clyy-

There is a nice combinatorial description of the partitions ¢ appearing in the
closure of C,, (see [Kra78]). For this define the following partial order on P,,:
q= (qlv"'vqn) <p= (plv"’,pn) <~ Q1++Qk §p1++Pk for k = 1)"';”
PROPOSITION 4.4.3. We have C, C C,, if and only if ¢ < p.

One implication is easy (see the exercises below), for the other we refer to the
literatur mentioned above.

EXERCISE 4.4.4. Define the dual partition p of p by pr := #{j | p; > k}. Then
(1) pr = dimker(N,)*, and
(2) ¢ <pifand only if § = p.

EXERCISE 4.4.5. The function rk: M,, = Z, A — rk A, is lower semicontinuous, i.e.
for all kK € N the subset {A € M,, | rk A > k} is open.

EXERCISE 4.4.6. Use the previous two exercises to prove one implication of Proposi-
tion 4.4.3: If Cq C C), then g < p.

EXERCISE 4.4.7. Work out the inclusions of the closures of the nilpotent classes in
N5 and verify Proposition 4.4.3 for n = 5.
(Hint: C(s.2) € Can), but Cz2.1) € Csn) and Cs i) € Cra2.1)0)

5. Invariants of Several Vectors

5.1. Pairs of vectors. Let V = C? be the two dimensional complex vector
space with the usual operation of GLy(C) given by

a Bl |z ax + By] [a ﬁ} [x}

v = = for g = € GLy(C), v = eV
I {v 5] M {w +oy] Ty o ) y

We consider now pairs of vectors from V' and define on V' x V the following equiv-

alence relation:

(v1,v2) ~ (w1, wy) <= thereis a g € SLy(C) with gv; = w; for i = 1,2.
Clearly, the map

m=[,]:VxV —=C, (v1,v2) [v1,v2]:=det {xl xﬂ , where v; = [ml} ,
Y Y2 Yi

is constant on the equivalence classes. Expressed in terms of coordinates we have

™ =X1Y2 — T2Y1-

One can easily give the normal forms for each equivalence class:
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(a) If X := [v1,v2] # 0, then (v1,v2) ~ ([§],[9]) holds. (This follows from
the fact that GLy operates transitively on pairs of linearly independent
vectors.)

(b) The fiber 7~1(0) consists of infinitely many equivalence classes of pairs of
linearly dependent vectors. As representatives we could take, for example,
(0,0), (e1,0) and (Aep,er) with A € C. (One uses the fact that SLy(C)
operates transitively on the non-zero vectors.)

VxV
equivalence
classes para- one equivalence class
metrized by P!
T
{(0,0)} o |
| |
| |
| |
C | |
0 A#0

FIGURE 1. The quotient map for pairs of vectors

5.2. The null fiber. Now we would like to look a little closer at the null
fiber N := 7=1(0) as a geometric object. We denote by P! = P!(C) the complex
projective line:

P! = {(a,b) € C* | (a,) # (0,0)}/~
where (a,b) ~ (a/,’) iff the two vectors are linearly dependent. The equivalence
class of (a,b) is denoted by (a : b).

PROPOSITION 5.2.1. There exists a surjective map p: N \{(0,0)} — P! whose
fibers are exactly the equivalence classes.

PROOF. Set

) ([m] |:332:|) _ J(wime) if (21, 32) #(0,0),

Y1 ’ Y2 (yl : yg) if (yl, yg) 7é (0, 0)
Since the two vectors are linearly dependent the map p is well-defined and has the
desired properties. ]

In this way the equivalence classes in A'\{(0,0)} can be parametrized by the
complex projective line P!, via p, see Figure 1 above.

This parametrization can also be explained by the following description of the
null fiber 771(0) as a vector bundle over P*.

PROPOSITION 5.2.2. There is a vector bundle B of rank two over P! and a
surjective map @: B — N such that the following holds:
(1) So:=71((0,0)) is the zero section of B, Sy ~ P!;
(2) The map ¢ induces an isomorphism B\ So = N'\{(0,0)};
(3) Ewvery fiber of B is isomorphically mapped onto the closure of an equiva-
lence class.
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PROOF. We consider the open covering Uy U Uy, of P! defined by Uy := {(\ :

p) € PL I X #0} and Uy := {(X: p) € P! | u # 0}, along with the trivial vector

bundles V' x Uy and V' x Us. The bundle B is obtained from the following diagram
c )

VxUy —S B 2 VxUs
| | |
Us €, p 2 Us

by “glueing together” the trivial bundles over Uy NU,, using the identification over
a point (A : p) € Uy N Us:

(’U, ()‘ : /’(’))0 = (U}, (/\ : /J/))OO — pv = Aw.
Now we define p: B — N by

Pl (0 o) = (0. 50) and g, (3 ))oc) = ).

It is easy to see that ¢ is well-defined, i.e. that it is compatible with the above
identifications, and also that it has the properties which we want. O

REMARK 5.2.3. The assertion shows that one gets the null fiber N from the
vector bundle B by “blowing down” the zero section to a point. Conversely the
bundle is obtained from the null fiber by “blowing up” the point (0,0) to a P*.

EXERCISE 5.2.4. Give a direct proof of the third statement of Proposition 5.2.2 that
the closure of a non-trivial equivalence class in the null fiber A is isomorphic to C2.

5.3. Vector bundles over P!. The vector bundles on the projective line P!
are well-known. For each integer s € Z there is a line bundle O(s) and every vector
bundle is isomorphic to a direct sum of such line bundles. For the description of

such an O(s) we use, as before, the open covering P! = Uy U U, and consider the
trivial bundles C x Uy and C x Ux.
C x Uy S O(s) 2 Cx Uso
[ & [
Us S, P2 U,

The line bundle O(s) is now obtained by glueing these two trivial bundles together
over Uy N Uy using the following identification:

(A p))o = (u, (A1 p))oo &= Nt = p’u.

If we compare this with the construction of B above, then we get the following
corollary to Proposition 5.2.2.

COROLLARY 5.3.1. The vector bundle B from Proposition 5.2.2 above is iso-
morphic to O(—1) ® O(-1).

REMARK 5.3.2. The bundle O(—1) is the so-called HOPF-bundle. Over the real
numbers R we can visualize this geometrically in the following way. We interpret
the real projective line P!(R) as the unit circle in the real plane with opposite
(antipodal) points identified. If one now takes a copy of R as the fiber over every
point of the unit circle, then one has to identify the fibers which lie over opposite
points. Since the coordinates of opposite points differ by a factor of —1, one must
glue these fibers together “with a twist”. If one applies this process to a half-circle
with two end points, then by identifying the two fibers over the two ends one gets
a MOBIUS band.
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EXERCISE 5.3.3. (1) Show that the line bundle O(s) can be described in the
following way. Let n: C*\{0} — P* be the canonical map. Define on (C*\{0}) xC
the following equivalence relation:

((z,y),t) ~ ((z',y"),t') <= There exists a A € C* = C\ {0} with
z=Xt', y=Xy and t = \°t'
Then one can identify the set of equivalence classes with O(s), and the projec-

tion onto the first factor pr: (C2\ {0}) x C — C?\ {0} induces the following
commutative diagram:

C*\ {0} xC —=— 0O(s)

prl l

c*\{o} —— P

(2) Give another proof of Proposition 5.2.2 and the corollary by using a similar
construction of the bundle B as in the previous exercise for the line bundles
O(s).

(3) A section o: P! — O(s) (i.e. one has p o ¢ = idp1) induces a map &: C?\
{0} — (C*\ {0}) x C of the form (z,y) — ((z,%), f(z,y)). It follows that
((z,y), f(z,y)) ~ ((Az,\y), f(Az, Ay)) for every A € C*, ie. f(Az,Ay) = A° -
f(z,y). Nonzero polynomials F' with this property only exist for s > 0, and
these then are exactly the homogeneous polynomials f(z,y) of degree s.

The line bundles O(n) with n negative are thus distinguished by the fact
that they do not have any polynomial sections except for the zero section.

5.4. Invariants of several vectors. Instead of pairs we could naturally look
at triples or arbitrary n-tuples of vectors in V', considered with the corresponding
equivalence relation. Finding a complete system of invariants was one of the classical
problems of invariant theory. One means by this a system of invariant polynomials
fisfo,. ., fnonV xV x---xV (ie. they are constant on the equivalence classes)
with the property that every invariant polynomial can be expressed as a polynomial
function in the f/s.

Such a complete system is given, for example, by the functions f;;, 1 <i < j <
n, defined by

fij(vl, ey Un) = [’Ui, ’Uj].
For a proof of this classical result we refer to the literature, e.g. [Wey39], [Vus76],
[dCP76]. We will discuss this in more details in section 6.2.2.
In the case of triples of vectors one is led to study the following map:

T VxVxV—C3 (v1,va,v3) = ([v1,v2], [V1,v3], [V, v3]).

One can easily show that 7 is surjective and that, with the exception of the null
fiber N := 771(0), every fiber of 7 is an equivalence class. The null fiber itself is
made up of those triples (v1,va,vs3) which span a vector space of dimension < 1.

EXERCISE 5.4.1. Give a proof of these statements.

The equivalence classes in A \{0} can be parametrized by the complex projec-
tive plane P?. Also in this case there is a vector bundle B of rank two over P? and
a surjective map ¢: B — N which maps the zero section Sy of B onto the origin,
and induces an isomorphism B\ Sy = N \{0}. and which maps every fiber of B
isomorphically onto the closure of an equivalence class in N.

B -2 3 N — S VxVxV

l l l

P2 0y —=— 3
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Similar to what we saw above one has B = O(—1) ® O(—1) where the line bundles
O(s) on P? are defined in the analogous way to what was done at the beginning of
section 5.3.

It is recommended that the reader looks carefully at this example and also its
generalization to arbitrary n-tuples.

6. Nullforms

Our approach in the last three sections can be described in the following com-
prehensive way. Given is a complex vector space V' and a linear action of a group
G on V. We are interested in the orbits of the group G in V. In the examples these
are the equivalence classes. For a description of them we could give a continuous
map 7: V — C” which is constant on the orbits and has the property that for
almost all z € (V) C C” the fiber 7~1(2) is exactly one orbit. The fibers over some
special points, in particular over the origin, might form a somewhat complicated
picture and require particular consideration. In some cases they can be regarded as
“degenerations” of the general fiber (see e.g. section 3).

Particularly interesting are those orbits whose closures contain zero. For con-
tinuity reasons these lie in the zero fiber 7=1(w(0)), classically called null fiber. In
all the examples we have considered so far the converse is also true. Namely, the
orbits in the zero fiber contain zero in their closures. The exact connection between
these will be made clear later (see section IV.2.6).

6.1. Binary forms. Now we would like to study the orbits a little closer in
the case of binary forms. Using the terminology of HILBERT one calls the forms
which arise in this way nullforms. We denote by

R, = {Z a;z" "y | a; € (C}
i=0

the space of binary forms of degree n, i.e., the (n + 1)-dimensional complex vector
space of homogeneous polynomials of degree n in the two indeterminates = and y.
For f1, fo € R, an equivalence relation is defined on R,, by

f~f <= thereisage SLy(C), g= {: ﬂ] , such that

b
fa(x,y) = f{(2,y) = flax+ By, yx + dy).

We can also express this in another way. The group G = SLa(C) acts on R,, by
“variable substitution”

1 A
fregf=17, ie g.f(x,y) = f(éx — By, =y + ay)
This means that one has e.f = f for the identity matrix e € G and (gh).f =
g.(h.f) for every g, h € G. In particular, we have

gxr=0x— Py and g.y=-—vyr+ay

For fixed f € R,, the equivalence class C' is equal to the G-orbit G.f under this
action:

Cr={f1geGt=G.f={9.f | g€ G}.
Fort € C* := C\ {0} and d = [t 0 } we simply write f; instead of t.f, i.e.

0 t!
ft('ra y) = f(tilxa ty)
One gets a rough description of the orbits in R,, from the following lemma.

LEMMA 6.1.1. (1) Ewery binary form f € Ry, is a product of linear forms.
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(2) A nonzero form f is equivalent to one of the form x"y* f’ withr > s >0
where [’ € Ry_r—s is a form which has no linear factor x or y or of
multiplicity greater than s.

PRrOOF. The assertion (1) follows from the Fundamental Theorem of Algebra.
The assertion (2) follows from (1) and the fact that GL2(C) operates transitively
on pairs of linearly independent linear forms. U

DEFINITION 6.1.2. We call f € R, a nullform if the origin 0 € R, lies in
the closure of the orbit of f: 0 € G.f. Denote by N, the set of nullforms in R,,
classically called the null fiber or the null cone.

EXAMPLE 6.1.3. The form f = y" is a nullform. This follows from f ~ f; =
t"y™ by taking the limit as ¢ — 0. More generally, let f = x'y"~% Then f; =

1" 2igtyn= and so x'y"” ¢ is a nullform for 2i < n.

EXERCISE 6.1.4. If f € R, contains a linear factor of multiplicity > %, then f is a
nullform.
(Hint: f is equivalent to f = 4 f' where 2j > n. It follows that f; = t* "y f”, and the
claim follows by taking the limit ¢ — 0.)

The following Criterion of HILBERT is the central result in the study of null-
forms. For a proof we refer the reader to the fifth Chapter, see V.3.

PROPOSITION 6.1.5 (HILBERT’s Criterion). A form f € R, is a nullform if and

only if there exists a form fN f with the property that lim;_,¢ f; exists and equals
0.

The criterion asserts that every nullform has a representative in the vector
space

R = {f € Ry | lim f, = 0}.

Obviously, for m = | 251 one has

RS ={> aix'y" " |a; € C} = {f € Ry | y"~™ divides f}.
1=0

Since the operation of G does not change the multiplicity of linear forms in f, we
get the following result.

PROPOSITION 6.1.6.  An element f € R,, is a nullform if and only if f con-
tains a linear factor of multiplicity m > 5 or f = 0.

EXAMPLES 6.1.7. (1) For n = 1 every form is a nullform. In total there
are two equivalence classes in Ry, Cyp = {0} and C, = Ry \ {0}.
(2) For n =2 we find two equivalence classes of nullforms, Cy2 and Cp.
(3) For n = 3 and 4 there are three equivalence classes of nullforms, Cy,2,
Oyz, 00, and Cwys, Cy4, CO.
(4) Formn > 5 there are always infinitely many equivalence classes of nullforms,

with [ 252 | parameters.

If one now notes that the form y” lies in the closure of every orbit of a nullform
which is not zero, then one gets the diagrams of orbits in the null cone N,, given
in Figure 2.
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o2y o Cysy | 253 | parameters
o () o (2 e (s o (s o (in
* {0} * {0} * {0} * {0} * {0}
n=1 n =2 n=23 n=4 n>>5

F1GURE 2. The null cone of the binary forms R,

6.2. The null cone of R5. In conclusion we would like to describe somewhat
more precisely the nullforms N5 in Rs. We leave it to the reader to show how one
can generalize this to forms of arbitrary degree. As above, we let RS = Ca?y® @
Cxy* ® Cy® C Rs. Then there is a surjective map

p: RE x SLy(C) — N5 given by (f,g) +— g.f.
Let B be the group of upper triangular matrices in SLa(C):

B:_{[tt§4|teCiﬁeC}.

LEMMA 6.2.1. (a) One has RE C N5, and every nullform is equivalent
to a form in RY.
(b) The subspace R; is B-stable, i.e., for every b € B and f € R5+ one has
b.f € Ry.
(c) If f € RY with f #0 and g.f € RE for some g € SLy(C), then g € B.
PROOF. The claims in (a) have already been verified. Next we note that R} =
{f € Rs | ¥ divides f}. Since y is mapped by elements in B to multiples of y, the
claim (b) follows. If f and g.f lie in R, then g.f has not only y, but also g.y as a

factor of at least third order. But then g.y is a multiple of y and, as a consequence,
g € B which proves (c). O

We let B act on Rf x SLy(C) by

b(f,9) = (b.f.gb7),
and denote the set of B-orbits by Ry xZ SLy(C). Clearly, the above map p: R x
SLy(C) — N5 factors through the canonical map q: Ry x SLo(C) — RF xP SLy(C)
which assigns to each element its B-orbit. We denote the space of left cosets by
SLQ((C)/B, ie.
SLo(C)/B = {gB | g € SLa(C)}.
Then we have the following commutative diagram

SLy(C) «+2— RF xSLy(C) —2— N5

! J! H

SLy(C)/B +~2— RF xBSLy(C) —2— N
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where the map p is induced by the projection pr: Ri x SLa(C) — SLa(C).

PROPOSITION 6.2.2. (a) SLy(C)/B ~PL.
(b) p: RF xB SLy(C) — SL2(C)/B is a vector bundle over SLy(C)/B ~ P*
with typical fiber RY .

PrOOF. (a) The isomorphism is induced by the map

4]

which is constant exactly on the left cosets gB.

(b) The subset R x SL2(C) C Rs x SLy(C) is a B-stable where the action of
B on Rjs x SLy(C) is defined analogously. It follows that RF x B SLy(C) C Rs x
B SLy(C). The isomorphism R5 x SLa(C) = Rs x SLa(C) given by (f,g) + (g.f,9)
shows that R5 xZSLy(C) is isomorphic to R x (SLa(C)/B). Thus RF xBSLy(C) is a
vector subbundle of the trivial vector bundle Rs xZ SLy(C)/B over SLy(C)/B. O

78120 2 P |7 5] ()

REMARK 6.2.3. Clearly, the proof of (b) does not depend on the special situ-
ation in the above setting. If V' is a vector space with a linear action of the group
G, H C G a subgroup and W C V an H-stable subspace, then W xH G is a
vector bundle over G/H, namely a vector subbundle of the trivial vector bundle
V xHH~Vx(G/H).

It follows that the H-orbits in W correspond in a unique fashion to the G-orbits
in W xH G.If O' C W is an H-orbit, then O’ x G C W x* G is a G-orbit, and
every G-orbit in W x G is of this form.

Altogether this gives us the following result (cf. section 5.4)

PROPOSITION 6.2.4. (a) The space RF xBSLy(C) is a vector bundle over
SLy(C)/B ~ P* with typical fiber W .
(b) The set p~1(0) is the zero section Sy of the vector bundle RF xP SLy(C),
and p induces a bijection (RT xB SLy(C)) \ So = N5 \{0}.

SLy(C)/B +*— RI xBSLy(C) —— N5

H E Je

SLy(C)/B +—— Ri xPSLy(C)\ Sy —— N5 \{0}

(The first assertion has already been noted and, as the proofs of the others
should create no difficulties, they are left to the reader.)

6.3. A geometric picture of A'5. Among other things, the proposition says
that the SLy(C)-orbits in A5 and in R xZ SLy(C) can be put into one-to-one
correspondence. Moreover, the latter correspond for their part to the B-orbits in
R;, cf. the above remark. We would now like to make this geometrically clear.
In order to do this let u,v,w be the coordinate functions on R; relative to the
basis {22y3, xy*, y°}. For f € R one has B.f = {b.f | b€ B} = G.f N R, see

t

Lemma 6.2.1(c). For b := [c 01} one has

-
bax=t"'oz— By and by =ty.
From this one easily gets the following description of the B-orbits in R :
(a) B.y® = Cy® — {0} = the w-azis minus the origin.
(b) Byt = {tzy* + by® | t € C*,b € C} = the vw-plane minus the w-azis
CyP.



24 CHAPTER I. FIRST EXAMPLES AND BASIC CONCEPTS

(c) B.x?y? = {tz?y® + 2t%bxy* + 3%y | t € C*,b € C} = the cone with the
equation duw — v? = 0 minus the w-axis Cyd.

(d) B.xy?(x+ qy) = the surface with the equation 4uw —v* 4 ¢*u® = 0 minus
the w-axis CyP.

FIGURE 3. The surface 4uw — v 4+ ¢*u8 =0

As might be expected, (b) and (c) are “limiting cases” of the family (d), namely
for ¢ — oo resp. ¢ — 0. All the orbits which occur in (b), (¢) and (d) contain the
w-axis in their closures. This corresponds to the fact which was noted above that
the form y° lies in the closure of the orbit of every non-zero nullform.

For the description of the SLa(C)-orbits O := G.f we consider the subspaces
W' := Czy* @ Cy® and W” := Cy® of RY, and the corresponding subbundles
W' = W’ xB SLy(C) and W’ = W" xB SLy(C) of W := R xB SLy(C). Then p
induces bijections

~

WAW' 5 | Onyoargrys W AW S Oy
qeC
W'\ So = Oys.

Corresponding to this we have the following decompositions into line bundles (see
section 4)

W= 0(=3)%, W ~0(-4)%, W' ~0(-5).
One can see this in the following way. We consider the isomorphism Cy3®c Ry — R;‘
given by multiplication, (by?, a12% + aszy +asy?) — ba12%y> +baszy* +bazy®. Now
one notes that the line bundle CX? x 2 SLy(C) is isomorphic to O(—3). Similar to
before one sees that Ry xZ SLy(C) is the trivial bundle O3 (cf. the proof of b) in
the Proposition). From the above isomorphism Cy? ®¢ Ry — W one now gets

W xP SLy(C) ~ O(-3) ®@c O = O(-3)3.

The other cases can be shown in a similar way.
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REMARK 6.3.1. The method we gave of describing nullforms using suitable vec-
tor bundles was further developed and refined by Wim HESSELINK [Hes79]. Here
the essential tool is KEMPF’s theory of optimal one-parameter subgroups ([Kem78],
cf. 5.5.2).

7. Deformations and Associated Cone

7.1. The associated cone. We consider again the general situation of a com-
plex vector space V' on which an algebraic group G operates linearly and rationally,
i.e., a group homomorphism p: G — GL(V') is given so that the matrix coefficients
of p(g) with respect to any (and hence every) basis of V are regular functions on
G. Precise definitions are given in the next chapter. Instead of p(g)(v) we simply
write gv. For v € V' we denote by O, := {gv | g € G} the orbit of v under G.

As a generalization of the notion of nullforms from the last section we introduce
the following notion.

DEFINITION 7.1.1. A vector v € V and its orbit O,, as well, are called unstable
if zero lies in the closure O, of the orbit of v. Otherwise v and O, are called
semistable. We use Ny to denote the set of all unstable vectors in V

If O, is a semistable orbit in V and A € C*, then A\O, = {\- (gv) | g € G}
is also a semistable orbit. In fact, AO, = O,, since the action of G is linear, and
multiplication with X is a homeomorphism, hence A0, = AO, # 0.

For an arbitrary orbit O C V let

C*O:={w| xeCve0}= U(C*v

veD

be the cone spanned by O. A subset of a vector space is called homogeneous or a
cone if it contains with every v the subset C*v.

DEFINITION 7.1.2. Let v € V be semistable. The set of boundary points of the

cone C*O, is called the cone associated to O, (or associated to O,) and will be
denoted by CO,,:

CO, = d(C*0,).

EXAMPLE 7.1.3. Let V := C%, G := GL; = C* and the operation be given by
t(z,y) = (tta,ty) for t € C*, (x,y) € V. The unstable orbits are O o), O(1,0) =
the x-axis minus zero, and O g 1) = the y-axis minus zero. Thus Ny is the union of
the two coordinate axes in C2. For ab # 0 the orbit O(a,p) is the hyperbola with the
equation zy — ab = 0, and C*O(, ) = {(u,v) | u,v # 0} = C*\ Ny. It follows that

CO@p) = 0(C Orapy) =Ny .

EXAMPLE 7.1.4. Let V := C? & C? ~ M3(C), G := SLz(C), and the operation
be given by left multiplication (cf. section ??). Choose v,w € C? which are linearly
independent. This means that the corresponding matrix [u, v] is nonsingular. Then
the orbit O(, ) is closed, hence semistable. In fact, O(, ., corresponds to the set

of matrices in M, (C) with determinant equal to det[u, v]. It follows that C*O, .,
corresponds to the set of invertible matrices, i.e.

C*O(y,w) = the set of all pairs of linearly independent vectors in C?,
which is open and dense in V. It follows that
COwwy = {(v,w) € V | v,w linearly dependen} = Ny .

One can prove the following general result concerning the associated cone, cf.
11.4.2.
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PrROPOSITION 7.1.5. Suppose O is a semistable orbit. Then CO 1is a closed
G-stable cone contained in Nv, and dimCO = dim O. Moreover, one has CO =
C*O\ C*0.

The dimension is to be understood in the sense of algebraic geometry, see
section AL3.

OUTLINE OF PROOF. Since the G-action is rational and hence continuous, not
only C*O, but also C*O is a G-stable cone. Thus so are the interior of C*O and
also its boundary. Since C*O consists only of semistable orbits, it follows that
NyNC*O = . From this it is obvious that CO 2 C*O \ C*O. From the first
part of the proposition, namely that CO C Ny, it follows that CO = C*O \ C*O.
However, the inclusion CO C Ny is not so easy to prove.

For the statement about the dimension, one first has to convince oneself that
dimC*O = dim O + 1. (The map C* x O — C*O, (t,v) — tv, has finite fibers:
Namely, if it were true that t;u; = ¥ for infinitely many different pairs (¢;,v;) €
C* x O, then v; = v/t; € C*v for infinitely many v;, and so the entire line Co would
be in the closure of O.) Since under the boundary map the algebraic dimension
decreases by at least one, we find that dimCO < dim O. For the inequality in the
other direction one needs a little more from the general dimension theory. O

7.2. Conjugacy classes of matrices. Here we study the example of matri-
ces. Let V = M, (C) and G = GL,(C) acting by conjugation on V: A — gAg~*
for A € M,(C) and g € GL,(C) (cf. section 4). We already know that Ny is
equal to the set of nilpotent matrices. Now suppose that A # 0 is semisimple, with
eigenvalues A1, ..., A; with multiplicities p; > ps > -+ > ps. They form partition
p = (p1,--.,ps) of n. The GL, (C)-orbit of A is the conjugacy class Cy4, and it is
closed, by assumption (see 5.5.2).

Now we would like to describe the associated cone CC4. In order to do this we
consider the dual partition p = (p1,...,D:) of the partition p defined by

pi=#{jp; =i}
If one describes the partition p by its YOUNG diagram, i.e. an arrangement of boxes

with p; boxes in the i-th row, then the dual partition p has p; boxes in the j-th
column:

p=1(544,22.21) p=1(7,6,3,3,1)

Using this we can now describe the associated cone of a semisimple conjugacy
class C4. For a full proof of the following result one should consult [Kra78]. Recall
that every partition ¢ = (q1,...,¢) of n defines a nilpotent conjugacy class Cy
given by the nilpotent matrix with JORDAN blocks of size q1,qo, ..., ¢

THEOREM 7.2.1. Suppose A # 0 is a semisimple matriz with eigenvalue multi-
plicities py > pa > -+ > ps, and suppose p is the dual partition to p = {p1,...,ps}-
Then for the cone associated to Ca we have

CCy =Cj.
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Here Cp denotes the nilpotent conjugacy class of the partition p.

OUTLINE OF PROOF. If all the eigenvalues of A are different, then p = (1,...,1)
and p = (n). The assertion then is that CCy4 is the set of all nilpotent matrices.
This is easy to check. If D € C4 is a diagonal matrix and

0 1
0 1
N = .o € Cuy,
1
0

then, as is known, tD + N € Ci;p = Cyy for every t € C*. Letting ¢t — 0 gives
N € CC4 and thus the claim.

By means of an easy extension of this argument one can show that one has
the inclusion C3 € CC4. The proof of the opposite inclusion CTa D CCy4 is more
difficult. O

7.3. The case of binary forms of degree five. Let V := Rj5 be the space
of binary forms of degree 5 and G := SLy(C) with the operation of G on V as in the
last section. We know that f € V is unstable precisely if f contains a linear factor
of multiplicity at least three. It follows that we can describe the unstable orbits by
means of their representatives

0 y° zyt 2%y ay’(z+qy) (g€ C).

Owy3(w+qy)

o {0}
FIGURE 4. The null fiber A5 of Rs

Since dim SLo(C) = 3, every orbit has dimension less than or equal to three.

Qﬁl} with ¢° =1 and 8 € C. The

stabilizers of the other non-zero representatives are finite. Thus it follows that

The stabilizer of y° consists of the matrices [C

dim Oys =2 and dim Omy4 = dim Omzya = dim Oxy3(a:+qy) =3.
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Since N5 contains a one parameter family of 3-dimensional orbits, we find that
dim N5 = 4. Tt is not difficult to see that every semistable orbit O is also three-
dimensional. From our Proposition 7.1.5 above it follows that

COCNs and dimCO =dimO = 3.

Hence CO is a finite union of homogeneous orbits and thus one has

CO C{o}uU Oys U Ogys UOy2y3 = Opya U Op2ys,

and CO contains either xy* or 22y3 or both. (One should note that the orbit of
2y (x + qy) for ¢ € C* is not a cone.)

EXERCISE 7.3.1. Show using an appropriate limiting process that
COZQy2(Z+y) = Ozy4 U Oz2y3.
The general result is the following.

PROPOSITION 7.3.2. Suppose f € Rs is a semistable form.

(1) The cone of O¢ contains zy*.
(2) If f has a linear factor of multiplicity 2, then one has

COf = O$y4 U Om2y3.
(3) If f is squarefree, then one has
COf = Oy

PROOF. (1) Since f is semistable, there must be a linear factor of f which
occurs with multiplicity one. Without loss of generality we assume that this is z.
Then f = ayzy* + asx?y® + agx*y + asx® where a; # 0. Then we get t3f,-1 =
arzy* + ast?x?y® + - - + a5t®25. The claim in follows by letting ¢ — 0.

(2) If f has a linear factor of multiplicity two one can show in an analogous
way that 22y lies in COy, proving the claim.

(3) We prove this by contradiction. To do so assume that f = ¢ ---¢5 with
pairwise linearly independent linear factors I, - - - ,I5, and that 2%y® € COy. Hence
there is a sequence {g, },en in GL2(C) such that lim, o g,.f = 22y>.

Now we map the set of nonzero linear forms into the compact space P! by letting
m(aX +bY) := (a : b) € PL. Set P, := w(¢;) and P? := w(g,.l;) for i = 1,...,5
and v € N. Without loss of generality we may now assume that { P/} converges to
Py:=(1:0) =m(x) for i =1,3,5, and to P := (0: 1) = 7(y) for i = 2,4 as
v — 0o. We now use the invariance of the cross ratio under linear maps which is
defined by the formula

(alb3 - asbl)(a2b4 - a4b2)
(agbg - a3b2)(a1b4 — a4b1)
where P; = (a; : b;) € P*. One has CR(P}, Py, P¥, P}Y) = CR(Py, Ps, P, Py) for
every v € N, and CR(Py, Py, P3, Py) # 0, because all points are different. On the
other hand CR(Py, P, Py, Px) = 0, and we therefore get a contradiction. O

CR(PlaP27P37P4) =

REMARK 7.3.3. Later on we will see that the method we described here con-
cerning the associated cone has far-reaching applications (cf. section IV.5 and also
the original work [BK79], where this method was introduced). The passage to the
associated cone can also be understood as a kind of deformation. Roughly speaking
this process allows one to carry over “good properties” of the unstable orbits and
their closures to arbitrary orbits.
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8. Ternary Cubics

8.1. Normal forms. Let T := {f € Clz,y, 2] | f homogeneous of degree 3}
be the 10-dimensional (complex) vector space of ternary cubic forms. The group
GL3 acts on T by linear substitution of variables as in the case of binary forms
(see section 5). For the classification of the orbits under GL3 we associate to each
nonzero form f € T its zero set V(f) in P2

V(f)={(z:y:2) €P?| f(w,y,2) = 0}.

This is a plane projective curve of degree 3. We first classify these curves up to
projective equivalence. This corresponds to the classification of the ternary cubics
with respect to the action of GL3. In each case we draw a “real” picture of the
curve.

PROPOSITION 8.1.1. The following is a classification of the ternary cubic forms
up to linear substitutions.

(a) f is a product of 8 linear factors £y, £, L3, i.e. V(f) is a union of 3 lines:
(al) fl = 62 = 63.' f = .133.
(az) ¢y is linearly independent of b = l3: f = x°y.
(as) 1,402,035 are linearly dependent, but pairwise linearly independent:
f=zy(z+y).
(aq) 01,403,105 are linearly independent: f = xyz.

tripple line. double ine

(b) f contains an irreducible factor q of degree 2, i.e. V(f) is a union of a
quadric QQ and a line L:
(b1) The line L is tangent to the quadric Q: f = (z* — yz)y.
(ba) The line L meets the quadric Q in two points: f = (2% — yz)x.

(¢) f is irreducible, i.e. V(f) is an irreducible cubic C.
(c1) C has a cusp: f =1y*z — a3
(c2) C has a double point: f = y?z — 23 — 222
(e3) C is nonsingular: f = y*>z —a® —ax?z —bxz% —cz3, a,b,c € C. These
are the so-called elliptic curves.
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Note that some of these cases can be distinguished by the number of singular
points. E.g. the only case with exactly three singular points is (a4), and the only
one with exactly two singular points is (bs).

OUTLINE OF PROOF. (a) This is easy and we leave it as an exercise to the
reader.

(b) We can assume that ¢ = 2% — yz, hence f = (22 — y2){. The stabilizer of ¢
is the orthogonal group O(g) € GL3 which acts transitively on the vectors in C? of
a fixed length. This implies that O(q) has two orbits in the set of lines in P2, the
tangent vectors to @@ and the complement. Therefore, we can assume that £ =y in
case L is tangent to @), and that ¢ = z otherwise, giving (b1) and (b2).

(¢) If C has a singular point P, then we can assume that P = (0 : 0 : 1). If
the tangent cone in P consists of one line, one easily gets (¢1). If the tangent cone
consists of two lines, then we get (c2).

Finally, if C' is nonsingular, then one shows by using the Hessian that C has
point of inflection. Let this be (0: 1 : 0) with tangent line z = 0. This implies that
f(x,1,2) = az + bz? + cxz + g(x, z) where a # 0 and g is homogenous of degree 3.
As a consequence, we get

flz,y,1) = ay® + by + cxy + g(z, 1).

Replacing y by ¢ = y — b;% we obtain f(x,y,1) = ay® + h(x), and the claim

follows easily. O

EXERCISE 8.1.2. Show that a nonsingular form f € T is GLs-equivalent to one of the
following forms:

2 3 2 2 3 3 2 3 2 3.
Yz —x —x2”, yz—x —2°, yz—a  —rxz® —rz” withr € C.

REMARK 8.1.3. (1) The normal form given in (c3) is called WEIERSTRASS
normal form. It contains the special cases (¢1) and (c2). We also see that
this normal form defines a nonsingular cubic if and only if the polynomial
23 + az? 4 bx + ¢ has no multiple roots.

(2) There is another normal form for the nonsingular cubics, the HESSE nor-
mal form

he = a® +y® + 2% — szyz.

This is nonsingular for s® # 27, and for s® = 27 it is of type (a4), because
the corresponding curve has 3 singular points.
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EXERCISE 8.1.4. Show that if s’ = 53, then hg is GLs-equivalent to hs. However,
we will see later that, in general, there are 12 different values of ¢ giving GL3-equivalent
forms hs.

EXAMPLE 8.1.5. We want to show that every nonsingular cubic f € T is GL3-
equivalent to a cubic of the form h, = 23 4+ 33 + 22 — szyz with s € C. It is easy to
see that such a cubic is nonsingular if and only if s3 # 27r3. Moreover, the point
S:=(1:-1:0) € Cis a point of inflection, with tangent line L: 3z + 3y + sz = 0.
This allows to calculate the WEIERSTRASS normal form of hs by making successively
the following substitutions (where we assume s # 0):

The first two transform the inflection point S to (1 :0: 0) and the tangent line L
to z = 0, and the last eliminates zyz from the resulting expression for hg:

27 1 27 9 1
2 3 2 2 3
hs—y z—i—(l—s—s)x —&—(—Z—&—S—B)w 2= Fwat = 5
We see that this form only depends on s2, in accordance with Exercise 8.1.2 above.
Setting ¢ := §—§ — 1 and using scalar multiplications and affine transformations

x — ax + [ one can transform the polynomial in z into the form

1 1
3 (144t + 162)x — — (8t 27).
T 864( t+162)x 864(8t + 36t + 27)

Now one can use Exercise 8.1.4 to conclude that all GL3-equivalence classes appear
in this way.

8.2. Classification with respect to SL3. The classification of the ternary
cubic forms with respect to the action of SL3 does not present any fundamental
difficulties. One only has to decide whether the multiples of normal forms given
in the above list are, with respect to SLs, equivalent to the original ones or not.
Doing this gives rise to an additional parameter in some of the cases. The details
of carrying this out are left to the reader.

ProprosITION 8.2.1. The SLgz-orbits of the nonzero ternary cubics are repre-
sented by the forms from the following list.

(a1) f=2° (ag) f=2%y (a3) f=ay(x+y) (as) f=txyz, t €C*
(b) f= (@2 —y2)y (ba) f = ta® —y2)a, t€C*
(c1) f=v*2—2° (c2) f=t(y*z —2® —2°2), t € C*
(c3) f=v?2z — 2% —ax?z — baz? — 23, a,b,c € C or
f=r@®+y>+2%) —swyz, r€C*,s€C.

In particular, the forms corresponding to nonsingular cubics have 2 parameters,
those corresponding to a singular cubic with a double point, to a quadric with a
secant line or to the union of 3 lines in general position have one parameter, and
the remaining types form just one orbit.

As already mentioned, the forms in (c3) are nonsingular if and only if the
polynomial 23 4+ ax? + bz + ¢ has no multiple roots, or if and only if s® # 27r3.
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8.3. Nullforms and degenerations. As in the case of binary forms, a cubic
form f € T is called a nullform if the closure of the SLz-orbit O¢ contains the origin
0. It is easy to see that the types (a1), (az), (as), (b1), (c1) are nullforms. It is slightly
more difficult to show that these are all nullforms. This will be a consequence of
the following considerations.

DEFINITION 8.3.1. A form h € T is called a degeneration of a form f € T if
h € Oy. Hence, f is a nullform if 0 is a degeneration of f. We will use the following
notation for this relation:

e Oy of

Oy, h

On the following page we describe the degeneration behavior of the ternary
forms of degree 3. For this we have given the dimensions of the single orbits from
which one can read off the behavior under the transition to the associated cone
(one uses Theorem 6.2.2 from section 6). These are easily found by considering the
stabilizers of the forms, because the dimension of an orbit is the difference of the
dimension of the group and the dimension of the stabilizer, see .

Let us briefly discuss the degenerations claimed in the table.

o t(y?z — 23 — 2%2)w -
(1) l ie. 2t(x? —y2)x € Or(y2z—28—a22)
2t (22 — yz)x

This follows by making the substitution

r — —V2z
y — ey—+ 2z and then letting ¢ — 0.

z = —(e \3/5)_12

2 3
ey z—x
ie. (22 —yz)y € Oy2,_ys

o l (#* —y2)y

For € € C* the form f. := (2? — y2)y + e 23 is irreducible. Moreover, V(f) has
a singularity at the origin, and it is a vertex. Thus f. is of type (c¢1). The claim
follows by letting € — 0.

* (2% —y2)y _
(3) l e zy(z +y) € O2_yz)y
zy(z +y)

One has zy(z +vy) = z(zy+y?). For ¢ € C* the quadratic form zy +y%+¢ 22 is
nondegenerate and has = = 0 as isotropic line. Thus x(xy + y? + ¢ 2?) € O@2—y2)y>
and the claim follows by letting ¢ — 0.

Obviously, this deformation can be seen geometrically like this:
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The arguments presented above in (1), (2) and (3) are enough to see that the
behavior given in the table holds, provided we now prove that the orbits of type
(aq) and (c3) are closed. In order to do this we use the following stronger form of
HILBERT’s Criterion from section 6.2.2; a proof for this is given in the third chapter,
6.2.2.

_ ProrosiTiON 8.3.2 (HILBERT'’s Criterion). Suppose Oy, is a closed orbit in
Oy¢. Then there is a group homomorphism A: C* — SLs with the property that
limy_,o fAY exists and lies in O,.

(4) If V(f) has no singularities, then Oy is closed. If f is a product of three
linearly independent linear forms, then Oy is likewise closed.

Proor. If Oy were not closed, then by the Hilbert Criterion there would exist
a homomorphism A: C* — SL3 with the property that the limit lim,_, f}® exists
but does not lie in Oy. By making a change of coordinates we may, without loss of
generality, assume that

t(X
Alt) = th with o,8,v€Z, a>pB>yand a+F+~v=0.
+

First we consider the case where V(f) has no singularities. If 8 > 0, then the
monomials 22, y2% and 23 cannot occur in f. For otherwise, as a+2v < 0, 34+2y < 0
and 3y < 0, the limit lim;_,o f*® does not exist. But it follows from this that V(f)
has a singularity at the point (0,0,1). In the case S < 0 a similar argument shows
that a linear factor x can be split off f. Thus V(f) is also singular in this case.
Finally if f is a product of three linearly independent linear factors and if Oy
were not closed, then for dimension reasons f would have to be a nullform. Similar
arguments to those above now lead to a contradiction. (We are again using the fact
that the closure of an orbit contains a unique closed orbit, see Theorem ?7.) O

As we already established above, this completely proves the relationships given
in the table.

REMARK 8.3.3. The corresponding, but essentially more difficult investigation
of ternary forms of fourth degree can be found in a work of G. BRACKLY [Braf79].

8.4. Invariants under SL3. We show now that the SLgs-invariants give some
new insight and help to understand some of the behavior above. It is classically
known that the invariant ring O(T)%" of the ternary cubics is generated by two
algebraically independent invariants Iy and Ig of degree 4 and 6, and that the
discriminant has the expression

AU = I6(1? = gh(h?
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(see [Wei23, §17]). The discriminant tells us whether a form f is nonsingular or
not. Therefore, the rational function

_ L(f)?
A(f)
called j-invariant, is well defined for nonsingular forms f and only depends on

the GLs-equivalence class. The main result from classical invariant theory is the
following.

i(f)

PROPOSITION 8.4.1. (1) If f € T is nonsingular and h € T arbitrary,
then h is SLs-equivalent to f if and only if Is(h) = I4(f) and Is(h) =

Is(f).
(2) If f,h € T are nonsingular, then h is GLs-equivalent to f if and only if

j(h) = 5(f)-
(3) f €T is anullform if and only if I4(f) = Is(f) = 0.

This can be reformulated in more geometric terms. For this consider the map

m: T — C?, [ (Lu(f), L6 (f))-

It is clear that 7 is constant on SLz-orbits, because the two coordinate functions I
and Ig are SLgz-invariants. The proposition above can now be reformulated in the
following way.

COROLLARY 8.4.2. (1) If f € T is nonsingular, then the fiber of m through
[ is the SLz-orbit of f: 7= *(7(f)) = Oy.
(2) Treg :=={f € T | A(f) # 0} C T is the open subset of reqular forms, and
the fibers of j: Treq — C are the GL3-orbits.
(3) The fiber p=1(0) is the subset of nullforms.

8.5. Some computations. Using the symbolic method one can calculate ex-
plicitly these invariants in terms of the coefficients a1, as, ..., a1g of the form

f = a12® + 3azz*y + 3azx®z + agy® + 3asxy? + - - + 3agyz? + 6aoryz
(see section 6.2.2). E.g. one finds
I, = 24(0,‘110 — 2a3a6a%0 — 2045@8(1?0 — 2a2a9a%0 —aja4araig+a2a5a7a10+a3a4a8a19
+ 3asagasaig + 3azasagaig + ajagagaig + a%ag + agag - a2a4a§
+ a%ag — alasag — a3a§a7 + asazaqar — a§a6a7 + ajasagar

2 2
— Q1048 — G30506048 — Q30409 — A2a30609 “+ ajaqagag — a2a5a8a9)

For the WEIERSTRASS normal form f = y?z — 2% — az?z — bxz? — c23 the values of
these invariants are the following:

8 8
I, (Weierstrass) = — (a® — 3b), Is(Weierstrass) = %(2(13 —9ab + 27¢)

27
64
A(Weierstrass) = _m(a2b2 45— daPe + 18abe — 27¢2),
—8(a? — 3b)*
j(Weierstrass) = (a )

9(a?b? — 4b% — 4a3c + 18abe — 27¢?)’

Note that the last expression in A, a?b? — 4b® — 4a3c + 18abc — 27¢?, is equal to the
discriminant of the polynomial 2 + ax? + bx + c.
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For the HESSE normal form r(2® + y3 + 23) — szyz one finds
1 1
I;(Hesse) = — 2 - = —s(s® +21
4(Hesse) 54s(s+6)(s 6s + 36) 545(8 + 216),
1 1
Is(Hesse) = —— (5% — 65 — 18)(s* + 65° + 54s? — 1085 + 324) = — (s — 5405> — 5832)
972 972
A(Hesse) =

(s —3)3(s* +3s5+9)° = —2187(53 —27)3

s3(s® + 316)3
288(s3 — 27)3
The form of the j-invariant shows that the dependence of the GL3-equivalence class

from the parameter s is complicated (see the graph below). In general, there are 12
different values of s giving the same GL3-equivalence class.

4
2187
j(Hesse) =

40 -

20

-20 -10 10 20
-20r

-40}

REMARK 8.5.1. Without any computation it is clear that the number of differ-
ent s giving the same GLg3-equivalence class is finite. In fact, the rational function
7 restricted to the line H C T of HESSE normal forms is non-constant and thus has
finite fibers.

Exercises

For the convenience of the reader we collect here all exercises from Chapter 1.
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Introduction. Now that we have studied several examples in detail in the first
chapter, we would like to turn to the basics. Linear algebraic groups, i.e. closed
subgroups of the general linear group GL,,, and homomorphisms between them are
the basic notion for what follows. The definitions connected with this and a few

simple properties are treated in the first two sections.

As some of our main examples we then describe the classical groups GL,,, SL,,
O,, SO,,, and Sp,,, and give some of there properties. Finally, in the last section,
we define the Lie algebra of an algebraic group and give several examples and
applications.

There are many exercises included in the text, some of them with hints. The
reader is strongly advised to work out the solutions. At the end of each paragraph,

we recollect them for the convenience of the reader.

37
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1. Basic Definitions

1.1. Linear algebraic groups. The general linear group GL,, = GL,(C) of
invertible complex n X n-matrices has a natural structure of an affine variety. It is
a special open set (A.1.5) of the vector space M,,(C) of n x n-matrices, namely

GL, = {A € My(C) [ det A # 0} = Mp(C)aet,
with coordinate ring
O(GL,) = C[zjlaet = Clzij,det™], det := det(z;) € Clz;]
(cf. Example A.1.5.3). This is our basic object.

EXERCISE 1.1.1. (1) Show that the multiplication GL,, X GL, — GLj, is a mor-
phism of varieties.
(2) Show that left and right multiplication Aa: B — AB and pa: B — BA with a
fixed matrix A € GL, are isomorphisms GL,, = GL,, of varieties.
(3) Show that inversion A — A~! is an isomorphism GL, = GL, of varieties.
(Hint: Use CRAMER's rule.)

Given a finite dimensional vector space V every choice of a basis induces an
isomorphism GL(V) = GL,,. Thus GL(V) carries the structure of an affine variety,
too, with coordinate ring

O(GL(V)) = O(End(V))aer = O(GLy,).

It is easy to see that this structure does not depend on the choice of the basis of
V. Subgroups of GL,, are usually called matriz groups. Algebraic groups as defined
below are special cases of matrix groups. Recall that all topological notions are with
respect to the ZARISKI topology (A.1.2.5) unless otherwise stated.

DEFINITION 1.1.2. A closed subgroup G C GL,, is called an algebraic group or
a linear algebraic group. The identity matriz in GL,, is denoted by FE,, or E, and
the identity element of an arbitrary group G mostly by e or eg.

ExaMPLES 1.1.3. We start with some well-known examples of matrix groups.

(1) The special linear group SL,, := V(det —1) C GL,, consists of all matrices

with determinant 1. Its coordinate ring is O(SL,) = Clx;;]/(det —1). In
fact, det —1 is an irreducible polynomial.
(PrOOF: If det —1 = pg and if the variable z;; occurs in p, then so do all
ik, k=1,...n,and all z;,l =1,...,n, and none of these occur in ¢ since
no monomial of the determinant contains a product of the form z;;z;, or
xi;x15). It follows that all variables occur in p, hence ¢ is a constant.)
Similarly, we define SL(V') C GL(V).

(2) The multiplicative group C* := GL; = (C\ {0}, ).

(3) The additive group C* := { [1 “ | a € Cp C GLs is given by the equa-

0 1
tions w17 = @ay = 1, wey = 0. Its coordinate ring O(C*) = C[s] is a
polynomial ring in one variable where s := z13|c+. We will identify C*
with the underlying additive group (C,+) of the field C.

1 =

(4) The group of upper triangular unipotent matrices Uy, := 01

with 1’s along the diagonal. Its coordinate ring is the polynomial ring
C[.’fl‘j | 1< ]] where Tij = Ty

Un-
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* 0
(5) The group of diagonal matrices T, := 0 * with nonzero ele-
ments along the diagonal. Its coordinate ring is C[t1, tfl, ooy tny t 1] where
i := Zii|T,
* %
0 =

(6) The group of upper triangular matrices B, := with

nonzero elements along the diagonal. Then B, =T, - U, = U, - T,, and
T,, normalizes U,.

EXERCISE 1.1.4. Show that the map o: T}, X U, — Ba, (t,u) — tu is an isomorphism
of algebraic varieties.

ExaMPLE 1.1.5. The group P,, C GL,, of permutation matrices P, i.e., in every
row and every column of P there is exactly one nonzero entry which is 1. Thus

P, = {PU = ZEZ-J(Z-) | o a permutation of {1,... ,n}} ,

i=1

where E;; is that n x n-matrix which has a 1 as its (4, j)-entry and zeroes otherwise.
It is easy to verify that o — P, identifies the symmetric group S, with P,.

Since, by CAYLEY’S Theorem (cf. [Art91, Chap. 6, Theorem 1.3]), any finite
group is isomorphic to a subgroup of S, for a suitable n, the last example shows
that every finite group can be considered as an algebraic group. (Recall that an
arbitrary finite set F' is an affine variety in a unique way, setting O(F) := C¥', the
algebra of all C-valued functions on F, see Example A.1.4.2.)

Thus the theory of finite groups is part of the theory of algebraic groups. We
will see in the sequel that many concepts from finite group theory can be carried
over to algebraic groups, some of them easily, some others require more work. We
recommend the reader to keep the case of finite groups always in mind.

EXERCISE 1.1.6. (1) Show that every automorphism g of the line C is an affine
transformation, i.e. p(z) = ax + b where a € C* and b € C.
(2) If an automorphism p of C has two or more fixed points, then p = id.

EXERCISE 1.1.7. (1) The subgroup py = {t € C* | t" = 1} C C* is finite and
cyclic of order n, and the p,’s exhaust all closed subgroups # C*.
(2) The set {g € Tn | g has finite order} is a ZARISKI dense subgroup of T5,.

EXERCISE 1.1.8. A strict closed subgroup of C7 is trivial.

ExXAMPLE 1.1.9. Let FF C C be a finite subset of cardinality |F| > 2. Then
Aut(C\ F) is a finite group. In fact, an automorphism p of C\ F' is induced by a
MoBIUS transformation g4 € Aut(C(x)) (see Appendix A.3.7), and 4 permutes
the discrete valuations of C(z). If a € C\ F and u(a) = b, then pua(v,) = vp. Thus,
we get a homomorphism Aut(C \ F) — Perm(F U {co}). An element p from the
kernel fixes v, and every point of F'. It follows that p is an automorphism of C
with fixed points F', hence p = id by Exercise 1.1.6(2). It follows that Aut(C\ F)
is isomorphic to a subgroup of the symmetric group S|p|41.

EXERCISE 1.1.10. If F C C is a finite subset of cardinality |F| > 3 in “general
position”, then Aut(C\ F) is trivial.
(In “general position” means that for every d > 3 there is a dense open set U C C? such
that the claim holds for any F' from U.)
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PROPOSITION 1.1.11. Let R be a finite dimensional associative C-algebra with
a unit element 1 € R. Then the group R* of invertible elements of R is open in
R, and R* has the structure of an algebraic group given by the closed embedding
R* — GL(R), r — A, := left multiplication with .

PrOOF. Consider the map A: R — End(R), r — A, where \.(s) := rs. This is
an injective linear map, hence an isomorphism onto its image A(R), and it satisfies
A(rs) = A(r) o A(s). It follows that R* = A~1(GL(R)) and that A induces a group
isomorphism R* = A\(R) N GL(R). Thus R* is open in R and A: R* — GL(R) is a
closed embedding. O

The proof shows that R* is a special open set of R. In particular, R* is irre-
ducible of dimension dim R* = dim R.

1.2. Isomorphisms and products. It follows from our definition that an
algebraic group G is an affine variety with a group structure. These two struc-
tures are related in the usual way. Namely, the multiplication u: G x G — G is
a morphism, right and left multiplication by a fixed element g € G, py: h +— hg
and A\g: g — gh (h € G), are isomorphisms of algebraic varieties, as well as taking
inverses ¢: h +— h™1. In fact, this is clear for GL,, (see Exercise 1.1.1), and follows
for arbitrary algebraic groups G C GL,, by restriction.

REMARK 1.2.1. We could take a more general point of view, like in the case of
topological groups, and define an algebraic group G to be an affine variety with a
group structure such that multiplication and inversion are morphisms. It turns out
that this leads to the same, i.e. any such “algebraic group object” is isomorphic to
a linear algebraic group, see Proposition 111.2.4.6.

DEFINITION 1.2.2. Two algebraic groups G and H are isomorphic if there is
a group homomorphism ¢: G — H which is an isomorphism of algebraic varieties.
Such a ¢ is shortly called an isomorphism, or an automorphism of G in case H = G.
The group of automorphisms of G will be denoted by Aut(G).

EXAMPLES 1.2.3. (1) For any g € G the map Int g: G = G, h +— ghg™!,
is an automorphism called conjugation by g, or inner automorphism by g.

(2) If G is commutative, then t: G — G, g — g~ 1, is an automorphism.

(3) The map A — A~! is an automorphism of GL,, and of SL,,.

(4) The groups U, and U,; := {A' | A € U, } are isomorphic.

(5) The subgroup T, := T,, N SL,, is isomorphic to T,,_;.

EXERCISE 1.2.4. Give proofs for the claims (1)—(5) in the example above.

EXERCISE 1.2.5. The subgroup Int(G) C Aut(G) of inner automorphisms of a group
G is a normal subgroup.

EXERCISE 1.2.6. (1) For SLs, the automorphism A + A~" is inner.

(2) Show that all automorphisms of SLy are inner.

(3) For GL,, n > 2, and for SL,, n > 3, the automorphism A — A" it is not inner.
(Hint: For GLy, look at the determinant. For SLy, if A +— A~' is inner, then
the composition of both is an automorphism of GL,, which is the identity on
SL,, and the inverse on C*E,. This leads to a contradiction as soon as n > 2.)

There is an obvious embedding of the product GL,, x GL,,, into GL,,,, given by

A 0

(A,B)= 1, B

This implies that the product G x H of any two algebraic groups is again an algebraic

group in a natural way. More general, the product G; X Gy X -+ X G, of a finite
number of algebraic groups G; is an algebraic group.

which identifies GL,, x GL,, with a closed subgroup of GL,, .
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EXAMPLES 1.2.7. (1) (C*)™ :=C* x C* x --- x C* is isomorphic to Ty,.
An algebraic group isomorphic T, is called an n-dimensional torus. We
will discuss these groups in detail in section III.3.

10 0b
1 0 by

(2) The subgroup ¢ A = SO C Upyq is isomorphic to (CT)™.
ib,

1

EXERCISE 1.2.8. Let V be a finite dimensional complex vector space. Then the un-
derlying additive group V7 is an algebraic group and Aut(V*) = GL(V).

The following result will be used at several occasions.

LEMMA 1.2.9. Let H C GL;, be an “abstract” subgroup. Then the (ZARISKI)
closure H C GL,, is an algebraic group.

PRrROOF. We have to show that H C GL, is a subgroup. For any h € H the
left multiplication Ay : g — hg induces a morphism H — H, hence hH C H and
therefore HH = H which implies that H H = H. Similarly, we see that g — g~ !
induces an isomorphism H = H. O

EXERCISE 1.2.10. Let H C GLn_ be a commutative subgroup. Then H is also com-
mutative. If H is solvable, the so is H.

EXERCISE 1.2.11. Let G be an algebraic group and A C B C G “abstract” subgroups.
If A is normal (resp. central) in B, then so is A in B.

1.3. Comultiplication and coinverse. The multiplication u: G x G = G
induces in the usual way an algebra homomorphism (A.2.1)

1 O(G) = O(G x G) = O(G) ® O(G),
w* (f)(g,h) := f(u(g, b)) = f(gh) for f € O(G), g,h € G

which is called comultiplication. Similarly, the isomorphism ¢: G = G taking in-
verses determines the coinverse

2 0(G) = O(G),  H(f)g) = flg™h).
ExampLE 1.3.1. For G = GL,,
,LL*I (C[xij, det_l] — (C[.I‘ij, det_l] ® C[l‘ij, det_l]
is given by
Tij > Zl”ik @ Ty,

k=1
and

1*: Clagj, det ™) — Claij, det™ ] is given by z;; — (—1)" det™ - det X,

where X, is the (n — 1) x (n — 1)-submatrix obtained from X = (x;;) by removing
the rth row and the sth column. In particular, for G = C*, we have

p*: Clr,z™ '] = Clz,z ) ®Clz,27!], z—z®z,

and
*: Cla, 2™ = Clo, 27 Y, x>t
and for G = C*
p:Clz] 5 Clz]®Clz], z—21+1®u,
and

t*: Clx] = Clz], z— —u.
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We will see in section 4.3 (Corollary 4.3.5) that C* and C* are the only one-
dimensional connected linear algebraic groups. A first result in this direction is
formulated in the following exercise. Another will be given in Example 1.4.8 below.

EXERCISE 1.3.2. (1) The only algebraic group structure on the affine line C

with identity element e = 0 is C¥.
(Hint: If g % h is such a multiplication, then gz = a(g)z+b(g) where a(g) € C*
and b(g) € C. Show that (i) b(g) = g, (ii) a(g) is regular, hence a constant, and
(i) alg) = 1.

(2) The only algebraic group structure on C\ {0} with identity e = 1 is C*.
(Hint: Prove and use that every automorphism of C* is of the form z — Az or
z+ Az~ ! where A € C*.)

(3) There is no algebraic group structure on C\ {z1, z2,...,2.} for r > 1.
(Hint: Use that Aut(C\ {21, 22, ..., 2-}) is finite for » > 1, see Example 1.1.9.)

1.4. Connected component. Next we show that the underlying variety of
an algebraic group is nonsingular. More precisely, we have the following result.

PROPOSITION 1.4.1. An algebraic group G is a smooth variety and the irre-
ducible components of G are its connected components, i.e. they are pairwise dis-
joint. In particular, G°, the connected component of the identity, is a normal sub-
group of G which is both open and closed, the connected components of G are the
cosets of G°, and the component group mo(G) := G/G° is finite.

PRrROOF. There is an open dense subset U in G which consists only of nonsin-
gular points (Proposition A.4.4.2). Since left multiplication by an element g € G is
an isomorphism, the open set gU also consists of nonsingular points, and the same
holds for (J,cq 9U = G.

If h € G lies in exactly one irreducible component of GG, then so does gh for
every g € GG. Thus the irreducible components do not meet and are therefore the
connected components.

Since G, as an algebraic variety, has finitely many irreducible components, it
follows that G° is open and closed in G. For every g € G the set gG°g~! is connected
and meets G°, and so gG°g~! = G°. For every g € G° the closed subvariety gG° is
irreducible and meets G°, hence gG° = G°. Therefore, G° is a normal subgroup of
G of finite index.

Similarly, if C is an irreducible component of G and g € C, then gG° is irre-
ducible and meets C', and so ¢G° = C. O

ExampLE 1.4.2. The groups GL,, and SL,, are both connected. This is clear
for GL,,, and follows for SL,, from the fact that det —1 is an irreducible polynomial
(see Example 1.1.3(1)).

REMARK 1.4.3. The following is clear.

(1) For algebraic groups the notions connected and irreducible are equivalent.

(2) All local rings Og 4 (A.1.7.5) of an algebraic group G are isomorphic.

(3) Every closed subgroup H C G of finite index contains G°. Every connected
closed subgroup H C G is contained in G°.

EXERCISE 1.4.4. Let G be an algebraic group. For n € N denote by G™ C G the set
of elements of order n.
(1) Describe G for G = GLy,.
(2) Show that G™ is closed in G. (Hint: For G = GL,, the subsets G are finite
unions of closed conjugacy classes.)

PROPOSITION 1.4.5. Let G be an algebraic group with the property that all
elements have finite order. Then G is finite.
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PROOF. We can assume that G is connected. By assumption, G = J,, G
where G(") is the set of elements of order n. By the previous Exercise 1.4.4 these
sets are closed and so G = G(™ for some n, because an irreducible complex variety

cannot be a countable union of strictly closed subsets (Proposition A.3.2.19). Thus
n=1and G = {e}. O

EXERCISE 1.4.6. Let GG be a connected algebraic group. Then, for every n € Z,n # 0,
the map G — G, g — g", is dominant.
(Hint: Show that the fiber of e contains e as an isolated point.)

EXERCISE 1.4.7. If G is a commutative algebraic group, then G™ is finite for all n.
(Hint: Use the previous exercise to show that the homomorphism g — ¢" has a finite
kernel.)

ExXAMPLE 1.4.8. A connected one-dimensional algebraic group G is commu-
tative. In fact, by Proposition 1.4.5 above, the group G contains an element g of

infinite order, and so G = (g) which is a commutative group (Exercise 1.2.10).
The following lemma turns out to be very useful in many applications.

LEMMA 1.4.9. Let G be an algebraic group and let X C G be a constructible
dense subset. Then G =X -X"'=X.X.

PROOF. X contains a subset U which is open and dense in G, and the same
holds for V := U N U~!. This implies that gV NV # @ for any ¢ € G, and so
geEV - V1I=V.V. O

EXERCISE 1.4.10. Let X C GL,, be an irreducible constructible subset containing the
identity matrix F, and let H := (X) be the subgroup generated by X. Then H is closed
and connected, and H = X - X --- X for N :=2dim H.

| —

N times

EXERCISE 1.4.11. Let G be an algebraic group and R C G a subset such that G = (R).

Then there are finitely many element g1, g2, ..., gm € R such that G = (g1) - (g2) - - {gm)-

1.5. Exercises. For the convenience of the reader we collect here all exercises
from the first section.

EXERCISE. (1) Show that the multiplication GL,, x GL, — GL,, is a morphism
of varieties.
(2) Show that left and right multiplication Aa: B — AB and pa: B — BA with a
fixed matrix A € GL, are isomorphisms GL,, = GL,, of varieties.
(3) Show that inversion A — A~! is an isomorphism GL, =% GL, of varieties.
(Hint: Use CRAMER's rule.)

EXERCISE. Show that the map ¢: T X Uy — Bg, (t,u) — tu is an isomorphism of
algebraic varieties.

EXERCISE. (1) Show that every automorphism g of the line C is an affine trans-
formation, i.e. u(x) = ax + b where a € C* and b € C.
(2) If an automorphism p of C has two or more fixed points, then p = id.

EXERCISE. (1) The subgroup pn := {t € C* | t" =1} C C” is finite and cyclic
of order n, and the pu,’s exhaust all closed subgroups # C*.
(2) The set {g € T, | g has finite order} is a ZARISKI dense subgroup of T5,.

EXERCISE. A strict closed subgroup of CT is trivial.

EXERCISE. If F' C C is a finite subset of cardinality |F| > 3 in “general position”,
then Aut(C \ F) is trivial.
(In “general position” means that for every d > 3 there is a dense open set U C C? such
that the claim holds for any F' from U.)



44 CHAPTER II. ALGEBRAIC GROUPS

EXERCISE. The subgroup Int(G) C Aut(G) of inner automorphisms of a group G is
a normal subgroup.

EXERCISE. (1) For SLs, the automorphism A + A~" is inner.

(2) Show that all automorphisms of SLy are inner.

(3) For GL,, n > 2, and for SLy,, n > 3, the automorphism A — A~* it is not inner.
(Hint: For GL,, look at the determinant. For SL,,, if A — A7t is inner, then
the composition of both is an automorphism of GL, which is the identity on
SL,, and the inverse on C*E,. This leads to a contradiction as soon as n > 2.)

EXERCISE. Let V be a finite dimensional complex vector space. Then the underlying
additive group V1 is an algebraic group and Aut(V*1) = GL(V).

EXERCISE. Let H C GL,, be a commutative subgroup. Then H is also commutative.

If H is solvable, the so is H.

EXERCISE. Let G be an algebraic group and A C B C G “abstract” subgroups. If A
is normal (resp. central) in B, then so is A in B.

EXERCISE. (1) The only algebraic group structure on the affine line C with

identity element e = 0 is C™.
(Hint: If g x h is such a multiplication, then gz = a(g)z+b(g) where a(g) € C*
and b(g) € C. Show that (i) b(g) = g, (ii) a(g) is regular, hence a constant, and
(ii) a(g) = 1)

(2) The only algebraic group structure on C\ {0} with identity e = 1 is C*.
(Hint: Prove and use that every automorphism of C* is of the form z — Az or
2+ Az~ ! where A € C*))

(3) There is no algebraic group structure on C\ {z1, 22,..., 2.} for r > 1.
(Hint: Use that Aut(C\ {z1, 22, ..., 2-}) is finite for r > 1.)

EXERCISE. Let H C GL, be a commutative subgroup. Then H is commutative. If H
is solvable, the so is H.

EXERCISE. Let G be an algebraic group and A C B C G “abstract” subgroups. If A
is normal (resp. central) in B, then so is A in B.

EXERCISE. Let G be an algebraic group and A C B C G “abstract” subgroups. If A
is normal (resp. central) in B, then so is A in B.

EXERCISE. Let G be an algebraic group. For n € N denote by G C @ the set of
elements of order n.
(1) Describe G@ for G = GL,,.
(2) Show that G™ is closed in G. (Hint: For G = GL,, the subsets G are finite
unions of closed conjugacy classes.)

EXERCISE. Let G be a connected algebraic group. Then, for every n € Z,n # 0, the
map G — G, g — ¢", is dominant.
(Hint: Show that the fiber of e contains e as an isolated point.)

EXERCISE. If G is a commutative algebraic group, then G'™ is finite for all n.
(Hint: Use the previous exercise to show that the homomorphism g — ¢" has a finite
kernel.)

EXERCISE. Let X C GL, be an irreducible constructible subset containing the iden-
tity matrix E, and let H := (X) be the subgroup generated by X. Then H is closed and
connected, and H = X - X --- X for N :=2dim H.

| S

N times

N4

EXERCISE. Let G be an algebraic group and R C G a subset such that G = (

NG

h
Then there are finitely many element g1, g2, ..., gm € R such that G = (g1) - (92) - - - (gm)-
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2. Homomorphisms and Exponential Map
2.1. Homomorphisms. Let G, H be algebraic groups.

DEFINITION 2.1.1. A map ¢: G — H is called a regular group homomorphism
if ¢ is group homomorphism and a morphism of algebraic varieties.

In the following a homomorphism between algebraic groups always means a
regular group homomorphism unless otherwise stated. A homomorphism ¢ is an
isomorphism (see 1.2.2) if and only if ¢ is bijective and ¢~! is regular. We will see
below that the second condition is automatically satisfied.

EXAMPLES 2.1.2. (1) The determinant det: GL, — C* is a surjective
homomorphism.

(2) For every n € Z the map C* — C* z — 2", is a homomorphism. For
n # 0 it is surjective with kernel p,, := {z € C* | 2 = 1} which is a cyclic
subgroup of order n.

(3) For any a € C\ {0} the multiplication a-id: C* — C* is an isomorphism.

(4) If N € M,, is a nonzero nilpotent matrix, then the exponential map

n—1 p
s+ exp(sN) := Z %N’“

k=0
is an injective homomorphism C* — GL,,. We will discuss this in more
detail in Section 2.5.
tl * * tl
(5) The canonical map IR is a surjective homo-

tn tn
morphism B,, — T}, with kernel U,.

EXERCISE 2.1.3. Every homomorphism «a: C* — C7 is trivial, and the same holds
for every homomorphism 3: C* — C*.

ProproSITION 2.1.4. Suppose G and H are algebraic groups and ¢: G — H is
a homomorphism. Then the kernel ker ¢ is a closed subgroup of G and the image
imy = ¢(G) is a closed subgroup of H. Moreover, if ¢ is bijective, then ¢ is an
isomorphism.

PROOF. Clearly, the kernel ker ¢ = ¢~ !(e) is a closed subgroup. For the im-
age we first remark that not only is ¢(G) a subgroup of H, but ¢(G) is as well
(Lemma 1.2.9). Also, ¢(G) contains an open dense subset U of ¢(G), cf. A.3.4. For
any h € p(G) the sets U and hU are open and dense in ¢(G). Hence U N AU # (.
Therefore there are elements u,v € U with « = hv. But then h = uv=! € ¢(G) and
s0 9(G) = (G).

Now assume that ¢ is bijective. Then the induced homomorphism ¢°: G° —
H? is bijective as well, hence birational (Appendix A, Proposition A.2.3.4). Thus
there are open sets U C G° and V := ¢(U) C H° such that ¢|y: U 5 Vis an
isomorphism. But then, for every g € G, ¢|qu: gU — ¢(g)V is an isomorphism as
well, and the claim follows because G = |J sec 9U. g

EXERCISE 2.1.5. For every m € Z, m # 0, the map t — t™: T;, — T}, is a surjective
homomorphism and a finite morphism.

EXERCISE 2.1.6. Let G be an algebraic group and let N, H C G be closed subgroups
where N is normal. If NN H = {e} and if G is generated by NUH, then G = NH = HN,
and the multiplication N x H — G is an isomorphism of varieties. If, in addition, H is
also normal, then N and H commute, and G is isomorphic to the product N x H.
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EXAMPLE 2.1.7. The affine group Aff,,. An automorphism ¢ of C" is called
an affine transformation if it is of the form

o(x) = Az + b where A € GL,, and b € C".
The group of affine transformations,
Aff, .= Aff,,(C) :={f(z) = A+ b | A€ GL,,b € C"},
has a natural structure of an algebraic group. In fact, the matrix group

{ [’g l;] € GL,+1 |A€eGL,, be (C”} C GLp41

11)] — B: x — Ax+b. Similarly,
we define the group of affine transformations Aff(V) for any finite dimensional
vector space V.

The translations ty: x — x + b form a closed normal subgroup isomorphic to

(C*)™, and there is a split exact sequence

is canonically isomorphic to Aff,,, by the map [61

00— (CH)" —— Aff,, m——= GL, —— 1

where ¢(b) :=tp, m(B) :== A if B(x) = Az + b, and o(A)(x) := Az.

Every automorphism of C is an affine transformation (see Exercise 1.1.6(1))
whereas for C",n > 1, this is not the case. E.g. for every polynomial f € C|x] the
morphism (z,y) + (z,y + f(z)) is an automorphism of C2.

EXAMPLE 2.1.8. The projective linear group. Let ¢: GL,, — GL(M,,) be
the group homomorphism defined by g — Int(g). It is not difficult to see that ¢ is
a morphism of varieties, hence a homomorphism of algebraic groups. For this, one
calculates

9Ei;9" = fumeEre
ol

and shows that f;;re € O(GL,,).
Moreover, ker p = C*E and so im ¢ ~ GL,, /C*. This group is the projective
linear group and is denoted by PGL,, = PGL,(C).

EXERCISE 2.1.9. (1) Show that every morphism ¢: C* — C* such that ¢(1) =
1 is a group homomorphism. Determine the automorphism group of C* (as an
algebraic group).

(2) Show that every nontrivial group homomorphism C* — C* is an isomorphism
and determine the automorphism group of C*.

The proposition above has the following consequence which is the well-known
mapping property in standard group theory.

PROPOSITION 2.1.10. Let G,G’, H be algebraic groups, ¢: G — G’ a surjective
homomorphism and pu: G — H a homomorphism such that ker p O ker . Then
there is a unique homomorphism ' : G' — H such that p = p' o ¢:

G2

N

H

PROOF. Everything is clear except that p’ is a morphism. Consider the homo-
morphism ¢¥: G — G' X H, ¥(g) := (©(g), 1(g)). Then the image ¢(G) C G'x H is a
closed subgroup, and ker ¢» = ker ¢. Therefore, the projection pro : G’ x H — G in-
duces a bijection p: ¥(G) — G'. Hence, p is an isomorphism, and so p’ = pry op~*.
The claim follows. U
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At this point we do not know how to form quotient groups G/N for a closed
normal subgroup N C @G, except if we can find a homomorphism ¢: G — G’
with kernel N, as in Example 2.1.8 above. But we will see later in chapter IV (see
section IV.3.3) the for a so-called linearly reductive subgroup H C G the left and
the right cosets are affine varieties with the usual properties.

EXERCISE 2.1.11. Let H be an algebraic group, and let ¢: SL, — H and \: C* — H
be homomorphisms. Assume that the images A(C*) and ¢(SLy) in H commute and that
A(¢) = ¢(CEy) for all ¢ € C* such that ¢ = 1. Then there exists a homomorphism
@: GL, — H such that @|s.,, = ¢ and @|c= = A where we identify C* with C*E,, C GL,,.

2.2. Characters and the character group. Let G be an algebraic group.

DEFINITION 2.2.1. A homomorphism x: G — C* is called a character of G.
The set of characters is denoted by X (G):

X(G) :={x: G — C" | x is a homomorphism}.

Characters can be multiplied, and so X(G) is a commutative group, the character
group of G. It is usually written additively: x1 + x2: g — Xx1(9)x2(g). Every char-
acter is an invertible regular function on G and so X (G) is a subgroup of the group
O(G)* of invertible functions on G.

EXAMPLES 2.2.2. (1) X(T,,) = @), Ze; where the characters ¢; are de-

fined by
t1
Ei([ })Ztr
tn

This follows from the fact that O(T,) = Cley, e !, ..., en, &, '] which im-
plies that the invertible function of O(T,) are of the form cej* ---gfn
where ¢ € C* and a1, ...,a, € Z.
(2) X(Up,) is trivial, because the coordinate ring O(U,,) is a polynomial ring.
(3) X(GL,,) = (det). In fact, if f € Clxy,...,x,] is irreducible and non-
constant, then (Clz1, ..., z,]r)* = C* (f). Another argument will be given
in Exercise 2.2.5 below.

EXERCISE 2.2.3. Show that X(T5,) C O(T5,) is a C-basis of the vector space O(T},).

EXERCISE 2.2.4. Show that SL» is generated by Uz and U, . In particular, the char-
acter group X (SLg) is trivial.
(Hint: Uy Uz C SLg is closed and irreducible of dimension 2, UsU, Us is strictly larger
than U, Uz, and therefore dense in SLz. Now use Lemma 1.4.9.)

EXERCISE 2.2.5. Show that X (SLy) is trivial and deduce that X(GL,) ~ Z where
X(GL,,) is generated by det: GL,, — C*.
(Hint: Use the previous Exercise 2.2.4 to show that T, := T, N SL, is contained in
(U, Uy). Since U, ThU,, C SL, is dense, we get that X' (SL,) is trivial. It follows that
every character of GL,, vanishes on SL,,, and thus factors through det: GL, — C*.)

We have seen in Example 2.2.2(1) that the characters X (T,,) form a basis of
O(T,). The linear independence is a well-known general fact, see the following
lemma. The fact that they linearly generate the coordinate ring characterizes the
so-called diagonalizable groups, see Section II1.3.3.

LEMMA 2.2.6. The subset X(G) C O(G) is linearly independent.

PROOF. Let Y, a;x; = 0 be a nontrivial linear dependence relation of min-
imal length n > 1. Then 0 = Y_" | a;x;(hg) = Y. a;xi(h)xi(g) for all h,g € G,
and so Y1, a;xi(h)x; = 0 for all h € G. Thus

0=x1(h) ZaiXi - ZaiXi(h)Xi = Z%‘(Xl(h) = xi(h))xis
i=1 i—1 i—2
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and this is, for a suitable h € G, a nontrivial linear dependence relation of length
< n, contradicting the assumption. O

Every homomorphism ¢: G — H of algebraic groups induces a homomorphism
X(p): X(H) — X(G) of the character groups: X(¢) := ¢*: x — x o ¢. More
precisely, X is a contravariant functor from algebraic groups to abelian groups
which means that X'(idg) = idx(g) and that X' (p o ¥) = X(¥) o X(p).

PROPOSITION 2.2.7. The functor G — X(QG) is left exact, i.e. for every exact

sequence K BNy ANy SN | of algebraic groups the corresponding sequence of
the character groups 0 — X (H) @) X(G) W X(K) is exact.

Recall that a sequence A B2 of groups and homomorphisms is called
ezact if ker p = im .

PRrROOF. Clearly, if ¢: G — H is surjective, then X(¢): X(H) — X(G) is
injective. Moreover, if xy € X(G) belongs to the kernel of X'(¢), then x vanishes
on imy = kerp, and so the claim follows from the mapping property (Proposi-
tion 2.1.10). O

EXERCISE 2.2.8. For two algebraic groups H, G we have X(H x G) = X(H) ® X(G)
in a canonical way.

EXERCISE 2.2.9. If G is a finite commutative group, then X(G) ~ G.
(Hint: Prove this first for a finite cyclic group G, and then use the previous exercise.)

REMARK 2.2.10. Let G be an algebraic group and X(G) C O(G)* the subgroup
of characters. Then the linear span C X(G) C O(G) is a subalgebra, namely the
group algebra of X(G). We will see later that the character group X (G) is always
finitely generated, hence a free abelian if G is connected. Another interesting result
is that for a connected algebraic group G every invertible f € O(G)* such that
f(e) =1 is a character. Both results are due to ROSENLICHT, and will be proved
in I11.5.7.

2.3. Normalizer, centralizer, and center. Let H C G be a closed sub-
group.
DEFINITION 2.3.1. The normalizer and the centralizer of H in G are defined
by
Ng(H):={g€ G |gHg ' = H},
Co(H):={g€G|gh=hgforallhe H},

and the centralizer or stabilizer of an element h € G by
Cg(h) :={g € G| gh = hg}.

All three are closed subgroups of G, and H is normal in Ng(H).

(In fact, for any h € H define the morphism ¢,: G — G by ¢n(g) := ghg™!.
Then Cg(h) = ¢;, " (h), Ca(H) = Npen Ca(h), and Ng(H) = N N N~ where
N :=emn (H)={9€G|gHg ' C H}.)

REMARK 2.3.2. The centralizer Cg(H) is closed for any subgroup H C G. This
does not hold for the normalizer as one sees from the example Nqr,(c)(U2(Q)).
Moreover, for a closed subgroup H C G we have Ng(H) = {g € G | gHg~! C H}
where again this might fail for arbitrary subgroups, e.g. for Us(Z) C GL2(C).

EXAMPLE 2.3.3. We have Nqr,, (Uy) = B, and Ngr, (B) = Bn.
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PRrROOF. Using the row operations induced by left multiplication with matrices
from U, and the column operations induced by right multiplication with matrices
from B,,, we see that any g € GL,, can be reduced to a permutation matrix P,, i.e.
U,gB, = U,P,B, for a suitable o € S,,. On the other hand, PgEingl = Fsioj,
and so P, normalizes U,, or B, if and only if o = id. O

EXERCISE 2.3.4. Show that the normalizer N,, of T, C GL,, is generated by T, and
the permutation matrices Pn: Nar, (Th) = Pn - Tn = Tn - Pn, and this is a semidirect

~

product. In particular, N, = T,, and N,/N,, = S,.

EXERCISE 2.3.5. Describe the normalizer N of T, := T,, N SL,, in SL,. Show that
N° =T, and that N/N° ~ S,,. In this case, N is not a semidirect product, i.e. the exact
sequence 1 - N° — N — S,, — 1 does not split.

EXERCISE 2.3.6. Let G be an algebraic group. If h € G and H := (h) C G, then
Ce(H) = Cg(h).

EXERCISE 2.3.7. Show that the centralizer of T}, in GL, is equal to T,.

As is standard we define the center of a group G to be
Z(G) :={g € G| gh = hg for every h € G} = C¢(G).

The center Z(G) of an algebraic group G is a closed characteristic subgroup of G.
(Recall that a subgroup H C G is called characteristic if H is stable under all
automorphisms of G.)

ExAMPLE 2.3.8. Consider the group
02(C) = Og := {Az [‘CL Z} €GLy | A'A = E} C GL,.

Obviously, det(O2) = {£1}, and so O3 is not connected. It is easy to determine the
center: Z(O3) = {£E}. Let

SOQ((C) =S50, := {AGOQ | detAil}:OngLg {|:—ab Z:| |a2+62 :1}

Then Oz / SOg ~ Z/2Z and SO ~ C* (see the exercise below). In particular, SOy
is connected. Therefore we see that

0 1

(02)° = 805, Oy = SO5 U {1 0

} SO2, and

WO(OQ) = OQ/SOQ ~ Z/QZ
We will see in section 3.2 that similar results hold for all orthogonal groups.

a

EXERCISE 2.3.9. Show that the map SOy — C*: Lb

Z} — a + ib, defines an

isomorphism of algebraic groups.

2.4. Commutator subgroup. The subgroup of G generated by all commu-
tators (g, h) := ghg=*h™1, g,h € G, is called the commutator subgroup (or derived
group) of G and will be denoted by (G,G). It is well-known that (G,G) is the
(unique) smallest normal subgroup of G such that the quotient group G/(G, G) is
commutative.

PROPOSITION 2.4.1. The commutator subgroup (G, G) of an algebraic group G
is a closed subgroup of G.
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PRrROOF. Let (G,G°) denote the subgroup of G which is generated by commuta-
tors of the form (g, h) := ghg~'h~! with g € G and h € G°. This subgroup is normal
in G and has finite index in (G, G): Because the image of G° in G’ := G/(G,G°)
is central and of finite index, it follow that the commutator subgroup (G, G’) is
finite. (This is a general group theoretic fact, see Exercise 2.4.2(1) below.) Thus it
suffices to show that (G, G°) is closed in G.

For any 2n-tuple (g1, ..., g2n) of elements of G we define the following subset of
(G,G°):

K = K(glv"'792n)
= {(g1,h1)(g2,h2) (g3, h3) - - (gan, han) ™ | hi € G°}.

This subset K is the image of a morphism (G°)*" — G, and so its closure K is

irreducible, and K contains an open dense subset of K (A.3.4). Choose a K =
K(g1,...,92n) with dim K maximal. For an arbitrary tuple (g1, ..., g5,,) one has

K(g1,om) S K (91, Gom: 91, --vs G2n)
and thus K (g}, ..., gh,) € K. Since (G,G°) = J K (g}, ---, gh,,) it follows that K =
(G, G°). In particular, K is a closed subgroup (Lemma 1.2.9). If g € (G, G®), then
gK N K # () since K contains an open dense subset of (G,G°). This implies that

g€ KK~ C (G,G°) and thus (G,G°) = (G, G°). O

EXERCISE 2.4.2. (1) Let H be a (abstract) group and assume that the center
of H has finite index in H. Then the commutator subgroup (H, H) is finite.
(See [Hum?75, VII.17.1 Lemma A].)
(2) Show that (GLQ, GLQ) = (SLQ, SLQ) = SL> and that (BQ7 Bz) = Us.

2.5. Exponential map. For every complex matrix A the exponential series
exp(A) := Y77, A" is a well-defined invertible matrix, and the map A — exp(A)
has a number of nice properties, e.g. exp(A+ B) = exp(A) exp(B) in case A and B
commute (cf. [Art91, Chap. 4, Sec. 8]). If N is nilpotent, then exp(N) is a finite
sum of at most n terms, and so the map exp: N, — GL, is a morphism where
N, CM,, denotes the closed subset of nilpotent matrices.

A matrix A is called unipotent if A — E is nilpotent, or equivalently, if all
eigenvalues are equal to 1. Thus the set U,, = E+N,, € GL,, of unipotent matrices
is a closed subset, and the image of A/,, under exp is contained in U,,.

ProrosITION 2.5.1. The exponential map N +— ZZ;& %Nk induces an iso-
morphism
exp: N = U,
which commutes with conjugation: exp(gNg~!) = gexp(N)g~!.

The proof needs some preparation. Let R be a finite dimensional associative
C-algebra. Every polynomial p(z) € C[z] defines a morphism of varieties p: R — R,
r + p(r). Now take R := C[t]/(t"), and let m := (£) C R be the maximal ideal
where ¢t := ¢t + (t*) € R. Then 1+ m is a closed subgroup of the group R* of

invertible elements of R, and the polynomial e(z) := Z;é #@* € C[z] induces a

morphism e: m — 1+ m, a — Zz;é ak.

LEMMA 2.5.2. The map e: m — 1+ m is an isomorphism of algebraic groups.
Its inverse e=t: 1 +m — m is of the form 1+ a — I(a) with a polynomial I(x) of
degree < n. In particular, e(l(z)) =1+ x mod z" and I(e(z) — 1) =z mod z".

PROOF. It is easy to see that e(a + b) = e(a)e(b) for a,b € m, and so e: m —
1 4+ m is a homomorphism of algebraic groups. Moreover, e is injective, because
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e(ayt® + higher degree) = 1 + at* + higher degree. Since dim(1 +m) = dimm we
see that e is also surjective, hence an isomorphism.

Set | :== e }(1 +¢) € m. Then e(l) = 1 + . If we consider [ as a polynomial
in = of degree < n this means that e(l/(z)) = 1 + 2 mod z". Therefore, for any
h € () C C[z], we have e(I(h)) = 14+ h mod =™ which implies that e(l(a)) =1+a
for all @ € m. This shows that the map 1+ a +— I(a) is the inverse morphism to e.
Thus I(e(h) — 1) = h for all h € m and so I(e(x) — 1) =2 mod z™. O

PROOF OF PROPOSITION 2.5.1. The lemma above shows that e(i(z)) =1+ =z
mod z™ and I(e(x) — 1) = x mod z™. This implies that the maps exp: N, — U,
N  e(N), and log: U, — N, 1+ M — [(M) are inverse to each other, and the

claim follows. 0
REMARKS 2.5.3. (1) Tt is well- known that the inverse function log of e*
is given by log(1+y) = > 7, 1) y*. It follows that log: U, — Ny, is
given by

n-1 (_1)k—1
U log(U) =Y ——(U- 1)k
k=1

Since we will not need this explicit formula we leave the proof to the reader
(see Exercise 2.5.4 below).

(2) Denote by n,, C M,, the subspace of upper triangular nilpotent matrices.
It follows from the above that exp induces an isomorphism n,, = U,. (In
fact, since exp and log are given by polynomials e and [ it is obvious that
the image of an upper triangular matrix under both maps is again upper
triangular.)

EXERCISE 2.5.4. Define the polynomials

Zy‘r and Ln(z):= A (z —1)"

,_.

and show that E(L(z)) =z mod "' and L(E(x )) =gz mod z"t!.

(Hint: For all z € C we have e* = Ly, (z) + 2" h(2) with a holomorphlc function h, and
for all y in a neighborhood U of 1 € C we have In(y) = Ln(y) + (y —1)"g(y) with g
holomorphic in U. Now use that ¢™¥ =y in U and In(e*) = z in U’ := In(U).)

2.6. Unipotent elements. Let u € GL, be a unipotent matrix # FE,. It is
clear that (u) and the closure (u) consist of unipotent matrices. In fact, the latter
is isomorphic to CT as we will see now.

PROPOSITION 2.6.1. For any nilpotent N € M,, the map an: C* — GL,
given by s — exp(sN) is a homomorphism with image (u) where u := exp(N), and
dan(l) = N. For N # 0 it is an isomorphism onto its image. In addition, every

a(s)—FE |

homomorphism a: C* — GL,, is of the form ay where N = 5=0-

PRrOOF. Clearly, ay is a homomorphism. By definition, ay(s) = E + sN +
%SQNQ 4+ ---,and so ay: C = M, is a closed immersion in case N # 0. Moreover,
doy(1) = ex)=en©) "~ N The image contains u = ay(1) = exp(N) # E,

S

hence im ay = {u). This proves the first part of the proposition.

Now let a: CT* — GL,, be an arbitrary homomorphism. The underlying mor-
phism a: C — M, has the form a(s) = Ag+sA; +s2Ay+- -+ s™A,, with suitable
matrices Ag, A1, ..., Ay € M,. Since a(0) = E we get Ag = E, and a(2s) = a(s)?
gives the following relations:

> AjAr; =2FA, for all k >0
0<j<k
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where A; = 0 for j > m. It is not hard to see that this implies, by induction, that
Aj:%A{,hencea:aAl. O

COROLLARY 2.6.2. An element u € GL,,, u # E, is unipotent if and only if

(u) ~ C+.
This allows to define unipotent elements of an arbitrary algebraic group.

DEFINITION 2.6.3. An element u of an algebraic group G is called unipotent

if either u = e or (u) ~ CT. If all elements of G are unipotent, then G is called a
unipotent group.

ExamPLE 2.6.4. Clearly, the groups U,, are unipotent, as well as every closed
subgroup of them. The vector groups VT where V is a finite dimensional C-vector
space are examples of commutative unipotent groups (see Exercise 1.2.8). We will
see later that every commutative unipotent group is isomorphic to a vector group
(Proposition I11.4.3.2).

If p: G — H is a homomorphism and if « € G is unipotent, then p(u) € H is
unipotent. Embedding G into GL,, we also see that the set G, C G of unipotent
elements of G is a closed subset. If G is commutative, then G, is even a closed sub-
group, because the product of two commuting unipotent elements is again unipotent
(see Exercise 2.6.6 below).

EXERCISE 2.6.5. Let U be a unipotent group. Then the power maps pm: U — U for
m # 0 are isomorphisms of varieties .
(Hint: This is clear for U ~ C*. From that one can deduce that p., is bijective, and the
claim follows, e.g. from IGUsA’s Lemma A.5.6.5.)

EXERCISE 2.6.6. Let G be an algebraic group, and let u,v € G be two commuting
unipotent elements. Then uv is unipotent.
(Hint: It suffices to prove this for G = GL,. Then v = E+ N and v = E + M with
commuting nilpotent matrices N, M.)

EXERCISE 2.6.7. Let N € M, be nilpotent. Then the matrix N’ := exp(N) — E is
conjugate to N.
(Hint: N’ = Ng = gN with an invertible g € GL,,. Since g commutes with N it follows
that gV is conjugate to N.)

EXERCISE 2.6.8. (1) For GL, the power map pm: g — g is surjective for

m # 0.
(Hint: One can assume that g is in Jordan normal form, g = tu, where ¢ is
diagonal, v unipotent, and tu = ut. Then there is a subtorus 7' C T,, T = C*",
which commutes with u and contains t. Hence g € T' x (u) = C*" x C*, and
the claim follows from the Exercises 2.6.5 and 2.1.5.)

(2) Let G be an abstract group and Z C G its center. If p,, is surjective for G, then
so is for G/Z. If p,, is surjective for Z and G/Z, then so is for G.

(3) Study the power maps py, for SLa. Are they surjective for m # 07

2.7. Exercises. For the convenience of the reader we collect here all exercises
from the second section.

EXERCISE. Every homomorphism o: C* — CV is trivial, and the same holds for every
homomorphism B: C* — C*.

EXERCISE. For every m € Z, m # 0, the map t — t": T, — T, is a surjective
homomorphism.

EXERCISE. Let G be an algebraic group and let N, H C G be closed subgroups where
N is normal. If NN H = {e} and if G is generated by N U H, then G = NH = HN, and
the multiplication N x H — G is an isomorphism of varieties. If, in addition, H is also
normal, then G is isomorphic to the product N x H.
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EXERCISE. Show that Aut(Al) = Aff;.

EXERCISE. (1) Show that every morphism ¢: C* — C* such that ¢(1) = 1
is a group homomorphism. Determine the automorphism group of C* (as an
algebraic group).

(2) Show that every nontrivial group homomorphism C* — C* is an isomorphism
and determine the automorphism group of C*.

EXERCISE. Let H be an algebraic group, and let ¢: SL, — H and A\: C* — H be
homomorphisms. Assume that the images A(C*) and ¢(SL,) in H commute and that
A(C) = ¢(CEy) for all ¢ € C* such that (" = 1. Then there exists a homomorphism
@: GL, — H such that ¢|s., = ¢ and @|c= = A where we identify C* with C*E,, C GL,,.

EXERCISE. Show that X(T5,) C O(T,) is a C-basis of the vector space O(T}).

EXERCISE. Show that SLj is generated by Uz and U; . In particular, the character
group X (SL2) is trivial.
(Hint: U, Uz C SLy is closed and irreducible of dimension 2, UsU, Us is strictly larger
than U, Uz, and therefore dense in SL2. Now use Lemma 1.4.9.)

EXERCISE. Show that X(SL,) is trivial and deduce that X(GL,) ~ Z where X' (GL,)
is generated by det: GL, — C*.
(Hint: Use the previous Exercise 2.2.4 to show that T, := T, N SL, is contained in
(U, ,Uy). Since U, TyU,, C SL,, is dense, we get that X'(SL,) is trivial. It follows that
every character of GL,, vanishes on SL,,, and thus factors through det: GL, — C*.)

EXERCISE. For two algebraic groups H,G we have X(H x G) = X(H) & X(G) in a
canonical way.

EXERCISE. If G is a finite commutative group, then X(G) ~ G.
(Hint: Prove this first for a finite cyclic group G, and then use the previous exercise.)

EXERCISE. Show that the normalizer N,, of T,, C GL,, is generated by T, and the
permutation matrices Ppn: NaL, (Tn) = Pn - Tn = Tn - Pn, and this is a semidirect product.
In particular, NS = T, and N, /NS = S,.

EXERCISE. Describe the normalizer N of T}, := T}, NSL,, in SL,,. Show that N° = T},
and that N/N° ~ S,,. In this case, N is not a semidirect product, i.e. the exact sequence
1—+ N°— N — S, — 1 does not split.

EXERCISE. Let G be an algebraic group. If g € G and H := (g) C G, then Cg(H) =
Cal(g)-

EXERCISE. Show that the centralizer of T,, in GL,, is equal to T,.

EXERCISE. Show that the map SO, — C*: {_ab Z} — a+1b, defines an isomorphism
of algebraic groups.

EXERCISE. (1) Let H be a (abstract) group and assume that the center of H
has finite index in H. Then the commutator subgroup (H, H) is finite.
(See [Hum?75, VII.17.1 Lemma A].)
(2) Show that (GLQ, GLQ) = (SLQ, SLQ) = SL> and that (BQ7 Bz) = Us.

EXERCISE. Define the polynomials

n 1 n -1 k—1
E.(z) := yxk and Lp(z) := =0T
k=0 k=1
and show that E(L(z)) =z mod "' and L(E(z)) =z mod z"*'.
(Hint: For all z € C we have e* = L,, ( ) 4 2" h(2) with a holomorphlc function h, and
for all y in a neighborhood U of 1 € C we have In(y) = Ln(y) + (y — 1)" " g(y) with g

holomorphic in U. Now use that ¥ =y in U and In(e*) = z in U’ := In(U).)

(x—1)*
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EXERCISE. Let U be a unipotent group. Then the power maps p.,,: U — U for m # 0
are isomorphisms of varieties .
(Hint: This is clear for U ~ C*. From that one can deduce that p., is bijective, and the
claim follows, e.g. from IGUsA’s Lemma A.5.6.5.)

EXERCISE. Let G be an algebraic group, and let u, v € G be two commuting unipotent
elements. Then wv is unipotent.
(Hint: It suffices to prove this for G = GL,. Then v = E + N and v = E + M with
commuting nilpotent matrices N, M.)

EXERCISE. Let N € M, be nilpotent. Then the matrix N’ := exp(N) — F is conjugate
to N.
(Hint: N’ = Ng = gN with an invertible g € GL,. Since g commutes with N it follows
that gV is conjugate to N.)

EXERCISE. (1) For GL, the power map pm,,: g — g"" is surjective for m # 0.
(Hint: One can assume that g is in Jordan normal form, g = tu, where t is
diagonal, v unipotent, and tu = ut. Then there is a subtorus 7' C T,, T = C*",
which commutes with u and contains t. Hence g € T' x (u) = C*" x C*, and
the claim follows from the Exercises 2.6.5 and 2.1.5.)

(2) Let G be an abstract group and Z C G its center. If p,, is surjective for G, then
so is for G/Z. If py, is surjective for Z and G/Z, then so is for G.

(3) Study the power maps pr, for SLa. Are they surjective for m # 07

3. The Classical Groups

3.1. General and special linear groups. In order to describe a set of gen-
erators for GL,, and SL,, we consider the following matrices:

uij(s) = E+sEj;eU, UU, CSL,, 1<4,j<n,i#j,
ti(t) = t(t)t;(t7") €T, CSL,, 1<i,j<ni#j,
1 1
uj(s) = ’ ti(t) = t ,
! 1

Then we have
GL,, = (ui;(s), tu(t) | 1 < 4,4,k <m,i # j,s,t € C,t #0),
SL,, = (uij(s),te(t) | 1 <, j k0 <m,i#j,k#1steC,t+#0),
Uy = (uij(s) | < jus €C), Uy = {uys(s) | i > j,s € C).

PRrROOF. The matrix A’ := u;;(s)A is obtained from A by an elementary row
operation, i.e., by adding s times the jth row to the ith row and leaving all others
unchanged. Similarly, right multiplication by u;;(s) corresponds to an elementary
column operation. This implies that

Unp = (u;5(s) |t < j,s € C) and U, = (u;j(s)|i>j,s€C).

The map U, x T, x U, — GL,, (u,t,v) — utv, is injective, hence has a dense
image X := U, - T, -U, C GL,,. By Lemma 1.4.9 we get X - X = GL,,, and the
statement for GL,, follows. Replacing T, by T, we get the claim for SL,,. O



11.3. THE CLASSICAL GROUPS 55

REMARK 3.1.1. We know that SLy = (u12(s),u21(s) | s € C) (Exercise 2.2.4).
This implies that ¢;;(t) € (u;;(s),u;:(s) | s € C), hence T;, C (U,, U, ). It follows
that

SL, = (u;(s) | 1 < 4,5 <n,i#j,s €C).

For the centers of GL,, and SL,,, an easy calculation shows that
Z(GL,) ={ME | A e C*} ~C* and Z(SL,) ={\E|\" =1} ~Z/nZ.

This is also an immediate consequence of the Lemma of SCHUR (see Lemma 3.1.4
below). We call a subgroup G C GL(V) irreducible if no nontrivial proper subspace
W G V is stable under G (i.e. satisfies gW C W for all g € G).

ExamMPLE 3.1.2. If G C GL; is a noncommutative finite subgroup, then G is
irreducible. Otherwise, there is a one-dimensional G-stable subspace U = Cv C C?,
which admits a G-stable complement V = Cv C C?, because G is finite. With
respect to the new basis (u, v) the elements of G are diagonal matrices, contradicting
the assumption.

Other examples of irreducible subgroups G C GL(V') are those where G acts
transitively on V' \ {0}.

EXERCISE 3.1.3. Let G C GL,, be irreducible. Then G* := {¢* | ¢ € G C GL, is
irreducible.
(Hint: If U C C" is stable under G, then U™ := {v € C" | uw'v = 0 forallu € U} is
G-stable.)

LEMMA 3.1.4 (Lemma of SCHUR). Let G C GL(V) be an irreducible subgroup.

Then every linear map p: V — V' commuting with G is a scalar multiplication. In
particular, Cqrv)(G) = C*idy and Z(G) = G N C*idy.

PRrOOF. Let ¢ € End(V) commuting with G, and let W C V be the eigenspace
of ¢ corresponding to an eigenvalue A. Since ¢ commutes with G the subspace W
is stable under all g € G. In fact, if w € W and g € G, then p(gw) = gp(w) =
g(Aw) = A(gw), and so gw € W. Hence W =V and so ¢ = Aidy. O

An interesting application is given in the following lemma. It will follow again
later in the context of representation theory (see Corollary I11.1.2.5). For a subset
X C End(V) we denote by (X) C End(V) the linear span of X, i.e.

<X> = {Z)\ll‘z ‘ A € (C, x; € X}

If G C GL(V) is a subgroup, then (G) C End(V) is a subalgebra which is stable
under left- and right multiplication by G.

LEMMA 3.1.5. A subgroup G C GL(V) is irreducible if and only if (G) =
End(V).

PrROOF. We can assume that V' = C™, and so G C GL,,.

(1) If A € M,, is a matrix of rank 1, then (FAG) = M,,. In fact, A = uv! for
some nonzero vectors u,v € C", and so (GAG) 2 (Gu) - ((G*v)!). Since (Gu) =
C"™ = (G"v), this shows that (GAG) contains all matrices of rank 1, and the claim
follows.

(2) Denote by p;: M,, — C™ the projection onto the i-th column. If U C M,, is
stable under left multiplication by G, then the same holds for the image p;(U) and
for the kernel of p;|y. It follows that p;(U) = C™ or {0}. If U # (0) this implies
that U contains a subspace V' which is stable under left multiplication with G such
that, for all 4, p;]y: V — C™ is either an isomorphism or the zero map.

We claim that every nonzero matrix A € V has rank 1. To prove this write
A = [aM, ... a™] as a matrix of column vectors a(. If p;|y; and p;lv are both
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isomorphisms, then the isomorphism p;|y o (p;[v)~': C* = C™ is given by al®) —
a¥), and it commutes with G. Thus, by the Lemma of SCHUR, the nonzero columns
of A are multiples of each other, and the claim follows.

(3) The subspace (G) is stable under left- and right-multiplication. Hence, by
(2), it contains a matrix A of rank one, and so (G) = M,,, by (1). O

3.2. Orthogonal groups. Suppose that q: V — C is a nondegenerate qua-
dratic form on the finite dimensional vector space V where dim V' > 2. We define
the orthogonal group of the form ¢ to be

O(V) :=0(V,q) :={g € GL(V) | q(gv) = q(v) for every v € V'}.

Denote by ¢( , ) the corresponding symmetric bilinear form, i.e.

a(v,0) = S(av -+ w) — gfv) — g(w)).
Thus, for V = C", ¢(v,w) = v'Qw where Q is the symmetric matrix (g(e;, €;)); ;-
In general, there is always a basis of V' such that the form ¢ is given by ¢(v) =
22 +x3+.. . +22 where (11,...,2,) are the coordinates of v (cf. Proposition .3.1.1).
Such a basis (v1,vs,...,v,) is called an orthonormal bases of V with respect to g,
i.e., we have q(v;,v;) = d;;. It follows that O(V,q) is isomorphic to the classical
orthogonal group

0, :=0,(C):={g € GL, | ¢'g = E.},

and that any two orthogonal groups O(V, q), O(V,q’) are conjugate in GL(V).
Furthermore, the special orthogonal group is defined in the following way:

SO, = $S0,(C):=0,NSL,,
SO(V) = SO(V,q) := O(V,q) NSL(V).

1
We have O,, = SO,, U [ 1 . } SO, and so O, /SO,, ~ Z/27.

EXERCISE 3.2.1. Describe O(V, q) and SO(V, q) for V := C? and ¢(z,y) := zy.

PROPOSITION 3.2.2. O(V) is an irreducible subgroup of GL(V'), and SO(V) is
irreducible for dimV > 2.

PROOF. Let v1,vo € V such that q(vy) = q(v2) # 0 and put V; := (Cv;)* :=
{w e V| q(v;,w) = 0}, i = 1,2. Then V = Cv; & V; and ¢|y, is nondegenerate.
It follows that the linear map g: V' — V which sends an orthogonal basis of V7 to
an orthogonal basis of V5 and v to ve belongs to O(V'). We can even arrange that
g € SO(V). Thus SO(V') acts transitively on the vectors of a fixed length # 0.

The vectors of length # 0 form a dense subset of V', namely the complement of
the closed set V(q) = {v € V | q(v) = 0}). Therefore, any SO(V)-stable subspace
U S V must be contained in V(q).

For every nonzero v € V(q) we can find a w € V such that ¢(v,w) # 0.
Then U := Cv & Cw is nondegenerate, i.e. g|y is nondegenerate, and we get an
inclusion O(U) € O(V) by extending an h € O(U) with the identity on U+. (In
case dim V > 2 there is an element b’ € O(U+) such that O(U)h C SO(V).) Since
O3 has no stable lines in C?, we see that O(U) is irreducible in GL(U). Hence, every
O(V)-stable subspace V' (resp. SO(V')-stable subspace V' in case dim V' > 2) such
that v € V' has to contain U. In particular, there is a vector of length # 0 in V’,
and so V' = V by the first part of the proof. O
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REMARK 3.2.3. The proof above shows that SO(V') acts transitively on the
vectors v of a fixed length g(v) # 0. A vector v is called isotropic if ¢(v) = 0. We
leave it as an exercise to prove that O(V') acts transitively on the nonzero isotropic
vectors.

It follows from SCHUR’S Lemma 3.1.4 and the proposition above that we get
the following description of the centers of O,, and SO,,:

Z(0,)=0,NC*E, = {£E,} and

_ «n _ | {£En} formneven,n>2,
Z(S0n) = 80, NC By = { {E,}  for n odd.
10
We remark that that 1 € 0,\S0,, for all n, and that —F,, € O, \ SO,

for odd n, but not for even n. n particular, O,, = {+E,} x SO, for odd n.

EXERCISE 3.2.4. Let g € O, \ SO,,. Show that the automorphism of SO,, defined by
conjugation with g is inner for n odd, but not inner for n even.
(Hint: The kernel of the homomorphism Int: O, — Aut(SO,) is equal to +FE,, and so it
belongs to SO,, for even n, but not for odd n.)

Recall that a subspace W C V is called isotropic if g|w is trivial, or, equiva-
lently, if W C W+.

LEMMA 3.2.5. Let V be of even dimension n = 2m. If W C V is a mazimal
isotropic subspace, then dim W = m, and for every basis (w1,...,w,,) of W there
exist wy,...,w,, € V such that W' := (wi,...,w),) is isotropic of dimension m,
and q(w;, w’;) = d;j.

PRrROOF. Let (wy,...,w,) be a basis of W. Since W is maximal isotropic there
exists a w} € (wa,...,w,)" such that q(w;,w;) = 1. Replacing w} by w} + aw;
for a suitable a € C we can assume that w] is isotropic. Then U := Cw; @ Cw] is

. . 1
nondegenerate with ¢|y given by E O} .Hence V=U@U"L, and W := WNU* =

(wa, ..., w,) is maximal isotropic in U+. Now the claim follows by induction. [

The lemma says that any basis (wsq, ..., wy) of a maximal isotropic subspace

W can be extended to a basis (wy, ..., Wy, w],...,w,,) of V such that the form ¢ is

0 E.
E, 0

spaces are equivalent under O(V'), and that we get a closed embedding GL(W) —

given by the matrix I := . This implies that all maximal isotropic sub-

0
defines an isomorphism W’ = W* by w’ + q(w’,?) which allows to identify V with
W @ W* where the quadratic form on the latter is given by ¢(w, £) := 2¢(w). Thus,
we obtain a closed embedding GL(W) < SO(V) by g — (g, (¢*)7}).

EXERCISE 3.2.6. Let W C V be an maximal isotropic subspace and define H := {g €
O(V) | glw = idw}. Show that H is isomorphic to a vector group UT. In particular,
H CSO(V).

SO(V) by g — [g gOt} Another way to see this is the following. The form ¢

. . . . E B
(Hint: In the notation above the subgroup H consists of matrices of the form { i ]

0 En
with suitable matrices B.)

EXERCISE 3.2.7. For even n there are two equivalence classes of maximal isotropic
subspaces with respect to SO,,.
(Hint: Let W C V be a maximal isotropic subspace, and assume that for a given g € O(V)
there is an h € SO(V) such that gW = hW. Then h™'gW = W, hence there is a
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m € GL(W) C SO(V) such that mh™'g is the identity on W. Now the previous exercise
implies that mh~'g € SO(V), and so g € SO(V).)

PROPOSITION 3.2.8. SO,, is connected. Hence O,, = SO,, and O,, / O;, ~Z/27Z.

ProOF. This is clear for SOz since SO ~ C* (Example 2.3.8). So we can
assume that n > 3. Let g € SO,,. We show that there is an irreducible closed subset
X C S0, containing g and E,. Put v := ge;.

(a) If (v,e1) = 0, then U := Ce; @ Cv is nondegenerate, and there is an
h € SO(U) such that hv = e;. It follows that hg belongs to the stabilizer of ey,
hg € (SOp)e; =~ SO,_1, and so g € X := SO(U) - (SO,), which is, by induction,
an irreducible closed subset of SO,, containing g and F,,.

(b) If (v,e1) # 0, then there is a w € C™ such that |w| = 1 and that both
spaces Uy := Ce; @ Cw and Us := Cu @ Cw are nondegenerate (see Exercise 3.2.9
below). Now, similarly as in case (a), g € X := SO(U;) - SO(Uz) - (SOp,)e, , and the
claim follows. O

EXERCISE 3.2.9. Let V be a finite dimensional C-vector space with a nondegenerate
quadratic form ¢. For any pair u,v € V '\ {0} there is a w € V such that the subspaces
(u,w) and (v, w) are nondegenerate, and one can even assume that q(w) = 1.

EXERCISE 3.2.10. O(V) acts transitively on the set of isotropic vectors # 0, and the
same holds for SO(V') for dimV > 2.
(Hint: This is clear for Oz and can be reduced to this case as in the second part of the
proof of Proposition 3.2.2, using the previous exercise. The claim for SO(V') follows since
V(q) is irreducible for dimV > 2.)

3.3. Symplectic groups. Suppose 5: V x V — C is a nondegenerate alter-
nating bilinear form, ie. f(u,v) = —f(v,u). Such a form exists only if dimV is
even: n := dim V = 2m. The symplectic group with respect to 5 is then defined by

Sp(V) :=Sp(V, 8) :={g € GL(V) | B(gu, gv) = B(u,v) for u,v € V}.

We will see below that all such forms are equivalent under GL(V'). Therefore, with
respect to a suitable basis of V', the form 3 can be written as

m
B(x,y) = Z(afz’ym-&-i — Tmyili) = xtJy
i=1
. . . 0 En - .
with corresponding matrix J := E 0l Thus Sp(V, 8) is isomorphic to the
—Lm

classical symplectic group defined by
SPay := SPay,(C) := {F € My, | F'JF = J}.

If we write F' = [é ZB;] with A, B,C, D € M,,(C), then one has
A'D —C'B=E,

F € Spy,, = { A'C,B'D are symmetric.

There are other “standard” forms which appear in the literature, e.g.

m

m
Z(Sﬂ2i—1y2i - $2iy2i—1) = l“tJ/y and Z(%‘meH—i - 502m+1—z'yi) = :th”y,
i=1 =1
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with corresponding matrices

0 1 1
-1 0 1
(x)  J = or J':=
0 1 -1
-1 0 —1
ProrosiTION 3.3.1. (1) There is a basis of V such that B(x,y) = x*Jy,

and so Sp(V, B) is isomorphic to Spa,, .
(2) Sp(V) acts transitively on V' \ {0}. In particular, Sp,y,,, C GLa,, is an
irreducible subgroup, and Z(Spsy,,) = Spay, N C*Eay = {£Eapm}.

PROOF. (1) Since S is nondegenerate we can find two vectors v,w € V such
that S(v,w) = 1. Then S restricted to U := Cv @& Cw is given by the matrix
0 1
-1 0
easily by induction on dim V.

(2) If v,w € V are as in (1), then there is a g € Sp(V) such that gv = w. In
fact, Sp(U) x Sp(U+) C Sp(V) and Sp(U) =~ Sp, = SLa (see the exercise below).
The same argument works whenever S(v,w) # 0. In case S(v,w) = 0 one easily
shows that there is a u € V such that S(v,u) # 0 and S(w,u) # 0, and the claim
follows. t

, hence is nondegenerate, and so V = U @ UL. Now the claim follows

EXERCISE 3.3.2. Show that Sp, = SLo.
PROPOSITION 3.3.3. Sps,, is connected and is contained in SLo,.

PROOF. This is clear for 2m = 2 (see the exercise above). By definition, det g =
+1 for g € Sp,,,, and so the second claim follows from the first.
Now we claim that Sp(V, ) acts transitively on the set

Y :={(v,w) e VxV|Bv,w)=1}.

In fact, if (v, w) = 1, then U := Cv @ Cw is nondegenerate and so V = U @ U+.
Therefore, there is a basis (v; := v,vs := w, vs,...,Vay) of V with corresponding
matrix J', see (x). The same construction applied to another (v',w’) € Y yields a
basis (v} = v',vh == w',v5, ..., v}, ) of V with corresponding matrix J’. Hence the
map g: v; — v} belongs to Sp(V'), and the claim follows.

Since the function 8 — 1 is irreducible, the subset P C V x V is an irreducible
subvariety. It follows that Sp(V)° acts transitively on P, too (use Exercise 3.3.4
below applied to G := Sp(V) C GL(V @ V)). This implies that for every g €
Sp(V), there is an h € Sp(V)° such that hg(v) = v and hg(w) = w. Therefore, hg
belongs to the intersection if the two stabilizers of v and w. But Sp(V'), NSp(V),, =
Sp(U+) where U := Cv @ Cw, hence g € Sp(V)° - Sp(U+) which is, by induction,
an irreducible closed subset of Sp(V) containing g and idy, and the proposition
follows. O

EXERCISE 3.3.4. Let G C GL(V) be an algebraic group and let Y C V be a closed
subset which is stable under G, i.e. gy € Y for all g € G,y € Y. If Y is irreducible and if
G acts transitively on Y, then so does G°.

(Hint: Choose a v € Y and consider the morphism ¢: G — Y given by g — gy. Then
show that every connected component GG; of G has a dense image in Y from which the
claim follows immediately.)
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3.4. Exercises. For the convenience of the reader we collect here all exercises
from the third section.

EXERCISE. Let G C GL,, be irreducible. Then G* := {g* | g € G C GL,, is irreducible.
(Hint: If U C C™ is stable under G*, then U* := {v € C" | w'v = 0 for all u € U} is
G-stable.)

EXBRCISE. Describe O(V, q) and SO(V, q) for V := C? and q¢(z,y) := zy.

EXERCISE. Let W C V be an maximal isotropic subspace and define H := {g €
O(V) | glw = idw}. Show that H is isomorphic to a vector group U™T. In particular,

H CSO(V).

(Hint: Choosing a suitable basis of V' the subgroup H consists of matrices of the form
E. B

K

EXERCISE. For even n there are two equivalence classes of maximal isotropic subspaces
with respect to SO,,.
(Hint: Let W C V be a maximal isotropic subspace, and assume that for a given g € O(V)
there is an h € SO(V) such that gW = hW. Then h™'gW = W, hence there is a
m € GL(W) C SO(V) such that mh™!g is the identity on W. Now the previous exercise
implies that mh~'g € SO(V), and so g € SO(V).)

EXERCISE. Let V' be a finite dimensional C-vector space with a nondegenerate qua-
dratic form ¢. For any pair u,v € V' \ {0} there is a w € V such that the subspaces (u,w)
and (v,w) are nondegenerate, and one can even assume that q(w) = 1.

EXERCISE. O(V) acts transitively on the set of isotropic vectors # 0, and the same
holds for SO(V) for dimV > 2.
(Hint: This is clear for Oz and can be reduced to this case as in the second part of the
proof of Proposition 3.2.2, using the previous exercise. The claim for SO(V') follows since
the space V(q) of isotropic vectors is irreducible for dimV > 2.)

EXERCISE. Show that Sp, = SLa.

EXERCISE. Let G C GL(V) be an algebraic group and let Y C V be a closed subset
which is stable under G, i.e. gy € Y for all g € G,y € Y. If Y is irreducible and if G acts
transitively on Y, then so does G°.

(Hint: Choose a v € Y and consider the morphism ¢: G — Y given by ¢g — gy. Then
show that every connected component G; of G has a dense image in Y from which the
claim follows immediately.)

4. The Lie Algebra of an Algebraic Group

4.1. Lie algebras. The aim of this paragraph is to show that the tangent
space T, (G) of an algebraic group G at the identity element e € G is a Lie algebra
in a natural way. This Lie algebra allows to “linearize” many questions concerning
the structure of G, the representation theory of GG, and actions of G on varieties.
We will see a number of applications in the next chapter (see e.g. Section II1.5).

DEFINITION 4.1.1. A Lie algebra is a vector space L together with an alter-
nating bilinear map [, ]: L x L — L, called the Lie bracket, which satisfies the
JACOBI identity:

[a, [b,c]] = [[a,b], ] + [b,[a,c]] for all a,b,c € L.
The identity means that ada: L — L, ad a(b) := [a, b], is a derivation of L.
The standard example is an associative algebra A with Lie bracket defined by
[a,b] := ab — ba. We leave it to the reader to check the JACOBI-identity. A Lie

algebra is called commutative if [a,b] = 0 for all a,b. For an associative algebra A
this means that A is commutative as an algebra.
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EXAMPLE 4.1.2. The vector fields Vec(X) on a variety X (see A.4.5.1) form a
Lie algebra. In fact, let «, 5 € Vec(X) = Der(O(X)) be two derivations. Then one
easily checks that [o, 8] := a0 8 — B o« is again a derivation. E.g., for X = C? one
gets

L0000 00
oy’ 7 oz Oy” Ox ox" Oy
0? 0 0?
= Tor T ozay Yoy ~ Wozay
99

It should be clear what we mean by a Lie subalgebra of L, an ideal of L,
and a homomorphism of Lie algebras. For instance, a homomorphism A — B of
associative algebras is also a Lie algebra homomorphism with respect to the Lie
bracket [, | defined above.

EXERCISE 4.1.3. Suppose [, |: L x L — L is an alternating bilinear map where L is
a two-dimensional vector space. Show that

(a) L is a Lie algebra, i.e., the JACOBI-identity is satisfied.

(b) If [, ] # 0, then there is a basis {u, v} of L with [u,v] = v.
Thus all noncommutative two-dimensional Lie algebras are isomorphic.

EXERCISE 4.1.4. For a general C-algebra A a derivation is a linear map §: A — A
such that §(ab) = ad(b) + 6(a)b for a,b € A. Show that the vector space of derivations
Der(A) C Endc(A) is a Lie subalgebra of Endc(A). (This generalizes Example 4.1.2.)

4.2. The Lie algebra of GL,. The tangent space of GL, at the identity
matrix E is given by TgGL,, = M,,, and similarly, T, GL(V) = End(V) (see Ex-
ample A.4.1.3). Both are associative algebras, and so these tangent spaces carry a

natural structure of a Lie algebra. This leads to the following definition of the Lie
algebra of GL,, and of GL(V):

Lie GL,, = M,
LieGL(V) := End(V)

We also use the notation gl,, and gl(V).

Suppose G C GL,, is a closed subgroup. Then T.G is a subspace of M,,. We
will show in section 4.4 that it is a Lie subalgebra of M,,, and we will denote it by
Lie G or simply by the corresponding Gothic letter g. For the classical groups this
is easy (see section 4.3 below).

} with Lie bracket [A, B] := AB — BA.

EXERCISE 4.2.1. Describe the tangent spaces in FE, of the subgroups B,,T,,U, C
GL,, and show that they are Lie subalgebras of M,,.

In the following we use the technique of “epsilonization” for calculations with
Lie algebras (cf. Appendix A.4.3). Let Cle] := C @ Ce,e? = 0, be the algebra of
dual numbers, and let GL, (Cle]) be the group of invertible n x n-matrices with
coefficients in C[e]. For a closed subgroup G C GL,, define G(Cl[e]) € GL,,(Cl[e]) to
be the subgroup consisting of those elements in GL,,(Cle]) which satisfy the same
polynomial equations as the elements of G, i.e. all polynomial equations from the
ideal I(G) C O(GL,,). Then one has

LieG = {A € M,,(C) | E + A € G(C[¢])}.

In addition, if u: G — H is a homomorphism of algebraic groups, then p induces
a group homomorphism p: G(Cle]) — H(C[e]) which has the following description
(see Appendix A.4.6):

ule+eA) =e+educ(A).
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EXAMPLE 4.2.2. Consider the multiplication p: G x G — G, (g, h) — gh. Its
differential dpcy: LieG @ LieG — LieG is given by addition (A4, B) — A+ B.
(One has (e +eA)(e+¢eB) =e+e(A+ B) in M,(C[e]).)

Similarly, for the inverse ¢: G — G, g — g~ !, we get di.(A) = —A. It follows
that the differential of the power map p,,: g — g™ at e is multiplication by m, and
SO pp, is dominant in case G is connected and m # 0 (cf. Exercise 1.4.6).

4.3. The classical Lie algebras. Next we describe the Lie algebras of the
classical groups.
(1) The special linear group SL,, C GL,, (3.1) is defined by det = 1. For the
matrices in M(Cle]) we have

det(F +eA)=1+c¢ctrA.

Thus the tangent space Tg SL,, is a subspace of {A € M, | tr A = 0}.
Since SL,, is of codimension 1 in GL,, we get

n? —1=dimSL,, < dim7Tg SL,,
<dim{AeM, |[trA=0} =n*—1.
Thus we have equality everywhere, and so
n:=LieSL, ={A €M, |tr A =0}

which is a Lie subalgebra of gl,,, i.e. closed under the bracket [A, B] =
AB — BA. Similarly, (V') := Lie SL(V') C gl(V) is the subalgebra of trace-
less endomorphisms.

(2) The orthogonal group O, C GL, is given by A'A = E (see 3.2). Since
(E+cA)(E+cA) = E+¢e(A"+ A) we see that Tk O,, is a subspace of
{A € M,, | A skew-symmetric} which is of dimension (). On the other
hand, the condition A*A = E corresponds to (";’1) polynomial equations
in the entries of A € M,, and so, by KRULL’S Principal Ideal Theorem
(Proposition A.3.3.5), we get dim O,, > n? — ("7') = (%). Thus

Lie O,, = LieSO,, = {4 € M,, | A skew-symmetric}

which is a Lie subalgebra of gl,,, i.e. closed under the bracket [A, B] =
AB — BA. We will also use the notation so,,, so(V,q) or so(V).

(3) The symplectic group Sps,, is defined by F*JF = J where J = [—lgm EO’”]
(3.3). Since (E + eF)'J(E +¢F) = J 4+ (F'J + JF) we see that LieSp,,
is a subspace of {F € My, | F'J + JF = 0}. The dimension of this
space is (27”;1), because J* = —J and so the equation means that JF
is symmetric. On the other hand, the condition F*JF = J corresponds
to (2’2”) polynomial equations (both sides are skew symmetric), hence, as
above,

LieSpy,, = {F € May, | F'J + JF = 0}
which again is a Lie subalgebra of gls,,,, i.e. it is closed under the bracket
[A, B] = AB — BA. The Lie algebra will also be denoted by sps,,,, sp(V, )
or sp(V). Using the block form F' = [, V] one finds

Lie Sp,,, = {[TI/IJ/ ‘(/]t} € My,,, | V, W symmetric}.

REMARK 4.3.1. The considerations above imply that the polynomial equations
given by the conditions A'A = E for SO, respectively F*JF = J for Sp,,,, are
not only defining equations for the corresponding classical group G, but they even
generate the ideal of functions vanishing on G. For that, using Proposition A.4.8.3,
we have to show that these equations define the tangent space 1T,G C M,, for every
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g € G. But this is clear, since the conditions in g € G are g'A + Atg = 0, resp.
g'!JA 4+ A'Jg = 0, which are both equivalent to g7'A € Lie G.
In addition, we have calculated the dimensions of the groups:

dimgl, = dimGL, = n?, dim, = dimSL, = n? — 1,
dimso, = dimO, =dimSO, = (}),
dimsp,,, = dimSp,,, = (*4) =m(2m +1)

We remark that these are precisely the dimensions (over R) of the corresponding
real groups GL,(R), SL,(R), SO, (R), and Sp,,,(R) (cf. Appendix B.2.1).

EXERCISE 4.3.2. Let §: V xV — C be a symmetric or alternating bilinear form which
might be degenerate. Define

G(B) :={g € GLx | B(gv, gw) = B(v,w) for v,w € V}.

Then
Lie G(B) = {A € End(V) | B(Av,w) + B(v, Aw) = 0 for all v,w € V},

and this is a Lie subalgebra of gl(V).
EXERCISE 4.3.3. Consider the quadratic form ¢(z,y,z) := £z on C* and define
G(q) == {g € GL3 | q(ga) = q(a) for all a € C*}

as in the previous exercise. Describe G(g) and its Lie algebra Lie G(q). Is G(q) connected?
And what is dim G(q)?

4.4. The adjoint representation. We turn back to the general case of an
arbitrary algebraic group G. For any g € G we denote by Int g: G — G the inner
automorphism h + ghg~! and by Ad g its differential at e € G:

Adg:= (dIntg)e: T.G — T.G.

For G = GL,, we have Adg(4) = gAg~' (g € GL,, A € M,,) since Int g is a linear
map M,, — M,,. Moreover, g — Adg is a regular homomorphism Ad: GL, —
GL(M,,), because the entries of gAg~"! are regular functions on GL,,. By restriction
the same holds for any closed subgroup G C GL,;:

Adg(A) =gAg ' forge GCGL, and A€ T.G C M,

and Ad: G — GL(T.G), g — Adg, is a homomorphism of algebraic groups. This
already shows that Lie G C M,, is closed under conjugation with elements g € G.

The homomorphism Ad is called the adjoint representation of G. Its differential
will be denoted by ad:

ad := (dAd).: T.G — End(T.G).
PROPOSITION 4.4.1. For a closed subgroup G C GL,, we have
ad A(B) =[A,B] for A,BeT.,GCM,.
In particular, T.G is a Lie subalgebra of M,,.
PROOF. By definition, one has Ad(E + £A) = id +ead A. On the other hand,
Ad(E+¢cA)B = (E+cA)B(E+¢cA)™' = (E+cA)B(E —€A)
= B+¢(AB — BA) = B+¢[A, B]
= (id +e[A, —])B,
and the claim follows. O

The proposition shows that for any algebraic group G C GL, the tangent
space T,G carries the structure of a Lie algebra with bracket [A4, B] := ad A(B). In
particular, this structure is independent of an embedding of G into GL.,,.
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DEFINITION 4.4.2. The tangent space T.G together with this structure of a
Lie algebra is called the Lie algebra of G. It will be denoted by Lie G or by the
corresponding Gothic letter g.

COROLLARY 4.4.3. Let N C G be a closed normal subgroup. Then Lie N C
Lie G is an ideal, i.e. we have [A, B] € Lie N for A € LieG and B € Lie N.

PROOF. For every g € G the inner automorphism Int g sends N isomorphically
onto N, hence Adg(Lie N) = Lie N. This shows that Lie N C LieG is stable
under the adjoint representation Ad: G — GL(Lie G). It follows that its differential
ad = d Ad. also stabilizes Lie H, hence [A, B] = ad A(B) € LieN for A € LieG
and B € Lie N. 0

PRrROPOSITION 4.4.4. Suppose pu: G — H 1is a homomorphism of algebraic
groups. Then the differential du.: Lie G — Lie H is a Lie algebra homomorphism,
i.€.,

dpe([A, B]) = [dpe(A), dpe(B)]-
We will simply write du or sometimes Lie 4 instead of dp..
PRrOOF. The adjoint representation Ad: G — GL(Lie G) determines a mor-

phism ¢: G x LieG — LieG by (g,A4) — Adg(A). It is easy to calculate the
differential dy(. py: LieG x LieG — Lie G:

(3) dpe,5)(A,C) = [A,B] + C.
In fact, one can reduce to G = GL,, where ¢(g, A) = gAg~!. Thus
O(E+eA,B+eC)= (E+eA)(B+eC)(E+eA)™?
— B4 e(AB - BA+C)
= B+edpp.p(A C).

Since poIntg = Int u(g) o u we get duo Adg = Adu(g) o du for all g € G. This
means that the diagram

G x LieG —2°— LieG

uxdul ldu

H x LieH —2% LieH
is commutative. Calculating the differential at (e, B), using equation (3), we find
du([A, B]) = du(dpe,y(A,0)) = dp(e,auBy)(du(A),0))
= [du(A), du(B)],

and the claim follows. O

COROLLARY 4.4.5. Under the assumptions of the proposition above we have
Lie u(G) = du(Lie G) and Lie(ker u) = ker(dp).

PRroOOF. There is an open dense set U C G such that the differential dj, of
w: G = p(G) is surjective for all g € U (Theorem A.4.9.1). By G-equivariance, it
is surjective everywhere. In particular, du: Lie G — Lie u(G) is surjective proving
the first claim. The second follows, because Lieker u C kerdu and dimkeru =
dim G — dim p(G) = dim Lie G — dim du(Lie G) = dim ker dp. d

EXAMPLE 4.4.6. For g € G consider the commutator mapping
Y9: G =G, hw— ghg™th™L.

Then one has
(dvg)e = Adg —1d.
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To see this one factors v, as the composition G Aagxae™Z axah G,
where A(g) := (g,9). The assertion then follows from Example 4.2.2. One could
also reduce to G = GL,, and use epsilonization:

gle+eA)g He+eA) " =gle+cA)g ' (e—cA)=e+e(gldg " — A).

4.5. Invariant vector fields. It is well-known that the vector fields on a
manifold form a Lie algebra in a canonical way. This also holds for the algebraic
vector fields Vec(X) on an affine variety X (see Proposition A.4.5.12), and gives
us another way to define the Lie algebra structure on the tangent space T.G of an
algebraic group G.

Call a vector field § € Vec(G) left-invariant if it is invariant under left multi-
plication on G:

(dAg)n(0n) = 0gp, for all g, h € G.
Given any A € LieG one can construct a left-invariant vector field §4 on G by
setting (04)g := (dAg)cA.

PROPOSITION 4.5.1. Given A € LieG there is a unique left-invariant vector
field 04 such that (04). = A. Moreover, 6;4,p) = [04,0B].

PROOF. One easily reduces to the case G = GL,,. Then, for A = (a;;) € M,
and g = (gre) € GLn, we get (6a)g = gA =3, (3 % gikakj)%”b, hence

0 0
5A = ;(; xikakj)@ = ;(XA)WWU where X = (.’ﬂlj)
It follows that 4 is a regular left invariant vector field on GL,, and (d4). = 4. A
short calculation shows that 6405 — dpda = d(4,B]- O

There is a different way to understand this construction. Regard A € Lie G as
a derivation A: O(G) — C in e € G. Then

54 OG) —“ 0(G) 2 0(GQ) 424, 0(@G).
In fact, it is easy to see that ¢ := (id ® A) o u* is a derivation of O(G), and that
dg =evgod = (evy @A) ou™ = Ao A} = d),(A)
where evy(f) = f(g) is the evaluation at g € G.
REMARK 4.5.2. If we us the action on G by right multiplication, (h,g) —

p(h,g) := gh™1!, then, for any A € LieG, we can construct in a similar way a
right-invariant vector field §4 on G:

(0a)g := (dpy-1)cA € T,G.

In this case we get S[ AB] = [5 5.0 4] which shows that A — 4 4 is a anti-homomorphism
of Lie algebras. Replacing in the above description of 64 the map id ® A by A ®id
we get the following description of d4:

a4 0(G) = 0(G) 2 0@) 22 o).

EXERCISE 4.5.3. Let p: G — H be a surjective homomorphism of algebraic groups.

(1) For any A € LieG we have du(da) = 6 where B := du(A) € LieH, i.e.
dpg(64)g = (0B)u(g) for all g € G.
(2) Use (1) to give another proof that Lie u is a homomorphism of Lie algebras.
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Exercises

For the convenience of the reader we collect here all exercises from Chapter II.

EXERCISE. Suppose [, ]: L x L — L is an alternating bilinear map where L is a
two-dimensional vector space. Show that

(a) L is a Lie algebra, i.e., the JACOBI-identity is satisfied.

(b) If [, ] # 0, then there is a basis {u,v} of L with [u,v] = v.

Thus all noncommutative two-dimensional Lie algebras are isomorphic.
EXERCISE. For a general C-algebra A a derivation is a linear map 6: A — A such that

d(ab) = ad(b) + d(a)b for a,b € A. Show that the vector space of derivations Der(A) C
Endc(A) is a Lie subalgebra of Endc(A). (This generalizes Example 4.1.2.)

EXERCISE. Describe the tangent spaces in F, of the subgroups B,,Tn,U, C GL,
and show that they are Lie subalgebras of M,,.

EXERCISE. Let f: V x V. — C be a symmetric or alternating bilinear form which
might be degenerate. Define
G(B) :==A{g € GLx | B(gv, gw) = B(v,w) for v,w € V'}.
Then
Lie G(B) = {A € End(V) | B(Av,w) 4+ B(v, Aw) =0 for all v,w € V},
and this is a Lie subalgebra of gl(V).

EXERCISE. Consider the quadratic form ¢(z,v, z) := zz on C* and define
G(q) == {g € GL3 | q(ga) = q(a) for all a € C*}

as in the previous exercise. Describe G(g) and its Lie algebra Lie G(q). Is G(q) connected?
And what is dim G(q)?

EXERCISE. Let N C G be a closed normal subgroup. Show that Lie N C LieG is an
ideal, i.e. [A, B] € Lie N for A € LieG and B € Lie N.
(Hint: )
EXERCISE. Let p: G — H be a surjective homomorphism of algebraic groups.
(1) For any A € LieG we have du(da) = 6 where B := du(A) € LieH, i.e.

dpg(64)g = (0B)u(g) for all g € G.
(2) Use (1) to give another proof that Lie u is a homomorphism of Lie algebras.
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1. Group Actions on Varieties

1.1. G-Varieties. Let G be an algebraic group, e € G its identity element,
and let X be an affine variety.

DEFINITION 1.1.1. An action of G on X is a morphism p: G x X — X with
the usual properties:
(i) ple,z) =z for all z € X;
(ii) wu(gh,z) = u(g, u(h,z)) for g,h € G and = € X.
We will shortly write gz for u(g, x), so that the conditions above are the following:

ex =z for x € X, and (gh)x = g(hz) for g,h € G and z € X.

An affine variety X with an action of G is called a G-variety. For any g € G the
map = — gz is an isomorphism pg: X 5 X, with inverse fg—1-

EXAMPLE 1.1.2. The map pu: GL(V) x V. — V given by u(g,v) := gv is
a morphism and thus defines an action of GL(V) on V. This is clear, because
End(V) x V' — V is bilinear, hence regular.

This action is linear which means that ug: v — gv is a linear map for all
g € GL(V). It follows that for any homomorphism p: G — GL(V) we obtain a
linear action of G on V', given by guv := p(g)v.

ExAMPLE 1.1.3. For an algebraic group G we have the following actions of G
on itself:
e By left multiplication: (g, h) — Ag(h) := gh;
e By right multiplication: (g,h) — py(h) := hg™;
e By conjugation: (g,h) — ghg™*.
The inverse g~ ! on the right of the products is necessary in order to satisfy condition

(ii) from the definition.

1.2. Fixed Points, Orbits and Stabilizers. Let X be a G-variety. We make
the usual definitions.

DEFINITION 1.2.1. (1) An element x € X is called fized point if gz = =
for all g € G. We denote by X := {x € X | = fixed point} the fized point
set.

(2) For x € X we define the orbit of v by Gz := {gz | g € G} C X and the
orbit map p,: G — X by g — gz.

(3) The stabilizer of € X is defined by Stg(x) := G, :={g9 € G| gz = z};
it is also called isotropy group of x. The stabilizer of a subset ¥ C X
is defined similarly by Stg(Y) == {g € G | gy = yforally € Y} =
Nyey Gy-

(4) A subset Y C X is called G-stable if gY CY for all g € G.

(5) For a subset Y C X we define the normalizer of Y in G by Ng(Y)
lgeG gy =Y}

(6) For two G-varieties X,Y a morphism ¢: X — Y is called G-equivariant
if p(gz) = gp(x) for all g € G and = € X.

EXAMPLE 1.2.2. On the group G we have the two G-action, by left and by right
multiplication (Example 1.1.3). These two G-varieties are G-isomorphic where the

G-equivariant isomorphism is given by g — g~ 1.

PRrROPOSITION 1.2.3. Let X be a G-variety.

(1) The fived point set X is closed in X.
(2) For any x € X and any subset Y C X the stabilizers Gy and Stg(Y) are
closed subgroups of G.
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(3) For any x € X the orbit Gx is open in its closure Gz.
(4) If Y C X s closed, then the normalizer Ng(Y') is a closed subgroup of G.

PRrROOF. (1) The morphism n,: X — X x X, x — (gz,z), shows that X9 =
n, '(Ax) is closed, and so X = Nyec X7 is also closed.

(2) Since G, = p;*(z) where p, is the orbit map, the stabilizer is a closed
subgroup. This implies that Stg(Y) =1,y Gy is also a closed subgroup.

(3) The orbit Gz is the image of the morphism p, and thus contains a set U
which is open and dense in Gz. It follows that Gx = UgEG gU is open in Gz.

(4) Theset A:=={g € G |gY CY} =)y py ' (Y) is a closed subset of G,
and so Ng(Y) = AN A1 is closed. O

EXERCISE 1.2.4. Let X be a G-variety, let H C G an “abstract” subgroup and H C G
its closure. Then we have the following:
(1) X" =Xx", .
(2) Y C X is closed and H-stable, then Y is also H-stable.

Is the closeness of Y necessary in (2)7

EXERCISE 1.2.5. Consider the action of GL,, on the matrices M,, by conjugation.
Show that the stabilizers (GL,)a are connected for all A € M,,.
(Hint: For A € M, the subset R4 :={X € M,, | AX = XA} C M, is a subalgebra. Now
use Proposition I1.1.1.11.)

DEFINITION 1.2.6. For an action of G on a variety X the stabilizer St (X) is
called the kernel of the action. It is a closed normal subgroup (see Exercise 1.3.4
above). The action is called faithful if the kernel of the action is trivial. The action
is called free if the stabilizer G, of any point = € X is trivial.

If the G-variety X contains a point x with trivial stabilizer, then the action is
clearly faithful. However, it is not true that every faithful action contains points
with trivial stabilizer as we can see from the linear action of GL(V) or SL(V') on
V, for dimV > 2.

EXAMPLE 1.2.7. Let G be a finite group acting on an irreducible variety X. If
the action is faithful, then the set of points with trivial stabilizer, {z € X | G, =
{e}}, is open and dense in X.

PRrROOF. If the action is faithful, then X* is a strict closed subset of X for
every nontrivial subgroup H C G. Since X is irreducible the union J,, e} X H g
a strict closed subset, and its complement has the required property.

EXERCISE 1.2.8. Give an example of a faithful action of a finite group G which does
not admit points with trivial stabilizer. Is this possible if G is commutative?

EXERCISE 1.2.9. Consider the standard action of Os on C2. Then the curve H :=
V(z? + y* — 1) C C? is stable under Oz, and the action of Oz on H is faithful, transitive,
but not free.

ProprosIiTION 1.2.10. Let X be a G-variety, and suppose that there exists a
G-equivariant morphism ¢: X — G where G acts by left multiplication on G. Then
there is a G-equivariant isomorphism G x ¢~ t(e) = X given by (9,y) — gy. In
particular, the G-action on X 1is free.

PROOF. One easily checks that the inverse morphism of (g,y) — gy is given
by @ = (p(@), p(2) " x). O
The proposition rises the interesting question whether a variety X with a free

action of an algebraic group G looks locally like G x S. The answer is yes for a
certain class of groups, the so-called reductive special groups G, but no in general,
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e.g. for finite groups. Examples of reductive special groups are tori, GL,, SL,, and
SPam,, and product of those. We will discuss the case of tori in Section 3.

EXERCISE 1.2.11. Consider the faithful action of C* on C? given by t(z,y) := (tPz, t%y)
where p, q € Z are coprime.

(1) Determine the (nonempty) open set U C C? where the action is free.
(2) Show that U can be covered by at most two C*-invariant special open sets
isomorphic to C* x S.

(Hint: The answers depend on whether |p| = |¢| = 1 or not.)
EXERCISE 1.2.12. Show that a reductive special group G is connected.

(Hint: The action of G C GL(V) on GL(V') by left multiplication is free, and every open
set of GL(V') is irreducible.)

1.3. Orbit map and dimension formula. Let X be a G-variety, z € X,
and let p,: G — X be the orbit map. The image of p, is the orbit Ga and the
fibers are the left cosets of the stabilizer G:

wyt(ha) ={g € G | gz = hz} = hG,.

In particular, we obtain a bijection G/G, — G between the left cosets G/G, and
the orbit Gz. Therefore, we have the following dimension formula for orbits (see
Theorem A.3.4.1)

dim Gz = dim Gz = dim G — dim G,,..
Note that the stabilizer of y = gz € Gz is a conjugate subgroup of G, namely
Gy = Ggw = gGIg_l'

EXERCISE 1.3.1. Let X be a G-variety and Y C X a G-stable subset. Then the closure
Y is also G-stable.

Another consequence is the existence of closed orbits.

~ CoroOLLARY 1.3.2. Let X be a G-variety and x € X. Then the orbil closure
Gx contains a closed orbit.

PROOF. If Gx = Gz, we are done. Otherwise dim(Gx \ Gz) < dim Gz, because
Gz is open and dense in Gz (Proposition 1.2.3(3) and Exercise A.3.1.12), and we
can proceed by induction on dim Gz, because Gz is G-stable (Exercise 1.3.1). O

REMARK 1.3.3. If G is connected and X a G-variety, then every irreducible com-
ponent of X is G-stable. In fact, every g € G permutes the irreducible components
X, so that Ng(X;) C G has finite index, hence contains G° (Remark 1.4.3(3)).

EXERCISE 1.3.4. Let X be a G-variety.

(1) If N C G is a normal subgroup, then the fixed point set X~ is G-stable.
(2) For any Y C X the stabilizer Stg(Y) is a normal subgroup of the normalizer
Ne(Y).

EXERCISE 1.3.5. Consider the standard representation of GL2 on C2. Describe the
orbits for the actions of the following closed subgroups G C GLa:

(a) G=SLy, (b)G=C'=Us, (c)G={[",1]|teC}
Which orbits are closed, and which one are contained in the closure of another orbit?

EXERCISE 1.3.6. Consider the action of GLg (resp. SL2) by left-multiplication on the
matrices M2, and describe the orbits. Which orbits are closed and which are contained in
the closure of other orbits?
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1.4. Exercises. For the convenience of the reader we collect here all exercises
from the first section.

EXERCISE. Let X be a G-variety, let H C G an “abstract” subgroup and H C G its
closure. Then we have the following:
(1) x"=x"
(2) If Y C X is closed and H-stable, then Y is also H-stable.
Is the closeness of Y necessary in (2)?

EXERCISE. Consider the action of GL, on the matrices M,, by conjugation. Show
that the stabilizers (GLy)4 are connected for all A € M,.
(Hint: For A € M, the subset R4 :={X € M,, | AX = XA} C M, is a subalgebra. Now
use Proposition I1.1.1.11.)

EXERCISE. Give an example of a faithful action of a finite group G which does not
admit points with trivial stabilizer.

ExERCISE. Consider the standard action of Oz on C?. Then the curve H := V(z? +
y? — 1) C C? is stable under Oa, and the action of Oz on H is faithful, transitive, but not
free.

EXERCISE. Consider the faithful action of C* on C? given by t(z,y) = (t’z,t%)
where p, q € Z are coprime.

(1) Determine the (nonempty) open set U C C? where the action is free.
(2) Show that U can be covered by at most two C*-invariant special open sets
isomorphic to C* x S.

(Hint: The answers depend on whether |p| = |¢| = 1 or not.)

EXERCISE. Show that a special group G is connected.
(Hint: The action of G C GL(V) on GL(V') by left multiplication is free, and every open
set of GL(V) is irreducible.)

EXERCISE. Let X be a G-variety and Y C X a G-stable subset. Then the closure Y
is also G-stable.

EXERCISE. Let X be a G-variety.

(1) If N C G is a normal subgroup, then the fixed point set X~ is G-stable.
(2) For any Y C X the stabilizer Stg(Y) is a normal subgroup of the normalizer
Ng(Y).
EXERCISE. Consider the standard representation of GL2 on C2. Describe the orbits
for the actions of the following closed subgroups G C GLa:
(a) G=SLz, (b)G=C*'=0Us, (c)G={[",-1]|teC}
Which orbits are closed, and which one are contained in the closure of another orbit?
EXERCISE. Consider the action of GL2 (resp. SL2) by left-multiplication on the ma-

trices M2, and describe the orbits. Which orbits are closed and which are contained in the
closure of other orbits?

2. Linear Actions and Representations

2.1. Linear representation. Let G be an algebraic group and V a finite
dimensional C-vector space.

DEFINITION 2.1.1. A representation of G on V is a homomorphism p: G —
GL(V) of algebraic groups. A representation p: G — GL(C™) = GL,,(C) is some-
times called a matriz representation of G.

Two representations p: G — GL(V) and p: G — GL(W) are called equivalent
if there is a linear isomorphism ¢: V' = W such that p(p(g)v) = u(g)e(v) for all
geG,veV.
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In the literature one also finds the notion of a rational representation. We will
only use this when we have to talk about “abstract” representations, as in the
following easy lemma whose proof is left to the reader.

LEMMA 2.1.2. Let G be an algebraic group and p: G — GL,, an abstract homo-
morphism of groups. Then p is a rational representation if and only if the matrix
coefficients p;;(g) are regular functions on G.

EXAMPLE 2.1.3. Let p: C* — GL(V) be an n-dimensional representation of
C*. Then p is diagonalizable, i.e. there is a basis of V such that p(C*) C T,,. Thus
p is equivalent to a matrix representation of the form

tm
tm

t— ) where mq,mo,...,m, € Z.

£

PROOF. The elements of finite order form a dense subgroup F' C C* and the
image p(F') is commutative and consists of diagonalizable elements. This implies
that p(F) is simultaneously diagonalizable, i.e., we can find a basis of V' such that
p(F) C T,,. Now the claim follows because p(F') is dense in p(C*). O

We can express this in a slightly different way. Define
Vi ={veV|pt)(v) =tk vforalteC*}.

Then we get V = @, Vi, because p is diagonalizable. The subspace V}, is called
the weight space of weight k, and the direct sum decomposition is the weight space
decomposition.

We have seen in Example 1.1.2 that a representation p: G — GL(V') defines a
linear action of G on V. In general, a finite dimensional vector space V with a linear
action of G is called a G-module. It is easy to see with the lemma above that every
linear action of G on V defines a rational representation G — GL(V'). Therefore, we
will not distinguish between a representation of G on V and the G-module V', and
will freely switch between these points of view, depending on the given situation.

A representation p: G — GL(V) is called faithful if ker p is trivial. This means
that the linear action of G on V is faithful (see Definition 1.2.6).

EXAMPLE 2.1.4. We have seen in 11.4.4 that the differential Ad g of the inner
automorphism Int g: h — ghg~' defines a linear action of G on its Lie algebra
Lie G, the adjoint representation Ad: G — GL(g). The orbits are usually called the
conjugacy classes in g. In case G = GL,, where g = M,, this is the standard action
by conjugation on matrices.

EXAMPLE 2.1.5. Let X be a G-variety. For every g € G and every = € X the
differential (dpg)e: TuX — Ty X of pg: & — gz is a linear map with the usual
composition property (dpgn)s = (dptg)ns © (dn)z. Therefore, for every fixed point
x € X we obtain a representation of G on T, X called the tangent representation
in the fixed point x. We will see later in Corollary 2.3.10 that this is a rational
representation of G.

EXAMPLE 2.1.6. The representations p: C* — GL,, of the additive group C*
are in one-to-one correspondence with the nilpotent matrices in M,,. This follows
immediately from Proposition I1.2.6.1 where we showed that p is of the form s —
exp(sN) with N € M,, nilpotent. Moreover, two such representations are equivalent
if and only if the corresponding matrices are conjugate.
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EXAMPLE 2.1.7. Let G be an algebraic group acting on C™ by affine transfor-
mations (Exercise I11.2.1.7). Then the induced map p: G — Aff,, is a homomorphism
of algebraic groups. In particular, every action of G on A! is given by a homomor-
phism G — Aff;.

PROOF. By assumption, p(g)z = A(g)x + b(g), and we have to show that
A: G — GL, and b: G — C™ are morphisms. This is clear for b, because b(g) =
p(9)0. Since A(g)a = p(g)a — b(g) this implies that the map g — A(g)a is a mor-
phism, for every a € C". Now the claim follows, because A(g)e; is the ith row of
A(g). d

If o: V — W is a linear map, then the transposed map ©': W* — V* is defined
in the usual way: ©!(f) := £ o ¢. If ¢ is an isomorphism, we set ¢* := (')~ In
this way we get an isomorphism GL(V) = GL(V*) of algebraic groups. In fact,
choosing a basis in V' and the dual basis in V* the corresponding map GL,, = GL,,
is given by S +— S~!. Using the canonical identification (V*)* = V we see that
(g%)* = g for all g € GL(V).

If W C V is a subspace, we define W+ := {£ € V* | f|yy = 0} C V*. It follows
that dim W + dim W+ = dim V' and that (W)L = W. Moreover, if giW = W
for some g € GL(V), then g*W+ = W+, All this is well-known, and the reader is
advised to check carefully the details.

2.2. Construction of representations and G-homomorphisms. Starting
with two representations p: G — GL(V) and p: G — GL(W) we can construct new
representations in the usual way:

e The direct sum p® p: G — GL(V @ W), g — p(g) @ u(g),

e The tensor product p @ p: G — GL(V@ W), g — p(g) @ u(g),

e The dual representation p*: G — GL(V*), g — p(g)* := (p(g9)!) 1, also
called the contragredient representation,

e The k™" symmetric power S*p: G — GL(S*¥(V)) for all k > 0,

e The k'™ exterior power A¥p: G — GL(A" V) for 0 < k < dim V.

If H C G is a closed subgroup and U C V an H-stable subspace, then we obtain
representations of H on the subspace U, a subrepresentation, and on the quotient
space V/U, a quotient representation:

o't H— GL(U),h— p(h)|y and p: H— GL(V/U),h+ p(h).

We leave it to the reader to check that all these representations are again rational.
(This follows immediately from Lemma 2.1.2 above by choosing a suitable basis.) In
the language of G-modules these constructions correspond to the direct sum and the
tensor product of two G-modules, the dual module, the symmetric and the exterior
power of a G-module, and submodules and quotient modules of a G-module.

The language of G-modules has the advantage that we can not only talk about
submodules and quotient modules, but more generally about homomorphisms be-
tween two G-modules V and W.

DEFINITION 2.2.1. A G-equivariant linear map ¢: V' — W between two G-
modules V' and W is called a G-homomorphism or a G-linear map. A bijective
G-homomorphism is called a G-isomorphism. Clearly, two G-modules V, W are G-
isomorphic if and only if the corresponding representations are equivalent.

The set of G-homomorphism has the structure of a C-vector space and will be
denoted by Homg (V, W). In case of W =V we talk about G-endomorphisms and
use the notation Endg (V).
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EXAMPLE 2.2.2. Consider the standard representation of SLy on V = C2? with
basis eq := (1,0), ez := (0,1). Then
SHV) = @ Ce® where e® = ef*e5? and |a| := a1 + ag,

a€eN?

|| =k
bl . . o o o
4| is given by ge® = (ae1 + ce2)** (bey + des)*2.
For the dual representation V* = Cx @ Cy, we get S*(V*) = C|z, 9], the binary
forms of degree k, and the action of g is given by gz = dx — by, gy = ay — cx,

because
gt = d —c| Jxzr—dz-—by,
—b al Y= ar —cy.
EXERCISE 2.2.3. Show that there is a matrix S € GL2 such that Sg*S™! = ¢~ ! for all

g € SLs. Deduce from this that the SLa-representations S™ (V') and S™ (V™) are equivalent
for all m € N.

and the linear action of g = [(Cz

EXERCISE 2.2.4. The same statement as in the previous exercise does not hold for
GLs and neither for SL,, if n > 2.
(Hint: Apply the conjugation to the diagonal matrices!)

EXERCISE 2.2.5. Let V', W be two G-modules. Then there is a natural linear action
of G on the space of linear maps Hom(V, W) given by (9¢)(v) := g(¢(g™*v)). Show that
(1) Hom(V,W) is a G-module.
(2) Homeg(V, W) = Hom(V, W)©.
(3) There is a G-linear isomorphism V* @ W = Hom(V, W).
(Hint: The isomorphism is induced by A @ w +— @i, where px o (v) = A(v)w.)

2.3. The regular representation. If an abstract group G acts on a space
X then we get a representation of G on the C-valued functions on X in the usual
way: (g, f) — gf where gf(x) := f(g~'x). This representation is called the reqular
representation of G on the functions on X.

If G is an algebraic group acting on an affine variety X and if f is a regular
function on X, then gf is also regular. In fact, the action is given by a morphism
w: G x X = X whose comorphism p*: O(X) — O(G) ® O(X) has the following

property: If p*(f) =3, h; ® fi, then
() gf(x)=flg~"'e) = Z hi(g~") fi(x), and so gf = Z hi(g™")fi € O(X).

DEFINITION 2.3.1. An (abstract) representation of an algebraic group G on a
complex vector space F' is said to be locally finite if for every f € F the linear span
(9f | g € G) is finite dimensional. It is called rational if for every finite dimensional
G-stable subspace V' C F' the map G — GL(V) is a homomorphism of algebraic
groups. Such a vector space F' is called a locally finite rational G-module.

A linear map pu: F' — F’ between two locally finite rational G-modules is a
G-homomorphism if it is G-equivariant, i.e. u(gv) = gu(v) for all v € F and all
g €G.

ProOPOSITION 2.3.2. Let X be a G-variety. Then the representation of G on
the regular functions O(X) is locally finite and rational.

PROOF. The formula (x) above shows that (gf | g € G) C >, Cf;, and so the
representation is locally finite. Now let V' C O(X) be a finite dimensional G-stable
subspace, and let f1,...f, be a basis of V. Writing O(V) = V & W and using
again the formula (x) one sees that u*(V) C O(G) @ V, ie. gf; = >, hij(g7 ") fi
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for j =1,...,n. Thus the representation of G on V is given by the map g — H(g)
where H(g) = (hij(g7'))i; is an n X n matrix whose entries are regular functions
on G. O

EXAMPLE 2.3.3. From the natural representation of GL(V) on V' we obtain the

regular representation on the graded algebra O(V) = @ ,.,O(V)aq where O(V)q4
are the homogeneous polynomial functions of degree d on V. These subspaces are
stable under GL(V), and there is a canonical isomorphism O(V) =~ S¢(V*) of
GL(V)-modules.
In fact, the multilinear map V* x --- x V* — O(V) given by (¢1,...,44)(v) =
6 (v) - Lq(v) is GL(V)-equivariant and symmetric, and has its image in O(V)g4.
Thus it defines a GL(V)-homomorphism S¢(V*) — O(V)4 which is easily seen to
be an isomorphism by choosing a basis of V.

EXERCISE 2.3.4. Work out the proof indicated above in Example 2.3.3.

The proposition above has a number of interesting consequences. The first one
will be used quite often to reduce questions about general G-actions on varieties to
the case of linear representations on vector spaces.

COROLLARY 2.3.5. Let X be a G-variety. Then X is G-isomorphic to a G-stable
closed subvariety of a G-module V.

PRrROOF. Choose a finite dimensional G-stable subspace W C O(X) which gen-
erates O(X). Then the canonical homomorphism p: S(W) — O(X) is surjective
and G-equivariant. Since S(W) = O(W*), the coordinate ring of the dual repre-
sentation W* of W, it follows from the previous corollary that p is the comorphism
of a closed G-equivariant embedding p: X — W*. O

EXERCISE 2.3.6. Consider X := GL2 as a GLeo-variety where GL2 acts by left-
multiplication. Find a GL2-module V' which contains X as a GLga-stable closed subset.
(Hint: Look at pairs (g, h) € M2 @ M, such that gh = E».)

COROLLARY 2.3.7. Let X, Y be G-varieties and ¢: X — Y a morphism. Then
v 1is G-equivariant if and only if *: O(Y) — O(X) is a G-homomorphism.

PRrROOF. This follows immediately from the two formulas

0 (9f)(@) = gf(p(x)) = flg™ p(x)) and  go"(f)(z) = flp(g™ )
which show that ¢ is G-equivariant if and only if ¢*(gf) = gp*(f) for all f € O(Y)
and g € G. (|

EXERCISE 2.3.8. Let X,Y be G-varieties and ¢: X — Y a morphism. Let W C O(Y")
be a finite dimensional G-stable subset which generates O(Y). If ¢*: W — O(X) is a
G-homomorphism, then ¢ is G-equivariant.

COROLLARY 2.3.9. Let ¢p: G — H be a surjective homomorphism, and let X
be a G-variety. Assume that ker @ acts trivially on X. Then X is an H-variety.

PRrROOF. We can assume that X is a G-stable closed subset of a G-module V.
By assumption, X C W := VK¢ and W is G-stable as well. Thus ker ¢ C kerp
where p: G — GL(W) is the corresponding representation of G on W. Now the
claim follows from the mapping property (Proposition 11.2.1.10) which implies that
p factors through . O

COROLLARY 2.3.10. Let X be a G-variety and let x € X< be a fized point. Then
the mazimal ideal m, and all its powers m? are G-stable subspaces of O(X), and the
representation of G on m,/m¢ is rational. In particular, the tangent representation

of G on T, X is rational, dual to the representation on m,/m2.
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PROOF. Most of the statements are clear. We only show that the canonical
map T, X = Der,(O(X)) — (m,/m2)*, § — ¢ := Olm, /m2, is G-equivariant. Recall
that the action on T, X is given by § — dug(d) where uy(y) = gy for y € X. For
fem, and f:= f+m2 we have

98'(f) =38'(g71 ) = &'(g71f) = 8(g7 ' f) = 6(ug(f)) = (dpg 8)(f),
hence (dpug0) = gd'. O

DEFINITION 2.3.11. Let X be a G-variety. A regular function f € O(X) is
called G-invariant (shortly invariant) if f(gx) = f(z) for all g € G and z € X, i.e.
if f is constant on the G-orbits. The G-invariant functions form the fixed point set
O(X)% which is a subalgebra of O(X).

A semi-invariant is a regular function f € O(X) with the property that the
subspace Cf C O(X) is stable under G. If f # 0, then there is a well-defined
character x: G — C* such that f(gz) = x(g) - f(z) for all g € G and = € X. We
express this by saying that f is a semi-invariant with character x.

Let V be a finite dimensional vector space and a: V x V' — C a nondegenerate
bilinear form. Then « defines an isomorphism &: V' = V* by a(v)(w) = a(w,v).
If we choose a basis (vy,...,v,) of V and the dual basis (vf,...,v}) of V*, then
a: C" — C" is given by the matrix A := (a(v;,v;))i ;-

EXERCISE 2.3.12. The isomorphism &: V' = V* allows to define a nondegenerate
bilinear form a* on V* in the obvious way. Show that a* o & = idy.

(Hint: With respect to the bases of V and V* as above and identifying (V*)* with V the
linear map o is given by the matrix Ail.)

LEMMA 2.3.13. If V is a G-module and if o is G-invariant, then a: V = V*
is G-isomorphism.

PRrOOF. This follows from the equalities

a(gv)(w) = a(w, gv) = a(g™ w,v) = &(v) (9~ w) = (9 (v))(w)
for v,w €V and g € G. O

2.4. Subrepresentations of the regular representation. For a G-variety
X we might ask which representations of G occur in the regular representation on
O(X). For X = G (with respect to left or right multiplication) there is the following
partial answer.

PROPOSITION 2.4.1. Let V be a G-module and assume that V* is cyclic, i.e.
there is an ¢ € V* such that (G¢) = V*. Then V occurs as a subrepresentation
of O(Q), with respect to left or right multiplication. In particular, every simple
G-module occurs in O(G).

(Recall that a G-module V' # {0} is simple if it does not have a submodule different
from {0} and V.)

PROOF. Recall that O(G) as a G-module with respect to the left multiplication
is isomorphic to O(G) as a module with respect to the right multiplication where
the isomorphism is given by the coinverse t: O(G) = O(G) (Example 1.2.2). Thus
it suffices to consider the left multiplication on G.

For £ € V* and v € V define fr, € O(G) by fr,(g) :== £(g~'v). Now the map
v fr is & G-homomorphism ¢y: V' — O(G). In fact,

feno(g) = (g7 o) = fou(h™g) = hfeu(g).

It is easy to see that ¢, is injective if ¢ generates V* as a G-module (see the next
exercise). O
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EXERCISE 2.4.2. Show that the kernel of the map v — f,, is equal to (G€)* C V.

COROLLARY 2.4.3. Every G-module V' of dimension < n occurs as a submodule
of O(G)®™ with respect to left or right multiplication.

PROOF. We choose generators {1, . .., £, of the G-module V* and use the func-
tions f¢,» € O(G) from the proof above to define a G-homomorphism ¢: V —
O(G)®™ v (fo, vs---s fe,,0). Since the ¢; generate V* as a G-module it follows
that ¢ is injective. O

EXERCISE 2.4.4. If V C O(QG) is a finite dimensional G-submodule, then V* is cyclic.
(Hint: Look at the linear function £ :=eve |v: v — v(e).)

EXERCISE 2.4.5. Let W be a G-module W. If W™ can be generated, as a G-module, by
m elements, then there exists a G-equivariant embedding of W into O(G)®™. Conversely,
if W C O(G)™ a finite dimensional submodule, then W* can be generated, as a G-module,
by m elements.

Finally, we can prove now what we announced after the definition of an algebraic
group (Remark I1.1.2.1), namely that a “group object” in the category of affine
varieties is an algebraic group in the sense of our definition.

PROPOSITION 2.4.6. Let H be an affine variety with a group structure such that
the multiplication p: H x H — H and the inverse .: H — H are morphisms. Then
H is isomorphic to a closed subgroup of some GL(V).

PROOF. We first remark that the notion of a group action on a variety and
of a locally finite and rational representation does not use that the group G is a
closed subgroup of some GL,,. It makes perfectly sense for H, and the proof of
Proposition 2.3.2 carries over to H without any changes.

Now choose a finite dimensional linear subspace V' C O(H) which is stable
under the action of H by right multiplication and which generates the coordinate
ring O(H). This defines a rational representation p: H — GL(V). For v € V define
the function f, € O(GL(V)) by f,(g) := gv(e) where e € H is the identity element.
Then

p*(fo)(h) = fu(p(h)) = (p(h)v)(e) = v(h), hence p*(fy) = v.
Thus the image of p* contains V. It follows that the comorphism p*: O(GL(V)) —
O(H) is surjective, and so p is a closed immersion. O

REMARK 2.4.7. There is the following nice generalization of the above result
which is due to PALAIS, see [Pal78]. Let H be an affine variety with a group
structure. Assume that the left-multiplications and the right-multiplications with
elements from H are morphisms. Then H is an algebraic group.

The question goes back to MONTGOMERY who proved this in the setting of topo-
logical groups with underlying complete metric spaces, see [Mon36].

If X is an irreducible G-variety, then G also acts on the field C(X) of rational
functions on X, by field automorphisms. In particular, if G is finite and the action
faithful, then C(X)/C(X)? is a Galois extension with Galois group G. In general,
C(X)€ is a finitely generated field over C, and the transcendence degree of C(X)
over C(X)% is bounded by dim G. In fact, one can show that

tdegc(xye C(X) = max{dim Gz [ z € X}.

This is a consequence of a theorem of ROSENLICHT, see [Spr89, IV.2.2 Satz von
ROSENLICHT|. We will prove this in the next chapter (section IV.??) in a special
case, namely for the so-called linearly reductive groups G. The case of tori and
diagonalizable groups will be handled in the following section where we prove a
stronger result, see Proposition 3.6.1.
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2.5. Exercises. For the convenience of the reader we collect here all exercises
from the second section.

EXERCISE. Show that there is a matrix S € GLy such that Sg'S™! = g~! for all
g € SLs. Deduce from this that the SLa-representations S™ (V') and S™ (V™) are equivalent
for all m € N.
Finally show that this does not hold for GL2 and neither for SL,,, n > 2.

EXERCISE. Let V', W be two G-modules. Then there is a natural linear action of G
on the space of linear maps Hom(V, W) given by (g¢)(v) := g(¢(g~'v)). Show that
(1) Hom(V, W) is a G-module.
(2) Homg(V, W) = Hom(V, W)©.
(3) There is a G-linear isomorphism V* @ W = Hom(V, W).
(Hint: The isomorphism is induced by A @ w +— @, where px o (v) = A(v)w.)
EXERCISE. Consider X := GLg2 as a GL2-variety where GL2 acts by left-multiplication.

Find a GLy-module V which contains X as a GLs-stable closed subset.
(Hint: Look at pairs (g, h) € Mz @ M, such that gh = E».)

EXERCISE. Let X,Y be G-varieties and ¢: X — Y a morphism. Let W C O(Y
be a finite dimensional G-stable subset which generates O(Y). If *: W — O(X) is a
G-homomorphism, then ¢ is G-equivariant.

EXERCISE. Let a: VXV — C be a nondegenerate bilinear form on a finite dimensional
vector space V. Then the corresponding isomorphism &: V. 5 V* allows to define a
nondegenerate bilinear form a® on V* in the obvious way, and thus an isomorphism
o*: V* — (V*)* = V. Show that a* o & = idy-.

(Hint: With respect to a basis of V' and the dual basis of V* the linear map & is given by
the matrix A corresponding to the form «, and o* is given by the matrix A7)

EXERCISE. Show that the kernel of the map v +— fe, is equal to (G£)* C V.

EXERCISE. If V C O(G) is a finite dimensional G-submodule, then V* is cyclic.
(Hint: Look at the linear function £ :=eve |v: v — v(e).)

EXERCISE. Let W be a G-module W. If W* can be generated, as a G-module, by
m elements, then there exists a G-equivariant embedding into O(G)®™. Conversely, if
V C O(G)™ a finite dimensional submodule, then V* can be generated, as a G-module,
by m elements.

3. Tori and Diagonalizable Groups

In this section we first study actions of the multiplicative group C* on an
affine variety X and prove the finite generation of the algebra of invariants O(X )¢
using GORDANS’s Lemma. This allows to define an algebraic quotient 7: X —
X//C*, and we show some of its properties. In the remaining part we discuss tori
and diagonalizable groups, and prove the anti-equivalence between diagonalizable
groups and finitely generated abelian groups, given by D — X(D), the character
group of D.

3.1. C*-actions and quotients. Let X be a variety with an action of the
multiplicative group C*. For k € Z define

OX)p:={f€cOX)|tf=t"fforalltcC*}.

These are the semi-invariants of weight &, see Definition 2.3.11. Since O(X) is a
locally finite and rational C*-module the weight space decomposition for a repre-
sentation of C* (see Example 2.1.3) implies that we get a similar decomposition for

0(X),
O(X) =P O(X)x,

kEZ
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and this is a grading: O(X) - O(X)m C O(X)g+m. In particular, O(X), =
O(X)®" is the subalgebra of C*-invariant functions, and every subspace O(X)y

is a O(X)% -module. Moreover, for any C*-equivariant morphism ¢: X — Y we
have p*(O(Y)r) C O(X), for all k.

EXAMPLE 3.1.1. For the standard action of C* on C and C\ {0} by left mul-
tiplication the weight space decomposition is given by

Clz] = @(ka and Clz,z7 '] = @(Ca:k.

k>0 kez
Note that the weight of Cz* is —k.

EXERCISE 3.1.2. Let V be a (nontrivial) two dimensional C*-module with weights p, g,
ie. t(z,y) = (t? - z,t? - y) for a suitable basis. Determine the weight space decomposition
and show the following.

(1) The invariant ring O(V)" is either C or a polynomial ring C[f] in one variable.
(2) If O(V)®" = C, then the weight spaces are finite dimensional.
(3) If O(X)®" # C, then the weight spaces are free O(X)® -modules of rank 1.

ExXAMPLE 3.1.3. Let X be a C*-variety. Assume that O(X); = 0 for all i < 0
and that O(X)o = C. Then X© = {zo} and mg := @,., O(X); is the maximal
ideal of xg. Moreover, if X is smooth in zg, then X is C*-isomorphic to a C*-module
with strictly negative weights.

PROOF. The first part is clear; we only prove the last statement. Since X is
smooth in zy we can find d := dim X homogeneous functions fi, ..., f4 € mg whose
images in mp/mZ form a C-basis. Now we apply Lemma 2.3.3 to see that O(X) =
Clf1,-.., fa]. Since dim X = d we see that the f; are algebraically independet, and
the claim follows. O

In general, we have the following statement about the invariants O(X)C" of a
C*-variety X.

LEMMA 3.1.4. The subalgebra O(X)T" is finitely generated.

PROOF. Choose homogeneous generators fr, € O(X)m,, k = 1,...,n, for the
algebra O(X). For aw € N" set f := "' .-+ fo € O(X) which is homogeneous of
degree w(a) := Y, apmy. It follows that

OX)= Y  Cf~
aeN™, w(a)=0
By GORDAN’s Lemma (see below) the semigroup S := {a € N" | }°, apmy, = 0} is
finitely generated, and so O(X)y is finitely generated as an algebra. O

LEMMA 3.1.5 (GORDAN’s Lemma). For any subgroup I' C Z™, the semigroup
M =T NN" is finitely generated.

PROOF. Let M C M be the set of minimal element where we use the partial
order on Z"™ defined by

a<b < a; <b; for all i.

Clearly, M is a set of generators of M. In order to prove that M is finite we will
show now that any infinite sequence (a?) of elements from N” contains a pair
i < j such that a® < ql9), This is clear for n = 1. We can assume that the set
{agi)} C N is infinite, and then choose an infinite subsequence such that ali) < agj )
for i < j. Now consider the sequence @) € N*~! where a := (ag,...,a,) € N*7L
By induction, there exists a pair i < j such that a¥ < a¥). Hence, a(? < a0,

because agi) < agj), and we are done. O
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EXERCISE 3.1.6. Show that every O(X), is a finitely generated O(X)¢ -module.
(Hint: Modify the proof of Lemma 3.1.4 above.)

Since O(X)®" is a finitely generated subalgebra of O(X) there is an affine
variety Y and a morphism 7: X — Y such that the comorphism 7* induces an
isomorphism O(Y) & O(X)®". Since Y is uniquely determined up to isomorphism,
we will use the notation X /C* for Y and nx: X — X //C* for the morphism, and
will call X/C* the quotient of X by C*, and wx quotient morphism. This notion is
justified by the “universal property” formulated in the following proposition.

PROPOSITION 3.1.7. Let X be a C*-variety, and let mx: X — X/)/C* be the
quotient morphism.

e Universal property. For any C*-invariant morphism ¢: X — Y there
is a unique morphism ¢: X/C* =Y such that p = pomx.

e G-closedness. If Z C X s closed and C*-stable, then wx(Z) C XJC* is
closed. In particular, mx is surjective.

e G-separation. For any family (Z;)r of C*-stable closed subsets of X,
we have wx ((; Zi) = (; 7x(Z;). In particular, tx separates disjoint C*-
stable closed subsets of X.

PrOOF. (1) If ¢: X — Y is C*-invariant, then ¢*(O(Y)) € O(X)®". Hence,
there is a homomorphism p: O(Y) — O(X/C*) such that ¢* = 7% op. Since p = ¢*
for some morphism @: X//C* — Y, we get ¢ = @ o x, and the claim follows.

(2) We can identify O(X/C*) with O(X)y. For every ideal b C O(X)g we have
OX)-b=6,0(X), b, and so (O(X)-b)NO(X)o = b. Since Z is C*-stable,
the ideal I(Z) C O(X) is graded. Moreover, mx(Z) C X//C* is the zero set of the
ideal I(Z)NO(X)® = I(Z)o. For any y € nx(Z), the corresponding maximal ideal
m, C O(X)o contains I(Z)y. This implies that

T () N Z = Vx(m,O(X) +1(2)) # 0,
because (m,O(X)+1(Z))NO(X)o =my +1(Z)o =my, G O(X)o. Hence, x(Z) =
Wx(Z).

(3) The image mx ([, Zi) is closed, by (2), and it is equal to the zero set of

the ideal b := (3, I(Z;))o. Since the ideals I(Z;) are graded we get b =", I(Z;)o,

and the zero set of the latter is (), 7x(Z;) = [, 7x(Z;), again by (2). The claim
follows. O

EXAMPLE 3.1.8. Consider the linear action of C* on C? given by t(x,y) :=
(t? - x,t%-y. The action is faithful if and only if p and ¢ are coprime, and in this case
the action is free on C2\ V(xy). If p,q > 0 or p,q < 0, then there are no invariants.

Now assume that p,q are coprime and p > 0 > ¢q. Then f := 7 %P is an
invariant and C[z,y]® = C[f]. Thus C?/C* ~ C and the quotient morphism is
f: C? — C. Moreover, f~1(0) = V(zy), the union of the 2- and the y-axis, and
f:C2\ V(zy) — C\ {0} is a trivial C*-bundle. In fact, if r,s € Z are such that
sp —rq = 1, then we have a C*-equivariant isomorphism

@: C* x C\ {0} 5 C*\ V(zy), (t,2) > (tP2",192°).
The inverse map is given by (x,y) — (z°y~", f(z,y)). This will be generalized in
Corollary 3.1.10 below.

A first consequence is the following.

COROLLARY 3.1.9. For any y € XJ/C*, the fiber w}l(y) of the quotient mor-
phism wx : X — X //C* contains a unique closed orbit O,. If O, = {§} where §j is
a fized point, then 7' (y) = {x € X | C*z > §}. Otherwise, 75" (y) = O,.
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PROOF. The first statement follows from the separation property and the fact
that every closed C*-stable subvariety of X contains a closed orbit (Corollary 1.3.2).

The C*-orbits O C X are either rational curves ~ C\ {0} or fixed points. This
implies that O \ O is either empty or a single fixed point.

If O, = {7} where § € X©, and if 2 € 7' (y), = # §, then C*z is not closed,
and so C*z = C*z U {jj}.

Finally, if dim O, = 1, then every orbit in 7r)_(1 (y) must be closed of dimension
1, hence equal to O,. (]

Another consequence is the following (cf. Proposition 3.6.1).

COROLLARY 3.1.10. Assume that X© = 0. Then all orbits are closed and
of dimension 1, and X|/C* is the orbit space X/C*. If the action is free, then
mx: X = XJ/C* is a principal C*-bundle, locally trivial in ZARISKI-topology, i.e.
there is a finite covering X JC* = J, U; by special open sets U; C X JC* such that
7T;(1<Ul) ~ C* x Uz

PRrROOF. The first part is clear. For the second, choose a closed orbit O and
fix an isomorphism pu: C* = O C X. We obtain a surjective C*-homomorphism
w*: O(X) — CJ[t,t~'] which implies that there exist semi-invariants fi, fo € O(X)
with p*(f1) =t and p*(f2) = t~'. In fact, u*(O(X)z) € O(C*), = Ct~* for all k,
and so p*(O(X)_1) = Ct and p*(O(X);) = Ct~L.

It follows that f1: X — C is C*-equivariant and maps O isomorphically onto
C* C C. Moreover, f := f1 fo is an invariant which does not vanish on O. Hence, O C
Xy and fi: Xy — C* is C*-equivariant. Now Proposition 1.2.10 shows that Xy ~
C* x f~1(1). Since f is an invariant, one easily sees that mx(X;) = (XJC*)s
Xy /JC* (see the exercise below), and the claim follows.

i

EXERCISE 3.1.11. Let X be a C*-variety and wx: X — X//C* the quotient.
(1) If Z C X is closed and C*-stable, then the induced morphism 7x|z: Z — 7x(Z)
is the quotient of Z by C*.
(2) If f € O(X)Y is an invariant, then 7x(Xs) = (X//C*);, and the induced
morphism 7x|x,: Xy — (X/C*)y is the quotient of X; by C*.

3.2. Tori. An algebraic group isomorphic to C*" is called an n-dimensional
torus. The character group X(T') of a torus T is a torsionfree group of rank n =
dim T, i.e. X(T) ~ Z™ (see 11.2.2). Moreover, X(T)) C O(T) is a C-basis of the
coordinate ring (Exercise 11.2.2.3).

LEMMA 3.2.1. Let T,T" be two tori. Then the map ¢ — X(¢) = ¢*|x (1) is a
bijective homomorphism Hom (T, T'") = Hom(X (T"), X (T)).

PROOF. It is clear that this map is a homomorphism of groups and that it
is injective. In order to prove surjectivity we can assume that 7' = T, and so
X(T') = X(T,,) = @, Ze;. If v: X(T,,) — X(T) is a homomorphism and x; :=
v(ej), j = 1,...,n, then the homomorphism x := (x1,...,xn): T — T, has the
property that X' (y) = v. O

As a consequence we see that the choice of a Z-basis x1,. .., xn of X(T) deter-
mines an isomorphism 7' = T},, and vice versa.

REMARK 3.2.2. Let T be an n-dimensional torus. For every positive integer
d € N the subgroup {t € T'| t¢ = e} is finite and isomorphic to (Z/dZ)". Moreover,
the elements of finite order form a dense subset (Exercise I11.1.1.7(2)).

PROPOSITION 3.2.3. For a torus T there exist elementst € T such that (t) =T.
In fact, this holds for any t such that x(t) # 1 for all nontrivial characters x.
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PROOF. We can assume that T = T,,. Choose t = (t1,...,t,) € Ty such that
a(t) =t - -tdn £ 1 for all @ # 0, e.g., take the ¢; to be algebraically independent
over Q. We claim that for such an element ¢t € T,, we have @ =1T,.

In fact, assume that f € (C[&:l,sl_l, ey Enyent], f # 0, vanishes on the group
(t). Then fi = f(t1€1,...,tnen) also vanishes on (t). Now choose such an f =
> aci bac® which contains a minimal number of monomials e* = 7" - - - e, Then
Jt = 2 acr bac(t)e® also vanishes on (t), and since all the element «(t) are different
it follows that the difference f; — cf, for a suitable ¢ € C, contains less monomials
than f. Hence, by assumption, f; = c¢f, and so f is a monomial which is clearly a
contradiction. O

3.3. Diagonalizable groups. There is a slightly larger class of algebraic
groups which share most of the properties of the tori, namely the closed subgroups
of tori.

DEFINITION 3.3.1. An algebraic group D is called diagonalizable if D is iso-
morphic to a closed subgroup of T,.

Since the restriction map O(T,,) — O(D) is surjective, the image of X(T},)
in O(D) spans O(D) and therefore is equal to X(D), because the characters are
linearly independent (Lemma I1.2.2.6). Thus, X (T},,) — X(D) is surjective and so
X (D) is a finitely generated abelian group. Moreover, O(D) is the group algebra
of X(D).

EXERCISE 3.3.2. Let d € GL(V) be a diagonalizable element. Then D := (d) is a
diagonalizable group, and D/D° is cyclic.

PROPOSITION 3.3.3. An algebraic group D is diagonalizable if and only if O(D)
is linearly spanned by X (D). In this case X(D) is a C-basis of O(D), X(D) is
finitely generated, and O(D) is the group algebra of X (D).

PROOF. We have just seen that for a diagonalizable group D the subset X'(D) C
O(D) is a C-basis. Conversely, if X(D) linearly spans O(D), we can find finitely
many characters x1, ..., X, which generate O(D) as an algebra. This implies that
the homomorphism x = (x1,...,xn): D — T}, is a closed immersion. O

COROLLARY 3.3.4. Let G be an algebraic group and D a diagonalizable group.
Then the map Hom(G, D) — Hom (X (D), X(G)), ¢ — X(p), is bijective.

PROOF. It is clear that for any homomorphism ¢: G — D the comorphism
¢*: O(D) — O(G) is determined by X(p) = ¢*|x(p), because X(D) C O(D)
is a basis. Now let v: X(D) — X(G) be a homomorphism. Then v induces an
algebra homomorphism of the group algebras v: O(D) — C[X(G)] C O(G). It
remains to see that the corresponding morphism ¢: G — D is a homomorphism,
i.e. that v commutes with the comultiplication (II.1.3). This is clear because the
comultiplication sends a character y to x ® x (see the following Exercise 3.3.5). O

EXERCISE 3.3.5. Let G be an algebraic group and p*: O(G) — O(G) ® O(G) the
comultiplication (1.3). If x is a character of G, then p*(x) = x ® x.

3.4. Characterization of tori and diagonalizable groups. Among the
diagonalizable groups the tori are characterized by several properties.

PROPOSITION 3.4.1. The following statements for a diagonalizable group D are
equivalent.

(i) D is a torus.
(ii) D is connected.
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(iii) X(D) is torsion free.

PRrROOF. The implication (i) = (ii) is clear. If D is connected, then O(D) has no
zero divisors and so X (D) is torsion free, hence (ii) = (iii). If X(D) is torsion free
we choose a basis X1, ..., Xn. Then O(D) is generated by X1, .., Xn, X1 -+ 5 Xin s

and so the homomorphism x = (x1,...,Xxn): D — T, is a closed immersion. By
construction, X (x): X(T;,) = X (D) is an isomorphism and so x*: O(T,,) — O(D)
is injective. If follows that x is an isomorphism, hence (iii) = (i). O

COROLLARY 3.4.2. Let D be a diagonalizable group. Then D° is a torus, and
there is a finite subgroup F C D such that the multiplication D° x F = D is an
isomorphism.

PRrOOF. By the previous proposition D° is a torus, and D/D°? is a finite abelian
group which we write as a product of cyclic groups: D/D° = [[,(d;). It suffices
to show that each d; € D/D° has a representative in D of the same order. If d;
has order m; and if g; € D is any representative of d;, then g;nj € D°. Since the
homomorphism g — ¢™i: D° — D° is surjective (see Exercise 11.2.1.5) there is an
h; € D° such that h;-nj = g;-nj. Thus hj_lgj € D is a representative of d; of order
mj. O

EXERCISE 3.4.3. IE“ a diagonalizable group D with D/D® cyclic there exist elements
d € D such that D = (d).

0 b
What is D°, and what is D/D°?

EXERCISE 3.4.4. Let d = {a 0} € GL2(C). Describe D := (d) in terms of a and b.

ProrosiTION 3.4.5. (1) A commutative algebraic group D is diagonaliz-
able, if and only if the subgroup Dy of elements of finite order is dense.
(2) The image of a diagonalizable group under a homomorphism is diagonal-
izable.
(3) If D is diagonalizable and p: D — GL,, a homomorphism, then the image
p(D) is conjugate to a subgroup of T,,.

Proor. We first remark that for a diagonalizable group D the subgroup Dy
of elements of finite order is dense. This is clear for tori (see Exercise 11.1.1.7(2)),
and thus follows for diagonalizable groups from Corollary 3.4.2 above.

Now let H C GL,, be a commutative closed subgroup. If the subgroup Hy of
elements of finite order is dense in H, then H is conjugate to a subgroup of T,,. In
fact, the elements of Hy are simultaneously diagonalizable, i.e. there is a g € GL,
such that gH;g™! C T),, and so gHg™! = gH;g~! = gH;g~! C T,,. This proves
(3). Assertion (1) follows from this and what we said at the beginning of the proof,
and (2) follows from (1). O

COROLLARY 3.4.6. Let G be an algebraic group, let T be a torus and p: G - T
a surjective homomorphism. If ker ¢ is a diagonalizable group, then so is G.

PROOF. Since there are only finitely many elements of a given order in a di-
agonalizable group it follows that G° commutes with every element of finite order
of D :=ker ¢, hence G° commutes with D (Proposition 3.4.5(1)). But G = G° - D,
because ¢(G°) = ¢(G) =T, and so G commutes with D, i.e. D C Z(G). Choose an
element g € G such that (p(g)) is dense in T' (Remark 3.2.2). Then (ker ¢, g) C G
is commutative and dense in GG, hence G is commutative.

For any element ¢ € T of finite order, there is a preimage g € G of finite order.
In fact, if ¢ € G is an arbitrary preimage, then ¢ € D° for some n > 1, and there is
a d € D° such that d® = ¢g", because D° is a torus. Hence, ¢’ := gd~! is a preimage
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of t of finite order. This implies that the elements of finite order are dense in G,
hence G is diagonalizable, by Proposition 3.4.5(1). O

REMARK 3.4.7. Let p: D — GL(V) be a representation of a diagonalizable
group D. For x € X(D) we define the weight space

Vy={veV]|pt)v=x(t) viorallte D} CV.

This is a D-stable subspace, and V, # (0) for only finitely many characters x.
Moreover, we have
V= Vi
XEX (D)
This is the so-called weight space decomposition, and the characters y € X(D) with
Vy # (0) are called the weights of V.

Proor. It is clear that V,, C V is a D-stable subspace and that the sum Zx Vi
is direct. Since every representation of a diagonalizable group is diagonalizable it
follows that - Vi =V. O

This weight space decomposition can be carried over to the coordinate ring
of a D-variety X, because the representation of D on O(X) is locally finite and
rational (Proposition 2.3.2). For the special case of the multiplicative group C* we
have discussed this in the first section 3.1.

PROPOSITION 3.4.8. Let D be a diagonalizable group acting on a variety X.
Then we have the following weight space decomposition:

OX)= P 0X)y, OX)y:={fecOX)|tf=x(t)f foralte D}
XEX (D)
This decomposition is a grading over X (D), i.e. O(X)y - O(X )y € O(X)yqy- In
particular, O(X)o = O(X)P is the subalgebra of D-invariant functions, and each

O(X)y is a O(X)P-module. Moreover, for any D-equivariant morphism ¢: X —Y
we have ¢*(O(Y)y) C O(X)y.

Note that, according to our Definition 2.3.11, the elements from O(X), are the
semi-invariants with character x (or with weight x).

Denote by Ax C X(D) the weights occurring in O(X). Clearly, an element
d € D acts trivially on X if and only if x(d) = 1 for all x € Ax. This implies, as
we will see in the next section, that the action is faithful if and only if the Z-span
(Ax)z is equal to X(D) (see Theorem 3.5.2).

3.5. Classification of diagonalizable groups. In this section we will show
that there is an equivalence between diagonalizable groups and finitely generated
abelian groups which is given by the character group. We start with a description
of the vanishing ideal of a closed subgroup of a diagonalizable group D

LEMMA 3.5.1. Let D be a diagonalizable group and E C D a closed subgroup.
Then the ideal of E is given by

I(E) = (x—1|x€X(D) and x|p = 1) € O(D).
In particular, E is equal to the kernel of a homomorphism D — T,,.
ProOF. Consider the subgroup of characters vanishing on F,
Xg:={xe€X(D)|xlg =1} =ker(res: X(D) — X(E)) C X(D).

Clearly, J := (x — 1 | x € Xg) C I(E). Assume that J # I(E), and choose
f e I(E)\J, f =", aix; where m is minimal. We claim that this implies
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that x;|g # xx|g for every pair j # k. In fact, if x1|g = Xx2|g, then x1 — x2 =
x2(x1x5 " — 1) € J, and so

f—ai(xi = x2) = (a2 —a1)x2 + asxs + - + amxm € I(E) \ J,

contradicting the minimality of m.

But if the characters x;|g are different, then they are linearly independent
(Lemma I1.2.2.6), and so ., a;xi|r = f|g = 0 implies that a; = 0 for all 7. Thus
f =0, contradicting the assumption that f ¢ J. O

Now we can show that there is an anti-equivalence between diagonalizable
groups and finitely generated abelian groups which is given by the character group.
We have already seen in Proposition I1.2.2.7 that G — X(G) is a left-exact con-
travariant functor on all algebraic groups.

THEOREM 3.5.2. The functor D — X (D) defines an anti-equivalence between
the diagonalizable groups and the finitely generated abelian groups. This means that
every finitely generated abelian group is isomorphic to the character group of a
diagonalizable group and that the natural map Hom(D, E) = Hom(X (E), X (D)) is
an isomorphism of groups. Moreover, a sequence of diagonalizable group

1-D —-D—=D"—>1

is exact if and only if the induced sequence 0 — X (D") — X (D) — X(D’) — 0 of
the character groups is exact.

ProOOF. (1) Let A := Z™ x F where F is finite and put D := T}, x F. Then
X (D) ~ A (see Exercises 11.2.2.8 and I1.2.2.9), and so every finitely generated
abelian group is isomorphic to the character group of some diagonalizable group.

(2) We have already seen in Corollary 3.3.4 that the map Hom(D,E) —
Hom(X(E), X(D)) is a bijective group homomorphism.

3)If1—-D 4 D Y. D" — 1is an exact sequence of diagonalizable

groups, then 0 — X(D") W X(D) ) X(D') is exact (Proposition 11.2.2.7).
Moreover, X (¢) is surjective, because ¢*: O(D) — O(D’) is surjective and so the
image contains all characters.

(4) Conversely, if the sequence 0 — X(D") plse) X(D X(D') — 0is

exact, then ¢* is surjective and 1™ injective, hence ¢ is a closed immersion and
is surjective. Moreover, the kernel of 9 is equal to ¥»~!(e), and the maximal ideal
of m¢ C O(D”) is given by m¢ = (x — 1 | x € X(D")). Hence, the kernel ker is
the zero set of the ideal (¢*(x) — 1 | x € X(D")). Since im X' () = ker X (), we
finally get

W () =1 x€X(D")=(n—1]n€X(D)nlyp) =1} = I(p(D),
by Lemma 3.5.1 above, and so kert) = im ¢. (]

) 28

EXERCISE 3.5.3. Let D be a diagonalizable group acting on a variety X, and denote
by (Ax)z the Z-span of the weights of X. Show that X'(D)/(Ax)z is the character group
of the kernel of the action of D on X.

3.6. Invariant rational functions. We finish this section by two results
about a variety X with an action of a diagonalizable group D relating the field
of D-invariant rational functions on X with the “generic” structure of X as a D-
variety.

PRrROPOSITION 3.6.1. Let D be a diagonalizable group acting faithfully on an
irreducible variety X, and define X' .= {x € X | D, is trivial}.
(1) X' is open and dense in X.
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(2) If D =T is a torus, then X' can be covered by T-stable special open sets
U; which are T-isomorphic to T x S;.
(3) tdegg(x)p C(X) =dim D, and C(X)/C(X)P° is purely transcendental.

PROOF. (a) We start with the case where D is connected, hence D = T is a
torus. Let x € X’ and let O := Tz be the orbit of . We first show that there
is a T-invariant special open set which contains O as a closed orbit. The ideal
a:= I(O\ O) is T-stable and thus a direct sum of weight spaces: a = D, ar It
follows that there exists a semi-invariant f € a, which does not vanish on O. This
implies that Xy is T-stable and that O C X is a closed orbit.

(b) Let T' =T, let O := T,,x C X be a closed orbit for same = € X', and let
w: T, — X be the orbit map. The comorphism p*: O(X) — C[ty,t7 %, ... tn, t;, "]
is Tp,-equivariant and surjective. Since the representation of T;, on O(X) is locally
finite and rational, we can find semi-invariants f; € O(X) mapping onto ¢; under
w*. This implies that the morphism ¢ = (f1,..., fn): X — C" is T,-equivariant
and maps O isomorphically onto T,, € C". By construction, O C ¢~Y(T,) = X¢
where f = fi--- fn, and Proposition 1.2.10 implies that X ~ T, x S.

(c) From (a) and (b) we get statement (2) and, as a consequence, statement
(1) for a connected D. Moreover,

CX)T =C(Xp)T =C(S) and C(X) = C(Xy) = C(S)(t1, .-, tn),

hence C(X) is purely transcendental over C(X)? of transcendence degree n =
dimT. Since C(X)P°/C(X)P is a Galois extension with Galois group D/D° the
claims from (3) also follow.
(d) It remains to prove (1) for a diagonalizable group D. We already know that
":={x € X | (D) is trivial} is open in X. Moreover, X"\ X' =], (X")7.
For any x € X" the stabilizer D, maps injectively into D/D® which implies that if
(X'")9 # (@, then the order of g divides |D/D°|. But D contains only finitely many
elements of a given order, hence the union (J,_ (X")? is a finite union of closed
sets, and we are done. [l

EXERCISE 3.6.2. For every diagonalizable group D and every algebraic group G the
map

Hom(G, D) — Hom(X(D), X(G)), ¢ ¢"|x(p),

is a bijective homomorphism of groups.

The second result concerns the case where there are no non-constant invariant
rational functions.

PROPOSITION 3.6.3. Let T be a torus acting on an irreducible affine variety X .
The following assertions are equivalent.

(1) X consists of finitely many T-orbits.
(2) X contains a dense T-orbit.
(3) C(X)" =C.
(4) The multiplicities of O(X) are < 1.
PROOF. (i) = (ii): This is clear.
(ii) = (iii): This is again clear, since every T-invariant rational function f is
defined on an open dense set which meets the dense orbit. Hence f is constant.
(i) = (iv): Assume that the dimension of the weight space O(X), is > 2.
Then we can find two linearly independent p,q € O(X),. It follows that r := % is
a non-constant rational invariant.
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(iv) = (i): O(X) is generated by finitely many weight vectors f1,..., fi, fi €
O(X)y, - It follows that every weight vector of O(X) is a scalar multiple of a mono-
mial in the f;. Setting f := fi--- fx we see that every weight vector of O(X)y is
invertible. We claim that this implies that X is a T-orbit. In fact, choose any point
x € Xy and consider the orbit map p,: T — Xy, t +— tx. Then p}: O(X)r — O(T)
is T-equivariant. Since every weight vector h is invertible, A cannot belong to the
kernel of pX, and so p} is injective. This implies that p, is dominant for every
x € Xy, hence X is an orbit. O

The last step of the proof above also follows from the previous Proposition 3.6.1.
In fact, we can assume that the action of T is faithful, hence there is an orbit with
trivial stabilizer by Proposition 3.6.1(1). The last statement of this proposition says
that dim X = dim 7', and so T has a dense orbit in X.

We already mentioned an important theorem of ROSENLICHT which general-
izes both propositons above to an action of an arbitrary algebraic group G on an
irreducible variety X, see [Spr89, IV.2.2 Satz von ROSENLICHT].

3.7. Exercises. For the convenience of the reader we collect here all exercises
from the third section.

EXERCISE. Let V' be a (nontrivial) two dimensional C*-module with weights p, ¢, i.e.
t(x,y) := (t¥ - x,t? - y) for a suitable basis. Determine the weight space decomposition and
show the following.

(1) The invariant ring O(V)" is either C or a polynomial ring C[f] in one variable.
(2) If O(V)®" = C, then the weight spaces are finite dimensional.
(3) If O(X)®" # C, then the weight spaces are free O(X) -modules of rank 1.

EXERCISE. Show that every O(X), is a finitely generated O(X)¢ -module.
(Hint: Modify the proof of Lemma 3.1.4.)

EXERCISE. Let X be a C*-variety and mx: X — X /C* the quotient.
(1) If Z C X is closed and C*-stable, then the induced morphism 7x|z: Z — 7x(Z)
is the quotient of Z by C*.
(2) If f € O(X)® is an invariant, then 7x(X;) = (X//C*);, and the induced
morphism 7x|x,: Xy — (X/C*)s is the quotient of X; by C*.

EXERCISE. Let d € GL(V) be a diagonalizable element. Then D := (d) is a diagonal-
izable group, and D/D° is cyclic.

EXERCISE. Let G be an algebraic group and p*: O(G) — O(G) ® O(G) the comulti-
plication (1.3). If x is a character of G, then p*(x) = x ® x.

EXERCISE. For a diagonalizable group D with D /D° cyclic there exists an element
d € D such that D = (d).

EXERCISE. Let d = {8 2} € GL2(C). Describe D := (d) in terms of a and b. What
is D°, and what is D/D°?

EXERCISE. Let D be a diagonalizable group acting on a variety X, and denote by
(Ax)z the Z-span of the weights of X. Show that X' (D)/(Ax)z is the character group of
the kernel of the action of D on X.

EXERCISE. For every diagonalizable group D and every algebraic group G the map
Hom(G, D) — Hom(X(D), X(G)), ¢ — ¢"|x(D)s

is a bijective homomorphism of groups.
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4. Jordan Decomposition and Commutative Algebraic Groups

4.1. Jordan decomposition. Let us first recall the following well-known re-
sult from linear algebra.

PROPOSITION 4.1.1. Every matriz A € M,,(C) admits a unique decomposition
A = A; + A, where A, is diagonalizable, A, is nilpotent, and AsA, = A,As.
Similarly, every invertible matrix g € GL, can be uniquely written in the form
g = gsgu where g5 is diagonalizable, g, is unipotent, and gsgy, = Gugs-

These decompositions are called the additive resp. multiplicative JORDAN de-
composition. They are clearly invariant under conjugation.

EXAMPLE 4.1.2. Let G be one of the classical groups GL,,, SL,,, O, SO,,, Spy,,-
Then, for any g € G C GL,, we have g5, g, € G. This follows immediately from the
definition of these groups and the uniqueness of the JORDAN decomposition (see
the following Exercises 4.1.3 and 4.1.4). We will see below in Corollary 4.1.6 that
this holds for every closed subgroup G C GL,,.

EXERCISE 4.1.3. Let g = ¢gsgu be the JORDAN decomposition of some g € GL,,. Then
gt =gtg! and g7! = g7 g, ' are the JORDAN decompositions as well.

EXERCISE 4.1.4. Let B € M,,(C) be an invertible matrix. Define G(B) := {g € GL, |
g'Bg = B}. This is a closed subgroup of GL,,. If g € G(B) and g = gsg, its JORDAN
decomposition in GL,, then gs, g, € G(B).

(Hint: g € G(B) if and only if BgB~* = g7*.)
PROPOSITION 4.1.5. For any g € GL, with JORDAN decomposition g = gsgu

we have (g) = (gs) - {gu) and (gs) N {gu) = {e}. In particular, gs,gu € (g).

ProoOF. Using the JORDAN normal form we can assume that g is in upper

triangular form and that gs; € T, and g,, € U,. Then (g) C (gs) - {(gu) C T,,U,, = By,
and the projection B, — T, induces a surjective homomorphism ¢: {(g) — (gs). If

¢ is an isomorphism, then (g) is a diagonalizable group, hence g is diagonalizable
by Proposition 3.4.5(3). Otherwise the kernel is a nontrivial subgroup of (g,) ~ C*,

hence ker ¢ = (g,,), and so g, € {g) and g5 = gg;,;* € (g). O

COROLLARY 4.1.6. Let G C GL,, be a closed subgroup. For any g € G, with
JORDAN decomposition g = gsg,, we have gs,g, € G.

EXERCISE 4.1.7. Let g € GL,, and denote by C[g] C M, (C) the subalgebra generated
by g. If g = gsgu is the JORDAN decomposition, then gs,gu € C[g]. Moreover, there are
polynomials p(t), q(t) of degree < n such that g; = p(g) and g. = q(g).

EXERCISE 4.1.8. With the notation of the previous exercise assume, in addition, that
g € GL,(K) for a subfield K C C. Then gs, g, € K[g] C Mn(K).
(Hint: K[g] ~ K[t]/(mg) where mg is the minimal polynomial of g which has coefficients
in K. Moreover, there is a finite extension K’/K which contains gs and g,,. Now use the
action of the Galois group and the uniqueness of the JORDAN decomposition.)

EXERCISE 4.1.9. Let g € GL,, with JORDAN decomposition g = gsg... If the subspace
W C C" is stable under g, then W is stable under gs and under g,,.

4.2. Semisimple elements. We finally want to show that the JORDAN de-
composition does not depend on the embedding G C GL,,. For this we make the
following definition.

DEFINITION 4.2.1. An element g of an algebraic group G is called semisimple

if (g) is a diagonalizable group.

PROPOSITION 4.2.2. Let ¢: G — H be a homomorphism of algebraic groups.
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(1) If u € G is unipotent, then so is p(u) € H.
(2) If s € G is semisimple, then so is p(s) € H.
(3) An element g € GL,, is semisimple if and only if g is diagonalizable.

PROOF. For any g € G we have ¢({(g)) = (¢(g)). Now (1) follows, because u €

G is unipotent if and only if either u = e or (u) ~ C* (Definition 2.6.3). Statement
(2) follows from Proposition 3.4.5(2), and (3) from Proposition 3.4.5(3). O

COROLLARY 4.2.3. Let G be an algebraic group and g € G. Then the JORDAN
decomposition g = gsg, s independent of the choice of an embedding G C GL,,.

ProoOF. This is clear, because the decomposition (g) = (gs)-(g.) is independent
of the choice of the embedding, by the proposition above. O

EXERCISE 4.2.4. If g € G is semisimple, then (g)/@o is cyclic.

EXERCISE 4.2.5. Let ¢: G — H be a homomorphism of algebraic groups. If u € ¢(G)
is unipotent, then ¢~ '(u) contains unipotent elements. If s € ¢(G) is semisimple, then
¢~ *(s) contains semisimple elements.

4.3. Commutative algebraic groups. For any algebraic group G denote
by G, C G the set of unipotent elements and by Gy C G the set of semisimple
elements. Embedding G into GL,, we see that G,, C G is a closed subset whereas
G can be dense like in the case of G = GL,,. However, for commutative groups the
situation is much nicer.

Let us first discuss the case of unipotent group. Recall that an algebraic group
U is called unipotent if every element of U is unipotent (Definition 11.2.6.3).

EXERCISE 4.3.1. A unipotent group U is connected.

(Hint: For u € U, u # e, the subgroup (u) N U° has finite index in (u) ~ C*.)

If W is a finite dimensional vector space, then the underlying additive group
W is a unipotent group. We claim that every commutative unipotent group has
this form.

PRrROPOSITION 4.3.2. Let U be a commutative unipotent group of dimension m.
Then U is isomorphic to (CT)™ = (C™)T. More precisely, there is a canonical
isomorphism exp: LieU = U of algebraic groups, and it induces an isomorphism
GL(LieU) = Aut(U).

ProOOF. If U’ C U is a closed subgroup and u € U \ U’, then (u) NU’ = {e}

~

and C* xU" = (u)-U’. Thus, by induction, there is an isomorphism (C*)™ ~ U. It
follows from Proposition I1.2.6.1 that every A € Lie U belongs to the Lie algebra of
a subgroup isomorphic to C*. As a consequence, for every representation p: U —
GL(V) the image dp(A) is nilpotent for all A € LieU.

Now choose a closed embedding p: U < GL(V). Then LieU C End(V) con-
sists of pairwise commuting nilpotent elements, and so exp: LieU — GL(V) is
an injective homomorphism of algebraic groups (Proposition I1.2.5.1). We know
from Proposition I1.2.6.1 that for every nilpotent A € End(V), A # 0, there is
a unique one-dimensional unipotent subgroup U’ C GL(V) such that A € LieU’.
This implies that exp(LieU) = U. It is now easy to see that this isomorphism is
independent of the choice of the embedding of U into some GL(V).

The last statement is clear, because End(C*) = C. O

REMARK 4.3.3. The proof above shows that for every representation p: U —
GL(V) of a commutative unipotent group U the image dp(Lie U) C End(V') consists
of nilpotent endomorphisms. We will see later that this holds for any unipotent

group.
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Now we can describe the structure of commutative algebraic groups.

PROPOSITION 4.3.4. Let H be a commutative algebraic group. Then H, and
H are closed subgroups, Hs is a diagonalizable group and H, a unipotent group,
H, N H, = {e}, and the multiplication Hy x H, = H is an isomorphism. In
particular, Lie H = Lie Hy; ® Lie H,,.

PROOF. We have already seen earlier that H, is a closed subgroup (see Exer-
cise 2.6.6). We claim that Hy s also closed, hence a diagonalizable group (Propo-
sition 3.4.5). In fact, let F' C H; be the subgroup of elements of finite order. Since

the elements of finite order in (g) are dense for any semisimple element g € H, we
see that H, C F C H,, hence F = H,, and so Hy; = H,.

It follows that Hs N H, = {e}, and we obtain an injective homomorphism H; x
H, — H. Since any h € H has a JORDAN decomposition h = hsh,, with hs, h, € H

we get hy € Hy and h, € H,, and so Hy x H, = H is an isomorphism. O

COROLLARY 4.3.5. A one-dimensional connected algebraic group is isomorphic
to C* or to CT.

PROOF. We know that a one-dimensional algebraic group is commutative (Ex-
ample 1.4.8). Thus the claim follows from the proposition above together with
Proposition 3.4.1. (]

EXERCISE 4.3.6. A connected commutative algebraic group H is divisible, i.e., the
map h — h™ is surjective for every m € Z \ {0}.

:2, :ﬂ What is the structure of (g)? Show that the
subgroup (g) C GL is defined by two linear equations.

EXERCISE 4.3.7. Let g := [

We have seen that a representation of a diagonalizable group is diagonalizable.
This generalizes to commutative groups in the way that every representation is
“triagonalizable”. We will see later that this holds more generally for connected
solvable groups.

PROPOSITION 4.3.8. Let p: H — GL(V) be an n-dimensional representation
of a commutative group H. Then there is a basis of V such that p(H) C By,
p(Hs) CT,, and p(H,) C U,.

PROOF. (a) First assume that H is unipotent. If h € H is a nontrivial element
and W C V an eigenspace of h, then W is H-stable and W # V. By induction, we
can assume that the claim holds for the representation of H on W and on V/W,
and the proposition follows in this case.

(b) In general, we decompose V into weight spaces with respect to the diago-
nalizable group Hs: V = @Xe X(H,) Vy, see Remark 3.4.7. Since every weight space
V) is stable under H, the claim follows from (a) applied to the representation of
H, onV,. [l

4.4. Exercises. For the convenience of the reader we collect here all exercises
from the forth section.

EXERCISE. Let g = ¢gsg. be the JORDAN decomposition of some g € GL,. Then
gt =gtg! and ¢! = g- g, " are the JORDAN decompositions as well.

EXERCISE. Let B € M,(C) be an invertible matrix. Define G(B) := {g € GL, |
g'Bg = B}. This is a closed subgroup of GL,. If ¢ € G(B) and g = gsg. its JORDAN
decomposition in GL,, then gs,gu € G(B).

(Hint: g € G(B) if and only if BgB~! = g7*.)
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EXERCISE. Let g € GL,, and denote by C[g] C M, (C) the subalgebra generated by
g- If g = gsgu is the JORDAN decomposition, then gs,g, € C[g]. Moreover, there are
polynomials p(t), q(t) of degree < n such that gs = p(g) and g. = q(g).

EXERCISE. With the notation of the previous exercise assume, in addition, that g €
GL, (K) for a subfield K C C. Then gs, g. € K[g] C Mn(K).
(Hint: K[g] ~ K[t]/(mg) where mg is the minimal polynomial of g which has coefficients
in K. Moreover, there is a finite extension K’/K which contains gs and g,. Now use the
action of the Galois group and the uniqueness of the JORDAN decomposition.)

EXERCISE. Let g € GL, with JORDAN decomposition ¢ = ¢gsg.. If the subspace
W C C" is stable under g, then W is stable under gs and under g,.

EXERCISE. If g € G is semisimple, then (g)/@o is cyclic.

EXERCISE. Let ¢: G — H be a homomorphism of algebraic groups. If u € ¢(G)
is unipotent, then ¢~ !(u) contains unipotent elements. If s € (G) is semisimple, then
@~ !(s) contains semisimple elements.

EXERCISE. A unipotent group U is connected. o
(Hint: For u € U, u # e, the subgroup (u) N U° has finite index in (u) ~ C*.)

EXERCISE. A connected commutative algebraic group H is divisible, i.e., the map
h — h™ is surjective for every m € Z \ {0}.

g :ﬂ . What is the structure of (g)? Show that the subgroup
{g) C GLy is defined by two linear equations.

EXERCISE. Let g := [

5. The Correspondence between Groups and Lie Algebras

5.1. The differential of the orbit map. Consider a linear action of an
algebraic group G on a finite dimensional vector space V', given by a representation
p: G — GL(V). It is easy to see that the differential of the action p: G XV — V
has the following form:

dp(&w) : LieGaV =V, (A,U) — dp(A) w + .

In fact, we can reduce to the case G = GL(V) where the action extends to a bilinear
map End(V) x V — V. We will shortly right Aw for dp(A) w.
In particular, the differential of the orbit map u: G — V, g — gw, is given by

due: LieG —V, A~ Aw.

This implies the first statement of the following lemma. The second is obtained by
considering the action G x W — W.

LEMMA 5.1.1. (1) For a fived point v € V& we have Av = 0 for all
A € LieG.
(2) If W CV is G-stable subspace, then AW C W for all A € LieG.

ExaMPLE 5.1.2. Consider the action of GL,, on the matrices M,, by conjuga-
tion, (g, A) — gAg~!. In this case, dp(A) = ad A = [A, —] (Proposition 4.4.1), and
so the differential dp(g ay: gl, ® M, — M,, is given by

(X,B)— [X,A|+ B=XA—- AX + B.

It follows that the differential du of the orbit map in A € M,, has image [gl,,, A],
and its kernel is L := {X € gl,, | XA = AX} which is a subalgebra of the matrix
algebra M,,. This shows that the stabilizer of A in GL,, is equal to L*, the invertible
elements of L. Hence L = Lie(GL,) 4, and [gl,,, A] = TaC4 where C4 C M,, is the
conjugacy class of A. (The latter follows because the differential of the orbit map
is surjective on an open set of GL,,, hence everywhere.) We will prove this for any
G-action on a variety in Lemma 5.1.5 below.
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EXAMPLE 5.1.3. Let V be a finite dimensional vector space and W C V a
subspace. Define N := Ngpv) W to be the normalizer of W. Then N is a closed
connected subgroup and

Lie N = {A € End(V) | AW C W}.

PROOF. N is a closed subgroup by Proposition 1.2.3, and Lie N C L :={A €
End(V) | AW C W} by the previous lemma. By definition, N = L N GL(V) and
thus N is a nonempty open subset of the vector space L. Therefore, N is connected
and dim N = dim L, and so Lie N = L. O

EXAMPLE 5.1.4. Let v € V and let H := GL(V), be the stabilizer of v. Then
H is connected and

Lie H = {A € End(V) | Av = 0}.

PROOF. The first statement is clear, since we can assume that v = e;. We
know from the lemma above that Lie H C L := {A € End(V) | Av = 0}. Therefore
it suffices to show that dim H > dim L. We can assume that v # 0 and choose a
basis of V' containing v. Then H is defined by n = dim V' equations whereas L is
defined by n linearly independent linear equations. Thus dim L = n? —n < dim H,
and so Lie H = L. O

Now we extend these results to an arbitrary G-action on a variety X. Let x € X
and consider the orbit map

by G = X, g— gx.

LEMMA 5.1.5. For the differential du.: Lie — T, X of the orbit map p =
byt G — X we get

imdu, = T,(Gz) = T,(Gx) and kerdu, = Lie G,.

PROOF. G°zx is a connected component of Gx and so T,G°x = T,,Gxz. Thus
we can assume that G is connected and that X = Gz is irreducible. Since dpu, is
surjective on a dense open set of G (see A.4.9) it is surjective everywhere. Thus
imdp. = T, (Gz) = T, (Gz).

Now dim ker dye = dim Lie G — dim T,,Gx = dim G — dim Gz = dim G, by the
dimension formula for orbits (1.3). Since Lie G, C ker du,. we finally get Lie G, =
ker dyte. O

EXERCISE 5.1.6. Consider the action of SLa x SLa on Mz defined by (g, h)A := gAh™ .
Calculate the differential of the orbit map in A, determine its image and its kernel, and
verify the claims of Lemma 5.1.5.

5.2. Subgroups and subalgebras. The following results show that there are
very strong relations between (connected) algebraic groups and their Lie algebras.

PROPOSITION 5.2.1. (1) Let ¢,¢: G — H be two homomorphisms. If G
s connected, then dp, = di, implies that ¢ = 1.
(2) If Hi, Hy C G are closed subgroups, then Lie(H; N Hy) = Lie H; NLie Ho.
In particular, if Lie Hy = Lie Hy, then HyY = HS.
(3) Let p: G — H be a homomorphism, and let H' C H be a closed subgroup.
Then

Lie p(G) = dp.(LieG) and Liep *(H') = (dp.) *(Lie H').
In particular, Lieker ¢ = ker dpe.
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PROOF. (1) We define the following G-action on H: gh := ¢(g)h(g)~*. Then
G. ={g9 € G| ¢(g9) = ¥(g)}. For the orbit map u: G — H we get, by assump-
tion, that dp.(A) = dp(A) — dy(A) = 0, and so LieG, = kerdu. = LieG, by
Lemma 5.1.5. Thus G, = G, because G is connected, and the claim follows.

(2) Here we consider the action of H; X Hy on G given by (hi, he)g := hlghgl.
Then (H; x Hy), ~ HyN Hy. For the orbit map p: Hy x Hy — G, (h1, ha) — hihy*
we have du.(A1, Ay) = A; — As, and so ker du, ~ Lie H; N Lie Hy. Again the claim
follows from Lemma 5.1.5 above.

(3) Now consider the action of G on H by gh := ¢(g)h. Then ¢ is the orbit map
in e € H, and so, again by Lemma 5.1.5, dg.(Lie G) = imdp, = Tep(G) = Lie p(G)
and ker dp, = Lieker . This proves the first claim and shows that the map dy, has
rank dim (G). Because of (2) we can replace H' by H'Nyp(G). Then ¢~ *(H') — H'
is surjective with kernel ker ¢, and so both sides from the second equality have the
same dimension. Since dp,. (Lie o~ (H")) C Lie H' the second claim follows also. [

COROLLARY 5.2.2. The correspondence H +— Lie H between closed connected
subgroups of G and Lie subalgebras of Lie G is injective and compatible with inclu-
stons and intersections.

5.3. Representations of Lie algebras. Let p: G — GL(V) be a represen-
tation of the algebraic group G. Then the differential

dp: LieG — End(V)
is a representation of the Lie algebra Lie G. This means that
dplA, B] = [dp(A),dp(B)] = dp(A) o dp(B) — dp(B) o dp(A) for A, B € LieG.

In this way we obtain an action of Lie G on V' by linear endomorphisms which will
be shortly denoted by Av := dp(A)wv.

EXERCISE 5.3.1. Let G be a connected group and let p: G — GL(V) and pu: G —
GL(W) be two representations. Then p is equivalent to p if and only if dp: LieG —
End(V) is equivalent to du: Lie G — End(W).

Now we can extend Examples 5.1.3 and 5.1.4 to arbitrary representations.

PROPOSITION 5.3.2. Let p: G — GL(V) be a representation. For any v € V
and any subspace W C V' we have

LieG, = {A € LieG | Av =0} and LieNg(W) ={A € LieG | AW C W}.
If G is connected, then v is a fized point (resp. W is G-stable) if and only if Av =0
(resp. AW C W) for all A € LieG.

PROOF. Proposition 5.2.1(3) implies that we can replace G by its image in
GL(V), hence can assume that G C GL(V). Then G, = GL(V), NG and Ng(W) =
Narv)(W) NG, and the claims follow from Proposition 5.2.1(2) and the Exam-
ples 5.1.3 and 5.1.4. O

ExXAMPLE 5.3.3. Let p: G — GL(V) be a representation, and let € End(V).
Define G, :={g € G | p(g9)on =mnop(g)}. Then LieG,, = {A € LieG | [dp(A),n] =
0}.

For any Lie algebra L we denote by

3(L):={AeL|[A,B]=0forall Be L}
the center of L.

EXERCISE 5.3.4. Show that 3(L) is a characteristic ideal of L, i.e. 3(L) is stable under
every automorphism of the Lie algebra L.
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COROLLARY 5.3.5. The kernel of the adjoint representation Ad: G — GL(Lie G)
of a connected group G is the center Z(G) of G, and Lie Z(G) = 3(Lie G).

PROOF. Since Adg = d(Int g) we get from Proposition 5.2.1(1) that Adg =
Ade = id if and only if Intg = Inte = id which means that g € Z(G). Hence
Z(G) = ker Ad, and so Lie Z(G) = kerad = 3(Lie G), by Proposition 5.2.1(3). O

COROLLARY 5.3.6. A connected algebraic group G is commutative if and only
if its Lie algebra Lie G is commutative.

EXAMPLE 5.3.7. A one-dimensional connected algebraic group is commutative,
because a one-dimensional Lie algebra is commutative (cf. Example 11.1.4.8).

COROLLARY 5.3.8. Let H C G be a connected subgroup. Then
LieNg(H) = {A € LieG | [A,Lie H] C Lie H}.

In particular, if G is connected, then H is normal if and only if Lie H is an ideal
in LieG.

PRrROOF. Applying Proposition 5.2.1(3) to the homomorphism Intg: H — G
we see that LiegHg~! = Adg(Lie H). Since H is connected this implies that
gHg™' = H if and only if Adg(Lie H) = Lie H. Hence Ng(H) = Ng(Lie H),
and the claim follows from Proposition 5.3.2 applied to the adjoint representation

Ad: G = GL(Lie G). O

EXERCISE 5.3.9. Let G be a connected noncommutative 2-dimensional algebraic group.
Then
(1) Z(G) is finite;
(2) The unipotent elements G., form a normal closed subgroup isomorphic to C™;
(3) There is a subgroup T' C G isomorphic to C* such that G =T - Gy.

(Hint: Study the adjoint representation Ad: G — GL(Lie G), and use Exercise 4.1.3.)

EXERCISE 5.3.10. Use the previous exercise to show that every 2-dimensional closed
subgroup of SLs is conjugate to Bj := By N SLo.

5.4. Vector fields on G-varieties. Let X be a G-variety. To any A € LieG
we associate a vector field £4 on X in the following way:

(€a)s = duz(A) for x € X

where p,: G — X is the orbit map in x € X. If X = V is a vector space and
G C GL(V), then, for A € LieG C End(V) we get (4), = Av € V =T,V (5.1)
which corresponds to the derivation 044, € T,V (see A.4.5 and Example A.4.5.2).
This shows that £4 is an algebraic vector field and that A — &4 is a linear map. In
particular, for a linear function £ € V* we find
Lv+eAv) —L(v
Eal(v) = a0 = TV IO ya),

Choosing a basis of V' and identifying V' with C" and End(V') with M,, we get

§p,; = xja%i’ and so

0 0
fA = Zaijxj% = Z(Al‘)zam
i,j K2 . 3

In particular, for a linear function ¢ € V* we find £4¢(v) = £(Av). A simple calcu-
lation shows that {14 ) = [{B,&a]. Thus we have proved the following result.

PROPOSITION 5.4.1. For every A € Lie G the vector field €4 on X is algebraic,
and the map A~ €4 is an antihomomorphism Lie G — Vec(X) of Lie algebras.
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EXAMPLE 5.4.2. Consider an action of an algebraic group G on affine n-space
c™
p(g)(xla s axn) = (fl(gaxla cee ,xn)7 cre fn(gaxlv s 7xn)) € Aut((cn)
Then, for any A € Lie G, the vector field £4 on C" is given by

3] 3]
,=A L Af () —
(€0)e = Afa(o) g+ o Afalo) -
where Af;(x) is the derivative of the function g — f;(g, ) on G with respect to the
tangent vector A € LieG. It is formally defined by

Afi(r) = file+eA x) — fi(e,x)

€
Recall that the divergence of a vector field 6 = ), pia.%,, is defined by

div ::Zgi"_.

We want to show that div&y is a constant for any vector field £4 induced by an
action of an algebraic group.

If o =(f1,...,fn): C* = C"™ is an automorphism, then the Jacobian determi-
nant

5=O.

ofr ... Ofr
ox Oxy,
jac(p) :=det | : .
Ofn ... Ofn
D1 Ox,,

does not vanish in any point of C™ and thus is a nonzero constant. It is easy
to see that the map ¢ +— jac(yp) is a homomorphism of groups, and so the map
X: g+ jac(p(g)) is a character of G. We claim that the differential of y is given by

OAf;
dx(A) lefA—Z (‘9]; ,

and thus divéy € C as we wanted to show.
In order to prove the claim, consider the morphism jac: (Clz]<m)” — Clz]<nm

where Clz]<m, := {f € Clx1,...,z,] | deg f < m}, and set e := (z1,...,2y,). Then
we get

L o o .
jac(z1 +ep1, ..., Ty +epn) = det : : :1+5Za§f’
sgp" 1+50”” ' '

T1

and so the differential djac, : (C[z]<m)™ — Clx]<nm is given by djac,(p1,...,pn) =

Do gz‘ = le(Zipia%i)v and the claim follows.

We have seen in Proposition 5.4.1 above that the map A — £4 is an antihomo-
morphism of Lie algebras. This has the following simple explanation.

PRrROPOSITION 5.4.3. Let X be a G-variety. Then the reqular representation of
G on O(X) defines a locally finite representation of Lie G on O(X) by derivations
which is given by A — —E€4.

PROOF. Again we can assume that X is a vector space with a linear represen-
tation of G. For any f € O(V) and A € LieG C End(V) we get

(e+eA)f(v) = f((e+eA) v) = f(v—cAv) = f(v) —€af
which shows that Af = —€4f. O
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EXERCISE 5.4.4. Let X be a G-variety and assume that G is connected. A regular
function f € O(X) is a G-invariant if and only if £4f = 0 for all A € LieG.
(Hint: Look at the regular representation of G on O(X) and use Proposition 5.3.2.)

As in I1.4.5 there is another description of the vector field £ 4. Denote by p: G x
X — X the action of G on X, and consider A € LieG as a derivation O(G) — C
in e. Then €4, as a derivation of O(X), is given by the composition

£4: O(X) —“ 5 0(G) 2 0(X) 229 o(x).

In fact, if p*(f) =3, hi ® fi, then pl(f) = >, hifi(xz) € O(G), and so
(A®id)u* ZAh ® f)(= ZAh filw) = A(p(f)) = dpa(A)f.

We have seen in I1.4.5 that the Lie algebra structure on 7.G = LieG can be
obtained via left or right invariant vector fields on G. What is the relation with the
construction above? If we take the mght action py: (g,h) — hg~! and construct
the vector field §a as above, then {4 = 5 A4, Where 54 is the right-invariant vector
field on G with ((5 4)e = A (see Remark 11.4.5.2). This explains again why we have
an antihomomorphism in Proposition 5.4.1.

EXAMPLE 5.4.5. Let X be a G-variety and Y C X a closed G-stable subset.
Then ({4)y € T,)Y for all A € LieG and all y € Y. In particular, if z € X is a fixed
point, then (£4), = 0 for all A € LieG.

EXERCISE 5.4.6. Let X be a G-variety where G is connected. Then =z € X is a fixed
point if and only if (£4), = 0 for all A € LieG.

COROLLARY 5.4.7. Let X be a G-variety where G is connected, and let Y C X
be an irreducible closed subset. Then'Y is G-stable if and only if (€a), € TyY for
all A € LieG andy €Y.

ProOOF. The differential of the dominant morphism ¢: G x Y — GY is given
by
dp(ey): L1eGEBTY—>TyGY (A, v) = (Ea)y +

By assumption, the image dy(.,,) is contained in 7,Y". On the other hand, there is
an open dense set U C G XY where the differential is surjective (A.4.9), and by the
G-equivariance of ¢ there is a point of the form (e, y) such that dy. ) is surjective.
Hence, dim, GY = dimy, Y and so Y = GY, because GY is irreducible. O

With almost the same argument we can show the following.

COROLLARY 5.4.8. Let X be a G-variety andY C X a locallﬂosed irreducible
subset. Assume that T,Y C T,Gy for ally € Y. Then Y C Gyo for a suitable
Y €Y.

_ PrROOF. We can assume that G is connected and that Y is a special open set
of Y, hence an affine variety. Consider the morphism p: G XY — GY C X and its
differential

d,u(eyy) : LieG @ TyY — Ty(G7Y>, (A, U) — (€A)y + v

By assumption, we get imdpu. ) = T,(Gy) for every y € Y. As above we can find
a point yo € Y such that dpu,y,) is surjective. Hence, T{. yo)(GY) imdp(e,y,) =

T(e,y0)(Gyo) which implies that dim GY < dim Gyp. Since both varieties, GY and
Gy, are irreducible, we finally get GY = Gypg, hence the claim. O
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5.5. G-action on vector fields. In section I1.4.5 we showed that the G-
invariant vector fields on the group G can be used to define the Lie algebra structure
on the tangent space T.G. For an arbitrary G-variety X a vector field £ € Vec(X)
is called G-invariant if it is invariant under left multiplication pg4: x +— g for all
g€ G, ie. if dugéy = &4, for all g € G and z € X.

EXAMPLE 5.5.1. If V is a G-module and v,w € V, then duy0y,4 = Ogv,gw- In
fact,

_ Hgf v+ ew) —pg f(v)
e

(d:ugav,w)f = av,w(NZf)

e=0
f(gv +egw) — f(gv)
g

= (agv’gw)f

e=0
In particular, for A € End(V) we get dugOav,0 = Ogav,gv = Oad g(A)gv,qv, NENce the
vector field 04, is G-invariant if and only if Adg(A) = A for all g € G.

More generally, we can define a linear action of G on the vector fields of a
G-variety X by setting

(99)ga = dpgdy, ie. g6 = dpgod o pg—

where we consider ¢ as section of the tangent bundle p: TX — X (A.4.5). If we
regard J as a derivation, § € Vec(X) = Der(O(X)), then g := godog™!, ie.
(98)f = g(8(g~"f)) for f € O(X).

In case of a linear representation of G on V' we can identify Vec(V') with O(V)®
V and find g9, = 04, and g(f0y) = (9f)(0gv). This shows that the representation
of G on Vec(V) is locally finite and rational. Moreover, we get g 9av,v = Oad g(A)v,v
as we have already seen in Example 5.5.1 above.

Choosing an embedding of X into a representation space V' we see that g(£4) =
£adg(a), and that the action of G on Vec(X) is also locally finite and rational. In
fact, we have a canonical G-linear surjection Vecx (V') — Vec(X) where Vecx (V') C
Vec(V) is the G-stable subspace of those vector fields £ € Vec(V) which satisfy
Eflx =0 for all f € I(X) (Proposition A.4.5.4). This proves the following propo-
sition, except the description of the action of Lie G on the vector fields.

PrOPOSITION 5.5.2. Let X be a G-variety. The action of G on the vector
fields Vec(X) is locally finite and rational, and the corresponding action of Lie G
on Vec(X) is given by Ad = —[€a,0]. For A € LieG we have g€ = aa g(a), hence
the Lie algebra homomorphism &: Lie G — Vec(X) is G-equivariant.

PRrROOF. As above, we can assume that X is a linear representation V', that
G C GL(V) and that Lie G C End(V'). With the identification Vec(V) = O(V)QV
we find A(f9,) = (Af)Oy+fOay,. On the other hand, [£4, fO,] = (£af)0u+[[Ea, 00

We claim that [€4,0,] = —0a,. In fact, choosing coordinates, one reduces to the
cases A = E;; and v = ey, ie. {4 = xj% and 9, = %. But then an easy
calculation shows that [{g,;,0.,] = 0 for k& # j and [{g,;,0c,] = —O.,, and the

claim follows. Thus, using Proposition 5.4.3, we finally get

[€a, fOu] = (€af)Ov + [[6a, 0u] = (—AS)Dy — [Oav = —A(fOy).

EXERCISE 5.5.3. Let f € C[y] be a polynomial.

(1) The map CT x C? — C?, s(z,y) := (z + sf(y),y), is an action of C* on CZ.
(2) Describe the orbits and the fixed points of this action.
(3) Determine the differential of the orbit maps and verify the results of (2).
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Finally we prove the following generalization of the fact that a representation
of a connected group G on a vector space V is uniquely determined by the represen-
tation of the Lie algebra Lie G on V (see Proposition 5.2.1(1), cf. Exercise 5.3.1).

PROPOSITION 5.5.4. Let G be a connected algebraic group and X a variety.

An action of G on X is uniquely determined by the Lie algebra homomorphism
Lie G — Vec(X).

Proor. Let p), p(® be two actions of G on X and assume that the cor-
responding vector fields fg) and fff) are equal for all A € LieG. Define an ac-
tion 5 on X x X by p(g)(z,y) = (pM(9)z,p?(9)y). For A € LieG we get
€4 = (51(41),51(42)) € Vec(X x X) = Vec(X) & Vec(X). Hence (éA)(z,m) € Tip)AX
where AX C X x X is the diagonal. Therefore, by Corollary 5.4.7, AX is stable
under G and so pV) = p?, O

5.6. Jordan decomposition in the Lie algebra. Let G be an algebraic
group and g := Lie G its Lie algebra.

DEFINITION 5.6.1. An element A € g is called semisimple resp. nilpotent if for
every representation p: G — GL(V) the image dp(A) € End(V) is diagonalizable
resp. nilpotent.

We have seen in Proposition 5.4.3 that for a G-variety X the Lie algebra g acts
on O(X) by locally finite derivations. This implies the following characterization of
semisimple and of nilpotent elements.

LEMMA 5.6.2. The following statements for an element A € Lie G are equiva-
lent:
(i) A is semisimple (resp. nilpotent).
(ii) For every G-variety X the vector field £4 on X is a semisimple (resp.
nilpotent) derivation of O(X).
(iii) There is a faithful representation p: G — GL(V) such that dp(A) €
End(V) is diagonalizable (resp. nilpotent).

ExXAMPLE 5.6.3. For a diagonalizable group D every A € Lie D is semisimple,
because every representation of D is diagonalizable (Proposition 3.4.5). On the
other hand, every element of Lie C* is nilpotent, because every representation of
C™ is of the form s — exp(sN) where N is nilpotent (Proposition I1.2.6.1).

We will see later in chapter IV (section ?7) that for every unipotent group
U the Lie algebra LieU consists of nilpotent elements. We already know this for
commutative unipotent groups (Remark 4.3.3).

PROPOSITION 5.6.4. (1) If A € Lie G is semisimple, then there is a torus
T C G such that A € LieT C LieG.
(2) If N € LieG is nilpotent, then there is a closed subgroup U C G, U = C™,
such that N € LieU.

PROOF. We can assume that G C GL,,, hence LieG C M,,, and that A € M,,
is a nonzero diagonal matrix and N a nonzero nilpotent matrix.

(1) We have LieT,, NLieG D CA, and so T := (GNT,)° is a torus with
LieT D CA, by Proposition 5.2.1(2).

(2) We know that the homomorphism ay: Ct — GL,, s — exp(sN), induces
an isomorphism C* 5 U := ay(C") and that N € LieU (Proposition 11.2.6.1). It
follows that LieU = CN C LieG and so U C G, again by Proposition 5.2.1(2). O
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The next result is the analogue of the JORDAN decomposition in algebraic
groups for Lie algebras.

PROPOSITION 5.6.5. Let G be an algebraic group and g its Lie algebra. Then
every A € LieG has a unique decomposition A = Ag + A,, where A4, A, € LieG,
As is semisimple, A, is nilpotent, and [As, A,] = 0.

PRrOOF. Let G C GL,, A € LieG C M,,, and let A = A, + A,, be the additive
JORDAN decomposition in M,,. We have to show that A,, A, € LieG.

We can assume that A; is a diagonal matrix. Define D := {¢t € T}, | toA4,, = A, 0
t}, and U := aa, (CT) C GL, where ay(s) := exp(sN), see Proposition 11.2.6.1.
Then A, € Lie D (Example 5.3.3), 4,, € LieU, and so A € Lie(D -U) = LieD +
LieU C M,,. Define H := D -U NG C GL,. Since H is commutative we have
H = H, - H, and Lie H = Lie H; @ Lie H,, (Proposition 4.3.4). This implies that
A= A"+ A" where A’ € LieH, C LieG and A” € Lie H, C Lie@G. Therefore
A’ is diagonal, A” is nilpotent and [A’, A”] = 0. Now the claim follows from the
uniqueness of the additive JORDAN decomposition in M,,. O

Here is a nice application. We know that a commutative algebraic group con-
sisting of semisimple elements is a diagonalizable group (Proposition 4.3.4). We
want to extend this to an arbitrary (connected) group.

PROPOSITION 5.6.6. Let G be a connected algebraic group. Assume that all
elements of G are semisimple. Then G is a torus.

ProOOF. We have to show that GG is commutative. We can assume that G C
GL,,. Proposition 5.6.4 above implies that g := LieG C M, does not contain
nilpotent elements, hence consists of diagonalizable elements, by Proposition 5.6.5.
We first claim that every subtorus 7' C G lies in the center Z(G) of G. In fact,
we can decompose g under the action of T' by conjugation, g = EB;’;I gy, Where
x; € X(T) are characters of T. If A € g,,, then AF € (Mp) (k-y;) and so A is
nilpotent in case x; # 0. Thus g = go, i.e. T commutes with g and hence with G.

If g € G, then @ is a diagonalizable group and so, for a suitable m > 1, g™
belongs to a subtorus of G, hence to the center Z(G). This implies that the image
of G under the adjoint representation Ad: G — GL(Lie G) is a connected algebraic
group whose elements all have finite order, because the kernel of Ad is the center
of G (Corollary 5.3.5). Therefore, by Proposition I11.1.4.5, Ad(G) is trivial and thus
G is commutative. O

EXERCISE 5.6.7. Use the proposition above to give another proof of Corollary 3.4.6
which says that an extension of a torus by a diagonalizable group is diagonalizable.

5.7. Invertible functions and characters. Let T be an n-dimensional torus.
Then O(T) ~ CJt, tfl, .oy tn, t; 1], and this implies that the group O(T)* of in-
vertible functions of O(T') has the form

o)y =c*-x(1).
In particular, an invertible element f € O(T)* with f(e) = 1 is a character. We

will show now that this holds for every connected algebraic group GG. We start with
the following lemma.

LEMMA 5.7.1. Let G be an algebraic group, and let G' := (G,,) be the closure
of the subgroup generated by all unipotent elements of G.

(1) There are finitely many unipotent elements uq,us,...,un € G such that
G' = (u1) - (u2) - {un).
(2) G’ is a connected normal subgroup of G.
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(3) Lie G’ contains all nilpotent elements of Lie G.
(4) If f € O(G)* is invertible, then f is constant on G'.

Proor. For (1) see Exercises 11.1.4.11.

(2) This follows from (1) and the fact that the set G,, of unipotent elements is
stable under conjugation by G.

(3) If A € LieG is nilpotent, then there is one-dimensional unipotent subgroup
U C G such that A € LieU (Proposition 5.6.4(2)).

(4) Tt follows from (1) that there is a surjective morphism CV — G’, and so
every invertible function on G’ is a constant. O

ExamMPLE 5.7.2. If G = SL,, SO,, (n > 3) or Sp,, then G = (G,,).

PROOF. (a) Let U := Uy C SLg, and put X := U - U' - U. Then dim X = 3,
because Ut - U is closed of dimension 2 and does not contain X. Thus X - X = SL,

by Lemma 1.4.9, and so ((SL3),) = SLo.
(b) For every pair 1 < i < j < n there is an embedding SLy < SL,, given

by |:CCL Z:| — (a — ].)E” + bElj + CE]'Z' + (d — 1)Ejj + E. This implies that <Gu>

contains the diagonal elements t;;(t) which, together with the unipotent elements
u;;(s), generate SL,, (see I1.3.1).

(c) Similarly, one shows that SO,, for n > 3 and Sp,, are generated by homo-
morphic images of SLs. (]

The following result is due to ROSENLICHT, see [KKV89, Prop. 1.2 and 1.3].

PROPOSITION 5.7.3. Let G be an algebraic group.

(1) The character group X(G) is finitely generated.
(2) If G is connected, then every f € O(G)* with f(e) =1 is a character, i.e.
OG)* =C*- X(G).

PROOF. We can assume that G is connected since the map X(G) — X (G°) is
injective. Let T C G be a torus of maximal dimension, and set G’ := (G,,). The
proposition follows if we show that G = T -G = G - T. In fact, if f € O(G)*
with f(e) = 1, then f|p: T — C* is a homomorphism, and so f: G — C* is a
homomorphism, because f|g: = 1 by Lemma 5.7.1 above. In addition, X(G) —
X (T) is injective, and so X(G) is finitely generated.

It remains to show that G = T-G’, or, equivalently, that Lie G = Lie G’ +LieT.
We decompose g := Lie GG into weight spaces with respect to the adjoint action of T":
g= 90@@)(;60 gy Embedding G into GL,, we see as in the proof of Proposition 5.6.6
above that the elements from g, are nilpotent if x # 0. Thus g, C Lie G’ for x # 0.
Moreover, go = Lie Cg(T) and so G = C¢(T) - G'. If g € C(T), g = gsgu, then gs
has finite order since otherwise T - (gs) C G contains a torus of dimension > dim T'.

It follows that for every element in g € G there is an n € N such that ¢" € T-G’.
Since G is connected this implies that G = T - G’ In fact, G = U, cnypn ' (T - G')
where p,: G — G is the power map g — g". Hence G = p,, (T - G’) for some n,
and the claim follows because p,, is dominant for n # 0 (Exercise 11.1.4.6). O

5.8. Ct-actions and locally nilpotent vector fields. In this section we
study actions of the additive group CT and relate them to locally nilpotent vector
fields. For more details we refer to the book [Fre06] of GENE FREUDENBURG.

DEFINITION 5.8.1. Let X be a variety. A vector field 6 € Vec(X) is called
locally nilpotent if for every f € O(X) there is an m > 0 such that 6™ f = 0. The
subspace of locally nilpotent vector fields will be denoted by Vec™(X) C Vec(X).
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Consider an action p of C* on X. Then, for any a € LieCt = C the vector
field &, is locally nilpotent. In fact, for a representation p: Ct — GL(V) the matrix
A = dp(a) € End(V) is nilpotent (Proposition 2.6.1), and for a linear function
¢ € V* we have £4(v) = ((Av) (see 5.4). Thus the action is locally nilpotent
on V* and thus on O(V). Embedding X as a Ct-stable closed subvariety into a
C*-module V we see that the same holds for O(X).

For an action p of C* on a variety X we denote by £, € Vec(X) the vector field
corresponding to 1 € LieC*t = C. This means that

&f = 5105}l o=o.
LEMMA 5.8.2. For f € O(X) we have
Flp(s)w) = s"¢kf e O(X)[s].

k>0
PROOF. Set f(p(s)x) =3 )50 sk fir(x) € O(X)]s]. Setting s = 0 we get fo(z) =
'

f(zx). Using f(p(s" + s)x) = f(p(s")(p(8)2) = Xp>0 fr(p(s)x) and expanding (s
5)* we get .
selotee) =3 (F 7)ot
=0 J
which implies that &, f, = %f(p(s)xﬂs:o = k! fxyq for all £ > 0. O

PROPOSITION 5.8.3. Let X be a variety. The map p— &, is a bijection
{CT-actions on X} — Vec™(X).

Proor. By Proposition 5.5.4 the map is injective. We have seen in 5.4 that
for A € End(V') = Lie GL(V) the corresponding vector field {4 is given by (£4), =
Av € V = T,V, and thus, for a linear function ¢ € V* C O(V), we get £4€(v) =
0(Av). Equivalently, £4¢ = A0 where A': V* — V* is the dual map to A.

Now assume that 0 € Vec(X) is a locally nilpotent vector field, and choose a
finite dimensional subspace W C O(X) which is stable under § and generates O(X).
Set V := W* and A := (§|lw)" € End(V). Identifying V* with W, we get a closed
immersion X — V such that § = £4|x. In fact, 40 = AU =) for L € V* =W,
by construction. Proposition 2.6.1 now shows that there is a linear representation
a: CT — GL(V) such that da(1) = A. This implies that &, = £4 € Vec(X), hence
X is stable under the action of C* defined by a, by Corollary 5.4.7, and £, = 6. O

REMARK 5.8.4. There is a more abstract way to construct a C*-action from a
locally nilpotent vector field €. Define a linear map (see the formula in Lemma 5.8.2
above)

Sk
7: O(X) > Cls| @ O(X), 7(f) ==Y o ® ¢k
— F|

One easily shows that 7 is an algebra homomorphism, and thus defines a morphism
p: C x X — X with the property that f(p(s,z)) = >, Sk—ﬁﬁkf for all s € C and
x € X. From this it is not difficult to deduce that p is a Ct-action, and the
corresponding vector field is £, by Lemma 5.8.2.

EXAMPLE 5.8.5. Consider an action of CT on affine n-space C™:

,0(8)({,51, s 7xn) = (fl(swrlv v 7xn)7 AR fn(saxlv cee 7xn))

Then the corresponding vector field is

_(oh o Ofn B
fp‘(as)s_laxﬁ *(a)_ax
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Since jac(p(s)) =1 for all s € CT we see that div¢, = 0 (Example 5.4.2).

Let p be a Ct-action on a variety X and let £, € Vec!” be the corresponding
locally nilpotent vector field. Then O(X)C" = ker &, (Exercise 5.4.4). It is known
that the invariants are not always finitely generated, see [Nag59].

If f e O(X)CJr, hence &,f = 0, then the vector field f¢, is again locally
nilpotent, hence corresponds to another action p of C* on X which is called a
modification of p.

EXERCISE 5.8.6. Let p be a Ct-action on X, and let f € O(X)‘CJr be an invariant.
Define p(s)x := p(f(z)s)x. Then we have the following.

(1) pis a Ct-action on X, and &; = f&,.

(2) The orbits if p are contained in the orbits of p.

(3) For the fixed points we have X? = X? U Vx(f).

(4) If X is irreducible and f # 0 then O(X)” = O(X)*.

A closed subvariety Z C X of a CT-variety is called a global section if the
morphism C* x Z — X, (s,2) — p(s)z, is an isomorphism. In particular, every
orbit O meets Z transversally in a unique point s which means O NS = {s} and
that Ts X = TsO & TS. The next lemma shows that the hypersurface Vx (f) is a
section if £, f = 1.

LEMMA 5.8.7. For f € O(X) the map f: X — C* is C*-equivariant if and
only if £,f = 1. In this case, the map CT x Vx(f) = X, (s,2) + p(s)z, is an
isomorphism, i.e. Vx(f) is a global section.

PROOF. Lemma 5.8.2 shows that £, f = 1 is equivalent to f(p(s)z) = f(x)+ s
which means that f: X — C%t is CT-equivariant. The second part follows from
Proposition 1.2.10. U

Local sections can be constructed in the following way. Start with a function
f € O(X) which not an invariant, i.e. {,f # 0. Then there is a k& > 0 such that
q:= §§f # 0 and §’;+1f = 0. This implies that ¢ is a nonzero invariant, and setting
p = fﬁf we get §p§ = 1. This shows that f := % € O(X,) defines a global section
of the C*-invariant open set X, C X.

The following theorem collects some of the main properties of CT-varieties.

THEOREM 5.8.8. Let X be a variety with a non-trivial C*-action on X.

(1) All orbits in X are closed.

(2) If X is not an orbit, then there exist nonconstant invariants.

(3) If x € X is an isolated fized point, then {x} is a connected component of
X.

(4) X admits local sections.

Now assume in addition that X is irreducible.
(5) We have C(X)C" = Quot(O(X)C").
(6) The field extension C(X)/C(X)C" is purely transcendental of degree 1.
(7) The invariant ring (Q(X)CJr is multiplicatively closed: If a product f1fo is
an invariant, the fi and fo are both invariants.
For the proof we will use the following easy lemma.

LEMMA 5.8.9. Let Y g X be a Ct-stable closed nonempty subvariety. Then
there is a nonzero invariant f € (D(X)(CJr which vanishes on'Y .
ProOOF. The ideal I(Y) C O(X) is nonzero and stable under C*, hence stable

under &,. Since &, is locally nilpotent, there exist nonzero elements f € I(Y’) such
that £, f = 0. This means that f is a nonzero invariant vanishing on Y. O
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PROOF OF THEOREM 5.8.8. (1) Let O C X be an orbit and O C X its closure.
If Y := O\ O is nonempty, then, by the lemma above, there is a nonzero invariant
on O vanishing on Y, contradicting the fact that every invariant on O is constant.

(2) By (1) every orbit is a closed and C*-stable subset # X, and so the claim
follows again from the lemma above.

(3) Assume that there exists an irreducible C*-variety X of positive dimension
containing an isolated fixed point = € X. Choose such an X of minimal dimension
> 0. Then {z} & X is a C'-stable closed nonempty subset, hence there is a
nonzero invariant f such that f(x) = 0. Every irreducible component of Vx (f) has
dimension dim X — 1, and one of them contains = as an isolated fixed point. Hence
dim X = 1, by the minimality of dim X. But then X is either an orbit, or X = XC+,
and in both cases we end up with a contradiction.

(4) The existence of local sections was shown just before the theorem.

(5) Let r € C(X )C+ be an invariant rational function. Then the ideal of denom-
inators a := {¢g € O(X) | ¢r € O(X)} is C"-stable, and thus contains a nonzero
invariant ¢ (see the proof of Lemma 5.8.9). It follows that gr is also an invariant,
and so r € Quot(O(X)C").

(6) The construction of local sections given above shows that there exist an

invariant ¢ and a function f = %7 € O(X,) such that Z := Vx (f) is a global

section of X,. This implies that O(X,) = CQ(Xq)CJr [f], hence
C(X) = C(X,) = Quot(O(X,)) = Quot(O(Xy))()

and the claim follows, because (’)(Xq)(C+ = ((’)(X)C+)q, and so Quot((’)(Xq)C+) =
Quot(O(X)®") = C(X)*", by (5).

(7) Let fif2 be a nonzero invariant and set Y := Vx(f1f2). Then fifo is a
nonzero constant on every orbit O C X \ Y. This implies that f|o is also constant,
because otherwise f; would take all values on O, in particular the value zero. Thus
f1 is an invariant on the dense open set X \ Y, hence an invariant on X. [l

EXERCISE 5.8.10. Let A C O(C") = CJs] be a subalgebra stable under C*. Then
either A =C or A = CJs].

EXERCISE 5.8.11. Use the previous exercise to give another proof that CT-orbits are
closed.

Exercises

For the convenience of the reader we collect here all exercises from Chapter I11.

EXERCISE. Consider the action of SLa X SLa on My defined by (g,h)A := gAR™.
Calculate the differential of the orbit map in A, determine its image and its kernel, and
verify the claims of Lemma 5.1.5.

EXERCISE. Let G be a connected group and let p: G — GL(V) and pu: G — GL(W)
be two representations. Then p is equivalent to p if and only if dp: LieG — End(V) is
equivalent to du: Lie G — End(W).

EXERCISE. Show that 3(L) is a characteristic ideal of L, i.e. 3(L) is an ideal of L, and
it is stable under every automorphism of the Lie algebra L.

EXERCISE. Let G be a connected, noncommutative 2-dimensional algebraic group.
Then
(1) Z(G) is finite;
(2) The unipotent elements G,, form a normal closed subgroup isomorphic to C™;
(3) There is a subgroup 7' C G isomorphic to C* such that G =T -G, =G, - T.
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(Hint: Study the adjoint representation Ad: G — GL(Lie G), and use Exercise 4.1.3.)

EXERCISE. Use the previous exercise to show that every 2-dimensional closed sub-
group of SLs is conjugate to Bz N SLa.

EXERCISE. Let X be a G-variety and assume that G is connected. A regular function
f € O(X) is a G-invariant if and only if £4f = 0 for all A € LieG.
(Hint: Look at the regular representation of G on O(X) and use Proposition 5.3.2.)

EXERCISE. Let X be a G-variety where G is connected. Then = € X is a fixed point
if and only if (£4), = 0 for all A € LieG.

EXERCISE. Let f € Cly] be a polynomial.
(1) The map CT x C? — C?, s(x,y) := (z + sf(y),y), is an action of C* on CZ.
(2) Describe the orbits and the fixed points of this action.
(3) Determine the differential of the orbit maps and verify the results of (2).

EXERCISE. Use Proposition 5.6.6 to give another proof of Corollary 3.4.6 which says
that an extension of a torus by a diagonalizable group is diagonalizable.

EXERCISE. Let p be a CT-action on X, and let f € (Q(X)‘CJr be an invariant. Define
p(s)x := p(f(z)s)x. Then we have the following.
(1) pis a Ct-action on X, and &; = f&,.
(2) The orbits if p are contained in the orbits of p.
(3) For the fixed points we have X? = X” U Vx (f).
(4) If X is irreducible and f # 0 then O(X)? = O(X)".

EXERCISE. Let A C O(C') = C[s] be a subalgebra stable under C*. Then either
A=Cor A=Cls].

EXERCISE. Use the previous exercise to give another proof that C'-orbits are closed.
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Introduction. This fourth chapter is the main part of the book and is where
we prove the so-called finiteness theorem. This asserts that for a rational represen-
tation of a linearly reductive group G on a vector space V the ring of G-invariant
regular functions on V is a finitely generated C-algebra. Here an algebraic group
G is called linearly reductive if every rational representation of G is completely
reducible. This allows us to define the algebraic quotient X /G of a G-variety X
which is, in some sense, the best approximation to the orbit space X/G which in
general does not have a reasonable structure due to the existence of non-closed

orbits.
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We give the main properties of the quotient map 7x: X — X /G and develop
some tools to construct and determine quotients. Using these results we give a
couple of additional properties and some characterizations of linear reductive and
semi-simple groups. The third section ends with a section on finite groups G, where
it is possible to sharpen the results of this chapter. This follows an account of EMMY
NOETHER [Noel5].

In the last sections we turn to some examples and applications. First we prove a
geometric version of the so-called first fundamental theorem for GL,,. This form of
the fundamental theorem for classical groups is due to THIERRY VUST [VusT76]. As
well we describe the “method of the associated cone”. Roughly speaking, this allows
one to carry the “good” properties of the zero fiber over to the other fibers. The last
part of the chapter contains an outline of structure statements and properties which
“push down” for quotient maps, together with some results on invariant rational
functions.

The finiteness result has a long and interesting history. In the preface we al-
ready discussed the period up to 1900. For a complete account we refer to the
encyclopedia report of F. Meyer [Mey99] in 1899. This first period ended with the
two pioneering articles of D. Hilbert “Uber die Theorie der algebraischen Formen”
[Hil90] and “Uber die vollen Invariantensysteme” [Hil93] in 1890 and 1893 which
brought the theory to a certain conclusion. Some people even speak of the death of
the theory, for example Ch.S. Fisher in his exposition: “A Study in the Sociology
of Knowledge” [Fis66] (see also [DC71, DC70]). The “Vorlesungen uber Invari-
antentheorie” [Sch68] of ISSAT SCHUR in 1928 give a small glimpse into the types
of questions current then, and in this book the theory of binary forms underlies the
whole approach. A modern account of this can be found in T.A. Springer’s Lecture
Notes “Invariant Theory” [Spr77].

The fundamental work of IssAl SCHUR, HERMANN WEYL, and ELIE CARTAN
on the theory of semisimple Lie groups and their representations brought a new im-
petus to the subject. WEYL gave a proof for the finiteness theorem and the so-called
first and second fundamental theorems for all classical groups. In the orthogonal
case the finiteness theorem had already been proved by HURWITZ [Hur97]. (In this
regard see Appendix B). A complete account of the state of the theory around 1940
can be found in HERMANN WEYL’s famous book “Classical Groups” [Wey39].

Even quite early the question of a general finiteness theorem had been asked,
i.e. whether the ring of G-invariant functions for an arbitrary group G is finitely
generated. In his address to the I.M.C. in Paris in 1900 D. Hilbert devoted the
fourteenth of his famous twenty three problems to a generalization of this question.
He was basing this on MAURER’s proof of the finiteness theorem for groups. This
work later turned out to be false, and the finiteness question remained open for
some time, until in 1959 MASAYOSHI NAGATA found a counterexample ([Nag59];
see also [DCT71, DC70, Chap. 3.2]). In our proof of the finiteness theorem for linear
reductive groups G we follow NAGATA’s account [Nag64)].

The use of invariants for classification problems via geometry was established
by D. Mumford in his book “Geometric Invariant Theory” [MFK94] whose first
edition appeared in 1965. It turns out to be a useful tool in the study of the clas-
sification question and the associated “moduli spaces”, e.g. in the case of curves,
abelian varieties and vector bundles. This fundamental work from 1965 marks the
beginning of the “third blossoming” of invariant theory and also caused a reawak-
ening of interest in the classical literature. It had a great influence on the further
development of algebraic geometry and even today lies at the foundation of a great
deal of research.
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1. Isotypic Decomposition

1.1. Completely reducible representations. The concepts of irreducible
and completely reducible representations are certainly known from classical group
theory. They carry over to representations of algebraic groups without any changes.

DEFINITION 1.1.1. A representation p: G — GL(V), V # {0}, is called idrre-
ducible if {0} and V are the only G-stable subspaces of V. Otherwise it is called
reducible. The representation p is called completely reducible if V' admits a decom-
position V = Vi @& Vo®- - -V, into G-stable irreducible subrepresentations V; C V.
A G-module V is called simple if the corresponding representation p is irreducible,
and semisimple if p is completely reducible.

EXAMPLE 1.1.2. The natural representations of the classical groups GL(V),
SL(V), O(V,q), Sp(V, ) on V are irreducible, and the same holds for SO(V, q) in
case dim V' > 3. In fact, these groups are irreducible subgroups of GL(V') as defined
and proved in section II.3.

ExaMpPLE 1.1.3. Every representation of a finite group G is completely re-
ducible. This is the famous Theorem of MASCHKE, see [Art91, Chap. 9, Corollary
4.9].

A one-dimensional representation of an algebraic group G is clearly irreducible
and it is the same as a character, because GL(V) = C* if dimV = 1. Moreover,
if p: G — GL(V) is a representation and y € X(G) a character, then the product
xp: G — GL(V) given by g — x(g)p(9g) is again a representation. In the language of
G-modules this is the tensor product C, ® V where C,, denotes the one-dimensional
G-module corresponding to the character x. Clearly, xp is irreducible (resp. com-
pletely reducible) if and only if p is irreducible (resp. completely reducible).

EXAMPLE 1.1.4. Every representation of p: C* — GL(V) is completely re-
ducible, and the irreducible representations of C* are one-dimensional and are of
the form ¢ + t/ for some j € Z (Example 111.2.1.3). This implies that we get the
following canonical decomposition of the C*-module V' which is called the weight
space decomposition (cf. Remark I11.3.4.7):

V:GBVJ’ Vi={veV |tv=t v}
JEZ
(s - v denotes the scalar multiplication).

A homomorphism A: C* — G is called a one-parameter subgroup of G, shortly a
1-PSG. These subgroups will play an important role in connection with the HILBERT
Criterion in section ??. If p: G — GL(V') is a representation of G, then every 1-PSG
A: C* — G gives rise to a weight decomposition of V:

V=PV Vaj={veV|p\t)v=>t v}
JEL
ProprosSITION 1.1.5. For any G-module V' the following statements are equiva-
lent.
(i) V is semisimple.
(ii) V is generated by simple submodules.
(i) Every submodule W C V has a G-stable complement, i.e. there is a sub-

module W' CV such that V =W @ W',

ProoOF. We will constantly use the fact that every non-zero G-module contains
a simple submodule.
(i) — (ii): This is obvious from the definition.
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(if) — (iii): If W C V is a strict submodule, then there is a simple submodule
U C V not contained in W. It follows that UNW = {0}, and so W+ U =W @ U.
By induction we can assume that W @ U has a G-stable complement, and the claim
follows.

(iii) — (i): Let W C V be a semisimple submodule of maximal dimension,
and let W' be a G-stable complement. If W’ £ {0}, then W’ contains a simple
submodule U, and so W+ U = W @ U is semisimple, contradicting the maximality
of W. d

COROLLARY 1.1.6. Every submodule and every quotient module of a semisimple
G-module is semisimple.

PrOOF. The image of a simple module under a G-homomorphism is either triv-
ial or a simple. Hence a quotient module of a semisimple module V is semisimple,
by Proposition 1.1.5(ii). If W C V is a submodule, then W has a G-stable com-
plement, by Proposition 1.1.5(iii), and so W is isomorphic to a quotient module of
V. O

EXERCISE 1.1.7. Let G C GL(V) be an arbitrary subgroup and G C GL(V) its
closure. Then V' is a simple (resp. semisimple) G-module if and only if V' is a simple (resp.
semisimple) G-module.

1.2. Endomorphisms of semisimple modules. The Lemma of SCHUR al-
ready occurred earlier when we studied the classical groups (see section 11.3.1).

PROPOSITION 1.2.1 (Lemma of SCHUR). Let V., W be two simple G-modules.

(1) Ewvery G-homomorphism ¢: V. — W is either an isomorphism or trivial.
(2) We have Endg (V) = C where we identify ¢ € C with ¢ -idy.

PrROOF. If p: V — W is a G-homomorphism between two G-modules, then
ker ¢ is a submodule of V and ¢(V) a submodule of W. This implies the first
claim. If ¢: V' — V is an G-endomorphism and ¢ € C an eigenvalue, then ¢ —c-idy
is a G-endomorphism with a non-trivial kernel. Thus the second claim follows from
the first. (]

An immediate consequence of SCHUR’s Lemma is the following description of
the G-homomorphisms between direct sums VO := VOV @ ---®V of a simple
—_———

n copies

module V.

COROLLARY 1.2.2. Let V be a simple G-module. For n,m > 1 we have a canon-
ical isomorphism M, x,(C) = Homg(VE™, V™) where the G-endomorphism de-
fined by an m x n-matriz A = (a;;) is given by

n
(V1,...,0,) — (...,Zaijvj,...).
j=1

COROLLARY 1.2.3. Let V be a simple G-module and W a simple H-module.
Then V@W is a simple G x H-module where the linear action of GX H on VW is
defined by (g, h)(v@w) := guv@hw. Similarly, Hom(V, W) is a simple G x H-module

where the action is given by (g,h)p :=hopog i

PROOF. As a G-module, V ® W is semisimple and isomorphic to V™ where
m = dim W. It follows from the corollary above that the simple G-submodules
of V.® W are isomorphic to V and of the form V ® w with a suitable non-zero
w € W. Since (Hw) = W we see that the G x H-module generated by any simple
G-submodule of V@ W is V@ W, hence the first claim. The second follows, because
Hom(V,W) ~V*®@ W as G x H-modules (cf. Exercise 111.2.2.5(3)). O
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REMARK 1.2.4. We will see later that every simple G x H-module is of the
form V@ W (Corollary 1.3.2).

COROLLARY 1.2.5. Let G C GL,, be an subgroup and denote by (G) C M, (C)
the linear span of the elements of G. Then (G) is a subalgebra, and (G) = M, (C)
if and only if G is an irreducible subgroup, i.e., the matrix representation of G on
C™ is irreducible.

PROOF. It is clear from the definition that C[G] is a subalgebra. The group
G x G acts linearly on M,, by (g,h)A := gAh~!, and C[G] is a G x G-stable
subspace. As a G x G-module, we have an isomorphism M, (C) ~ C" @ (C™)*.
Hence, by the corollary above, M, (C) is a simple G x G-module in case C" is
an irreducible representation of G. On the other hand, if G is reducible, then, by
choosing a suitable basis, the elements of G have block form with a zero block in
the lower left corner, and so C[G] & M, (C). O

1.3. Isotypic decomposition. The decomposition of a semisimple module
into simple modules is in general not unique, as we have seen in the previous section.
However, one obtains a canonical decomposition by collecting the isomorphic simple
submodules, as we are going to define now.

Let G be an algebraic group and let Ag denote the set of isomorphism classes
of simple G-modules. If A € Ag, then a module W € X is called simple of type
A. We use 0 € Ag to denote the isomorphism class of the one-dimensional trivial
module.

If V is a G-module and A € Ag we define

Vii= ) WCW
WCV,WeA
This submodule of V' is semisimple and is called isotypic component of type A. By
definition, Vo = V¢ ={v € V | gv = v for all g € G}.

PROPOSITION 1.3.1. (1) Ewvery simple submodule W C V) is of type \. In
particular, Vy ~ W1,
(2) If W is simple of type A, then

Homg(W, V)@ W 5 Vi, p®@w+— p(w),

s an isomorphism of G-modules.

(3) The sum of the isotypic components is direct: @ycp, Va C V, and this
sum contains every semisimple submodule of V. In particular, V is semisim-
ple if and only if V.= D,cp, Va-

(4) If ¢: V = U is a G-homomorphism, then (V) C U,.

PRrOOF. (1) Since V), is semisimple, a simple submodule W C V) has a G-stable
complement: Vy = W @ W'. Therefore, there is a G-equivariant linear projection
p: V= W. Since V) is spanned by simple modules of type A, one of them maps
non-trivially to W, and the claim follows from SCHUR’S Lemma (Proposition 1.2.1).

(2) It is clear that p ® w — p(w) defines a G-homomorphism Homg (W, V) ®
W 5 V. In order to prove that this is an isomorphism, we first replace V by Vi
and then V) by W¢.

(3) It is clear that M := )\, Vi C V is the largest semisimple submodule
of V. For each A the submodule V) C M has a G-stable complement V’. It follows
that every simple submodule W C V which is not of type A must be contained in
V'. Hence the claim.

(4) This is clear, since the image of a simple module of type A is either (0) or
simple of type A. O
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COROLLARY 1.3.2. Ewvery simple G x H module is of the form V @ W with a
simple G-module V' and a simple H-module W'

PROOF. Let U be a simple G x H module and W C U a simple H-submodule.
Considering U as a G-module we see that Hompy (W, U) is a G-module and that
the map Hompy (W, U) @ W — U from Proposition 1.3.1(2) is an injective G x H-
homomorphism. O

The decomposition V' = €, Vi of a semisimple module V' is called decompo-
sition into isotypic components or shortly isotypic decomposition. In general, the
submodule Vioc := @, Vi C V is called the socle of V.

The isotypic decomposition carries over to locally finite and rational G-modules,
in particular to the coordinate rings of affine G-varieties. As in the finite dimensional
case such a module is called semisimple if it is a sum of simple submodules.

PROPOSITION 1.3.3. Let X be a G-variety and denote by O(X )soe € O(X) the
sum of all simple submodules. Then

O(X)soc = @ O(X)A

AEAG

where O(X)y is the sum of all simple submodules of O(X) of type A. Moreover,
O(X)o = O(X)Y is a subalgebra, and each O(X)y is a O(X)E-module.

PROOF. Since the G-action on O(X) is locally finite the first part follows im-
mediately from the proposition above.

For the second part we remark that G acts on O(X) by algebra automorphisms,
i.e. we have g(fi1f2) = (9f1)(gf2) for ¢ € G and fi, fo € O(X). Hence, if f1 €
O(X)%, then the linear map f + fif is a G-homomorphism, proving the second
part of the proposition. O

EXERCISE 1.3.4. Let V be locally finite rational G-module. If V' is semisimple, then
every submodule W C V has a G-stable complement in V.

DEFINITION 1.3.5. A function f € O(X) is called G-invariant (shortly invari-
ant) if f is constant on orbits, i.e. f(gz) = f(z) for all g € G, © € X. Thus
O(X)o = O(X)Y is the subalgebra of G-invariant functions. The O(X)%-modules
O(X), are classically called modules of covariants.

EXAMPLE 1.3.6. The regular representation of G = GL(V') or SL(V) on O(V)
stabilizes the homogeneous components O(V) 4. We claim that the O(V')4 are simple
G-modules, so that O(V) = @ 50 O(V)a is the isotypic decomposition.

PROOF. Fix a basis of V so that V = C" and O(V) = C|x,...,x,], and let
W C Clx1,...,x,]q be a submodule. Then W is stable under Lie G. The matrix
E,; € LieG, i # j, operates as the differential operator a:j% (see II1.5.4). If f e W,
f # 0, then, applying successively the operators xla%iv we first see that z¢ € W

and then, applying the operators a:ja%l, it follows that all monomials of degree d
belong to W. (]

EXERCISE 1.3.7. Let V,W be two semisimple G-modules and let ¢: V — W be a
surjective G-homomorphism. Then ¢(Vy) = Wy for all A € Ag. Give an example which
shows that this does not hold if V' is not semisimple.
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2. Invariants and Algebraic Quotients

2.1. Linearly reductive groups. We now introduce a special class of groups
which share a number of important properties.

DEFINITION 2.1.1. An algebraic group G is linearly reductive if every repre-
sentation p: G — GL(V) is completely reducible. Equivalently, every G-module is
semisimple.

ExAMPLE 2.1.2. A diagonalizable group D is linearly reductive. In fact, every
representation of p: D — GL(V) is diagonalizable which means that there is a
basis of V' such that p(D) C T,, (Proposition I1.3.4.5). The isotypic decomposition
is given by

V= GB Vy where V, ={v eV |p(d)v=x(d)- v forall d e D}.
XE€X (D)

ExaMPLE 2.1.3. A finite group G is linearly reductive, by the Theorem of
MASCHKE (see [Art91, Chap. 9, Corollary 4.9]).

EXERCISE 2.1.4. If G, H are algebraic groups, then G x H is linearly reductive if and
only if G and H are both linearly reductive.

EXAMPLE 2.1.5. Every representation p: C* — GL(V), V # {0}, contains
the trivial representations, because p is of the form s — exp(sN) with a nilpotent
matrix N (see Proposition 11.2.6.1). Thus C* has a unique simple module, namely
the trivial one-dimensional module. In particular, Vi, = VC" and so C* is not
linearly reductive.

PROPOSITION 2.1.6. Let G be an algebraic group. The following statements are
equivalent:

(i) G is linearly reductive.
(ii) The representation of G on O(G) (by left or right multiplication) is com-
pletely reducible.
(iii) For every surjective G-homomorphism ¢: V — W we have (V) = W&,

PROOF. It is clear that (i) implies (ii) and (iii) (see Exercise 1.3.7). Moreover,
(ii) implies (i), because every G-module occurs as a submodule of O(G)®" (Exer-
cise I11.2.4.3).

For the implication (iii) — (i) we show that every submodule W C V has a G-
stable complement (Proposition 1.1.5). Consider the G-homomorphism Hom(V, W) —
End(W), ¢ — ¢|w which is clearly surjective. Thus Homg(V, W) — Endg(W) is
also surjective, and so there is ¢: V' — W such that ¢|w = idw, hence V =
W @ ker . O

REMARK 2.1.7. If G is linearly reductive and ¢: V. — W a surjective G-
homomorphism of locally finite and rational G-modules, then we also have (V&) =
W, In fact, if w € WY and v € V a preimage of w, then V' := (Gv) is a finite
dimensional G-module, and ¢(V”) contains w.

EXERCISE 2.1.8. Use the proposition above to give another proof that a diagonalizable
group D is linearly reductive (Example 2.1.2) by showing that O(D) is a direct sum of
one-dimensional submodules.

EXERCISE 2.1.9. Give an example of a surjective CT-homomorphism ¢: V — W such
that go(V(C+) # we'.

EXERCISE 2.1.10. Show that G is linearly reductive if and only if there is a G-
equivariant linear operator I: O(G) — C such that I(c) = ¢ for c € C.
(This operator can be thought of as the “integral” f — fG fdg.)
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2.2. The coordinate ring of a linearly reductive group. Let G be an
algebraic group, and consider G as a G x G-variety with the usual action given by
(91,92)h := g1hgy *. Recall that the simple G' x G-modules are of the form V @ W
where V, W are simple G-modules (Corollary 1.3.2). In particular, V* @ V is a
simple G x G-module which is canonically isomorphic to End(V):

V*®V 5 End(V) is induced by £ ®@ v — ¢y,

where ¢y, (w) := ¢(w) - v. The corresponding representation p: G — GL(V') gives
a G x G-equivariant morphism p: G — End(V) and thus a G x G-homomorphism
p*: End(V)* — O(G) which is injective because End(V) is simple. It is also clear
that for two equivalent representations p;: G — GL(V7) and p2: G — GL(V2) we
get the same images pj(End(V1)*) = p3(End(V2)*).

For every isomorphism class A € Ag we choose a simple module of type A and
denote it by V/(A).

PRrROPOSITION 2.2.1. Let G be a linearly reductive group. Then the isotypic
decomposition of O(G) as a G x G-module has the form

o= P oG

AEAGxA
where O(G)x ~ End(V(A\)* ~ V(X)) @ V(A)*.

PRrROOF. Let W C O(G) be a simple G-submodule, with respect to the right
action of G, and let p: G — GL(W) denote the corresponding representation. The
claim follows if we show that W is contained in the image of p*: End(W)* — O(G).
For f € W define the linear map ¢;: End(W) — C by £;(¢) := ©(f)(e). Then

p*(Ls)(h) = Ly (p(h)) = (p(h)f)(e) = f(eh) = f(h) and so p*({f) = f. O
If G is a finite group, then dim O(G) = |G|, and we rediscover the famous

formula
Gl =Y d3
A

where d) is the dimension of the irreducible representation of type A.

COROLLARY 2.2.2. The isotypic decomposition of O(G) with respect to the left
action of G has the form
0(G)~ P v(Noh
AeAG
where dy 1= dim V().

COROLLARY 2.2.3. Let X be a G-variety containing a dense orbit Gx C X.
Then the isotypic decomposition of O(X) has the form

OX) = P V™ where my < dim(V(3)7)%.
AeAg

PrOOF. The orbit map pu,: G — X is G-equivariant and dominant, and so
ph: O(X) = O(G) is an injective G-homomorphism. Since p, is invariant with
respect to the right action of the stabilizer Gy, . (gh™1) = u,(g) for all g € G and
h € G, we see that the image of u* is contained in the invariants O(G)% with
respect to the right action. Hence, i : O(X)y — V(A) @ (V(A)*)%. O

Let X be a G-variety. If the isotypic component O(X), is finite dimensional,
then O(X)y ~ V(A)™*. The exponent my is called the multiplicity of A\ € Ag in
X and will be denoted by m(X). If the isotypic component O(X), is not finite
dimensional, then we set my(X) := oco.
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DEFINITION 2.2.4. We say that a G-variety X has finite multiplicities if m»(X) <
oo for all A, and that X is multiplicity-free if my(X) < 1 for all A.

We will see later in chapter V that multiplicity freeness has an interesting
geometric interpretation.

2.3. Hilbert’s Finiteness Theorem. The next result is the famous Finite-
ness Theorem of HILBERT [Hil90, Hil93].

THEOREM 2.3.1. Let G be a linearly reductive group and X a G-variety. Then
the subalgebra O(X)¢ C O(X) of invariant functions is finitely generated. More-
over, the isotypic components O(X)y are finitely generated O(X)%-modules.

Before giving the proof we make some general remarks. Consider the isotypic

decomposition O(X) = P, 5, O(X)x and the linear projection
R: O(X) = O(X)¢

called the REYNOLDS-operator. The linear map R is a G-equivariant O(X )“-homomorphism,
i.e. R(pf) = pR(f) for p € O(X)% and f € O(X). In particular, R(V) = V¢ for
every G-stable subspace V' C O(X). As a consequence, we get for every ideal
aC O(X)%:

O(X)anO(X)% = R(O(X)a) = a.
This already implies that O(X )% is a Noetherian algebra (see A.1.6).

If b C O(X) is a G-stable ideal, then p: O(X) — O(X)/b induces a surjection
O(X)¢ — (0(X)/6)¢ with kernel b N O(X)Y = b®. Finally, if (V;);er is a family
of G-stable subspaces of O(X), then (3, Vi)x = >_;(Vi)a for all X € Ag. Thus
we have proved statements (3)—(5) of the following proposition. The Finiteness
Theorem above is contained in the first two statements which we will prove below.

PROPOSITION 2.3.2. Put B := O(X) and A := O(X)¢ C B.

(1) A is a finitely generated C-algebra.

(2) For every A € Ag the isotypic component By is a finitely generated A-
module.

(3) For every G-stable ideal b C B we have A/(6%) = (B/b)¢.

(4) For every ideal a C A we have BaN A = a. In particular, A is Noetherian.

(5) If (b;)ier is a family of G-stable ideals of B, then 3,6 = (3, 6;)¢ C A.

For the proof we will need the following useful lemma.

LEMMA 2.3.3. Let A = @,5¢Ai be a graded C-algebra, n := @, Ai, and
let ai,...,a, be homogeneous elements of n. Then the following statements are
equivalent:

(l) A= Ao[al,...,an].
(i) n =Y, Aa;.

(iii) n/n? =3, Aoa; where @; := a; + n?.
In particular, if A is Noetherian, then A is finitely generated over Aq.
PRrOOF. The implications (i) — (ii) and (ii) — (iii) are easy. We leave their
proof to the reader.
(iii) — (i): By assumption, we have n = Y, Apa; + n? and so, by induction,
nf= )" Agalt ek bt
S ki=k

for all £ > 1. This shows that A = Ag[as,...,a,] +n¥ for all k > 1. Now the claim
follows, because both sides are graded and n* has no elements in degree < k. [0
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PROOF OF PROPOSITION 2.3.2. (1) If X = V is a G-module, then O(V) =
D>, O(V); is a graded C-algebra where each graded component is G-stable. Thus
O(V)Y = @5, O(V)¢ is again graded, with O(V)§ = O(V)o = C. Since O(V)¢
is Noetherian (Proposition 2.3.2(3)) the lemma above implies that O(V)¢ is finitely
generated.

In general, the G-variety X is isomorphic to a G-stable closed subvariety of
a G-module V. Therefore, we obtain a G-equivariant surjective homomorphism
O(V) — O(X) and thus a surjection O(V)¢ — O(X)¢ (Proposition 2.1.6).

(2) Let W be a simple G-module of type A\. Then O(X x W)% is a finitely
generated graded C-algebra:

O(X xW)¥ =POX)20W),)° =0(X)° @ (0(X) W)@
>0

It follows that (O(X)® W*)¥ is a finitely generated O(X)“-module. Now we have
seen in Proposition 1.3.1(2) that

(O(X) @ W5 @ W = Homg(W,0(X)) @ W =5 O(X),,

and it is easy to see that this linear map is a O(X)%-module homomorphism. [

A nice application of the lemma above is the following result about smooth
cones.

EXAMPLE 2.3.4. Let X C C™ be a closed cone Assume that X is non-singular
in 0. Then X is a linear subspace of C™.

PrOOF. By assumption, O(X) is graded, O(X) = @, , O(X); where O(X)o =
C, and mg := @,.,O(X); is the maximal ideal of 0 € X. Since X is smooth in
0 we know that dimmg/m3 = dim X. Thus we can find d := dim X homogeneous
elements f1, ..., fq € mg whose images in mp/m3 form a C-basis. Then Lemma 2.3.3
implies that O(X) = C[f1,..., fq]. Since dim X = d, the f; are algebraically in-
dependent. It remains to see that deg f; = 1 for all 7. But this is clear, because
m(% = @i>1 O(X)z O

2.4. Algebraic quotient. We start with the definition of an algebraic quo-
tient of a G-variety X which turns out to be the best algebraic approximation to
an orbit space X/G. In the following we assume that G is a linearly reductive.

DEFINITION 2.4.1. Let X be a G-variety. A morphism 7: X — Z is called
algebraic quotient (shortly a quotient) if the comorphism 7*: O(Z) — O(X) induces
an isomorphism O(Z) = O(X)¢.

It follows from HILBERT’S Finiteness Theorem 2.3.1 that algebraic quotients

exist. They can be constructed in the following way. Choose a set of generators
fis--+, fn of the invariants O(X )¢, consider the morphism

7= (f1,-.., fn): X = C",

and define Z := n(X). Then w: X — Z is an algebraic quotient. It is also clear that
a quotient map m: X — Y is G-invariant, i.e. 7 is constant on orbits: m(gx) = w(x)
forall g € G,z € X.

(In fact, if w(gz) # w(z), then there is an f € O(Z) such that f(w(gx)) # f(7w(x))
which is a contradiction, because 7*(f) is a G-invariant function.)
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2.5. Properties of quotients. Let us now collect the main properties of
algebraic quotients.

Universal Mapping Property: Let 7: X — Z be an algebraic quotient.
If p: X =Y is an invariant morphism, i.e. ¢ is constant on orbits, then
there is a unique ¢: Z —'Y such that o = @om:

X5z

N

Y

PROOF. Since ¢ is invariant we have ¢*(O(Y)) € O(X)%, and thus
there is a uniquely defined homomorphism p: O(Y) — O(Z) such that
m*ou = p*. Then the corresponding morphism ¢: Z — Y has the required
property. U

Existence and uniqueness: An algebraic quotient exists and is unique up
to unique isomorphisms.

ProoF. This follows immediately from the universal property. t

Thus we can safely talk about “the” quotient, and we will use the notation
x: X = XJG

where we identify O(X/G) = O(X)%.
G-closedness: If X' C X is a closed G-stable subset, then mx(X') C X )G

is closed, and the induced morphism 7: X' — 7wx(X') is an algebraic
quotient.

PROOF. Let b := I(X’) C O(X) be the ideal of X’. Then the ideal
of the closure 7x (X’) is given by b N O(X)¢ = b%. Since O(X)% /6% =
(O(X)/6)¢ by Proposition 2.3.2(3) we see that m: X' — 7x(X’) is an
algebraic quotient. It remains to show that an algebraic quotient 7x: X —
X//G is surjective.

Let y € X//G be a point and m,, C O(X)? the corresponding maximal
ideal. Since O(X)m,NO(X)Y = m, by Proposition 2.3.2(4), it follows that
O(X)m, is strict ideal of O(X) and so the fiber 75" (y) is not empty. O

G-separation: Let (C;)icr be a family of closed G-stable subsets of X. Then

mx(()Ci) = [)7x(Cy).

icl iel

In particular, the images under the wx of two disjoint G-stable closed
subsets of X are disjoint.

PROOF. Let b; := I(C;) € O(X) be the ideal of C;. Then [;.; C; is
defined by Y, ; b; and its image in 7x (;c; Ci) € X//G by (3 ;c;b:)€.
By Proposition 2.3.2(4), the latter is equal to the ideal Y, ; bY which
defines the closed subset (,.; 7x (C;). Thus mx ((,c; Cs) = Nier mx(Cs)
as claimed. O
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2.6. Some consequences. The properties of a quotient map 7x: X — X//G
formulated above have a number of important consequences.

COROLLARY 2.6.1. The quotient map wx: X — X)/G is submersive, i.e. it is
surjective and X )/G carries the quotient topology.

PRrROOF. Let U C X//G be a subset such that 7' (U) is open in X. Then
A= X\ 7" (U) is closed and G-stable and so, by G-closeness, 7x(A) C X//G is
closed. Thus U = X /G \ mx(A) is open in X//G. O

COROLLARY 2.6.2. Let mx: X — X /G be the quotient and let f € O(X) be
a non-zero divisor. Then mx(Xy) = (X)G)s, and Xy — (XJ/G)y is a quotient.

PROOF. We have O(X;) = O(X);. Since f is G-invariant we get (O(X);)¢ =
(O(X)¥); = O((X/)G)¢) (see Exercise 2.6.3 below), and the claim follows. O

EXERCISE 2.6.3. Let A be an algebra and G a group acting on A by algebra auto-
morphisms. If f € A% is a non-zero divisor, then (A;)¢ = (A%);.

EXAMPLE 2.6.4. Let X be a G-variety and wx: X — X /G the algebraic quo-
tient. If : Y — X /G is any morphism, then the fiber product ¥ x x /o X (A.2.6)
is a G-variety in a natural way, and the induced morphism p: ¥ xx )¢ X =+ Y isa
quotient:

Vxxg X —— X

| I

Y — 5 X)G
In fact, Y Xxyq X is a closed G-stable subvariety of ¥ x X where G acts only
on X, and so the quotient is induced by the morphism ¢ := idy x7x: Y x X —
Y x (X/G). Since (Y xxyq X) €Y x (X/G) coincides with the graph of the
morphism 7, the projection onto Y induces an isomorphism (Y x x ¢ X) SY.

COROLLARY 2.6.5. Ewvery fiber of the quotient map wx: X — XJ/G contains a
unique closed orbit. In particular, the closure of an orbit Gx C X contains a unique
closed orbit.

PROOF. Since a fiber 73! (y) is closed an G-stable it contains a closed orbit.
Because of G-separation it cannot contain more than one closed orbit. O

The last corollary shows that the quotient X /G parametrized the closed orbits
in X. So if all orbits are closed, e.g. if the group G is finite, then X /G can be
identified with the orbit space X/G.

DEFINITION 2.6.6. A quotient mx: X — X//G is called a geometric quotient
if every fiber of mx is an orbit. This is the case if and only if all orbits in X are
closed.

COROLLARY 2.6.7. Let G be a finite group and X a G-variety. Then mx: X —
X//G is a geometric quotient, and 7, is a finite morphism.

PRrROOF. Since all G-orbits are closed the quotient is geometric. In order to see
that mx is a finite morphism, we simply remark that every f € O(X) satisfies
the monic equation [ co(z — gf) = 0 whose coefficients are G-invariants (see
Lemma A.3.2.10). O

In general, if 2,2’ € X belong to the same fiber w3 (y) of the quotient map,
then the orbit closures G and G’ both contain a closed orbit which is the unique
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closed orbit of the fiber, and so Gx NGz’ # (). This shows that X /G is the quotient
space of X with respect to the equivalence relation

r~1 =  GrNGr #0.

This also explains the notation X /G with two slashes.
If V is a G-module with quotient map 7y : V — V//G, then we get

Ny =7, (7 (0) ={veV |Guv>0} CV.

The subset Ay is a G-stable closed cone in V and is called the null fiber or the null
cone of V.

EXAMPLE 2.6.8. Consider the action of C* on C? defined by t(z,y) := (¢ -
z,t7! - y). Then
7:C* > C, (z,y)— 2y
is the quotient, and all fibers are orbits except the null fiber N' = 7~1(0) which
consists of three orbits, namely 7=1(0) = C*(1,0) U C*(0,1) U {0}. It follows that
7: C?\ m71(0) — C\ {0} is a geometric quotient.
EXERCISE 2.6.9. Let X be a G-variety and Y an H-variety where G, H are both

linearly reductive. Then X x Y is a G x H-variety, and nx X 7y: X XY — X/G xY/H
is the quotient.

2.7. The case of finite groups. We already noted that a finite group is
linearly reductive (Theorem of MASCHKE; cf. 2.1.3) Some of the results proved for
linearly reductive groups can be sharpened considerably in the finite case.

The following result was already proved in the previous section (Corollary 2.6.7).

PRrROPOSITION 2.7.1. Suppose that G is finite and X is a G-variety. Then the
quotient m: X — X /G is geometric and 7 is a finite morphism.

The Finiteness Theorem (Theorem 2.3.1) can be strengthened to the extent
that we can give an explicit system of generators.

To do this let V' be a G-module, (v1,...,v,) a basis of V and (z1,...,z,) the
dual basis where z; € V* C O(V). For every p € N" we set o+ := " zh? .- zkn €
O(V), and we consider the homogeneous invariants

Jy = Z gzt € O(V)G
geG
of degree |u| := p1 + -+ + pyn. The following result is due to EMMY NOETHER
[Noel5].

THEOREM 2.7.2. The invariant ring O(V)C is linearly spanned by the invari-
ants J,,, and is generated by those J,, with |p| < |G|.

Thus one sees that the invariants of degree < |G| generate the invariant ring.
The number of these is less than

dimV + |G|
dim V ’

but this estimate is far too big. A much better bound was found by DERKSEN

[Der01].

COROLLARY 2.7.3. The module O(V) is generated as an O(V)%-module by the
homogeneous elements of degree < |G|.

For the proof we need the following result about symmetric functions, see Ex-
ercise 1.2.2.2.
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LEMMA 2.7.4. The subalgebra A C C[T1,...,Ty] of symmetric functions is gen-
erated by the power sums

V=T +T)+--+T3, j=1,2,....d

PROOF. We have to show that the elementary symmetric functions si, ..., Sq
can be expressed in 1, . .., 94. This follows by induction from the following formula
of NEWTON:

(5) Wy —sijatsatyo— (=1 Tl H (=1 s =0, j=1,2,....d
(a) The formula for j = d is clear if we set

d

d
f2)=1[Z-T)=2"+> (-1)'s; 2",
I=1

i=1

because this implies
d d .
0= Z (1) = a + Z(—l)lsiwd_i where s := d.
r=1 i=1

(b) In the case j < d we note that the left hand side of (%) is a symmetric
function of degree < j and thus is a polynomial p(si,...,s;) in s1,...,s;.
Now we set Tj11 = --- = Ty = 0 and denote this process by means of
a bar. Clearly, 5; for ¢ < j is the ith elementary symmetric function in
Ty,...,Tj, and ¢; = T} 4 --- + T}. From (a) it follows that the left hand
side of (*) becomes 0 under this process, and hence p(37, . ..,5;) = 0. Now
51,...,5; are algebraically independent and thus p = 0.

O

PROOF OF THEOREM 2.7.2. If f =" a, X" is an invariant, then

|G|f: ngzza/_tj,w

geG

Thus we get O(V)¢ = >, CJ. We have to show that each J, with |p| > |G| can
be expressed as a polynomial in the J, with |u| < |G|. To do this we consider the
expressions

Si(X.2) = (X1 Z1+9Xo - Zo+ - +gXn - Zy), forjeEN,
geG
with indeterminates Z1,..., Z,. Clearly
Si(X,2)=Y_J,- 2°.

peNn
lol=J

By Lemma 2.7.4 above the S;(X, Z) for j > |G| can be expressed as polynomials
in the S;(X, Z) with j < |G|, and thus the J, with |p| > |G| are polynomials in the
J, with |p] < |Gl O

PROOF OF COROLLARY 2.7.3. It suffices to show that every isotypical com-
ponent of O(V) is generated as an O(V)%-module by elements of degree < |G|.
Suppose W is a simple G-module of type A. Then, as we have just seen, O(V @ W )%
is generated by elements of degree < |G|. Now

oVew)d = (OV)e0W)"=POV)eoWw))°
i>0
= 0V)?a(OWV)eW) e
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is a grading, and thus the O(V)%-module (O(V) @ W*)¢ is generated by elements
of degree < |G|, i.e. by @, ¢/(O(V); ® W*)€. The canonical O(V)%-module iso-
morphism (see Proposition 1.3.1(2))

OV)@WH)@W ~O(V),
maps (O(V); @ W*)¥ @ W onto (O(V)y);, and the claim follows. O

If we consider the usual permutation representation of the symmetric group
S, on C™, then the invariant ring is generated by the invariants of degree < n.
One also knows that the coordinate ring O(C"™) is generated, as a module over the
invariants Clsy, ..., $,], by homogeneous elements of degree (g) Here the bounds
are substantially smaller than those given in the theorem and its corollary above.

The situation is different in the case of the cyclic group G = (g) of order
n with the representation p: G — GL; = C*, g — exp (27i/n). Here the smallest
homogeneous invariant is of degree n, and 1, x, 22, ..., 2"~ ! form a basis for O(C) =
Clx] over O(C)% = C[z"]. These are exactly the bounds given by the theorem and
its corollary.

In this context there is an interesting result of BARBARA SCHMID [Sch89]. Let
us first define the S-invariant of a finite group G. If V' is a G-module, then

B(G,V) :=min{d | O(V) is generated by invariants of degree < d},
and
B(G) :=max{B(G,V) | V a G-module}.
It follows from classical invariant theory that 8(G) = (G, Vieg) Where Ve, is the
regular representation of G. Here is one of the general results of SCHMID.

PROPOSITION 2.7.5. If G is a non-cyclic finite group, then B(G) < |G|.
Explicit calculations show that 3(S3) =4 and 5(S4) < 12.

3. The Quotient Criterion and Applications

3.1. Properties of quotients. Let G be a linearly reductive group, X a
G-variety and mx: X — X /G the quotient.

PROPOSITION 3.1.1. If X is irreducible, then X )/G is likewise irreducible. If X
is normal, then so is X/)|G.

PROOF. The first statement is clear since wx is surjective. For the second let
f € C(X/G) be integral over O(X//G) = O(X)%. Then f is integral over O(X),
and so f € O(X)NC(X/G) C O(X)NC(X)E = O(X)C. O

REMARK 3.1.2. If X is normal, then the proof shows that O(X/G) = O(X)% is
integrally closed in C(X)%. It follows easily from this that C(X/G) is algebraically
closed in C(X)%.

But it is possible that C(X)“ 2 C(X/G) holds. Suppose, for example, that
X = C? and G = C* with the action given by

t(z,y) == (t-x,t-y) for t € C* and (z,y) € C*.

Then O(X//G) = C, while f = x/y € C(X)% is a non-constant invariant rational
function.

REMARK 3.1.3. If G is also connected, then O(X/G) is integrally closed in
O(X) and C(X/G) is algebraically closed in C(X).
(In fact, consider the integrality equation resp. the minimal equation. This only has
finitely many solutions and the solution set is stable under G. Since G is connected,
G leaves every solution fixed.)
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PROPOSITION 3.1.4. Suppose G is connected and has trivial character group.
If V is a G-module and 7y : V — V/JG the quotient, then O(V)G) = O(V)Y is
factorial and C(V))G) = C(V)C.

PROOF. Suppose f € O(V) and f = [[;_, 7 is the prime factorization of
fin O(V). We are going to show that f; € O(V)%. One has gf = [[;_,(gfi)*
and thus gf; = pi(g)f; for some suitable j and p;(g) € C*. Furthermore, G’ :=
{g € G| gfi € C*f;} is a closed subgroup of G with finite index: [G : G'] <
#{irreducible factors of f}. Since G is connected, this implies G = G’ and so gf; €
C* f;. Tt follows that u;(gh) = pi(g)ui(h) for g,h € G, i.e. p; is a character of G.
Thus, by assumption, one must have p;(g) = 1 for every g € G, and so the prime
factorization of f in O(V) yields a prime factorization of f in O(V)%. This proves
the first claim. For the second, let 7 € O(V)¢ and write r = % where f,h € O(V)
without common factor. Then, for all g € G, r = gr = Z—{L, and so gf € C*f and

gh € C*h. As above, this implies that g,h € O(V)€. O

REMARK 3.1.5. Instead of requiring that V is a vector space, it is enough to
assume that O(V) is factorial with group of units C*. (The second condition can
also be eliminated.) Also it is not necessary that G is linearly reductive.

REMARK 3.1.6. If X is an irreducible G-variety and m := max{dim Gz} is the
maximal orbit dimension, then the quotient 7: X — X/ G satisfies

dim X /G < dim X —m.
Under the additional assumption that C(X/G) = C(X)® one has equality, and
almost every fiber of 7 contains a dense orbit.
(We know that the set {z € X | dim Gx = m} is open and dense in X (?7) and so
almost every fiber of the quotient map mx contains an orbit of dimension m. Now

the inequality follows from Theorem A.3.4.1. The proof of the second assertion is
essentially more difficult (see 7).

3.2. Some examples revisited. We will now have another look at some
examples form the first chapter, using the concept of quotients introduced above.

ExAMPLE 3.2.1. Suppose @, is the C-vector space of quadratic forms in n
variables with the standard action of SL,, (cf. 1.3.1):

gq(z) = q(g~'z) for g € SL,, and = € C".

Now Proposition 1.3.3.1 shows that the discriminant A: @, — C is the quotient of
@, by SL,,. We would like to look at this in a different way.

First of all A is an invariant, hence constant on the orbits. From the universal
mapping property of the quotient 7: Q,, — Q. // SL,, we therefore get a commuta-
tive diagram

Qu—"=Qu/SLa  1esp.  O(Qn) = O(Qu)*L
6 *
¢ ClA]
The map 6 is surjective, and for ¢ € C\ {0} the set A=*(c) is a closed orbit. Thus

57 1(c) = m(A71(c)) is a point. Hence § is birational, i.e. C(Y') = C(A). This implies
that § is an isomorphism (see the following exercise).

EXERCISE 3.2.2. Let C be an affine irreducible curve and §: C' — C a birational
surjective morphism. Then § is an isomorphism by IGUSA’s Lemma A.5.6.5.
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EXERCISE 3.2.3. All fibers of the quotient A: @, — C are reduced, the null fiber
A71(0) is normal and the other fibers are smooth.
(Hint: For the normality use the SERRE Criterion A.5.7.1.)

The next proposition shows that the structure statement about quotients in the
above example, namely the isomorphism Q,, / SL,, = C, follows once one knows the
dimensions of the orbits.

ProproOSITION 3.2.4. If G acts linearly on a vector space V' and if G has an
orbit of codimension < 1, then the quotient VJ/G is either a point or is isomorphic

to C.

ProoF. By Proposition 3.1.1 the quotient Y := V//G is irreducible and nor-
mal, and Remark 3.1.6 shows that dimY < dimV — max,cy dimGv < 1. If
dimY = 0, then Y is a point. Now suppose dimY = 1. Then Y has no singu-
larities (Proposition A.5.6.1). Moreover, O(Y) = O(V)¥ = @,5, O(V)§ is graded
with O(V)§ = C, and m := @,.,O(V)¢
7(0) € Y. Now m/m? is one-dimensional and thus O(V)¢ = C[z] for a homogeneous
r €m\m? (Lemma 2.3.3). O

is the maximal ideal corresponding to

REMARK 3.2.5. The proof above shows that a one-dimensional quotient V//G

is isomorphic to C. But more is true. Assume that Z is a normal rational G-variety,
G is reductive. If dim Z/G = 1 and O(Z)* = C*, then Z)/G ~ C.

EXAMPLE 3.2.6. (See section I.4) The group GL,, acts on the n xn-matrices M,,
by conjugation. We consider the n symmetric functions in the eigenvalues Sy, ..., S,
as functions on M,,. Because

(%) det(tE — A) =" — Sy (A"t 4+ 4+ (=1)" S, (A),

the functions Si,...,S, are regular on M,,. We have seen in Proposition 1.4.1.2
that the invariants O(M,, )% are generated by Si,...,S, and that the S; are
algebraically independent. Thus the morphism

S: M, = C", A (S1(A),---,S.(A))

is a quotient of M,, by GL,. Like in the previous example we want to look at this
in a slightly different way.

Let 7 := mv,: M, — M, /GL, be the quotient. Since the S; are invari-
ant functions the universal mapping property implies that we have the following
commutative diagram:

M, —/——M,, / GL,,

Ll

(Cn

The matrix A € M,, has n distinct eigenvalues if and only if the discriminant of
the characteristic polynomial (x) does not vanish, and in this case S™1(S(A4)) is
the conjugacy class of A. This shows that on a dense open set U C C" the fibers
of S are orbits, and so S~!(a) is a single point of M,, / GL, for all @ € U. As a
consequence, the morphism S is birational and surjective. We will see in the next
section that this implies that S is an isomorphism (Quotient Criterion 3.4), hence
S: M,, — C" is the quotient.
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3.3. Cosets and quotient groups. Suppose G is an algebraic group and
H C G is a linearly reductive subgroup. We have the two actions of H on G, namely
by right and by left multiplication:

MNp:HxG—G, Mh,g):=hg and p(h,g):=gh '

Under both of these actions all orbits are closed and isomorphic to H. Thus the
corresponding quotient is geometric (Definition 2.6.6). We will denote it in the
following by

m=mx:G— H\G resp. n=m7,: G—G/H,

and we talk as usual about the right cosets and the left cosets.

Left multiplication of G on itself induces an action of G on G/H, and the
quotient map m,: G — G/H is G-equivariant. An analogous statement holds for
the right multiplication and the right coset space H\G.

If H is in addition a normal subgroup, then G/H is an algebraic group with
coordinate ring O(G/H) = O(G)H . In fact, by the universal mapping property, the
multiplication and the inverse define a multiplication and an inverse on G/H, so
that G/H is an algebraic group (Proposition 2.4.6). It is the quotient group of G
by H and has the usual universal property (cf. Proposition 11.2.1.10).

EXERCISE 3.3.1. Let H C G be a reductive subgroup of an algebraic group G. Show
that there is an isomorphism of G-varieties G/H = H\G.

EXERCISE 3.3.2. Let G be reductive. Consider the action of G on G x G by left
multiplication: g(h1,h2) := (gh1, gh2). Then the quotient is given by 7: G x G — G,
(h1, h2) — hT ' ha. What is the quotient if G acts by left multiplication on the product of
n copies of G7

EXERCISE 3.3.3. Let X be a G-variety, and let H C G be a closed normal reductive
subgroup. If H acts trivially on X, then the induced action of G/H on X is regular.

EXERCISE 3.3.4. Let X be a G-variety and let © € X be a point whose stabilizer
G is reductive. Then the orbit Gz is an affine variety and the orbit map induces an
isomorphism G /G, = Gz.
(Hint: Use ZARISKI’s Main Theorem A.5.6.7.)

EXERCISE 3.3.5. Let T' C GL2 be the torus of diagonal matrices. Describe the quo-
tients T\M>/T and T\ SL; /T

3.4. A criterion for quotients. Let X be an irreducible G-variety where G
is linearly reductive. If ¢: X — Y is an invariant morphism, i.e. ¢ is constant on
orbits, we want to find a criterion which guarantees that ¢ is the quotient.

PROPOSITION 3.4.1. Assume that Y is normal and that ¢ is surjective. If there
is a dense open set U C'Y such that for every y € U the fiber o~ 1(y) contains a
unique closed orbit, then ¢ is the quotient.

PROOF. The universal mapping property gives a commutative diagram

X "5 X)G

@
%)
Y
By assumption, @ is surjective. Moreover, ¢~ !(y) is one point for every y € U.

Thus ¢ is surjective and has degree 1, hence is an isomorphism, because Y is
normal (IGusA’s Lemma A.5.6.5). O



124 CHAPTER IV. INVARIANTS AND ALGEBRAIC QUOTIENTS

REMARK 3.4.2. The formulation of IGUSA’s Lemma A.5.6.5 used in the proof
above shows that the surjectivity of ¢ can be replaced by the assumption that
codimy Y\ p(X) > 2.

In order to apply the criterion above to a G-variety X we have to proceed as
follows (cf. Examples 3.2.1 and 3.2.6 above).

Quotient Criterion

(1) Find an invariant morphism ¢: X — Y which is a candidate for the
quotient. (Quite often ¢: X — C" is given by invariant functions and
Y C C" is the image of X.)

(2) Show that codimy Y \ ¢(X) > 2.

(3) Show that' Y is normal. (This might be difficult.)

(4) Prove that, on an open dense set of Y, the fibers of ¢ contain a unique
closed orbit (e.g. a dense orbit).

ExAMPLE 3.4.3. Consider the space @, of quadratic forms with the linear
action of the special orthogonal SO,, C GL,, by substitution (I.3.3). We can identify
Qn with the symmetric matrices Sym,, C M,, where the linear action of SO,, given
by A +— gAgt = gAg~! (1.3.1). This shows that every invariant of M, under
conjugation by GL,, defines an O,-invariant of @,,. In particular, the quotient map
mm, : M, = C" of M,, by GL,, restricted to @,, = Sym,, is SO,,-invariant.

We claim that the induced morphism
T, Qn = C"  qg=qa— (S1(4),...,5.(4))
is the quotient of @, by SO,, (and by O,,).

PRrooF. Since Sym,, contains the diagonal matrices, the map m¢,, is surjective.
We claim that a symmetric n X n-matrix A with n distinct eigenvalues is conjugate,
under SO,,, to a diagonal matrix. This implies that on an open dense set of C™ the
fibers of mg, are orbits and so mg, is the quotient map by the Quotient Criterion.

In order to prove the claim, we first remark the two eigenvectors v, w of A with
different eigenvalues A # u are orthogonal. In fact, v* Aw = (v! Aw)! = w'Av, and
v Aw = pvtw whereas wtAv = Awtv = Avtw. As a consequence, at least one of the
eigenvectors v; of A is not isotropic, so we can assume that viv; = 1. Now choose
a g € SO,, such that gv; = e;. Then gAg~! = gAg' has the form

M O - 0

0

: A

0
where A’ is a symmetric (n — 1) x (n — 1)-matrix with n — 1 distinct eigenvalues.
Now the claim follows by induction. O

EXAMPLE 3.4.4. Here we look at pairs of quadratic forms, @, ® @,, with
the diagonal linear action of SO, given by (qa,¢5) — (9q9a,9qp). Consider the
homogeneous polynomial

fa.B(s,t) :=det(sA+tB) = ifi(A B)s't"!
i=0

which is invariant under the action (4, B) — (gAgt, gBg").
We claim that the morphism

WIQn@QnHCn+1a (qa,98) = (fo(A,B), ..., fa(A, B))
is the quotient of Q, ® Q, by SL,.
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PROOF. Restricting 7 to pairs of diagonal matrices we see that 7 is surjective.
Now consider the following open dense subset of Q,, & Qy:

U :={(qa,q8) | gg non-degenerate and f4 p without multiple factors}.

Any (qa,qp) € U is equivalent under SL,, to some (ga/,q.r), ¢ # 0, and A" has n
distinct eigenvalues, because xa/(t) = farcp(—1,%) = fa,p(—1,%). The stabilizer
of ¢.g is Oy, and so (qa, gcg) is equivalent to a pair (¢p, ¢.g) where D is a diagonal
matrix (see Example 3.4.3 above). Since fp cg(s,t) = [, (Ais+ct) we see that all
pairs in the fiber through (g4, ¢g) are equivalent to (¢p, ¢.r), and the claim follows
from the quotient criterion. O

4. The First Fundamental Theorem for GL,,

4.1. A Classical Problem. We consider the vector space V' = C™ with the
natural linear GL,-action. For every pair 7, s of natural numbers we get a repre-
sentation of GL,, on the space

L.,:=V"a& (V")
with the contragradient representation on V*: (gf)(v) = ¢(g~1v) for £ € V*, g €
GL, and v e V.

Classical Problem: Describe the invariant ring O(Lns)GL" by generators and
relations.

ExAMPLE 4.1.1. For r = s = 1 we have the map
T={, ) :VeV*=C, (vl (v,L):="L{).

Clearly, 7 is constant on the orbits: 7(g(v,£)) = (gv, gt) = (g€)(gv) = (g~ 'gv) =
£(v) = w(v,£). With the help of the Quotient Criterion (3.4) it is easy to see that
7 is a quotient. It follows that O(V @ V*)GEn is a polynomial ring in one variable:

oWV @VHS =c[(, ).

Next we would like to find a candidate for the quotient space L, // GL,,. To
do this we give a “coordinate free” description of L, s. Suppose U, V', W are three
finite dimensional vector spaces. Let

L:=L({UV)x L(V,IW)
where we have used the following notation:
L(U,V) := Home(U, V),
Ly(U,V):={p € L(U,V) | tkp < p},
L,(U,V):={pec LUV) |rtkp=p}.
The group G := GL(V) acts linearly on L by
gla,B):=(goa,Bog™).

If one takes U := C", V := C" and W := C?, then it is obvious that L and L, , are
canonically GL(V')-isomorphic.
Now we consider the following bilinear map.

w: L — L{U,W), (o,B)— foa.
Clearly, 7 is constant on the orbits and

w(L) = Ly(U, W), t := min(dim U, dim V, dim W).
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4.2. First Fundamental Theorem. For a complete proof of the following
theorem we need a result from the fifth chapter. However, we can handle some
special cases, see Proposition 4.3.1 below.

THEOREM 4.2.1 (First Fundamental Theorem for GL,,). The mapping
m: LU, V) x L(V,W) = Ly(U W), (a,8)— Boa,
where t := min(dim U, dim V, dim W), is the quotient by GL(V).

PROOF. By the Quotient Criterion (3.4) it suffices to show the following:

(i) The space L (U, W) is normal. This will be proved in ??, using the method
of U-invariants. The irreducibility and a formula for the dimension of
Li(U,W) is given in Lemma 4.2.2 below.

(ii) Every fiber of 7 contains exactly one closed orbit. This is the assertion of
Corollary 5.5.2 below.

O

LEMMA 4.2.2. The set L,(U W) = {p € L(UW) | tkp < p} C L(U,V) is
irreducible and closed and has dimension
dimU - dim W forp>m

dim L, (U, W) =
im Ly ( ) {(dimU—I—dimW—p)p forp<m

where m := min(dim U, dim W).

PrOOF. Clearly, L,(U, W) is isomorphic to the set of all dimU x dim W-
matrices for which (p + 1) X (p + 1)-minors vanish. This implies that L, (U, W)
is closed in L(U,W).

The group H := GL(U) x GL(W) acts on L(U,W) by (h,k)p:=kopoh™t. A
standard result from linear algebra tells us that p and p’ belong to the same H-orbit
exactly when they have the same rank. The sets L;(U, W), p < m, are thus the
orbits of H. One can easily see from this that

(+) Ly (U,W) = | Li(U, W) = L,(U,W).

Thus L, (U, W), as the closure of an orbit of the connected group H, is irreducible.
Suppose p < m and let U = U’ @& U” be a splitting of U into a direct sum with
dim U’ = p. We consider the surjective map p: L,(U,W) — L(U', W), p — plu
and determine its fibers over the dense subset L;,(U’, W) of L(U’, W):
pH(r) ={p € LUW) | plor = 7 and p(U") C 7(U")}
~ L(U",7(U")).

From the dimension formula (A.3.4.7) we now get

dim L,(U, W) = dim L(U', W) + dim L(U", 7(U"))
=dimW - p+ (dimU — p)p = (dim U + dim W — p)p.

O

REMARK 4.2.3. The inclusions of the closures of the H-orbits in L(U,V) is
given by the following diagram, where m = min(dim U, dim W) as above, see (x).
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o L;,(U,V)

I
mel

. (U, V)
o Ly(U,V)
° L’l(U, V)

o (U, V) ={0}

FIGURE 1. Degenerations of orbits in L(U, V)

4.3. A special case. Under certain additional assumptions on the dimensions
of U,V and W we can now give a complete proof of the First Fundamental Theorem.
PROPOSITION 4.3.1. If dim V' > max(dim U, dim W), then
m: LU, V) x L(V,W) = L(UW)
is the quotient by GL(V).
PRrooF. Clearly, « is surjective and L(U, W) is normal.
(a) First suppose U =V =W and let
mo: End(V) x End(V) — End(V)
be the multiplication map. For p € GL(V') one has

o (p) = {(e.B) | Boa=p} ={(g.p97") | g € GL(V)}.
This shows that over the open dense subset GL(V') of End(V) the fiber of 7y consists
of exactly one G-orbit, and the claim follows from the Quotient Criterion (3.4).
(b) If U and W are arbitrary with dim U, dim W < dim V, then we choose a
surjection 7: V' — U and an injection o: W — V. We thus have a commutative
diagram
LU, V) x L(V,W) % End(V) x End(V)

! -
LU, W) % End(V)
where the two injective linear maps ® anZl U are defined by
O(a,B):=(aor,008), VY(p):=copor.
Clearly, ® is G-equivariant and hence identifies L(U, V') x L(V, W) with a G-stable
closed subset of End(V') x End(V) whose image under 7 is equal to W(L(U, W)).
The result now follows from the G-closedness of quotient maps (2.5). O

4.4. Orbits in L(U, V). In the rest of this section we study the fibers of 7 a
little closer, in particular, their GL(V')-structure and the question of irreducibility
and normality. In the following lemma we present a few simple facts whose proofs
are left to the reader.

LEMMA 4.4.1. For p,p' € L(U, W) one has:
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(a) kerp = kerp’ <= 3k € GL(W) such that p' = ko p;

(b) imp =imp’ <= Jh € GL(U) such that p' = po hl.
Forpe L(UW),a € L(U,V) and 8 € L(V,W) one has:

(c) kera C ker p <= 35" € L(V, W) such that ' o v = p;

d) imfB D ima <= 3o’ € L(U,V) such that Boa' =p
Now we come to the description of the orbits in L = L(U, V) x L(V, W) and their
closures.

PROPOSITION 4.4.2. Suppose («, 8) and (o', 8') are in L := L(U, V) x L(V,W).
Then

(a) (¢, 8") € GL(V)(a, B) <= f'od’ = Boq, kera’ = ker o and im 8 = im 3.
(b) ( "B € GL(V)(a, 8) <= B'oa’ = Boa, kera/ D ker a andim 3/ C im 3.
(¢) GL(V)(«, B) is closed if and only if ker & = ker(Boa) andim f = im(Boc).
PrROOF. (a) The implication “=" is clear. For the other direction we may

assume that o/ = a (Lemma 4.4.1(a)). We consider the following decompositions
V=VieVieV,eVs=VWeVieV,oV;
where ima = Vy @ Vi, ker 8 = Vi @ Vo, and ker 8/ = Vi @ V4. Then Bly,ev, and
B'lvo@vy are both injective with the same image 3(V) = (V). By Lemma 4.4.1(b)
there is thus an isomorphism
c:VooWzs S Voo vy
such that (8'|v,evy) oo = Blv,evs- Since 8 and 8’ agree on Vj, it follows that oy, =
idy; . If we now choose any isomorphism 7: Vo = V3, then we get an automorphism
h:V 5V, defined by
h(vo,v1,v2,v3) := (vo,v1,T(v2),0(v3)) (vi € V5),
which, by construction, gives us what we want, namely

h|ima = idima and ﬂ = ﬂ/ oh.

(b) Again the implication “=" is clear, because o’ € GL(V)oa and g’ €
B oGL(V) and thus ker o/ D kera and im 3/ C im 3. Therefore, for a fixed p, the
set {(a, B) | Boa = p} is a fiber of 7 and so it is closed.

For the other direction let p := 8o a = 3’ o a’. There are decompositions

U=Uy®U,@kera and W=WydW; $imp
where
U @kera=kera’ and W;@imp =imp.

Because ker o/ C kerp and im p C im 3’ the following diagram is commutative for
alle € C:

Uy®U; ®kera —2— Wy @ Wi ®im '
T51=T(id,a~id,id) Ug:J{(id,aid,id)

Up & Uy @ kera —2— Wy @& Wi @ im 3
Thus we have
p=00p0Te = (UEOB)O(QOTE) :Beoam
where o, := a o 7. and . := 0. o 3. For € # 0 one clearly has ker a. = ker @ and
im B, = impg. By (a) it thus follows that (ae,B:) € GL(V)(«, 8) for every € # 0.
Hence (oo, 8o) € GL(V)(«, 8). Because ker ag = ker o/ and im By = im #’ it again
follows from (a) that (o/, 8") € GL(V)(ap, Bo) and the result is clear.
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(c) Suppose p := Boa,kera = kerp and im 8 = im p. For some (o/,5') €
GL(V)(«, B8) we get by (b) the inclusions ker o’ 2O ker p and im 8’ C im p. On the
other hand, since 8’ o &’ = p we have that kerp O ker o’ and imp C im 8’. From
(a) it therefore follows that (o, ') € GL(V)(«, ) and thus GL(V)(«, ) is closed.

Now suppose conversely that GL(V)(«, §) is closed. Clearly, one always has
a decomposition p = ' o o with kera/ = kerp and im 3’ = imp. From (b) it
follows that (o, 8") € GL(V)(«, 8) = GL(V)(a, 8). Thus ker oo = ker p and im 8 =
im p. U

The proofs of the following two corollaries are left as an exercise.

COROLLARY 4.4.3. There is exactly one closed orbit in the fiber m=1(p), namely
GL(V)(cw, fo) where p = By o v, ker p = ker ag, and im p = im fy.

COROLLARY 4.4.4. The orbit of (a, f) is closed if and only if V = im a @ ker §.
This is fulfilled, for example, if o is surjective and B is injective.
4.5. Degenerations of orbits. For a vector space M over C we now define
the Grassmann manifold also called Grassmannian.
Grassg(M) := set of all subspaces of M of dimension d,

and

dim M
Grass(M) := set of all subspaces of M = U Grassq(M).
d=0

If p e (L) and F, := m!(p) is the fiber of p, then we consider the map
®: F, — Grass(ker p) x Grass(W/imp), («,f)+— (kera,imf/imp).
By Proposition 4.4.2(a), the fibers of ® are exactly the GL(V)-orbits in F),.

LEMMA 4.5.1. The image of ® consists exactly of those pairs (Uy, W) which
satiesfy

O codim, Uy + dim Wy < dim V —rk p.

(Here codim, Uy := dimker p — dim Uy.)

PROOF. Suppose p := foa, Uy = ker @ and Wy = im 3/ im p. Since a(ker p) C
ker 3 it follows that codim, Uy < dim ker 8 and thus

codim, Uy + dim Wy < dimker § + dimim 8 —rkp = dimV —rkp.

This proves (1).

Conversely suppose Uy C ker p and Wy C W/ im p are given by (1). Let W, € W
be the preimage of Wy. Then p can be factored as follows:

U U/Uy —2— W, W
We have to show that there is a injection ar: U/Uy — V and a surjection B: V — Wy
with p = 8 o &. Such a pair (&, 8) obviously exists if and only if
dim V' > dim(U/Up + dim(Wp/ im p).

But the right hand side of this inequality is equal to rk p + codim, Uy + dim Wy,
and the claim follows. O

COROLLARY 4.5.2. The fiber F, is a closed orbit under GL(V) exactly if p is
bijective or if tkp =dim V.
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Anzahl der 1 2 2 3 4
Bahnen in Fp

~(1,1)

Inklusions-
diagramme +(0,1) +(1,0) (0,1) 4 ;(1,0) (0,1) ¢ r(1,0)

(VAR

«(0,0) = (0,0) *(0,0) = (0,0) +(0,0)

Bedingungen rg p = dim V rg p < dim V rgp =dimVv -1 rg p £dim Vv - 2
p injektiv p surjektiv codim Im p = 1 = dim Ker p
oder codim Im p =1 dim Ker p =1
p bijektiv

Die Fasern Fp mit endlich vielen Bahnen

TABLE 1. Fibers of p with finitely many H,-orbits

ProoF. If dimV = rkp and p = o a, then @ must be surjective and (3
injective, and the result follows from Corollary 4.4.4. If p = 8 o « is bijective, then
we get kera = (0) = kerp and im8 = W = imp, and the result follows from
Proposition 4.4.2(c).

Conversely if F), consists of exactly one orbit and if dim V' > rk p, then it follows
from Lemma 4.5.2 above that ker p = (0) and imp = W. O

COROLLARY 4.5.3. The fiber F,, consists of finitely many orbits under the action
of GL(V) if and only if either tk p = dim V' or dimker p and codimy, im p < 1 hold.

(This follows easily from Lemma 4.5.1 and the fact that Grass(M) is finite precisely
when dim M < 1.)

REMARK 4.5.4. On Grass(ker p) x Grass(W/im p) we consider the ordering <
given by
(Uy, Wo) < (U, Wy) <= Uy 2 Uy and Wy C Wj.
Then, by Proposition 4.4.2, one has for (ag, fo), (o1, 1) € F,

(ao, Bo) € GL(V) (a1, 1) <= (o, o) < (a1, f1).

If we denote by F,/ GL(V) the set of orbits in F}, along with the ordering given
by the closure of the orbits, then the mapping

®: F, — Grass(ker p) x Grass(WW/im p)
induces an order preserving isomorphism
F,/GL(V) = ®(F,) = {(U,W) | codim, U + dim W < dimV — rk p}.

In Table 1 we present the various cases for which F}, only has a finite number of
orbits under H,. To do this we have provided the individual orbits in the inclusion
diagram with a pair of integers (n, m), which are defined by the following mapping:

0: F, > NxN, (a,B) (codim, kera,rk 8 — rk p).

One has
(v, B) = (codim, Uy, dim W)
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where (Up, Wy) = ®(«, ), and by Lemma 4.5.1
0(F,) :={(n,m) | n < dimker p,m < dimW —rkp,n+m < dimV —rkp}.
Thus the set of orbits in #7(n,m) C F, for a fixed (n,m) is parametrized by

Grassdim ker p—n (ker p) x Grass,,(W/imp).

4.6. The subgroup H,. Now we want to see that these subsets correspond
to the orbits of a particular subgroup H, of GL(U) x GL(V') x GL(W). To do this
we choose decompositions U =kerp @ Uy, W =imp @ W and set

H, := GL(ker p) x GL(V) x GL(W;) € GL(U) x GL(V) x GL(W).

(Every automorphism of ker p (resp. of W7) is extended to all of U (resp. to all of
W) by defining it to be the identity map on U; (resp. on im p).)
This group H, acts linearly on L = L(U, V) x L(V,W) by

(h,g,k)(a, B) == (goaoh™ ko Bog™).

This action coincides on the subgroup GL(V') C H, with the given action of GL(V)
on L. Since H, induces the identity on U; and on im p, the set F), is stable under
H,.

PRroproOSITION 4.6.1. The mapping 0: F, — N x N induces a bijection between

F,/H,, the set of H,-orbits in F,, and its image N, := 6(F,). Moreover, 0 is order

preserving, i.e. one has (¢/, ") € H,(«, B) if and only if 0(c/, ) < 6(c, B).

(As before, (n',m') < (n,m) if n’ <n and m' <m.)

PrROOF. We have to show that H,, acts transitively on 6~ (n,m). Now 0: F, —
N x N is the composition

0=00d: F, 2, Grass(ker p) x Grass(W/im p) % L Nx N,

where

Q(Uo, Wo) = (codimp UQ, dim Wo)
Clearly GL(ker p) x GL(W7) acts transitively on
6= (m,n) = {(Uy, W) | dim Uy = dimker p — n, dim Wy = m},

and the first claim follows.
The second assertion follows easily from Proposition 4.4.2. U

As a consequence we see that the fiber F' = F, contains only finitely many
H ,-orbits. The inclusion diagram for the closures of the H ,-orbits is given by the
set N, € N x N with the product ordering on N x N which was just defined.

EXAMPLE 4.6.2. Suppose dimkerp = 3 = dimW — rkp. Then we get the
following inclusion diagrams of the closure of the H,-orbits in F, (depending on
the quantity h := dim V' — rk p):
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(3,0) (2,1) (1,2) (0,3)

(2:0) (1:1) ‘012) \/\/\/
(1:0) (0:1) \/\/ \/\/
(020) \/ \._/ \/

h=0 1 2 3

(3,3)

(3,2) (2,3) /\
(3,.1) (2,.2) (1,.3) /\/\ /\/\
VAYAVANERYVAVAVANERYVAVAVAN
AVAVA VIRV AVAVERERVAVAVA
N/ \/ A\VAVA N\
\/ N/ N/

5

v

6
In particular, in this example F), is irreducible if either dimV = rkp or dimV >
rkp + 6.
EXERCISE 4.6.3. (1) The number of irreducible components of F), is given by
max(min(h + 1,n0 + 1,mo + 1,n0 + mo — h + 1), 1)
where h :=dimV —rk p, ng := dimker p and mo = dim W — rk p:

(2) For the zero fiber Fy one has:
(i) Fo is irreducible <= dimU +dim W < dim V.
(ii) Suppose m := min(dim U, dim W) < M := max(dim U, dim W). Then
dimV +1 if m > dimV,
# irreducible components = ¢ m + 1 ifm <dimV < M,
max(M +m —dimV +1,1) if M <dimV.

4.7. Structure of the fiber Fj.
PROPOSITION 4.7.1. The fiber F,, is irreducible if and only if one of the following
conditions is fulfilled:
(a) tkp > dimU + dim W — dim V,
(b) tkp=dimV,
(¢c) p is injective or surjective.
ProOOF. Clearly F), is irreducible exactly if N, has a largest element (Proposi-
tion 4.6.1). Set

h:=dimV —rkp, ng:=dimkerp, mg:=dimW —rkp.
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Then N, = {(n,m) < (ng,mo) | n+m < h}. Thus N, has a largest element if and
only if one of the following cases occurs:

(a) ng +mo < h; then the largest element is (ng, mg).
(b) h = 0; then the largest element is (0,0).
(¢) mo = 0 resp. my = 0; then the largest element is (d,0) resp. (0,d) with
d = min(ng, h) resp. d = min(mg, h).
These three cases correspond exactly to the three cases given in the statement of
the proposition. For (a) one should note the relation
no +mo = dimker p +dimW —rkp =dimU + dim W — 21k p.

d

REMARK 4.7.2. Recall that in case (b) the fiber F), is a closed orbit (Corol-
lary 4.5.2).

COROLLARY 4.7.3. The fibers of m are irreducible on the open, dense subset
Ly(U,W) of m(L) = Ly(U, W) where t := min(dim U, dim V, dim W).
PROOF. Suppose p € Ly (U, W), i.e. tk p = t. We distinguish three cases.
(1) max(dimU,dim W) < dim V. This implies rkp =t > dimU + dim W —
dim V' and F, is irreducible by Proposition 4.7.1(a).
(2) dimV < min(dim U, dim W). This implies rkp = dimV, and F, is irre-
ducible by Proposition 4.7.1(b).
(3) dimU < dimV < dim W resp. dimU > dimV > dim W. This implies
tkp = dim U resp. rkp = dim W, and so p is injective (resp. surjective).
By Proposition 4.7.1(c) the set F), is irreducible.
O

It remains the question if these fibers are normal or even smooth. A first answer
is the following.

PROPOSITION 4.7.4. If
tkp > dimU +dimW — dim V,
then the fiber F, is a normal complete intersection (AL5.7) of dimension
dimF, = (dimU + dim W) - dimV — dim U - dim W.
For the proof we want to use the normality criterion of SERRE (see AL.5.7.5)
and thus we must determine the points (o, 8) € L where the tangent map
dm(ap): L — LU,W), (X,Y)= (BoX+Yoa)
is surjective. (As usual we have set T(q g)(L) = L and T,(L(U,W)) = L(U,W),
where p = 5 o . Then
mla+eX,f+eY)=(B+eY)o(a+eX)=Foa+e(foX +Y o),
and 80 dm(q,5)(X,Y) =B0o X +Yoa.)

LEMMA 4.7.5. The differential dmq gy: L — L(U, W) is surjective if and only
if a is injective or B is surjective.

PROOF. We set 0 := dm(, gy and thus 6(X,Y) = Bo X +Y oa. If a is injective
(resp. B is surjective), then dimU < dimV (resp. dimV > dim W) and every
homomorphism in L(U, W) factors through « (resp. ). On the other hand, for
every o € 0(L) one clearly has o(ker o) C im . Thus, if § is surjective, then one
must either have ker v = (0) or im 8 = W. O
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PROOF OF PROPOSITION 4.7.4. By the lemma above and SERRE’s Criterion
(Proposition AI.5.7.5) it suffices to show that

F) :={(, B) € F, | a is injective or 3 surjective} C F),

has a complement of codimension > 2. Set ng := dimker p, mg := dim W — rkp.
By assumption, the subset

N,={(n,m) e NxN|n<ngand m <mg} CNxN

has the form given in Figure 2 below where O := 071 (ng, mg), O1 = 07 (ng—1,mg)
and Oz = 07! (ng,mg — 1) are H,-orbits, see Proposition 4.7.1(a).

0
o

<

FIGURE 2. H,-orbits in the fiber F),

» O

By the lemma above we have («, 8) € F), if and only if 0(c, 3) is either of the
form (ng, m) or (n,mp). In particular,

F,2(0U0;U0,) and F,\O=0,UOsx.
This implies
dim(F, \ F}) < dim (F, \ (O U Oy UOy)) < dim(F, \ O) < dim F,,,
and thus codimp, (m) > 2. O

REMARK 4.7.6. All irreducible fibers of m are normal. In fact, if p satisfies (b)
or (c) of Proposition 4.7.1, then F), is even smooth.
(In case (b) the set F), is a GL(V)-orbit and in case (c) one has F, = F}.)

5. Sheets, General Fiber and Null Fiber

We consider a linear representation p: G — GL(V) of a reductive group G and
denote by m: V. — Y = VG the quotient of V' by G. In this section we present a
few connections between the geometry of the null fiber (also called the null cone)

N =Ny =71 (n(0))

and the geometry of a general fiber of w. It will be shown that the null fiber in
a certain sense is the “worst” of all the fibers, or otherwise stated, the “good”
properties of the null fiber also occur in all the other fibers. In order to study this
transformation of a general fiber into the null fiber we first introduce the concept
of sheets.
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5.1. Sheets. Suppose G is an algebraic group and Z is a G-variety. We con-
sider the union of the G-orbits of a fixed dimension n € N:

ZM = {z e 7| dim Gz = n}.
These sets are obviously G-stable subsets of Z.

PROPOSITION 5.1.1. The subsets Z™ C Z are locally closed and G-stable. The
subset Z™** of orbits of mazximal dimension is open in Z.

PROOF. It is enough to show that for every n € N the subset {z € Z | dim Gz >
n} is open in Z. This follows from the dimension formula dim Gz +dim G, = dim G
(see I11.1.3) with the help of the following lemma. O

LEMMA 5.1.2. The function z — dim G, is upper semi-continuous, i.e., for
every n € N the set {z € Z | dim G, < n} is an open subset of Z.

PROOF. Since we can embed Z equivariantly into a vector space with a linear
action of G (Corollary I11.2.3.5) it suffices to prove the lemma for Z = V. Now
Lie G also acts on V (see II1.5.3), and for v € V one has

LieG, = (LieG), := {X € LieG | Xv =0}
(Proposition I11.5.3.2). We consider the linear mapping
V — Hom¢(Lie G, V), v+ sy,

where s,: LieG — V is given by X — Xwv. It follows that (Lie G), = kers, for
every v € V, and we have to show that v — dim(ker s,) is upper semi-continuous.
But this is a well-known fact from linear algebra. O

DEFINITION 5.1.3. Suppose G is connected. Then the irreducible components
of Z(" are called the sheets of Z. Thus the sheets are locally closed, irreducible
G-stable subsets of Z.

The notion of sheets arose in the study of conjugacy classes in Lie algebras and
goes back to DIXMIER (cf. the original literature [?], [?], [?]). If we consider the
classical case of conjugacy classes of matrices (i.e. the operation of GL,, on M,, by
conjugation), then one can prove the following.

(a) The sheets of M,, are pairwise disjoint.

(b) Every sheet S contains semi-simple conjugacy classes and ezactly one
nilpotent conjugacy class.

(¢) The sheets of M, are smooth.

None of these claims is true, in general. For instance, if we consider the adjoint
representation of a classical group G = SO,, or G = Sp,, on its Lie algebra g, then
the sheets in g are not disjoint. Moreover, there are strata which are made up of
only one nilpotent conjugacy class, namely the sheets of minimal dimension. And
singular sheets occur, for example, in the Lie algebra of the exceptional group Gs.
But it was shown by ANDREAS IM HOF that the sheets in the classical Lie algebras
are smooth .Compare this with the investigation in [?].

EXAMPLE 5.1.4. Sheets in the Lie algebra of SLj.
Let G = SL3 act on its Lie algebra

sly = {X € My | tr X =0},

by conjugation. (This example was studied in detail in ??.) Then sl3 consists of
three disjoint sheets having orbit dimensions 0, 4 and 6:

sl3 = So U Sy U Sg,
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where Sy is just the zero matrix, Sy consists of the semi-simple matrices which have
0

an eigenvalue A # 0 of multiplicity together with the conjugacy class of [0 0 8}

while Sg contains the rest. Thus it is made up of the semi-simple matrices with

A1 0
three different eigenvalues, the conjugacy classes of the matrices [8 A %,\} with

A # 0, and the conjugacy class of [g é ((1;] Even in this rather simple example it is

not obvious that the sheet S4 has no singularities!

EXAMPLE 5.1.5. Sheets in the Lie algebra of Sp,.

The group Sp, acts by conjugation on its Lie algebra sp,, and sp, has conjugacy
classes of dimensions 8, 6, 4 and 0. One gets one sheet Sg = 5p518) = sp'** of
dimension 10, the so—called regular or mazimal sheet (= the sheet of maximal orbit
dimension). The closure of Sg contains two sheets S§ and S§ with orbit dimension 6
which are the so-called subregular sheets. These are each 7T-dimensional, and S{NS§
consists of the nilpotent conjugacy class of dimension 6 with partition (2,2). The
sheet Sy lies in the closure of S§ and S§; this only contains the nilpotent conjugacy
class with partition (2,1, 1), see Figure 3.

dimensions of nilpotent conjugacy classes
sheet conjucacy classes  in the sheet given by
01 0 07
8 00 0 1
00 0 0
L00-10
/ \ 01 0 07
6 00 0 0
L00-10
0000
1 ki
0000
Sog={0}e 0 0

F1GURE 3. The sheets in the Lie algebra of Sp,

ExXAMPLE 5.1.6. Sheets in pairs of vectors.
The group SLs acts on the space of 2 x 2-matrices Ms by multiplication from the
left (cf. 1.5.1). Then My consists of 3 disjoint sheets of orbit dimensions 3, 2 and 0:

M, = 53U Sy U {0}
where
S3:=GLy C My, Sy:={m € My |m#0and detm = 0}.
The set S3 consists exactly of the closed orbits which are not equal to zero. For

every orbit O C Sy one has O = O U {0} and O ~ C? where C? carries the natural
representation of SLs.

ExAMPLE 5.1.7. Sheets in binary forms. We have a natural action of SLs
on the binary forms R, := O, (C?) (cf. 1.6.1). The space R; = (C?)* is isomorphic
to the natural representation and has two sheets, both consisting in one orbit. The
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space R is isomorphic to the adjoint representation of SLs. It also has two sheets,
{0} and the complement Sy := Ry \ {0} consisting of 2-dimensional orbits.
For n > 3 the representation R,, consists of three disjoint sheets of orbit di-
mensions 3, 2, and 0:
R, = S5 U Sy, U{0}.

Let us describe Sy = Rg):
(a) For n odd:

So={0"|¢€ Ry \{0}} = Oyn := orbit of 2" C N,

(b) For n = 2m even:

Sy ={(tr - £o)™ | £; € Ri\{0}} = Oom U | ] Ongmym.
AeCr

5.2. Finitely many orbits. In this section we prove a first result showing
that a “good” property of the null fiber carries over to all fibers of the quotient
morphism 7: V — V/G.

PROPOSITION 5.2.1. Assume that the null fiber Ny = m=(7(0)) only contains
a finite number of orbits. Then

(1) Ewery fiber of ™ contains only finitely many orbits.

(2) m: V. = V)G is equidimensional, i.e. the irreducible components of all
fibers of m have the same dimension.

(3) Ewvery irreducible component C' of a fiber contains a dense orbit of G°.

(4) We have dim C = maxyecy dimGv = dimV — dim V//G.

PROOF. We may assume that G is connected.

(1) If the fiber F' := 7~ !(w) contains infinitely many orbits of dimension d
for some w € V/JG, then there is an irreducible component X of Fy := {v € F |
dim Gv < d} which contains infinitely many orbits of dimension d. In particular,
one has dimX > d + 1. Now consider C*X := {AX | A € C*;z € X} and its
closure Z := C*X. Both sets are irreducible, G-stable and are contained in V; :=
{v € V| dimGv < d}. By Lemma 5.1.2 the set V; is closed. Clearly, 0 € Z and
p:=mlz: Z = n(Z) CV)G is a quotient, because of the G-closedness of algebraic
quotients (2.5). Since X lies in a fiber of the quotient p, one has AX C p~(p(\z))
for every A € C* and z € X. This implies dim p~1(p(z)) > dim X > d + 1 for every
z in the dense subset C*X of Z, hence dim p~!(p(0)) > d + 1 by the dimension
formula AIL.3.4.7. Because p~1(p(0)) C Vg, the fiber p=!(p(0)) must contain an
infinite number of orbits, which contradicts the assumption.

(2) Let m be the maximal orbit dimension in V. By Proposition 5.1.1 the set
VM) = {y € V | dim Gv = m} is open (and dense) in V. Thus 7(V (™) is dense in
V)G, and for every w € 7(V (™) the fiber 7~ (w) contains an orbit of dimension
m. Thus dim 7~!(w) > m. By (1) every fiber F of m contains only a finite number
of orbits. Thus dim F' < m. Using again the dimension formula AI.3.4.7 one gets
dim C' = m for every irreducible component of F, and the claim follows.

(3) Let C be an irreducible component of a fiber F'. By (1), it contains only
finitely many orbits, and by (2) it has dimension m. Hence C' contains a dense orbit
of dimension m.

(4) This follows from the above and the dimension formula AI.3.4.7. O
The same proof yields the following variant of the proposition above.

PROPOSITION 5.2.2. If every component of the null fiber Ny, contains a dense
orbit, then this is true for every fiber of m: V. — V/J/G, and 7 is equidimensional.
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EXAMPLE 5.2.3. Let C* act on C? by t(z,y) := (¢t x,t~' - y). Then
1:C* = C, (x,y)r 2y,
is the quotient of C2 by this C*-action. The null fiber consists of three orbits,
Ny =V(zy) = (z-axis \ {0}) U (y-axis \ {0}) U {0}.
The other fibers are hyperbolas
F.:=n"'(c) = V(zy — c) where c € C*,

and they are closed orbits.

" .y

FIGURE 4. General fiber and null fiber

5.3. The associated cone. Now we would like to study the transformation
from a general fiber to the null fiber a little closer. Let

R:=0(V)=EPR
i>0
be the coordinate ring of V' with its usual grading given by the total degree of the
polynomials.

DEFINITION 5.3.1. If f e R, f = E?:o fi, where f; € R; and f; # 0, then we
set
gr f := fq = homogeneous part of highest degree of f.
If T C R is a subspace, then
grT:=(grf | f €T) = subspace of R spanned by all gr f, f € T.
If a C R is an ideal, then gra is called the associated graded ideal.

The following properties are easy to verify. The task of doing this is left to the
reader as an exercise. For (2) one uses the fact that R has no zero divisors.
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LEMMA 5.3.2 (Properties of the associated graded ideal). Let a,b C R be ideals.

(1) gra is a homogeneous ideal in R. One has gra = a if and only if a is
homogeneous.

(2) gr(fR) = (gr f)R for every f € R.
(3) Ifa C b, then gra C grb.
(4) If a is G-stable, then gra is also G-stable.
(5) gra-grb Cgr(a-b) Cgrangrb.
(6) grv/aC /gra.
DEFINITION 5.3.3. Suppose X is an arbitrary subset of V. Then we define the
cone associated to X to be

CX = V(ar(1(X)))
where I(X) is the ideal of X.

PROPOSITION 5.3.4. Let X CV be a subset.

(1) CX =CX, and this is a closed cone in V.
(2) The transformation X — CX preserves inclusions, takes G-stable subsets
to G-stable closed cones and satisfies

C(XUY)=CXUCY.

(3) CX CC*X and dimCX = dim X .
(4) If X is closed and irreducible, then CX is equidimensional, i.e. all irre-
ducible components have the same dimension.

PROOF. The first two statements follow directly from the definitions. The first
part of (3) is also clear, because I(C*X) is a homogeneous ideal which is contained
in I(X) and thus also in gr(Z(X)). For the proof of the remaining assertion, we
may assume that X is closed.

Consider the vector space V & C with coordinate ring O(V @ C) = R][t], along
with the grading

Set
X =C"(Xx{1})={(Ax,\) e VaC| cC,r e X} CZ:=X'CVaC,
and let n: Z — C be the map induced by the projection pr: V& C — C. We want
to show that the following holds:
() n71(N) = AX x {A\} =2 X for A # 0.
(ii) n71(0) =CX x {0} 2 CX.

PROOF OF (i). For a homogeneous element f = Z?:l fit%=" € RJ[t]q one has
FOx,A) = M-8 fi(x) for A € C. Thus f € I(Z) implies Y.* f; € I(X) and
conversely. Since 1(Z) is homogeneous, an element (z,\) € Z for A # 0 is contained
in n~1()\) if and only if 2 = Az for some x € X. This implies (i). O

PRrOOF OF (ii). For g = Z?:o gi € R, gg #£ 0, set § := Z;l:o g;t977. Then
I(X')={(g| g€ I(X)),and g(v,0) = (grg)(v). For v € V this implies

(v,0) e Z < g(v,0) =0 for every g € I(X)
< (grg)(v) =0 for every g € I(X)
— velX,
ie. ZN(V x {0}) =CX x {0} which verifies (ii). d
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By construction X’ ~ X x C*. If X is irreducible, then so is Z, and one has
dim Z = dim X + 1. Because CX x {0} & Z, we therefore get dimCX < dim X.
Conversely, it follows from (i) and (ii) that every irreducible component of CX has
dimension > dim X (dimension formula AI.3.4.7). Thus CX is equidimensional of
dimension dim X. Because C(XUY') = CXUCY by (2), it also is true for a reducible
X CV that dimCX = dim X. O

Most of all we want to use this “cone construction” CX in the situation where X
is a fiber of a quotient map. In this case CX has a very simple geometric description.
(Cf. ?7; there X is a semi-stable orbit.)

PROPOSITION 5.3.5. Suppose X C V is contained in a fiber F of the quotient
map 7: V — VJ|G which is different from the null fiber N'v. Then

CX=C"XNNy=C*X\CX.
ProOF. We will prove the following statements which imply the claim.
() CX C Ny
(ii) Ny NC*X = 0;
iii) C*X = C*X UCX.

(i) The ideal m := €D, , RS is the maximal ideal of R® corresponding to m(0),
and Ny = V(m). One has to show m C gr I(X). To do this suppose f € m, f # 0 is
homogeneous. Since f is an invariant, f = ¢ € C on X. It follows that f —c € I(X)
and thus gr(f —c¢) = f € grI(X), i.e. m C grI(X).

(ii) Suppose z € Ny NC*X, i.e. z = Az for some A\ € C* and x € X. Since
Ny is a cone, we get * = A1z € Ny NX. Thus 7(x) = 7(0), contradicting the
assumption.

(iii) Suppose z € C*X \ C*X. Since C*X is dense in C*X there exist \; € C*
and z; € X such that z = lim; ,, \iz; (cf. Proposition B.1.5.1). By taking a
subsequence we may assume that the sequence A; converges. (Note that |\;| = oo
is not possible, because in this case z; — 0, and thus 0 € X, contradicting the
hypothesis.) Suppose lim;_, o, A; = A. If A # 0, then

A"tz = lim A;l)\ixi = lim z; € X, ie. z € C*X,

i—00 1—00

contradicting the assumptions. Thus lim; , A; = 0.
Now we will show that z € CX, i.e. (gr f)(z) = 0 for every f € I(X). Suppose

f= E;l:o fj € I(X) where fq # 0, hence gr f = fq. If we set f := E?:o =i f
for A € C*, then it follows that fy,(\;x;) = A?f(2;) = 0, and thus
0= lim fy,(Niz;) = (lim fy,)(lim \z;) = (gr f)(2).
i—00 i—00 1—00

This finishes the proof of the proposition. O

COROLLARY 5.3.6. One has dim Ny > dim F for every fiber F of w. In par-
ticular, w is equidimensional if and only if dim Ny is minimal, i.e. if and only
if

dimNy =dimV — dim V)/G.

(This follows directly from Proposition 5.3.5 above and Proposition 5.3.4.)

5.4. The coordinate ring of the associated cone. Now we would like to

compare the coordinate rings of X and of CX. As before, we set R := O(V) =
691‘20 R;. Then we have

O(X)=R/I(X) and O(CX) = R/\/grI(X).
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Suppose a C R is an ideal, and set R := R/a. Define R<; := @igj R; (hence
R<; = {0} for j < 0). Setting
RY := (R<j +a)/a C R/a,
we get an ascending filtration
RO .—CcRYCcR®c...CR

such that R®.RU) C RU+7) Therefore, the multiplication in R defines a C-algebra
structure on

o Ri= @) RO /RU-D.,
1=0

LEMMA 5.4.1. (1) There is a canonical isomorphism R/ gra = gr(R/a).
(2) If a is G-stable, then R/a and R/ gra are isomorphic G-modules.

PrOOF. (1) For f; € R; we denote by f; the image of f; in
R(i)/R(i_l) =(R<;+a)/(R<i—1 + a).
We get a homogeneous surjective C-algebra homomorphism
p:R—gr(R), f=> fimr> Ff
>0 >0
We find
(kerp)NR;, = (R<im1i+a)NR;
= {erf|f€adegf=i}
= (gra);
and thus ker p = gra.
(2) If a is G-stable, then so are all the R("). Because of the semisimplicity of
the G-modules, there is a G-stable complement E* of R¢~1 in R()
RY = E' @ RU~Y for every i € N.

Thus gr(R) = @2, R /R~Y is isomorphic, as a G-module, to @5, E* = R.
Since the 1somorph1sm R/gra = gr R constructed in (1) is also G- equ1var1ant, we
finally see that R/ gra and R are isomorphic as G-modules. O

If X is an affine G-variety such that O(X)% = C, then the multiplicities of
the simple modules in O(X) are finite, by HILBERT’s Finiteness Theorem 2.3.1 (cf.
5.5.2); they are denoted by my(X) for A € Ag.

PROPOSITION 5.4.2. If X is a G-stable closed subset of V', then the multiplicities
satisfy the following inequalities:

mx(X) > my(CX) for every X € Ag.

PrROOF. We have seen in Lemma 5.4.1 above that O(X) = R/I(X) is G-
isomorphic to R/ gr I(X). The claim now follows from the surjectivity of the canon-
ical G-equivariant homomorphism

R/grI(X)—> R/\/grI(X)=0(CX).
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5.5. Reducedness and normality. The main result of this section is the
following theorem. We look again at the quotient map 7: V — VG where V is a
G-module.

THEOREM 5.5.1. If the null fiver N'y is reduced and irreducible of dimension
dimV — dim VJG, then all fibers of © are reduced and irreducible, and 7 is equidi-
mensional. If, in addition, N'v is normal, then so are all the fibers of .

PROOF. (a) For z € V/G let m, C RS denote the maximal ideal corresponding
to w. Then one has mg := @, RZ.G C grm,. In fact, for a homogeneous f € my
one has f — f(z) € m,, hence f = gr(f — f(2)) € grm,.

Suppose now that C' is an irreducible component of F := 7~1(z). Then it follows
that m,R C I(C), and CC = N'y. In fact, N'y is irreducible and dim Ny = dim CC
by Corollary 5.3.6. Since Ny is reduced, one even has I(Ny) = mgR. Altogether
we get

moR Cgrm,RCgrI(C) C /grl(C)=INy)=mgR,
and thus grm,R = grI(C). Since m,R C I(C) we finally get m,R = I(C) by
Lemma 5.3.2. Thus m,,R = I(F), i.e. the fiber F' is reduced and irreducible.

(b) Suppose now that Ny is also normal. If we set R = O(F) = R/I(F), then

it follows from the above and Lemma 5.4.1(1) that

grR~R/grI(F)=OWNv),

i.e. gr R is a normal integral domain. We want to conclude from this that R R is
also normal. For f € R set

d if f#0and f e R\ R4~

dog f = i f#0and f \
—oc0o if f=0

(We are using the notation which was introduced above in section 5.4.) Since gr R

is an integral domain one has

deg(fg) = deg f +degg for every f,g € R.

Now let K := Quot(R) be the quotient field of R, and let t = f/g € K. Then
degt:=degf —degyg
is well-defined, i.e. independent of the representation of ¢ as a quotient in K. On
K we get the filtration
gK(i) gK(z‘+1) gK(iJrZ) C..- €7,
where K() := {t € K | degt <i}. Then we get
(i) K NR= R,
(ii) KO . g0 c g+,
(ili) deg(rs) = degr +degs for r,s € K.
Because of (ii), we see that gr K := @,., KV /KD is a C-algebra, and it follows
from (i) and (iii) that gr K has no zero divisors and that gr R C gr K. We claim
that gr K is contained in the quotient field of gr R:
gr R C gr K C Quot(gr R).
In fact, if s € grK, s € KO/KG1 then s = f/h + K0~Y where f h € R,
with d := degh = deg f — 1. Thus (grh)-s = (h+ K@) . (f/h + K0~V) =
f+ K@+ — or £ and hence
_ (erf)

= @h € Quot(gr R).
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Now suppose that S C K is the integral closure of R in K. Then S inherits the
filtration from K, i.e. S := SN K@, and one has

grRCgrS CegrK C Quot(grR).

Now the integral closure S of R in K is a finitely generated R-module (Proposi-
tion A.5.2.1). Hence, there is an r € R, r # 0, with S C R Because there are no
zero divisors in gr S, it thus follows that gr(rS) = (grr)(grS) C gr R. Since gr R
is noetherian, gr S is a finitely generated (gr R)-module and hence is integral over
gr R. By assumption we have gr S = gr R, and therefore R = S by Lemma 5.3.2(3).
i.e. R is normal. O

COROLLARY 5.5.2. If
vi={veNy | (dn),: V = T (V)G) is surjective}

is not empty and codimp, Ny \ Ny > 2, then all fibers of © are reduced and
normal, the quotient map 7 is equidimensional, and the quotient V)/G is an affine
space.

PrOOF. If v € NV, then

dim, Ny < dimT,(Ny) < dimker(dr), = dimV — dim Ty (V] G)
< dimV —dim, g V/G =dimV — dim V)G < dim, Ny .

Thus dim 750y (V/G) = dim V//G, i.e. w(0) is a regular point of V//G, and Ny is
smooth in N, hence Ny is reduced and normal, by SERRE’s Criterion A.5.7.5.
Now the theorem above implies the first two claims.

It remains to see that the quotient is an affine space. Since O(V//G) = O(X) is

positively graded, with homogeneous maximal ideal m ), this is Example I11.3.1.3.
O

ExaMPLE 5.5.3 (First Fundamental Theorem). Suppose dimU + dim W <
dim V. Then all fibers of the quotient map

m: L(U, V) x L(V,W) = L{U,W), (a,8)— Boa
are reduced and normal.

PROOF. This follows immediately from Proposition 4.7.4. We give here a direct
proof using the corollary above. The null fiber is given by N := {(a, 3) | Boa = 0}.
Hence, it is given by dim U - dim W equations. Since dim U - dim W is the dimension
of the quotient it follows that 7 is equidimensional. It is easy to see that the tangent
in (o, 3) € N is surjective, if either « is injective or § is surjective.

O

REMARK 5.5.4. Results analogous to our Theorem 5.5.1 can be proved for other
properties of the null fiber, e.g. for the Cohen-Macaulay property or the property
of having rational singularities.

6. The Variety of Representations of an Algebra

6.1. The variety Mod’. In the following let A be a finitely generated asso-
ciative unitary C-algebra, and let {ai,...,as} be a set of generators of A. A finite
dimensional A-module M is a finite dimensional C-vector space V together with
an action of A on V given by a homomorphism p: A — End(V) of C-algebras.
Therefore, the isomorphism classes of finite dimensional A-modules correspond in
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a unique way to the equivalence classes of finite dimensional representations of the
algebra A. Now fix n € N and define

Mod’} :={p: A — M, (C) | p a C-algebra homomorphism}.

For p € Mod’; we denote by M, the corresponding A-module with underlying vector
space C™.

PROPOSITION 6.1.1. The set Mod' of representations of A on C™ has a natural
structure of an affine variety with an action of GL,,. The orbits are the equivalence
classes of representations, and they correspond bijectively to the isomorphism classes
of n-dimensional A-modules.

PROOF. The homomorphism p: A — M,, is determined by the images of the
generators aq,...,as of A. Thus we get an embedding

L= gyt Mod 5 (ML), p s (plan). . play)).

The image of Mod’} is the closed subvariety of the vector space (M,,)* defined by the
same equations in the matrices p(a;) as those which are satisfied by the generators
a; in A. In order to see that this does not depend on the generators, it suffices
to consider a second set of generators of the form {ay,...,as,b} with an arbitrary
element b € A. Then b = p(ay, ..., as) where p is a linear combination of monomials
in the a;, and we get the following commutative diagram

(M) —"— (M)~ (M,,)*

where ¥(Ay, ..., As) := (A1,..., As,p(A1, ..., As)). Since pr oy = id it follows that
v induces an isomorphism t(q, ... 4,3(Mod);) = Lay,....anb} (Mod'y).

We let GL,, act by conjugation on (M,,)*. Clearly, the image of Mod’; is stable
under this action. In fact, along with p: A — M,, the map gp: A — M, a —
gp(a)g™!, is also an algebra homomorphism. The remaining statements are now
obvious. (]

For p € Mod’} we will denote by C, the orbit of p under the action of GL,,. By

the above every n-dimensional A-module M defines an orbit in Mod’; which will
be denoted by C);.

EXAMPLE 6.1.2. Let A = C[z], the polynomial ring in one variable z. Then
Mod”; ~ M,,, and the isomorphism classes of the n-dimensional A-modules are in
one-to-one correspondence with the conjugacy classes in M,,.

REMARK 6.1.3. For the stabilizer (GL,), of a representation p € Mod; we
have in a canonical way

(GLy), = Aut4(M,).

Proor. If g: M, — M, is an isomorphism of A-modules for some g € GL,,
then one has g(am) = a(gm) for every a € A, m € M,. By definition, am = p(a)m
and thus g(p(a)m) = p(a)g(m) for all m € M,. This implies gp(a) = p(a)g for
every a € A, hence gp = pg, i.e. g € (GLy),. The claim follows easily. U



IV.6. THE VARIETY OF REPRESENTATIONS OF AN ALGEBRA 145

6.2. Geometric properties. Now one might wonder about the connection
between algebraic properties of an A-module M and geometric properties of the
associated orbit Cjs. A first result in this direction is the following. Recall that an
A-module is semisimple if it is a direct sum of simple A-modules.

PROPOSITION 6.2.1. An A-module M of finite dimension is semisimple if and
only if the associated orbit Cyy is closed.

The proposition will be a consequence of a more general result (Theorem 6.3.2).
For the proof we need some new tools which we will develop now.

DEFINITION 6.2.2. A filtration F of an A-module M is a finite chain
F:M=My2 M 2---2M; = {0}

of submodules. The associated graded A-module is defined to be
t—1
gI‘]:M = @Mz/MHJ
i=0

REMARK 6.2.3. Every finite dimensional A-module M has a composition se-
ries, i.e. a filtration with all the factors M;/M; 1 being simple. The simple factors
which occur, as well as their multiplicities, are independent of the particular series
by the famous Theorem of JORDAN-HOLDER. One calls these simple factors the
composition factors or the JORDAN-HOLDER-factors.

LEMMA 6.2.4. Suppose p,p’ € Mod';. Then the following are equivalent.
(i) There exists a one-parameter subgroup A: C* — GL,, such that

. o
lim A(t)p = p'.

(ii) There exists o filtration F of the A-module M, such that gry M, ~ M,
as A-modules.

PROOF. (i) = (ii): We decompose the underlying vector space V = C" of M,
according to its weights with respect to A:

V:@Vz‘, Vi:={v eV |\t =t fortecC}.

Define M; = P, ; Vi. We claim that the M; C M, are submodules forming a
filtration F of M, such that grz M, ~ M.

Let ¢;: V; < V (resp. p;: V. — V;) be the canonical injections (resp. projec-
tions) of the weight space decomposition V' = €, V;. For a € A and p(a) € Endc(V)
one has p(a) = (pr o p(a) o 1;) = (p(a)i) with p(a)ix: Vi — Vi. We find that
P o (\(B)p) (@) 0 1 = pi o (\PAED) ) 0 13 = prtp(a)t-is; = t5i pla)

Vi p(a)ik Vk

A(t)’ﬁ lk(t)

t* " p(a)ik

Vi ——— Vi
Since, by assumption, lim;_o(A(¢)p)(a) exists, this implies the following:
(1) One has p(a);x = 0 for k < 4. In particular, M; is an A-submodule of M,
for every j.
(2) p'(a)ik = limy_o pr o (A(t)p)(a) o, =0 for k > 1.
(3) p'(a)y = p(a)y; for every i.
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Thus p'(a) is given by the matrix

pla)ii

and the claim follows.

(i) = (i): Given the filtration F: M, = My 2 M; DO ... D M, = {0} it suffices
to find a suitable one-parameter subgroup A which induces the filtration F (in the
sense of the first part of the proof). There exist subspaces V; C M,p,, ¢ =0,...,¢t
such that V = @;_, V; and M; = @;_; Vi. Now define A to be A(t) := ¢ - Idy, on
Vi for i =0,...,t. Then it is easy to see that this one-parameter subgroup satisfies
the stated conditions, i.e. the coresponding filtration is F. (|

EXAMPLE 6.2.5. The matrix {‘6‘

C2. Let {e,e2} be the standard basis of C2. Clearly, M contains the submodule
Ce;. The graded C[z]-module associated to the filtration F: M = C% D Ce; 2 {0}
is Ce; @ C?/Ce; ~ C @ C where the action of z induced on this is given by the

cly} defines to a C[z]-module structure M on

0 2} . Moreover, for t € C* one has

SO [ E

This shows that F is the filtration associated to the 1-PSG \: ¢t — [t 0 } .

e
matrix

0 t!

6.3. Degenerations. Suppose M, M’ are two A-modules of the same dimen-
sion. If the orbit Cjs of M’ lies in the closure of the orbit Cy; of M, then one calls
M’ a specialization or a degeneration of M. This property will be indicated by

o M

o M’

REMARK 6.3.1. The above lemma implies that the graded module grr M as-
sociated to the filtration F of M is a specialization of M. However, not every spe-
cialization can be obtained in this way. For a counterexample we refer the reader
to [Kra82, Chap. I1.4.6, remark 2]

The next theorem serves to clarify and extend Proposition 6.2.1.

THEOREM 6.3.2. (1) The closed orbits in Mod'y are in one-to-one corre-
spondence with the semisimple A-modules of dimension n.
(2) If M is an A-module of dimension n, then the closure Cyy of the corre-
sponding orbit contains exactly one closed orbit. This corresponds to the
module gr r M where F is a composition series.

o M

egr- M

PrOOF. (1) Suppose M is an A-module whose orbit Cpy € Mod'; is closed, and
let F be a composition series of M. By Lemma 6.2.4 one has Cy, . s € Car = Ciy.
Thus grr M ~ M, and so M is semisimple.
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Conversely suppose M is a semisimple module. In order to show that Cj; is
closed we make use of the HILBERT Criterion which we are going to prove later on
in V.3. It says that for every closed orbit C C C)s and every p € C)y there exists a
one-parameter subgroup A: C* — GL,, such that lim; o A(t)p € Cn. By the above
lemma this means that for a suitable filtration F of M the module N is isomorphic
to grr M. Since M is semisimple, we have gr- M ~ M and thus Cy = Cyy.

(2) The remaining point is the uniqueness of the closed orbit in Cj;, but this
is just the JORDAN-HOLDER Theorem, see Remark 6.2.4. O

REMARK 6.3.3. We already know that the closure of an orbit contains a unique
closed orbit, see Corollary 2.6.5. In the setting above, this give a geometric proof
of the JORDAN-HOLDER Theorem.

EXAMPLE 6.3.4. Suppose A = C[z]. An A-module M of dimension n is semisim-
ple if and only if the associated matrix in M,, is semisimple. Thus the above claim
was already verified in 1.5.5.2. If the associated matrix is given in JORDAN normal
form, then the transformation M — grr M corresponds to “setting to zero” the
elements of the matrix which lie above the diagonal.

EXAMPLE 6.3.5. For A = Cle] we get Mod’y = {N € M,, | N* = 0}. This is
the closure of a single conjugacy class, namely of the class of the nilpotent matrix
with partition p = (2,2,...,2) in case n is even and p = (2,2,...,2,1) in case n
is odd. This follows from Proposition 1.4.4.3. In particular, Mod’; is normal and

Cohen-Macaulay with rational singularities, as a consequence of the main result in
[KP79].

6.4. Tangent spaces and extensions. To conclude this section we would
like to give a module theoretic interpretation of the tangent spaces of Mod'y, or,
more precisely, of the normal spaces of the orbits Cjyy

If M and N are two A-modules, then by an extension of N by M one means a
short exact sequence of A-modules of the form

(:0—-M—-P—N—0.

If¢’:0 - M — P — N — 0 is another extension, then we say that ¢ and ¢’ are

equivalent, if there exists an isomorphism ¢: P = P’ which induces the identity on
M and N:

0 M P N 0
=l
0 M P N 0

The set of equivalence classes of extensions of N by M is denoted by Exty (N, M).

We now give another description of Ext’ (N, M). The A-module structures on
M and N are given by p: A — End¢(M) and 0: A — Endc (V). In the extension ¢
the space P is isomorphic, as a vector space, to M & N. Thus one gets the middle
term P of ¢ by endowing the vector space M & N with an A-module structure
pw: A — Enda(M @ N) such that M = M, is a submodule and N = N, is a coset
module of P = (M @& N),. This is exactly the case if u has the form {8 ; for a
suitable 7: A — Homg (N, M). For this one must have p(ab) = p(a)u(b) for every
a,be A, ie.,

() T(ab) = pla)7(b) + 7(a)o (D).
Define
Z(N,M) :={r: A — Hom¢(N, M) | 7 satisfies ()}
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which is a subspace of Hom(N,m). If 7,7’ are elements of Z(N,M) and p :=

!/
[g ;], o= [8 ;}, then (M & N), and (M @ N), yield equivalent extensions

if and only if there is an isomorphism ¢: (M & N), = (M & N), of the form

P = {1(()1 ﬁl] where 8 € Homg (N, M). This means that ¢(u(a)q) = p/(a)e(q) for

a€ Aand g € M@ N, hence 7(a) + fo(a) = p(a)B + 7'(a) for every a € A. This
shows that 7 and 7' define equivalent extensions if and only if 7 — 7/ € B(N, M)
where

B(N, M) :={6: A— Home(N, M) | §(a) = p(a)B — fo(a)
for all @ € A and some § € Homc(N, M)}.
Thus we get the following description
Ext (N, M) = Z(N,M)/B(N, M).

From this one sees that Ext!(N, M) is a finite dimensional vector space and that

an extension ¢: 0 — M — P 2 N — 0 is zero if and only if it “splits”, i.e., if the
projection p has a section and thus P = N @ M as an A-module.

THEOREM 6.4.1. For every p € Mod’y there is a natural injection
T,(Mod%)/T,(Cn,) < Extly (M, M).

Proor. If £ € T,(Mod’;), then p+¢£: A — M, (C[e]) is an algebra homomor-
phism. A simple calculation shows that

&(ab) = p(a)&(b) + &(a)p(b) holds for every a,b € A.

This means that £, as a linear map A — M,, = End(M,,), satisfies the condition (x)
from above, hence T,,(Mod’y) C Z(M,, M,).

Now we consider the orbit map p: GL, — m C M,)*, g — gp. (Here
we identify p € Mody with (p(a1),...,p(as)) € (M,)® where GL, acts by si-
multaneous conjugation.) The differential (du).: Lie GL,, — T,(Chy,) is surjective
(Lemma II1.5.1.5), and for X € Lie GL,, = M,, we have

(E +eX)pl(a;)(E — X) = pla;) + e(Xplas) — pla;)X).

Therefore,
du(X)(a) = Xp(a) — p(a)X for every a € A.
It follows that T,(Chs,) = B(M,, M), and the claim follows. O

REMARK 6.4.2. The natural map T,(Mods)/T,(Cn,) — Ext’ (M, M) might
be a strict inclusion. As an example, take the algebra A = C[e]. Then Mod}c[el is a
single orbit

There are a number of interesting consequences of the theorem. We just mention
a few. The interested reader can find a more detailed account of these topics with
many examples and references to the literature in [Kra82].

COROLLARY 6.4.3. Let M be an n-dimensional A-module. If Extl (M, M) = 0,
then the orbit Cyy is open in Mod’y, and thus Chr is an irreducible component. In
particular, the projective (injective) A-modules in Mod’y form a finite union of open
orbits.

The proof is easy and is left as an exercise.
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COROLLARY 6.4.4. Let A be a finitely generated algebra with the property that
all finite dimensional A-modules are semisimple. Then there are only finitely many
isomorphism classes of A-modules of a given dimension. More precisely, the Mod'y
s a finite union of open and closed orbits for every n.

This follows from the previous corollary, because Extl(N , M) = 0 for all finite
dimensional A-modules N, M. Typical examples of such algebras are the envelop-
ping algebras of finite dimensional semisimple Lie algebras.

7. Structure of the Quotient

In this section we gather together a few general results about algebraic quotients
w: Z — ZJ/G where Z a G-variety and G is a reductive group. Some of these we
will either be prove or have already been proved. But our methods are not sufficient
for all of them, and in those cases we refer to the literature and might give some
ideas for the proof.

7.1. Inheritance properties. We start by recalling some properties which
are carried over from Z to the quotient Z/G, see section 3.

(1) If Z is drreducible or normal, then so is Z /G (Proposition 3.1.1).

(2) If Z is factorial and G is semisimple, i.e. connected with trivial character
group, then Z//G is factorial (Proposition 3.1.4 and Remarl 3.1.5).

(3) If Z is smooth, then Y has the COHEN-MACAULAY property.
(This result is due to HOCHSTER-ROBERTS [HR74]; the proof is very
complicated and was later simplified by KEMPF.)

(4) If Z has rational singularities, then so does Z//G.
(Theorem of BouTOT [Bou87]; this generalizes the result of HOCHSTER-
ROBERTS mentioned above.)

7.2. Singularities in the quotient. Suppose V is a vector space with a
linear G-action and 7: V' — Y := V//G is the quotient.

LEMMA 7.2.1. If 7(0) € Y is a smooth point, then Y ~ C™ for some m € N.

PrOOF. (Cf. Example 3.1.3) This follows directly from Lemma 2.3.3: The alge-
bra A = O(Y) is graded with A9 = C, and n := m(g) is the homogeneous maximal

ideal. If we now choose homogeneous ay, ..., a,, € n with the property that the im-
ages @; € n/n? form a basis, then A = Clay, ..., a,). Since dim A = dimn/n? = m
we see that the a; are algebraically independent. O

This result can also be viewed within a more general framework. First we note
that the scalar multiplication on V induces a C*-action on the quotient V//G:

A (v) = w(Aw).

(The proof that this is indeed a C*-action is left as an exercise.) This C*-action is
the geometric interpretation of the grading of the invariant ring O(V)%, a property
which we have already used before more than once.

PROPOSITION 7.2.2. Let Z C V be a G-stable closed cone and w: Z — Z||G
the quotient. Then the singular (resp. the non-normal) points in Z |G form a closed

cone. In particular, Z )G is smooth (resp. normal) if and only if w(0) is a smooth
(resp. normal) point of ZJG.

(Here we are calling a subset of V resp. VG a cone if it is C*-stable. It is then
clear that the singularities resp. the non-normal points of Z/G form a cone; the
closedness follows from Corollary A.4.10.6 resp. from Proposition A.5.2.6.)

The C*-action on the quotient V//G is a special case of the following result.
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LEMMA 7.2.3. Suppose Z is a G-variety on which another group H acts com-
patibly with G. Then H also acts on the quotient Z)/G and w: Z — ZJ/G is H-
equivariant.

PRrROOF. Since the H-action commutes with the G-action it follows that the
H-action on O(Z) respects the isotypic components. In particular, H induces an
action on the invariants O(Z)%, hence on Z/G. O

We now give another criterion in order for a quotient to have no singularities.
For the sake of simplicity we again consider a vector space V together with a linear
G-action.

PROPOSITION 7.2.4. If the null fiber N'y has dimension dimV —dim V /G and
if N'v is reduced at some smooth point z € Ny, then the quotient V)JG is an affine
space.

OUTLINE OF THE PROOF. By assumption, the differential dm has maximal rank
in z € My and thus also in some neighborhood U of z in V. This implies that
mly: U — w(U) is a smooth mapping, i.e. it looks locally in the analytic sense like
the projection of a vector space onto a subspace. Since the quotient V//G is normal,
and, in particular, unibranched, the image 7(U) is an open subset of V/G which
contains 7(0). The result now follows with the help of Lemma ?7. O

REMARK 7.2.5. It is conjectured that the dimension assumption, i.e., the equidi-
mensionality of the quotient map 7 (see Corollary 5.3.6), is enough to imply that
the quotient is an affine space. This came to be known as the “Russian Conjec-
ture”. The conjecture holds for irreducible representations of simple groups as a
consequence of the classification results of G. SCHWARZ [Sch78, Sch79], and also
for irreducible representations of semisimple groups due to the classification results
of P. LITTELMANN [Lit89].

7.3. Smooth quotients. We have already established that a one-dimensional
quotient V/G is isomorphic to the affine line C (Remark 3.2.5). If V/G is two-
dimensional, then it follows from the normality of V /G and the lemma above that
either 7(0) € V//G is an isolated singularity or VJ/G is the affine plane C2.

The example C? /(Z/2) where Z/2 acts by +id shows that V//G can indeed be
singular. However, for a semisimple group G this does not happen, as conjectured
by V.L. Porov.

ProprosITION 7.3.1 (G. KEMPF [Kem80)). If G is semisimple and V is a
G-module with dim V /G = 2, then V|G is isomorphic to C2.

Remark 3: In this connection there are a number of classification results: (V.
Kac, V.L. Popov, E.B. Vinberg, G. Schwarz, M. Sato, T. Kimura,... *; cf. [?], [?], [?],
(7], [7], [?], [?]). Among other things one can find the list of all representations V'
of simple® groups G in [?] with the property that V//G is an affine space (coreqular
representations) 2 and in [?] the list of all irreducible representations of semi-simple
groups with the property that V° only contains a finite number of orbits (observable
representations, cf. [?]).

L Popov, p.145: cf. O.M. ADAMOVICH - E.O. GOLOVINA [?], O.M. ApAMOVICH [?]-Footnote
of the Russian editor.

2 Popov, p.145: connected—footnote of the Russian editor.

3 Popov, p.145: The general method of determining such representations such that V)G
is an affine space (i.e. the algebra of invariants is free), was first worked out by V. Kac, V.L.
Popov and E.B. Vinberg in [?], where this was found with the help of irreducible representations
of connected simple groups. In [?] G. Schwarz, by applying this method, analyzed the reducible
case also. Simultaneously and independently this case was investigated by O.M. ADAMOVICH -
E.O. GoLovINa [?].—footnote of the Russian editor.
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7.4. Semi-continuity statements. In studying the quotient map 7 : Z —
Z//G one is often interested in whether the set of points y € Z//G for which the
fiber 771(y) has a certain property is open in Z/G. We now want to discuss this
problem.

LEMMA 7.4.1.  The function d : Z)JG — N, y + dim 7~1(y) is upper semi—
continuous.

Proof: We have to show that for every n € N the set

Y= {y € Z)G | dim 7 (y) > n})
is closed in Z//G. By the Theorem of Chevalley (??) the set

7 :={ze€ Z| dim, 7' (n(2)) > n}
is closed in Z. As well Z’ is G-stable and Y’ = w(Z’). The result now follows from
the G—closedness of quotients (?7).
As an application we have the following result.

THEOREM 7.4.2.  Suppose 7 : Z — ZJ/G is a quotient. Then the set
{y € Z))G | n~(y) consists of finitely many orbits}

is open in Z)/G.

Proof: Suppose S C Z is a stratum (??; w.l.o.g. assume G is connected) made
up of orbits of dimension n and let S be its closure. Then 7(S) C Z//G is closed
and 7’ : S — 7(9) is a quotient (??). Suppose y € 7(S). If dim 7'~!(y) > n, then
7~ 1(y) contains infinitely many orbits of dimension n. Conversely, if 7~1(y) contains
infinitely many orbits of dimension n, then dim 7’~!(y) > n. The complement of
the set which is given in the statement of the theorem is thus the union of the sets

{y € 7(S) | dim(7~*(y)N'S) > ns},

where S runs through all strata and ng is the orbit dimension of S. By Lemma
7.4.1 these are all closed and the result follows.

THEOREM 7.4.3. Under the same assumptions as in Theorem 7.4.2 the set
{y € Z)JG | the fiber n~(y) is reduced and normal }
is open in ZJ|G.

Outline of the Proof: This assertion rests on the following result ([?, IV,
12.1.7]): If n : Z — Y is a morphism, then the set

Z':={z€ Z|n '(n(2)) isreduced and normal at z}
is open in Z. In the above situation the set Z’ is thus G—stable and the assertion

follows from the G—closedness of quotients (??) applied to Z — Z'.

Remark 4: There is a whole list of other properties for which the analogue
to Theorem 7.4.3 holds, e.g. reduced, no singularities, Cohen—Macaulay, rational
singularities, ete. (cf. [?7, IV, 12.1.7] and [?]).
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7.5. Generic fiber. Here it is a question of which properties of a general fiber
carried over a priori via the quotient map.

THEOREM 7.5.1 (Luna, Popov).  Suppose G is semi-simple, V is a G-module
and 7 : V. — V|G is the quotient. Then the generic fiber contains a dense orbit.*
Moreover, the generic orbit is closed if and only if it is affine.

COROLLARY 7.5.2.  If the generic stabilizer is finite, i.e. the mazimal orbit
dimension is equal to dim G, then the generic fiber of 7 is a closed orbit.

Outline of the Proof: For the first assertion of the theorem we refer to the
literature ([?, I11.4]; cf. 7?7 E). Concerning the second assertion®, if the generic fiber
is closed, then it is naturally affine. Conversely, suppose the generic orbit is affine. If
it were not closed, then the complement would be of codimension one in its closure.
Then the union of these complements would have a G—stable hypersurface H in V'
as closure and this would be the zero set of an invariant function f. This is clearly
a contradiction, since w(H) is dense in V//G. The result is now clear.

Various results can be found in the literature about generic orbits, stabilizers and
fibers (E.M. Andreev, E.B. Vinberg, A.G. Elashvili, A.M. Popov, ... cf. [?], [?]).°

E. Invariant Rational Functions

An important result of Rosenlicht” says that in every irreducible G-variety Z there
is an open, dense G-stable subset Z' whose orbits are separated by the G—invariant
rational functions defined on Z’, i.e. there is a morphism
0: 7 = Y8
whose fibers are exactly the orbits. (Note that Z’ is, in general, not affine.) In
particular, the transcendence degree of C(Z)% is equal to the “dimension” of the
family of orbits of maximal dimension:
tr dege C(2)¢ = dim Z — max (dim Gz)
FAS

(cf. [?, IIL.4]). We would now like to give a general proof for a special case of this
result. Note that we already know this in the setting of tori (?? Theorem ?77).

THEOREM 7.5.3.  Suppose Z is an irreducible G-variety. Then C(Z)¢ = C
if and only if Z contains a dense orbit.

Proof: (by D. Luna) If Gz C Z is a dense orbit, then every rational invariant
function is constant on Gz and thus on Z. Hence one direction of the proof is clear.
For the converse consider the map

0:GXZ—=>ZxZ, (9,2) — (92, 2).
We want to show that ¢ is dominant, i.e. that
P 02)20(Z) = O(G)® 0(Z)

4 Popov, p.147: To say that some property is satisfied generically in a variety X means that
in X there is a dense, open subset €2, which depends on the condition under consideration, such
that for every point & € ) the condition holds. In the given case this means that there is an
open, dense subset © in V//G such that for every ¢ € Q the fiber 7~1(€) contains a dense orbit.
The notions of generic orbit and generic stabilizer have analogous interpretations.—footnote of the
Russian translator.

5 Popov, p.147: See V.L. Popov [?].—Footnote of the Russian translator.

6 Popov, p.147: See also the works [?],[2],]?],[?]footnote of the Russian editor.

7 Popov, p. 147: cf. [?]-footnote of the Russian editor.

8 Popov, p.147: Here Y is a certain variety which is different, generally speaking, from Z/G.—
footnote of the Russian editor.
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is injective. By definition one has

P (f@h)(g,2) = flg2) - h(z) = (97" f) h)(2).
Now suppose ¢* (>°;_, fi @ h;) = 0, where w.l.o.g. we may assume that the fi, ..., f;
are linearly independent over C. Then

) Z(gfi) -h; = 0for every ge€G.

i=1
Suppose V' = (fi, ..., fs) € C(Z). Since C is the fixed field of G in C(Z), the theorem
of Artin (cf. [?, Chap. V, §7, théoréme 1)]) asserts that there exist s := dim V
elements g1, ..., gs € G whose restrictions g;|y : V — C(Z) are linearly independent
over C(Z). This means that the matrix (g;f;); j—; has rank 5.Y Hence in (*) one
has h; = 0 for every ¢ and thus ¢* is injective and ¢ is dominant.
Now for g € G and z € Z

¢ M plg:2)) = {(h,2) | hz =gz} = G-,
where the isomorphism is given by (h,z) + g~ 'h. By the dimension formula for
fibers (??)'Y one thus has
miél dimG, = dim G —dim Z
zE
and thus

max dim Gz = dim Z,
z€Z

i.e., Z has a dense orbit.

7.6. A finiteness theorem. In conclusion we give a result of Hilbert ([?,
Kap.I, §4]). This shows how information about the zero fiber V° can lead to infor-
mation about the ring of invariants.

THEOREM 7.6.1.  Suppose G is linear reductive and connected and V is a
G-module. If f1,..., ft are homogeneous invariant functions, which define the zero
fiber V°, ice. V(f1,..., fi) = V°, then O(V) is a finite module over C[f1, ..., f],
namely the integral closure of C[f1, ..., fi] in O(V).1!

Proof: We set
R:=0V)=PR, m:=PHr:.
>0 i>0
By the Nullstellensatz (??) one has />, Rf; = m. Thus m" C Z§=1 Rf; for some
N > 0. Letting d; := deg f; one then gets from this

t
R, C ZfiRn—di for n > N.
i=1

Therefore we consider the finite dimensional vector space B := @gigl R;, and by
induction on n we get

R, CC[f1,..., ft] - B for every n

9 Popov, p.148: over the field C(Z).—footnote of the Russian editor.
10 Popov, p.149: In view of the dominance of the morphism ¢ the minimum dimension of
the fiber of this morphism is equal to dim(G x Z) —dim(Z x Z) = dim G — dim Z.-Footnote of
the Russian editor.

11 Popov, p.149: The converse is also true: If O(V)G is integral over a subalgebra generated

by a system I of homogeneous non—constant invariants, then
Ve={veV| f(v)=0forevery f € I}

—Footnote of the Russian editor.
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and the result follows from this. (cf. ?? Remark 2).
8. Quotients for Non-Reductive Groups
(Separating morphisms, Rosenlicht, generic fibers, .. .)

Exercises

For the convenience of the reader we collect here all exercises from Chapter VI.
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1. Representations of Linearly Reductive Groups

1.1. Commutative and Diagonalizable Groups. Recall our previous no-
tation: B,, C GL,(C) denotes the subgroup of upper triangular matrices, T, C B,
the subgroup of diagonal matrices and U,, C B,, the subgroup of unipotent matrices
(with 1’s along the diagonal).

B, = ) € GL,(C) », T, = € GL,(C) ;,
' *
*
1 *
U, = ) € GL,(C) ;,

1

We have an obvious surjective homomorphism p: B, — T, which is the identity
on T,, and has kernel U,, and so B, = T,U, = U,T, and the multiplication
T, x U, — B, is an isomorphism of varieties.

LeEmMA 1.1.1. Let H C GL,(C) be an arbitrary commutative subgroup.
(1) There is a g € GL,(C) such that gHg=! C B,

155
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(2) If H consists of semisimple elements, then there is a g € GL,(C) such
that gHg=' C T,,.

PROOF. O

ProprosSITION 1.1.2. Let H be a commutative algebraic group. Define
H, :={h € H | h unipotent}, Hs:={h € H |h semisimple}.
Then H,,Hs; C H are closed subgroups and the multiplication induces an iso-
mophism Hy x H, = H,H, = H.
PROOF. g

Recall the definition of the character group of an algebraic group G:
X(G):={x: G — C* | x is a homomorphism} C O(G)*.
LEMMA 1.1.3. The subset X(G) C O(G) is linearly independent and the linear
span (X (Q)) C O(Q) is the group algebra of X (G).
EXERCISE 1.1.4. If G is connected, then X (G) is torsion free.

EXERCISE 1.1.5. Show that X(G) is a finitely generated abelian group of rank <
dimG.

It is easy to see that X (@) is a contravariant functor from algebraic groups to
abelian groups and that X (G x H) = X(G) x X (H). Moreover, the comultiplication
w*: O(G) = O(G) ® O(G) induces the diagonal map on X(G) — X(G) x X(G):
wr(x) =x®x-

PROPOSITION 1.1.6. An algebraic group H is diagonalizable, i.e. isomorphic to
a closed subgroup of Ty, if and only if O(H) = (X(H)).

THEOREM 1.1.7. The functor X defines an anti-equivalence between the diag-
onalizable groups and the finitely generated abelian groups. This means that every
finitely generated abelian group is isomorphic to the character group of a diago-
nalizable group and that the natural map Hom(D, E) = Hom(X (E), X (D)) is an
isomorphism of groups. Moreover, a sequence of diagonalizable group

1-D —-D—=D"—>1

is exact if and only if the induced sequence 0 — X(D") — X (D) — X(D') — 0 is
exact.

1.2. Unipotent Groups.
1.3. Solvable Groups.

1.4. Representation theory of GL,,.

1.5. Representation theory of reductive groups.

2. Characterization of Reductive Groups
2.1. Definitions.

DEFINITION 2.1.1. An algebraic group G is called linearly reductive if every
representation of G is completely reducible.

There is also the notion of a reductive group which we will not introduce here.
In our situation where the base field has characteristic zero the two definitions are
equivalent. This allows us to use the shorter notion “reductive” instead of “linearly
reductive”.
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EXAMPLE 2.1.2. (1) The multipliative group C* is reductive. More gen-
erally, every diagonalizable D group is reductive, because every represen-
tation of D is diagonalizable (see Proposition 3.4.5(3)).

(2) The famous Theorem of Maschke says that every finite G group is re-
ductive. (One shows that for every representation p: G — GL,(C) there
exists an G-invariant unitarien scalar product on V.)

(3) The additive group C* =~ Us is not reductive. (The standard representa-
tion on C? is not completely reducible, because Ce; is the only Us-stable
subspace.)

The next lemma is a very useful criterion for reductivity. We say that a locally
finite and rational representation of G on W is completely reducible if every finite
dimensional G-stable subspace of W is semisimple. Clearly, if G is reductive and X
a G-variety, then the regular representation of G on O(X) is completley reducible.

LEMMA 2.1.3. Let G be an algebraic group and V a faithful G-module, i.e.
Ca(V) = {e}. The following assertions are equivalent:

(i) G is reductive.
(ii) The regular representation of G on O(QG) is completely reducible.
(iii) For alln > 1 the G-module V" :=V @V ®@---®V is semisimple.
—_———

n times

PROPOSITION 2.1.4. (1) Let G be a reductive group and N a closed nor-
mal subgroup. Then N is reductive.
(2) Let 1 - N - G — H — 1 be an exact sequence of algebraic groups.
Then G is reductive if and only if N and H are both reductive.
(3) A product of algebraic groups is reductive if and only if each factor is
reductive.

EXERCISE 2.1.5. A connected solvable algebraic group is reductive if and only if it is
isomorphic to a torus Tr,.

2.2. Images and kernels. We first study the behavior of linearly reductive
groups under homomorphisms.

PROPOSITION 2.2.1. Let G be an algebraic group, ¢: G — H a homomorphism,
and N C G a closed normal subgroup.

(1) If G is linearly reductive, then so are N and ¢(G).
(2) Ifkery and p(G) are both linearly reductive, then so is G.

PRrOOF. (a) It is clear that every homomorphic image of G is again linearly re-
ductive. Suppose H C G is a normal subgroup. The restriction map O(G) — O(H)
is a surjective H-homomorphism. Because of Proposition 2.1.6 above it suffices
to prove that O(G) is a semisimple H-module. To do this consider the socle
S = O(V)soe € O(G), i.e. the sum of all simple H-submodules of O(G). Since
H is normal in G, the socle is G-stable. In fact, if V is a simple H-submodule of
O(G), then so is gV, for every g € G. It follows that S has a G-stable complement
S’ (Exercise 1.3.4). Hence S = O(G) and the assertion is proved.

(b) Let N := kerp and G := ¢(G). It suffices to show that for every surjec-
tive G-homomorphism ¢: V — W the fixed points are also surjectively mapped
onto themselves. By assumption ¢V : V¥ — W is surjective, and this is also a
homomorphism of G-modules (Corollary 111.2.3.9). Because of V¢ = (VH)& and
W& = (WH)& | the result now follows. O

COROLLARY 2.2.2. An algebraic group G is linearly reductive if and only if its
connected component of the identity G° is linearly reductive.
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COROLLARY 2.2.3. A commutative algebraic group G is linearly reductive if
and only if G is diagonalizable.

PROOF. We already know that a diagonalizable group is linearly reductive
(Example 2.1.2). For the other implication we recall that a commutative algebraic
group G is a product G = GG, where G, is diagonalizable and G, unipotent
(Proposition I11.4.3.4). If G, # {0}, then G contains a normal subgroup isomorphic
to C*, contradicting the linear reductivity. U

COROLLARY 2.2.4. Let G be a linearly reductive group. If G is solvable, then
G° is a torus.

Recall that a group G is solvable if there is a normal series G = Gy 2 G 2
+++ D Gpm—1 2 Gy, = {e} such that G;/G;41 is commutative. In particular, (G, G)
is a strict subgroup of G. We will discuss solvable algebraic groups in detail in
chapter V.

PRrROOF. We can assume that G is connected. We proceed by induction on
dim G. If dim G = 1 then G is commutative (1.4.8), and we are done by the previous
corollary. In general, (G, G) is a connected normal subgroup which is again solvable.
Hence, by induction, (G, G) is a torus. Since G/(G, G) is commutative and reductive
it is also a torus. Thus G is a torus, by Corollary 3.4.6. (]

2.3. Semisimple groups.

DEFINITION 2.3.1. A linearly reductive group G is semisimple if G is connected
and has no non-trivial character, i.e. the character group X'(G) is trivial.

We will show in the following section 2.4 that the classical groups SL,(C),
SO,,(C) for n > 3, and Sp,,, (C) are semisimple. They all have a finite center. This
is a general fact.

PROPOSITION 2.3.2. For a connected linearly reductive group G the following
statements are equivalent:
(i) G is semisimple.
(ii) The commutator subgroup satisfies (G,G) = G.
(iii) The center Z(G) of G is finite.

For the proof we need the following lemma.

LEMMA 2.3.3. If G is linearly reductive, then its Lie algebra satisfies
Lie G = [Lie G, Lie G] @ 3(Lie G).

PRrROOF. We may assume that G is connected. Now a := [LieG,LieG] is an
ideal in g := Lie G and thus is stable under the adjoint representation of G on g
(see Proposition II1.5.3.2). Choose a G-stable splitting g = a@® b. Then b is an ideal
of g, and one has [g, b] C bN([g, g] = (0). This implies b C 3(g) and thus g = a+3(g).
In particular, [g,g] = [a, a].

We still have to prove that 3(g) Na = 3(a) = (0). Not only is a stable under
G, but also 3(a). Thus there is a G-stable splitting a = 3(a) @ ¢. But this implies
a=[a,a] = [c,¢] C ¢ and the result follows. O

REMARK 2.3.4. One has Lie(G,G) 2 [LieG,LieG], since on the one hand
G/(G,G) is commutative and on the other hand [g, g] is the smallest ideal a of
Lie G so that Lie G/a is commutative (Exercise I111.5.3.4). Thus the lemma above
implies that for a connected linearly reductive G one has G = (G, G) - Z(G)°.
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PROOF OF PROPOSITION 2.3.2. (i) = (ii): Since G/(G, G) is commutative and
linearly reductive by Proposition 2.2.1 above, it is a connected diagonalizable group
(Corollary 2.2.3), hence a torus. Thus G = (G, @), because G has no non-trivial
characters.

(if) = (iii): If p: G — GL(V) is an irreducible representation, then the center
Z(G) acts by scalars on V. On the other hand, because G = (G,G), one has
p(G) C SL(V). This implies p(Z(G)) € SL(V) N C*1d and thus p(Z(G)) is finite.
Because of the complete reducibility this is true for every representation of G and
the assertion follows by considering a faithful representation G — GL,,.

(iii) = (i): One has 3(Lie G) = Lie(Z(G)) = (0) (Corollary II1.5.3.5) and thus
Lie G = [LieG,Lie G] by Lemma 2.3.3 above. If x: G — C* is a character, then
dxe : LieG — C is a Lie algebra homomorphism with commutative image and so
LieG = [Lie G, Lie G] C ker dy.. This implies that dy. = 0 and hence x is trivial.
(Proposition II1.5.2.1). O

PROPOSITION 2.3.5. Suppose G is linearly reductive and connected. Then

(1) (G,Q) and G/ Z(Q) are both semisimple;
(2) ((G,G)) Z(G)N (G, G) is finite;
(B) G =(G,G)-Z(G)°;
(4) Lie(G,G) = [Lie G, LieG].
ProOF. Let G’ := (G, G).
(1) Then (G’, G’) is a normal subgroup of G and the quotient group G/(G’,G’)
is solvable and linearly reductive and therefore a torus (Corollary 2.2.4). This im-
plies (G', G') = G’ which proves that (G, G) is semi-simple (Proposition 2.3.2).
Because of G = (G, Q) - Z(G) (Remark 2.3.4) one has for G := G/Z(G) the
relation (G, G) = G, and hence G is also semi-simple.
(2) Since Z(G) N (G, G) is the center of (G, G), it is finite (Proposition 2.3.2).
(3) is already stated in Remark 2.3.4.
(4) By (2) we have Lie(G,G) NLieZ(G) = (0). Since Lie(G, G) 2 [Lie G, Lie G]
(Remark 2.3.4) the claim follows from Lemma 2.3.3. d

2.4. The classical groups. Now we show that the classical groups are all
linearly reductive. We begin with two lemmas.

LEMMA 2.4.1. Let G be an algebraic group and V a faithful G-module. If all
the tensor powers VO™, m € N, are semisimple, then G is linearly reductive.

PRrOOF. By assumption, the tensor algebra T(V) := @j>0 V®J is semisimple
as well as its quotient module S(V), the symmetric algebra. Now consider End(V))
as a G-module with respect to the right multiplication: End(V) = V@V* = (V*)®n
where n = dim V. Then O(End(V)) = O((V*)®™) = S(V)®", and thus O(End(V))
is a semisimple G-module as well.

Since V is a faithful G-module we have an embedding G C GL(V) C End(V)
which is G x G-equivariant. If we denote by x € X(G) the character induced by
det: GL(V) — C*, we have O(G) = O(End(V)),. Now let W be any representation
of G. Then W occurs in O(G)®™ as a G-submodule (with respect to the right
multiplication) for some m > 0 (2.4.3). This implies that for a large enough k the
module Ciy, ® W occurs in O(End(V))®™ and thus W is semisimple. O

In the next lemma we use hermitian forms (v, w) on complex vector spaces V,
see [Art91, 7.4].

LEMMA 2.4.2. Let V be a G-module, and let (v,w) be a hermitian form on V.
Assume that there is a map *: G — G such that (gv,w) = (v, g*w) for all g € G
and v,w € V. Then the tensor powers VE™ are semisimple G-modules.
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PROOF. The hermitian form on V induces a hermitian form on all tensor pow-
ers V®™ in the usual way,

(VI @V R @ Uy, W1 QW2 @ -+ @ Wy ) i= (V1,W1) - (V2,W2) -+ (U, Win ),

which again satisfies (gp,q) = (p,g*q) for g € G and p,q € V®™. Now it follows
that for every G-stable subspace W C V®™ the orthogonal complement W with
respect to the hermitian form is G-stable. Hence V®™ is semisimple. O

THEOREM 2.4.3. The classical groups GL,,, SL,,, O,, SO,, and Sps,,, are lin-
early reductive.

PROOF. For A € M,, define A* := A’ the conjugate transpose of A. If (v, w)
is the standard hermitian form on C", we have

(Av,w) = mtw = (0)'A*w = (v, A*w).

Moreover, (AB)* = B*A*. Using the two lemmas above it remains to check that
for every classical group G C M,, we have g* € G for any g € G. This is obvious
for GL,,. For the others it suffices to show that g € G and that G C M,, is defined
by equations with real coefficients. This is clear for the SL,, O, and SO,,. For
Spy,, we remark that the equation g*.Jg = J together with J~! = —J implies that
gtJ = (—=gJ)~! and so ¢g'J and gJ commute. Thus gJg'J = g*JgJ = J> = —F
and so gtJg = J. O

COROLLARY 2.4.4. The classical groups SL,, SO, (n > 3) and Sp,,, are
semisimple.

In fact, we have seen in I1.3 that these groups are connected and have a finite
center. Thus the claim follows from Theorem 2.4.3 above and Proposition 2.3.2.

2.5. Reductivity of the classical groups.

3. Hilbert’s Criterion
3.1. One-parameter subgroups.
3.2. Torus actions.

3.3. Hilbert’s Criterion for GL,,.

3.4. Hilbert’s Criterion for reductive groups.

4. U-Invariants and Normality Problems

Exercises

For the convenience of the reader we collect here all exercises from Chapter V.



APPENDIX A

Basics from Algebraic Geometry

In this appendix we gather together some notions and results from algebraic
geometry which have been used in the text. We concentrate on affine algebraic
geometry which simplifies a lot the notational part and makes the subject much
easier to access in a first attempt. In the second appendix, we discuss the relation
between the ZARISKI topology and the C-topology. With its help we are able to use
certain compactness arguments replacing the corresponding results from projective
geometry.

The appendix assumes a basic knowledge in commutative algebra. Although
we give complete proofs for almost all statements they are mostly rather short.
This was done on purpose. For advanced readers we only wanted to recall briefly
the basic facts, while beginners are going to find a more detailed study of alge-
braic geometry is necessary. We recommend the text books [Har77], [Mum99],
[Mum95], [Sha94a, Sha94b] and the literature cited below. As a substitute we
have presented many examples which should make the new ideas clear and with
which one can check the results. In addition, a number of exercises are included.
The reader is advised to look at them carefully; some of them will be used in the
proofs.
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1. Affine Varieties

1.1. Regular functions. Our base field is the field C of complex numbers.
Every polynomial p € C[z1,...,x,] can be regarded as a C-valued function on C"
in the usual way:

a=(a1,...,an) — pla) =play,...,an).
These functions will be called regular. More generally, let V' be a C-vector space of
dimension dimV =n < oco.

DEFINITION 1.1.1. A C-valued function f: V — C is called regular if f is given
by a polynomial p € C[zy,...,x,] with respect to one and hence all bases of V.
This means that for a given basis v1,...,v, of V we have

flarvr + -+ apvn) =p(ar, ..., an)

for a suitable polynomial p. The algebra of regular functions on V' will be denoted
by .

By our definition, every choice of a basis (v1, va, ..., v,) of V defines an isomor-
phism C[z1,...,z,] = O(V) by identifying z; with the i-th coordinate function on
V' defined by the basis, i.e.,

xi(a1v1 + agve + - -+ + apvy) == a;.
Another way to express this is by remarking that the linear functions on V' are
regular and thus the dual space V* := Hom(V,C) is a subspace of O(V). So if

(v1,v2,...,v,) s abasis of V and (x1, za, . .., x,) the dual basis of V*, then O(V') =
Clx1, 2, ..., %, and the linear functions z; are algebraically independent.

ExaMPLE 1.1.2. Denote by M, = M,(C) the complex n X n-matrices so
that O(M,,) = Clz;; | 1 < ¢,j < n]. Consider det(tE, — X) as a polynomial in
Clt,xij,i,5 = 1,...,n] where X := (z,;). Developing this as a polynomial in ¢ we
find

det(tE, — X) =t" — qit" ' 4 qut" 2 — -+ (=1)"g,
with polynomials ¢, in the variables x;;. This defines regular functions ¢ € O(M,,)
which are homogeneous of degree k. Of course, we have ¢1(A) = tr(4) = a1 +---+
ann and g, (A) = det(A) for any matrix A € M,,.

The same construction applies to End(V) for any finite dimensional vector
space V and defines regular function s, € O(End(V)).

ExaMpPLE 1.1.3. Consider the the space of unitary polynomials of degree n:
P,={t"+ait" ' +axt" *+---+a,|ay, - ,a, € C} ~C"
There is a regular function D, € O(P,), the discriminant, with the following prop-

erty: Dy(p) =0 for a p € Py, if and only if p has a multiple root. E.g.

2 2 2 3 3 2
Dsy(a1,a2) = af —4az, Ds(a1,a2,as) = aja; — 4a; — 4ajas + 18ajazas — 27aj3.

PrOOF. Expanding [, (t —y;) = t" — s1(y)t" ' 4+ -+ + (—=1)"s,(y) we see
that the polynomials s,(y) are the elementary symmetric polynomials in n variables
YLy - v vy Yn, 1-€.

sk(y) = ok(Y1,- - Yn) == Z YirYiz = Yip, -
1 <ip<---<ip
Define D,, := HKJ.
polynomial in the elementary symmetric functions s (y) (see Proposition 1.2.2.1, cf.
[Art91, Chap. 14, Theorem 3.4]), D, (y1,...,yn) = Fn(s1,82,...,8,) with a suit-

(yi—y;)?. Since D,, is symmetric it can be (uniquely) written as a

able polynomial F},. If Ay, ..., A, are the roots of f € P,, then a; = (—=1)%s;(A1,...,\n),
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and so the regular function D, (aq,...,a,) := Fy(—a1,a2,—as,...,(—1)"a,) has

the required property. O

ExaMPLE 1.1.4. We denote by Alt,, C M,, the subspace of alternating matrices:
Alt, :={AeM, | A" = —A}.

There is a regular function Pf € O(Alts,,), the Pfaffian, with the following property:
det(A) = Pf(A)? for all A € Alta,,. Usually, the sign of the Pfaffian is determined

J
by requiring that Pf({ }) =1 where J := {_01 (ﬂ E.g.
J

0 0 wéz T13 T14
Tr12 — —x12 T23 T24 —
PE([_g, "8 ]) = w12, Pt ({IIS —2ss 0 134]> = T14%23 — T13T24 + T12T34
—T14 —T24 —T34 0

PrROOF. It is well-known that for any alternating matrix A with entries in an
arbitrary field K there is a g € GL, (K) such that

J

(4) gAg' = J

Now take K = C(z;; | 1 <i < j <n=2m) and put

0 12 r13 o Tin
—T12 0 Tog3 ottt Top
A= | ~%13 —T23 0 Ty,
—ZT1in —T2n —T3n e 0

Then there is a g € GL,(K) such that gAg? has the form given in (4). It follows
that the polynomial det(A4) € K[z;; | 1 <14 < j < n] equals det(g) 2, the square of
a rational function, hence the claim. O

EXERCISE 1.1.5. For a = (a1,a2,...,a,) € C" denote by eve: O(C") — C the
evaluation map f +— f(a). Then the kernel of ev, is the maximal ideal

Mg = (1 — a1,T2 — A2, ..., Tn — an).

EXERCISE 1.1.6. Let W C O(V) a finite dimensional subspace. Then the linear func-
tions evy|w for v € V span the dual space W*.

1.2. Zero sets and Zariski topology. We now define the basic object of
algebraic geometry, namely the zero set of regular functions. Let V be a finite
dimensional vector space.

DEFINITION 1.2.1. If f € O(V), then we define the zero set of f by

V(f)={veV|f(v)=0}=f10).
More generally, the zero set of fi, fo,...,fs € O(V) or of a subset S C O(V) is
defined by

V(f1, foreeos fs) = _ﬂwm ={veV|fiv)=" = f(v) =0}

V(S):={veV | f(v)=0forall f e S}
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REMARK 1.2.2. The following properties of zero sets follow immediately from
the definition.
(1) Let S C O(V) and denote by a := (S) C O(V) the ideal generated by S.
Then V(S) = V(a).
(2) If SC T C O(V), then V(S) 2 V(T).
(3) For any family (S;);cs of subset S; € O(V) we have

V(s =visy).
iel il
EXAMPLE 1.2.3. (1) SL,(C) = V(det —1) C M,,(C).
(2) 0u(C) = V(S wiwryy — 0y | 1< i < j < ).
(3) If f = f(x,y) € C[z,y] is a nonconstant polynomial in 2 variables, then
V(f) C C is called a plane curve. In order to visualize a plane curve, we
usually draw a real picture C R2.

LEMMA 1.2.4. Let V be a finite dimensional vector space and let a,b be ideals
in O(V) and (a; | ¢ € I) a family of ideals of O(V).
(1) If a C b, then V(a) D V(b).
(2) Nigg V(@) =V(Xies i)
(3) V(@)UV(b)=V(anb)=V(a-b).
(4) V(0) =V and V(1) = 0.

PROOF. Properties (1) and (2) follow from Remark 1, and property (4) is easy.
So we are left with property (3). Since a 2 anb D a- b, it follows from (1) that
V(a) C V(anb) C V(a-b). So it remains to show that V(a-b) C V(a) UV(b). If
v € V does not belong to V(a) UV(b), then there are functions f € a and h € b such
that f(v) # 0 # h(v). Since f-h € a-b and (f - h)(v) # 0 we see that v ¢ V(a - b),
and the claim follows. g

DEFINITION 1.2.5. The lemma shows that the subsets V(a) where a runs
through the ideals of O(V') form the closed sets of topology on V' which is called

ZARISKI topology. From now on all topological terms like “open”, “closed”, “neigh-
borhood”, “continuous”, etc. will refer to the ZARISKI topology.

ExAaMPLE 1.2.6. (1) The nilpotent cone N C M,, consisting of all nilpo-
tent matrices is closed and is a cone, i.e. stable under multiplication with
scalars. E.g. for n = 2 we have

N =V(z11 + 222, 11222 — T12%21) € Ms.

(2) The subset M{") C M,, of matrices of rank < r are closed cones.

(3) The set of polynomials f € P,, with a multiple root is closed (see Exam-
ple 1.1.3).

(4) The closed subsets of C are the finite sets together with C. So the non-
empty open sets of C are the cofinite sets.

EXERCISE 1.2.7. Show that the subset A := {(n,m) € C* | n,m € Z and m > n > 0}
is ZARISKI-dense in C2.

DEFINITION 1.2.8. Let X C V be a closed subset. A reqular function on X is
defined to be the restriction of a regular function on V:

OX) = {fIx | feOV)}.
The kernel of the (surjective) restriction map res: O(V) — O(X) is called the
vanishing ideal of X, or shortly the ideal of X:

IX)={feOWV)| f(x)=0for all x € X}.
Thus we have a canonical isomorphism O(V)/I(X) = O(X).
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EXERCISE 1.2.9. A regular function f € O(V) is called homogeneous of degree d if
f(tv) =t'f(v) forallt € C and allv € V.
(1) A polynomial f € Clz1,...,z»] is homogeneous of degree d as a regular function
on C" if and only if all monomials occurring in f have degree d.
(2) Assume that the ideal a C O(V) is generated by homogeneous functions. Then
the zeros set V(a) C V is a cone.
(3) Conversely, if X C V is a cone, then the ideal I(X) can be generated by homoge-
neous functions. More precisely, if f|x = 0, then f4|x = 0 for every homogeneous
component fq of f.

REMARK 1.2.10. Every finite dimensional C-vector space V' carries a natural
topology given by the choice of a norm or a hermitian scalar product. We will call it
the C-topology. Since all polynomials are continuous with respect to the C-topology
we see that the C-topology is finer than the ZARISKI topology.

EXERCISE 1.2.11. Show that every non-empty open set in C" is dense in the C-
topology. (Hint: Reduce to the case n = 1 where the claim follows from Example 1.2.6(4).)

REMARK 1.2.12. In the ZARISKI topology the finite sets are closed. This follows
from the fact that for any two different points v,w € V one can find a regular
function f € O(V) such that f(v) = 0 and f(w) # 0. (One says that the regular
functions separate the points.) But the ZARISKI topology is not Hausdorff (see the
following exercise).

EXERCISE 1.2.13. Let U,U’ C C" be two non-empty open sets. Then U N U’ is non-
empty, too. In particular, the ZARISKI topology is not Hausdorff.

EXERCISE 1.2.14. Consider a polynomial f € Clzo,x1,...,2,] of the form f
zo — p(x1,...,Tn), and let X = V(f) be its zero set. Then I(X) = (f) and O(X)
(C[J}l, e ,xn].

1

1.3. Hilbert’s Nullstellensatz. The famous Nullstellensatz of HILBERT ap-
pears in many different forms which are all more or less equivalent. We will give
some of them which are suitable for our purposes.

DEFINITION 1.3.1. If a is an ideal of an arbitrary ring R, its radical v/a is
defined by
Va:={reR|r™ € a for some m > 0}.
Clearly, v/a is an ideal and y/+/a = y/a. Moreover, v/a = R implies that a = R.
The ideal a is called perfect if a = v/a. The ring R is called reduced if \/(0) = (0),

or, equivalently, if R contains no nonzero nilpotent elements. Also, if a C O(V) is
an ideal, then V(a) = V(v/a), hence I(X) is perfect for every X C V.

THEOREM 1.3.2 (HILBERT’s Nullstellensatz). Let a C O(V) be an ideal and
X :=V(a) CV its zero set. Then

I(X) = I(V(a)) = Va.

A first consequence is that every proper ideal has a non-empty zero set, because
X = V(a) = 0 implies that v/a = I(X) = O(V) and so a = O(V).

COROLLARY 1.3.3. For every ideal a # O(V') we have V(a) # 0.

Let m C Clxy,...,2,] be a maximal ideal and a = (a1,...,a,) € V(m) which
exists by the previous corollary. Then m C (21 —ay, ..., 2, — a,), and so these two
are equal.

COROLLARY 1.3.4. Every maximal ideal m of Clxy,...,x,] is of the form

m:(:r:l—al,...,xn—an).
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Another way to express this is by using the evaluation map ev,: O(V) — C
(see Exercise 1.1.5).

COROLLARY 1.3.5. Every mazimal ideal of O(V) equals the kernel of the eval-
uation map evy,: O(V) — C at a suitable v € V.

EXERCISE 1.3.6. If X C V is a closed subset and m C O(X) a maximal ideal, then
O(X)/m = C. Moreover, m = ker(ev,: f — f(x)) for a suitable z € X.

PROOF OF THEOREM 1.3.2. We first prove Corollary 1.3.4 which implies Corol-
lary 1.3.5 as we have seen above. It also implies Corollary 1.3.3, because every proper
ideal is contained in a maximal ideal.

Let m C C[zq,...,z,] be a maximal ideal and denote by K := Clxy,...,z,]/m
its residue class field. Then K contains C and has a countable C-basis, because
Clx1,...,2,] does. If K # C and p € K \ C, then p is transcendental over C. It
follows that the elements (p%a | a € C) from K form a non-countable set of linearly
independent elements over C. This contradiction shows that K = C. Thus z; +m =
a; +m for a suitable a; € C (fori =1,...,n), and so m = (1 — a1,...,Tn — ayn)-
This proves Corollary 1.3.4.

To get the theorem, we use the so-called trick of RABINOWICH. Let a C
Clx1,...,2,] be an ideal and assume that the polynomial f vanishes on V(a). Now
consider the polynomial ring R := C[zg, 21,...,Ty] in n+ 1 variables and the ideal
b:=(a,1—xof) generated by 1 —z¢f and the elements of a. Clearly, V(b) = 0 and
so 1 € b, by Corollary 1.3.3. This means that we can find an equation of the form

S hifi +h(1—aof) = 1
where f; € a and h;,h € R. Now we substitute % for g and find
1
Z hi(—,xl, ey xn)fz =1.
i

Clearing denominators finally gives ). h; fi = f™, ie, f™ € a, and the claim
follows. (]

COROLLARY 1.3.7. For any ideal a C O(V') and its zero set X := V(a) we have
O(X) = 0(V)/+/a.

EXERCISE 1.3.8. Let a C R be an ideal of a (commutative) ring R. Then a is perfect
if and only if the residue class ring R/a has no nilpotent elements different from 0.

ExaMPLE 1.3.9. Let f € C[zy,...,2,] be an arbitrary polynomial and con-
sider its decomposition into irreducible factors: f = pi*p5*---pLe. Then \/m =
(p1p2---ps) and so the ideal (f) is perfect if and only if the polynomial f it
is square-free. In particular, if f € Clxy,...,z,] is irreducible, then O(V(f)) ~
Clz1, ..., 2n]/(f)- A closed subset of the form V(f) is called a hypersurface.

ExXAMPLE 1.3.10. We have O(SL,,(C)) ~ O(M,,)/(det —1), because the poly-
nomial det —1 is irreducible.

ProOOF. For a fixed iy, the polynomial det —1 is linear in the z;;1,...,Tiyn.
Thus, if det —1 = f; - fo, then all of them appear in one factor and none in the
other. The same argument applied to x1j,,...,Tn;, finally shows that one of the
factors is a constant. U

EXAMPLE 1.3.11. Consider the plane curve C := V(y? — %) which is called
NEIL’S parabola. Then O(C) ~ Clx,y]/(y*>—2%) = C[t?, 3] C C[t] where the second
isomorphism is given by p: x — t2,y — t3.
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PROOF. Clearly, y? — 2 € ker p. For any f € C[z,y] we can write f = fo(x) +
fi(@)y + h(z,y)(y* — 2°). If f € kerp, then 0 = p(f) = fo(t?) + fi(t*)t> and so
fo = f1 = 0. This shows that ker p = (y* — %), and the claim follows. O

EXERCISE 1.3.12. Let C C C? be the plane curve defined by y — 22> = 0. Then
I(C) = (y — #?) and O(C) is a polynomial ring in one variable.

EXERCISE 1.3.13. Let D C C? be the zero set of 2y — 1. Then O(D) is not isomorphic
to a polynomial ring, but there is an isomorphism O(D) = C[t,¢™'].

EXERCISE 1.3.14. Consider the “parametric curve”
Y = {(t,t*,#*) € C* |t € C}.
Then Y is closed in C?. Find generators for the ideal I(Y) and show that O(Y) is isomor-

phic to the polynomial ring in one variable.

Another important consequence of the “Nullstellensatz” is a one-to-one corre-
spondence between closed subsets of C" and perfect ideals of the coordinate ring
(C[Z‘l, cen ,xn].

COROLLARY 1.3.15. The map X — I(X) defines a inclusion-reversing bijection
{X CV closed} = {a C O(V) perfect ideal}

whose inverse map is given by a — V(a). Moreover, for any finitely generated
reduced C-algebra R there is a closed subset X C C™ for some n such that O(X) is
isomorphic to R

PRrROOF. The first part is clear since V(I(X)) = X and I(V(a)) = v/a for any
closed subset X C V and any ideal a C O(V).

If R is a reduced and finitely generated C-Algebra, R = C[f1, ..., fu], then R ~
Clxy1, 2, ..., x,]/a where a is the kernel of the homomorphism defined by z; — f;.
Since R is reduced we have y/a = a and so O(V(a)) ~ Clz1,...,z,]/a ~ R. O

EXERCISE 1.3.16. Let X C V be a closed subset and f € O(X) a regular function
such that f(z) # 0 for all x € X. Then f is invertible in O(X), i.e. the C-valued function
ftixz— f(x)7! is regular on X.

EXERCISE 1.3.17. Every closed subset X C C" is quasi-compact, i.e., every covering
of X by open sets contains a finite covering. Is this also true for open or even locally closed
subsets of C"?

EXERCISE 1.3.18. Let X C C" be a closed subset. Assume that there are no non-
constant invertible regular function on X. Then every nonconstant f € O(X) attains all
values in C, i.e. f: X — C is surjective.

EXERCISE 1.3.19. Consider the curve
Y = {({#*t't°) e C’ |t e C}

cf. Exercise 1.3.14. Then Y is closed in C3. Find generators for the ideal I(Y) and show
that I(Y) cannot be generated by two polynomials.
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1000

(Hint: Define the weight of a monomial in z,y,z by wt(z) := 3, wt(y) := 4, wt(z) := 5.
Then the ideal I(Y) is linearly spanned by the differences m1 — mo of two monomials of
the same weight. This occurs for the first time for the weight 8, and then also for the
weights 9 and 10. Now show that for any generating system of I(Y") these three differences
have to occur in three different generators.)

1.4. Affine varieties. We have seen in the previous section that every closed
subset X C V (or X C C") is equipped with an algebra of C-valued functions,
namely the coordinate ring O(X). We first remark that O(X) determines the topol-
ogy of X. In fact, define for every ideal a C O(X) the zero set in X by

Vx(a):={z e X | f(z) =0 for all f € a}.
Clearly, we have Vx(a) = V(a) N X where a C O(V) is an ideal which maps
surjectively onto a under the restriction map. This shows that the sets Vx (a) are the
closed sets of the topology on X induced by the ZARISKI topology of V. Moreover,

the coordinate ring O(X) also determines the points of X since they are in one-to-
one correspondence with the maximal ideals of O(X):

x € X —m, :=kerev, C O(X)

where evy: O(X) — C is the evaluation map f — f(z). This leads to the following
definition of an affine variety.

DEFINITION 1.4.1. A set Z together with a C-algebra O(Z) of C-valued func-
tions on Z is called an affine variety if there is a closed subset X C C™ for some n
and a bijection p: Z = X which identifies O(X) with O(Z), i.e., *: O(X) — O(Z)
given by f — f o, is an isomorphism.

The functions from O(Z) are called regular, and the algebra O(Z) is called
coordinate Ting of Z or algebra of reqular functions on Z.

The affine variety Z has a natural topology, also called ZARISKI topology, the
closed sets being the zero sets

Vz(a):={2z€Z| f(z) =0forall f €a}

where a runs through the ideals of O(Z). If follows from what we said above that
the bijection p: Z = X is a homeomorphism with respect to the ZARISKI topology.

Clearly, every closed subset X C V or X C C" together with its coordinate
ring O(X) is an affine variety. More generally, if X is an affine variety and ¥ C X
a closed subset, then Y together with the restrictions O(Y) := {f|y | f € O(X)} is
an affine variety, called a closed subvariety. Less trivial examples are the following.

EXAMPLE 1.4.2. Let M be a finite set and define O(M) := CM = Maps(M, C)
to be the set of all C-valued functions on M. Then (M, O(M)) is an affine variety
and O(M) is isomorphic to a product of copies of C. This follows immediately from
the fact that any finite subset N C C" is closed and that O(N) = Maps(N, C).

EXAMPLE 1.4.3. Let X be a set and define the symmetric product Sym,,(X)
to be the set of unordered n-tuples of elements from X, i.e.,

Sym, (X)=XxX x---x X/~
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where (a1,az2,...,a,) ~ (b1,be,...,b,) if and only if one is a permutation of the
other.

In case X = C we define O(Sym,,(C)) to be the symmetric polynomials in n
variables and claim that Sym,,(C) is an affine variety.

To see this consider the map

O:C" = C" a=(a1,...,a,) — (01(a),02(a),...,0n(a))

where o1, . ..,0, are the elementary symmetric polynomials (see Example 1.1.3). It
is easy to see that ® is surjective and that ®(a) = ®(b) if and only if a ~ b. Thus,
® defines a bijection : Sym, (C) = C", and the pull-back of the regular functions
on C" are the symmetric polynomials: ¢*: Clz1,...,z,] = O(Sym,,(C)).

In general, one defines

OX XX x--xX):=C[fiforfulfi € OX)]

n copies

and
O(Sym,,(X) ={f € O(X x X x ---x X) | f symmetric}.

EXERCISE 1.4.4. Let Z be an affine variety with coordinate ring O(Z). Then every
polynomial f € O(Z)[t] with coefficients in O(Z) defines a function on the product Z x C
in the usual way:

=Y fit":(za) = Y fulz)a" €C
k=0 k=0

Show that Z x C together with O(Z)]t] is an affine variety.
(Hint: For any ideal a C C[x1, . . ., ;] there is a canonical isomorphism C[z1, . .., zn,t]/(a) =

(Clz1, .. zn]/a)[t].)
EXERCISE 1.4.5. For any affine variety Z there is a inclusion-reversing bijection
{A C Z closed} = {a C O(Z) perfect ideal}
given by A — I(A) :={f € O(Z) | fla =0} (cf. Corollary 1.3.15).
For the last example we start with a reduced and finitely generated C-algebra
R. Denote by the set of maximal ideals of R:
spec R := {m | m C R a maximal ideal}.

We know from HILBERT’s Nullstellensatz (see Exercise 5.8) that R/m = C for
all maximal ideals m € spec R. This allows to identify the elements from R with
C-valued functions on spec R: For f € R and m € spec R we define

f(m) = f+me R/m=C.

PROPOSITION 1.4.6. Let R be a reduced and finitely generated C-algebra. Then
the set of mazimal ideals spec R together with the algebra R considered as functions
on spec R is an affine variety.

PROOF. We have already seen earlier that every such algebra R is isomorphic
to the coordinate ring of a closed subset X C C". The claim then follows by using
the bijection X = spec O(X), z +— m, = ker ev,, and remarking that for f € O(X)
and x € X we have f(z) = ev,(f) = f + my, by definition. O

EXERCISE 1.4.7. Denote by C,, the n-tuples of complex numbers up to sign, i.e.,
Cp :=C"/ ~ where (a1,...,an) ~ (b1,...,bn) if a; = £b; for all i. Then every polynomial

in C[z},3,...,22] is a well-defined function on C,,. Show that C,, together with these
functions is an affine variety.
(Hint: Consider the map ®: C™ — C", (a1,...,a,) — (ai,...,a2) and proceed like in

Example 1.4.3.)
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Although every affine variety is isomorphic to a closed subset of C™ for a suitable
n, there are many advantages to look at these objects and not only at closed subsets.
In fact, an affine variety can be identified with many different closed subsets of this
form (see the following Exercise 1.4.8), and depending on the questions we are
asking one of them might be more useful than another. We will even see in the
following section that certain open subsets are affine varieties in a natural way.

On the other hand, whenever we want to prove some statements for an affine
variety X we can always assume that X = V(a) C C" so that the regular functions
on X appear as restrictions of polynomial functions. This will be helpful in the
future and quite often simplify the arguments.

EXERCISE 1.4.8. Let X be an affine variety. Show that every choice of a generating
system f1, f2,..., fn € O(X) of the algebra O(X) consisting of n elements defines an
identification of X with a closed subset V(a) C C".

(Hint: Consider the map X — C" given by = — (fi(x), f2(z), ..., fn(2)).)

1.5. Special open sets. Let X be an affine variety and f € O(X). Define
the open set Xy C X by

X=X \Vx(f) ={z € X[ f(z) # 0}.
An open set of this form is called a special open set.

LEMMA 1.5.1. The special open sets of an affine variety X form a basis of the
topology.

ProOOF. If U C X is open and = € U, then X \ U is closed and does not
contain . Thus, there is a regular function f € O(X) vanishing on X \ U such that
f(z) # 0. This implies x € Xy C U. O

Given a special open set X; C X we see that f(z) # 0 for all z € X and so

the function % is well-defined on Xj.

PROPOSITION 1.5.2. Denote by O(Xy) the algebra of functions on Xy generated
by % and the restrictions h|x, of regular functions h on X :
1

O(X;) = C[% {hlx, | 1€ O} = O], (5]

Then (X, O(Xy)) is an affine variety and O(Xy) ~ O(X)[t]/(f -t —1).
PROOF. Let X = V(a) C C™ and define
X = V(a, f-apy — 1) CCPHL
It is easy to see that the projection pr: crtl - C» onto the first n coordinates
induces a bijective map X = X ¢ whose inverse ¢: Xy 5 X is given by
0@y ) = (21, g, f(@1, 0 Tn) 7).

The following commutative diagram now shows that ¢*(O(X)) is generated by
©*(Tpy1) = % and the restrictions h|x, (h € O(X)).

C

X —— X —— ™!
closed

B 1T b

X; —S5 X —=5 ¢»
open closed

This proves the first claim. For the second, we have to show that the canonical
homomorphism O(X)[t]/(f -t — 1) — O(X) is an isomorphism. In other words,
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every function h = Y27 hit' € O(X)[t] which vanishes on X is divisible by f-¢— 1.
Since f|y is invertible we first obtain Y, h; f™~* = 0 which implies

m m—1
h=h—t"> hif™ =3 ht'(1— frHm,
i=0 i=0
and the claim follows. O

ExAMPLE 1.5.3. The group is a special open set of M,,(C), hence GL,(C) is
an affine variety with coordinate ring O(GL,(C)) = C[{z;; | 1 <i,j < n},75]. In
particular, C* := GL; = C\ {0} is an affine variety with coordinate ring C[z, z71].

EXERCISE 1.5.4. Let R be an arbitrary C-algebra. For any element s € R define
Rs :=R[z]/(s -z —1).
(1) Describe the kernel of the canonical homomorphism ¢: R — R,.
(2) Prove the universal property: For any homomorphism p: R — A such that p(s)
is invertible in A there is a unique homomorphism p: Rs — A such that pot = p.
(3) What happens if s is a zero divisor and what if s is invertible?

1.6. Decomposition into irreducible components. We start with a purely
topological notion.

DEFINITION 1.6.1. A topological space T is called irreducible if it cannot be
decomposed in the form T' = A U B where A, B g T are proper closed subsets.
Equivalently, every non-empty open subset is dense.

LEMMA 1.6.2. Let X C C™ be a closed subset. Then the following are equivalent:

(i) X is irreducible.
(ii) I(X) 4s a prime ideal.
(iil) O(X) is a domain, i.e., has no zero-divisor.

PRrROOF. (i)=-(ii): If I(X) is not prime we can find two polynomials f,h €
Clz1, ..., zpn) \ I(X) such that f-h € I(X). This implies that X C V(f - h) =
V(f) UV(h), but X is neither contained in V(f) nor in V(h). Thus X = (V(g) N
X)U (V(h) N X) is a decomposition into proper closed subsets, contradicting the
assumption.

(if)=-(iii): This is clear since O(X) = Clxy, ..., z,]/I(X).

(iii)=-(i): If X = AU B is a decomposition into proper closed subsets there
are nonzero functions f, h € O(X) such that f|4 =0 and h|p = 0. But then f-h
vanishes on all of X and so f-h = 0. This contradicts the assumption that O(X)
does not contain zero-divisor. O

ExaMPLE 1.6.3. Let f € Clzy,...,2,]). Then the hypersurface V(f) is irre-
ducible if and only if f is a power of an irreducible polynomial. This follows from
Example 1.3.9 and the fact that the ideal (f) is prime if and only if f is irreducible.
More generally, if f = pi*ps? - - pl= is the primary decomposition, then

V(f) =V(p1) UV(p2) U---UV(py,)

where each V(p;) is irreducible, and this decomposition is irredundant, i.e., no term
can be dropped.

THEOREM 1.6.4. FEvery affine variety X is a finite union of irreducible closed
subsets X;:

(5) X=XUXU---UX,.

If this decomposition is irredundant, then the X;’s are the mazimal irreducible sub-
sets of X and are therefore uniquely determined.
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The maximal X;’s are called the irreducible components of X and the unique
irredundant decomposition of X in the form (5) is called decomposition into irre-
ducible components.

For the proof of the theorem above we first recall that a C-algebra R is called
Noetherian if the following equivalent conditions hold:

(i) Every ideal of R is finitely generated.
(ii) FEvery strictly ascending chain of ideals of R terminates.
(iii) Every non-empty set of ideals of R contains mazximal elements.

(The easy proofs are left to the reader; for the equivalence of (ii) and (iii) one has
to use Zorn’s Lemma.)

The famous “Basissatz” of HILBERT implies that every finitely generated C-
algebra is Noetherian (see [Art91, Chap. 12, Theorem 5.18]). In particular, this
holds for the coordinate ring O(X) of any affine variety X. Using the inclusion
reversing bijection between closed subsets of X and perfect ideals of O(X) (see
Corollary 1.3.15 and Exercise 1.4.5) we get the following result.

PROPOSITION 1.6.5. Let X be an affine variety. Then

(1) Ewvery closed subset A C X is of the form Vx(f1, fo,- - fr)-
(2) Every strictly descending chain of closed subsets of X terminates.
(3) Every non-empty set of closed subsets of X contains minimal elements.

REMARK 1.6.6. It is easy to see that for an arbitrary topological space T' the
properties (2) and (3) from the previous proposition are equivalent. If they hold,
then T is called Noetherian.

PROOF OF THEOREM 1.6.4. We first show that such a decomposition exists.
Consider the following set

M :={A C X | A closed and not a finite union of irreducible closed subsets}.

If M # (), then it contains a minimal element Ag. Since Aq is not irreducible, we can
find proper closed subset B, B’ C Ay such that Ag = BU B’. But then B, B’ ¢ M
and so both are finite unions of irreducible closed subsets. Hence Ay is a finite union
of irreducible closed subsets, too, contradicting the assumption.

To show the uniqueness let X = X; U X5 U---U X, where all X; are irreducible
closed subsets and assume that the decomposition is irredundant. Then, clearly,
every X, is maximal. Let ¥ C X be a maximal irreducible closed subset. Then
Y=YnX)u¥ NXz)U---U(YNX,) and so Y =Y NX;, for some j. It follows
that ¥ C X; and so Y = X because of maximality. O

REMARK 1.6.7. The algebraic counterpart to the decomposition into irreducible
components is the following statement about radical ideals in finitely generated
algebras R: Every radical ideal a C R is a finite intersection of prime ideals:

a=p;NpaN---Nps.

If this intersection is irredundant, then the p;’s are the minimal prime ideals con-
taining a. (The easy proof is left to the reader.)

ExXAMPLE 1.6.8. Consider the two hypersurfaces Hy := V(zy — z), Hy :=
V(zz — y?) in C3 and their intersection X := H; N Hy. Then

X =V(y,2) UC where C := {(t,t*,1*) | t € C},

and this is the irreducible decomposition.

In fact, it is obvious that the z-axis V(y, 2z) is closed and irreducible and belongs
to X, and the same holds for the curve C' (see Exercise 1.3.14). If (a,b,¢) € X \
V(y, z), then either b or ¢ is # 0. But then b # 0 because ab = ¢. Hence a = cb~! and
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so b? = ac = c®b~! which implies that ¢ = b3. Thus b = (cb=1)? and ¢ = (cb™1)3,
ie. (a,b,c) € C.
Another way to see this is by looking at the coordinate ring:
(C[sc,y,z]/(scy —Z,Tz = y2) :) (C[xa y]/(IQy - y2)

On the level of ideals we get (2%y — y?) = (y(z — y?)) = (y) N (z — y?), and the
ideals (y) and (x — y?) are obviously prime, with residue class ring isomorphic to a
polynomial ring in one variable. This shows that X has two irreducible components,
both with coordinate ring isomorphic to C[t].

EXERCISE 1.6.9. The closed subvariety X := V(z® — yz,z2 — ) C C® has three
irreducible components. Describe the corresponding prime ideals in C[z, y, z].

EXAMPLE 1.6.10. The group Os := {A € My | AA! = E} has two irreducible

components, namely SOs := O3 NSLy and {0 1

1 O] -S04, and the two components

are disjoint.
In fact, the condition AA* = F for A = {CCL Z} implies that {Z] ==x [_dc}
a b a b
a

Since det b b

as well as [(1) (1)] -S04, = {[Z ba} | a® +b? = 1}, and the claim follows.

= a?+b* we see that SOz = { | a®+b* = 1} isirreducible

EXERCISE 1.6.11. Let X = X; U X2 where X, Xo C X are closed and disjoint. Then
one has a canonical isomorphism O(X) = O(X1) x O(X2).

EXERCISE 1.6.12. Let X = J, X; be the decomposition into irreducible components.
Let U; C X; be open subsets and put U := UZ U, C X.
(1) Show that U is not necessarily open in X.
(2) Find sufficient conditions to ensure that U is open in X.
(3) Show that U is dense in X if and only if all U; are non-empty.

1.7. Rational functions and local rings. If X is an irreducible affine va-
riety, then O(X) is a domain by Lemma 1.6.2. Therefore, we can form the field of
fractions Quot(O(X)) of O(X) which is called the field of rational functions on X
and will be denoted by . Clearly, if X = C”, then C(X) = C(z1,z2,...,zy), the
rational function field. An irreducible affine variety X is called rational if its field
of rational functions C(X) is isomorphic to a rational function field.

A rational function f € C(X) can be regarded as a function “defined almost
everywhere” on X. In fact, we say that f is defined in x € X if there are p, ¢ € O(X)
such that f =2 and g(z) # 0.

EXAMPLE 1.7.1. Consider again NEIL'S parabola C' := V(y? — 23) C C? from
Example 1.3.11 and put Z := z|¢ and § := y|c. Then the rational function f :=
L € C(0) is not defined in (0,0). Note that f* = z. The interesting point here is
that f has a continuous extension to all of C' with value 0 at (0,0), even in the
C-topology.

PROOF. There is an isomorphism O(C) = C[t?, 3] (see Example 1.3.11) which
maps T to t? and § to t3, and so f = % is mapped to t. Since t ¢ C[t?,¢] the first
claim follows from Lemma 1.7.3 above. The second part is easy, because the map
C — C: tw (t2,13) is a homeomorphism even in the C-topology. O

EXERCISE 1.7.2. If f € C(C?) = C(w,y) is defined in C?\ {(0,0)}, then f is regular.
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For a rational function f on the irreducible affine variety X we denote by
Def(f) C X the set of points where f is defined. By definition, Def(f) C X is an
open set. Moreover, we have the following result.

LEMMA 1.7.3. Def(f) = X if and only if f is regular on X.

PrOOF. Consider the “ideal of denominators” a:={p € O(X) | p- f € O(X)}.
If Def(f) = X, then V(a) = 0. Hence 1 € a, and so f € O(X). O

EXERCISE 1.7.4. Let f € C(V) be a nonzero rational function on the vector space V.
Then Def(f) is a special open set in V.

Assume that X is irreducible and let € X . Define
Ox ={f € C(X) | f is defined in z}.

It is easy to see that Ox , is the localization of O(X) at the maximal ideal m,.
(For the definition of the localization of a ring at a prime ideal and, more generally,
for the construction of rings of fractions we refer to [Eis95, 1.2.1].) This example
motivates the following definition.

DEFINITION 1.7.5. Let X be an affine variety and x € X an arbitrary point.
Then the localization O(X ), of the coordinate ring O(X) at the maximal ideal in
x is called the local ring of X at x. It will be denoted by Ox ., its unique maximal
ideal by mx ;. ,

We will see later that the local ring of X at x completely determines X in a
neighborhood of x (see Proposition 2.3.1(3)).

EXERCISE 1.7.6. If X is irreducible, then O(X) =, cx Ox 2

EXERCISE 1.7.7. Let X be an affine variety, z € X a point and X’ C X the union
of irreducible components of X passing through x. Then the restriction map induces a
natural isomorphism Ox , = Ox/ 4.
EXERCISE 1.7.8. Let R be an algebra and j1: R — Rs the canonical map r — { where
Rs is the localization at a multiplicatively closed subset 1 € S C R (0 ¢ S).
(1) If a € R is an ideal and ag := Rg u(a) C Rg, then

p () = pH(as) = {b € R| sb € a for some s € S}.

Moreover, (R/a)s — Rs/as where S is the image of S in R/a.

(Hint: For the second assertion use the universal property of the localization.)
(2) If m C R is a maximal ideal and S := R\ m, then mg is the maximal ideal of

Rs and the natural maps R/m’C = Rs/mg are isomorphisms for all k > 1.

(Hint: The image S in R/m" consists of invertible elements.)

EXERCISE 1.7.9. Let p < ¢ be positive integers with no common divisor and define
Cpq = {(t?,t7) | t € C} C C2% Then C, 4 is a closed irreducible plane curve which is
rational, i.e. C(Cp,q) ~ C(¢t). Moreover, O(C) 4) is a polynomial ring if and only if p = 1.

EXERCISE 1.7.10. Consider the elliptic curve E := V(y* —x(2® —1)) C C?. Show that
E is not rational, i.e. that C(E) is not isomorphic to C(t).

(Hint: If C(E) = C(¢), then there are rational functions f(t), h(t) which satisfy the equation
F(®)* = h(®)(h(t)* - 1).)
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2. Morphisms

2.1. Morphisms and comorphisms. In the previous sections we have de-
fined and discussed the main objects of algebraic geometry, the affine varieties. Now
we have to introduce the “regular maps” between affine varieties which should be
compatible with the concept of regular functions.

DErFINITION 2.1.1. Let X,Y be affine varieties. A map ¢: X — Y is called
regular or a morphism if the pull-back of a regular function on Y is regular on X:

fopeOX) forall feO).

Thus we obtain a homomorphism ¢*: O(Y) — O(X) of C-algebras given by
©*(f) := f o p, which is called comorphism of .
A morphism ¢ is called an isomorphism if ¢ is bijective and the inverse map

™1 is also a morphism. If, in addition, Y = X, then ¢ is called an automorphism.

EXAMPLE 2.1.2. A map ¢ = (f1, f2,-.., fm): C* — C™ is regular if and only if
the components f; are polynomials in Clx1, ..., x,]. This is clear, since ¢*(y;) = f;
where y1,9s, ..., Ym are the coordinate functions on C™.

More generally, let X be an affine variety and a ¢ = (f1,..., fm): X - C™ a
map. Then ¢ is a morphism if and only if the components f; are regular functions
on X . (This is clear since f; = ¢*(y;).)

EXAMPLE 2.1.3. The morphism t + (t2,#%) from C — C? induces a bijective
morphism C — C := V(y* — ) which is not an isomorphism (see Example 1.3.11).

Similarly, for the curve D := V(y? — 2% — 23) there is a morphism ¢: C — D
given by t — (12 — 1,t(t> — 1)). This time v is surjective, but not injective since
P(1) = ¢(=1) = (0,0).

EXERCISE 2.1.4. Let g € GL,, be an invertible matrix. Then left multiplication A —
gA, right multiplication A — Ag and conjugation A — gAg~! are automorphisms of M.

If a morphism ¢ = (f1, f2,..., fm): C* — C™ maps a closed subset X C
C™ into a closed subset Y C C™, then the induced map ¢: X — Y is clearly
a morphism, just by definition. This holds in a slightly more general setting, as
claimed in the next exercise.

EXERCISE 2.1.5. Let ¢: X — Y be a morphism. If X’ C X and Y’ C Y are closed
subvarieties such that ¢(X’) C Y, then the induced map ¢’: X' — Y’, x — ¢(x), is again
a morphism. The same holds if X’ and Y’ are special open sets.

These examples have the following converse which will be useful in many ap-
plications.

LEMMA 2.1.6. Let X CC™ andY C C™ be closed subvarieties and let p: X —
Y be a morphism. Then there are polynomials f1,..., fm € Clz1,...,z,] such that
the following diagram commutes:

X —Z= v
PROOF. Let yi,...,yn denote the coordinate functions on C™. Put g; := y;|y
and consider ¢*(g;) € O(X). Since X C C" is closed there exist f; € Clxy,...,zy]
such that fij|x = ¢*(y;), for j = 1,...,m. We claim that the morphism & :=
(fi,--+, fm): C* — C™ satisfies the requirements of the lemma. In fact, let a €
X CC™ and set p(a) =:b=(by,...,by). Then

bj = y;(b) = 7;(b) = g;(¢(a)) = ¢*(F;)(a) = f;(a) = fi(a),
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and so ¢(a) = ®(a). O

EXERCISE 2.1.7. (1) Every morphism C — C* is constant.
(2) Describe all morphisms C* — C*.
(3) Every nonconstant morphism C — C is surjective.
(4) An injective morphism C — C is an isomorphism, and the same holds for injec-
tive morphisms C* — C*.
EXERCISE 2.1.8. Let ¢: C" — C™ be a morphism and define
Ty = {(a,p(a)) € C"T"}.
which is called the graph of the morphism ¢. Show that I', is closed in C™*t™, that
the projection prg,: C**™
Premop™t.

— C" induces an isomorphism p: I', = C™ and that ¢ =

PROPOSITION 2.1.9. Let X, Y be affine varieties. The map ¢ — ¢* induces a
bijection
Mor(X,Y) = Alg-(O(Y), O(X)).
between the morphisms from X to'Y and the algebra homomorphism from O(Y') to
O(X).

REMARK 2.1.10. The mathematical term used in the situation above is that
of a contravariant functor from the category of affine varieties and morphisms to
the category of finitely generated reduced C-algebras and homomorphism, given by
X = O(X) and ¢ — ¢*. In particular, we have ¢*(Idx) = Idp(x) and (po¥)* =
1™ o p* whenever the expressions make sense. The proposition above then says that
this functor is an equivalence, the inverse functor being R — spec R defined in
Proposition 1.4.6. It will be helpful to keep this “functorial point of view” in mind
although it will not play an important role in the following.

PROOF. (a) If p1 = ¢}, then, for all f € O(Y) and all x € X, we get
fler()) = e1(F)(x) = v2(f) (@) = f(p2(2)).

Hence, p1(x) = @a(x) since the regular functions separate the points (Remark 1.2.12).

(b) Let p: O(Y) — O(X) be an algebra homomorphism. We want to con-
struct a morphism p: X — Y such that ¢* = p. For this we can assume that
Y C C™ is a closed subvariety. Let §; := y;|y be the restrictions of the coor-
dinate functions on C™ and define f; := p(y;) € O(X). Then we get a mor-
phism ® := (f1,..., fm): X — C™ such that ®*(y;) = f; (see Example 2.1.2). If
h="h(yi,...,ym) € I(Y), then

h(fis- s fm) = B(p(), - p(Um)) = p(R(G1, .-, Gm)) =0
because h(y1,...,Jm) = hly = 0 by assumption. Therefore h(®(a)) = 0 for all

a€ X and all h € I(Y) and so ®(X) C Y. This shows that ® induces a morphism
¢: X — Y such that ¢*(7;) = ®*(y;) = f; = p(y;), and so ¢* = p. O

ExXAMPLE 2.1.11. Let X be an affine variety, V a finite dimensional vector space
and ¢: X — V a morphism. The linear functions on V form a subspace V* C O(V)
which generates O(V). Therefore, the induced linear map ¢*|y-: V* — O(X)
completely determines *, and we get a bijection

Mor(X, V) 5 Hom(V*,0(X)) ¢+ ¢*|y-.

The second assertion follows from Proposition 2.1.9 and the well-known “Sub-
stitution Principle” for polynomials rings (see [Art91, Chap. 10, Proposition 3.4]).

EXERCISE 2.1.12. Show that for an affine variety X the morphisms X — C* corre-
spond bijectively to the invertible functions on X.
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EXERCISE 2.1.13. Let X,Y be affine varieties and ¢: X — Y, ¢¥: Y — X morphisms
such that 1) o ¢ = Idx. Then p(X) C Y is closed and ¢: X = ¢(X) is an isomorphism.

2.2. Images, preimages and fibers. It is easy to see that morphisms are
continuous. In fact, the ZARISKI topology is the finest topology such that regular
functions are continuous, and since morphisms are defined by the condition that
the pull-back of a regular function is again regular, it immediately follows that
morphisms are continuous. We will get this result again from the next proposition
where we describe images and preimages of closed subsets under morphisms.

PRrROPOSITION 2.2.1. Let ¢: X — Y be a morphism of affine varieties.

(1) If B == Vy(S) C Y is the closed subset defined by S C O(Y), then
0 H(B) = Vx(9*(5)). In particular,  is continuous.

(2) Let A :=V(a) C X be the closed subset defined by the ideal a C O(X).
Then the closure of the image p(A) is defined by ©**(a) C O(Y):

p(A) = Vy (p"(a).
PrOOF. For z € X we have
r €@ '(B) <= p(r)eB < f(p(x))=0forall f S,

and this is equivalent to ¢*(f)(z) = 0 for all f € S, hence to € Vx(¢*(5)),
proving the first claim.
For the second claim, let f € O(Y). Then

Mo =0 = floy =0 = ¢ (Nla=0 = ¢ () €I(4) = Va

The latter is equivalent to the condition that a power of f belongs to go*_l (a). Thus
the zero set of ¢* ' (a) equals the closed set p(A). O

EXERCISE 2.2.2. If ¢1,p2: X — Y are two morphisms, then the “kernel of coinci-
dence”
ker(p1,2) :={z € X | ¢1(2) = p2(2)} C X
is closed in X

EXERCISE 2.2.3. Let ¢: X — Y be a morphism of affine varieties.

(1) If X is irreducible, then ¢(X) is irreducible.

(2) Every irreducible component of X is mapped into an irreducible component of
Y.

(3) If U C Y is a special open set, then so is ¢~ *(U).

EXERCISE 2.2.4. Let ¢: C* — C™ be a morphism, ¢ = (f1, f2,..., fm) where f; €
Clz1,z2,...,xxn], and let Y := ¢(C") be the closure of the image of . Then

I(Y) = (yl - f17y2 _f27-~-7ym - fm) ﬂc[y17y27"'7ym]
where both sides are considered as subsets of C[z1,...,Zn,Y1,-..,Ym]. S0 I(Y) is obtained
from the ideal (y1 — fi,...,ym — fm) by eliminating the variables x1,...,Tn.
(Hint: Use the graph Iy, defined in Exercise 2.1.8 and show that the ideal I(T',) is generated
by {y; — fili=1,....,m}.)

EXERCISE 2.2.5. Let ¢: X = X be an automorphism and ¥ C X a closed subset
such that ¢(Y) C Y. Then p(Y) =Y and ¢p|y: Y — Y is an automorphism, too.
(Hint: Look at the descending chain Y D Y1 :=p(Y) D Ya:= (Y1) 2 ---. If Y, = Yiq1,
then p(Yo—1) =Y, = ¢(Yy) and so Y1 = Ys.)

DEFINITION 2.2.6. A morphism ¢: X — Y is called a closed immersion if
©(X) CY is closed and the induced map X — ¢(X) is an isomorphism.

LEMMA 2.2.7. A morphism ¢: X =Y is a closed immersion if and only if the
comorphism ¢*: O(Y) — O(X) is surjective.
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PrOOF. If ¢ is a closed immersion, then O(X) ~ O(¢(X)) and the regular
functions on ¢(X) are restrictions from regular functions on Y, hence ¢* is surjec-
tive.

Now assume that ¢* is surjective, and put a := ker ¢*. This is a radical ideal
and so a = I(A) where A := Vx(a). By definition, ¢* has the decomposition
O(Y) - O(A) 5 O(X), i.e. ¢ induces an isomorphism X = A C Y. O

EXERCISE 2.2.8. Let ¢: X — Y and ¢: Y — Z be morphisms, and assume that the
composition ¥ o ¢ is a closed immersion. Then ¢ is a closed immersion.

A special case of preimages are the fibers of a morphism ¢: X - Y. Let y € Y.
Then
P y) ={z e X | p(2) =y}
is called the fiber of y € Y. By the proposition above, the fiber of y is a closed
subvariety of X defined by ¢*(m,):

¢~ (y) = Vx (9" (my)).
Of course, the fiber of a point ¥y € Y can be empty. In algebraic terms this means
that ¢*(m,) generates the unit ideal (1) = O(X).

EXERCISE 2.2.9. Describe the fibers of the morphism ¢: My — M2, A — A2,
(Hint: Use the fact that p(gAg™ ') = gp(A)g* for g € GLs.)

DEFINITION 2.2.10. Let ¢: X — Y be a morphism of affine varieties and
consider the fiber I := ¢~1(y) of a point y € ¢(X) C Y. Then the fiber F is called
reduced if ¢*(m,) generates a perfect ideal in O(X), i.e. if

O0(X) - p*(my) = O(X) - ¢"(my).

The fiber F is called reduced in the point x € F if this holds in the local ring Ox ,,
ie.
OX,x . w*(my) = OX,x . @*(my)

EXAMPLE 2.2.11. Look again at the morphism ¢: C — C := V(y* — 23) C C?,
t > (t2,#3). Then ¢* is the injection O(C) = C[t?,t3] — C[t] and so

Clt] - ¢*(mo,0) = (£%,°) C V(2 1%) = (¢).
Thus the zero fiber »=1(0) is not reduced. On the other hand, all other fibers

are reduced. In fact, ¢ induces an isomorphism of C* with the special open set
C\ {(0,0)}(= Cz = Cy), where the inverse map is given by (a,b) — 2.

The following lemma shows that reducedness is a local property.

LEMMA 2.2.12. Let p: X — Y be a morphism and F := o~ 1(y) the fiber of
yevy.
(1) If F is reduced in x € F, then F is reduced in a neighborhood of x.
(2) If F is reduced in every x € F, then F is reduced.

PrROOF. We will use here some standard facts related to “localization”, see
[Eis95, 1.2.1]. Set R := O(X)/¢*(m,)O(X), and let v := /(0) € R denote the
nilradical.

(1) Since Ry, is reduced, the ideal ¢ is in the kernel of the map R — Ry, . It
follows that there is an element s ¢ m, such that v belongs to the kernel of R — Ry,
i.e. Ry is reduced. This means that the fiber F' is reduced in every point of Fj.

(2) If F is reduced in every point, it follows from (1) that there are finitely many
s; € Rsuch that Ry, is reduced for all ¢ and that (s1,..., $;») = R. This implies that

sN .t = (0) for all  and some N > 0, hence t = (0), because 1 € (s1,...,8,,). O



180 APPENDIX A. BASICS FROM ALGEBRAIC GEOMETRY

EXERCISE 2.2.13. Show that all fibers of the morphism 1: C — D := V(y*—a?—x3) C
C?, t+— (2 — 1,t(t* — 1)), are reduced and that v induces an isomorphism C\ {1, -1} =

D\ {(0,0)}.

EXERCISE 2.2.14. Consider the morphism ¢: SLs — C?, ¢( {Z Z}) := (ab, ad, cd).
(1) The image of ¢ is a closed hypersurface H C C? defined by zz — y(y — 1) = 0.
(2) The fibers of ¢ are the left cosets of the subgroup 7" := {[t t_l} |t e C"}.

(3) All fibers are reduced.
(Hint: Show that the left multiplication with some g € SLy induces an automorphism A4
of H and isomorphisms ¢ '(y) = ¢ 1(\y(y)) for all y € H. This implies that it suffices
to study just one fiber, e.g. ¢ ' (p(E)).)

EXERCISE 2.2.15. Consider the morphism ¢: C* — C? given by ¢(z,y) := (z, zy).

(1) p(C?) =C?\ {(0,y) | y # 0} which is not locally closed.

(2) What happens with the lines parallel to the z-axis or parallel to the y-axis?
(3) ¢ (0) = y-axis. Is this fiber reduced?

(4) ¢ induces an isomorphism C? \ y-axis = C? \ y-axis.

2.3. Dominant morphisms and degree. Let ¢: X — Y be a morphism of
affine varieties, « a point of X and y := ¢(z) its image in Y. Then ¢*(m,) C m,,
and so ¢* induces a local homomorphism

(p;: wa — OXVJC.

(A homomorphism between local rings is called local if it maps the maximal ideal
into the maximal ideal.)

The next proposition tells us that, in a neighborhood of a point x € X, a
morphism ¢ is uniquely determined by the local homomorphism ¢} .

PROPOSITION 2.3.1. (1) Let ¢,7p: X =Y be two morphisms and v € X
a point such that o(x) = ¥(x) and ¢% = Yk. Then ¢ and ¢ coincide on
every irreducible component of X which contains x.

(2) Ifv € X, y €Y and if p: Oy,y = Ox 5 is a local homomorphism, then
there is a special open sets X' C X containing x and a morphism ¢: X' —
Y such that @} = p.

(3) Ifzr € X,y €Y and p: Oy, = Ox, an isomorphism, then there exist
special open sets X' C X and Y' CY containing x and y, respectively,
and an isomorphism p: X' =Y’ such that o’ = p.

PrOOF. (1) Let R be a finitely generated reduced C-algebra and m C R a
maximal ideal. The canonical map p: R — Ry, is injective if and only if m contains
all minimal prime ideals of R. (In fact, ker 4 = {r € R | sr = 0 for some s € R\m}.)

Denote by X C X the union of irreducible components passing through = and
by Y C Y the union of irreducible components passing through ¢(z). Then ¢(X) C
Y, because the image of an irreducible component of X is contained in an irreducible
component of Y (see Exercise 2.2.3). Thus we obtain a morphism @: X — Y with
the following commutative diagram of C-algebras and homomorphisms which shows

that ¢ is completely determined by ¢%:

= C
O(Y) —_— O(Y) —_— O}’/#p(m) = OY#P(W)

lw* l@* lvi

O(X) —— O(X) —=—  Ox,=0Ox,
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(2) We can assume that all irreducible components of X pass through z and all
irreducible components of Y pass through y. Then

O(Y) - Oyyy — OX@ D) O(X)
Let hi,..., hm € O(Y) be a set of generators and put g; := p(h;). Then we can find
an element ¢t € O(X) \ m, such that g; € O(X), for all j, i.e. p(O(Y)) C O(X);.
Hence there is a morphism ¢: X; — Y such that ¢* = plo(x),, and so @} = p.

(3) By (2) we can assume that there is a morphism ¢: X — Y such that ¢ = p,
ie. p(O(Y)) CO(X). Let fi,..., fn € O(X) be generators. Then f; = pp((}:)) where
hi € O(Y) and s € O(Y')\m,. This implies that p(O(Y)s) = O(X); where t = p(s).
Thus p induces an isomorphism O(Y)s = O(X);, and the claim follows. O

DEFINITION 2.3.2. Let XY be irreducible affine varieties. A morphism ¢: X —
Y is called dominant if the image is dense in Y, i.e. ¢(X) =Y. This is equivalent
to the condition that ¢*: O(Y) — O(X) is injective (see Proposition 2.2.1(2)).

It follows that every dominant morphism ¢: X — Y induces a finitely generated
field extension ¢*: C(Y) — C(X). If this is a finite field extension of degree d :=
[C(X) : C(Y)] we will say that ¢ is a morphism of finite degree d. If d = 1, i.e. if
¢* induces an isomorphism C(Y) = C(X), then ¢ is called a birational morphism.

EXERCISE 2.3.3. Let ¢: C — C be a nonconstant morphism. Then ¢ has finite degree
d, and there is a non-empty open set U C C such that #¢ *(z) = d for all z € U.

There is a similar result as the second part of Proposition 2.3.1 saying that
affine varieties with isomorphic function fields are locally isomorphic.

PROPOSITION 2.3.4. Let X and Y be irreducible affine varieties and assume
that we have an isomorphism p: C(Y) = C(X). Then there exist special open sets
X'CX andY' CY and an isomorphism 1: X' 5 Y such that p = ¥*.

PROOF. Since O(Y) C C(Y) is finitely generated, there is an f € O(X)
such that p(O(Y)) C O(X);. Replacing X by X, we can therefore assume that
p(O(Y)) C O(X). By the same argument we can find an h € O(Y) such that
p~HO(X)) € O(Y)n. Thus p(O(Y)n) € O(X),my and p~(O(X) ) € O ).
Hence p(O(Y)n) = O(X)yn), and we get an isomorphism ¢: X,y = Y} with
P =p. O

2.4. Rational varieties and Liiroth’s Theorem. An irreducible affine va-
riety X is called rational if its field of rational functions C(X) is a purely tran-
scendental extension of C (section 1.7). By Proposition 2.3.4 this means that X
contains a special open set U which is isomorphic to a special open set of C™.

PRrROPOSITION 2.4.1. Let ¢: X — Y be a dominant morphism where X is ra-
tional and dimY = 1. Then Y is a rational curve.

PROOF. We can assume that X is a special open set of C™. Then there is a line L
in C™ such that (LN X) C Y is dense. This implies that C(C') C C(LNX) = C(x),
and the claim follows from the LUROTH’s Theorem below. (|

THEOREM 2.4.2 (LUROTH’s Theorem). Let K C C(x) be a subfield which con-
tains C. Then there is an h € K such that K = C(h).

PROOF. We can assume that K # C. Any f(t) € C(x)[t] can be written in

the form f(t) = pq(é;;) where p(z,t) € Clz,t], ¢(x) € C[z], and p, ¢ are relatively

prime. Define the degree of f by deg(f) := max{deg, p,deg, q}. It is easy to see
that deg(f) = deg(f1) + deg(f2) in case f = fi fo and both factors f; are monic as
polynomials in .
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Let h € K\ C be an element of minimal degree d, h = Zg; where r, s € Clz].
We can assume that r, s are monic and that deg, s < deg, r = d. Set f = f(t) :=
r(t) — hs(t) € K[t] C C(z)[t]. Then deg, f = d and f(z) = 0. We claim that f is
irreducible in K[t]. This implies that f is the minimal polynomial of x over K, but
also the minimal polynomial of z over C(h), hence K = C(h).

It remains to see that f is irreducible as a polynomial in KTt]. If f(t) =
f1(t) f2(¢), then deg(f) = deg(f1) + deg(f2) since f is monic. If deg(f1) = 0, then
f1(t) € C[t], and thus f1(t) divides r(t) and s(t), because h is purely transcendental
over C. Therefore, we can assume that 0 < deg(f1) < d. But then one of the coef-
ficients of fi(¢) belongs to K \ C and has height < d, contradicting the minimality
of d. O

2.5. Products. If f is a function on X and h a function on Y, then we denote
by f - h the C-valued function on the defined by (f - h)(z,y) := f(x) - h(y).

PROPOSITION 2.5.1. The product X XY of two affine varieties together with
the algebra
OXxY):=C[f-h| feOX),heOY)]
of C-valued functions is an affine variety. Moreover, the canonical homomorphism
OX)®0(Y) = O(X xY), f@hw— f-h, is an isomorphism.

PROOF. Let X C C" and Y C C™ be closed subvarieties. Then X xY C C**t™
is closed, namely equal to the zero set V(I(X)UI(Y)). So it remains to show that
OX xY)=Clz1,---,Tn,¥1,---,Ym]/I(X X Y) is generated by the products f - h
and that f-h € O(X xY) for f € O(X) and h € O(Y). But this is clear since
Ty = i|xxy = xi|x -1 and §; = yj|xxy = 1-y;ly, and f|x - hly = (fh)|xxy for
fE€Clzy,...,zy) and h € Cly1, ..., Ym]-

For the last claim, we only have to show that the map O(X)® O(Y) — O(X x
Y), f®h — f-h,is injective. For this, let (f; | ¢ € I) be a basis of O(Y). Then
every element s € O(X) ® O(Y) can be uniquely written as s = > ¢ .. s, ® f;. If s
is in the kernel of the map, then Y s;(z) f;(y) = 0 for all (z,y) € X x Y and so, for
every fixed x € X, > s;(x)f; is the zero function on Y. This implies that s;(x) =0
for all x € X and so s; =0 for all i. Thus s = 0 proving the claim. O

EXAMPLE 2.5.2. (1) By definition, we have C™ x C"* = C™*".
(2) The two projections pry: X XY = X, (z,y) — z,and pry: X XY =Y,
(z,y) — y, are morphisms with comorphisms pr% (f) = f-1 and pr}.(h) =
1-h.
(3) If p: X — X’ and ¢: Y — Y’ are morphisms, then so is

exP: X XY = X' )Y, (x,y) = (o(x),(y)).

(4) Diagonal: A: X - X X X, x — (z,z) is a closed immersion where
A(X) C X x X is the closed subset defined by {f-1—1-f | f € O(X)}.
(5) Graph: Let p: X — Y be a morphism. Then

I(p) :={(z,p(x)) [z € X} S X XY
is a closed subset. Moreover, the projection pry induces an isomorphism
p: I'(¢) = X and ¢ = pry op~ L.
(6) Matrix multiplication: The composition of linear maps
w: Hom(U, V) x Hom(V,W) — Hom(U,W), (A,B)+— BoA
is a morphism. Choosing coordinates we find p*(2i;) = Y, Yir®k;-

EXERCISE 2.5.3. Show that the ideal of the diagonal A(X) C X x X is generated by
the function f-1—1-f, f € O(X) (see Example 2.5.2(4)).
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LEMMA 2.5.4. The projection pry: X XY — X s an open morphism, i.e. the
image of an open set under pry is open.

ProOF. It suffices to show that the image of a special open set U := (X xY'), is

open. Writing g = > f; - h; with linearly independent h; one gets pry (U) = |J; Xy,
and the claim follows. O

ProrosiTiON 2.5.5. If X, Y are irreducible affine varieties, then X XY is
irreducible.

PROOF. Assume that X x Y = AU B with closed subsets A, B. Define
Xa={zeX|{2}xY CA} and Xp:={zeX|{z}xY C B}

Since Y is irreducible we see that X = X, UXpg. Now we claim that X4 and Xp are
both closed in X and so one of them equals X, say X4 = X. But then A= X xY
and we are done. To prove the claim we remark that X \ X4 = pry(X x Y \ A4)
which is open by Lemma 2.5.4 above. O

COROLLARY 2.5.6. If X =J; X; and Y = |J;Y; are the irreducible decompo-
sitions of X and Y, then X XY = U” X; x Y; is the trreducible decomposition of
the product.

REMARK 2.5.7. In terms of algebras, Proposition 2.5.5 above says that a tensor
product A ® B of two finitely generated domains is a domain.

2.6. Fiber products. Let X,Y,S be affine varieties and let p: X — S,
1:Y — S two morphisms. Then

XxgY :={(z,y) e X xY |p(x)=¢(y)} CX xY

is a closed subset. In fact, it is the inverse image (¢ x ¥)~}(A(S)) of the diagonal
A(S) C Sx .S which is a closed subset (Example 2.5.2(4)). We have the commutative
diagram

XxgY —2 5V

v| K

X —F5 58
where the morphisms p and ¢ are induced by the projections X x Y — X and
X XY — Y. The affine variety is called the fiber product of X,Y over S. It has the

following universal property which defines it up to unique isomorphisms.

ProproOSITION 2.6.1. Ifa: Z — X and B: Z — Y are two morphisms such that
poa = 1o, then there is a unique morphism («,3): Z — X Xg Y such that

po(a,B)=a and qo (a, ) = B:

P L

X—*r s

PRrROOF. Clearly, the morphism z — (a(z),5(z)) € X x Y has its image in
X Xz Y and satisfies the conditions. It is also obvious that it is unique. (]

EXAMPLE 2.6.2. (1) If ¢: X — S is a closed immersion, then ¢ is a closed
immersion with image ¢~ (X).
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(2) If se€ S and X = {s} — S, then {s} xg Y =¢~1(s).
3) If feO(S) and ¢: X = Sy — S, then Sy xgY = Y’lﬁ*(f) cY.

EXAMPLE 2.6.3. We look again at the curve D = V(y? — 22 — 23) and the
morphism : C — D given by t — (t> — 1,¢(#? — 1)) from Example 2.1.3 (see
also Exercise 2.2.13). Then C xp C = AU {(1,—1),(=1,1)} € C? where A is the
diagonal.

EXERCISE 2.6.4. Show that O(X xs5Y) ~ (O(X) ®o(s) O(Y))rea Where Rieq :=
R/+/(0).

ExampPLE 2.6.5. Let f: C* — C be a morphism defined by a homogeneous
polynomial f € Clxy,...,x,] of degree d. Then all fibers f~1(\) for A # 0 are
isomorphic and smooth. They are irreducible if and only if f is not a power of
another polynomial.

PRrOOF. The first part is clear, because ), 6%3:,» =d- f. It is also obvious that
f — 1is reducible, if f is a power of another polynomial. So assume that f — 1 is
reducible, and consider the polynomial F(zy,...,2,,2) := f(x1,...,2,) — 2% Then
the zero set V(F') is the fiber product

V(F)=CxcC* —2— C"

r| |7

d
C .
and V(F) \ p~1(C*) ~ C* x f~1(1), because f is homogeneous of degree d. This
shows that V(F') and hence F is reducible. Considering F' as a polynomial F =
f—2" € K[z] where f € K := Clxy,...,2,], we can use a standard result from
Galois theory to deduce that f is a power (Exercise 2.6.6). O

EXERCISE 2.6.6. Let K be a field of characteristic zero which contains the roots of
unity. Let d € N and assume that a € K'\ J,, K. Then the polynomial 2t —a€ Kz is
irreducible.

(Hint: If b¢ = a, then 2% —a = [I;(— ¢7b) where ¢ € K is a primitive d-th root of unity.
It follows that K[b]/K is a Galois extension, and that the Galois group G embeds into
the group pqg C K of d-th roots of unity by o +— %
m|d, then the power of b™ is fixed by G.)

. Thus G is cyclic, and if the order is

3. Dimension

3.1. Definitions and basic results. If k is a field and A a k-algebra, then a
set ay,aso,...,a, € A of elements from A are called algebraically independent over
k if they do not satisfy a non-trivial polynomial equation F'(aq,as,...,a,) = 0
where F' € k[z1,...,2z,]. Equivalently, the canonical homomorphism of k-algebras
klz1,...,2n] = A defined by z; — a; is injective.

In order to define the dimension of a variety we will need the concept of tran-
scendence degree tdeg;, K of a field extension K/k. It is defined to be the maximal
number of algebraically independent elements in K. Such a set is called a tran-
scendence basis, and all such bases have the same number of elements. We refer to
[Art91, Chap. 13, Sect. 8] for the basic properties of transcendental extensions.

DEFINITION 3.1.1. Let X be an irreducible affine variety and C(X) its field of
rational functions. Then the dimension of X is defined by

dim X := tdeg C(X).
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If X is reducible and X = [J X; the irreducible decomposition (see 1.6), then
dim X := maxdim Xj.
Finally, we define the local dimension of X in a point € X = J X; to be

dim, X := max dim X;.
X2z

EXAMPLE 3.1.2.

(1) We have dimC"™ = n. More generally, if V is a complex vector space of
dimension n, then dimV = n.

(In fact, x1,...,x, is a transcendence basis of the field C(z1,...,z,).)
(2) If U C X is a special open subset which is dense in X, then dimU =
dim X.

(This is obvious if X is irreducible. If X; C X is an irreducible component,
then U; := UNXj; is a special open set and U = |J, U; is the decomposition
into irreducible components.)

(3) Every maximal set of algebraically independent elements of O(X) consists
of dim X elements.
(For an irreducible X this is clear, and one easily reduces to this case.)

EXERCISE 3.1.3. If ¢: X 5 Y is an isomorphism, then dim, X = dimg, ;) Y for all
zeX.

EXERCISE 3.1.4. Let G C GL, be a closed subgroup. Then dimy G = dim G for all
ge@qG.
(Hint: Use the fact that left multiplication with g is an isomorphisms G = G.)

LEMMA 3.1.5. For affine varieties X, Y we have dim(X xY) =dim X +dimY".

PRrOOF. It suffices to consider the case where X,Y are irreducible, see Corol-
lary 2.5.6. Then O(X) ® O(Y) is a domain as well as C(X) ® C(Y). Now C(X)
is finite over a subfield C(z1,...,x,) where n = dim X, and C(Y") is finite over
a subfield C(y1,...,ym) where m = dimY. Hence C(X) ® C(Y) is finitely gener-
ated over C(x1,...,2n) @ C(y1,...,Ym). Since C(X x Y') is the field of fractions of
C(X) ® C(Y), it follows that it is finite over C(z1,...,Zn, Y1, ., Ym) Which is the
field of fractions of C(z1,...,2n) @ C(y1,-- -, Ym)- O

EXERCISE 3.1.6. Let X be an affine variety. Assume that O(X) is generated by r
elements. Then dim X < r, and if dim X = r, then X ~ C".

EXERCISE 3.1.7. The function = +— dim, X is upper semi-continuous on X. (This
means that for all & € R the set {z € X | dim, X < a} is open in X.)

LEMMA 3.1.8. Let f € Clxy,...,2,] be a nonconstant polynomial and X :=
V(f) C C™ its zero set. Then dim X =n — 1.

PrOOF. We can assume that f is irreducible and that the variable z,, occurs
in f. Denote by Z; € O(X) = Clxy,...,2,]/(f) the restrictions of the coordi-
nate functions x;. Then C(X) = C(Z1,Za,...,Tn). Since f(Z1,Za,...,%,) = 0 we
see that Z,, € C(X) is algebraic over the subfield C(Z1,Za,...,T,—1). Therefore,
tdeg C(X) = tdeg C(Z1, Za, ..., Tn—1) < n— 1. On the other hand, the composition

Clz1, .. 2n1] = Clzy, ..., 2,] —> O(X)
is injective, since the kernel is the intersection (f) N C[zy,...,2,—1] which is zero.
Thus, tdeg C(X) > n — 1, and the claim follows. O

The first part of the proof above, namely that dim V(f) < n = dim C™ has the
following generalization.
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LEmMMA 3.1.9. If X is irreducible and Y g X a proper closed subset, then
dimY < dim X.

PROOF. We can assume that Y is irreducible. If hy,..., h,, € O(Y) are alge-
braically independent where m = dimY, and h; = ﬁi|y for hy,...,hy € O(X),
then hi,...,hn, are algebraically independent, too, and so dimX > dimY. If
dimY = dim X, then every f € O(X) is algebraic over C(hi,...,hyn). Choose
f € O(X) in the kernel of the restriction map, i.e. fly = 0. Then f satisfies an

equation of the form
fEtpff i f A pr =0
where p; € C(hy, ..., hm) and k is minimal. Multiplying this equation with a suit-

able ¢ € C[hy,...,hm] we can assume that pj € C[h1, ..., hy]. But this implies
that px|y = 0. Thus pr = 0 and we end up with a contradiction. O

ExXaMPLE 3.1.10. We have dim X = 0 if and only if X is finite, and this is
equivalent to dim¢ O(X) < oco.
(This is clear: If X is irreducible of dimension 0, then C(X) is algebraic over C and
so C = O(X) = C(X), and the claim follows.)

EXERCISE 3.1.11. Let A be a finitely generated algebra. Then the following statements
are equivalent.

(i) A is finite dimensional.
(i1) Area := A/+/(0) is finite dimensional.
(iii) The number of maximal ideals in A is finite.

EXERCISE 3.1.12. Let U C X be a dense open set. Then dim X \ U < dim X.

ProrosITION 3.1.13. Let X be an irreducible affine variety of dimension n.

Then there is a spectal open set U C X which is isomorphic to a special open set
of a hypersurface V(h) C C"*1.

PROOF. The existence of a primitive element implies that the field of rational
functions C(X) has the form

C(X) =C(21,...,zn)[f]

where f satisfies a minimal equation: f™+p; f™ '+ +p,, = 0, p; € C(z1,...,T,),
see [Art91, Chap. 14, Theorem 4.1]. Multiplying with a suitable polynomial from
Clz1,...,x,] we can assume that all p; belong to C[z1, ..., z,]. Then the polyno-
mial h == y™ + p1y" L+ - + pm € Clzy,...,2,,y| is irreducible and defines a
hypersurface H := V(h) C C™*! whose field of rational functions C(H) is isomor-
phic to C(X), by construction. Now the claim follows from Proposition 2.3.4. O

3.2. Finite morphisms. Finite morphisms will play an important role in the
following. In particular, they will help us to “compare” an arbitrary affine variety X
with an affine space C" of the same dimension by using the famous Normalization
Lemma of NOETHER.

DEFINITION 3.2.1. Let A C B be two rings. We say that B is finite over A if
B is a finite A-module, i.e. there are by,...,bs € B such that B = Zj Ab;.

A morphism ¢: X — Y between two affine varieties is called finite if O(X) is
finite over ¢*(O(Y)).

If AC B C C are rings such that B is finite over A and C is finite over B, then
C is finite over A. In particular, if p: X — Y and ¢: Y — Z are finite morphisms,
then the composition ¢ o p: X — Z is finite, too. Another useful remark is the
following: If ¢: X — Y is finite and X’ C X, Y’ C Y closed subsets such that
©(X’) CY’, then the induced morphism ¢': X’ — Y” is also finite.
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ExaMPLE 3.2.2. Typical examples of finite morphisms are the ones given in
Example 2.1.3, namely ¢: C — C = V(y?—23) CC? and ¢: C — D = V(y?> — 2% —
x%) C C?. In both cases, the morphisms are the so-called normalizations, a concept
which we will discuss later.

On the other hand, the inclusion of a special open set Xy — X is not finite if
f is neither invertible nor zero.

EXERCISE 3.2.3. Every nonconstant morphism ¢: C — C is finite, and the same holds
for the nonconstant morphisms ¢ : C* — C*.

The basic geometric property of a finite morphism is given in the next propo-
sition.

PROPOSITION 3.2.4. Let p: X — Y be a finite morphism. Then ¢ is closed and
has finite fibers.

PrOOF. If y € Y, then ¢! (y) = Vx(¢*(my)) (see 2.2). If o~ (y) # 0, then
the induced morphism ¢~1(y) — {y} is finite, too, and so O(p~1(y)) is a finite
dimensional C-algebra. Thus, the fiber ¢ ~!(y) is finite (Example 3.1.10) proving
the second claim. -

For the first claim it suffices to show that (X) = ¢(X). Hence we can assume
that o(X) = Y, ie. that ¢*: O(Y) — O(X) is injective. If ¢~'(y) = 0, then
O(X)m, = O(X) where we identify m, with its image ¢*(m,). The Lemma of
NAKAYAMA (see Lemma 3.2.5 below) now implies that (1 + a)O(X) = 0 for some
a € my which is a contradiction since 1 + a # 0. O

LEMMA 3.2.5 (Lemma of NAKAYAMA). Let R be a ring, a C R an ideal and
M a finitely generated R-module. If aM = M, then there is an element a € a such
that (1 + a)M = 0. In particular, if M is torsionfree and a # R, then M = 0.

PrOOF. Let M = Z?Zl Rmy. Then m; =}, a;ym; for all i where a;; € a.
If A denotes the k x k-matrix (a;j); ; and m the column vector (my,...,my)" this
means that m = A-m. Thus (E — A)m = 0, and so det(E — A)m,; = 0 for all j.
But

l—an1  —ax
det(E — A) =det | —@21  l—ax2 -+ | —144 wherea € a.

and the claim follows. O

EXERCISE 3.2.6. Define ¢: C* - C by t — t+ % Show that his morphism is closed,
has finite fibers, but is not finite. Thus the converse statement of the Proposition 3.2.4
above is not true.

EXERCISE 3.2.7. Let X be an affine variety and « € X. Assume that fi,..., fr € mg
generate the ideal m, modulo m2, i.e., my = (f1,..., fr) + m2. Then {z} is an irreducible
component of Vx(fi,..., fr).

(Hint: If C C Vx(f1,..., fr) is an irreducible component containing x and m C O(C) the
maximal ideal of z, then m? = m. Hence m = 0 by the Lemma of NAKAYAMA above.)

EXERCISE 3.2.8. Let ¢: X — Y be a finite surjective morphism. Then dim X =
dimY.

EXERCISE 3.2.9. Let X be an affine variety and X = |J, X; the irreducible decompo-
sition. A morphism ¢: X — Y is finite if and only if the restrictions | x;: X3 = Y are
finite for all 4.

The following easy lemma will be very useful in sequel.
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LEMMA 3.2.10. Let A C B be rings and b € B. Assume that b satisfies an
equation of the form
(6) ™ 4 ab™ 4 agb™ 4 a, =0
where ay,as,...,an, € A. Then the subring A[b] C B is finite over A.
PRrROOF. It follows from the equation satisfied by b that for N > m we have
= —a bV — bV 2 — =g bV

and so, by induction, that A[b] = 7" " Ab'. O

bN

DEFINITION 3.2.11. An element b € B satisfying an equation of the form (6)
is called integral over A.

The next result is usually called the “Normalization Lemma”. It is due to EMMY
NOETHER, but was first formulated, in a special case, by DAVID HILBERT.

THEOREM 3.2.12 (Normalization Lemma). Let K be an infinite field and A
a finitely generated K-algebra. Then there are algebraically independent elements
ai,...,an € A such that A is finite over Klay,...,ap]

PrOOF. We proceed by induction on the number m of generators of A as a K-
algebra. If m = 0, then A = K and there is nothing to prove. If A = K[by,...,by]

and if by,...,b,, are algebraically independent, we are done, too. So let’s assume
that F(by,...,by) =0 where F € Klx1,...,2,;] is a nonzero polynomial. We can
also assume that z,, occurs in F'. Write

F= Z O‘rlrg...rmx?x;z T mrn;”

71,725 sTm
and put r :=max{ry +ro+ -+ | Qr .
forj=1,...,m—1, we find

M F=( Y e al, + Hh, 2y )
r1tret T =T

T

# 0}. Substituting z; = JC; + Vi Tm

where z,, occurs in H with an exponent < r. Since K is infinite we can find
Y1s.+-,Ym—1 € K such that ZTIJF__JFW:T Qry e 1yt # 0. Setting b;» =
bj — b, for j =1,...,m — 1, we get A = K[b},b5,...,b,_1,bn]. Now equa-
tion (7) implies that b, satisfies an equation of the form (6), hence A is finite over
K[by,..., b, 1] by Lemma 3.2.10, and the claim follows by induction. O

»Ym—1

REMARK 3.2.13. The proof above shows the following. If A = KJby,...,by],
then there is a number n < m and n linear combinations a; := Zj 705 € A
such that ay,...,a, are algebraically independent over K and that A is finite over
Klay,. .. ay)].

A first consequence is the following result which is usually called NOETHER’S
normalization.

PRrROPOSITION 3.2.14. Let X is an affine variety of dimension n. Then there is
a finite surjective morphism ¢: X — C™.

PROOF. It follows from the Normalization Lemma (Theorem 3.2.12) that there
exist f1,...,fn € O(X) such that O(X) is finite over the subring C[fy,..., fn]-
Hence dim X = n (Example 3.1.2(3)), and the morphism ¢ = (f,..., fn): X — C"
is finite and surjective (Proposition 3.2.4). O

This result can be improved, using Remark 3.2.13 above.
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PROPOSITION 3.2.15. Let X C C™ be a closed subvariety of dimension n < m.
Then there is a linear projection A: C™ — C™ such that \|x: X — C™ is finite and
surjective.

In fact, more is true: There is an open dense set U C Hom(C™,C™) such that
the proposition above holds for any A € U. We will not give a proof here since it
does not follow immediately from our previous results. A special case is given in
Exercise 3.2.18 below.

ExXAMPLE 3.2.16. Let f1, fo,..., fm € Clx1,...,2,] be nonconstant homoge-
neous polynomials, and put A := C|[f1, fa,..., fm]. Then the following statements
are equivalent:

(i) Clz1,...,xn])/(f1, f2,- ., fm) is a finite dimensional algebra.
(ii) There is a k € N such that (z1,z2,...,2,)" C (f1, f2, .-+, fm)-

(iii) Clzy,...,zy] is finite over A.

PRrROOF. Let m := (x1,...,2,) C C[z1,...,2,] be the homogeneous maximal
ideal.

(i)=(ii): Since R := Clz1, ..., xn]/(f1, f2, ..., fm) is graded and finite dimen-
sional we have m* = 0 for some k where m C R is the image of m. Hence
mk - (fl,.. 7fm)

(i)=(iii): Set V := @i:ol(C[acl, ..y xp)i C Clzq,...,z,]. We will show, by
induction, that m* C AV for all £, hence AV = C[zy, ..., z,]. Clearly, m* C AV for
(<k.If0>kand f €mf then f =3"", h;f; where we can assume that all h; are
homogeneous. Therefore, deg h; < ¢, hence h; € AV by induction, and so f € AV.

(iil)=-(i): If C[z1,...,x,] is finite over A, then Clzy,...,2,]/(f1,..., fm) is
finite over A/(f1,..., fm) = C, hence the claim. O

EXERCISE 3.2.17. Assume that the morphism ¢: C" — C™ is given by nonconstant
homogeneous polynomials fi,--- , fm. If ~(0) is finite, then ¢~ '(0) = {0} and ¢ is a
finite morphism.

(Hint: Use the example above together with Exercise 3.1.11.)

EXERCISE 3.2.18. Let X C C" be a closed cone and A\: C* — C™ a linear map. If
XnNker A = {0}, then A|x: X — C™ is finite. Moreover, the set of linear maps A: C* — C™
such that A|x is finite is open in Hom(C",C™) = M, »(C).

NOETHER’S normalization often allows to reduce problems about general affine
varieties X to the case X = C™. One useful application is the following, and more
will follow in the next sections.

ProOPOSITION 3.2.19. An irreducible affine variety X cannot be covered by a
countable set of proper closed subsets.

PRrOOF. This is clear for X = C. Now let X = (J,.; X where I is countable
and all X; C X are closed. If X = C", then, by induction, every linear subspace of
dimension n — 1 is contained in one of the X;. Since there are uncountable many
such subspaces, there are infinitely many of them contained in the same X;. Thus
X; = C", because the union of infinitely many linear subspace of codimension 1 is
Zariski-dense in C". In fact, a polynomial vanishing on such a union is divisible by
infinitely many linear functions.

In general, choose a finite surjective morphism ¢: X — C™ (Proposition 3.2.14).
Then C"* = |J,c; ¢(X;), and so ¢(X;,) = C" for some ig, because all p(X;) are
closed (Proposition 3.2.4). But then dim X;, = n = dim X and so X;, = X. O
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3.3. Krull’s principal ideal theorem. We have seen in Lemma 3.1.8 that
the dimension of a hypersurface V(f) C C" is equal to n — 1, i.e. codimen V(f) =1
where the codimension of a closed subvariety ¥ C X is defined by codimyx Y :=
dim X — dim Y. We want to generalize this to arbitrary affine varieties X. First we
prove a converse of Lemma 3.2.10.

LEMMA 3.3.1. Let A C B be rings. Assume that A is Noetherian and that B is
finite over A. Then every b € B is integral over A, i.e., b satisfies an equation of
the form

pm +a1bm—1 +a2b7rz—2 4+ ta, = 0
where a1, as,...,ay € A.

PROOF. Since A is Noetherian the subalgebra A[b] C B is finite over A. There-
fore, the sequence A C A+ AbC A+ Ab+ A C--- C A+ Ab+---+ AbF C - ..
becomes stationary. Hence, there is am > 1 such that ™ € A+Ab+---+Ab™m" 1. [

EXERCISE 3.3.2. Let r € C(x1,...,zn) satisfy an equation of the form
7nm +p17,m—1
Then r € C[z1,...,%n]. In particular, if A C C(au,...,an) is a subalgebra which is finite
over Clai,...,as], then A =Clas,...,an].
LEMMA 3.3.3. Let A be a C-domain and K its field of fractions. Let ay,. .., a, €
A be algebraically independent such that A is finite over Clay,...,a,]. Denote by
N: K — C(ay,...,a,) the norm. Then
(1) N(A) C (C[ala cey an];
(2) For all a € A we have \/AaNClas,...,a,] = \/Cla1,...,a,]N(a).

PROOF. For a € A denote by aV) := a,a®,...,a”) € K the conjugates of
a over C(ay,...,a,) where K is the algebraic closure of K. Since a is integral
over Clay, ..., a,], the same holds for all a). This implies, by Lemma 3.2.10, that
the subalgebra A := Clay,...,an][aM,...,a(”] C K is finite over Clay, ..., an].
Therefore, N(a) = aMa® -..a(") belongs to AN C(ay,...,a,) which is equal to
Clay,. . .,ay] by Exercise 5.8 above. This prove the first claim.

Now we have

+ -+ + pm = 0 where p; EC[$17~--7$n}~

[t =a) ="+ nyt™" 4 4 byt +

J
where h; € ANCl(ay,...,a,) = Clay,...,a,] and h, = (—1)"N(a). It follows that
N(a) = ab where b= (—=1)""(a" "' + hya" 2 +--- + hy_1) € A and so N(a) € Aa.
Thus, Clay,...,a,]N(a) C AaNClay,...,a,).

In order to see that AaNClay,...,a,] € v/Clai,...,a,]N(a) we choose an ele-

ment sa € AaNClay, ..., ay,]. Then N(sa) = (sa)”, and since N(sa) = N(s)N(a) €
Clai,...,a,)N(a) we finally get sa € \/Clai,...,a,]N(a). O

THEOREM 3.3.4 (KRULL’s Principal Ideal Theorem). Let X be an irreducible
affine variety and f € O(X), f # 0. Assume that Vx(f) is non-empty. Then every
irreducible component of Vx (f) has codimension 1 in X . In particular, dim Vx (f) =
dim X — 1.

PrROOF. Let Vx(f) = C1 UCy U --- U C, be the irreducible decomposition.
Choose an h € O(X) vanishing on Cy U C3 U --- U C,. which does not vanish on
Cy. Then Vx, (f) = C1 N X}, is irreducible. Thus, it suffices to consider the case
where Vx(f) C X is irreducible. By the Normalization Lemma (Theorem 3.2.12)
there is a finite surjective morphism ¢: X — C", n = dim X. By Lemma 3.3.3(2)
we get o(Vx(f)) = V(N(f)), and so dimVx(f) = dimV(N(f)) = n — 1 (see
Lemma 3.1.8). O
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It is easy to see that this result also holds for equidimensional varieties (i.e.
varieties X where all irreducible components have the same dimension) in case f
is a nonzero divisor. For a general X and a nonzero divisor f € O(X), we can only
say that every irreducible component of Vx (f) has dimension < dim X — 1.

A first consequence is the following result.

PROPOSITION 3.3.5. Let X be an irreducible variety and f1, fa, ..., fr € O(X).
If the zero set Vx(fi,..., fr) is non-empty, then every irreducible component C' of
Vx(f1,---, fr) has dimension dim C > dim X — r.

PROOF. We proceed by induction on dim X. Define Y := Vx(f1), and let
Y =Y, U---UY; be the decomposition into irreducible components. Then

VX(fl,"' 7f7“) :UVYj(an"'va)
J

Since dimY; = dim X — 1 for all j we see, by induction, that every irreducible
component of Vy, (fz, ..., fr) has dimension > (dim X — 1) — (r — 1) =dim X —r,
and the claim follows. O

EXERCISE 3.3.6. Let X be an affine variety and f € O(X) a nonzero divisor. For any
x € Vx (f) we have dim, Vx (f) = dim, X — 1.
(Hint: If f is a nonzero divisor, then f is nonzero on every irreducible component X; of
X and so Vx, (f) is either empty or every irreducible component has codimension 1. Now
the claim follows easily.)

Another consequence of KRULL'S Principal Ideal Theorem is the following
which gives an alternative definition of the dimension of a variety.

ProprosSITION 3.3.7. Let X be an irreducible variety and Y g X a closed irre-
ducible subset. Then there is a strictly decreasing chain of length n := dim X,

Xp=X2X, 12 2Xs=Y 22X, 2 X,

of irreducible closed subsets X;. In particular, dim X equals the length of a mazimal
chain of irreducible closed subsets.

Proor. By induction, we only have to show that Y is contained in an irre-
ducible hypersurface H C X. Let f € I(Y) be a nonzero function. Then X D
Vx(f) 2Y and so Y is contained in an irreducible component of Vx (f) which all
have codimension 1 by Theorem 3.3.4. (|

REMARK 3.3.8. This result allows to define the dimension dim A of a C-algebra
A as the maximal length of a chain of prime ideal pg Cp; C--- Cp,, T A. If Ais
finitely generated, then dim A is finite, and every maximal chain has length dim A.
Moreover, dim A = dim A,eq where Ayeq := A/ \/@, and so dim A = dim X where
X is an affine variety with coordinate ring isomorphic to Ayeq.

We also see that for a variety X and a point € X we have dim; X = dim Ox ;.

COROLLARY 3.3.9. Let A be a finitely generated C-algebra and let a € A be
a nonzero divisor. Then dim A/Aa < dim A — 1, and equality holds if Ayeq is a
domain.

PROOF. Put A := A/(a) and denote by a’ € A,cq the image of a. Then a’ is a
nonzero divisor in Ayeq and so dim Ayeq/+/(a’) < dim Ayeq — 1 by Theorem 3.3.4.
Since Areq ~ Area/+/(a’) we finally get dim A = dim A,oq < dim Ajeq—1 = dim A —
1 O
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3.4. Decomposition Theorem and dimension formula. Let ¢: X — Y
be a dominant morphism where X,Y are both irreducible. We want to show that
the dimension of a non-empty fiber ¢~1(y) is always > dim X —dim Y and that we
have equality on a dense open set of Y. A crucial step is the following Decomposition
Theorem for a morphism.

THEOREM 3.4.1. Let X andY be irreducible varieties and ¢: X =Y a domi-
nant morphism. There is a non-empty special open set U C'Y and a factorization
of v of the form

e HU) LU xCr

SOF

U

where p is a finite surjective morphism and v := dim X —dimY'. In particular, the
fibers o™ 1(y) = p~1({y} x C") have the same dimension for all y € U, namely
dim X —dimY.

REMARK 3.4.2. We will see later in Proposition 3.4.7 that the fibers ¢~!(y) for
y € U are equidimensional, i.e., all irreducible components have the same dimension,
namely dim X — dimY.

PROOF. Since ¢ is dominant we will regard O(Y) as a subalgebra of O(X).
Let K = C(Y) be the quotient field of O(Y) and put A := K - O(X) C C(X), the
K-algebra generated by K and O(X). Then A is finitely generated over K and so
we can find algebraically independent elements hq, ..., h, € A such that A is finite
over K[hy,...,h;] (Theorem 3.2.12). It follows that r = dim X — dimY".

We claim that there is an f € O(Y') such that h; = % with a; € O(X) for all
i and that O(Xy) = O(X); is finite over O(Y})[h1, ..., h,]. The first statement is
clear, and we can therefore assume that hq, ..., h,. € O(X).

For the second statement, let by, ...,bs be generators of A over K[hy,..., h,].
Multiplying with a suitable element of O(Y) C K we can first assume that b; €
O(X) and then, by adding more elements if necessary, that by, ..., bs generate O(X)
as a C-algebra. Now b;b; = >, c,(;j)bk where c,(;j) € K[hy,...,h;]. Thus we can find
an f € O(Y) such that f - ng) € O(Y)[h1,...,hy]. It follows that

ZO(Yf)[hl, o he )by COX) = O(Xy)

is a subalgebra containing O(X) and %, hence is equal to O(Xy), and the claim
follows.
Setting U := Yy we get ¢~ !(U) = X and obtain a morphism

p=px(hi,....;h): Xy =2 Yy xC", z— (¢(x),h1(x),...,~h(x))

which satisfies the requirements of the proposition.
The last statement is clear (see Exercise 3.2.8). O

ExAMPLE 3.4.3. Let f € C[z,y] be a nonconstant polynomial. Then there is a
finite morphism p: C? — C? such that f = pr; op:

2

C
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PROOF. We can assume that the variable y occurs in f. Consider the iso-
morphism ®: C? = C? given by (z,y) — (x,y + 2") and choose n large enough
so that f = ®*(f) = f(z,y + 2™) has leading term ax’ where a € C*. Then
Clz, y] is finite over C| 1, y], hence defines a finite surjective morphism p: C? — C2,

(z,y) = (f(z,y),y), and we get the following commutative diagram:

2 —— 2

A
c? =2 C
Now the claim follow with p := po ®~1. O

EXAMPLE 3.4.4. In this example we work out the decomposition of Theo-
rem 3.4.1 for the morphism ¢: My(C) — Mz(C), A — A2 i.e., we want to find an
J € O(My) such that the induced morphism ¢~ (M(C)) — My(C); is finite and
surjective.

Let A= {lcl Z}, so that O(M3) = CJa, b, ¢,d] and

R := ¢*(O(My)) = Cla® + be, d* + be, b(a + d), c(a + d)] € Cla, b, ¢, d].
We have tr(A4)? — tr(A?) = 2det(A), hence tr(A) satisfies the integral equation
(8) zt — 2tr(A%)x? = 4det(A?) — tr(A%)?,
over R, showing that R[tr(A)] is finite over R and contains det(A). Since R contains
the elements tr(A)b, tr(A)c and a? — b = tr(A)(a — b) it follows that

R[tl"(A)hr(A) = Cla, b, c, dhr(Ay
Moreover, equation (8) has the two solutions £ tr(A), and that the other two so-
lutions satisfy the equation z? — tr(A4%) = —2det(A). It follows that the norm of
tr(A) which is N(tr(A4)) = tr(A?)? — 4 det(A4?), has in R[tr(A)] the decomposition
N(tr(A)) = tr(A)*(2det(A) — tr(A?)),

hence R[tr(A)]n(rca)y) 2 R[tr(A)]e(a). This implies that the induced morphism
© N (M2(C) n(tr(a))) = Ma(C) n(ir(a)) is finite and surjective of degree 4. Note that
N(tr(A)) # 0 is equivalent to the condition that A? has distinct eigenvalues.

EXERCISE 3.4.5. Work out the decomposition of Theorem 3.4.1 for the morphisms

@: SLa — C3, o {Z Z}) := (ab, ad, cd) (see Exercise 2.2.14). What is the degree of the

finite morphism p?

COROLLARY 3.4.6. If o: X — Y is a morphism, then there is a set U C p(X)
which is open and dense in p(X).

PRrOOF. If X isirreducible, this is an immediate consequence of Theorem 3.4.1.
In general, let X = |J,.; X; be the decomposition into irreducible components.
Then, for a suitable subset J C I, we can assume that ¢(X) = J;c; ¢(X;) is the
decomposition into irreducible components. For each j € J there is a proper closed
subset A; G ¢(X;) such that ¢(X;) \ 4; C p(X;). Hence o(X) \ U, 4; is an open

dense subset of p(X) contained in the image ¢(X). O

PROPOSITION 3.4.7 (Dimension formula for morphisms). Let X and Y be ir-
reducible varieties and ¢: X =Y a dominant morphism. If y € ¢(X) and C is an
irreducible component of the fiber = 1(y), then

dimC > dim X — dimY,
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with equality for all y from a dense open set U C Y.

PrROOF. Set m := dimY and let ¢y: Y — C™ be a finite surjective morphism
(Theorem 3.2.12). If we denote by ¢: X — C™ the composition ¥ o ¢, then every
fiber of ¢ is a finite union of fibers of ¢. Hence it suffices to prove the claim for the
morphism @ = (f1,..., fm): X = C™. If a = (ay,...,an) € (X), then g7 (a) =

Vx(fi — a1, fa —ag,..., fm — am), and the claim follows from Proposition 3.3.5,
a consequence of Krull’s Principal Ideal Theorem. The last part is Theorem 3.4.1
above. (]

One might believe that the two propositions above imply that for any morphism
©: X — Y the function y ~ dim ¢~ !(y) is upper-semicontinuous. This is not true
as one can show by examples (see Exercise 3.4.8). However, a famous theorem of
CHEVALLEY says that the function x — dim, ¢~ '(¢(z)) is upper-semicontinuous
on X. The proof is quite involved, and we will not present it here.

EXERCISE 3.4.8. Consider the morphism ¢: C2 — C? given by (z,y) — (x,zy). Show
that the image (C?) is not locally closed in C? and that the map a +— dim ¢~ *(a) is not
upper-semicontinuous.

Another application of the above is the following density result. We call a
morphism ¢: X — Y strongly dominant if for every irreducible component C' C X
the closure (C) is an irreducible component of Y. In case X and Y are both
irreducible, this is equivalent to dominant. Note that for a morphism ¢: X — Y
with dense image it is not true in general that the inverse image of a dense open
set is dense. But this holds for a strongly dominant morphisms where we have the
following much stronger result.

PROPOSITION 3.4.9. Let p: X — Y be a strongly dominant morphism. If D C
Y is a dense subset, then ¢~ (D) is dense in X.

PROOF. We can assume that X,Y are both irreducible and that all fibers
have the same dimension d := dim X — dimY. Consider the closed subset X' :=
»~1(D) C X and denote by Ci,...,C the irreducible components of X’. Define,
fori=1,...,k,

D;:={ye€D|dimC;Nny *(y) =d}.
Clearly, D = |J; D;, and so there is an index ig such that ¥ = D;,. This implies
that the induced morphism ¢;,: C;, — Y is dominant and that dim ¢;_ Y(y) = d for
all y of the dense set D;; C Y. Therefore, dimC;, = dimY + d = dim X (see the

following Exercise 3.4.10), hence X = C;, C ¢~ 1(D). O

EXERCISE 3.4.10. Let X and Y be irreducible varieties and ¢: X — Y a dominant
morphism. If D C Y is a dense subset such that dim¢~'(y) = d for all y € D, then
dim X =dimY +d.

3.5. Constructible sets. Recall that a subset A C X of a variety X is called
locally closed if A is the intersection of an open and a closed subset, or, equivalently,
if A is open in its closure A. We have seen in Exercise 3.4.8 that images of morphisms
need not to be locally closed. However, we will show that images of morphisms are
always “constructible” in the following sense.

DEFINITION 3.5.1. A subset C of an affine variety X is called constructible if
it is a finite union of locally closed subsets.

EXERCISE 3.5.2. (1) Finite unions, finite intersections and complements of con-
structible sets are again constructible.
(2) If C is a constructible, then C' contains a set U which is open and dense in C'.
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PropPOSITION 3.5.3. If ¢: X — Y is a morphism, then the image of a con-
structible subset is constructible.

PROOF. Since every open set is the union of finitely many special open sets
it suffices to show, in view of the exercise above, that the image of a morphism is
constructible. By Corollary 3.4.6 there is a dense open set U C ¢(X) contained in
the image ¢(X). Then the complement Y’ := ¢(X)\U is closed and dim Y’ < dimY
(Exercise 3.1.12). By induction on dim ¢(X'), we can assume that the claim holds for
the morphism ¢’: X’ := ¢~ 1(Y’) — Y’ induced by ¢. But then ¢(X) = UU'(X')
and we are done. O

EXERCISE 3.5.4. Let X be an irreducible affine variety and C C X a dense con-
structible subset. Then C' can written in the form

c=CoulJcy
Jj=1
where Cy < X is open and dense, C; is locally closed, Cj is irreducible of codimension
>1,and C; NCo = 0.

3.6. Degree of a morphism. Recall that a dominant morphism ¢: X — Y
between irreducible varieties is called of finite degree d if dimX = dimY and
d=[C(X) : C(Y)] (see 2.3). This has the following geometric interpretation.

PROPOSITION 3.6.1. Let X, Y be irreducible affine varieties and p: X — Y a
dominant morphism of finite degree d. Then there is a dense open set U CY such

that #¢~Y(y) = d for all y € U.
PROOF. We have C(X) = C(Y)[r] where r satisfies the minimal equation
r+ a4 ag = 0.

Replacing Y and X by suitable special open sets Yy and X, (f € O(Y) C O(X))
we can assume that
(1) r e O0(X);
(2) a1,...,aq € OY);
(3) O(X) is finite over O(Y) (Theorem 3.4.1);
(4) O(X) = O(Y)[r].
In fact, (1) and (2) are clear and so A := O(Y)[r] = @4 OY)ri C O(X). For
S :=0)\ {0} we get As = C(Y)[r] = C(X) = O(X)g, we can find an s € S
such that A; = O(X)s, hence (3) and (4). In particular
d—
OX)=Po)r & o)t/ + art™" + - + aq)

=0

=

and so, for every y € Y, we get
O(X)/O(X)my, = C[t]/(t! + a1 (y)t*~" + -+ + aa(y))

This means that the number of elements in the fiber ¢ ~!(y) is equal to the number
of different solutions of the equation

(9) t4+a ()t + - +ag(y) =0.

Let Dy be the discriminant of an equation of degree d (see Example 1.1.3) and
define f(y) := D(a1(y),...,aqa(y)). Then f € O(Y), and f(y) # 0 if and only if
equation (9) has d different solutions, or, equivalently, the fiber ¢ ~!(y) has d points.
Thus, the special open set U :=Y; C Y has the required property. U
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REMARK 3.6.2. One can show that the open set U constructed in the proof
has the property that the morphism o~ 1(U) — U is an unramified covering with
respect to the C-topology.

EXERCISE 3.6.3. What is the degree of the morphism M,, — M,, given by A — A*?

EXERCISE 3.6.4. Let ¢: X — Y be a dominant morphism where X and Y are ir-
reducible. If there is an open dense set U C X such that ¢|y is injective, then ¢ is
birational.

EXERCISE 3.6.5. Let ¢: X — Y be a quasi-finite morphism, i.e. all fibers are finite.

Then dim ¢(X) = dim X.

8.7. Mb&bius transformations. Let f € C(z) \ C, f = £ where p,q € C[¢]

are prime. Define deg f := max{degp, deg ¢}.
LEMMA 3.7.1. [C(z) : C(f)] = deg f.

PROOF. The rational function f defines a dominant morphism f: C\V(q) — C,
corresponding to the embedding C(z) < C(z) given by z — f. For @ € C we find

f—azg—a:p_aq.
q q
For a general @ € C the numerator p — aq has degree deg f and has no multiple
roots. Thus, by Proposition 3.6.1, the map f has degree deg f. O

a b

For any matrix A = [c } € GLy(C) the corresponding MOBIUS transforma-

d
tion pa: C(z) = C(2) is defined by

az +b

cz+d

Lemma 3.7.1 above shows that p4 is an isomorphism, and a easy calculation gives
naoup = pap for all A, B € GLo(C). It is also clear that pa = pp if and only
if B = AA for some A € C*. Finally, again by Lemma 3.7.1, every automorphism
of the field C(z) is a MOBIUS transformation. Thus we have proved the following
result.

pa(z) =

PRrROPOSITION 3.7.2. The map A — pa is a surjective group homomorphism
w: GLa(C) - Aut(C(2))
with kernel C*Es.

4. Tangent Spaces, Differentials, and Vector Fields

4.1. Zariski tangent space. A tangent vector § in a point xzy of an affine
variety X is “rule” to differentiate regular functions, i.e., it is a C-linear map
§: O(X) — C satisfying

(10) 6(f - 9) = fxo) 6(g) + g(x0) 6(f) for all f,g € O(X).

Such a map is called a derivation of O(X) in xg. For n > 0 we have 6(f") =
nf" (o) - §(f), and so, for any polynomial F = F(y1,...,Yym), we get

m
OF
S (frr-or ) = 3 G (fa(ro). . Funlro)) - 8(5).

j=1 "7
This implies that a derivation in x( is completely determined by its values on a
generating set of the algebra O(X). Moreover, a linear combination of derivations
in xg is again a derivation in xy. As a consequence, the derivations in xy form a
finite dimensional subspace of Hom(O(X), C).
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DEFINITION 4.1.1. The ZARISKI tangent space Ty, X of a variety X in a point
x¢ is defined to be the set of all tangent vectors in xg:

Tyo X := Derg, (O(X)) :={d: O(X) — C | § a C-linear derivation in z¢}.
We have already seen above that T,,X is a finite dimensional linear subspace of
Hom(O(X),C).
EXERCISE 4.1.2. Let § € T, X be a tangent vector in x. Then
(1) d6(c) = 0 for every constant ¢ € O(X).

(2) 1f f € O(X) is invertible, then 8(f 1) = — -7

flx)?
EXAMPLE 4.1.3. If X = C" and a = (a4, ...,a,) € C", then

T.c"=Epc
9

where aTi’ (f) = %(a)’ Thus we have a canonical isomorphism 7,,C" ~ C" by
identifying § € Der,(Clxy, ..., z,]) with (0zy,...,dx,) € C™.

More generally, if V' is a finite dimensional vector space and zy € V we define,
for every v € V, the tangent vector 9, 4,: O(V) — C in x¢ by

f(zo + tv) — f(x0)

)
t t=0

0
8:5,»

a

O,z (f) =

and thus obtain a canonical isomorphism V = T, V, for every xo € V. We will
mostly identify T,V with V.

Let 6 € T, X be a tangent vector. Since O(X) = C & m,, we see that J is
determined by its restriction to m,. Moreover, formula (10) above shows that §
vanishes on m2. Hence, ¢ induces a linear map 4: m,/m2 — C.

LEMMA 4.1.4. Given an affine variety X and a point x € X there is a canonical
isomorphism

T,X = Hom(m,/m2,C).
given by § — 6 := 6|, -

PROOF. We have already seen that § ~— § is injective. On the other hand, let
C C m, be a complement of m2 so that O(X) = CHC @m2. If \: C — C is linear,
then one easily sees that the extension of A to a linear map § on O(X) by putting
Slcgmz = 0 is a derivation in x. O

EXERCISE 4.1.5. The canonical homomorphism O(X) — Ox . induces an isomor-
phism m,/m2 5 m/m? where m C Ox,, is the maximal ideal.

If U = Xy C X is a special open set and € U, then T,,U = T, X in a canonical
way. In fact, a derivation ¢’ of O(U) induces a derivation § of O(X) by restriction:
d(h) == ¢ (h|u), and every derivation 6 of O(X) “extends” to a derivation §’ of
O(U) = O(X)y by setting 5’(%) = —%% (see Exercise 4.1.2; one has
to check that every derivation vanishes on the kernel of the map O(X) — O(Xy)).
The same result follows from Exercise 4.1.5 using Lemma 4.1.4.

EXERCISE 4.1.6. If Y C X is a closed subvariety and x € Y, thendim 7, Y < dim 7, X.
(Hint: The surjection O(X) — O(Y) induces a surjection my x /m2 x — Ma,y/m2 y.)

PropoOsSITION 4.1.7. dim T, X > dim, X.
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PrOOF. If C C X is an irreducible component passing through x we have
dim7T,C < dim T, X (Exercise 4.1.6). Thus we can assume that X is irreducible.
Choose fi,..., fr € m, such that the residue classes modulo m2 form a basis of
m,/m2, hence r = dim7, X, by Lemma 4.1.4. Since the zero set Vx(fi,..., fr)
has {z} as an irreducible component (see Exercise 3.2.7) it follows from Proposi-
tion 3.3.5 that

0 =dim{z} >dimX —r =dimX — dim 7, X.
Hence the claim. O

DEFINITION 4.1.8. The variety X is called nonsingular or smooth in z € X if
dim T, X = dim, X. Otherwise it is singular in x. The variety X is called nonsin-
gular or smooth if it is nonsingular in every point. We denote by X, the set of
singular points of X.

PROPOSITION 4.1.9. Forxz € X and y € Y there is a canonical isomorphism

PrOOF. Every derivation § of O(X x Y) in (x,y) induces, by restriction,
derivations dx of O(X) in = and dy of O(Y) in y. This defines a linear map
Tz X xY — T, X®T,Y which is injective, because §(f-h) = h(y)-6x f+f(x)-oyh
for f € O(X) and h € O(Y).

In order to see that the map is surjective we first claim that given two deriva-
tions 6; € T, X and 65 € T,)Y there is a unique linear map §: O(X x Y) — C such
that §(f - h) = h(y) - 61f + f(x) - 62h. This follows from Proposition 2.5.1 and the
universal property of the tensor product. Now it is easy to see that this map § is a
derivation in (z,y) and that §x = d; and dy = ds. O

4.2. Tangent spaces of subvarieties. Let X C V be closed subvariety of
the vector space V and zp € X. If § € T,,,V = V is a tangent vector which vanishes

on I(X) = ker(res: O(V) — O(X)), then the induced map ¢6: O(X) — C is a
derivation in xg, and vice versa. Thus we have the following result.

ProrosiTiON 4.2.1. If X CV is a closed subvariety and xo € X, then

T X ={veV|0,(f)=0foradl feI(X)}V=T,,V.

More explicitly, let V = C™ and assume that the ideal I(X) is generated by fi1,..., fs €
Clz1,...,2zn]. Then, for xg € X, we get
— i
81’j

(x)a; =0 fori=1,...,s}.

T,X ={a=(a1,...,a,) €C"|
j=1

In particular,

dimT, X =n—rk (afi (x)) .
0z "/ (i)

The s X n-matrix

ofi
Jac(f1,..., fs) = (8f )
T3/ (i.)
with entries in Clzy,...,x,] is called the Jacobian matriz of fi,..., f;. We get
T.(X) =kerJac(f1,. .., fm)z-

The proposition above gives the following criterion for smoothness.
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PROPOSITION 4.2.2 (JACOBI-Criterion). Let X C C" be a closed subvariety
where I(X) = (f1,..., fs). Then x € X is non-singular if and only if

rk(Jac(f1,..., fs)z) > n — dim, X.
EXAMPLE 4.2.3. Consider the plane curve C' = V(y? — 23) C C2. Then I(C) =
(y? — 23) and so the tangent space in an arbitrary point zg = (a,b) € C is given by
T(a,5)C = {(u,v) € C* | =3a*u + 2bv = 0}. Since (a,b) = (¢,¢*) for some t € C we
get

-
a7

C? for t =0,

T(t2 7t?)) O -

2
C for t # 0.
3 or t #

In particular, C is singular in (0,0) and smooth elsewhere.

EXAMPLE 4.2.4. Let H := V(f) C C™ be a hypersurface where f € Clzy,...,x,)
is square-free. Then H;g = {a € H | g—i(a) =0 for all i} = V(f, aanlv e aaz);). It

follows that dim Hy;,g < dim H = n — 1. In fact, no irreducible component C' of H
belongs to Hy;,g, because no prime divisor p of f divides all %.

EXBRCISE 4.2.5. Calculate the tangent spaces of the plane curves Ci := V(y — x?)
and C2 = V(y* — 2% — %) in arbitrary points (a, b).

4.3. R-valued points and epsilonization. Let X C C” be a closed subva-
riety. For any C-algebra R we define the R-valued points of X by

X(R) :={a=(a1,...,a,) € R" | f(a) =0for all f € I(X)}.

This definition does not depend on the embedding X C C™, because we have a
canonical bijection Alge(O(X), R) = X (R) given by p = (p(Z1), ..., p(Zn)).

Now consider the C-algebra C[e] := C[t]/(t?) where € := t + (¢?) which is called
the algebra of dual numbers. By definition, we have Clg] = C @ Ce and 2 = 0.
If X is an affine variety and p: O(X) — Cle] an algebra homomorphism, then
an easy calculation shows that p is of the form p = ev, ®d, e for some z € X
where ev,, is the evaluation map f +— f(z) and J, is a derivation in z, i.e., p(f) =
f(@)+d.(f)e. Conversely, if d,, is a derivation in z, then p := ev, ®J, € is an algebra
homomorphism. Hence

(11) X(Cle]) = {(2,0) |z € X and 6 € T, X}.

This formula is very useful for calculating tangent spaces as we will see below. This
method is sometimes called epsilonization.

If X =V is a vector space, then the homomorphisms p: O(V) — Cle] are in
one-to-one correspondence with the elements of V @ Ve. In fact, there are canonical
bijections

V(Cle]) = Alge(O(V),Cle]) > V @ Ve.
The inverse map to Alg(O(V),Cle]) = V @ Ve associates to = +ve € V @ Ve the
algebra homomorphism p: f — f(x + ve), and since

flx+ve)=f(x)+0pafe
it follows again from the above that T,V can be canonically identified with V.

EXAMPLE 4.3.1. (a) The tangent space of GL,, at E is the space of all n x n-
matrices and the tangent space of SL,, at £ € SL, is the subspace of traceless
matrices:

TgSLy =p:={X € M, |tr X =0} C Ty GL, = gl, := M, .
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In fact, I(SL,,) = (det —1), and an easy calculation shows that det(E + Xe) =
1+ (tr X)e which implies, by Proposition 4.2.1, that X € M,, belongs to Tg SL,, if
and only if tr X = 0.

(b) Next we look at the orthogonal group O, := {4 € M,, | AA* = E}.
As a closed subset O,, is defined by (";1) quadratic equations and so dim O,, >

n? — (";1) = (Z) On the other hand, we have

(E+Xe)(E+Xe)l =FE+ (X +X"e
which shows that Tg O,, € {X € M,, | X skew symmetric}. Since this space has

dimension (Z) and since dimg O,, = dim O,, (Exercise 3.1.4) it follows from Propo-
sition 4.1.7 that

T O, = T SO,, = s0,, :={X € M,, | X skew symmetric}.

EXERCISE 4.3.2. If X, Y C C" are closed subvarieties and z € XNY, then T, (XNY') C
T.X NT,Y C C". Give an example where T(X NY) ; T.XNT.Y.

4.4. Nonsingular varieties. We want to show that every variety X contains
an open dense set of smooth points. Later in Corollary 4.10.6 we will even see that
the smooth points form a open set.

EXAMPLE 4.4.1. Let H := V(f) C C™ be a hypersurface where f € Clzy,...,x,)
is square-free and nonconstant, and so I(H) = (f). Then the tangent space in a
point g € H is given by

T, H :={a=(a1,...,a |Zal =0},

and so
5f of of
Hszn =V 5 :
g (f 83':2 axn )
It follows that H;ng is a proper closed subset whose complement is dense. (This is

clear for irreducible hypersurfaces since a nonzero derivative aa—f cannot be a mul-

tiple of f and so V( f, 2 811 e aif ) is a proper closed subset of V(f). This implies
that every irreducible component of H contains a non-empty open set of nonsingular
points which does not meet the other components, and the claim follows.)

It is also interesting to remark that a common point of two or more irreducible
components of H is always singular. We will see that this true in general (Corol-
lary 4.10.6).

PROPOSITION 4.4.2. Let X be an irreducible affine variety. Then the set Xing
of singular points of X is a proper closed subset of X whose complement is dense.

PrOOF. We can assume that X is an irreducible closed subvariety of C" of
dimension d. If I(X) = (f1,..., fs), then, by Proposition 4.2.1,

Xoing={r e X |1k <8f](x)> <n-—d}
0™ "/ (i)
which is the closed subset defined by the vanishing of all (n — d) x (n — d) mi-
nors of the Jacobian matrix Jac(fi, ..., fs). In order to see that X;,, has a dense
complement, we use the fact, that every irreducible variety contains a special open
set which is isomorphic to a special open set of an irreducible hypersurface H (see
Proposition 3.1.13). Since H contains a dense open set of nonsingular points (see
Example 4.4.1 above) the claim follows. U
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We will see later in Corollary 4.10.6 that the proposition above holds for every
variety. At this moment we only know that there is always a dense open set U C X
consisting of nonsingular points.

EXERCISE 4.4.3. If X is an affine variety such that all irreducible components have
the same dimension. Then X4 is closed and has a dense complement.

EXERCISE 4.4.4. The hypersurface H = V(zz — y(y — 1)) C C? from Exercise 2.2.14
is nonsingular.

EXERCISE 4.4.5. Let g € C[z1,...,z,] be a quadratic form and @ := V(¢) C C". Then
0 is a singular point of (). It is the only singular point if and only if ¢ is nondegenerate.

EXERCISE 4.4.6. Determine the singular points of the plane curves
By :=V(y* - p(x))

where p(z) is an arbitrary polynomial, and deduce a necessary and sufficient condition for
E, to be smooth.

EXERCISE 4.4.7. Let X C C" be a closed cone (see Exercise 1.2.9). Then Xgng is a
cone, too. Moreover, 0 € X is a nonsingular point if and only if X is subspace.

EXERCISE 4.4.8. Let X be an affine variety such that the group of automorphisms
acts transitively on X. Then X is smooth.

4.5. Tangent bundle and vector fields. Let X be an affine variety. Denote
by TX :=J,cx T=X the disjoint union of the tangent spaces and by p: TX — X
the natural projection, § € T, X — z. We call TX the tangent bundle of X. We
will see later that T X has a natural structure of an affine variety and that p is a
morphism.

A section §: X — TX of p, i.e. po& =1dyx, is a collection (£;).cx of tangent
vectors &, € T, X. It is usually called a wvector field and can be considered as an
operator on regular functions f € O(X):

Ef)(x) =& f for x € X.

DEFINITION 4.5.1. An algebraic vector field on X is a section £: X — T X with
the property that £f € O(X) for all f € O(X). The space of algebraic vector fields
is denoted by Vec(X).

In the following, we will mostly talk about “vector fields” and omit the term “al-
gebraic” whenever it is clear from the context.

Thus a vector field & can be considered as a linear map &: O(X) — O(X), and
so Vec(X) is a subspace of Endc(O(X)). More generally, the vector fields form a
module over O(X) where the product f¢ for f € O(X) is defined in the obvious

way: (f€)s = f(7)&-

EXAMPLE 4.5.2. Let X =V be a C-vector space and fix a vector v € V. Then
0y € Vec(V) is defined by x +— 0, 5. It follows that

t t=0

which implies that this vector field is indeed algebraic. We claim that every algebraic
vector field on V' is of this form. In fact, if V' = C”, then

x 0
Vec(C") = @ Clxi, ..., ) B
i=1 '

Opf :=

which means that every algebraic vector field £ on C™ is of the form { =), hia%i
where h; € Clz,...,2,] = O(C™). (This follows from the two facts that every
vector field £ on C” is of this form with arbitrary functions h; and that &(x;) = h;.)



202 APPENDIX A. BASICS FROM ALGEBRAIC GEOMETRY

Another observation is that for every vector field £ on X the corresponding
linear map &: O(X) — O(X) is a derivation, i.e. £ is a linear differential operator:

€(fh) = fEh+ hES for all f,h € O(X).

PROPOSITION 4.5.3. The map sending a vector field to the corresponding linear
differential operator defines a bijection Vec(X) = Der(O(X),0(X)) C End(O(X)).

PROOF. It remains to show that every derivation £: O(X) — O(X) is given by
an algebraic vector field. For this, define &, := ev, o£. Then the vector field (£;).ex
is algebraic and the corresponding linear map is &. O

Example 4.5.2 above shows that for X = V we have a canonical bijection
TV ~ V x V, using the identifications T,V = V ~ {z} x V. Then p: TV — V
becomes the projection pry,, and algebraic vector fields are section of pry, i.e.
morphisms £: V' — V x V of the form &(z) = (x,&,). We will mostly identify TV
with V x V.

PROPOSITION 4.5.4. Let X CV be a closed subset.
(1) If & € Vec(V), then &|x defines a vector field on X (i.e. & € T, X for all
xz € X) if and only if (£f)|x = 0 for all f € I(X). Moreover, it suffices
to test a system of generators of the ideal 1(X).
(2) There is a canonical bijection TX =5 {(x,6) | 6 € T,X C V} where the
latter is a closed subset of X x V. Thus TX has the structure of an affine
variety. Using coordinates, we get

gj_(x)ZOfor al feI(X)} S X xC"

(3) A vector field & on X is algebraic if and only if §: X — TX is a morphism.
PROOF. (1) We have &, € T, X for all x € X if and only if & f = 0 for all =
and all f € I(X) which is equivalent to ({f)|x =0 for all f € I(X).
(2) We can assume that V' = C" and O(V) = Clxy,...,z,]. If I(X) =
(f1,--- fm), then, by (1),

T :={(z,0,) e X xV |deT, X}

n
={(z,a1,...,an) | Zai
i=1

which shows that this is a closed subspace of X x C™. Now (2) follows easily.

(3) Using the identification of TX with the closed subvariety 7" above, an
arbitrary section £: X — T'X has the form &, = > h; (a:)a%i with arbitrary func-
tions h; on X. Set Z; := z;|x. Then the vector field £ is algebraic if and only if
h; = £x; is regular on X which is equivalent to the condition that £: X — TX is a
morphism. O

n
TX :> {(x,al,...,an) | Zai
i=1

of; .
= =1,... - n
Bac(x) Oforj=1,....m} C X xC

7

REMARK 4.5.5. We will see later in Proposition 4.6.7 that the structure of T'X
as an affine variety does not depend on the embedding X C V.

EXAMPLE 4.5.6. Consider the curve H := V(xy — 1) C C2. Then I(H) =
(zy — 1). For a vector field & = a(z,y)d, + b(x,y)d, on C? we get
E(zy — 1) = a(z, y)y + b(z, y)z.
Thus &(zy — 1)|g = 0 if and only if ay + bz = 0 on H. It follows that 20, — yd,
defines a vector field & on H and that Vec(H) = O(C)&. (In fact, setting h :=

aylg = —bx|g we get a|lg = h- x|y and blg = —h - y|u.)
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The tangent bundle TH C H x C? has the following description (see Proposi-
tion 4.5.4(1)):

TH ={(t,t 7', a,B) |at ' + 8t =0} = {(t,t7',—pBt*, |t C*,pcC} = H x C.

EXAMPLE 4.5.7. Consider NEIL'S parabola C := V(y? — %) C C? (see Exam-
ple 1.3.11). Then a vector field a0, + b0, defines a vector field on C' if and only
if

—3az? +2by =0 on C.
To find the solutions we use the isomorphism O(C) = C[t?, %], z — 1,y > 13 (see
Example 2.2.11). Thus we have to solve the equation 3at = 2b in C[¢2,#3]. This is
easy: Every solution is a linear combination (with coefficients in C[t2,#%]) of the
two solutions (2t2,3t3) and (2t3,3t*). This shows that

& = (220, +3y0y)|p and & := (2yd, + 3w28y)|p

are vector fields on C' and that Vec(C) = O(C)& + O(C)&;1. Moreover, 22&y = ;.
Our calculation also shows that every vector field on C' vanishes in the singular
point 0 of the curve. For the tangent bundle we get

TC = {(t27t37a75) | _304t4 + 2ﬂt3 == O} g C X (C2
which has two irreducible components, namely
TC = {(#*,#*,2a,3at) | t,a € C} U {(0,0)} x C?

EXERCISE 4.5.8. Determine the vector fields on the curve D := V(y* — 2® — 23) C C2.
Do they all vanish in the singular point of D?

EXERCISE 4.5.9. Determine the vector fields on the curves Dy := {(t,t%,%) € C® |
t € C} and Dy := {(t3,t*,t°) € C* | t € C}. ‘
(Hint: For Do one can use that O(D2) ~ C[t?,t*,t°] = C® ®D,-5Ct")

If the variety X is smooth, then all fibers of p: TX — X are vector spaces of
the same dimension. We will show now that in this case T X is a vector bundle of
rank 7 := dim X over X. This means that for every point x € X there is a special
open neighborhood U of  in X and an isomorphism p~*(U) = ¢y : U x C" over
U which is linear in the fibers, i.e. ¢: T,U = p~1(u) = {u} x C" = C" is a linear
map.

ProOPOSITION 4.5.10. If X is smooth and irreducible, then TX — X is a vector
bundle of rank r = dim X

PROOF. We can assume that X C C” is a closed subset where I(X) = (f1,..., fm).
Denote by J = Jac(f1,..., fm) the Jacobian matrix, with entries in Clxy,...,2,].
Then ker J(z) = T,(X) € C" (Proposition ??), and, by assumption, rk(J(z)) =
n—r for all z € X. Fix 29 € X and choose n—r columns of J(zy) which are linearly
independent. Then this holds for all z in an special open neighborhood U of x.
Let 1 <4y < .-+ < i, <n be the indices of the remaining columns and denote by
q: C" — C" the corresponding linear projection. Then ¢ induces an isomorphism
ker J(z) = C" for all z € U. O

In general, the fibers of TX — X have different dimensions, and the minimal
dimension is reached on the smooth points of X which form an open set of X. The
next result generalizes this. It is a special case of a famous theorem of CHEVALLEY
saying that for every morphism Z — X the function z ~— dim, ¢ ~!(¢(z)) is upper-
semicontinuous, see section A.3.4.

PROPOSITION 4.5.11. The function x — dim T, X is upper-semicontinuous.

PROOF. O
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The next result is well-known in differential geometry; for the definition of a
Lie algebra we refer to section 11.4.1.

PROPOSITION 4.5.12. The vector fields Vec(X) on X form a Lie algebra with
Lie bracket

[§:n] :=E§on—nok
PROOF. By Proposition 4.5.3 it suffices to show that for any two derivations

&, n of O(X) the commutator £on—nof is again a derivation. But this is a general
fact and holds for any associative algebra, see the following Exercise 4.5.14. O

EXERCISE 4.5.13. Let A be an arbitrary associative C-algebra. Then A is a Lie algebra
with Lie bracket [a, b] := ab — ba, i.e., the bracket [, | satisfies the Jacobi identity

[a, [b, c]] = [[a, b], c] + [b, [a, c]] for all a,b,c € A.

EXERCISE 4.5.14. Let R be an associative C-algebra. If £&,7: R — R are both C-
derivations, then so is the commutator £ o n — n o £&. This means that the derivations
Der(R) form a Lie subalgebra of Endc(R).

EXERCISE 4.5.15. Let X C C™ be a closed and irreducible. Then dim7TX > 2dim X.
If X is smooth, then T'X is irreducible and smooth of dimension dim7TX = 2dim X.
(Hint: If I(X) = (f1,... fm), then TX C C" x C" is defined by the equations

n

fi =0and Zyi%(m)zoforjzl,...,m.
i=1 i

The Jacobian matrix of this system of 2m equations in 2n variables z1,...,Zn,y1,...,Yn
has the following block form
Jac(f1,.-., fm) 0
* Jac(f1,..., fm)

and thus has rank > 2 -rk Jac(f1,..., fm) = 2(n — dim X).)

4.6. Differential of a morphism. Let ¢: X — Y be a morphism of affine
varieties, and let z € X.

DEFINITION 4.6.1. The differential of ¢ in x is the linear map
dpz: Tp X = Tyo@)Y
defined by 6 — dp,.(0) := 0 o *.
If Z C X is a closed subvariety and z € Z, then we get for the induced

morphism ¢|z: Z — Y that d(¢|z). = dp.|r.z. Another obvious remark is that
the differential of a constant morphism is the zero map.

REMARK 4.6.2. Set y := ¢(x). The comorphism ¢*: O(Y) — O(X) defines a
homomorphism m, — m, and thus a linear map ¢*: m,/ mi — m,/m2. It is easy to
see that the differential dy, corresponds to the dual map of ¢* under the isomor-
phisms T X ~ Hom(m,/m2,C) and T,,Y ~ Hom(m,/m?,C) (see Lemma 4.1.4).

EXAMPLE 4.6.3. Using the identification T(, (X x Y) = T, X & T,)Y (see
Proposition 4.1.9) one easily sees that the differential d(pry)z: T(z,)(X X Y) —
T, X coincides with the linear projection prr y.

PROPOSITION 4.6.4. Consider a morphism ¢ = (f1,..., fm): C" = C™, f; €
O(C™) = C[z1, ..., xn]. Then the differential

d(px: TI(C” =C" — Tw(w)(Cm =C™m

of v inx € C" is given by the Jacobian matriz

Jac(f1,. .., fm)e = (gi; (@)( A).
i
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PROOF. The identification of the tangent space T,,C"™ = Der, (O(C™)) with C"
is given by 0 — (0x1,...,0x,) (see Example 4.1.3). This implies that

dps(6) = (609" )(Y1); -5 (60 ¢™)(ym)) = (01,5 fm)-

Now the claim follows since

O

PROPOSITION 4.6.5. Let p: X — Y be a morphism, and let Xg C X and
Yo C Y be closed subvarieties such that o(Xo) C Yy. Denote by ¢o: Xo — Yo
the induced morphism. Then, for all x € Xo, we have dp,(TyXo) C Ty Yo, and
d(po = d<P|TX0 : TXO — TK)

Proor. We know that § € T, X belongs to T, Xy if and only if 6(f) = 0 for
all f € Ix(Xo) (Proposition 4.2.1), and similarly for Y. Since ¢(Xo) C Y, we have
©*(Iy(Yo)) C Ix(Xp). Thus, for 6 € T,, X we obtain

dp,(0)(h) = d(¢*(h)) =0 for all h € Iy (Yy),

and the claim follows. O

EXERCISE 4.6.6. Let p: X — Y and ¥: Y — Z be morphisms of affine varieties and
let x € X. Then

d(¥ o p)e = dipy 0 dps
where y := ¢(z) € Y.
For any morphism ¢: X — Y the differentials dy, defineamap dp: TX — TY

of the tangent bundles in the obvious way. Embedding X and Y into vector spaces,
the tangent bundle inherits the structure of an affine variety (Proposition 4.5.4).

PROPOSITION 4.6.7. The differential dp: TX — TY, (x,0) — (¢(x),dp.(d),
is a morphism of varieties. In particular, the structure of TX as an affine variety
is independent of the embedding of X into a vector space.

ProOOF. Consider first the case X = C", Y = C™ and ¢ = (f1,..., fn). Then
dp: TC" =C" x C* - TC™ =C™ x C™ is given by

d(p(x7a17--~7an):(fl(w)ﬂ"wfm(x) afl Zafm

ox
i=1 = v

(Proposition 4.6.4) which is clearly a morphism.
Now choose embeddings X C C™ and Y C C™, and extend the morphism ¢ to
a morphism ®: C" — C™ (Lemma 2.1.6):

X <S¢
wl }p
y — S5 cm

The claim follows from Proposition 4.6.5 above. ]



206 APPENDIX A. BASICS FROM ALGEBRAIC GEOMETRY

4.7. Epsilonization. In order to calculate explicitly differentials of morphisms
we will again use the epsilonization (4.3). Recall that for 6 € T,X the map
p = evy ®oe: O(X) — Cle] is a homomorphism of algebras and vice versa. If
p: X — Y is amorphism and z € X, y := ¢(x) € Y, then we obtain, by definition,
the following commutative diagram:

O(X) ev, e C[é:]
LP*T €vy Pdps(d)e
o)

If X :=V and Y := W are vector spaces, then a homomorphism p: O(V) — Cl¢]
corresponds to an element z @ ve € V @ Ve where p(f) = f(x + ve), and so p o ¢*
corresponds to the element p(z 4+ ve) € W @ We. Thus we obtain the following
result which is very useful for calculating differentials of morphisms.

LEMMA 4.7.1. Let p: V. — W be a morphism between vector spaces, and let
ze€Vandv €T,V =V. Then we have

p(x +ev) = p(x) + dps(v) e
where both sides are considered as elements of W & We.

EXAMPLE 4.7.2. The differential of the morphism ?™: M,, — M,,, 4 — A™,
in E is m-Id. In fact, (E + Xe)™ = E+mXe.

The differential of ¢: My — My, A+ A2, in an arbitrary matrix B is given by
dep(X) = BX + XB, because (B + X¢)? = B?> + (BX + XB)e.

The differential of the matrix multiplication p: M, x M,, = M,, in (E, E) is
the addition: (E+ Xe)(E+Ye)=FE+ (X +Y)e.

EXERCISE 4.7.3. Consider the multiplication p: Mz X M2 — M and show:
(1) dpa,p) is surjective, if A or B is invertible.
(2) If rk A=rk B =1, then dya,p) has rank 3.
(3) We have rkd,u(A,O) =rk d/L(o’A) =21k A.

EXERCISE 4.7.4. Calculate the differential of the morphism ¢: End(V) x V. — V
given by (p,v) — p(v), and determine the pairs (p,v) where dg(, . is surjective.

4.8. Tangent spaces of fibers. Let ¢: X — Y be a morphism, x € X and
F := ¢~ 1(p(x)) the fiber through . Since ¢|r is the constant map, its differential
in any point is zero and so T, F' C ker dp,. This proves the first part of the following
result.

PROPOSITION 4.8.1. Let o: X — Y be a morphism, x € X and F := ¢~ (p(z))
the fiber through x.
(1) T, F C kerdep,.
(2) If the fiber F is reduced in x, then T, F = ker dy,.
(3) If X is smooth in x and rkdyp, = dim, X — dim, F, then F is reduced
and smooth in x.

PROOF. (2) Put y := ¢(z) € Y. By definition the fiber is reduced in z if and
only if the ideal in the local ring Ox , generated by ¢*(m,) is perfect which means
that Op = Ox /9" (my)Ox , (see Definition 2.2.10).

Now let § € T, X be a derivation of O(X) in z. If § € ker dy, then 6 o p* = 0.
Hence 6, regarded as a derivation of Ox 4, vanishes on ¢*(m,)Ox , and thus induces
a derivation of Op, in z, ie., 6 € T, F.
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(3) Set R := O(X)/¢*(m,)O(X) 2 m := m,/p*(m,)O(X). Clearly, Rieqa =
O(F), and the composition m,/m? — m,/m2 — m/m? is the zero map. Since X is
smooth in z we get dimm,/m2 = dim, X, and since the first map is dual to dip, it
has rank dim, X — dim, F. It follows that dimm/ m? < dim, F = dim Ry. Now it
follows from Proposition 4.10.5 that Ry, is a domain, hence Ry, = Op,, and that
F' is smooth in z, because dim T, F' = dim m/m2 < dim, F'. O

EXAMPLE 4.8.2. Let X C C” be a closed subset and I(X) = (f1,..., fm)-
Consider the morphism ¢ = (f1,..., fm): C* — C™. Then X = ¢~1(0), and this
fiber is reduced in every point. Thus, for every x € X,

T,.X = kerdp, = ker Jac(f1,. .., fm)x

as we have already seen in Proposition 4.2.1. The following result is a partial inverse.

PROPOSITION 4.8.3. Let Z = V(f1,..., fm) € C™ be a closed subset. Assume
that rk Jac(f1,..., fm), =n—dim, Z for all z € Z. Then Z is smooth and 1(Z) =

(f17"'afm)-

ProoOF. Consider the morphism ¢ = (fi,..., fm): C* — C™. Then Z =
0 1(0), and dp, = Jac(f1,..., fm)-: C* — C™. Thus T.Z C ker Jac(f1,.-., fm)=)

and we have equality, because dim, Z < dim7,Z < dimkerJac(f1,..., fm)> =
dim, Z. Now Proposition 4.8.1(3) shows that the fiber »~*(0) is reduced and smooth
in every point z, hence the claim. 0

EXERCISE 4.8.4. For every point (z,y) € X x Y we have T, X = kerd(pry)(a,y)
and T, X = kerd(pry)(,y) where pry,pry are the canonical projections (see Proposi-
tion 4.1.9).

EXERCISE 4.8.5. For the closed subset N C M2 of nilpotent 2 X 2-matrices we have
I(N) = (tr, det).

PROPOSITION 4.8.6. Let ¢: X — Y be a dominant morphism of irreducible
varieties, and let ¥ € X and y := p(x) € Y. Assume that the fiber F := o~ (y) is
reduced and smooth in x and that dim, F = dim X — dimY.

(1) If Y is smooth in y, then X is smooth in x.
(2) If X is smooth in x and Y normal in y, then Y is smooth in y.

Proor. By Proposition 4.8.1(2) we have an exact sequence of vector spaces

0 T.F —S . 17,x %=

where dim T, F = dim, ' = dim X —dimY.
(1) If Y is smooth in y, then dim7,Y = dimY’, hence dim 7, X < dim T, F +
dim 7, Y = dim, F+dimY = dim X, and so X is smooth in = and dy,, is surjective.
(2) This is more complicated; the statement can be found in [GKM™'13,
Lemma 2.22]. We will give a proof later in section 4.11. t

T,Y

The normality assumption in the statement (2) is necessary, as shown by Ex-
ercise 2.2.13.

4.9. Morphisms of maximal rank. The main result of this section is the
following theorem.

THEOREM 4.9.1. Let p: X — Y be a dominant morphism between two ir-
reducible varieties X and Y. Then there is a dense open set U C X such that
doy: Te X — Tyw)Y is surjective for all z € U.

We first work out an important example which will be used in the proof of the
proposition above.
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EXAMPLE 4.9.2. Let Y be an irreducible affine variety and X C Y x C an ir-
reducible hypersurface. Assume that I(X) = (f) where f =>"" , fit' € O(Y)[t] =
O(Y x C) and f,, = 1. Consider the following diagram:

X—Q>Y><(C

F

Y

Then the differential dp(y qy: T(y,a) X — T,Y is surjective if %(y, a) # 0, and this

holds on a dense open set of X.

ProOOF. We have T(, ) X C T{y,)Y xC="T,Y &C, and this subspace is given
by T(y,a) X = {(6,\) | (4, )\) =0}, because I(X) (f) Now we have

n

i=0
Since dp(y,q)(0, A) = § we see that dp(, q) is surjective if E(y7 a) # 0 which proves

the first claim. But %{ cannot be a multiple of f and thus does not vanish on X,

proving the second claim. O

The next lemma shows that the situation described in the example above always
holds on an open set for every morphism of finite degree.

LEMMA 4.9.3. Let XY be irreducible affine varieties and p: X — 'Y a mor-
phism of finite degree. Then there is a special open set U C'Y and a closed embedding
v: @ Y U) < U x C with the following properties:

() I(+(U) = (f) where [ = Y1 fit! € O[]
(ii) pry oy = ¢lo-1v)-
~

o (U) —= Vywe(f) —— U x C

S A

U

PRrROOF. We have to show that there is a nonzero s € O(Y') such that O(X), ~
O(Y)s[t]/(f) with a polynomial f € O(Y)4[t]. Then the claim follows by setting
=Y.

By assumption, the field C(X) is a finite extension of C(Y") of degree n, say,
C(X) = C(Y)[h] =~ C(Y)[t]/(f)
where f =" fit', fi € C(Y) and f,, = 1. There is a nonzero element s € O(Y)
such that
(a) fi € O(Y); for all 4,
(b) h € O(X); and
(€) O(X)s = O(Y),[h] = By O )"
In fact, (a) and (b) are clear. For (c) we first remark that O(Y)4[h] = @) O(Y)sh C
O(X )s, because of (a) and (b). If hy, ..., h,, is a set of generators of O(X) we can
find a nonzero s € O(Y') such that h; € O(Y)s[h], proving (c).
Setting U := Y, we get o 1(U) = X, and O(X,) = O(Y;)[t]/(f), by (c), and
the claim follows. O
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PROOF OF THEOREM 4.9.1. By the Decomposition Theorem (Theorem 3.4.1)
we can assume that ¢ is the composition of a finite surjective morphism and a
projection of the form Y x C™ — Y. Since the differential of the second morphism
is surjective in any point we are reduced to the case of a finite morphism. Now the
claim follows from Lemma 4.9.3 above and the Example 4.9.2. (]

LEMMA 4.9.4. Let ¢: X — Y be a morphism, x € X and y := p(z) € Y.
Assume that X is smooth in x and dp, is surjective.
(1) Y is smooth in y.
(2) The fiber o= 1(y) is reduced and smooth in z, and dim, F = dim, X —
dim, Y.

Proor. By assumption,
dim T, F < dimkerdy, = dim7T, X —dim7,Y < dim X — dimY < dim, F

which implies that we have equality everywhere. In particular, F' is smooth in x
and Y is smooth in y.

If we denote by m C O(X)/m,O(X) the maximal ideal corresponding to
x € F one easily sees that m/m? is the cokernel of the natural map m, /mi —
m,/m2 induced by ¢*. The duality between m,/m2 and T, X (see Lemma 4.1.4
and Remark 4.6.2) implies that dimkerdy, = dimcm/m?. Since dimkerdy, =
dim, F = dimO(X),/m,O(X), it follows that O(X),/m,O(X), is a domain
(Proposition 4.10.5), and so F' is reduced in x. O

COROLLARY 4.9.5. For every morphism ¢o: X — Y there is a dense special
open set U C X such that all fibers of the morphism ¢|y: U — Y are reduced and
smooth.

PROOF. One easily reduces to the case where X is irreducible. Then there is
a special open set U C X which is smooth (Corollary 4.10.6) and such that dy, is
surjective for all x € U (Theorem 4.9.1). Now the claim follows from the previous
Lemma 4.9.4. O

COROLLARY 4.9.6 (Lemma of SARD). Let p: C" — C™ be a dominant mor-
phism and set S := {x € C" | dp, is not surjective}. Then S is closed and ¢(S) is
a proper closed subset of C™. In particular, there is a dense open set U C C™ such
that all fibers ¢~ Y(y) for y € U are reduced and smooth of dimension n — m.

Proorf. If ¢ = (f1,..., fm), then S = {z € C" | tkJac(f1,..., fm)(x) < m}
and so S is closed in C™. Moreover, the differential of ¢|g: S — C™ at any point
of S is not surjective. Therefore, by Theorem 4.9.1, the closure of the image ¢(S)
has dimension strictly less than m. O

EXERCISE 4.9.7. Let f € C[z1,...,zx] be a nonconstant polynomial. Then V(f — \)
is a smooth hypersurface for almost all A € C.

COROLLARY 4.98. If p: X — Y is a morphism such that dp, = 0 for all
x € X, then the image p(X) is finite. In particular, if X is connected, then ¢ is
constant.

ProoF. If X’ C X is an irreducible component and Y’ := ¢(X’), then the
induced morphism ¢’: X’ — Y” has the same property, namely dy/, = 0 for all
z € X'. It follows now from Theorem 4.9.1 that dimY’ = 0. Hence ¢ is constant
on X' O

EXAMPLE 4.9.9. Let V be a vector space and W C V a subspace. If X C V is
a closed irreducible subvariety such that 7, X C W for all x € X, then X Cz+ W
for any z € X.
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(This follows from the previous corollary applied to the morphism ¢: X — V/W
induced by the linear projection V- — V/W.)

4.10. Associated graded algebras. Let R be C-algebra and a C R an ideal.
The associated graded algebra is defined in the following way. Consider the C-vector
space

gro R i=Pa'/a = Rjada/a® 0a’/a G-
i>0
and define the multiplication of (homogeneous) elements by
(f+a™) (h+a™h) i= fh+ ot Tit!
for f € a®,h € af. It is easy to see that this defines a multiplication on gr, R.
By definition, R/a is a subalgebra of gr, R, and gr, R is generated by a/a? as a
R/a-algebra. In particular, if R is finitely generated as a C-algebra, then so is gr, R.

We want to use this construction to give the following characterization of non-

singular points.

THEOREM 4.10.1. Let X be an affine variety. A point x € X is nonsingular
if and only if the associated graded algebra gr,, O(X) is a polynomial ring. In
particular, the local ring Ox . of a nonsingular point x is a domain and so x
belongs to a unique irreducible component of X.

Before we can give the proof we have to explain some technical results from
commutative algpbra. Let R be a C-algebra and m C R a maximal ideal. Consider
the subalgebra R of R[t,t '] generated as an R-algebra by t and mt~1:

R:=R[tmt )= om*2omt '®ROR®R*®--- C R[t,t ]

In the following lemma we collect some basic properties of this construction.

LEMMA 4.10.2. (1) If R is finitely generated, then so is R.

(2) There is a canonical isomorphism R/Rt = gr,. R.

(3) If a Cm is an ideal and @ := a[t,t"'] N R, then R/da = ]%.

(4) If w C R is the nilradical, then # == n[t,t='] N R is the nilradical of R,
and R/a 5 ]?//n

(5) Assume that R is a finitely generated domain. Then R is a domain, and
we have

dimR=dimR+1 and dimR/Rt=dimR.

(6) Assume that R finitely generated and that the minimal primes p1, ... s Pr
are all contained in m. Then the p1,...,p, are the minimal primes of R.
Proor. (1) If R=Clhy, - ,hy] and m = (f1,..., fn), then
R=Clhy,...,hm,t, it ™Y o fut ™1,
and so R is finitely generated.
(2) By definition, we have
Rt=-owt?om’t 'omoROR*S .
Hence o
R/Rt=-- & m*/m*)t 2@ (m/m?)t ™' © R/m
and the claim follows.
(3) The canonical map 7: R[t,t~1] — (R/a)[t,t!] induces, by our construction,

a surjective homomorphism #: R — R/a with kernel kerm N R = aft,t~'] N R.
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(4) Put Ryeq := R/n. Then Ryeq[t,t7!] is reduced, i.e. without nilpotent ele-
ments # 0, and so is ]j?;;i. Since the kernel of the map R[t,t™!] — Ryeqlt,t7!] is
equal to n[t,t~!] and consists of nilpotent elements the claim follows from (3).

(5) The first part is clear since R[t,t~!] is a domain. Since R, = R[t,t~!] we
get dim R = dim R[t,t'] = dim R[t] = dim R+ 1. Moreover, by the Principal Ideal
Theorem (Theorem 3.3.4) we have dim R/Rt = dim R — 1.

(6) It follows from (3) and (5) that the ideals p, are prime. Since (), p; = n we
obtain from (2)

N =pilt.t N R=nlt,t N R =H.

Since p; NR[t] = p;[t] there are no inclusions p; C p; for ¢ # j, and the claim follows.
(We use here the well-know fact that the minimal primes in a finitely generated
C-algebra are characterized by the condition () p; = n, cf. Remark 1.6.7.) 0

In the next lemma we give some properties of the associated graded algebra
gr, R where m is a maximal ideal of R.

LEMMA 4.10.3. Let R be a C-algebra and m C R a maximal ideal.
(1) Assume that (; mJ = (0). If gr,, R is a domain, then so is R.
(2) Denote by mRy, C Ry the maximal ideal of the localization Ry,. There is

a natural isomorphism gr,, R = gr Ry of graded C-algebras.

mRy

PRrROOF. (1) If ab = 0 for nonzero elements a,b € R, we can find 7,5 > 0 such
that a € m* \ m**! and b € m% \ m/*!. Thus @ := a + m**! and b := b+ m/*! are
nonzero elements in gr,, A, and @b = ab + m*7+1 = 0. This contradiction proves
the claim.

(2) Set M := mRy, C Ry. The image of S := R\min R/m* consists of invertible
elements and so R/m* — Ry, /9M* is surjective. It is also injective, because Ry, /9*
can be identified with the localization of R/m* at S. Thus R/m* = R, /9MF and
so m!/mitl 5 90t /ML for all i > 0. O

Finally, we need the following result due to KRULL. It implies that in a local
Noetherian C-algebra R with maximal ideal m we have (5 mJ = (0).

LEMMA 4.10.4 (KRULL). Let R be a Noetherian C-algebra, a C R an ideal and
b:=(;50%’. Then ab =b. In particular, there is an a € a such that (1 +a)b = 0.

PrROOF. The second claim follows from the first and the Lemma of NAKAYAMA
(Lemma 3.2.5). Let a = (ay,...,as) and put

I:=(f|f € R|x1,...,xs] homogeneous and f(ay,...,as) € b) C R[z1,...,Ts].

It is easy to see that I is an ideal of R[x1,...,z ] and so I = (f1,..., fi) where the
f; are homogeneous. Choose ann € N, n > deg f; for all j. By definition, b C a™ and
so, for every b € b, there is a homogeneous polynomial f € R[zq, - , x| of degree
n such that f(a1,...,as) = b. It follows that f =}, h;f; where the h; are homo-
geneous of degree > 0, and so b = f(ay,...,as) = Zj hj(at,...,as)fj(a,...,as) €
ab. O

The next proposition is a reformulation of our main Theorem 4.10.1. For later
use we will prove it in this slightly more general form.

PrROPOSITION 4.10.5. Let R be a finitely generated C-algebra and let m C R
be a mazimal ideal. Then dimgr,, R = dim R,,. Moreover, dim¢ m/m2 = dim Ry, if
and only if gr,, R is a polynomial ring. If this holds, then Ry is a domain.
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PrROOF. Inverting an element from R\m does not change gr,, R (Lemma 4.10.3(2)).
Therefore we can assume that all minimal primes of R are contained in m. In partic-
ular, we have dim R, = dim R = max; dim R/p; where p1,...,p, are the minimal
prime ideals. Moreover, every element from R\ m is a nonzero divisor.

Now consider the C-algebra R = R[t,mt~'] C R[t,t'] introduced above. It
follows from Lemma 4.10.2 that R has the following two properties:

(i) R/Rt—>gr R, by (2).
(ii) dim R/Rt = dim R, by (5) and (6).
Hence, dim gr,, R = dim Ry, proving the first claim.

Assume now that dimc m/m2 = dim R, =: n. Then we obtain a surjective
homomorphism

p:Clyr, - yn] = gt R
by sending y1, ..., ¥y, to a C-basis of m/m?. But every proper residue class ring of
Clyi, - - -, Yn) has dimension < n, and so the homomorphism p is an isomorphism.

On the other hand, if gr, R is a polynomial ring, then dim R, = dimgr,, R =
dimc m/m?2. Moreover, Ni>o m’/ = (0) by Lemma 4.10.4, because every element
from R\ m is a nonzero divisor, and so R is a domain by Lemma 4.10.3(1). O

COROLLARY 4.10.6. If X is an affine variety, then Xging C X is a closed subset
whose complement is dense in X.

PRrROOF. Let X = J, X, is the decomposition of X into irreducible components.
A point z € X is a singular point of X if and only if it is either a singular point of
X; or it belongs to two different irreducible components. Thus

Xsing = U(X1 szngU U X ﬂXk,
% J#k

and the claim follows easily. O

4.11. m-adic completion. Let us denote by @X,x the m,-adic completion of
the local ring Ox ;. It is defined to be the inverse limit

Ox.p = lim O(X) /my.

(We refer to [Eis95, 1.7.1 and 1.7.2] for more details and some basic properties. )
Since (\m* = {0} we have a natural embedding Ox , C OX = Moreover, (’)X 2 1S
Noetherian, and it is flat over Ox , ([Eis95, Theorem 7.1 and 7.2]).

If X = C™ and = = 0, then the completion coincides with the algebra of formal
power series in n variables:

(/A)Cn70 = (C[[xl, [N ,J}n]].
The next result is an easy consequence of Theorem 4.10.1 above.

COROLLARY 4.11.1. The point x € X is nonsingular if and only if @X,m 1s
isomorphic to the algebra of formal power series in dim, X wvariables.

REMARK 4.11.2. A famous result of AUSLANDER-BUCHSBAUM states that the
local ring Ox . in a nonsingular point of a variety X is always a unique factorization
domain. For a proof we refer to [Mat89, §20, Theorem 20.3].

We might ask here which properties of a local ring Ox , are carried over to the

completion o x,z- LThe following important result is due to ZARISKI. A proof can
be found in [ZS60, Ch.VIII, §13, Theorem 32].

PrOPOSITION 4.11.3. If Ox 5 is normal, then so is @X)I.
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As an application we have the following proposition about smoothness in the
target of a morphism.

PROPOSITION 4.11.4 (ZARISKI). Let ¢: X — Y be a dominant morphism of
irreducible varieties, and let x € X be a point with the properties that the fiber
F = o Y¢(x)) is reduced and smooth in x and that dim, F = dim X — dim Y. If
Y is normal in y, then y := p(x) is a smooth point of Y.

PROOF. Let S C X be an irreducible transversal slice in z € X to the fiber F,

ie.

(1) dimS =dimY and ¢ := ¢|g: S — Y is dominant;

(2) « is a smooth point of S;

(3) The tangent map di,: T, S — T,,Y is injective.
Then we have an inclusion of local rings ¥*: Oy, — Og, of the same dimen-
sion, and mg, = S¢*(m,) by (3). This implies that the induced homomorphism
A @xy — @g,x is surjective. By (2) @va is an algebra of formal power series
(Corollary 4.11.1), and by ZARISKI's proposition above the completion @YW is nor-
mal, hence an intergral domain. Since dim, S = dim, Y by (1), it follows that the
map 7,/}* has a trivial kernel, i.e. @y,y is an algebra of formal power series and so y
is a smooth point of Y. O

REMARK 4.11.5. The normality assumption in the previous proposition is es-
sential. Consider the normalization 7: C — C of the cusp C := V(y?—2%—2?%) C C2.
Then the fiber n=1(0) is reduced and smooth, but 0 € C' is a singular point.

5. Normal Varieties and Divisors
5.1. Normality.

DEFINITION 5.1.1. Let A C B be rings. An element b € B is integral over A if
b satisfies an equation of the form
n—1
" = Z a;b*  where a; € A.
i=0
Equivalently, b € B is integral over A if and only if the subring A[b] C B is a finite
A-module.
If every element from B is integral over A we say that B is integral over A.

EXERCISE 5.1.2. Let A C B be rings. If A is Noetherian and B finite over A, then B
is integral over A.

LEMMA 5.1.3. Let A C B C C be rings and assume that A is Noetherian.

(1) If B is integral over A and C' integral over B, then C' is integral over A.
(2) The set
B’ :={b e B |b is integral over A}
s a subring of B.
PRrROOF. (1) Let ¢ € C. Then we have an equation ¢™ = Z;’ZOI bjc? with b; € B.
In particular, the coefficients b; are integral over A and so, by induction, A; :=
Albg,b1,...,bm—1] is a finitely generated A-module. Moreover, A;[c] is a finitely
generated A;-module, hence a finitely generated A-module. But then Alc] C Ay[]
is also finitely generated.

(2) Let by, b2 € B’. Then A[bq] is integral over A and b, is integral over A, hence
integral over A[b;], and so A[by,bo] is integral over A[by]. Thus, by (1), A[b1,bs] is
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integral over A which implies that b; + b and b1by are both integral over A, hence
belong to B’. O

EXERCISE 5.1.4. Let f € C[z] be a nonconstant polynomial. Then Clx] is integral
over the subalgebra C[f].

DEFINITION 5.1.5. Let A be a domain with field of fraction K. We call A
integrally closed if the following holds:

If v € K 1is integral over A, then x € A.

An affine variety X is normal if X is irreducible and O(X) is integrally closed. We
say that X is normal in x € X if the local ring Ox , is integrally closed.

EXAMPLE 5.1.6. A unique factorization domain A is integrally closed. In par-
ticular, C™ is a normal variety.
(Let K be the field of fractions of A and x € K integral over A: 2™ = Z;:Ol a;xt

where a; € A. Write x = ¢ where a,b € A have no common divisor. Then

a® = b(zzzol a;b" """ la’) which implies that b is a unit in A and so z € A.)

EXERCISE 5.1.7. If the domain A is integrally closed, then so is every ring of fraction
As where 1 € S C A is multiplicatively closed.

LEMMA 5.1.8. Let X be an irreducible variety. Then X is normal if and only
if all local rings Ox , are integrally closed.

ProoF. If X is normal, then Ox , = O(X)n, is integrally closed (see the
Exercise above), and the reverse implication follows from O(X) = [,y Ox.
(Exercise 1.7.6).

5.2. Integral closure and normalization.

PROPOSITION 5.2.1. Let A be a finitely generated C-algebra with no zero-
divisors # 0 and with field of fractions K, and let L/K be a finite field extension.
Then

A" :={z € L |z is integral over A} D A
is a finitely generated C-algebra which is finite over A.

PROOF. We already know that A’ is a C-algebra (Lemma 5.1.3(2)).

(a) We first assume that A = C[z1,...,2n] is a polynomial ring and K =
C(z1,...,2m). Let L = K[z] where x is integral over A and [L : K| =: n. Denote by
Ty := T,T2,...,T, the conjugates of = in some Galois extension L’ of K. Clearly,
all z; are integral over A, because they satisfy the same equation as x.

Ify= Z?;()l c;iw® (¢; € K) is an arbitrary element of L we obtain the “conju-

gates” of y in L’ in the form

n—1

Y = Zczz; forj=1,...,n.
i=0

The n x n-matrix X := (z%) has determinant d = [I;<(2j — ) which is integral
over A. Obviously, d? is symmetric, hence fixed under the Galois group of L'/ K, and
so d?> € K. Since d? is also integral over A we finally get d*> € A. From CRAMER’s
rule we obtain

1 Y1 W

=Xt = % Adj(X)

Cn Yn Yn
This shows that if  is integral over A, then so is dc; for all 7, hence d?c; € A for all
i. This implies that d?A’ C Z?:_ol Az, and so A’ is a finitely generated A-module.
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(b) For the general case we use NOETHER’s Normalization Lemma (Theo-
rem 3.2.12) which states that A contains a polynomial ring Ag = C[z1, ..., 2] such
that A is finite over Ag. Thus A is integral over Ay and therefore, by Lemma 5.1.3(1)

A" = {x € L | z is integral over Agy}.

It follows from part (a) that A’ is a finitely generated Ag-module, hence also a
finitely generated A-module. d

DEFINITION 5.2.2. Let A be a finitely generated C-algebra with no zero-divisors
# 0. If L is a finite field extension of the field of fractions of A, then
A" :={z € L |z is integral over A} D A
is called the integral closure of A in L. Clearly, A’ is integrally closed.

Let X be an irreducible affine variety and denote by O(X)" C C(X) the integral
closure of O(X) in its field of fractions C(X). By Proposition 5.2.1 there is a normal
variety X and a finite birational morphism 7: X — X such that O(X) ~ O(X)'.
More precisely, we have the following result.

LEMMA 5.2.3. Let X be an irreducible variety and n: X — X a morphism with
the following two properties:
(1) X is normal;
(2) n is finite and birational.
Then O(X) is the integral closure of n*(O(X)) in C(X) = n*(C(X)), and we have
the following universal property:

IfY is a normal affine variety, then every dominant morphism p: Y — X
factors through n: There is a uniquely determined ¢: Y — X such that

p=nop:
X
P
3Pk l
- - K
vy * x
PROOF. Since 7 is birational we have n*(O(X)) C O(X) C C(X) = n*(C(X)).
By (2) O(X) is finite, hence integral over n*(O(X)), and by (1) it is the integral
closure of n*(O(X)).
If Y is normal affine variety and ¢: Y — X a dominant morphism, then
O(X) = ¢"(0(X)) € OY) € C(Y).

Denote by O(X)' the integral closure of O(X) in C(X). Since O(Y) is integrally
closed it follows that ¢*(O(X)") C C(Y) is contained in O(Y'). Since n* induces
an isomorphism O(X) = O(X) there is a uniquely determined homomorphism
p: O(X) — O(Y) which makes the following diagram commutative:

O(X)
’ ox) |n
o) —* _ 0x)

Clearly, the corresponding morphism ¢: Y — X is the unique morphism such that
p=mnog. O
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DEFINITION 5.2.4. The morphism 7: X — X constructed above is called nor-
malization of X. It follows from Lemma 5.2.3 that it is unique up to a uniquely
determined isomorphism.

EXERCISE 5.2.5. If p: X — Y is a finite surjective morphism where X is irreducible
and Y is normal, then #¢ '(y) < degyp for all y € Y. (See Proposition 3.6.1 and its
proof.)

PROPOSITION 5.2.6. Let X be an irreducible variety. Then the set
Xnorm :={x € X | X is normal in x}
is open and dense in X.
PRrROOF. Let O(X)" C C(X) be the integral closure of O(X) and define
a:={fe€O0X)|fOX) COX)}

Then a is a nonzero ideal of O(X), because O(X)' is finite over O(X), and Xyorm =
X \ Vx(a). In fact, for S := O(X) \ m, we have

Ox.=0(X)s CO(X)s

and the latter is the integral closure of Ox .. On the other hand, O(X)s = O(X)Y
if and only if S N a # () which is equivalent to = ¢ Vx(a). O

EXERCISE 5.2.7. Consider the morphism ¢: C2 — C*, (x,%) — (z, zy, y*,y°).
(1) ¢ is finite and : C* — Y := ¢(C?) is the normalization.
(2) 0 €Y is the only non-normal and the only singular point of Y.
(3) Find defining equations for Y C C* and generators of the ideal I(Y).

EXERCISE 5.2.8. If X is a normal variety, then so is X x C".

New part from 4.2.2015:

We know that for a dominant morphism ¢: X — Y of finite degree d there is an
open dense set U C Y such that every fiber ¢~ !(y), y € U, has exactly d points (Propo-
sition 3.6.1). Under stronger assumptions this can be improved.

PROPOSITION 5.2.9. Let p: X — Y be a finite surjective morphism where X,Y are
irreducible and Y is normal. Then o~ ' (y)| < deg for all y € Y. Moreover, the set

{yeY |l '(y) =degp} CY

is open and dense in'Y .

Proor. (a) Let ¢ '(yo) = {1,...,2x}. Choose an f € O(X) such that f(z;) #
f(z;) for i # j. Let F = t™ 4+ hyt™ ' 4+ ... + h,, be the minimal equation of f over
C(Y). Then m < deg ¢, and the coefficients h; belong to O(Y) since they are integral over
O(Y). It follows that f(x1),..., f(xk) are distinct roots of the polynomial F(yo,t), hence
k < m < degy, proving the first claim.

(b) Now assume that the fiber of yo has d := deg ¢ points. We know that such points
exist, see Proposition 3.6.1. With the notation above we see that F'(yo,t) has degree d and
that f(z1),..., f(zq) are the d distinct roots of F'(yo,t). In particular, the discriminant of
F does not vanish in yo, hence there is an open neighborhood U of yo such that F(y,t)
has d distinct roots for all y € U. We will show that ¢! (y)| = d for y € U which proves
the second claim.

Consider the finite morphism ¢ x f: X — Y x C, and denote by X’ C Y x C its
image. We have inclusions O(Y) C O(X’) C O(X). Since f belongs to O(X’) and has a
minimal equation of degree d over C(Y) we get C(X’) = C(X), i.e. the induced morphism
¢+ X — X' is birational. Moreover, X’ C Vyxc(F) C Y x C, hence coincides with an
irreducible component of the hypersurface Z := Vy xc(F'), because Z has codimension 1,
by KrULL’s Theorem 3.3.4.

We claim that Z is irreducible. Let Z = Z; U --- U Zx be the decomposition into
irreducible components where Z; = X’. By KRULL’s Theorem 3.3.4, all Z; have the same
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dimension, namely dimY". Since p := pry |z: Z — Y is finite, we get p(Z;) =Y for all 4.
Moreover, p~!(y) = {(y,a) | F(y,a) = 0}, hence |p~*(y)| < d for all y € Y. On the other
hand, p’ := p|x/: X’ = Z1 — Y has degree d, and so there is a dense open set U’ C Y
such that [p’ "' (y)| = d for all y € U’ (Proposition 3.6.1). Therefore, p~*(U’) C Z1, hence
Z = Z1, because p~(U’) is dense in Z.

As a consequence, we obtain a factorization

0: X —2 s Z=Vy,o(F) —2 Y

where both maps ¢’ and p are finite and surjective. Since |p~!(y)| = d for y € U, we get
|~ (y)| > d for y € U, hence |¢p~*(y)| = d by (a), and the claim follows. O

(end of new part)

5.3. Analytic normality. We might ask which properties of a local ring Ox 5

are carried over to the completion o x,z- The following important result is due to
ZARISKI. A proof can be found in [ZS60, Ch.VIII, §13, Theorem 32].

ProrosiTiON 5.3.1. If Ox , is normal, then so is @X,ac-

In general, a local ring is called analytically normal if the completion R is
normal. It is not true that every normal local ring is analytically normal Nagata
example

As an application we have the following proposition about smoothness in the
target of a morphism.

PROPOSITION 5.3.2 (ZARISKI). Let p: X — Y be a dominant morphism of
irreducible varieties, and let x € X be a point with the properties that the fiber
F = o Y¢(x)) is reduced and smooth in x and that dim, F = dim X — dim Y. If
Y is normal in y, then y := p(x) is a smooth point of Y.

PROOF. Let S C X be an irreducible transversal slice in x € X to the fiber F,

ie.,

(1) dimS =dimY and ¢ := ¢|g: S = Y is dominant;

(2) x is a smooth point of S;

(3) The tangent map di,: TS — T,,Y is injective.
Then we have an inclusion of local rings ¥*: Oy, — Og, of the same dimen-
sion, and mg, = S¢*(m,) by (3). This implies that the induced homomorphism
Pv*: @y’y — (’A)S,:,; is surjective. By (2) @S,m is an algebra of formal power series
(Corollary 4.11.1), and by ZARISKI's proposition above the completion Oy, is nor-
mal, hence an intergral domain. Since dim, S = dim, Y by (1), it follows that the

map 7,[3* has a trivial kernel, i.e. @y’y is an algebra of formal power series and so y
is a smooth point of Y. O

REMARK 5.3.3. The normality assumption in the previous proposition is essen-
tial. Consider the normalization n: C — C of the cusp C := V(y? — 2® — 2%) C C2.
Then the fiber n~1(0) is reduced and smooth, but 0 € C' is a singular point.

5.4. Discrete valuation rings and smoothness. Let K be a field.

DEFINITION 5.4.1. A discrete valuation of the field K is a surjective map
v: K* := K \ {0} — Z with the following properties:
(a) v(ry) = v(z) +v(y);
(b) v(z +y) = min(v(z), v(y)).
To simplify the notation one usually defines v(0) := oco.
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EXAMPLE 5.4.2. Let K = Q and p € N a prime number. Define v,(z) :=r € Z
if p occurs with exponent r in the rational number = # 0. Then v,: Q* — Z is a
discrete valuation of Q.

The following lemma collects some facts about discrete valuations. The easy
proofs are left to the reader.

LEMMA 5.4.3. Let K be a field and v: K* — Z a discrete valuation.
(1) A:={z € K |v(z) >0} is a subring of K.
m:={z € K |v(z) >0} C A is a mazimal ideal of A.
{z € K | v(z) = 0} are the units of A.
For every nonzero x € K we have x € A or =1 € A.
m () for every x € K with v(x) = 1.
mk = {z € K | v(z) >k} and these are all nonzero ideals of A.
If m = (z), then every z € K has a unique expression of the form z = tz*
where k € Z and t is a unit of A.

(2)
(3)
(4)
()
(6)
(7 1f

DEFINITION 5.4.4. A domain A is called a discrete valuation ring, shortly DVR,
if there is a discrete valuation v of its field of fractions K such that A = {x € K |
v(z) > 0}. In particular, A has all the properties listed in Lemma 5.4.3 above.
Clearly, v is uniquely determined by A.

EXERCISE 5.4.5. Let A be a discrete valuation ring with field of fraction K. If B C K
is a subring containing A, then either B = A or B = K.

In the sequel we will use the following characterization of a discrete valuation
rings (see [AMG69, Proposition 9.2]).

PROPOSITION 5.4.6. Let A be a Noetherian local domain of dimension 1, i.e.
the mazimal ideal m # (0) and (0) are the only prime ideals in A. Then the following
statements are equivalent:

(i) A is a discrete valuation ring.
(ii) A is integrally closed.
iii) The mazimal ideal m is principal.
(iv) dimy,mm/m? = 1.
(v) Ewvery nonzero ideal of A is a power of m.
(vi) There is an x € A such that every nonzero ideal of A is of the form (z*).

PRrROOF. (i)=-(ii): If z € K and x ¢ A, then Alx] = K which is not finite over
A.

(ii)=(iii): Let @ € m, a # 0. Then m* C (a) and m*~1 Z (a) for some k > 0.
Choose an element b € m*~!\ (a) and put  := ¢. Then 27 'm = 1bm C Im* C 4.
If z7'm C m, then 2! would be integral over A and so ! € A, contradicting the
construction. Thus z7'm = A and so m = (z).

(iii)=(iv): If m = (z), then m/m? = A/m - (z + m?), and m? # m.

(iv)=(v): Let a C A be a nonzero ideal. Then y/a = m and so m* C a for some
k € N. Put A := A/m* and denote by m C A the image of m. Since m = () + m?
we get m = (z) +m"* for all K € N and so m = () C A. Now it is easy to see that
a=m" for some r <k, and so a=m".

(v)=(vi): We have m # m?. Choose z € m\m?. Then, by assumption, (z) = m*
for some k > 1, and so m = (z).

(vi)=(i): By assumption, every element a € A has a unique expression of the
form a = tz*¥ where k € N and ¢ a unit of A. Define v(a) := k. This has a well-
defined extension to K* by setting v(%) := v(a) — v(b) for a,b € A, b # 0. One
easily verifies that v is a discrete valuation of K and that A is the corresponding
valuation ring. O
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Let X be an irreducible variety and H C X an irreducible hypersurface, i.e.
codimx H = 1. The ideal p := I(H) of H is a minimal prime ideal # (0) and thus
the localization Ox g := O(X), is a local Noetherian domain of dimension 1. If
X is normal it follows from Proposition 5.4.6 that Ox g is a discrete valuation
ring which corresponds to a discrete v