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ON AUTOMORPHISMS
OF THE AFFINE CREMONA GROUP

by Hanspeter KRAFT & Immanuel STAMPFLI (*)

Abstract. — We show that every automorphism of the group Gn := Aut(An)
of polynomial automorphisms of complex affine n-space An = Cn is inner up to
field automorphisms when restricted to the subgroup T Gn of tame automorphisms.
This generalizes a result of Julie Deserti who proved this in dimension n = 2
where all automorphisms are tame: T G2 = G2. The methods are different, based
on arguments from algebraic group actions.

Résumé. — Nous montrons que tous les automorphismes du groupe des auto-
morphismes polynomiaux de l’espace affine Cn sont des automorphismes intérieurs
modulo des automorphismes du corps C, si nous nous restreignons au sous-groupe
des automorphismes modérés. Ceci généralise un résultat de Julie Déserti traitant
le cas de la dimension n = 2. Dans ce cas, tous les automorphismes polynomiaux
sont modérés. Nos méthodes sont différentes de celles de Julie Déserti et sont basées
sur des arguments d’actions de groupes algébriques.

1. Notation

Let Gn := Aut(An) denote the group of polynomial automorphisms of
complex affine n-space An = Cn. For an automorphism g we use the nota-
tion g = (g1, g2, . . . , gn) if

g(a) = (g1(a1, . . . , an), . . . , gn(a1, . . . , an)) for a = (a1, . . . , an) ∈ An

where g1, . . . , gn ∈ C[x1, . . . , xn]. Moreover, we define the degree of g by
deg g := max(deg g1, . . . ,deg gn). The product of two automorphisms is
denoted by f ◦ g.

Keywords: Polynomial automorphisms, algebraic group actions, ind-varieties, affine n-
space.
Math. classification: 14R10, 14R20, 14L30.
(*) Both authors were partially supported by Swiss National Science Foundation
(Schweizerischer Nationalfonds).
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The automorphisms of the form (g1, . . . , gn) where gi = gi(xi, . . . , xn)
depends only on xi, . . . , xn, form the Jonquière subgroup Jn ⊂ Gn. More-
over, we have the inclusions Dn ⊂ GLn ⊂ Affn ⊂ Gn where Dn is the group
of diagonal automorphisms (a1x1, . . . , anxn) and Affn the group of affine
transformations g = (g1, . . . , gn) where all gi have degree 1. The group
Affn is the semidirect product of GLn with the commutative unipotent
subgroup Tn of translations. The subgroup TGn ⊂ Gn generated by Jn and
Affn is called the group of tame automorphisms.

Main Theorem. — Let θ be an automorphism of Gn. Then there is an
element g ∈ Gn and a field automorphism τ : C→ C such that

θ(f) = τ(g ◦ f ◦ g−1) for all tame automorphisms f ∈ TGn.

After some preparation in the following sections the proof is given in
Section 7. For n = 2 where TG2 = G2 this result is due to Julie Deserti [3].
In fact, she proved this for any uncountable field K of characteristic zero.
Our methods work for any algebraically closed field of characteristic zero.

2. Ind-group structure and locally finite automorphisms

The group Gn has the structure of an ind-group given by Gn =
⋃
d>1(Gn)d

where (Gn)d are the automorphisms of degree 6 d (see [8]). Each (Gn)d is
an affine variety and (Gn)d ⊂ (Gn)d+1 is closed for all d. This defines a
topology on Gn where a subset X ⊂ Gn is closed (resp. open) if and only if
X ∩ (Gn)d is closed (resp. open) in (Gn)d for all d. All subgroups mentioned
above are closed subgroups.
In addition, multiplication Gn × Gn → Gn and inverse : Gn → Gn are

morphisms of ind-varieties where for the latter one has to use the fact
that deg f−1 6 (deg f)n−1. This seems to be a classical result for birational
maps of Pn based on Bézout’s Theorem (see [1, Corollary (1.4) and Theo-
rem (1.5)]). It follows that for every subgroup G ⊂ Gn the closure Ḡ in Gn
is also a subgroup.
A closed subgroup G contained in some (Gn)d is called an algebraic sub-

group. In fact, such a G is an affine algebraic group which acts faithfully
on An, and for every algebraic group H acting on An the image of H in Gn
is an algebraic subgroup.
A subset X ⊂ Gn is called bounded constructible, if X is a constructible

subset of some (Gn)d.
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Lemma 2.1. — Let G ⊂ Gn be a subgroup and let X ⊂ G be a subset
which is dense in G and bounded constructible. Then G is an algebraic
subgroup, and G = X ◦X.

Proof. — By assumption G ⊂ X̄ ⊂ (Gn)d for some d and so Ḡ = X̄ is an
algebraic subgroup. Moreover, there is a subset U ⊂ X which is open and
dense in Ḡ. Then U ◦ U = Ḡ, and so Ḡ = G = X ◦X. �

An element g ∈ Gn is called locally finite if it induces a locally finite
automorphism of the algebra C[x1, . . . , xn] of polynomial functions on An.
This is equivalent to the condition that the linear span of {(gm)∗(f) | m ∈
Z} is finite dimensional for all f ∈ C[x1, . . . , xn].
More generally, an action of a group G on an affine variety X is called

locally finite if the induced action on the coordinate ring O(X) is locally
finite, i.e., for all f ∈ O(X) the linear span 〈Gf〉 is finite dimensional.
It is easy to see that the image of G in Aut(X) is dense in an algebraic
group Ḡ which acts algebraically on X. In fact, one first chooses a finite
dimensionalG-stable subspaceW ⊂ O(X) which generatesO(X), and then
defines Ḡ ⊂ GL(W ) to be the closure of the image of G inside GL(W ).
The next result will be used in the following section. We start again with

an action of a group G on an affine variety X and assume that x0 ∈ X is
a fixed point. Then we obtain a representation τ : G → GL(Tx0X) on the
tangent space at x0, given by τ(g) := dx0g.

Lemma 2.2. — Let G act faithfully on an irreducible affine variety X.
Assume that x0 ∈ X is a fixed point and that there is a G-stable decompo-
sition mx0 = V ⊕m2

x0
. Then the tangent representation τ : G→ GL(Tx0X)

is faithful.

Proof. — Let g ∈ ker τ . Then g acts trivially on V , hence on all powers
V j of V . This implies that the action of g on O(X)/mkx0

is trivial for all
k > 1. Since

⋂
k m

k
x0

= {0} the claim follows. �

We remark that a G-stable decomposition mx0 = V ⊕ m2
x0

like in the
lemma above always exists if G is a reductive algebraic group.

3. Tori and centralizers

For the convenience of the reader we recall two important results about
fixed point sets of group actions which we will need below. A complex vari-
etyX is called Z/pZ-acyclic ifHj(X,Z/pZ) = 0 for j > 0 andH0(X,Z/pZ) =
Z/pZ. The first result goes back to P. A. Smith [11].

TOME 00 (XXXX), FASCICULE 0
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Proposition 3.1 (Corollary to Theorem 7.5 in [10]). — Let G be a
finite p-group and let X be an affine G-variety. If X is Z/pZ-acyclic, then
so is XG.

The second result is due to Fogarty and describes the tangent cone
C(XG, x) of the fixed point set XG.

Proposition 3.2 (Theorem 5.2 in [4]). — Let G be a reductive group.
If X is an affine G-variety, then for each point x ∈ X we have C(XG, x) =
C(X,x)G.

Define µk := {g ∈ Dn | gk = id}. We have µk ' (Z/k)n, and µ∞ :=⋃
k µk ⊂ Dn is the subgroup of elements of finite order where µ∞ ' (Q/Z)n.

The next lemma about the centralizer of µk is easy.

Lemma 3.3. — For every k > 1 we have CentGn(µk) = CentGLn(µk) =
Dn.

The following result is crucial for the proof of the main theorem.

Proposition 3.4. — Let µ ⊂ Gn be a finite subgroup isomorphic to µ2.
Then the centralizer CentGn(µ) is a diagonalizable algebraic subgroup of Gn,
i.e., isomorphic to a closed subgroup of a torus. Moreover dim CentGn(µ) 6
n.

Proof. — We first remark that CentGn(µ) is a closed subgroup of Gn. By
Theorem 3.1 the fixed point set F := (An)µ′ of every subgroup µ′ ⊂ µ

is Z/2-acyclic, in particular non-empty and connected. We also know that
F is smooth and that TaF = (TaAn)µ′ since µ′ is linearly reductive (see
Theorem 3.2). If a ∈ (An)µ, then the tangent representation of µ on TaAn
is faithful, by Lemma 2.2 above, and so a is an isolated fixed point. Hence,
(An)µ = {a}.
Choose generators σ1, . . . , σn of µ such that the images in GL(TaAn) are

reflections, i.e., have a single eigenvalue −1, and set Hi := (An)σi . The
tangent representation shows that Hi is a hypersurface, hence defined by
an irreducible polynomial fi ∈ C[x1, . . . , xn]. Moreover, σ∗i (fi) = −fi and
σ∗i (fj) = fj for j 6= i. It follows that the linear subspace V := Cf1 ⊕ · · · ⊕
Cfn ⊂ C[x1, . . . , xn] is µ-stable. In addition, any g ∈ G := CentGn(µ) fixes
a and stabilizes all Cfi and so, by the following Lemma 3.6 applied to the
morphism ϕ := (f1, . . . , fn) : An → An, the action of G on An is locally
finite. Since G is a closed subgroup of Gn, it follows that it is an algebraic
subgroup of Gn, and its image in GL(V ) is a closed subgroup contained in
a maximal torus, hence a diagonalizable group.

ANNALES DE L’INSTITUT FOURIER
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Finally, ma = V ⊕ m2
a, and thus the homomorphism G → GL(TaAn) is

injective, by Lemma 2.2. Hence the claim. �

Remark 3.5. — It is not difficult to show that the proposition holds for
every finite commutative subgroup µ of rank n. In fact, the proof carries
over to subgroups isomorphic to µp where p is a prime, and every finite
commutative subgroup µ of rank n contains such a group.

Lemma 3.6. — Let G ⊂ Aut(An) be a subgroup and let ϕ : An → X be
a dominant morphism such that dimX = n. Assume that ϕ∗(O(X)) is a
G-stable subalgebra and that the induced action of G on X is locally finite.
Then the same holds for the action of G on An.

Proof. — Put A := ϕ∗(O(X)) ⊂ C[x1, . . . , xn] and denote by R ⊂
C[x1, . . . , xn] the integral closure of A. We first claim that the action ofG on
R is locally finite. In fact, let f ∈ R and let fm+a1f

m−1+· · ·+am = 0 be an
integral equation of f over A. By assumption, the spaces 〈Gai〉 are all finite
dimensional, and so there is a d ∈ N such that deg gai < d for all g ∈ G and
all ai. Since gf satisfies the equation (gf)m+(ga1)(gf)m−1+· · ·+(gam) = 0
we get deg(gf) < d for all g ∈ G, hence the claim.
Therefore, we can assume that X is normal and that ϕ : An → X is

birational. Choose an open set U ⊂ An such that ϕ(U) ⊂ X is open
and ϕ induces an isomorphism U

∼−→ ϕ(U). Define Y :=
⋃
g∈G gU ⊂ An.

Then the induced morphism ψ := ϕ|Y : Y → ϕ(Y ) is G-equivariant and
a local isomorphism. Since X is quasi-compact the fibers of ψ are finite,
and since ψ is birational and ϕ(Y ) normal we get that ψ is a G-equivariant
isomorphism.
By assumption, the action of G on X is locally finite, and so G is dense in

an algebraic group Ḡ which acts regularly on X. Clearly, the open set ϕ(Y )
is Ḡ-stable and thus the action of Ḡ on O(ϕ(Y )) is locally finite. Now the
claim follows, because C[x1, . . . , xn] ⊂ O(Y ) is a G-stable subalgebra. �

The proposition above has an interesting consequence for the lineariza-
tion problem for finite group actions on affine 3-space A3. In this case it is
known that every faithful action of a non-finite reductive group on A3 is
linearizable (Kraft-Russell, see [6]).

Corollary 3.7. — Let µ ⊂ G3 be a commutative subgroup of rank
three. If the centralizer of µ is not finite, then µ is conjugate to a subgroup
of D3.

TOME 00 (XXXX), FASCICULE 0
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4. Dn-stable unipotent subgroups

Recall that every commutative unipotent group U has a natural structure
of a C-vector space, given by the exponential map exp: TeU

∼−→ U . Thus
Aut(U) = GL(U) and every action of an algebraic group on U by group
automorphisms is given by a linear representation.
A (non-zero) locally nilpotent vector field δ =

∑n
i=1 hi

∂
∂xi

defines a (non-
trivial) C+-action on An, hence a one-dimensional unipotent subgroup

Uδ = {(exp(tδ)(x1), . . . , exp(tδ)(xn)) | t ∈ C+} ⊆ Gn,

and Uδ = Uδ′ if and only if δ′ is a scalar multiple of δ. In the following
we denote by e1, . . . , en the standard basis of Zn, and by ε1, . . . , εn the
standard basis of the character group of Dn.

Lemma 4.1. — Let U = Uδ ⊂ Gn be a one-dimensional unipotent sub-
group. Then Uδ is normalized by Dn if and only if δ is of the form cxγ ∂

∂xi
,

where
xγ = xγ1

1 · · ·x
γi−1
i−1 x

γi+1
i+1 · · ·x

γn
n

and c ∈ C∗. In particular, Uδ = {δ(s) := (x1, . . . , xi + s(cxγ), . . . , xn) | s ∈
C}, and d ◦ δ(s) ◦ d−1 = δ(tei−γs) for d = (t1x1, . . . , tnxn) ∈ Dn.

Proof. — If Uδ is normalized by Dn, then d ◦ δ ◦ d−1 ∈ C∗δ for all
d ∈ Dn. Writing δ =

∑
i hi

∂
∂xi

it follows that each hi is a monomial of the
form hi = aix

β+ei for some β ∈ Zn. If βi > 0 an induction on m shows
that, for all m > 1, we have

δm(xi) = b(i)m xmβ+ei , where b(i)m = ai

m−1∏
l=1

(lb+ ai) and b =
n∑
j=1

ajβj .

Assume that βi > 0 for all i. Since δ is locally nilpotent there is a minimal
mi > 0 such that b(i)mi+1 = 0. This implies ai = −mib. Since δ 6= 0, we get

0 6= b =
n∑
i=1

aiβi = −b
n∑
i=1

miβi,

and so
∑
miβi = −1. But this is a contradiction, because mi, βi > 0 for

all i. Therefore aixβ+ei 6= 0 implies that βj > 0 for all j 6= i, and βi = −1.
Thus there is only one term in the sum, i.e., δ = aix

γ ∂
∂xi

where γ := β+ ei
has the claimed form. �

Remark 4.2. — This lemma can also be expressed in the following way:
There is a bijective correspondence between the Dn-stable one-dimensional
unipotent subgroups U ⊂ Gn and the characters of Dn of the form λ =

ANNALES DE L’INSTITUT FOURIER
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∑
j λjεj where one λi equals 1 and the others are 6 0. We will denote this

set of characters by Xu(Dn):

Xu(Dn) := {λ =
∑

λjεj | ∃ i such that λi = 1 and λj 6 0 for j 6= i}.

If λ ∈ Xu(Dn), then Uλ denotes the corresponding one-dimensional unipo-
tent subgroup normalized by Dn.

Remark 4.3. — In [9, Theorem 1] Alvaro Liendo shows that the locally
nilpotent derivations normalized by the torus D′n := Dn∩SLn have exactly
the same form.

Lemma 4.4. — The subgroup Tn of translations is the only commutative
unipotent subgroup normalized by GLn.

Proof. — If U ⊂ Gn is a commutative unipotent subgroup normalized
by GLn, then all the weights of the representation of GLn on TeU ' U

must belong to Xu(Dn). The dominant weights of GLn are
∑
i λiεi where

λ1 > λ2 > · · · > λn, and only those of the form λ = ε1 +
∑
i>1 λiεi

where 0 > λ2 > · · · > λn occur in Xu(Dn). If λ 6= ε1, i.e., λ = ε1 +
λkεk + λk+1εk+1 + · · · where λk < 0, then the weight λ′ := (λk + 1)εk +
λk+1εk+1 + · · · is dominant and λ′ ≺ λ. Therefore λ′ appears in the ir-
reducible representation of GLn of highest weight λ, but λ′ /∈ Xu(Dn).
Thus U and Tn are isomorphic as GLn-modules, hence contain the same
Dn-stable one-dimensional unipotent subgroups, and so U = Tn. �

5. Maximal tori

It is clear thatDn ⊂ Gn is a maximal commutative subgroup of Gn since it
coincides with its centralizer, see Lemma 3.3. Moreover, Białynicki-Birula
proved in [2] that a faithful action of an n-dimensional torus on An is
linearizable (cf. [7, Chap. I.2.4, Theorem 5]).Thus we have the following
result.

Lemma 5.1. — Dn is a maximal commutative subgroup of Gn. More-
over, every algebraic subgroup of Gn, which is isomorphic toDn is conjugate
to Dn.

Now let G ⊂ Gn be an algebraic subgroup which is normalized by Dn.
Then the non-zero weights of the representation of Dn on the Lie algebra
LieG belong to Xu(Dn), and the weight spaces are one-dimensional. It
follows that the non-zero weight spaces of LieG are in bijective correspon-
dence with the Dn-stable one-dimensional unipotent subgroups of G.

TOME 00 (XXXX), FASCICULE 0
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Lemma 5.2. — Let G ⊂ Gn be an algebraic subgroup normalized by
a torus D ⊂ Gn of dimension n, let U1, . . . , Ur be the D-stable one-
dimensional unipotent subgroups of G, and put X := U1 ◦ · · · ◦ Ur ⊂ G.

(a) If G is unipotent, then G = X ◦X and dimG = r.
(b) If D ⊂ G, then G0 = D ◦X ◦D ◦X and dimG = r + n.

Proof. — (a) The canonical map U1× · · · ×Ur → G is dominant, and so
X ⊂ G is constructible and dense. Thus X ◦X = G, by Lemma 2.1, and
dimG = dim LieG = r.

(b) Similarly, we see that D ◦ X ⊂ G0 is constructible and dense, and
therefore D ◦X ◦D ◦X = G0, and dimG = dim LieG = dim LieD+ r. �

6. Images of algebraic subgroups

The next two propositions are crucial for the proof of our main theorem.

Proposition 6.1. — Let θ be an automorphism of Gn. Then
(a) D := θ(Dn) is a torus of dimension n, conjugate to Dn.
(b) If U is a Dn-stable unipotent subgroup, then θ(U) is a D-stable

unipotent subgroup of the same dimension.
(c) T := θ(Tn) is a commutative unipotent subgroup of dimension n,

normalized by D, and the representation of D on T is faithful.

Proof. — (a) We have Dn = CentGn(µ2), by Lemma 3.3, and thus D =
θ(Dn) = CentGn(θ(µ2)). Proposition 3.4 implies that D is a diagonalizable
algebraic subgroup with dimD 6 n, henceD = D0×F for some finite group
F . If k is prime to the order of F , then θ(µk) ⊂ D0 and so dimD0 = n,
because µk ' (Z/k)n. Hence D = D0 is an n-dimensional torus which is
conjugate to Dn, by Lemma 5.1.
(b) First assume that dimU = 1. Then U consists of two Dn-orbits,

O := U\{id} and {id}. It follows that θ(U) consists of the twoD-orbits θ(O)
and {id}, and so θ(U) is bounded constructible and thus a commutative
algebraic group normalized by D. Since it does not contain elements of
finite order it is unipotent, and since it consists of only two D-orbits it is
of dimension 1.
Now let U be arbitrary, dimU = r, and let U1, . . . , Ur be the different

Dn-stable one-dimensional unipotent subgroups of U . Then X := U1 ◦U2 ◦
· · · ◦Ur ⊂ U is dense and constructible and U = X ◦X, by Lemma 5.2(a).
Applying θ implies that θ(X) = θ(U1)◦ · · · ◦θ(Ur) is bounded constructible

ANNALES DE L’INSTITUT FOURIER
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and connected, as well as θ(U) = θ(X)◦θ(X), and thus θ(U) is a connected
algebraic subgroup of Gn normalized by D. Since every element of θ(U)
has infinite order, θ(U) must be unipotent. Moreover, dim θ(U) > r, since
θ(U) contains the D-stable one-dimensional unipotent subgroups θ(Ui),
i = 1, . . . , r. The same argument applied to θ−1 finally gives dim θ(U) = r.

(c) This statement follows from (b) and the fact that Tn contains a dense
Dn-orbit with trivial stabilizer. �

The same arguments, this time using Lemma 5.2(b), gives the next result.

Proposition 6.2. — Let θ be an automorphism of Gn and let G ⊂ Gn
be an algebraic subgroup which contains a torus D of dimension n.

(a) The image θ(G) is an algebraic subgroup of Gn of the same dimen-
sion dimG.

(b) We have θ(G0) = θ(G)0. In particular, θ(G) is connected if G is
connected.

(c) If G is reductive, then so is θ(G), and then θ(G) is conjugate to a
closed subgroup of GLn.

Proof. — As above, let U1, . . . , Ur be the differentD-stable one-dimensional
unipotent subgroups of G, and put X := U1 ◦ · · · ◦ Ur. Then D ◦X is con-
structible in G0, and D ◦X ◦D ◦X = G0, by Lemma 5.2(b). Applying θ we
see that θ(D◦X◦D◦X) = θ(D)◦θ(X)◦θ(D)◦θ(X) is bounded constructible
and connected, and so θ(G0) is a connected algebraic subgroup of Gn, of fi-
nite index in θ(G). Since the θ(Ui) are different θ(D)-stable one-dimensional
unipotent subgroups of θ(G) we have dim θ(G) > dim θ(D) + r = dimG.
Using θ−1 we get equality. This proves (a) and (b).
For (c) we remark that if G contains a normal unipotent subgroup U ,

then θ(U) is a normal unipotent subgroup of θ(G). Moreover, a reductive
subgroup G containing a torus of dimension n has no non-constant invari-
ants, and so G is linearizable (see [5, Proposition 5.1]). �

7. Proof of the Main Theorem

Let θ be an automorphism of Gn. It follows from Proposition 6.2 that
there is a g ∈ Gn such that g◦θ(GLn)◦g−1 ⊂ GLn. Therefore we can assume
that θ(GLn) = GLn. The subgroup Tn of translations is the only commu-
tative unipotent subgroup normalized by GLn, by Lemma 4.4. Therefore,
θ(Tn) = Tn and so θ(Affn) = Affn. Now the theorem follows from the next
proposition. �

TOME 00 (XXXX), FASCICULE 0



10 Hanspeter KRAFT & Immanuel STAMPFLI

Proposition 7.1.

(a) Every automorphism θ of Affn with θ(GLn) = GLn and θ(Tn) = Tn
is of the form θ(f) = τ(g ◦ f ◦ g−1) where g ∈ GLn and τ is an
automorphism of the field C.

(b) If θ is an automorphism of Gn such that θ|Affn = IdAffn , then θ|Jn =
IdJn .

Proof. — (a) It is enough to prove that θ(f) = g◦τ(f)◦g−1 for some g ∈
GLn and some automorphism τ : C→ C of the field C. Let Z = C∗ ⊆ GLn
be the center of GLn and define θ0 := θ|Z : Z → Z, θ1 := θ|Tn : Tn → Tn.
It follows that θ0 and θ1 are abstract group homomorphisms of C∗ and Tn
respectively, and for all c ∈ C∗ we get t ∈ Tn

(∗) θ1(c · t) = θ1(c ◦ t ◦ c−1) = θ0(c) ◦ θ1(t) ◦ θ0(c)−1 = θ0(c) · θ1(t) ,

where “ · ” denotes scalar multiplication. We claim that τ : C → C defined
by τ |C∗ = θ0, τ(0) = 0, is an automorphism of the field C. Indeed, using
(∗) one sees that τ(a+ b) = τ(a)+τ(b) for all a, b ∈ C∗ such that a+ b 6= 0.
As θ0(−1) = −1 it follows that τ(−a) = −τ(a) for all a ∈ C∗ and so
τ(a+ (−a)) = τ(a) + τ(−a). This implies the claim.
Thus we can assume that θ0 = idC∗ . Using (∗) again, it follows that θ1

is linear. Considering θ1 as an element of GLn we have θ1(t) = θ1 ◦ t ◦ θ−1
1 ,

and thus we can assume that θ1 = idTn . But this implies that θ(g) = g for
all g ∈ GLn, because

g ◦ t ◦ g−1 = θ(g ◦ t ◦ g−1) = θ(g) ◦ t ◦ Êθ(g)−1

for all t ∈ Tn.
(b) Let U ⊂ Gn be a one-dimensional unipotent Dn-stable subgroup. We

first claim that θ(U) = U and that θ|U is linear. In fact, U ′ := θ(U) is a
one-dimensional unipotent Dn-stable subgroup, by Proposition 6.1(b), and
the characters λ and λ′ associated to U and U ′ (see Remark 4.2) have the
same kernel, because
(∗∗)
θ(λ(d)·u) = θ(d◦u◦d−1) = d◦θ(u)◦d−1 = λ′(d)·θ(u) for d ∈ Dn, u ∈ U.

Hence λ = ±λ′. If λ = −λ′, then U ⊆ GLn and so U ′ = U , since θ|GLn =
IdGLn , hence a contradiction. Thus λ = λ′, and so U = U ′ and (∗∗) shows
that θ|U is linear, proving our claim.

As a consequence, θ|Uλ = aλ IdUλ for all λ ∈ Xu(Dn), with suitable
aλ ∈ C∗. If λi = 1 put γi := 0 and γj := −λj . Then f = (x1, . . . , xi +
xγ , . . . , xn) ∈ Uλ, see Lemma 4.1. Conjugation with the translation t : x 7→
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x−
∑
j 6=i ej gives

t◦f◦t−1 = (x1, . . . , xi+hγ , . . . , xn) where hγ := (x1+1)γ1(x2+1)γ2 · · · (xn+1)γn .

Now we apply θ to get θ(t◦ f ◦t−1) = t◦θ(f)◦t−1. Since all the monomials
xγ
′ with γ′ 6 γ appear in hγ it follows that the corresponding coefficients

aλ′ must all be equal. In particular, aλ = aεi = 1 since Uεi ⊂ Tn. This
shows that θ|Jn = IdJn . �
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