DOI 10.4171/JEMS/700

Hanspeter Kraft · Andriy Regeta

Automorphisms of the Lie algebra of vector fields on affine *n*-space

Received July 27, 2014

Abstract. We study the vector fields $Vec(\mathbb{A}^n)$ on affine *n*-space \mathbb{A}^n , the subspace $Vec^c(\mathbb{A}^n)$ of vector fields with constant divergence, and the subspace $Vec^0(\mathbb{A}^n)$ of vector fields with divergence zero, and we show that their automorphisms, as Lie algebras, are induced by the automorphisms of \mathbb{A}^n :

$$\operatorname{Aut}(\mathbb{A}^n) \xrightarrow{\sim} \operatorname{Aut}_{\operatorname{Lie}}(\operatorname{Vec}(\mathbb{A}^n)) \xrightarrow{\sim} \operatorname{Aut}_{\operatorname{Lie}}(\operatorname{Vec}^{\mathcal{C}}(\mathbb{A}^n)) \xrightarrow{\sim} \operatorname{Aut}_{\operatorname{Lie}}(\operatorname{Vec}^0(\mathbb{A}^n)).$$

This generalizes results of the second author obtained in dimension 2 [Reg13]. The case of $Vec(\mathbb{A}^n)$ goes back to Kulikov [Kul92].

This generalization is crucial in the context of infinite-dimensional algebraic groups, because $\operatorname{Vec}^{c}(\mathbb{A}^{n})$ is canonically isomorphic to the Lie algebra of $\operatorname{Aut}(\mathbb{A}^{n})$, and $\operatorname{Vec}^{0}(\mathbb{A}^{n})$ is isomorphic to the Lie algebra of the closed subgroup $\operatorname{SAut}(\mathbb{A}^{n}) \subset \operatorname{Aut}(\mathbb{A}^{n})$ of automorphisms with Jacobian determinant equal to 1.

Keywords. Automorphisms, vector fields, Lie algebras, affine n-space

1. Introduction

Let *K* be an algebraically closed field of characteristic zero. Denote by $Vec(\mathbb{A}^n)$ the Lie algebra of polynomial vector fields on affine *n*-space $\mathbb{A}^n = K^n$:

$$\operatorname{Vec}(\mathbb{A}^n) = \operatorname{Der}(K[x_1, \dots, x_n]) = \left\{ \sum_i f_i \frac{\partial}{\partial x_i} \mid f_i \in K[x_1, \dots, x_n] \right\}$$

where we use the standard identification of a derivation δ with $\sum_i \delta(x_i) \frac{\partial}{\partial x_i}$. The group $\operatorname{Aut}(\mathbb{A}^n)$ of polynomial automorphisms of \mathbb{A}^n acts on $\operatorname{Vec}(\mathbb{A}^n)$ in the usual way. For $\varphi \in \operatorname{Aut}(\mathbb{A}^n)$ and $\delta \in \operatorname{Vec}(\mathbb{A}^n) = \operatorname{Der}(K[x_1, \dots, x_n])$ we define

$$\mathrm{Ad}(\varphi)\delta := \varphi^{*^{-1}} \circ \delta \circ \varphi^*$$

H. Kraft: Universität Basel, Departement Mathematik und Informatik,

Spiegelgasse 1, CH-4051 Basel, Switzerland; e-mail: hanspeter.kraft@unibas.ch

A. Regeta: Université de Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF,

BP 74, F-38402 St. Martin d'Heres Cedex, France; e-mail: andriyregeta@gmail.com

Mathematics Subject Classification (2010): Primary 17B66; Secondary 22F50

where $\varphi^* \colon K[x_1, \ldots, x_n] \to K[x_1, \ldots, x_n], f \mapsto f \circ \varphi$, is the comorphism of φ . It is shown in [Kul92] that Ad: Aut(\mathbb{A}^n) \to Aut_{Lie}(Vec(\mathbb{A}^n)) is an isomorphism. We will give a short proof in Section 3.

Recall that the *divergence* of a vector field $\delta = \sum_i f_i \frac{\partial}{\partial x_i}$ is defined by Div $\delta := \sum_i \frac{\partial f_i}{\partial x_i}$. This leads to the following subspaces of Vec(\mathbb{A}^n):

$$\operatorname{Vec}^{0}(\mathbb{A}^{n}) := \{ \delta \in \operatorname{Vec}(\mathbb{A}^{n}) \mid \operatorname{Div} \delta = 0 \} \subset \operatorname{Vec}^{c}(\mathbb{A}^{n}) := \{ \delta \in \operatorname{Vec}(\mathbb{A}^{n}) \mid \operatorname{Div} \delta \in K \},\$$

which are Lie subalgebras, because $\text{Div}[\delta, \eta] = \delta(\text{Div}\,\eta) - \eta(\text{Div}\,\delta)$. We have

$$\operatorname{Vec}^{c}(\mathbb{A}^{n}) = \operatorname{Vec}^{0}(\mathbb{A}^{n}) \oplus K \partial_{E}$$
 where $\partial_{E} := \sum_{i} x_{i} \frac{\partial}{\partial x_{i}}$ is the *Euler field*.

The aim of this note is to prove the following result about the automorphism groups of these Lie algebras.

Main Theorem. There are canonical isomorphisms

 $\operatorname{Aut}(\mathbb{A}^n) \xrightarrow{\sim} \operatorname{Aut}_{\operatorname{Lie}}(\operatorname{Vec}(\mathbb{A}^n)) \xrightarrow{\sim} \operatorname{Aut}_{\operatorname{Lie}}(\operatorname{Vec}^c(\mathbb{A}^n)) \xrightarrow{\sim} \operatorname{Aut}_{\operatorname{Lie}}(\operatorname{Vec}^0(\mathbb{A}^n)).$

Remark 1.1. It is easy to see that the theorem holds for any field *K* of characteristic zero. In fact, all the homomorphisms are defined over \mathbb{Q} , and are equivariant with respect to the obvious actions of the Galois group $\Gamma = \text{Gal}(\bar{K}/K)$.

As a consequence, we will get the next result (see Corollary 4.4) which goes back to Kulikov [Kul92, Theorem 4].

Corollary. If every injective endomorphism of the Lie algebra $Vec(\mathbb{A}^n)$ is an automorphism, then the Jacobian Conjecture holds in dimension n.

Remark 1.2. The Main Theorem has another interesting consequence. The group $Aut(\mathbb{A}^n)$ is an *infinite-dimensional algebraic group* in the sense of Shafarevich [Sha66, Sha81], briefly an *ind-group* (cf. [Kum02]), and its Lie algebra is canonically isomorphic to $Vec^c(\mathbb{A}^n)$. It was recently shown by Belov-Kanel and Yu [BKY12] that every automorphism of $Aut(\mathbb{A}^n)$ as an ind-group is inner. Using the Main Theorem above one can give a new proof of this and extend it to the closed subgroup $SAut(\mathbb{A}^n) \subset Aut(\mathbb{A}^n)$ of automorphisms with Jacobian determinant equal to 1. The details can be found in [Kra15] where we also show that the maps in the Main Theorem are isomorphisms of ind-groups.

We add here a lemma which will be used later on.

Lemma 1.3. $\operatorname{Vec}(\mathbb{A}^n)$ and $\operatorname{Vec}^0(\mathbb{A}^n)$ are simple Lie algebras, and

$$\operatorname{Vec}^{0}(\mathbb{A}^{n}) = [\operatorname{Vec}^{c}(\mathbb{A}^{n}), \operatorname{Vec}^{c}(\mathbb{A}^{n})]$$

Proof. The formula $\left[\frac{\partial}{\partial x_j}, \sum_i f_i \frac{\partial}{\partial x_i}\right] = \sum_i \frac{\partial f_i}{\partial x_j} \frac{\partial}{\partial x_i}$ shows that every nonzero ideal \mathfrak{a} of $\operatorname{Vec}(\mathbb{A}^n)$ contains a nonzero element from $\sum_i K \frac{\partial}{\partial x_i}$, and $\left[x_\ell \frac{\partial}{\partial x_j}, \frac{\partial}{\partial x_i}\right] = -\delta_i \ell \frac{\partial}{\partial x_j}$ implies that $\sum_i K \frac{\partial}{\partial x_i} \subseteq \mathfrak{a}$. Now we use $\left[f \frac{\partial}{\partial x_j}, \frac{\partial}{\partial x_i}\right] = -\frac{\partial f}{\partial x_i} \frac{\partial}{\partial x_j}$ to conclude that $\mathfrak{a} = \operatorname{Vec}(\mathbb{A}^n)$, hence $\operatorname{Vec}(\mathbb{A}^n)$ is simple. (See also [Jor78, Theorem, p. 446].)

The second statement is proved in a similar way and can be found in [Sha81, Lemma 3], and from that the last claim follows immediately.

2. Group actions and vector fields

If an algebraic group G acts on an affine variety X, we obtain a canonical linear map Lie $G \rightarrow \text{Vec}(X)$ defined in the usual way (cf. [Kral1, II.4.4]). For every $A \in \text{Lie } G$ the associated vector field ξ_A on X is defined by

$$(\xi_A)_x := d\mu_x(A) \quad \text{for } x \in X \tag{2.1}$$

where $\mu_x \colon G \to X, g \mapsto gx$, is the orbit map in $x \in X$. It is well-known that the linear map $A \mapsto \xi_A$ is an anti-homomorphism of Lie algebras, and that its kernel is equal to the Lie algebra of the kernel of the action $G \to \operatorname{Aut}(X)$. In particular, for any algebraic subgroup $G \subset \operatorname{Aut}(\mathbb{A}^n)$ we have a canonical injection Lie $G \hookrightarrow \operatorname{Vec}(\mathbb{A}^n)$; we will denote the image by L(G). Let us point out that a connected $G \subset \operatorname{Aut}(\mathbb{A}^n)$ is determined by L(G), i.e., if L(G) = L(H) for algebraic subgroups $G, H \subset \operatorname{Aut}(\mathbb{A}^n)$, then $G^0 = H^0$.

Recall that the vector field $\delta \in \text{Vec}(\mathbb{A}^n)$ is called *locally nilpotent* if the action of δ on $K[x_1, \ldots, x_n]$ is locally nilpotent, i.e., for any $f \in K[x_1, \ldots, x_n]$ we have $\delta^m(f) = 0$ if m is large enough. Every such δ defines an action of the additive group K^+ on \mathbb{A}^n such that $\delta = \xi_1$ where $1 \in K = \text{Lie } K^+$ (see (2.1) above).

Lemma 2.1. Let $\mathbf{u} \subset \operatorname{Vec}(\mathbb{A}^n)$ be a finite-dimensional commutative Lie subalgebra consisting of locally nilpotent vector fields. Then there is a commutative unipotent algebraic subgroup $U \subset \operatorname{Aut}(\mathbb{A}^n)$ such that $L(U) = \mathbf{u}$. If $\operatorname{cent}_{\operatorname{Vec}(\mathbb{A}^n)}(\mathbf{u}) = \mathbf{u}$, then U acts transitively on \mathbb{A}^n .

Proof. It is clear that $\mathbf{u} = L(U)$ for a commutative unipotent subgroup $U \subset \operatorname{Aut}(\mathbb{A}^n)$. In fact, choose a basis $(\delta_1, \ldots, \delta_m)$ of \mathbf{u} and consider the corresponding actions $\rho_i : K^+ \to \operatorname{Aut}(\mathbb{A}^n)$. Since the associated vector fields δ_i commute, the same holds for the actions ρ_i , so that we get an action of $(K^+)^m$. It follows that the image $U \subset \operatorname{Aut}(\mathbb{A}^n)$ is a commutative unipotent subgroup with $L(U) = \mathbf{u}$.

Assume that the action of U is not transitive. Then all orbits have dimension < n, because orbits of unipotent groups acting on affine varieties are closed (see [Bor91, Chap. I, Proposition 4.10]). But then there is a nonconstant U-invariant function $f \in K[x_1, \ldots, x_n]$. This implies that for every $\delta \in \mathbf{u}$ the vector field $f\delta$ commutes with \mathbf{u} and thus belongs to cent_{Vec(\mathbb{A}^n})(\mathbf{u}), contradicting the assumption.

Any $\delta \in \text{Vec}(\mathbb{A}^n)$ acts on the functions $K[x_1, \ldots, x_n]$ as a derivation, and on the Lie algebra $\text{Vec}(\mathbb{A}^n)$ by the adjoint action, $\text{ad}(\delta)\mu := [\delta, \mu] = \delta \circ \mu - \mu \circ \delta$. These two actions are related as shown in the following lemma whose proof is obvious.

Lemma 2.2. Let $\delta, \mu \in \text{Vec}(\mathbb{A}^n)$ be commuting vector fields and $f \in K[x_1, \ldots, x_n]$. Then

$$\operatorname{ad}(\delta)(f\mu) = \delta(f)\mu.$$

In particular, if $ad(\delta)$ is locally nilpotent on $Vec(\mathbb{A}^n)$, then δ is locally nilpotent as a vector field.

3. Proof of the Main Theorem, part I

We first give a proof of the following result which goes back to Kulikov [Kul92, proof of Theorem 4]; see also [Bav13].

Theorem 3.1. The canonical map $Ad: Aut(\mathbb{A}^n) \to Aut_{Lie}(Vec(\mathbb{A}^n))$ is an isomorphism.

Denote by $\operatorname{Aff}_n \subset \operatorname{Aut}(\mathbb{A}^n)$ the closed subgroup of affine transformations and by $S = (K^+)^n \subset \operatorname{Aff}_n$ the subgroup of translations. Then

$$L(Aff_n) = \langle x_i \partial_{x_i}, \partial_{x_k} \mid 1 \le i, j, k \le n \rangle \supset L(S) = \langle \partial_{x_1}, \dots, \partial_{x_n} \rangle$$
(3.1)

where $\partial_{x_j} := \partial/\partial x_j$. Set $\mathfrak{aff}_n := \text{Lie Aff}_n$ and $\mathfrak{saff}_n := [\mathfrak{aff}_n, \mathfrak{aff}_n] = \text{Lie SAff}_n$ where $\text{SAff}_n := (\text{Aff}_n, \text{Aff}_n) \subset \text{Aff}_n$ is the commutator subgroup, i.e. the closed subgroup of those affine transformations $x \mapsto gx + b$ where $g \in \text{SL}_n$. The next lemma is certainly known. For the convenience of the reader we indicate a short proof.

Lemma 3.2. The canonical homomorphisms

$$\operatorname{Aff}_n \xrightarrow{\operatorname{Ad}} \operatorname{Aut}_{\operatorname{Lie}}(\mathfrak{aff}_n) \xrightarrow{\operatorname{res}} \operatorname{Aut}_{\operatorname{Lie}}(\mathfrak{saff}_n)$$

are isomorphisms.

Proof. It is clear that the homomorphisms

Ad: Aff_n
$$\rightarrow$$
 Aut_{Lie}(\mathfrak{aff}_n) and res: Aut_{Lie}(\mathfrak{aff}_n) \rightarrow Aut_{Lie}(\mathfrak{saff}_n)

are both injective. Thus it suffices to show that the composition res o Ad is surjective.

We write the elements of Aff_n in the form (v, g) with $v \in S = (K^+)^n$, $g \in GL_n$ where (v, g)x = gx + v for $x \in \mathbb{A}^n$. It follows that (v, g)(w, h) = (v + gw, gh). Similarly, $(a, A) \in \mathfrak{aff}_n$ means that $a \in \mathfrak{s} := \text{Lie } S = K^n$, $A \in \mathfrak{gl}_n$, and (a, A)x = Ax + a. For the adjoint representation of $g \in GL_n$ and of $v \in S$ on \mathfrak{aff}_n we find

$$Ad(g)(a, A) = (ga, gAg^{-1})$$
 and $Ad(v)(a, A) = (a - Av, A),$ (3.2)

and thus, for $(b, B) \in \mathfrak{aff}_n$,

$$ad(B)(a, A) = (Ba, [B, A])$$
 and $ad(b)(a, A) = (a - Ab, A).$ (3.3)

Now let θ be an automorphism of the Lie algebra \mathfrak{saff}_n . Then $\theta(\mathfrak{s}) = \mathfrak{s}$ since \mathfrak{s} is the solvable radical of \mathfrak{saff}_n . Since $g := \theta|_{\mathfrak{s}} \in \mathrm{GL}_n$, we can replace θ by $\mathrm{Ad}(g^{-1}) \circ \theta$ and thus assume, by (3.2), that θ is the identity on \mathfrak{s} . This implies that $\theta(a, A) = (a + \ell(A), \overline{\theta}(A))$ where $\ell: \mathfrak{sl}_n \to \mathfrak{s}$ is a linear map and $\overline{\theta}: \mathfrak{sl}_n \to \mathfrak{sl}_n$ is a Lie algebra automorphism.

From (3.3) we get ad(b, B)(a, 0) = ad(B)(a, 0) = (Ba, 0) for all $a \in \mathfrak{s}$, hence

$$(Ba, 0) = \theta(Ba, 0) = \theta(\operatorname{ad}(B)(a, 0))$$
$$= \operatorname{ad}(\theta(B))(a, 0) = \operatorname{ad}(\bar{\theta}(B))(a, 0) = (\bar{\theta}(B)a, 0)$$

Thus $\theta(B) = B$, i.e. $\theta(a, A) = (a + \ell(A), A)$. Now an easy calculation shows that $\ell([A, B]) = A\ell(B) - B\ell(A)$. This means that ℓ is a cocycle of \mathfrak{sl}_n . Since \mathfrak{sl}_n is semisimple, ℓ is a coboundary, and thus $\ell(A) = Av$ for a suitable $v \in K^n$. In view of (3.3) this implies that $\theta = \operatorname{Ad}(-v)$, and the claim follows.

Proof of Theorem 3.1. It is clear that the homomorphism

Ad: Aut(\mathbb{A}^n) \rightarrow Aut_{Lie}(Vec(\mathbb{A}^n))

is injective. So let $\theta \in Aut_{Lie}(Vec(\mathbb{A}^n))$ be an arbitrary automorphism.

We have seen above that $L(S) = \langle \partial_{x_1}, \ldots, \partial_{x_n} \rangle \subset \operatorname{Vec}(\mathbb{A}^n)$ where $S \subset \operatorname{Aff}_n$ is the subgroup of translations. Clearly, for every $\delta \in L(S)$ the adjoint action $\operatorname{ad}(\delta)$ on $\operatorname{Vec}(\mathbb{A}^n)$ is locally nilpotent, and the same holds for any element from $\mathbf{u} := \theta(L(S))$. It follows from Lemma 2.2 that \mathbf{u} consists of locally nilpotent vector fields. Hence, by Lemma 2.1, $\mathbf{u} = L(U)$ for a commutative unipotent subgroup U of dimension n. Moreover, $\operatorname{cent}_{\operatorname{Vec}(\mathbb{A}^n)}(L(S)) = L(S)$, and so $\operatorname{cent}_{\operatorname{Vec}(\mathbb{A}^n)}(\mathbf{u}) = \mathbf{u}$, which implies, again by Lemma 2.1, that U acts transitively on \mathbb{A}^n . Thus every orbit map $U \to \mathbb{A}^n$ is an isomorphism. It follows that there is an automorphism $\varphi \in \operatorname{Aut}(\mathbb{A}^n)$ such that $\varphi U \varphi^{-1} = S$. In fact, fix a group isomorphism $\psi : U \xrightarrow{\sim} S$ and take the orbit maps $\mu_S : S \xrightarrow{\sim} \mathbb{A}^n$ and $\mu_U : U \xrightarrow{\sim} \mathbb{A}^n$ at the origin $0 \in \mathbb{A}^n$. Then one easily sees that $\varphi := \mu_S \circ \psi \circ \mu_U^{-1}$ has the property that $\varphi \circ u \circ \varphi^{-1} = \psi(u)$ for all $u \in U$.

It follows that the automorphism $\theta' := \operatorname{Ad}(\varphi) \circ \theta \in \operatorname{Aut}_{\operatorname{Lie}}(\operatorname{Vec}(\mathbb{A}^n))$ sends L(S) isomorphically onto itself. Now the relations $[\partial_{x_i}, x_j \partial_{x_k}] = \delta_{ij} \partial_{x_k}$ imply that $\theta'(L(\operatorname{Aff}_n)) = L(\operatorname{Aff}_n)$. By Lemma 3.2, there is an $\alpha \in \operatorname{Aff}_n$ such that $\operatorname{Ad}(\alpha) \circ \theta'$ is the identity on $L(\operatorname{Aff}_n)$. Hence, by the next lemma, $\operatorname{Ad}(\alpha) \circ \theta' = \operatorname{id}$, because $\operatorname{Ad}(\lambda E)$ acts by multiplication with λ on L(S), and so $\theta = \operatorname{Ad}(\varphi^{-1} \circ \alpha^{-1})$.

Lemma 3.3. Let θ be an injective endomorphism of one of the Lie algebras $\operatorname{Vec}(\mathbb{A}^n)$, $\operatorname{Vec}^c(\mathbb{A}^n)$ or $\operatorname{Vec}^0(\mathbb{A}^n)$. If θ is the identity on $L(\operatorname{SL}_n)$, then $\theta = \operatorname{Ad}(\lambda E)$ for some $\lambda \in K^*$.

Proof. We consider the action of GL_n on $Vec(\mathbb{A}^n)$. Denote by $Vec(\mathbb{A}^n)_d$ the homogeneous vector fields of degree d, i.e.

$$\operatorname{Vec}(\mathbb{A}^n)_d := \bigoplus_i K[x_1, \ldots, x_n]_{d+1} \, \partial_{x_i} \simeq K[x_1, \ldots, x_n]_{d+1} \otimes K^n.$$

Note that $\lambda E \in GL_n$ acts by scalar multiplication with λ^{-d} on $Vec(\mathbb{A}^n)_d$. We have split exact sequences of GL_n -modules

$$0 \to \operatorname{Vec}^{0}(\mathbb{A}^{n})_{d} \to \operatorname{Vec}(\mathbb{A}^{n})_{d} \xrightarrow{\operatorname{Div}} K[x_{1}, \dots, x_{n}]_{d} \to 0$$
(3.4)

where $K[x_1, \ldots, x_n]_{-1} = (0)$. Moreover, the SL_n-modules Vec⁰(\mathbb{A}^n)_d (for $d \ge -1$) and $K[x_1, \ldots, x_n]_d$ (for $d \ge 0$) are simple and pairwise nonisomorphic (see Pieri's formula [Pro07, Chap. 9, Section 10.2]). The splitting of (3.4) is given by $K[x_1, \ldots, x_n]_d \partial_E \subset$ Vec(\mathbb{A}^n)_d where $\partial_E = x_1 \partial_{x_1} + \cdots + x_n \partial_{x_n}$ is the Euler field. In fact, the Euler field is fixed under GL_n and Div($f \partial_E$) = (d + 1) f for $f \in K[x_1, \ldots, x_n]_d$.

Now let θ be an injective endomorphism of Vec(\mathbb{A}^n). If θ is the identity on $L(SL_n)$, then θ is SL_n-equivariant and thus acts as a scalar λ_d on Vec⁰(\mathbb{A}^n)_d and as a scalar μ_d on $K[x_1, \ldots, x_n]_d \partial_E$, by Schur's Lemma. The relations

$$[x_j^{e+1}\partial_{x_i}, x_i^{d+1}\partial_{x_j}] = (d+1)x_i^d x_j^{e+1}\partial_{x_j} - (e+1)x_i^{d+1}x_j^e \partial_{x_i}, \quad i \neq j,$$

show that $\lambda_e \lambda_d = \lambda_{e+d}$, hence $\lambda_d = \lambda^d$ for $\lambda := \lambda_1$. The relations

$$[x_i^e \partial_E, x_i^d \partial_E] = (d - e) x_i^{e+d} \partial_E$$

show that $\mu_e \mu_d = \mu_{e+d}$ for $e \neq d$, which also implies that $\mu_d = \mu^d$ for $\mu := \mu_1$. Finally, from the relation $[\partial_{x_1}, x_2 \partial_E] = x_2 \partial_{x_1}$, we get $\lambda = \mu$, and so $\theta = \operatorname{Ad}(\lambda^{-1} \operatorname{id})$. This proves the claim for $\operatorname{Vec}(\mathbb{A}^n)$. The other two cases follow along the same lines. \Box

4. Étale morphisms and vector fields

In the first section we defined the action of $\operatorname{Aut}(\mathbb{A}^n)$ on the vector fields $\operatorname{Vec}(\mathbb{A}^n)$ by the formula $\operatorname{Ad}(\varphi)\delta := \varphi^{*-1} \circ \delta \circ \varphi^*$. In more geometric terms, considering δ as a section of the tangent bundle $T\mathbb{A}^n = \mathbb{A}^n \times K^n \to \mathbb{A}^n$, one defines the pull-back of δ by

$$\varphi^*(\delta) := (d\varphi)^{-1} \circ \delta \circ \varphi, \quad \text{i.e.,} \quad \varphi^*(\delta)_a = (d\varphi_a)^{-1}(\delta_{\varphi(a)}) \quad \text{for } a \in \mathbb{A}^n.$$

Clearly, $\varphi^*(\delta) = \operatorname{Ad}(\varphi^{-1})\delta$. However, the second formula above shows the well-known fact that the pull-back $\varphi^*(\delta)$ of a vector field δ is also defined for an étale morphism $\varphi \colon \mathbb{A}^n \to \mathbb{A}^n$. In the holomorphic setting this can be understood as lifting the corresponding integral curves.

Proposition 4.1. Let $\varphi \colon \mathbb{A}^n \to \mathbb{A}^n$ be an étale morphism. For any vector field $\delta \in \text{Vec}(\mathbb{A}^n)$ there is a vector field $\varphi^*(\delta) \in \text{Vec}(\mathbb{A}^n)$ defined by $\varphi^*(\delta)_a := (d\varphi)_a^{-1} \delta_{\varphi(a)}$ for $a \in \mathbb{A}^n$. It is uniquely determined by

$$\varphi^*(\delta)\varphi^*(f) = \varphi^*(\delta f) \quad \text{for } f \in K[x_1, \dots, x_n].$$
(4.1)

The map φ^* : Vec $(\mathbb{A}^n) \to$ Vec (\mathbb{A}^n) is an injective homomorphism of Lie algebras satisfying $\varphi^*(h \,\delta) = \varphi^*(h)\varphi^*(\delta)$ for $h \in K[x_1, \ldots, x_n]$. Moreover, $(\eta \circ \varphi)^* = \varphi^* \circ \eta^*$.

Proof. For a vector field $\delta \colon \mathbb{A}^n \to T\mathbb{A}^n$ and $a \in \mathbb{A}^n$ we have $(d\varphi \circ \delta)_a = d\varphi_a(\delta_a)$. Thus, the equation $(d\varphi)_a(\tilde{\delta}_a) = (\tilde{\delta} \circ \varphi)_a = \tilde{\delta}_{\varphi(a)}$ for the field $\tilde{\delta}$ has a unique solution, namely

$$\tilde{\delta}_a := (d\varphi_a)^{-1}(\delta_{\varphi(a)}),$$

which is well-defined since $d\varphi_a$ is invertible. The Jacobian determinant det(Jac(φ)) is a nonzero constant, and so the inverse matrix Jac(φ)⁻¹ has entries in $K[x_1, \ldots, x_n]$. Therefore, the vector field $\varphi^*(\delta) := \tilde{\delta}$ defined above is polynomial, and it satisfies (4.1). This proves the first part of the proposition and shows that φ^* is injective. Using (4.1) we find

$$\varphi^*((\delta_1\delta_2)f) = \varphi^*(\delta_1(\delta_2f)) = \varphi^*(\delta_1)\varphi^*(\delta_2f) = (\varphi^*(\delta_1)\varphi^*(\delta_2))\varphi^*(f),$$

hence $\varphi^*([\delta_1, \delta_2]f) = [\varphi^*(\delta_1), \varphi^*(\delta_2)]\varphi^*(f)$, and so $\varphi^*([\delta_1, \delta_2]) = [\varphi^*(\delta_1), \varphi^*(\delta_2)]$. Moreover,

$$\varphi^*(h\delta)\varphi^*(f) = \varphi^*((h\delta)f) = \varphi^*(h)\varphi^*(\delta f) = \varphi^*(h)\varphi^*(\delta)\varphi^*(f),$$

hence $\varphi^*(h\delta) = \varphi^*(h)\varphi^*(\delta)$. This proves the second part of the proposition, and the last claim is obvious.

Remark 4.2. In the notation of the proposition above let $\varphi = (f_1, \ldots, f_n)$. Then we get $\varphi^*(\delta x_i) = \varphi^*(\delta) f_i = \sum_j \frac{\partial f_i}{\partial x_i} \varphi^*(\delta) x_j$. Hence, for $\delta = \partial_{x_k}$, we obtain

$$\delta_{ik} = \varphi^*(\partial_{x_k}) f_i = \sum_j \frac{\partial f_i}{\partial x_j} \varphi^*(\partial_{x_k}) x_j$$

This shows that the matrix $(\varphi^*(\partial_{x_k})x_j)_{(j,k)}$ is invertible, $(\varphi^*(\partial_{x_k})x_j)_{(j,k)}^{-1} = \text{Jac}(\varphi)$, and

$$\partial_{x_i} = \sum_j \frac{\partial f_i}{\partial x_j} \varphi^*(\partial_{x_j}). \tag{4.2}$$

Proposition 4.3. Let $\varphi \colon \mathbb{A}^n \to \mathbb{A}^n$ be an étale morphism. Then the pull-back map

$$\varphi^* \colon \operatorname{Vec}(\mathbb{A}^n) \to \operatorname{Vec}(\mathbb{A}^n)$$

is an isomorphism if and only if φ is an automorphism.

Proof. Assume that φ^* : $\operatorname{Vec}(\mathbb{A}^n) \to \operatorname{Vec}(\mathbb{A}^n)$ is an isomorphism. Since φ is étale, the comorphism φ^* : $K[x_1, \ldots, x_n] \to K[x_1, \ldots, x_n]$ is injective, and we only have to show that it is surjective. Proposition 4.1 implies that $\varphi^*(\operatorname{Vec}(\mathbb{A}^n)) = \sum_i \varphi^*(K[x_1, \ldots, x_n])\varphi^*(\partial_{x_i})$, and from (4.2) we get

$$\operatorname{Vec}(\mathbb{A}^n) = \bigoplus_i K[x_1, \ldots, x_n] \partial_{x_i} = \bigoplus_i K[x_1, \ldots, x_n] \varphi^*(\partial_{x_i}).$$

Hence $\varphi^*(\operatorname{Vec}(\mathbb{A}^n)) = \operatorname{Vec}(\mathbb{A}^n)$ if and only if $\varphi^*(K[x_1, \ldots, x_n]) = K[x_1, \ldots, x_n].$

As a corollary of the two propositions above, we get the following result due to Kulikov [Kul92, Theorem 4].

Corollary 4.4. If every injective endomorphism of the Lie algebra $Vec(\mathbb{A}^n)$ is an automorphism, then the Jacobian Conjecture holds in dimension n.

Remark 4.5. The result of Kulikov is stronger. He proves that every injective endomorphism of $Vec(\mathbb{A}^n)$ is induced by an étale map φ , which also implies the converse of the statement above: *If the Jacobian Conjecture holds in dimension n, then every injective endomorphism of* $Vec(\mathbb{A}^n)$ *is an automorphism.*

We finish this section by showing that if the divergence of a vector field is a constant, then the divergence is invariant under an étale morphism. More generally, we have the following result.

Proposition 4.6. Let $\varphi : \mathbb{A}^n \to \mathbb{A}^n$ be an étale morphism, and let δ be a vector field. Then Div $\varphi^*(\delta) = \varphi^*(\text{Div } \delta)$. In particular, $\delta \in \text{Vec}^c(\mathbb{A}^n)$ if and only if $\varphi^*(\delta) \in \text{Vec}^c(\mathbb{A}^n)$, and in this case we have Div $\varphi^*(\delta) = \text{Div } \delta$.

Proof. Set $\varphi = (f_1, \ldots, f_n), \delta = \sum_j h_j \partial_{x_j}$ and $\varphi^*(\delta) = \sum_j \tilde{h}_j \partial_{x_j}$. Then, by (4.1),

$$h_k(f_1, \ldots, f_n) = \sum_i \tilde{h}_i \frac{\partial f_k}{\partial x_i}$$
 for $k = 1, \ldots, n$.

Applying $\frac{\partial}{\partial x_i}$ to the left hand side we get the matrix

$$\left(\sum_{i} \frac{\partial h_k}{\partial x_i} (f_1, \dots, f_n) \frac{\partial f_i}{\partial x_j}\right)_{(k,j)} = H(f_1, \dots, f_n) \cdot \operatorname{Jac}(\varphi)$$

where $H := \text{Jac}(h_1, \ldots, h_n)$. On the right hand side, we obtain similarly

$$\left(\sum_{i} \frac{\partial \tilde{h}_{i}}{\partial x_{j}} \frac{\partial f_{k}}{\partial x_{i}} + \sum_{i} \tilde{h}_{i} \frac{\partial^{2} f_{k}}{\partial x_{i} \partial x_{j}}\right)_{(k,j)} = \tilde{H} \cdot \operatorname{Jac}(\varphi) + \sum_{i} \tilde{h}_{i} \frac{\partial}{\partial x_{i}} \operatorname{Jac}(\varphi).$$

Multiplying this matrix equation on the right by $Jac(\varphi)^{-1}$ we finally get

$$H(f_1,\ldots,f_n) = \tilde{H} + \sum_i \tilde{h}_i \frac{\partial}{\partial x_i} \operatorname{Jac}(\varphi) \cdot \operatorname{Jac}(\varphi)^{-1}.$$

Now we take traces on both sides. Using Lemma 4.7 below and the obvious equalities $\text{Div }\delta = \text{tr }H$ and $\text{Div }\tilde{\delta} = \text{tr }\tilde{H}$, we finally get

$$\operatorname{Div} \delta = (\operatorname{Div} \delta)(f_1, \ldots, f_n) = \varphi^*(\operatorname{Div} \delta).$$

The claim follows.

Lemma 4.7. Let A be an $n \times n$ matrix whose entries $a_{ij}(t)$ are polynomials in t. Then

$$\operatorname{tr}\left(\frac{d}{dt}A \cdot \operatorname{Adj}(A)\right) = \frac{d}{dt} \det A$$

where Adj(A) is the adjoint matrix of A.

The proof is a nice exercise in linear algebra which we leave to the reader. It holds for rational entries $a_{ij}(t)$ over any field *K*, and in case $K = \mathbb{R}$ or \mathbb{C} also for differentiable entries $a_{ij}(t)$.

5. Proof of the Main Theorem, part II

We have seen that the canonical map Ad: $\operatorname{Aut}(\mathbb{A}^n) \to \operatorname{Aut}_{\operatorname{Lie}}(\operatorname{Vec}(\mathbb{A}^n))$ is an isomorphism (Theorem 3.1). It follows from Proposition 4.6 that every automorphism of $\operatorname{Vec}(\mathbb{A}^n)$ induces an automorphism of $\operatorname{Vec}^c(\mathbb{A}^n)$. Moreover, since

$$\operatorname{Vec}^{0}(\mathbb{A}^{n}) = [\operatorname{Vec}^{c}(\mathbb{A}^{n}), \operatorname{Vec}^{c}(\mathbb{A}^{n})]$$

(Lemma 1.3), we get a canonical map $\operatorname{Aut}_{\operatorname{Lie}}(\operatorname{Vec}^{c}(\mathbb{A}^{n})) \to \operatorname{Aut}_{\operatorname{Lie}}(\operatorname{Vec}^{0}(\mathbb{A}^{n}))$, which is easily seen to be injective. Thus the main theorem follows from the next result.

Theorem 5.1. The canonical map Ad: $Aut(\mathbb{A}^n) \rightarrow Aut_{Lie}(Vec^0(\mathbb{A}^n))$ is an isomorphism.

The proof needs some preparation. The next proposition is a reformulation of some results from [Now86] and [LD12]. For the convenience of the reader we will give a short proof.

Proposition 5.2. Let $\delta_1, \ldots, \delta_n \in \text{Vec}(\mathbb{A}^n)$ be pairwise commuting and *K*-linearly independent vector fields. Then the following statements are equivalent:

- (i) There is an étale morphism $\varphi \colon \mathbb{A}^n \to \mathbb{A}^n$ such that $\varphi^*(\partial_{x_i}) = \delta_i$ for all *i*.
- (ii) $\operatorname{Vec}(\mathbb{A}^n) = \bigoplus_i K[x_1, \dots, x_n]\delta_i$.
- (iii) There exist $f_1, \ldots, f_n \in K[x_1, \ldots, x_n]$ such that $\delta_i(f_j) = \delta_{ij}$.
- (iv) $\delta_1, \ldots, \delta_n$ do not have a common Darboux polynomial.

Recall that a *common Darboux polynomial* of the δ_i is a nonconstant polynomial $f \in K[x_1, \ldots, x_n]$ such that $\delta_i(f) = h_i f$ for some $h_i \in K[x_1, \ldots, x_n]$, $i = 1, \ldots, n$.

Proof. (a) It follows from Remark 4.2 that (i) implies (ii) and (iii). Clearly, (ii) implies (iv) since a common Darboux polynomial for the δ_i is also a common Darboux polynomial for the ∂_{x_i} , which does not exist.

(b) We now show that (ii) implies (i), hence (iii), using the following well-known fact. If $h_1, \ldots, h_n \in K[x_1, \ldots, x_n]$ satisfy the conditions $\frac{\partial h_i}{\partial x_j} = \frac{\partial h_j}{\partial x_i}$ for all i, j, then there is an $f \in K[x_1, \ldots, x_n]$ such that $h_i = \frac{\partial f}{\partial x_i}$ for all i.

By (ii) we have $\partial_{x_i} = \sum_k h_{ik} \delta_k$ for i = 1, ..., n. We claim that $\frac{\partial h_{ik}}{\partial x_j} = \frac{\partial h_{jk}}{\partial x_i}$ for all i, j, k. In fact,

$$0 = \partial_{x_i} \partial_{x_j} - \partial_{x_j} \partial_{x_i} = \partial_{x_i} \sum_{k} h_{jk} \delta_k - \partial_{x_j} \sum_{k} h_{ik} \delta_k$$

$$= \sum_{k} \frac{\partial h_{jk}}{\partial x_i} \delta_k + \sum_{k} h_{jk} \partial_{x_i} \delta_k - \sum_{k} \frac{\partial h_{ik}}{\partial x_j} \delta_k - \sum_{k} h_{ik} \partial_{x_j} \delta_k$$

$$= \sum_{k} \left(\frac{\partial h_{jk}}{\partial x_i} - \frac{\partial h_{ik}}{\partial x_j} \right) \delta_k + \left(\sum_{k,\ell} h_{jk} h_{i\ell} \delta_\ell \delta_k - \sum_{k,\ell} h_{ik} h_{j\ell} \delta_\ell \delta_k \right)$$

$$= \sum_{k} \left(\frac{\partial h_{jk}}{\partial x_i} - \frac{\partial h_{ik}}{\partial x_j} \right) \delta_k + \sum_{k,\ell} h_{ik} h_{j\ell} [\delta_k, \delta_\ell] = \sum_{k} \left(\frac{\partial h_{jk}}{\partial x_i} - \frac{\partial h_{ik}}{\partial x_j} \right) \delta_k.$$

Hence $h_{ik} = \frac{\partial f_k}{\partial x_i}$ for suitable $f_1, \ldots, f_n \in K[x_1, \ldots, x_n]$. It is clear that the matrix (h_{ik}) is invertible. This implies that the morphism $\varphi := (f_1, \ldots, f_n) \colon \mathbb{A}^n \to \mathbb{A}^n$ is étale, and $\partial_{x_i} = \sum_k \frac{\partial f_k}{\partial x_i} \delta_k$, hence $\delta_k = \varphi^*(\partial_{x_k})$, by equation (4.2).

(c) Assume that (iii) holds. Setting $\delta_i = \sum_k h_{ik} \partial_{x_k}$ and applying both sides to f_j , we see that the matrix $(h_{ik}) \in M_n(K[x_1, \dots, x_n])$ is invertible, hence (ii) holds. Thus the first three statements of the proposition are equivalent, and they imply (iv).

(d) Finally, assume that (iv) holds. Set $\delta_i = \sum_k h_{ik} \partial_{x_k}$. Since $[\delta_i, \delta_j] = 0$ we get $\delta_i(h_{jk}) = \delta_j(h_{ik})$ for all i, j, k. Now an easy calculation shows that $\delta_k(\det(h_{ij})) = \text{Div}(\delta_k) \det(h_{ij})$, and so $\det(h_{ij}) \in K$. If $\det(h_{ij}) \neq 0$, then (ii) follows.

Div (δ_k) det (h_{ij}) , and so det $(h_{ij}) \in K$. If det $(h_{ij}) \neq 0$, then (ii) follows. If det $(h_{ij}) = 0$, then rank $(\sum_{i=1}^{n} K[x_1, \dots, x_n]\delta_i) = r < n$, and we can assume that rank $(\sum_{i=1}^{r} K[x_1, \dots, x_n]\delta_i) = r$. Choose a nontrivial relation $\sum_{i=1}^{r+1} f_i \delta_i = 0$ where gcd $(f_1, \dots, f_{r+1}) = 1$. Since $0 = \delta_j (\sum_{i=1}^{r+1} f_i \delta_i) = \sum_{i=1}^{r+1} \delta_j (f_i) \delta_i$ for any j, we see that $\delta_j (f_i) \in K[x_1, \dots, x_n]f_i$, and since the δ_j are K-linearly independent, at least one of the f_i is not a constant, hence a common Darboux polynomial, contradicting (iv).

The second main ingredient for the proof is the following result.

Lemma 5.3. Let $\delta_1, \delta_2 \in \text{Vec}^0(\mathbb{A}^n)$ be commuting vector fields. Assume that:

(a) δ_1 and δ_2 have a common Darboux polynomial f where $\delta_i f \neq 0$, i = 1, 2.

(b) Each δ_i acts locally nilpotently on $\operatorname{Vec}^0(\mathbb{A}^n)$.

Then $K[x_1, \ldots, x_n]\delta_1 + K[x_1, \ldots, x_n]\delta_2 \subseteq \operatorname{Vec}(\mathbb{A}^n)$ is a $K[x_1, \ldots, x_n]$ -submodule of rank ≤ 1 .

Proof. We will show that there are nonzero polynomials p_1 , p_2 such that $p_1\delta_1 = p_2\delta_2$. We have $\delta_i(f) = h_i f$ where $h_1, h_2 \neq 0$. Since δ_1 and δ_2 commute, we get $\delta_1(h_2 f) = \delta_2(h_1 f)$, and so $\delta_1 h_2 = \delta_2 h_1$. In view of the formula $\text{Div}(g\delta) = \delta g + g \text{Div}(\delta)$, this implies that $\delta := h_1\delta_2 - h_2\delta_1 \in \text{Vec}^0(\mathbb{A}^n)$. Moreover, $\delta f = 0$, and so $f\delta \in \text{Vec}^0(\mathbb{A}^n)$. Since

$$[\delta_1, \xi] = [\delta_1, h_1 \delta_2] - [\delta_1, h_2 \delta_1] = (\delta_1 h_1) \delta_2 - (\delta_1 h_2) \delta_1$$

we get $(\operatorname{ad} \delta_1)^k \delta = \delta_1^k(h_1)\delta_2 - \delta_1^k(h_2)\delta_1$ and $(\operatorname{ad} \delta_1)^k(f\delta) = \delta_1^k(fh_1)\delta_2 - \delta_1^k(fh_2)\delta_1$. Now, by assumption (b), there is a k > 0 such that $(\operatorname{ad} \delta_1)^k \delta = (\operatorname{ad} \delta_1)^k(f\delta) = 0$, hence

$$\delta_1^k(h_1)\delta_2 = \delta_1^k(h_2)\delta_1$$
 and $\delta_1^k(fh_1)\delta_2 = \delta_1^k(fh_2)\delta_1$

Thus the claim follows except if $\delta_1^k h_1 = \delta_1^k h_2 = \delta_1^k (fh_1) = \delta_1^k (fh_2) = 0$. We will show that this leads to a contradiction. Since $\delta_1 f = h_1 f$, we get $\delta_1^{k+1} f = 0$. Choose *r*, *s* minimal with $\delta_1^r h_1 = 0$ and $\delta_1^s f = 0$. By assumption, $r, s \ge 1$, and we get $\delta_1^{r+s-2}(h_1 f) = \delta_1^{r-1} h_1 \cdot \delta_1^{s-1} f \ne 0$. On the other hand, $\delta_1^{s-1}(h_1 f) = \delta_1^s f = 0$, and we end up with a contradiction, because $s - 1 \le r + s - 2$.

Now we can prove the Theorem.

Proof of Theorem 5.1. The case n = 1 is handled in Lemma 3.2, so we can assume that $n \ge 2$. Let θ be an automorphism of $\operatorname{Vec}^0(\mathbb{A}^n)$ as a Lie algebra, and set $\delta_i := \theta(\partial_{x_i})$. Then the vector fields $\delta_1, \ldots, \delta_n$ are pairwise commuting and *K*-linearly independent. Since

 ∂_{x_i} acts locally nilpotently on $\operatorname{Vec}^0(\mathbb{A}^n)$, the same holds for δ_i . Moreover, the centralizer of the δ_i in $\operatorname{Vec}^0(\mathbb{A}^n)$ is the linear span of the δ_i , i.e. $[\delta, \delta_i] = 0$ for all *i* implies that $\delta \in \bigoplus_i K \delta_i$. In the following we will use vector fields with rational coefficients:

$$\operatorname{Vec}^{\operatorname{rat}}(\mathbb{A}^n) := K(x_1, \dots, x_n) \otimes_{K[x_1, \dots, x_n]} \operatorname{Vec}(\mathbb{A}^n) = \bigoplus_{i=1}^n K(x_1, \dots, x_n) \partial_{x_i}$$

(1) We first claim that the δ_i do not have a common Darboux polynomial. So assume that there exists a nonconstant $f \in K[x_1, \ldots, x_n]$ such that $\delta_i f = h_i f$ for all i and some $h_i \in K[x_1, \ldots, x_n]$.

First assume that $h_1 = 0$, i.e. $\delta_1 f = 0$. Then $f \delta_1 \in \text{Vec}^0(\mathbb{A}^n)$, and for any $h \in K[x_1, \ldots, x_n]$ and every *i* we have $[\delta_i, hf \delta_1] = \delta_i(hf)\delta_1 = (\delta_i(h) + hh_i)f\delta_1$, and so

$$(\operatorname{ad} \delta_i)^k (K[x_1, \dots, x_n] f \delta_1) \subseteq K[x_1, \dots, x_n] f \delta_1 \quad \text{for all } k \ge 0.$$
(5.1)

Set $\eta := \theta^{-1}(f\delta_1)$. Then there are $k_1, \ldots, k_n \in \mathbb{N}$ such that

$$\eta_0 := (\operatorname{ad} \partial_{x_1})^{k_1} (\operatorname{ad} \partial_{x_2})^{k_2} \cdots (\operatorname{ad} \partial_{x_n})^{k_n} \eta \in K \partial_{x_1} \oplus \cdots \oplus K \partial_{x_n} \setminus \{0\}.$$

Hence, $\theta(\eta_0) = (\operatorname{ad} \delta_1)^{k_1} (\operatorname{ad} \delta_2)^{k_2} \cdots (\operatorname{ad} \delta_n)^{k_n} (f \delta_1) \in K \delta_1 \oplus \cdots \oplus K \delta_n \setminus \{0\}$, which contradicts (5.1), because $f \notin K$.

We are left with the case where no h_i is zero. Then Lemma 5.3 above implies that $\sum_i K[x_1, \ldots, x_n]\delta_i \subseteq \operatorname{Vec}(\mathbb{A}^n)$ has rank 1, i.e. there exist $\delta \in \operatorname{Vec}(\mathbb{A}^n)$ and nonzero rational functions $r_i \in K(x_1, \ldots, x_n)$ such that $\delta_i = r_i\delta$ for $i = 1, \ldots, n$. We can assume that δ is minimal, i.e., not of the form $q \delta'$ with a nonconstant polynomial q. For every μ commuting with δ_i , we get $0 = [\mu, \delta_i] = [\mu, r_i\delta] = \mu(r_i)\delta + r_i[\mu, \delta]$, hence $[\mu, \delta] \in K(x_1, \ldots, x_n)\delta$. It is easy to see that

$$L := \{ \xi \in \operatorname{Vec}(\mathbb{A}^n) \mid [\xi, \delta] \in K(x_1, \dots, x_n) \delta \}$$

is a Lie subalgebra of $\operatorname{Vec}(\mathbb{A}^n)$ which contains all elements commuting with one of the δ_i . Since $\operatorname{Vec}^0(\mathbb{A}^n)$ is generated, as a Lie algebra, by elements commuting with one of the ∂_{x_i} we see that $\theta(\operatorname{Vec}^0(\mathbb{A}^n)) = \operatorname{Vec}^0(\mathbb{A}^n)$ is generated by the elements commuting with one of the δ_i . Thus $\operatorname{Vec}^0(\mathbb{A}^n) \subseteq L$, and so $[\operatorname{Vec}^0(\mathbb{A}^n), \delta] \subseteq K(x_1, \ldots, x_n)\delta$. For $\delta = \sum_i p_i \partial_{x_i}$ we get $[\partial_{x_k}, \delta] = \sum_i \frac{\partial p_i}{\partial x_k} \partial_{x_i} = s\delta$ for some $s \in K(x_1, \ldots, x_n)$, hence $\frac{\partial p_i}{\partial x_k} p_j = \frac{\partial p_j}{\partial x_k} p_i$ for all pairs i, j. This implies that $\frac{\partial}{\partial x_k} \frac{p_j}{p_i} = 0$ in case $p_i \neq 0$, i.e. $\frac{p_j}{p_i}$ does not depend on x_k . Since this holds for all k, we conclude that $p_j = c_j p_i$ for some $c_j \in K$, hence $\delta = \sum_j c_j \partial_{x_j}$, because δ is minimal. In particular, $[\partial_{x_k}, \delta] = 0$ for all k. Now we get $[x_\ell \partial_{x_k}, \delta] = -c_\ell \partial_{x_k} \in K(x_1, \ldots, x_n)\delta$ for all k, ℓ , which implies $\delta = 0$, hence a contradiction.

(2) Now we use the implication $(vi) \Rightarrow (i)$ of Proposition 5.2 to see that there is an étale morphism $\varphi : \mathbb{A}^n \to \mathbb{A}^n$ with $\delta_i = \varphi^*(\partial_{x_i})$ for all *i*. Then the composition $\theta' := \theta^{-1} \circ \varphi^* : \operatorname{Vec}^0(\mathbb{A}^n) \to \operatorname{Vec}^0(\mathbb{A}^n)$ is an injective homomorphism of Lie algebras (Proposition 4.1) and $\theta'(\partial_{x_i}) = \partial_{x_i}$. Hence, Lemma 5.4 below implies that $\theta' = \operatorname{Ad}(s) = (s^{-1})^*$ where $s \in \operatorname{Aut}(\mathbb{A}^n)$ is a translation, hence $\theta = (\varphi \circ s)^*$. Now Proposition 4.3 implies that $\psi := \varphi \circ s$ is an automorphism of \mathbb{A}^n , and so $\theta = \operatorname{Ad}(\psi^{-1})$ as claimed.

Lemma 5.4. Let θ be an injective endomorphism of $\operatorname{Vec}^{0}(\mathbb{A}^{n})$ such that $\theta(\partial_{x_{i}}) = \partial_{x_{i}}$ for all *i*. Then $\theta = \operatorname{Ad}(s)$ where $s \colon \mathbb{A}^{n} \xrightarrow{\sim} \mathbb{A}^{n}$ is a translation. In particular, θ is an automorphism.

Proof. We know that $\sum_{i} K \partial_{x_i} = L(S)$ where $S \subset Aff_n$ are the translations. Moreover, $L(Aff_n)$ is the normalizer of L(S) in the Lie algebra $Vec(\mathbb{A}^n)$. Hence $\theta(L(SAff_n)) = L(SAff_n)$, and so there is an affine transformation g such that $Ad(g)|_{L(SAff_n)} = \theta|_{L(SAff_n)}$, by Lemma 3.2. Since Ad(g) is the identity on L(S), we see that g is a translation. It follows that $Ad(g^{-1}) \circ \theta$ is the identity on $L(SL_n)$, hence $Ad(g^{-1}) \circ \theta = Ad(\lambda E)$ for some $\lambda \in K^*$, by Lemma 3.3. But $\lambda = 1$, because θ is the identity on L(S), and so $\theta = Ad(g)$.

Acknowledgments. We thank the referee for pointing out a mistake in the proof Theorem 5.1. The authors are partially supported by the SNF (Schweizerischer Nationalfonds).

References

- [Bav13] Bavula, V. V.: The group of automorphisms of the Lie algebra of derivations of a polynomial algebra. J. Algebra Appl. 16 (2017), online, 8 pp.
- [BKY12] Belov-Kanel, A., Yu, J.-T.: On the Zariski topology of automorphism groups of affine spaces and algebras. arXiv:1207.2045v1 (2012)
- [Bor91] Borel, A.: Linear Algebraic Groups. 2nd ed., Grad. Texts in Math. 126, Springer, New York (1991) Zbl 0726.20030 MR 1102012
- [Jor78] Jordan, D. A.: Simple Lie rings of derivations of commutative rings. J. London Math. Soc. (2) 18, 443–448 (1978) Zbl 0404.17009 MR 0506506
- [Kra11] Kraft, H.: Algebraic transformation groups: An introduction. Mathematisches Institut, Universität Basel, http://www.math.unibas.ch/kraft (2014)
- [Kra15] Kraft, H.: Automorphism groups of affine varieties and a characterization of affine *n*-space. arXiv:1501.06362 (2015)
- [Kul92] Kulikov, V. S.: Generalized and local Jacobian problems. Izv. Ross. Akad. Nauk Ser. Mat. 56, 1086–1103 (1992) (in Russian) Zbl 0796.14008 MR 1209034
- [Kum02] Kumar, S.: Kac-Moody Groups, Their Flag Varieties and Representation Theory. Progr. Math. 204, Birkhäuser Boston, Boston, MA (2002) Zbl 1026.17030 MR 1923198
- [LD12] Li, J., Du, X.: Pairwise commuting derivations of polynomial rings. Linear Algebra Appl. 436, 2375–2379 (2012) Zbl 1236.13022
- [Now86] Nowicki, A.: Commutative bases of derivations in polynomial and power series rings. J. Pure Appl. Algebra 40, 275–279 (1986) Zbl 0592.13004 MR 0836653
- [Pro07] Procesi, C.: Lie Groups: An Approach through Invariants and Representations. Universitext, Springer, New York (2007) Zbl 1154.22001 MR 2265844
- [Reg13] Regeta, A.: Lie subalgebras of vector fields and the Jacobian conjecture. arXiv:1311.0232 (2013)
- [Sha66] Shafarevich, I. R.: On some infinite-dimensional groups. Rend. Mat. Appl. (5) **25**, 208–212 (1966) Zbl 0149.39003 MR 0485898
- [Sha81] Shafarevich, I. R.: On some infinite-dimensional groups. II. Izv. Akad. Nauk SSSR Ser. Mat. 45, 214–226 (1981) (in Russian) Zbl 0475.14036 MR 1347084