
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

Trudy Moskov. Matem. Obw. Trans. Moscow Math. Soc.
Tom 78 (2017), vyp. 2 2017, Pages 171–186

http://dx.doi.org/10.1090/mosc/262
Article electronically published on December 1, 2017

AUTOMORPHISM GROUPS OF AFFINE VARIETIES

AND A CHARACTERIZATION OF AFFINE n-SPACE

HANSPETER KRAFT

Dedicated to Ernest Vinberg
at the occasion of his 80th birthday

Abstract. We show that the automorphism group of affine n-space An determines
An up to isomorphism: If X is a connected affine variety such that Aut(X) �
Aut(An) as ind-groups, then X � An as varieties.

We also show that every torus appears as Aut(X) for a suitable irreducible affine
variety X, but that Aut(X) cannot be isomorphic to a semisimple group. In fact, if
Aut(X) is finite-dimensional and if X �� A1, then the connected component Aut(X)◦

is a torus.
Concerning the structure of Aut(An) we prove that any homomorphism Aut(An)→

G of ind-groups either factors through jac : Aut(An) → k∗ where jac is the Jacobian
determinant, or it is a closed immersion. For SAut(An) := ker(jac) ⊆ Aut(An) we
show that every nontrivial homomorphism SAut(An) → G is a closed immersion.

Finally, we prove that every nontrivial homomorphism ϕ : SAut(An) → SAut(An)
is an automorphism, and that ϕ is given by conjugation with an element from
Aut(An).

1. Introduction and main results

Our base field k is algebraically closed of characteristic zero. For an affine variety X
the automorphism group Aut(X) has the structure of an affine ind-group. We will
shortly recall the basic definitions in §2. The classical example is Aut(An), the group of
automorphisms of affine n-space An = kn.

A fundamental question is how much information about X can be retrieved from
Aut(X). For example, Jelonek shows in [Jel15] that if Aut(X) is infinite, then X is
uniruled. Our main result shows that An is completely determined by its automorphism
group.

Theorem 1.1. Let X be a connected affine variety. If Aut(X) � Aut(An) as ind-groups,
then X � A

n as varieties.

It is clear that X has to be connected since the automorphism group does not change
if we form the disjoint union of An with a variety Y with trivial automorphism group.
Some generalization of this result can be found in [Reg17].

The proof of the theorem will follow from a more general result (Theorem 5.5; see
Remark 5.4) where the group Aut(An) is replaced by the subgroup U(An) generated by
the unipotent elements.
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Another important question is which groups appear as automorphism groups of affine
varieties. For finite groups we have the following result due to Jelonek.

Theorem 1.2 ([Jel15, Proposition 7.2]). For every finite group G and every n ≥ 1 there
is an n-dimensional smooth connected affine variety X such that Aut(X) � G.

Moreover, there exist surfaces with infinite discrete automorphism groups (see [FK17,
Proposition 12.7.1]). As for algebraic groups, we have Aut(A1) = Aff1, and we will give
examples where Aut(X) is a torus (Example 7.4). But other groups cannot appear as
the next result shows.

Theorem 1.3. Let X be a connected affine variety. If dimAut(X) < ∞, then either
X � A1 or the connected component Aut(X)◦ is a torus.

The last results concern the automorphism group Aut(An) of affine n-space. This
group has a closed normal subgroup SAut(An) consisting of those automorphisms f =
(f1, . . . , fn) whose Jacobian determinant

jac(f) := det

(
∂fi
∂xj

)
(i, j)

is equal to 1:
SAut(An) := ker( jac: Aut(An) → k

∗).

For an ind-group G the tangent space TeG carries a canonical structure of a Lie algebra
which we denote by LieG. For SAut(An), the Lie algebra can be identified with Vec0(An),
the vector fields ξ on A

n with divergence div ξ = 0. This Lie algebra is simple, so one
could expect that SAut(An) is simple as an ind-group. This is claimed in [Sha66, Sha81],
but the proofs turned out to be incorrect (see [FK17, section 15]). What we can show
here is the following.

Theorem 1.4. Let n ≥ 2.
(1) Let ϕ : Aut(An) → G be a homomorphism of ind-groups. Then either ϕ factors

through jac : Aut(An) → k∗, or ϕ is a closed immersion, i.e., the image is closed and
isomorphic to Aut(An) under ϕ.

(2) Every nontrivial homomorphism SAut(An) → G of ind-groups is a closed immer-
sion.

This theorem has the following interesting applications. By definition, a representation
of an ind-group G on a vector space V of countable dimension is a homomorphism G →
GL(V ) such that the corresponding map G × V → V is a morphism of ind-varieties (see
§3). An action of an ind-group G on an affine variety X is a homomorphism G → Aut(X)
of ind-groups.

Corollary 1.5. Assume that n ≥ 2.
(1) The ind-group SAut(An) does not have a nontrivial finite-dimensional representa-

tion.
(2) Assume that SAut(An) acts nontrivially on a connected affine variety X. Then

the action is faithful, and there are no fixed points.

Proof. (1) Let ρ : SAut(An) → GL(V ) be a finite-dimensional representation. If ρ is
nontrivial, then it is a closed immersion, by Theorem 1.4(2). This is impossible, because
GL(V ) is finite-dimensional.

(2) We have a nontrivial homomorphism ϕ : SAut(An) → Aut(X) which is a closed
immersion, by Theorem 1.4(2). Thus the action is faithful, and the same is true for
the induced action of SLn ⊆ SAut(An). Since X is connected, it follows that SLn acts
nontrivially on every irreducible component of X. This implies that for every fixed
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point x ∈ XSLn the tangent representation of SLn on TxX is nontrivial. Hence, the
tangent representation of SAut(An) on every fixed point of SAut(An) is also nontrivial,
contradicting (1). �

It is shown in [BKY12] that every automorphism of the ind-group Aut(An) is inner,
i.e., given by conjugation with a suitable g ∈ Aut(An) (cf. [FK17, Theorem 12.5.2]).
This can be generalized in the following way.

Theorem 1.6.
(1) Every injective homomorphism ϕ : Aut(An) → Aut(An) is an isomorphism, and

ϕ = Intg for a well-defined g ∈ Aut(An).
(2) Every nontrivial homomorphism ϕ : SAut(An) → SAut(An) is an isomorphism,

and ϕ = Intg for a well-defined g ∈ Aut(An).

Remark 1.7. The analogue of Theorem 1.6 for vector fields, namely that every injective
homomorphism ϕ : Vec(An) → Vec(An) of Lie algebras is an automorphism, would imply
the Jacobian Conjecture in dimension n; see [KR17, Corollary 4.4].

We finally mention the following example showing that bijective homomorphisms of
ind-groups are not necessarily isomorphisms. The details can be found in [FK17, sec-
tion 8]; cf. [BW00, section 11, last paragraph]. Denote by k〈x, y〉 the free associative
k-algebra in two generators. Then Aut(k〈x, y〉) is an ind-group, and we have a canonical
homomorphism

π : Aut(k〈x, y〉) → Aut(k[x, y]).

Proposition 1.8. The map π : Aut(k〈x, y〉) → Aut(k[x, y]) is a bijective homomorphism
of ind-groups, but it is not an isomorphism, because it is not an isomorphism on the Lie
algebras.

Note that Aut(k〈x, y〉) is generated by the closed algebraic subgroups G⊆Aut(k〈x, y〉),
and that π : G ∼−→ π(G) is an isomorphism for these subgroups.

2. Notation and preliminary results

The notion of an ind-group goes back to Shafarevich who called these objects infinite-
dimensional groups; see [Sha66, Sha81]. We refer to [Kum02] and the notes [FK17] for
basic notation in this context.

Definition 2.1. An ind-variety V is a set together with an ascending filtration V0 ⊆
V1 ⊆ V2 ⊆ . . . ⊆ V such that the following holds:

(1) V =
⋃

k∈N
Vk;

(2) each Vk has the structure of an algebraic variety;
(3) for all k ∈ N the inclusion Vk ↪→ Vk+1 is closed immersion.

A morphism between ind-varieties V =
⋃

k Vk and W =
⋃

m Wm is a map ϕ : V → W
such that, for every k, there is an m with the properties that ϕ(Vk) ⊆ Wm and that the
induced map Vk → Wm is a morphism of varieties. Isomorphisms of ind-varieties are
defined in the usual way.

Two filtrations V =
⋃

k∈N
Vk and V =

⋃
k∈N

V ′
k are called equivalent if, for any k,

there is an m such that Vk ⊆ V ′
m is a closed subvariety as well as V ′

k ⊆ Vm. Equivalently,
the identity map id: V =

⋃
k∈N

Vk → V =
⋃

k∈N
V ′
k is an isomorphism of ind-varieties.

An ind-variety V has a natural topology where S ⊆ V is open, respectively, closed,
if Sk := S ∩ Vk ⊆ Vk is open, respectively, closed for all k. Obviously, a locally closed
subset S ⊆ V has a natural structure of an ind-variety. It is called an ind-subvariety. An
ind-variety V is called affine if all Vk are affine. A subset X ⊆ V is called algebraic if
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it is locally closed and contained in some Vk. Such an X has a natural structure of an
algebraic variety.

Example 2.2. (1) Any k-vector space V of countable dimension carries the structure of
an (affine) ind-variety by choosing an increasing sequence of finite-dimensional subspaces
Vk such that V =

⋃
k Vk. Clearly, all these filtrations are equivalent.

(2) If R is a commutative k-algebra of countable dimension, a ⊆ R a subspace, e.g.,
an ideal, and S ⊆ k[x1, . . . , xn] a set of polynomials, then the subset{

(a1, . . . , an) ∈ Rn | f(a1, . . . , an) ∈ a for all f ∈ S
}
⊆ Rn

is a closed ind-subvariety of Rn.

For any ind-variety V =
⋃

k∈N
Vk we can define the tangent space in x ∈ V in the

obvious way. We have x ∈ Vk for k ≥ k0, and TxVk ⊆ TxVk+1 for k ≥ k0, and then define

TxV := lim−→
k≥k0

TxVk

which is a vector space of countable dimension. A morphism ϕ : V → W induces linear
maps dϕx : TxV → Tϕ(x)W for every x ∈ X. Clearly, for a k-vector space V of countable
dimension and for any v ∈ V we have TvV = V in a canonical way.

The product of two ind-varieties is defined in the obvious way. This allows us to
define an ind-group as an ind-variety G with a group structure such that multiplication
G × G → G : (g, h) �→ g · h, and inverse G → G : g �→ g−1, are both morphisms.

Remark 2.3. Let G ⊆ G be a subgroup. If G is an algebraic subset, i.e., locally closed
and contained in Gk for some k, then G is an algebraic group and is closed in G. We will
call such a G an algebraic subgroup.

Conversely, if G is an algebraic group and ϕ : G → G a homomorphism of ind-groups,
then ϕ(G) ⊆ G is a closed subgroup and an algebraic subset. The easy proofs are left to
the reader.

If G is an affine ind-group, then TeG has a natural structure of a Lie algebra which will
be denoted by LieG. The structure is obtained by showing that every A ∈ TeG defines
a unique left-invariant vector field δA on G; see [Kum02, Proposition 4.2.2, p. 114].

Definition 2.4. An ind-group G =
⋃

k Gk is called discrete if Gk is finite for all k.
Clearly, G is discrete if and only if LieG is trivial.

The next result can be found in [FK17, sections 4.1 and 4.6]. Here Vec(X) denotes the
Lie algebra of (algebraic) vector fields on X, i.e., Vec(X) = Der(O(X)), the Lie algebra
of derivations of O(X).

Proposition 2.5. Let X be an affine variety. Then Aut(X) has a natural structure of
an affine ind-group, and there is a canonical embedding ξ : LieAut(X) ↪→ Vec(X) of Lie
algebras.

Remark 2.6. For X = An the embedding ξ identifies LieAut(An) with Vecc(An), the
vector fields

δ =
∑
i

fi
∂

∂xi

with constant divergence

div δ :=
∑
i

∂fi
∂xi

∈ k;

see [FK17, Proposition 4.9.1].
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The Jacobian determinant

jac(f) := det

(
∂fi
∂xj

)
(i, j)

of an automorphism f = (f1, . . . , fn) of A
n defines a homomorphism

jac: Aut(An) → k
∗

of ind-groups. Setting SAut(An) := ker jac one sees that ξ identifies Lie SAut(An) with
Vec0(An), the vector fields δ with div δ = 0; see [FK17, Remark 4.9.3].

It is known that for n ≥ 2 the Lie algebra Lie SAut(An) is simple and that Lie SAut(An)
⊆ LieAut(An) is the only proper ideal; see [Sha81, Lemma 3]. Moreover, both Lie alge-
bras are generated by the subalgebras LieG where G is an algebraic subgroup.

Another result which we will need is proved in [FK17, Proposition 2.7.6].

Proposition 2.7. Let ϕ, ψ : G → H be two homomorphisms of ind-groups. Assume that
G is connected and that dϕe = dψe : LieG → LieH. Then ϕ = ψ.

A final result which we will use can be found in [KRZ17]. Denote by Affn ⊆ Aut(An)
the subgroup of affine transformations, i.e., Affn = GLn(k) � (kn)+. Similarly, the
subgroup SAffn ⊆ Affn consists of the affine transformations with determinant 1, i.e.,
SAffn = SLn(k)� (kn)+.

Proposition 2.8. Let X be a connected affine variety with a faithful action of SAffn. If
dimX ≤ n, then X is SAffn-isomorphic to An.

Remark 2.9. It is shown in [KRZ17] that the same holds if we replace SAffn by Affn.
Using Theorem 1.6 we see that we can replace SAffn by Aut(An) or SAut(An) as well.

3. The adjoint representation

Following [Kum02, section 4.2] we define a representation of an ind-group G on a vector
space V of countable dimension to be a homomorphism ρ : G → GL(V ) of groups such
that the induced map G × V → V is a morphism of ind-varieties. Note that GL(V )
does not have the structure of an ind-variety if dimV = ∞. However, if L is a finitely
generated Lie algebra, then AutLie(L) has a natural structure of an ind-group which is
defined in the following way (see [FK17, section 7] where we define an ind-group structure
on Aut(R) for any finitely generated general algebra R, i.e., a k-vector space R endowed
with a bilinear map R ×R → R).

Choose a finite-dimensional subspace L0 ⊆ L which generates L as a Lie algebra. Then
the restriction map EndLie(L) → Hom(L0, L) is injective and the image is a closed affine
ind-subvariety. (To see this write L as the quotient of the free Lie algebra F (L0) over L0

modulo an ideal I.) Choosing a filtration L =
⋃

k≥0 Lk by finite-dimensional subspaces,

we set EndLie(L)k := {α ∈ EndLie(L) | α(L0) ⊆ Lk} which is a closed subvariety
of Hom(L0, Lk) (see Example 2.2). Then we define the ind-structure on AutLie(L) by
identifying AutLie(L) with the closed subset{

(α, β) ∈ EndLie(L)× EndLie(L) | α ◦ β = β ◦ α = idL
}
⊆ EndLie(L)× EndLie(L),

i.e.,
AutLie(L)k :=

{
α ∈ AutLie(L) | α, α−1 ∈ EndLie(L)k

}
.

It follows that AutLie(L) is an affine ind-group with the usual functorial properties. In
particular, we have the following result.

Lemma 3.1. Let G be an ind-group, and let ρ : G → AutLie(L) be an abstract homo-
morphism where L is a finitely generated Lie algebra. Then ρ is a homomorphism of
ind-groups if and only if ρ is a representation, i.e., the map ρ : G×L → L is a morphism
of ind-varieties.
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Proof. Assume that L is generated by the finite-dimensional subspace L0 ⊆ L. If G =⋃
j Gj and if ρ : G × L → L is a morphism, then, for any j, there is a k = k(j) such

that ρ(Gj × L0) ⊆ Lk and ρ(G−1
j × L0) ⊆ Lk. Hence, ρ(Gj) ⊆ AutLie(L)k, and the map

Gj → Hom(L0, Lk) is clearly a morphism.
Now assume that G → AutLie(L) is a homomorphism of ind-groups. Then, for any j,

there is a k = k(j) such that ρ(Gj) ⊆ AutLie(L)k ↪→ Hom(L0, Lk). Hence, ρ(Gj × L0) ⊆
Lk, and Gj × L0 → Lk is a morphism. �

The adjoint representation Ad: G → AutLie(LieG) of an ind-group G is defined in
the usual way: Ad g := (d Int g)e : LieG ∼−→ LieG where Int g is the inner automorphism
h �→ ghg−1.

Proposition 3.2. For any ind-group G the canonical map Ad: G → AutLie(LieG) is
a homomorphism of ind-groups.

Proof. Let γ : G × G → G denote the morphism (g, h) �→ ghg−1. For any g ∈ G, the
map γg : G → G, h �→ ghg−1, is an isomorphism of ind-groups, and its differential
Ad(g) = (dγg)e : LieG → LieG is an isomorphism of Lie algebras. If G =

⋃
k Gk, then for

any p, q ∈ N there is an m ∈ N such that γ : Gp × Gp → Gm. Clearly, for g ∈ Gp, Ad g is
given by (dγg)e : TeGq → TeGm, and the map Gk → Hom(TeGq, TeGm) is a morphism, by
the following lemma. Now the claim follows from Lemma 3.1 above. �

Lemma 3.3. Let Φ: X × Y → Z be a morphism of affine varieties and set Φx(y) :=
Φ(x, y). Assume that there exist y0 ∈ Y and z0 ∈ Z such that Φx(y0) = z0 for all x ∈ X.
Then the induced map X → Hom(Ty0

Y, Tz0Z), x �→ dy0
Φx, is a morphism.

Proof. We can assume that Y, Z are vector spaces, Y = W and Z = V. Choose bases
(w1, . . . , wm) of W and (v1, . . . , vn) of V. Then Φ is given by an element of the form

n∑
i=1

∑
j

fij ⊗ hij ⊗ vi, where fij ∈ O(X) and hij ∈ O(Y ) = k[y1, . . . , ym],

and so the differential (dΦx)y0
: W → V is given by the matrix(∑

j

fij(x)
∂hij

∂yk
(y0)

)
(i,k)

whose entries are regular functions on x. The claim follows. �

We have shown in [KR17] that the adjoint representation

AdAut(An) : Aut(An) ∼−→ AutLie(LieAut(An))

and the induced homomorphism

ρ : AutLie(LieAut(An)) ∼−→ AutLie(Lie SAut(An))

are both bijective. They are also homomorphisms of ind-groups: for AdAut(An) this is
Proposition 3.2 above, and for ρ it is obvious. But this does not necessarily imply that
the maps are isomorphisms of ind-groups; see Proposition 1.8. However, for Aut(An) it
is true, and we will need this for the proof of Theorem 1.4 in the following section.

Proposition 3.4. The adjoint representation

AdAut(An) : Aut(An) ∼−→ AutLie(LieAut(An))

is an isomorphism of ind-groups.
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Proof. We will use here the identification of LieAut(An) with Vecc(An); see Remark 2.6.
Put ∂xi

:= ∂
∂xi

.

Let f = (f1, . . . , fn) ∈ Aut(An) and set θ := Ad(f−1) ∈ AutLie(Vec
c(An)). Then the

matrix (θ(∂xk
)xj)( j,k) is invertible, and

(∗) (θ(∂xk
)xj)

−1
( j,k) = Jac(f) =

(
∂fj
∂xi

)
(i, j)

;

see [KR17, Remark 4.2]. We now claim that the map

θ �→ (θ(∂xk
)xj)

−1
( j,k) : AutLie(Vec

c(An)) → Mn(k[x1, . . . , xn])

is a well-defined morphism of ind-varieties. In fact, θ �→ θ(∂xk
)xj is the composition

of the orbit map θ �→ θ(∂xk
) : AutLie(Vec

c(An)) → Vecc(An) and the evaluation map
δ �→ δ(xj) : Vecc(An) → k[x1, . . . , xn], hence θ �→ Θ := (θ(∂xk

)xj)( j,k) is a morphism.
Since jac(Θ) ∈ k∗ the claim follows.

Now recall that the gradient

k[x1, . . . , xn] → k[x1, . . . , xn]
n, f �→

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
,

defines an isomorphism

γ : k[x1, . . . , xn]≥1
∼−→ Γ :=

{
(h1, . . . , hn) |

∂hi

∂xj
=

∂hj

∂xi
for all i < j

}
.

It follows from (∗) that the rows of the matrix (hij)(i, j) := (θ(∂xk
)xj)

−1
( j,k) belong to Γ,

so that we get a morphism

ψ : AutLie(Vec
c(An)) → k[x1, . . . , xn]

n, θ �→ (f1, . . . , fn),

where fi := γ−1(hi1, . . . , hin) ∈ k[x1, . . . , xn]≥1. By construction, we have

(∗∗) ψ(θ) = ψ(Ad(f−1)) = f0 :=
(
f1 − f1(0), . . . , fn − fn(0)

)
= t−f(0) ◦ f ,

where ta is the translation v �→ v + a. Let S ⊆ Affn be the subgroup of translations,

and set S̃ := Ad(S). Then S̃ ⊆ AutLie(Vec
c(An)) is a closed algebraic subgroup and

Ad: S → S̃ is an isomorphism. It follows from (∗∗) that

Ad(ψ(θ)) · θ = Ad(t−f(0)) ∈ S̃,

and so

ψ̃(θ) := ψ(θ)−1 · (Ad|S)−1(Ad(ψ(θ)) · θ)

is a well-defined morphism ψ̃ : AutLie(Vec
c(An)) → Aut(An) with the property that

Ad(ψ̃(θ)) = Ad(ψ(θ)−1) ·Ad(ψ(θ)) · θ = θ.

Thus Ad: Aut(An) → AutLie(LieAut(An)) is an isomorphism, with inverse ψ̃. �

Remark 3.5. Clearly, the restriction

ρ : AutLie(LieAut(An)) → AutLie(Lie SAut(An))

is a homomorphism of ind-groups, and it is bijective; see [KR17]. It follows from (1) that
the composition ρ ◦Ad: Aut(An) → AutLie(Lie SAut(An)) is a bijective homomorphism
of ind-groups. Now we use Theorem 1.4(1) to conclude that ρ ◦ Ad is an isomorphism,
hence ρ is an isomorphism, too.
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4. Proof of the Theorems 1.4 and 1.6

Proof of Theorem 1.4. (1) Let ϕ : Aut(An) → G be a homomorphism of ind-groups such

that dϕ is injective. We can assume that G = ϕ(Aut(An)), and we will show that ϕ is
an isomorphism. The basic idea is to construct a homomorphism ψ : G → Aut(An) such
that ψ ◦ ϕ = id. By Proposition 4.1 below this implies that ϕ is a closed immersion,
hence an isomorphism.

Denote by L ⊆ LieG the image of dϕ. For any g ∈ Aut(An) we have

dϕ ◦Ad(g) = Ad(ϕ(g)) ◦ dϕ.
In particular, L is stable under Ad(ϕ(g)), hence stable under Ad(G), because ϕ(Aut(An))
is dense in G. Thus we get the following commutative diagram of homomorphisms of
ind-groups

Aut(An)
ϕ−−−−→ G

AdAut(An)

⏐⏐��
⏐⏐�AdG

AutLie(LieAut(An)))
�−−−−→ AutLie(L),

where the first vertical map is an isomorphism, by Proposition 3.4. Thus, the composition
AdG ◦ ϕ : Aut(An) → AutLie(L) � Aut(An) is an isomorphism, and so ϕ is also an
isomorphism, by Proposition 4.1 below.

If dϕ is not injective, then ker dϕ ⊇ Lie SAut(An) (Remark 2.6) and so dϕ = f ◦ d jac
where f : k → LieG is a Lie algebra homomorphism. If k∗ ⊆ GLn(k) denotes the center,
then ϕ|k∗ : k∗ → G factor through ?n : k∗ → k

∗, because SLn(k) ⊆ kerϕ, i.e., ϕ(z) =
ρ(zn) for any z ∈ k∗ and a suitable homomorphism ρ : k∗ → G of ind-groups. By
construction, dρe = f : k → LieG, and so the two homomorphisms ϕ and ρ ◦ jac have the
same differential. Thus, by Proposition 2.7, we get ϕ = ρ ◦ jac, and we are done.

(2) Let ϕ : SAut(An) → G be a homomorphism of ind-groups. If dϕe is not injective,
then dϕe is the trivial map (Remark 2.6), hence dϕe = dϕ̄e where ϕ̄ : g �→ e is the
constant homomorphism. Again by Proposition 2.7 we get ϕ = ϕ̄.

If dϕe is injective, set L := dϕe(Lie SAut(An)) ⊆ LieG. As above we can assume that

G = ϕ(SAut(An)). Since L is stable under Adϕ(g) for all g ∈ SAut(An) it is also stable
under G, and we get, as above, the following commutative diagram,

Aut(An)
⊇←−−−− SAut(An)

ϕ−−−−→ G

AdAut(An)

⏐⏐�� AdSAut(An)

⏐⏐�⊆
⏐⏐�AdG

AutLie(LieAut(An)))
ρ−−−−−→

bijective
AutLie(Lie SAut(An)))

Φ−−−−→
�

AutLie(L),

where AdAut(An) is an isomorphism, by (1). Since ρ is bijective ([KR17]) the com-
position ρ ◦ AdAut(An) is an isomorphism, again by (1). Therefore, the image A :=
Ad(SAut(An)) ⊆ AutLie(Lie SAut(An)) is a closed subgroup isomorphic to SAut(An),
and A ∼−→ Φ(A) = AdG(ϕ(SAut(An)). But ϕ(SAut(An)) ⊆ G is dense, and so AdG(G) =
Φ(A). Thus, the composition AdG ◦ϕ : SAut(An) → Φ(A) is an isomorphism, hence ϕ is
an isomorphism, by Proposition 4.1 below. �
Proposition 4.1. Let H,G be two ind-groups, and let ϕ : H → G, ψ : G → H be two
homomorphisms. If ψ◦ϕ = idH, then ϕ is a closed immersion, i.e., ϕ(H) ⊆ G is a closed
subgroup and ϕ induces an isomorphism H ∼−→ ϕ(H).

Proof. By base change we can assume that the base field k is uncountable. LetH =
⋃

i Hi

and G =
⋃

j Gj , where we can assume that Hi ⊆ Gi for all i. Moreover, for every i there is

a k = k(i) such that ψ(Gi) ⊆ Hk. By assumption, the composition ψ ◦ϕ : Hi → Gi → Hk
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is the closed embedding Hi ↪→ Hk, hence the first map is a closed embedding. Thus
Hi := ϕ(Hi) is a closed subset of Gi and H := ϕ(H) =

⋃
i Hi. Now the claim follows

from Lemma 4.2 below by setting S := kerψ. �
Recall that a subset S ⊆ V of an ind-variety V is called ind-constructible if S =

⋃
i Si

where Si ⊆ Si+1 are constructible subsets of V.

Lemma 4.2. Let G be an ind-group, H ⊆ G a subgroup and S ⊆ G an ind-constructible
subset. Assume that k is uncountable and that

(1) H =
⋃

i Hi where Hi ⊆ Hi+1 ⊆ G are closed algebraic subsets,
(2) the multiplication map S ×H → G is bijective.
Then H is a closed subgroup of G.

Proof. Let G =
⋃

k Gk. We have to show that for every k there exists an i = i(k) such
that H ∩ Gk = Hi ∩ Gk. We can assume that e ∈ S =

⋃
i Si. Then, by assumption,

G =
⋃

j SjHj . Since SjHj ∩ Gk is a constructible subset of Gk it follows that there

exists a j = j(k) such that Gk ⊆ SjHj ([FK17, Lemma 1.6.4]). Setting Ṡ := S \ {e}
we get ṠH ∩ H = ∅. Thus, Gk = (ṠiHi ∩ Gk) ∪ (Hi ∩ Gk) and H ∩ ṠiHi = ∅, hence
H ∩ Gk = Hi ∩ Gk. �

Finally, we can prove Theorem 1.6.

Proof of Theorem 1.6. (1) We already know from Theorem 1.4 that an injective homo-
morphism ϕ : Aut(An) → Aut(An) is a closed immersion. We claim that dϕe : LieAut(An) →
LieAut(An) is an isomorphism. To show this, consider the linear action of GLn(k) on
LieAut(An). We then have

LieAut(An) ⊆ Vec(An) � k
n ⊗ k[x1, . . . , xn] =

⊕
d

k
n ⊗ k[x1, . . . , xn]d

and the latter is multiplicity-free as a GLn(k)-module as well as an SLn(k)-module.
Now ϕ(GLn(k)) ⊆ Aut(An) is a closed subgroup isomorphic to GLn(k). Moreover,

dϕe : LieAut(An) → LieAut(An) is an injective linear map which is equivariant with
respect to ϕ : GLn(k) ∼−→ ϕ(GLn(k)). Since ϕ(GLn(k)) is conjugate to the standard
GLn(k) ⊆ Aut(An) and since the representation of GLn(k) on LieAut(An) is multiplicity-
free, it follows that dϕe is an isomorphism. Thus G := ϕ(Aut(An)) ⊆ Aut(An) is a closed
subgroup with the same Lie algebra as Aut(An), and we get the following commutative
diagram (see proof of Theorem 1.4):

Aut(An)
ϕ−−−−→ G ⊆−−−−→ Aut(An)

AdAut(An)

⏐⏐��
⏐⏐�AdG

⏐⏐�AdAut(An)

AutLie(LieAut(An))
�−−−−→ AutLie(LieG) AutLie(LieAut(An)).

As a consequence, all maps are isomorphisms, and so G = Aut(An) and ϕ is an isomor-
phism.

It remains to see that every automorphism ϕ ∈ Aut(An) is inner. Since Ad is bijective
(see [KR17]) and dϕe ∈ AutLie(LieAut(An)) we get dϕe = Ad(g) for some g ∈ Aut(An).
This means that dϕe = (d Intg)e and so ϕ = Intg, by Proposition 2.7.

(2) The same argument as above shows that every nontrivial homomorphism SAut(An)
→ SAut(An) is an isomorphism where we use the fact that the action of SLn(k) on
Lie SAut(An) is multiplicity-free.

Moreover, Ad: Aut(An) → AutLie(Lie SAut(An)) is a bijective homomorphism of ind-
groups; see [KR17]. Hence, for every ϕ ∈ SAut(An) there is a g ∈ Aut(An) such that
dϕe = Adg which implies that ϕ = Intg. �
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5. A special subgroup of Aut(X), proof of Theorem 1.1

Our Theorem 1.1 will follow from a more general result which we will describe now.
For any affine variety X consider the normal subgroup U(X) of Aut(X) generated by
the unipotent elements of Aut(X) or, equivalently, by the closed algebraic subgroups of
Aut(X) isomorphic to the additive group k+. This is an instance of a so-called connected
group of automorphisms defined by Ramanujam in [Ram64]. The group U(X) defined
above was introduced and studied in [AFK+13] where it is called the group of special
automorphisms1 of X. In particular, they give a very interesting connection between
transitivity properties of the group U(X) and the flexibility of the variety X.

We do not know if U(X) ⊆ Aut(X) is closed, but we still have the notion of an
algebraic subgroup G ⊆ U(X), namely a subgroup which is algebraic as a subgroup of
Aut(X); see Remark 2.3. We will also need the notion of an “algebraic” homomorphism
between these groups.

Definition 5.1. A homomorphism ϕ : U(X) → U(Y ) is algebraic, if for any algebraic
subgroup U ⊆ U(X) isomorphic to k+ the image ϕ(U) ⊆ U(Y ) is an algebraic subgroup
and ϕ|U : U → ϕ(U) is a homomorphism of algebraic groups. We say that U(X) and
U(Y ) are algebraically isomorphic, U(X) � U(Y ), if there exists a bijective homomor-
phism ϕ : U(X) → U(Y ) such that ϕ and ϕ−1 are both algebraic.

Lemma 5.2. Let ϕ : U(X) → U(Y ) be an algebraic homomorphism. Then, for any
algebraic subgroup G ⊆ U(X) generated by unipotent elements the image ϕ(G) ⊆ U(Y )
is an algebraic subgroup and ϕ|G : G → ϕ(G) is a homomorphism of algebraic groups.

Proof. There exist closed subgroups U1, . . . , Um ⊆ G isomorphic to k
+ such that the

multiplication map μ : U1 × U2 × · · · × Um → G is surjective. This gives the following
commutative diagram,

U1 × U2 × · · · × Um
μ−−−−→ G⏐⏐�ϕ̃:=ϕ|U1

×···×ϕ|Um

⏐⏐�ϕ|G

ϕ(U1)× ϕ(U2)× · · · × ϕ(Um)
μ̄−−−−→ ϕ(G),

where all maps are surjective. It follows that ϕ(G) ⊆ Aut(Y ) is a (closed) algebraic

subgroup, and thus ϕ(G) = ϕ(G), because ϕ(G) is constructible. It remains to show
that ϕ|G is a morphism. This follows from the next lemma, because G is normal, and μ
and the composition ϕ|G ◦ μ = μ̄ ◦ ϕ̃ are both morphisms. �
Lemma 5.3. Let X,Y, Z be irreducible affine varieties where Y is normal. Let μ : X → Y
be a surjective morphism and ϕ : Y → Z an arbitrary map. If the composition ϕ ◦ μ is
a morphism, then ϕ is a morphism.

Proof. We have the following commutative diagram of maps,

Γϕ◦μ
⊆−−−−→ X × Z⏐⏐�μ̄

⏐⏐�μ× id

Γϕ
⊆−−−−→ Y × Z⏐⏐�p

⏐⏐�prY

Y Y,

1They denote this group by SAut(X) which should not be confused with our definition of SAut(An)

and of SAutalg(X) below.
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where Γϕ◦μ and Γϕ denote the graphs of the corresponding maps. We have to show
that Γϕ ⊆ Y × Z is closed and that p is an isomorphism. The diagram shows that μ̄
is surjective, hence Γϕ is constructible, and p is bijective. Thus, the induced morphism
p̄ : Γ̄ϕ → Y is birational and surjective, hence an isomorphism since Y is normal (see
[Igu73, Lemma 4, page 379]). Since p is bijective, we finally get Γϕ = Γ̄ϕ. �

Remark 5.4. If ϕ : Aut(X) → Aut(Y ) is a homomorphism of ind-groups, then the induced
homomorphism ϕU : U(X) → U(Y ) is algebraic. If Aut(X) and Aut(Y ) are isomorphic
as ind-groups, then U(X) and U(Y ) are algebraically isomorphic.

The remark shows that the following result generalizes Theorem 1.1. The proof will
be given in the next section.

Theorem 5.5. Let X be a connected affine variety. If U(X) is algebraically isomorphic
to U(An), then X is isomorphic to A

n.

Finally, we define the following closed subgroups of Aut(X):

Autalg(X) := 〈G | G ⊆ Aut(X) connected algebraic〉,
SAutalg(X) := 〈U | U ⊆ Aut(X) unipotent algebraic〉.

We have SAutalg(X) = U(X) ⊆ Autalg(X) ⊆ Aut(X). A similar argument as above
gives the next result, again as a consequence of Theorem 5.5 above.

Corollary 5.6. Let X be a connected affine variety. If SAutalg(X) is isomorphic to

SAutalg(An) as ind-groups, then X is isomorphic to An, and the same holds if we replace

SAutalg by Autalg.

A special case of Theorem 1.1. Going back to our original Theorem 1.1 there is the
following rather short proof in case X is irreducible which was suggested by a referee.
We first remark that the subgroup of translations T ⊆ Aut(An) is self-centralizing, i.e.,
CentAut(An) T = T . Denote by T ′ ⊆ Aut(X) the image of T . We claim that T ′ has
a dense orbit. Since T ′ is a unipotent group, this implies that X is an orbit, hence
isomorphic to A

m for some m ≤ n. Since an n-dimensional torus acts faithfully on X,
we have n = m, and we are done.

It remains to see that T ′ has a dense orbit inX, or equivalently, that every T ′-invariant
function on X is a constant. Assume that this is not the case, and let f ∈ O(X)T

′ \ k.
Then we can “modify” every automorphism t ∈ T by f (see the following §6) to obtain
new unipotent automorphism f · t in Aut(X) which do not belong to T ′, but commute
with T ′, contradicting the fact that T ′ is self-centralizing. (It is here where we use the
irreducibility of X. Otherwise it is not clear why these modified automorphisms do not
belong to T ′.)

6. Modifications and root subgroups, proof of Theorem 5.5

Let X be an affine variety and consider a nontrivial action of k+ on X, given by
λ : k+ → Aut(X). If f ∈ O(X) is k+-invariant, then we define the modification f · λ
of the action λ in the following way (see [AFK+13] where a modified action is called
a replica; cf. [FK17, section 12.4]):

(f · λ)(s)x := λ(f(x)s)x for s ∈ k and x ∈ X.

It is easy to see that this is again a k
+-action. In fact, the action λ corresponds to

a locally nilpotent vector field δλ ∈ Vec(X). Since f is λ-invariant, it follows that
fδλ ∈ Vec(X) is again locally nilpotent, and defines the modified k+-action f · λ. Note
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that if Uλ ⊆ Aut(X) denotes the image of λ, then Lie(Uλ) ∼−→ kδλ under the canonical
homomorphism LieAut(X) ↪→ Vec(X).

This modified action f · λ is trivial if and only if f vanishes on every irreducible
component Xi of X, where the action λ is nontrivial. It is clear that the orbits of f · λ
are contained in the orbits of λ, and that they are equal on the open subset Xf := {x ∈
X | f(x) �= 0} of X. In particular, if X is irreducible and f �= 0, then λ and f · λ have
the same invariants.

If U ⊆ Aut(X) is a closed subgroup isomorphic to k
+ and if f ∈ O(X)U is a U -

invariant, then we can define the modification f · U of U by choosing an isomorphism
λ : k+ ∼−→ U and setting f · U := (f · λ)(k+), the image of the modified action.

Let G be an ind-group, and let T ⊆ G be a torus.

Definition 6.1. An algebraic subgroup U ⊆ G isomorphic to k
+ and normalized by T

is called a root subgroup with respect to T . The character of T on LieU � k is called the
weight of U .

If U = Uλ is the image of a nontrivial k+-action λ, then U is a root subgroup if and
only if kδλ ⊆ Vec(X) is stable under T . If α is the weight of Uλ, we have

t · λ(s) · t−1 = λ(α(t)s) for t ∈ T, s ∈ k.

If a torus T acts on an affine variety X, then we get a locally finite and rational rep-
resentation of T on the coordinate ring O(X), and thus a decomposition of O(X) into
weight spaces. A locally finite and rational representation of T is called multiplicity-free
if the dimensions of the weight spaces are ≤ 1. The following lemma is crucial.

Lemma 6.2. Let X be an irreducible affine variety, and let T ⊆ Aut(X) be a torus.
Assume that there exists a root subgroup U ⊆ Aut(X) with respect to T such that O(X)U

is multiplicity-free. Then dimT ≤ dimX ≤ dimT + 1.

Proof. The first inequality dimT ≤ dimX is clear, because T acts faithfully on X.
It follows from [DK08, Propositions 2.7 and 2.9] that there exists a T–semi-invariant
f ∈ O(X)U such that the localization O(X)Uf = O(Xf )

U is finitely generated. Clearly,

O(X)Uf is T -stable and multiplicity-free, and O(X)Uf is the coordinate ring of the al-

gebraic quotient Z := Xf//U on which T acts. It follows from [Kra84, II.3.4 Satz 5])
that T has a dense orbit in Z, and so dimZ ≤ dimT . Since dimZ = dimXf//U =
dimXf − 1 = dimX − 1, we get the second inequality. �

Lemma 6.3. We have U(An) ⊆ SAut(An), and its closure U(An) is connected. More-

over, LieU(An) = Lie SAut(An), hence it is a simple Lie algebra.

Proof. The first statement is obvious, since every unipotent algebraic subgroup is con-

tained in SAut(An). The second claim follows from U(An) ⊆ U(An)
◦
(see Lemma 7.3

in the next section). For the last statement we remark that Lie SAut(An) is generated
by the Lie algebras of the algebraic subgroups of SAut(An) (Remark 2.6) which are all
contained in U(An) (Lemma 5.2). �

Denote by Tn ⊆ GLn(k) ⊆ Aut(An) the diagonal torus and set T ′
n := Tn ∩ SLn(k).

The next result can be found in [Lie11, Theorem 1].

Lemma 6.4. Root subgroups of Aut(An) with respect to T ′
n exist, and their weights are

all different.

Now we can give the proof of Theorem 5.5.
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Proof of Theorem 5.5. The algebraic subgroups SLn(k) and SAffn(k) of Aut(An) both
belong to U(An) as well as all root subgroups U . Fix an algebraic isomorphism ϕ : U(An) ∼−→
U(X) and set by T ′ := ϕ(T ′

n) ⊆ U(X).

Let X =
⋃

i Xi be the decomposition into irreducible components. Since U(X) is

connected by Lemma 6.3, the components Xi are stable under U(X). Denote by A ⊆
U(X) the image of Affn(k) under ϕ. Since every nontrivial closed normal subgroup of
Affn(k) contains the translations, one of the restriction maps ρi : U(X) → U(Xi), say
ρ1, is injective on A.

Let T1 := ρ1(T
′) ⊆ U(X1) be the image of T ′. We will show that there is a root

subgroup U1 ⊆ U(X1) such that O(X1)
U1 is multiplicity-free. Then Lemma 6.2 implies

that dimX1 ≤ n and so, by Proposition 2.8, X1 is isomorphic to An with a transitive
action of A. Since X is connected, this implies that X = X1 � An.

In order to construct U1 we choose a root subgroup U ⊆ ϕ(SLn(k)) ⊆ U(X), and set
U1 := ρ1(U) ⊆ U(X1). Since U is a maximal unipotent subgroup of a closed subgroup
S ⊆ U(X) isomorphic to SL2(k) and since the restriction map res : O(X) → O(X1) is
a surjective homomorphism of S-modules, it follows that res : O(X)U → O(X1)

U1 is also
surjective (see [Kra84, III.3.1, Bemerkung 2]). If α is the weight of U and U1 and if

f ∈ O(X1)
U1 is an invariant of weight β, then f = f̃ |X1

for an invariant f̃ ∈ O(X)U of

weight β, and so f̃ · U is a root subgroup of weight α+ β with ρ1(f̃ · U) = f · U1. Since
the root subgroups of Aut(X) have different weights, it finally follows that O(X1)

U1 is
multiplicity-free. �

7. Finite-dimensional automorphism groups

It is well known that for a smooth affine curve C the automorphism group Aut(C)
is finite except for C � k, k∗. Theorem 1.2 implies that every finite group appears as
automorphism group of a smooth affine curve. There also exist examples of smooth affine
surfaces with a discrete nonfinite automorphism group; see [FK17, Proposition 12.7.1].
Recall that an ind-group G =

⋃
k Gk is called discrete if Gk is finite for all k, or equiva-

lently, if LieG = {0}.

Definition 7.1. An ind-group G =
⋃

k Gk is called finite-dimensional, dimG < ∞, if
dimGk is bounded above. In this case we put dimG := maxk dimGk.

Definition 7.2. For an ind-group G =
⋃

k Gk we define G◦ :=
⋃

k G◦
k , where G◦

k denotes
the connected component of Gk which contains e ∈ G.

An ind-variety V is called curve-connected if for every v, w ∈ V there is an irreducible
curve D and a morphism D → V whose image contains v and w. This is equivalent to the
condition that V admits a filtration with irreducible varieties (see [FK17, Lemma 1.6.3]).
The following result can be found in [FK17, Lemma 2.2.2]).

Lemma 7.3. Let G =
⋃

k Gk be an ind-group.
(1) G◦ ⊆ G is a curve-connected open (and thus closed) normal subgroup of countable

index. In particular, LieG = LieG◦.
(2) We have dimG < ∞ if and only if G◦ ⊆ G is an algebraic group.
(3) We have dimG < ∞ if and only if dimLieG < ∞.

Example 7.4. (1) We have Aut(k∗) � Z/2 � k∗, hence Aut(k∗)◦ � k∗. Similarly,
Aut(k∗n) � GLn(Z)� k∗n, and so Aut(k∗n)◦ � k∗n.

(2) Let C := V (y2 − x3) ⊆ k
2 be Neile’s parabola. Then Aut(C) = k

∗. In fact, every
automorphism of C defines an automorphism of the normalization A1 of C fixing the
origin. From this the claim follows immediately.
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(3) Let C be a smooth curve with trivial automorphism group, and consider the one
dimensional variety YC = A1∪C where the two irreducible components meet in {0} ∈ A1.
Then Aut(YC) � k∗. Moreover, the disjoint union YC1

∪ YC2
∪ · · · ∪ YCm

with pairwise
nonisomorphic curves Ci has automorphism group k

∗m. We will show in §8 that for
every n there is even an irreducible affine variety X whose automorphism group Aut(X)
is an n-dimensional torus.

Theorem 1.3 claims that if dimAut(X) is finite, then either X � A1 or Aut(X)◦ is
a torus. This follows immediately from the next result.

Proposition 7.5. Let X be a connected affine variety. If X admits a nontrivial action
of the additive group k+, then either X � A1 or dimAut(X) = ∞.

Proof. IfX contains a one-dimensional irreducible component Xi with a nontrivial action
of k+, then Xi is an orbit under k+, hence X = Xi � A1. Otherwise, k+ acts nontrivially
on an irreducible component Xj of dimension ≥ 2. Denote by U ⊆ Aut(X) the image of
k
+. We claim that the modifications f · U for f ∈ O(X)U form an infinite-dimensional

subgroup O(X)U · U ⊆ Aut(X). This follows if we show that the image of O(X)U

in O(Xj) is infinite-dimensional. For that we first remark that there is a nonzero U -
invariant f which vanishes on all Xk for k �= j, because the vanishing ideal is U -stable.
This implies that Xf ⊆ Xj , and so

O(X)Uf = O(Xf )
U = O(Xj)

U
f = (O(X)U |Xj

)f .

Thus the image O(X)U |Xj
⊆ O(Xj) is infinite-dimensional. �

The following result—a partial converse of the proposition above— is due to Arzhantsev–
Găıfullin.

Proposition 7.6 ([AG17]). Let X be an affine variety which does not admit a nontrivial
k
+-action. Then Aut(X) contains a unique maximal torus T . If the action of T on X

is one fix pointed, then Aut(X)◦ = T and Aut(X)/T is a finite group.

(A T -action on X is called one fix pointed if there is a unique fixed point x0 ∈ X
and no other closed orbit.) The paper [AG17] contains many examples of such varieties,
e.g., cones over projective varieties with a finite automorphism group, or the so-called
trinomial hypersurfaces.

8. An example with a torus as automorphism group

In Example 7.4 we have mentioned that Neile’s parabola C := V (y2 − x3) ⊆ k2 has
an automorphism group isomorphic to k

∗, and we have given an example of a reducible
curve with automorphism group isomorphic to k∗m. We now construct an irreducible
variety X of dimension d with Aut(X) ∼−→ k

∗d.

Definition 8.1. A plane curve C ⊆ k2 given by an equation of the form ym − xn = 0,
where n > m ≥ 2 and m,n are relatively prime, is called a cuspidal curve. It has an
isolated singularity in the origin 0.

For the cuspidal curve Cm,n with equation ym = xn we have a canonical isomorphism
k∗ ∼−→ Aut(Cm,n) given by the action t(x, y) := (tmx, tny). The induced representation
on the tangent space T0Cm,n = k2 has weights m,n. In particular, Cm,n is isomorphic
to Cm′,n′ if and only if (m,n) = (m′, n′). Moreover, the normalization is given by the
bijective morphism μCm,n

: A1 → Cm,n, s �→ (sm, sn).

Proposition 8.2. Let X be a product of d cuspidal curves which are pairwise noniso-
morphic. Then Aut(X) � k∗m.
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Proof. (a) Let X = C1 ×C2 × · · · ×Cd be such a product. We have a canonical injective

homomorphism ρX : k∗d ↪→ Aut(X). The normalization of X is given by the bijective
morphism η := η1×· · ·×ηd : A

d → X where ηi : A
1 → Ci is the normalization of Ci. For

j = 1, . . . , d define

C̃j := {(0, . . . , cj , . . . , 0) | cj ∈ Cj} ⊆ X,

i.e., C̃j is the image of the jth coordinate line Lj ⊆ Ad under the normalization η. Then
we have

AX :=
⋃
j

C̃j = {x ∈ X | dimTxX ≥ 2d− 1}.

Now let Y = D1 ×D2 × · · · ×Dd be another product of nonisomorphic cuspidal curves,

and define D̃j and AY as above. It follows from the description of AX and AY that
every isomorphism μ : X ∼−→ Y induces an isomorphism AX

∼−→ AY . Hence there is

a permutation σ of {1, . . . , d} such that Ci � C̃i � μ(C̃i) = D̃σ(i) � Dσ(i).
(b) Now define Xj := {c = (c1, . . . , cd) ∈ X | cj = 0} �

∏
i �=j Ci. Clearly, Xj is the

image of the jth coordinate hyperplaneHj ⊆ Ad given by xj = 0 under the normalization
η : Ad → X. Since the singular points of X are given by Xsing =

⋃
j Xj , it follows that

every automorphism ϕ : X ∼−→ X permutes the irreducible components Xj of Xsing. Now
(a) implies that the Xj are pairwise nonisomorphic, hence ϕ(Xj) = Xj .

(c) By induction, we can assume that

ρXj
: k∗d−1 → Aut(Xj)

is an isomorphism, and so ϕXj
is given by an element tj ∈ k∗d−1. Looking at the

intersections Xj ∩ Xk we see that there is a t ∈ k∗d such that ϕ|Xsing
is given by t.

Therefore, the automorphism ψ := t−1 ◦ ϕ ∈ Aut(X) induces the identity on Xsing. It
follows that the normalization ψ̃ : Ad ∼−→ Ad fixes the coordinate hyperplanesHj pointwise
which implies that ψ̃ is the identity. In fact, if ψ̃ = (f1, . . . , fd), fi ∈ k[x1, . . . , xd], then
we get xi|fi, and the claim follows because all fi are irreducible (see e.g., [Jel91] for
a more general result). �
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