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ABSTRACT. We show that the automorphism group of affine n-space A™ determines
A™ up to isomorphism: If X is a connected affine variety such that Aut(X) ~
Aut(A™) as ind-groups, then X ~ A™ as varieties.

We also show that every torus appears as Aut(X) for a suitable irreducible affine
variety X, but that Aut(X) cannot be isomorphic to a semisimple group. In fact, if
Aut(X) is finite-dimensional and if X ¢ A!, then the connected component Aut(X)°
is a torus.

Concerning the structure of Aut(A™) we prove that any homomorphism Aut(A™)—
G of ind-groups either factors through jac: Aut(A™) — k* where jac is the Jacobian
determinant, or it is a closed immersion. For SAut(A™) := ker(jac) C Aut(A"™) we
show that every nontrivial homomorphism SAut(A™) — G is a closed immersion.

Finally, we prove that every nontrivial homomorphism ¢: SAut(A™) — SAut(A"™)
is an automorphism, and that ¢ is given by conjugation with an element from
Aut(A™).

1. INTRODUCTION AND MAIN RESULTS

Our base field k is algebraically closed of characteristic zero. For an affine variety X
the automorphism group Aut(X) has the structure of an affine ind-group. We will
shortly recall the basic definitions in §2l The classical example is Aut(A™), the group of
automorphisms of affine n-space A™ = k".

A fundamental question is how much information about X can be retrieved from
Aut(X). For example, Jelonek shows in [Jell5] that if Aut(X) is infinite, then X is
uniruled. Our main result shows that A™ is completely determined by its automorphism
group.

Theorem 1.1. Let X be a connected affine variety. If Aut(X) ~ Aut(A™) as ind-groups,
then X ~ A™ as varieties.

It is clear that X has to be connected since the automorphism group does not change
if we form the disjoint union of A" with a variety Y with trivial automorphism group.
Some generalization of this result can be found in [Regl7].

The proof of the theorem will follow from a more general result (Theorem B5 see
Remark [54]) where the group Aut(A™) is replaced by the subgroup U(A™) generated by
the unipotent elements.
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Another important question is which groups appear as automorphism groups of affine
varieties. For finite groups we have the following result due to Jelonek.

Theorem 1.2 ([Jell5l Proposition 7.2]). For every finite group G and every n. > 1 there
is an n-dimensional smooth connected affine variety X such that Aut(X) ~ G.

Moreover, there exist surfaces with infinite discrete automorphism groups (see [FK17,
Proposition 12.7.1]). As for algebraic groups, we have Aut(Al) = Aff;, and we will give
examples where Aut(X) is a torus (Example [[4]). But other groups cannot appear as
the next result shows.

Theorem 1.3. Let X be a connected affine variety. If dim Aut(X) < oo, then either
X ~ Al or the connected component Aut(X)° is a torus.

The last results concern the automorphism group Aut(A™) of affine n-space. This
group has a closed normal subgroup SAut(A™) consisting of those automorphisms f =
(f1,--., fn) whose Jacobian determinant

jac(f) := det <6fi )
925/ . )

SAut(A") := ker(jac: Aut(A") — k*).
For an ind-group G the tangent space T.G carries a canonical structure of a Lie algebra
which we denote by LieG. For SAut(A™), the Lie algebra can be identified with Vec®(A™),
the vector fields £ on A™ with divergence div& = 0. This Lie algebra is simple, so one
could expect that SAut(A™) is simple as an ind-group. This is claimed in [Sha66} [Sha81],
but the proofs turned out to be incorrect (see [FK17, section 15]). What we can show
here is the following.

is equal to 1:

Theorem 1.4. Let n > 2.

(1) Let p: Aut(A™) — G be a homomorphism of ind-groups. Then either ¢ factors
through jac: Aut(A™) — k*, or ¢ is a closed immersion, i.e., the image is closed and
isomorphic to Aut(A™) under ¢.

(2) Every nontrivial homomorphism SAut(A™) — G of ind-groups is a closed immer-
sion.

This theorem has the following interesting applications. By definition, a representation
of an ind-group G on a vector space V' of countable dimension is a homomorphism G —
GL(V) such that the corresponding map G x V' — V is a morphism of ind-varieties (see
93). An action of an ind-group G on an affine variety X is a homomorphism G — Aut(X)
of ind-groups.

Corollary 1.5. Assume that n > 2.

(1) The ind-group SAut(A™) does not have a nontrivial finite-dimensional representa-
tion.

(2) Assume that SAut(A™) acts nontrivially on a connected affine variety X. Then
the action is faithful, and there are no fized points.

Proof. (1) Let p: SAut(A™) — GL(V) be a finite-dimensional representation. If p is
nontrivial, then it is a closed immersion, by Theorem [[L4)(2). This is impossible, because
GL(V) is finite-dimensional.

(2) We have a nontrivial homomorphism ¢: SAut(A™) — Aut(X) which is a closed
immersion, by Theorem [[4(2). Thus the action is faithful, and the same is true for
the induced action of SL,, C SAut(A™). Since X is connected, it follows that SL,, acts
nontrivially on every irreducible component of X. This implies that for every fixed
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point z € X5 the tangent representation of SL, on T, X is nontrivial. Hence, the
tangent representation of SAut(A™) on every fixed point of SAut(A™) is also nontrivial,
contradicting (1). O

It is shown in [BKY12] that every automorphism of the ind-group Aut(A"™) is inner,
i.e., given by conjugation with a suitable g € Aut(A™) (cf. [FK17, Theorem 12.5.2]).
This can be generalized in the following way.

Theorem 1.6.

(1) Every injective homomorphism ¢: Aut(A™) — Aut(A™) is an isomorphism, and
o =Intg for a well-defined g € Aut(A™).

(2) Every nontrivial homomorphism ¢: SAut(A™) — SAut(A™) is an isomorphism,
and p =Intg for a well-defined g € Aut(A™).

Remark 1.7. The analogue of Theorem for vector fields, namely that every injective
homomorphism : Vec(A™) — Vec(A™) of Lie algebras is an automorphism, would imply
the Jacobian Conjecture in dimension n; see [KR17), Corollary 4.4].

We finally mention the following example showing that bijective homomorphisms of
ind-groups are not necessarily isomorphisms. The details can be found in [FKI17, sec-
tion 8]; cf. [BWO00, section 11, last paragraph]. Denote by k(z,y) the free associative
k-algebra in two generators. Then Aut(k{x,y)) is an ind-group, and we have a canonical
homomorphism

m: Aut(k(z,y)) = Aut(k[z, y)).

Proposition 1.8. The map m: Aut(k(z,y)) — Aut(k[z,y]) is a bijective homomorphism
of ind-groups, but it is not an isomorphism, because it is not an isomorphism on the Lie
algebras.

Note that Aut(k(z, y)) is generated by the closed algebraic subgroups G C Aut(k(x, y)),
and that 7: G = 7(G) is an isomorphism for these subgroups.

2. NOTATION AND PRELIMINARY RESULTS

The notion of an ind-group goes back to Shafarevich who called these objects infinite-
dimensional groups; see [Sha66, [Sha81]. We refer to [Kum02|] and the notes [FK17] for
basic notation in this context.

Definition 2.1. An ind-variety V is a set together with an ascending filtration V, C
V1 C Vs, C ... CV such that the following holds:

(1 y= UkeN Vi;

(2) each Vj, has the structure of an algebraic variety;

(3) for all £ € N the inclusion Vi < Vj41 is closed immersion.

A morphism between ind-varieties V = |J, Ve and W = {J,, Win isamap ¢: V = W
such that, for every k, there is an m with the properties that (V) C W,, and that the
induced map Vy — W,, is a morphism of varieties. Isomorphisms of ind-varieties are
defined in the usual way.

Two filtrations V = J ey Ve and V = oy V. are called equivalent if, for any k,
there is an m such that Vi C V), is a closed subvariety as well as V;, C V,,,. Equivalently,
the identity map id: V = ey Ve = V = U pen Vi is an isomorphism of ind-varieties.

An ind-variety V has a natural topology where S C V is open, respectively, closed,
if S := 5NV, C Vi is open, respectively, closed for all k. Obviously, a locally closed
subset S C V has a natural structure of an ind-variety. It is called an ind-subvariety. An
ind-variety V is called affine if all V}, are affine. A subset X C V is called algebraic if
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174 H. KRAFT

it is locally closed and contained in some Vi. Such an X has a natural structure of an
algebraic variety.

Example 2.2. (1) Any k-vector space V of countable dimension carries the structure of
an (affine) ind-variety by choosing an increasing sequence of finite-dimensional subspaces
Vi such that V' = J, Vj. Clearly, all these filtrations are equivalent.

(2) If R is a commutative k-algebra of countable dimension, a C R a subspace, e.g.,
an ideal, and S C k[z1,...,x,] a set of polynomials, then the subset

{(a1,...,an) € R" | f(a1,...,a,) €aforall fe S} CR"
is a closed ind-subvariety of R™.

For any ind-variety V = (J .oy Vi we can define the tangent space in x € V in the
obvious way. We have x € V}, for k > ko, and T,V C T, Vi1 for k > kg, and then define

T,V := h_n)l T Vi
k>ko

which is a vector space of countable dimension. A morphism ¢: ¥V — W induces linear
maps dpg: TV — T,)W for every x € X. Clearly, for a k-vector space V' of countable
dimension and for any v € V' we have T,V = V in a canonical way.

The product of two ind-varieties is defined in the obvious way. This allows us to
define an ind-group as an ind-variety G with a group structure such that multiplication
GxG—G:(g,h)— g-h,and inverse G — G: g — g~ !, are both morphisms.

Remark 2.3. Let G C G be a subgroup. If G is an algebraic subset, i.e., locally closed
and contained in Gy for some k, then G is an algebraic group and is closed in G. We will
call such a G an algebraic subgroup.

Conversely, if G is an algebraic group and ¢: G — G a homomorphism of ind-groups,
then ¢(G) C G is a closed subgroup and an algebraic subset. The easy proofs are left to
the reader.

If G is an affine ind-group, then T.G has a natural structure of a Lie algebra which will
be denoted by LieG. The structure is obtained by showing that every A € T.G defines
a unique left-invariant vector field d4 on G; see [Kum02, Proposition 4.2.2, p. 114].

Definition 2.4. An ind-group G = ngk is called discrete if G, is finite for all k.
Clearly, G is discrete if and only if LieG is trivial.

The next result can be found in [FK17] sections 4.1 and 4.6]. Here Vec(X) denotes the
Lie algebra of (algebraic) vector fields on X, i.e., Vec(X) = Der(O(X)), the Lie algebra
of derivations of O(X).

Proposition 2.5. Let X be an affine variety. Then Aut(X) has a natural structure of
an affine ind-group, and there is a canonical embedding &: Lie Aut(X) — Vec(X) of Lie
algebras.

Remark 2.6. For X = A™ the embedding ¢ identifies Lie Aut(A™) with Vec®(A™), the

vector fields 5
0= zz: f Z(‘?_xl

with constant divergence

divd := Z gj:z

see [FK17, Proposition 4.9.1].
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The Jacobian determinant

jac(f) := det (ﬁ)
925/ i, )

of an automorphism f = (f1,..., f,) of A™ defines a homomorphism
jac: Aut(A") — k*

of ind-groups. Setting SAut(A™) := ker jac one sees that ¢ identifies Lie SAut(A"™) with
Vec?(A™), the vector fields § with div§ = 0; see [FK17, Remark 4.9.3].

It is known that for n > 2 the Lie algebra Lie SAut(A™) is simple and that Lie SAut(A™)
C Lie Aut(A™) is the only proper ideal; see [Sha81l, Lemma 3]. Moreover, both Lie alge-
bras are generated by the subalgebras Lie G where G is an algebraic subgroup.

Another result which we will need is proved in [FK17, Proposition 2.7.6].

Proposition 2.7. Let p,v: G — H be two homomorphisms of ind-groups. Assume that
G is connected and that dp. = dip.: LieG — LieH. Then ¢ = 1.

A final result which we will use can be found in [KRZ17]. Denote by Aff,, C Aut(A™)
the subgroup of affine transformations, i.e., Aff, = GL,(k) x (k*)*. Similarly, the
subgroup SAff,, C Aff,, consists of the affine transformations with determinant 1, i.e.,
SAff,, = SL, (k) x (k)*.

Proposition 2.8. Let X be a connected affine variety with a faithful action of SAff,,. If
dim X < n, then X is SAff,,-isomorphic to A™.

Remark 2.9. Tt is shown in [KRZI17] that the same holds if we replace SAff,, by Aff,.
Using Theorem we see that we can replace SAff,, by Aut(A™) or SAut(A"™) as well.
3. THE ADJOINT REPRESENTATION

Following [Kum02| section 4.2] we define a representation of an ind-group G on a vector
space V of countable dimension to be a homomorphism p: G — GL(V') of groups such
that the induced map G x V. — V is a morphism of ind-varieties. Note that GL(V)
does not have the structure of an ind-variety if dim V' = oco. However, if L is a finitely
generated Lie algebra, then Auty;.(L) has a natural structure of an ind-group which is
defined in the following way (see [FK17, section 7] where we define an ind-group structure
on Aut(R) for any finitely generated general algebra R, i.e., a k-vector space R endowed
with a bilinear map R x R — R).

Choose a finite-dimensional subspace Ly C L which generates L as a Lie algebra. Then
the restriction map Endpie(L) — Hom(Lg, L) is injective and the image is a closed affine
ind-subvariety. (To see this write L as the quotient of the free Lie algebra F(Lg) over Lg
modulo an ideal I.) Choosing a filtration L = |J ., Li by finite-dimensional subspaces,
we set Endpio(L)r := {a € Endpie(L) | a(Lo) C L} which is a closed subvariety
of Hom(Lg, Li) (see Example [Z2]). Then we define the ind-structure on Autric(L) by
identifying Autyie(L) with the closed subset

{(a, B) € Endpie(L) x Endpie(L) a0 f=Poa= idL} C Endp;ie(L) x Endy;e(L),

ie.,

AUtLie(L)k = {Oé S AutLie(L) ‘ a,a_l c EndLie(L)k}.
It follows that Autyp;.(L) is an affine ind-group with the usual functorial properties. In
particular, we have the following result.

Lemma 3.1. Let G be an ind-group, and let p: G — Autyrie(L) be an abstract homo-
morphism where L is a finitely generated Lie algebra. Then p is a homomorphism of
ind-groups if and only if p is a representation, i.e., the map p: G x L — L is a morphism
of ind-varieties.
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176 H. KRAFT

Proof. Assume that L is generated by the finite-dimensional subspace Lo C L. If G =
U;G; and if p: G x L — L is a morphism, then, for any j, there is a k = k(j) such
that p(G; x Lo) € Ly and p(gj_1 x Lg) C Ly. Hence, p(G;) C Autyie(L), and the map
G; — Hom(Ly, L) is clearly a morphism.

Now assume that G — Auty;e(L) is a homomorphism of ind-groups. Then, for any j,
there is a k = k(j) such that p(G;) C Autyie(L)r — Hom(Lg, Li). Hence, p(G; x Lg) C
Lj, and G; x Ly — Ly is a morphism. O

The adjoint representation Ad: G — Autpie(LieG) of an ind-group G is defined in
the usual way: Adg := (dInt g).: LieG = LieG where Int g is the inner automorphism
h+— ghg™!.

Proposition 3.2. For any ind-group G the canonical map Ad: G — Autpie(LieG) is
a homomorphism of ind-groups.

Proof. Let v: G x G — G denote the morphism (g,h) — ghg~!. For any g € G, the
map v,: G — G, h +— ghg™!, is an isomorphism of ind-groups, and its differential
Ad(g) = (dvg)e: LieG — LieG is an isomorphism of Lie algebras. If G = | J, Gk, then for
any p,q € N there is an m € N such that v: G, x G, = G,,,. Clearly, for g € G,, Ad g is
given by (dvg)e: TeGg — TeGm, and the map G, — Hom(7.G,4, TcG,y,) is a morphism, by
the following lemma. Now the claim follows from Lemma 3.1 above. ]

Lemma 3.3. Let ®: X XY — Z be a morphism of affine varieties and set ®,(y) :=
O(x,y). Assume that there exist yo € Y and zo € Z such that ®,(yo) = zo for allz € X.
Then the induced map X — Hom(T,, Y, T,,Z), x > dy,®,, is a morphism.

Proof. We can assume that Y, Z are vector spaces, Y = W and Z = V. Choose bases
(wi,...,wy) of W and (v1,...,v,) of V. Then ® is given by an element of the form

ZZfij®hij®vi? where fij EO(X) and hij €O(Y):k[y1,,ym],

i=1 j
and so the differential (d®;),,: W — V is given by the matrix

Oh;;
(Z fij(@) 6—”(240))
; Yk (i,k)
whose entries are regular functions on z. The claim follows. O
We have shown in [KR17] that the adjoint representation
AdAut(A") : Aut(A”) =5 AutLic(Lie Aut(A"))
and the induced homomorphism
p: Autpie(Lie Aut(A™)) = Autpic(Lie SAut(A™))

are both bijective. They are also homomorphisms of ind-groups: for Aday¢an) this is
Proposition above, and for p it is obvious. But this does not necessarily imply that
the maps are isomorphisms of ind-groups; see Proposition [[.8 However, for Aut(A") it
is true, and we will need this for the proof of Theorem [[.4]in the following section.

Proposition 3.4. The adjoint representation
Adpugany: Aut(A") 25 Autpe(Lie Aut(A™))

s an isomorphism of ind-groups.
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Proof. We will use here the identification of Lie Aut(A™) with Vec®(A™); see Remark
Put 0, := %.

Let £ = (f1,..., fn) € Aut(A™) and set 6 := Ad(f~!) € Autpie(Vec®(A™)). Then the
matrix (6(0z,)x;) (k) is invertible, and

. (0(Da,)5) () = Jac(f) = (ai;)(i,j) ;

see [KR17, Remark 4.2]. We now claim that the map
0 — (H(Bmk)xj)ak)  Autpie(Vec®(A™)) = M, (k[z1, ..., 24))
is a well-defined morphism of ind-varieties. In fact, 8 — 6(0;, )x; is the composition
of the orbit map 6 — 6(9,,): Autpriec(Vec®(A™)) — Vec®(A™) and the evaluation map
6+ 6(x;): Vec®(A") — klz1,...,2,], hence 6 — © := (0(0z,)x;)(jk) is a morphism.
Since jac(0) € k* the claim follows.

Now recall that the gradient

klz1,...,zs) = K[z1,...,2,]", [ (ﬁ 6_]()7

Oxy’ " Oz,
defines an isomorphism
Oh;  Oh;

viklz, .. z0]>1 l>F::{(hl,...,hn) | e~ D1 for alli<j}.
J 3

It follows from (*) that the rows of the matrix (h;)(, ;) = (9(8mk)xj)(j1k) belong to I',
so that we get a morphism
P Autpie(Vec®(A™)) = k[z1, ..., z,])", 0= (f1,--., fn)s

where f; := v Y(hi1, ..., hin) €K[z1,...,2,]>1. By construction, we have

(**) 1/)(9) = 1/)(Ad(f71)) = f() = (f1 - fl(O), ey fn - fn(O)) = t—f(O) o f,

where t, is the translation v — v + a. Let S C Aff,, be the subgroup of translations,
and set S := Ad(S). Then S C Autp;c(Vec®(A™)) is a closed algebraic subgroup and
Ad: S — S is an isomorphism. It follows from (*x) that

Ad(1(6)) - 6 = Ad(t _g()) € 5,
and so
$(0) = (0) 7" - (Ad|s) " (Ad(1(0)) - 0)
is a well-defined morphism t: Autpe(Vec®(A")) — Aut(A™) with the property that
Ad(3(6)) = Ad(¥(0) ) - Ad(¥()) - 0 = 6.
Thus Ad: Aut(A™) — Autpi(Lie Aut(A™)) is an isomorphism, with inverse . 0

Remark 3.5. Clearly, the restriction
p: Autpie(Lie Aut(A™)) — Autpie(Lie SAut(A™))

is a homomorphism of ind-groups, and it is bijective; see [KR17]. It follows from (1) that
the composition p o Ad: Aut(A™) — Autpi.(Lie SAut(A™)) is a bijective homomorphism
of ind-groups. Now we use Theorem [[.4(1) to conclude that p o Ad is an isomorphism,
hence p is an isomorphism, too.
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4. PROOF OF THE THEOREMS [[L4 AND

Proof of Theorem [L4l (1) Let ¢: Aut(A™) — G be a homomorphism of ind-groups such
that dyp is injective. We can assume that G = ¢(Aut(A")), and we will show that ¢ is
an isomorphism. The basic idea is to construct a homomorphism ¢ : G — Aut(A™) such
that 1 o ¢ = id. By Proposition 1] below this implies that ¢ is a closed immersion,
hence an isomorphism.

Denote by L C LieG the image of dp. For any g € Aut(A™) we have

dp o Ad(g) = Ad(p(g)) o dep.

In particular, L is stable under Ad(p(g)), hence stable under Ad(G), because p(Aut(A™))
is dense in G. Thus we get the following commutative diagram of homomorphisms of
ind-groups

Aut(A™) — g

Adaug(an) l’: J{Adg

Autp;e(Lie Aut(A™))) —— Autpie(L),
where the first vertical map is an isomorphism, by Proposition[3.4l Thus, the composition
Adg o p: Aut(A™) — Autrie(L) ~ Aut(A™) is an isomorphism, and so ¢ is also an
isomorphism, by Proposition 1] below.

If di is not injective, then ker dp D Lie SAut(A™) (Remark [Z6]) and so dp = f o djac
where f: k — LieG is a Lie algebra homomorphism. If k* C GL,, (k) denotes the center,
then p|g+: k* — G factor through ?": k* — k*, because SL,(k) C ker¢, i.e., p(z) =
p(z") for any z € k* and a suitable homomorphism p: k* — G of ind-groups. By
construction, dp, = f: k — LieG, and so the two homomorphisms ¢ and p o jac have the
same differential. Thus, by Proposition 27 we get ¢ = p o jac, and we are done.

(2) Let ¢: SAut(A™) — G be a homomorphism of ind-groups. If dy, is not injective,
then dp. is the trivial map (Remark [Z8]), hence dyp. = dgp. where @: g +— e is the
constant homomorphism. Again by Proposition 2.7 we get ¢ = @.

If dp. is injective, set L := dp.(Lie SAut(A™)) C LieG. As above we can assume that
G = p(SAut(An)). Since L is stable under Ad ¢(g) for all g € SAut(A™) it is also stable
under G, and we get, as above, the following commutative diagram,

Aut(A™) — SAut(A™) L N
Adaug(an) l: Adgaug(an) lg JAdQ

Autpie(Lie Aut(A"))) —— Autpi(Lie SAut(4"))) — 2 Autpi(D),
1jective ~
where Adayugan) is an isomorphism, by (1). Since p is bijective ([KR17]) the com-
position p o Adpygany is an isomorphism, again by (1). Therefore, the image 2 :=
Ad(SAut(A™)) C Autpie(Lie SAut(A™)) is a closed subgroup isomorphic to SAut(A™),
and A = &(A) = Adg(p(SAut(A™)). But ¢(SAut(A™)) C G is dense, and so Adg(G) =
®(2). Thus, the composition Adg o ¢: SAut(A™) — ®(2) is an isomorphism, hence ¢ is
an isomorphism, by Proposition [£.1] below. O
Proposition 4.1. Let H,G be two ind-groups, and let ¢: H — G, ¥: G — H be two

homomorphisms. If o = idy, then ¢ is a closed immersion, i.e., o(H) C G is a closed
subgroup and ¢ induces an isomorphism H = o(H).

Proof. By base change we can assume that the base field k is uncountable. Let H = |, H;
and G =J j G;, where we can assume that H; C G; for all i. Moreover, for every ¢ there is
a k = k(i) such that ¥(G;) C Hy. By assumption, the composition ¢ op: H; — G; — Hy
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is the closed embedding H; < Hj, hence the first map is a closed embedding. Thus
H; := p(H;) is a closed subset of G; and H := ¢(H) = |J, H;. Now the claim follows
from Lemma below by setting S := ker 1. O

Recall that a subset S C U of an ind-variety U is called ind-constructible if S = ;S
where S; C S;11 are constructible subsets of 2.

Lemma 4.2. Let G be an ind-group, H C G a subgroup and S C G an ind-constructible
subset. Assume that k is uncountable and that

(1) H=, H; where H; C H;11 C G are closed algebraic subsets,

(2) the multiplication map S x H — G is bijective.

Then H is a closed subgroup of G.

Proof. Let G = |J, Gr. We have to show that for every k there exists an ¢ = i(k) such
that H NG, = H; N G,. We can assume that e € S = |J,;5;. Then, by assumption,
g = Uj S;H;. Since S;H; N Gy is a constructible subset of Gy, it follows that there

exists a j = j(k) such that G, C S;H; ([FKI7, Lemma 1.6.4]). Setting S := S\ {e}
we get SHNH = 0. Thus, G, = (S;H; NGx) U (H; NGg) and H N S;H; = B, hence
HNG,=H;NGy. O

Finally, we can prove Theorem

Proof of Theorem [LO. (1) We already know from Theorem [[4] that an injective homo-
morphism ¢: Aut(A™) — Aut(A™) is a closed immersion. We claim that dy, : Lie Aut(A™) —
Lie Aut(A™) is an isomorphism. To show this, consider the linear action of GL, (k) on
Lie Aut(A™). We then have

Lie Aut(A") C Vec(A™) ~ k" @ k[xy,...,2,] = @k” @k[x1,...,20]a
d

and the latter is multiplicity-free as a GL,,(k)-module as well as an SL,, (k)-module.

Now ¢(GL,(k)) € Aut(A™) is a closed subgroup isomorphic to GLy, (k). Moreover,
dp.: Lie Aut(A") — Lie Aut(A"™) is an injective linear map which is equivariant with
respect to ¢: GL, (k) = »(GL,(k)). Since ¢(GL,(k)) is conjugate to the standard
GL, (k) C Aut(A™) and since the representation of GL,, (k) on Lie Aut(A™) is multiplicity-
free, it follows that dep, is an isomorphism. Thus G := p(Aut(A™)) C Aut(A") is a closed
subgroup with the same Lie algebra as Aut(A™), and we get the following commutative
diagram (see proof of Theorem [[4)):

Aut(A™) £ g —= Aut(A™)
Adayany lg lAdg lAdAm(An)

Auty e (Lie Aut(A")) ——— Autypie(LieG) Autpie(Lie Aut(A™)).

As a consequence, all maps are isomorphisms, and so G = Aut(A™) and ¢ is an isomor-
phism.

It remains to see that every automorphism ¢ € Aut(A™) is inner. Since Ad is bijective
(see [KR1T]) and dy. € Auty;e(Lie Aut(A™)) we get dp. = Ad(g) for some g € Aut(A™).
This means that dy. = (dInt g). and so ¢ = Int g, by Proposition 271

(2) The same argument as above shows that every nontrivial homomorphism SAut(A™)
— SAut(A™) is an isomorphism where we use the fact that the action of SL, (k) on
Lie SAut(A™) is multiplicity-free.

Moreover, Ad: Aut(A™) — Autr;e(Lie SAut(A™)) is a bijective homomorphism of ind-
groups; see [KR17]. Hence, for every ¢ € SAut(A™) there is a g € Aut(A™) such that
dp. = Ad g which implies that ¢ = Int g. O
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5. A SPECIAL SUBGROUP OF Aut(X), PROOF OF THEOREM [[]

Our Theorem [I.T] will follow from a more general result which we will describe now.
For any affine variety X consider the normal subgroup U(X) of Aut(X) generated by
the unipotent elements of Aut(X) or, equivalently, by the closed algebraic subgroups of
Aut(X) isomorphic to the additive group k™. This is an instance of a so-called connected
group of automorphisms defined by Ramanujam in [Ram64]. The group U(X) defined
above was introduced and studied in [AFK"13| where it is called the group of special
automorphismﬂ of X. In particular, they give a very interesting connection between
transitivity properties of the group U(X) and the flexibility of the variety X.

We do not know if U(X) C Aut(X) is closed, but we still have the notion of an
algebraic subgroup G C U(X), namely a subgroup which is algebraic as a subgroup of
Aut(X); see Remark We will also need the notion of an “algebraic” homomorphism
between these groups.

Definition 5.1. A homomorphism ¢: U(X) — U(Y) is algebraic, if for any algebraic
subgroup U C U(X) isomorphic to k¥ the image p(U) C U(Y) is an algebraic subgroup
and ¢|y: U — ¢(U) is a homomorphism of algebraic groups. We say that U(X) and
UY) are algebraically isomorphic, U(X) ~ U(Y), if there exists a bijective homomor-
phism ¢: U(X) — U(Y) such that ¢ and ¢~! are both algebraic.

Lemma 5.2. Let ¢: U(X) — U(Y) be an algebraic homomorphism. Then, for any
algebraic subgroup G C U(X) generated by unipotent elements the image ¢(G) C U(Y)
is an algebraic subgroup and plg: G — ¢(Q) is a homomorphism of algebraic groups.

Proof. There exist closed subgroups Uy, ...,U,, € G isomorphic to k* such that the
multiplication map u: Uy x Uy X --- x U, — G is surjective. This gives the following
commutative diagram,

"
U xUs x -+ xUpy, — G
lfﬁ:w\Ul X XUy, l<ﬂ|c

p(U1) % p(Us) % -+ X p(Unm) —L— (G),

where all maps are surjective. It follows that ¢(G) C Aut(Y) is a (closed) algebraic

subgroup, and thus ¢(G) = ¢(G), because ¢(G) is constructible. It remains to show
that o|g is a morphism. This follows from the next lemma, because G is normal, and p
and the composition ¢|g o p = i o @ are both morphisms. (]

Lemma 5.3. Let X, Y, Z be irreducible affine varieties where Y is normal. Let p: X —Y
be a surjective morphism and ¢:Y — Z an arbitrary map. If the composition ¢ o u is
a morphism, then ¢ is a morphism.

Proof. We have the following commutative diagram of maps,

Tpop —— X x Z

b e
I, —=»Yx2Z
lp lmy
Y —— Y,

! They denote this group by SAut(X) which should not be confused with our definition of SAut(A™)
and of SAut®(X) below.
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where I' o, and I', denote the graphs of the corresponding maps. We have to show
that I'y € Y x Z is closed and that p is an isomorphism. The diagram shows that &
is surjective, hence I', is constructible, and p is bijective. Thus, the induced morphism
p: Ty — Y is birational and surjective, hence an isomorphism since Y is normal (see
[[gu73, Lemma 4, page 379]). Since p is bijective, we finally get I'y, = T',,. O

Remark 5.4. If ¢: Aut(X) — Aut(Y) is a homomorphism of ind-groups, then the induced
homomorphism ¢y: U(X) — U(Y) is algebraic. If Aut(X) and Aut(Y’) are isomorphic
as ind-groups, then U(X) and U(Y') are algebraically isomorphic.

The remark shows that the following result generalizes Theorem [[LTl The proof will
be given in the next section.

Theorem 5.5. Let X be a connected affine variety. If U(X) is algebraically isomorphic
to U(A™), then X is isomorphic to A™.

Finally, we define the following closed subgroups of Aut(X):
Aut™(X) := (G| G C Aut(X) connected algebraic),
SAut®(X) := (U | U C Aut(X) unipotent algebraic).

We have SAut®(X) = U(X) C Aut®(X) C Aut(X). A similar argument as above
gives the next result, again as a consequence of Theorem above.

Corollary 5.6. Let X be a connected affine variety. If SAut®(X) is isomorphic to
SAut™(A™) as ind-groups, then X is isomorphic to A", and the same holds if we replace
SAut™ by Aut®.

A special case of Theorem [I.Tl Going back to our original Theorem [L.T] there is the
following rather short proof in case X is irreducible which was suggested by a referee.
We first remark that the subgroup of translations 7 C Aut(A™) is self-centralizing, i.e.,
Centpyugany T = T. Denote by 7' C Aut(X) the image of 7. We claim that 7" has
a dense orbit. Since 7' is a unipotent group, this implies that X is an orbit, hence
isomorphic to A™ for some m < n. Since an n-dimensional torus acts faithfully on X,
we have n = m, and we are done.

It remains to see that 7 has a dense orbit in X, or equivalently, that every 7’-invariant
function on X is a constant. Assume that this is not the case, and let f € O(X)7 \ k.
Then we can “modify” every automorphism t € 7 by f (see the following §6]) to obtain
new unipotent automorphism f -t in Aut(X) which do not belong to 7', but commute
with 77, contradicting the fact that T’ is self-centralizing. (It is here where we use the
irreducibility of X. Otherwise it is not clear why these modified automorphisms do not
belong to 77.)

6. MODIFICATIONS AND ROOT SUBGROUPS, PROOF OF THEOREM

Let X be an affine variety and consider a nontrivial action of k™ on X, given by
Akt — Aut(X). If f € O(X) is k' -invariant, then we define the modification f - A
of the action X in the following way (see [AFK'13] where a modified action is called
a replica; cf. [FK17, section 12.4]):

(f-N(s)x = A(f(z)s)x for s €k and x € X.

It is easy to see that this is again a kT-action. In fact, the action A corresponds to
a locally nilpotent vector field dy € Vec(X). Since f is A-invariant, it follows that
fox € Vec(X) is again locally nilpotent, and defines the modified k™-action f - A. Note
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that if Uy C Aut(X) denotes the image of A, then Lie(U)) = kd, under the canonical
homomorphism Lie Aut(X) — Vec(X).

This modified action f - A is trivial if and only if f vanishes on every irreducible
component X; of X, where the action A is nontrivial. It is clear that the orbits of f - A
are contained in the orbits of A, and that they are equal on the open subset Xy := {z €
X | f(x) # 0} of X. In particular, if X is irreducible and f # 0, then A and f - A have
the same invariants.

If U C Aut(X) is a closed subgroup isomorphic to k* and if f € O(X)V is a U-
invariant, then we can define the modification f - U of U by choosing an isomorphism
A: kT = U and setting f-U := (f - A\)(k™), the image of the modified action.

Let G be an ind-group, and let T C G be a torus.

Definition 6.1. An algebraic subgroup U C G isomorphic to k¥ and normalized by T
is called a root subgroup with respect to T'. The character of T on Lie U ~ k is called the
weight of U.

If U = U, is the image of a nontrivial k™-action A, then U is a root subgroup if and
only if kdy C Vec(X) is stable under T'. If « is the weight of Uy, we have

t-As)-t7 = XNa(t)s) forteT,sck.

If a torus T acts on an affine variety X, then we get a locally finite and rational rep-
resentation of T' on the coordinate ring O(X), and thus a decomposition of O(X) into
weight spaces. A locally finite and rational representation of T is called multiplicity-free
if the dimensions of the weight spaces are < 1. The following lemma is crucial.

Lemma 6.2. Let X be an irreducible affine variety, and let T C Aut(X) be a torus.
Assume that there exists a root subgroup U C Aut(X) with respect to T such that O(X)Y
is multiplicity-free. Then dimT < dim X < dim7T + 1.

Proof. The first inequality dim7T < dim X is clear, because T acts faithfully on X.
It follows from [DKO8, Propositions 2.7 and 2.9] that there exists a T-semi-invariant
f € O(X)Y such that the localization O(X)SZ = O(X;)Y is finitely generated. Clearly,
OX )S{ is T-stable and multiplicity-free, and O(X )S{ is the coordinate ring of the al-
gebraic quotient Z := X;//U on which T acts. It follows from [Kra84| II.3.4 Satz 5])
that T has a dense orbit in Z, and so dimZ < dim7. Since dimZ = dim X;//U =
dim Xy — 1 =dim X — 1, we get the second inequality. O

Lemma 6.3. We have U(A™) C SAut(A"™), and its closure U(A™) is connected. More-

over, Lield(A™) = Lie SAut(A™), hence it is a simple Lie algebra.

Proof. The first statement is obvious, since every unipotent algebraic subgroup is con-
tained in SAut(A™). The second claim follows from U(A™) C L{(A")O (see Lemma [T3]
in the next section). For the last statement we remark that Lie SAut(A™) is generated
by the Lie algebras of the algebraic subgroups of SAut(A™) (Remark 26) which are all
contained in U (A") (Lemma [5.2). O

Denote by T, € GL, (k) € Aut(A™) the diagonal torus and set T, := T,, N SL,, (k).
The next result can be found in [Lielll, Theorem 1].

Lemma 6.4. Root subgroups of Aut(A™) with respect to T), exist, and their weights are
all different.

Now we can give the proof of Theorem
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Proof of Theorem [E8. The algebraic subgroups SL,, (k) and SAff, (k) of Aut(A™) both
belong to U(A™) as well as all root subgroups U. Fix an algebraic isomorphism ¢: U(A™) =
U(X) and set by T := o(T") CU(X).

Let X = |J,; X; be the decomposition into irreducible components. Since UX) is
connected by Lemma [63] the components X; are stable under ¢(X). Denote by A C
U(X) the image of Aff, (k) under ¢. Since every nontrivial closed normal subgroup of
Aff,, (k) contains the translations, one of the restriction maps p;: U(X) — U(X;), say
p1, is injective on A.

Let Th = p1(T") C U(X7) be the image of T7. We will show that there is a root
subgroup U; C U(X) such that O(X;)Yt is multiplicity-free. Then Lemma [6.2] implies
that dim X; < n and so, by Proposition 2.8 X; is isomorphic to A" with a transitive
action of A. Since X is connected, this implies that X = X; ~ A™.

In order to construct U; we choose a root subgroup U C ¢(SL,,(k)) C U(X), and set
Uy := p1(U) CU(X7). Since U is a maximal unipotent subgroup of a closed subgroup
S C U(X) isomorphic to SLo(k) and since the restriction map res: O(X) — O(X;) is
a surjective homomorphism of S-modules, it follows that res: O(X)Y — O(X1)"" is also
surjective (see [Kra84, III1.3.1, Bemerkung 2]). If « is the weight of U and U; and if
f € O(X1)Y is an invariant of weight 3, then f = _ﬂXl for an invariant f € O(X)V of
weight 3, and so f U is a root subgroup of weight « + 8 with p; (f U)= f-U;. Since
the root subgroups of Aut(X) have different weights, it finally follows that O(X1)Y" is
multiplicity-free. O

7. FINITE-DIMENSIONAL AUTOMORPHISM GROUPS

It is well known that for a smooth affine curve C' the automorphism group Aut(C)
is finite except for C' ~ k,k*. Theorem implies that every finite group appears as
automorphism group of a smooth affine curve. There also exist examples of smooth affine
surfaces with a discrete nonfinite automorphism group; see [FKI17, Proposition 12.7.1].
Recall that an ind-group G = |J,, Gx is called discrete if G, is finite for all k, or equiva-
lently, if LieG = {0}.

Definition 7.1. An ind-group G =J, Gi is called finite-dimensional, dimG < oo, if
dim Gy, is bounded above. In this case we put dim G := maxy, dim Gy.

Definition 7.2. For an ind-group G = |J,, Gi we define G° := |J, G;, where G; denotes
the connected component of G, which contains e € G.

An ind-variety V is called curve-connected if for every v, w € V there is an irreducible
curve D and a morphism D — V whose image contains v and w. This is equivalent to the
condition that V admits a filtration with irreducible varieties (see [FK17, Lemma 1.6.3]).
The following result can be found in [FK17, Lemma 2.2.2]).

Lemma 7.3. Let G = J, Gk be an ind-group.

(1) G° C G is a curve-connected open (and thus closed) normal subgroup of countable
index. In particular, LieG = LieG°.

(2) We have dim G < oo if and only if G° C G is an algebraic group.

(3) We have dim G < oo if and only if dimLieG < oo.

Example 7.4. (1) We have Aut(k*) ~ Z/2 x k*, hence Aut(k*)° ~ k*. Similarly,
Aut(k*™) ~ GL,,(Z) x k*", and so Aut(k*")° ~ k*".

(2) Let C := V(y? — 23) C k? be Neile’s parabola. Then Aut(C) = k*. In fact, every
automorphism of C' defines an automorphism of the normalization A! of C fixing the
origin. From this the claim follows immediately.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



184 H. KRAFT

(3) Let C be a smooth curve with trivial automorphism group, and consider the one
dimensional variety Yo = A'UC where the two irreducible components meet in {0} € Al
Then Aut(Ye) ~ k*. Moreover, the disjoint union Y, UYe, U -+ U Y, with pairwise
nonisomorphic curves C; has automorphism group k*™. We will show in §8 that for
every n there is even an irreducible affine variety X whose automorphism group Aut(X)
is an n-dimensional torus.

Theorem [[3 claims that if dim Aut(X) is finite, then either X ~ Al or Aut(X)° is
a torus. This follows immediately from the next result.

Proposition 7.5. Let X be a connected affine variety. If X admits a nontrivial action
of the additive group kT, then either X ~ Al or dim Aut(X) = oco.

Proof. If X contains a one-dimensional irreducible component X; with a nontrivial action
of k*, then X; is an orbit under k*, hence X = X; ~ Al. Otherwise, k* acts nontrivially
on an irreducible component X; of dimension > 2. Denote by U C Aut(X) the image of
k™. We claim that the modifications f - U for f € O(X)V form an infinite-dimensional
subgroup O(X)V - U C Aut(X). This follows if we show that the image of O(X)Y
in O(X;) is infinite-dimensional. For that we first remark that there is a nonzero U-
invariant f which vanishes on all X} for k& # j, because the vanishing ideal is U-stable.
This implies that Xy C X;, and so

O(X)7 = 0(Xp)” = 0(X;)f = (0(X)"]x,)s-
Thus the image O(X)Y|x, C O(X;) is infinite-dimensional. O

The following result—a partial converse of the proposition above— is due to Arzhantsev—
Gaifullin.

Proposition 7.6 ([AG17]). Let X be an affine variety which does not admit a nontrivial
k*-action. Then Aut(X) contains a unique maximal torus T. If the action of T on X
is one fix pointed, then Aut(X)° =T and Aut(X)/T is a finite group.

(A T-action on X is called one fix pointed if there is a unique fixed point z¢ € X
and no other closed orbit.) The paper [AG17] contains many examples of such varieties,
e.g., cones over projective varieties with a finite automorphism group, or the so-called
trinomial hypersurfaces.

8. AN EXAMPLE WITH A TORUS AS AUTOMORPHISM GROUP

In Example [7.4] we have mentioned that Neile’s parabola C := V(y? — 2) C k® has
an automorphism group isomorphic to k*, and we have given an example of a reducible
curve with automorphism group isomorphic to k*™. We now construct an irreducible
variety X of dimension d with Aut(X) = k*?.

Definition 8.1. A plane curve C C k? given by an equation of the form y™ — z™ = 0,
where n > m > 2 and m,n are relatively prime, is called a cuspidal curve. It has an
isolated singularity in the origin 0.

For the cuspidal curve C,, , with equation y™ = 2™ we have a canonical isomorphism
k* =~ Aut(Cy, ) given by the action ¢(x,y) := (t"z,t"y). The induced representation
on the tangent space ToCp, ,, = k? has weights m,n. In particular, C,, , is isomorphic
to Cpy v if and only if (m,n) = (m/,n’). Moreover, the normalization is given by the
bijective morphism pc,, , : Al — Cpypn, s+ (8™, 8™).

m,n

Proposition 8.2. Let X be a product of d cuspidal curves which are pairwise noniso-
morphic. Then Aut(X) ~k*™.
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Proof. (a) Let X = C; x Cy x --- x Cyq be such a product. We have a canonical injective
homomorphism px : k*¢ < Aut(X). The normalization of X is given by the bijective
morphism 7 :=n; x--- xn4: A? = X where n;: A’ — C; is the normalization of C;. For
7 =1,...,d define

CJ = {(O,...,Cj,...,O) | cj € CJ} C X,

ie., E’j is the image of the jth coordinate line L; C A? under the normalization 7. Then
we have
=JCj={reX|dmT,X >2d-1}.
J

Now let Y = Dy x Dy X --- x Dy be another product of nonisomorphic cuspidal curves,
and define l~) and Ay as above. It follows from the description of Ax and Ay that
every 1som0rphlsm p: X = Y induces an isomorphism AX =~ Ay. Hence there is
a permutation o of {1,...,d} such that C; ~ C; ~ (Ci) = Da(z) ~ Dgiy-

(b) Now define X; := {c =(c1,...,cq) € X | ¢; =0} = [, ; C;. Clearly, X; is the
image of the jth coordinate hyperplane H; C A given by z; = 0 under the normalization
n: A% — X. Since the singular points of X are given by KXing = Uj X, it follows that
every automorphism ¢: X =% X permutes the irreducible components X; of Xgines. Now
(a) implies that the X; are pairwise nonisomorphic, hence p(X;) = Xj;.

(¢) By induction, we can assume that

pX; " k4 - Aut(X;)

is an isomorphism, and so ¢x; is given by an element ¢; € k*?'. Looking at the
intersections X; N X we see that there is a ¢t € k*< such that ¢|x,,,, is given by t.
Therefore, the automorphlsm P o=t 1o € Aut(X) induces the identity on Xging. It
follows that the normalization v : A? =~ A9 fixes the coordinate hyperplanes H; pointwise

which implies that 1/1 is the identity. In fact, if w (f1,---s fa), fi € K[z1,...,24], then

we get x;|f;, and the claim follows because all f; are irreducible (see e.g., [Jel91] for

a more general result). ]
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