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DEGREE BOUNDS FOR SEPARATING INVARIANTS

MARTIN KOHLS AND HANSPETER KRAFT

ABSTRACT. If V is a representation of a linear algebraic group G, a set S of G-invariant
regular functions on V is called separating if the following holds: If two elements v,v' € V
can be separated by an invariant function, then there is an f € S such that f(v) # f(v').
It is known that there always exist finite separating sets. Moreover, if the group G is
finite, then the invariant functions of degree < |G| form a separating set. We show
that for a non-finite linear algebraic group G such an upper bound for the degrees of a
separating set does not exist.

If G is finite, we define Bsep(G) to be the minimal number d such that for every G-
module V' there is a separating set of degree < d. We show that for a subgroup H C G
we have Bsep(H) < Bsep(G) < [G : H]Bsep(H), and that Bsep(G) < Bsep(G/H) - Bsep(H)
in case H is normal. Moreover, we calculate Ssep(G) for some specific finite groups.

1. Introduction

Let K be an algebraically closed field of arbitrary characteristic. Let G be a linear
algebraic group and X a G-variety, i.e. an affine variety equipped with a (regular)
action of G, everything defined over K. We denote by O(X) the coordinate ring of X
and by O(X)% the subring of G-invariant regular functions. The following definition
is due to DERKSEN and KEMPER [4, Definition 2.3.8].

Definition 1. Let X be a G-variety. A subset S C O(X)¢ of the invariant ring of X
is called separating (or G-separating) if the following holds:

For any pair x,x' € X, if f(x) # f(a') for some f € O(X)Y then there is an h € S
such that h(x) # h(z').

It is known and easy to see that there always exists a finite separating set (see [4,
Theorem 2.3.15]).

If V is a G-module, i.e. a finite dimensional K-vector space with a regular linear
action of G, we would like to know a priory bounds for the degrees of the elements in
a separating set. We denote by O(V)y C O(V) the homogeneous functions of degree
d (and the zero function), and put O(V)<q := @?:0 o).

Definition 2. For a G-module V' define
Bsep(G, V') := min{d | (’)(V)gd is G-separating} € N,
and set
Bsep(G) := sup{fsep(G, V) | V a G-module} € NU {oo}.
The main results of this note are the following.
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10002 MARTIN KOHLS AND HANSPETER KRAFT

Theorem A. The group G is finite if and only if Bsep(G) is finite.

In order to prove this we will show that Bsep (K ™) = 0o, that Bsep(K*) = oo, that
Bsep(G) = oo for every semisimple group G, and that Bsep(G®) < Bsep(G) where GY
denotes the identity component of G (see Theorem 1 in section 3).

Theorem B. Let G be a finite group and H C G a subgroup. Then
ﬁsep(H) < ﬁsep(G) < [G : H] ﬁsep(H)a and so ﬁsep(G) < ‘Gl
Moreover, if H C G is normal, then
Bsep(G) < 5sep(G/H) Bsep(H)-

This will be done in section 4 where we formulate and prove a more precise state-
ment (Theorem 2).
Finally, we have the following explicit results for finite groups.

Theorem C. (a) Let char K = 2. Then [sep(S3) = 4.
(b) Let char K =p > 0 and let G be a finite p-group. Then Bsep(G) = |G.
(c) Let G be a finite cyclic group. Then Bsep(G) = |G|.
(d) Assume char(K) =p is odd, and r > 1. Then Beep(Dapr) = 2p".

For a reductive group G one knows that the condition f(x) # f (') for some
invariant f (in Definition 1) is equivalent to the condition Gx N Ga’ = (), see [13,
Corollary 3.5.2]. This gives rise to the following definition.

Definition 3. Let X be a G-variety. A G-invariant morphism ¢: X — Y where Y
is an affine variety is called separating &r G-separating) if the following condition
holds: For any pair z,2' € X such that Gx N Gx' = we have p(x) # p(a’).

Remark 1. If ¢: X — Y is G-separating and X’ C X a closed G-stable subvariety,
then the induced morphism ¢|x/: X’ — Y is also G-separating.

Remark 2. Choose a closed embedding Y C K™ and denote by ¢1,...,¢m € O(X)
the coordinate functions of p: X — Y C K™. If ¢ is separating, then {©1,...,0m}
is a separating set. The converse holds if G is reductive, but not in general, as shown
by the standard linear action of K on K? given by s(z,y) = (z + sy, y) which does
not admit a separating morphism, but has {y} as a separating set.

2. Some useful results

We want to recall some facts about the 3s.-values, and compare them with results
for the classical S-values for generating invariants introduced by ScuMID [15]: 5(G)
is the minimal d € N such that, for every G-module V, the invariant ring O(V)€ is
generated by the invariants of degree < d.

By DERKSEN and KEMPER [4, Corollary 3.9.14], we have Bsep(G) < |G|. This is in
perfect analogy to the Noether bound which says that 5(G) < |G| in the non-modular
case (i.e. if char(K) { |G]), see [8, 9, 15]. Of course we have SBsep(G) < B(G), so every
upper bound for 8(G) gives one for Fsep(G).
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In characteristic zero and in the non-modular case there are the bounds by SCHMID
[15] and by DoMOKOS, HEGEDUS, and SEZER [6, 16] which improve the Noether
bound. In particular, 3(G) < 2|G| for non-modular non-cyclic groups G, by [16] .

For a linear algebraic group G it is shown by BRYANT, DERKSEN and KEMPER
[2, 5] that 3(G) < oo if and only if G is finite and p 1 |G| which is the analogon to
our Theorem A. For further results on degree bounds, we recommend the overview
article of WEHLAU [18].

The following results will be useful in the sequel.

Proposition 1. Let H C G be a closed subgroup, X an affine G-variety and Z an
affine H-variety. Let v: Z — X be an H-equivariant morphism and assume that o*
induces a surjection O(X)¢ — O(Z)2. If S ¢ O(X)Y is G-separating, then the
image 1*(S) C O(Z2)" is H-separating.

Proof. Let f € O(Z)H and 2,2 € Z such that f(z1) # f(22). By assumption
f = (f) for some f € O(X)%. Put @; := u(2;). Then f(z1) = f(21) # f(22) = f(a2).

Thus we can find an h € S such that h(z1) # h(zz). It follows that h := 1*(h) € t*(5)
and h(z1) = h(z1) # h(za) = h(z2). O

Remark 3. In general, the inverse map (¢*)~! does not take H-separating sets to
G-separating sets. Take K™ C SLj as the subgroup of upper triangular unipotent
matrices, X = K2 @ K? @ K? the sum of three copies of the standard representation
of SLy and Z = K? @ K? the sum of two copies of the standard representation of K.
Then¢: Z — X, (v,w) — ((1,0),v,w) is K*-equivariant and induces an isomorphism
O(X)St2 = O(Z)K™" (see [14]). In fact, choosing the coordinates (o, 1, Yo, Y1, 20, 21)
on X and (yo,y1, 20, 21) on Y, we get from the classical description [3] of the invariants
and covariants of copies of K?:

O(X)SL25) = Kly120 — yow1, 2120 — 201, Y120 — Yoz1,
N
O(Y)K = K[y1, 21,4120 — Y021,

and the claim follows, because ¢*(zg) = 1,¢*(x1) = 0.

Now take S := {y1, 21, y1(y120 — Yoz1), 21(Yy120 — Yo21)} C O(Z)K+. We claim that
S is a K*t-separating set, but (:*)~(S) € O(X)S"2 is not SLy-separating. For the
first claim one has to use that if y; and z; both vanish, then the third generator

Y120 — Yoz1 of the invariant ring (’)(Y)K+ also vanishes. For the second claim we
consider the elements v = ((0,0), (0,0),(0,0)) and v' = ((0,0),(1,0),(0,1)) of X,
which are separated by the invariants, but not by (¢*)~1(S).

For the following application recall that for a closed subgroup H C G of finite index
the induced module Ind$; V of an H-module V is a finite dimensional G-module.

Corollary 1. Let H C G be a closed subgroup of finite index and let V' be an H-
module. Then Bsep(H, V) < Buep(G,Ind% V). In particular, Bep(H) < Bsep(G).

Proof. By definition, Inde V contains V' as an H-submodule in a canonical way. If
n:=[G: H| and G = ", g;H, then Ind% V = @, g;V. Moreover, the inclusion
1V — Ind% V induces a surjection * : O(Ind$% (V)¢ — O(V)H, f— f|y. In fact,
for f € O(V)H, a preimage f is given by f(glvl,...,gnvn) =Y f(v), v €V,
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which is easily seen to be G-invariant. Now the claim follows from Proposition 1 above,
because the restriction map ¢* is linear and so preserves degrees. O

Proposition 2 (DERKSEN and KEMPER [4, Theorem 2.3.16]). Let G be a reductive
group, V a G-module und U C V' a submodule. The restriction map O(V) — O(U),
[+ flu takes every separating set of O(V)C to a separating set of O(U). In par-
ticular, we have

ﬁsep(G7 U) < ﬂsep(G7 V)

Let us mention here that in positive characteristic the restriction map is in gen-
eral not surjective when restriced to the invariants, and so a generating set is not
necessarily mapped onto a generating set.

We finally remark that for finite groups there always exist G-moduls V' such that
Bsep(G, V) = Bsep(G). The same holds for the -values in characteristic zero.

Proposition 3. Let G be a finite group group and Vie, = KG its regular representa-
tion. Then

ﬁsep(G) = ﬁsep(Gz ‘/reg)-
Vdim 14

In fact, every G-module V' can be embedded as a submodule into V" V. Since, by
[7, Corollary 3.7], Bsep(G, V™) = Bsep(G, V) for any G-module V' and every positive
integer m, the claim follows from Proposition 2.

3. The case of non-finite algebraic groups

In this section we prove the following theorem which is equivalent to Theorem A
from the first section.

Theorem 1. For any non-finite linear algebraic group G we have fsep(G) = 0.

We start with the additive group K. Denote by V = Keq@®Ke; ~ K? the standard
2-dimensional K T-module: s-eq := ey, s-e1 := seg+e; fors € KT. Ifchar K =p >0
we can “twist” the module V with the Frobenius map F": Kt — Kt s+ s?" to
obtain another K T-module which we denote by Vin.

Proposition 4. Let char K = p > 0 and consider the K+ -module W :=V @ Vpn.
We write O(W) = Klzo,x1,%0,y1]. Then (Q(W)KJr = Klz1,y1,28 y1 — 2} yo]. In
particular, Bsep(KT, W) =p" +1 and s0 fsep(KT) = 00.

Proof. Tt is easy to see that f := mgnyl - :z:fnyo is K T-invariant. Define the K*-
invariant morphism

m: W — K3, w=(ag,a1,bg,b1) — (al,bl,agnbl - a’fnbo).
Over the affine open set U := {(c1, ca,c3) € K3 | ¢ # 0}, the induced map 7= 1(U) —
U is a trivial K T-bundle. In fact, the morphism p: U — 7~ 1(U) given by (c1, 2, c3) —
(0,1, —cl_pn c3,¢2) is a section of 7, inducing a K*-equivariant isomorphism KT x
U= 7= YU), (s,u) — s-p(u). This implies that (Q(VV)flJr = K[z1, 27", y1, f], hence
(O(I/V)KJr = K[z, 21,90, y1] 0 K[z1, 27", y1, f], and the claim follows easily. O
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If K has characteristic zero, we need a different argument. Denote by V,, := S™V
the nth symmetric power of the standard K+-module V = Keq ® Ke; (see above).
This module is cyclic of dimension n + 1, i.e. V,, = (K tv,) where v, := €7, and for
any s € K*,s # 0, the endomorphism v — sv — v of V,, is nilpotent of rank n. In
particular, VnK oK vo where vy :=ef € V.

Remark 4. For ¢ > 1 consider the gth symmetric power SV, of the module V,,. Then
the cyclic submodule (K+v2) C SV, generated by vd is KT-isomorphic to V,,, and
(KTo) K" = K vd. One way to see this is by remarking that the modules V;, are
SLo(K)-modules in a natural way, and then to use representation theory of SLy(K).

Proposition 5. Let char K = 0. Consider the KT -module W = V* ®V,, and the two
vectors w = (xg,vg) and w' := (x9,0) of W. Then there is a Kt -invariant function
fe (’)(VV)K+ separating w and w', and any such f has degree deg f > n + 1. In
particular, Bsep(KT, W) >n+1, and 50 Bsep(KT) = 0.

Proof. Let Uy,Us be two finite dimensional vector spaces. There is a canonical iso-
morphism

v (Q(UiIK (&) U2)(p7q) = HOHI(SQUQ, SpUl)
where O(Uf @ Us)(p,q) denotes the subspace of those regular functions on U @ Uy
which are bihomogeneous of degree (p,q). If F = ¥(f), then for any = € Uj and
u € Us we have

f(z,u) = 2 (F(u?)).

(Since we are in characteristic 0 we can identify S?(U;) with (SPU;)*.) Moreover, if
Uy, Uy are G-modules, then W is G-equivariant and induces an isomorphism between
the G-invariant bihomogeneous functions and the G-linear homomorphisms:

U: OUF & Us)(, ) — Homg (S Uy, SPUY).

For the K*-module W = V* @ V,, we thus obtain an isomorphism
« + o~
U: O(V* @ Vi)(yq) — Homgr (S7V,,, SPV).

Putting p = n and ¢ = 1 and defining f € O(V* @ Vn){f:n by ¥(f) = Idy, , we get
f(w) = f(xo,v0) = 2f(vo) = i (el}) # 0, and f(w') = f(x0,0) = 0. Hence w and w’
can be separated by invariants.

Now let f be a K T-invariant separating w and w’ where deg f = d. We can clearly
assume that f is bihomogeneous, say of degree (p, q) where p+ ¢ = d. Because f must
depend on V,,, we have ¢ > 1. Hence f(w') = f(20,0) = 0, and so f(w) = f(zo,v0) #
0. This implies for F := U(f) that F(vd) # 0. Now it follows from Remark 4 above
that F induces an injective map of (K tv2) into SPV, and so

p+1=dimS?V >dim(KTvl) =gn+1>n+1.
Hencedeg f=p+qg>n+1. O

To handle the general case we use the following construction. Let G be an algebraic
group and H C G a closed subgroup. We assume that H is reductive. For an affine
H-variety X we define

G x X := (G x X)JJH := Spec(O(G x X)H)
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where H acts (freely) on the product G x X by h(g,z) := (gh~!, hx), commuting
with the action of G by left multiplication on the first factor. We denote by [g, ] the
image of (g,z) € G x X in the quotient G x X.

The following is well-known. It follows from general results from geometric invariant
theory, see e.g. [12].

(a) The canonical morphism G' x¥ X — G/H, [g,z] — gH, is a fiber bundle (in
the étale topology) with fiber X.

(b) If the action of H on X extends to an action of G, then G x X = G/H x X
where G acts diagonally on G/H x X (i.e. the fiber bundle is trivial).

(c) The canonical morphism ¢: X — G xH X given by z ~ [e,z] is an H-
equivariant closed embedding.

Lemma 1. If p: G x X — Y is G-separating, then the composite morphism ¢ o
t: X — Y is H-separating. Moreover, if S C O(G x* X)% is a G-separating set, then
its image 1*(S) C O(X)H is H-separating.

Proof. For x € X we have Gle,z] = [G, Hz]. Therefore, if Hx N Ha' = (), then
Gle,z]| N Gle,z'] = 0 and so ¢ o () = ¢([e, x]) # v([e,x']) = ¢ o v(x’). The second
claim follows from Proposition 1, because O(G xH X)¢ = O(G x X)&*H = o(x)H#
and so ¢* induces an isomorphism O(G x X)¢ = O(X)H. O

Now let V be a G-module and X := V|g, the underlying H-module. Let H act
on G by right-multiplication with the inverse. As H is reductive, the categorical
quotient G/ H exists as an affine G-variety, and can be identified with the set of left
cosets G/H (see [17, Exercise 5.5.9 (8)]). Choose a closed G-equivariant embedding
G/H = Gwy — W where W is a G-module (see [4, Lemma A.1.9]). Then we get the
following composition of closed embeddings where the first one is H-equivariant and
the remaining are G-equivariant:

w:Vig = Gx"V S G/HXxV — W x V.
The map p is given by p(v) = (wo,v). It follows from Lemma 1 and Remark 1 that
for any G-separating morphism ¢: W x V' — Y the composition p o u: V|g — Y
is H-separating. In particular, if G is reductive, then for any G-separating set S C
O(W x V) the image p*(S) C O(V)H is H-separating. Since deg u*(f) < deg f this
implies the following result.

Proposition 6. Let G be a reductive group, H C G a closed reductive subgroup and
V' an H-module. If V' is isomorphic to an H-submodule of a G-module V , then

ﬂsep(Ha V/) S ﬁsep(G)-
Now we can prove the main result of this section,

Proof of Theorem 1. By Corollary 1 we can assume that G is connected.

(a) Let G be semisimple, T C G a maximal torus and B D T' a Borel subgroup. If
A € X(T) is dominant we denote by E* the Weyl-module of G of highest weight ), and
by D* C E* the highest weight line. Choose a one-parameter subgroup p: K* — T
and define ko € Z by p(t)u = t*o - u for u € D*. For any n € N put

Vy = (D@ D™ C V, := (B & E™.
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Then V! is a two-dimensional K *-module with weights (—ko, nko). Hence O(V/)X" is
generated by a homogeneous invariant of degree n + 1 and so Beep(K*, V) = n + 1.
Now Proposition 6 implies

n+1= 6sep(K*7 Vr;) < 6sep(G)
and the claim follows. In addition, we have also shown that Gsep(K™*) = oc.

(b) If G admits a non-trivial character x: G — K™ then the claim follows because
Bsep(G) > Bsep(K*) = 00, as we have seen in (a).

(c) If the character group of G is trivial, then either G is unipotent or there is a
surjective homomorphism G — H where H is semisimple (use [17, Corollary 8.1.6
(ii)]). In the first case there is a surjective homomorphism G — KT and the claim

follows from Proposition 4 and Proposition 5. In the second case the claim follows
from (a). O

4. Relative degree bounds

In this section all groups are finite. We want to prove the following result which
covers Theorem B from the first section.

Theorem 2. Let G be a finite group, H C G a subgroup, V a G-module and W an
H-module. Then
Bsep(H, W) < Beep (G, Indg W) and Psep(G,V) < [G: H] Beep(H, V).
In particular
Bsep(H) < Bsep(G) < [G 2 H] Bsep(H), and 50 Bsep(G) < |G
Moreover, if H C G is normal, then

Note that the inequalities Gsep(G, V) < [G : H|Bsep(H, V) and Ssep(G) < |G| were
already proved by DERKSEN and KEMPER ([11, Corollary 24], [4, Corollary 3.9.14]).

The proof needs some preparation. Let V, W be finite dimensional vector spaces
and ¢: V — W a morphism, i.e. a polynomial map.

Definition 4. The degree of ¢ is defined in the following way, generalizing the de-
gree of a polynomial function. Choose a basis (w1,...,w,) of W, so that ¢(v) =
>oiy fi(w)w; for v € V. Then

deg p :=max{deg f;| j=1,...,m}.
It is easy to see that this is independent of the choice of a basis.

If V is a G-module and ¢: V — W a separating morphism, then fGep(G,V) <
deg . Moreover, there is a separating morphism ¢: V — W for some W such that
Beep(G, V) = deg .

For any (finite dimensional) vector space W we regard W? = W @ K¢ as the direct
sum of dim W copies of the standard Sz-module K<. In this case we have the following
result due to DRAISMA , KEMPER and WEHLAU [7, Theorem 3.4].
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Lemma 2. The polarizations of the elementary symmetric functions form an Sy-
separating set of We. In particular, there is an Sq-separating morphism ¥y : W —
KN of degree < d.

Recall that the polarizations of a function f € O(U) to n copies of U are defined
in the following way. Write

f(tlul +t2U2 ++tnun) == Z tllltéz '"t;nfilig...in(uhuQ?'";un)
11,82,y
Then the functions f; 4, i, (U1, U2, ..., un) € O(U™) are called polarizations of f.
Clearly, deg fi,i,...i, < deg f. Moreover, if U is a G-module and f a G-invariant, then
all fi i, 4, are G-invariants with respect to the diagonal action of G on U".

Proof of Theorem 2. The first inequality Gsep(H, W) < Bsep(G, Indg W) is shown in
Corollary 1.

Let V be a G-module, v,w € V, and let ¢: V — W be an H-separating morphism
of degree Bsep(H, V). Consider the partition of G into H-right cosets: G = Ule Hyg;
where d := [G : H]. Define the following morphism

oV — 2 wd W, gN
where ¢(v) := (¢(g1v), ..., ¢(gqv)) and Yy : W% — KV is the separating morphism
from Lemma 2.

We claim that ¢ is G-separating. In fact, for ¢ € G define the permutation o €
Sq by Hgig = Hg,(), i.e. gig = higs@;y for a suitable h; € H. Then ¢(g;gv) =
©(higoiv) = ¢(go(iyv) and so G(gv) = o~ '@(v). This shows that @ is G-invariant.

Assume now that gv # w for all g € G. This implies that hg;v # w for all h € H
and i = 1,...d, and so ¢(g;v) # p(w) for i = 1,...,d, because ¢ is H-separating.
As a consequence, @(v) # op(w) for all permutations o € Sy, hence ¢(v) # @(w),
because Yy is Sg-separating, and so ¢ is G-separating.

For the degree we get deg @ < deg oy -deg @ < d-degy =[G : H|Bsep(H, V). This
shows that

Bsep(G, V) < [G : H|Bsep(H, V).
If H C G is normal we can find an H-separating morphism ¢: V' — W of degree
Bsep(H, V) such that W is a G/H-module and ¢ is G-equivariant. Now choose an
G/ H-separating morphism ¢: W — U of degree Ssep(G/H, W). Then the composition
Pow: V — U is G-separating of degree < deg - deg . Thus

ﬁsep(Gy V) < ﬁsep(G/I_L W) 6sep(Ha V) < ﬁsep(G/H) ﬁsep(H)a

and the claim follows. O

5. Degree bounds for some finite groups

In principle, Proposition 3 allows to compute fsep(G) for any finite group G. Unfor-
tunately, the invariant ring O(V;e) does not behave well in a computational sense.
We have been able to compute SBsep(G) with MAGMA [1] and the algorithm of [10] in
just one case (computation time about 20 minutes):
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Proposition 7 (MAGMA and Proposition 3). Let char K = 2. Then Bsep(S3) = 4.
Proposition 8. Let char K = p > 0 and let G be a p-group. Then Bsep(G) = |G|.

Proof. Let us start with a general remark. Let G be an arbitrary finite group, and
let V' be a permutation module of G, i.e. there is a basis (vy,vs,...,v,) of V which
is permuted under G. Then the invariants are linearly spanned by the orbit sums s,
of the monomials m = z%' 2% - - - zin € O(V) = K|y, 29, ..., x,] which are defined in

the usual way:
Sm 1= Z f
fEGmM
The value of s, on the fixed point v := vy + vy + -+ + v, € V equals |Gm|. Hence,
sm(v) = 0 if p divides the index [G : G;,] of the stabilizer G,,, of m in G. It follows
that for a p-group G we have s,,(v) # 0 if and only if m is invariant under G.

If, in addition, G acts transitively on the basis (v1,va,...,v,), then an invariant
monomial m is a power of x1xs - - - x,, and thus has degree ¢n > dim V. If we apply
this to the regular representation, the claim follows. O

With Corollary 1 we get the next result.

Corollary 2. Let char K = p > 0 and G be a group of order rp* with (r,p) = 1.
Then Bsep(G) > p*.

Proposition 9. Let G be a cyclic group. Then fsep(G) = |G|.

Proof. Let |G| = rp* where (r,p) = 1, p = char K, and choose two elements g,h € G
of order r and q := p¥, respectively, so that G = (g, h). We define a linear action of
GonV :=@_, Kv; by

gu; == C-v; and hv; == v;41 fori=1,...,¢q

where ( € K is a primitive rth root of unity and v44q := v;. We claim that the G-
invariants O(V)% are linearly spanned by the orbit sums s,, where r|degm. In fact,
O(V){9 is linearly spanned by the monomials of degree £r (£ > 0), and the subgroup
H := (h) C G permutes these monomials.

Now look again at the element v := v + va + --- + v, € V. If r|degm then
Sm(v) = |[Hm/|, and this is non-zero if and only if the monomial m is invariant under
H. This implies that m is a power of zixs - x4. Since the degree of m is also a
multiple of r we finally get deg s,, > rq = |G)|. (]

Corollary 3. Let G be a finite group. Then we have
sep(G) > dg).
Prep(G) = max(ord g)

Let Ds,, = (o, p) denote the dihedral group of order 2n with ord(c) = 2, ord(p) =n

and opo~ !t = p~ L.

Proposition 10. Assume that char(K) = p is an odd prime, and let r > 1. Then
Bsep(D2pT) = 2pr'

Note that if char(K) = p = 2, then Dgyr is a 2-group, 80 Bsep(Dar+1) = 27! by
Proposition 8. We conjecture that for char(K) = 2 and p an odd prime, we have
Bsep(D2p) = p + 1, which would fit with Proposition 7.
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Proof. Put ¢ = p" and define a linear action of Dypr on V := @3;01 Kuv; by
pv; = v;41 and ov; = —v_; fori =0,1,...,¢—1

where v; = v; if j = ¢ mod ¢ for i,j € Z. As before, the invariants under H := (p)

are linearly spanned by the orbit sums s, = > ferm / of the monomials m =
zlo i ezl € O(V) = Klxo, 41, . .., 2¢-1]. Thus, the Dypr-invariants are linearly

spanned by the functions {s,, + 0s,, | m a monomial}.

For v := vg 41+ - +04—1 We get 08, (v) = sy (0v) = (=1)9%8™s,, (v). Therefore,
Sm~+08m is non-zero on v if and only if s,,(v) # 0 and the degree of m is even. As in the
proof of Proposition 9, s,,(v) # 0 implies that m is a power of zgz1 - - - £4—1 which has
to be an even power since g is odd. Thus, for m := (zox1 -+ T4—1)?, Sim + TSy = 2m
is an invariant of smallest possible degree, namely 2¢, which does not vanish on v. [

Let Iy := O(V)$ O(V) denote the Hilbert-ideal, i.e. the ideal in O(V) generated
by all homogeneous invariants of positive degree. It is conjectured by DERKSEN and
KEMPER that Iy is generated by invariants of positive degree < |G|, see [4, Conjecture
3.8.6 (b)]. The following corollary shows that this conjectured bound can not be
sharpened in general.

Corollary 4. Let char K = p and G a p-group (with p > 0), or a cyclic group, or
G = Dypr with p odd. Then there exists a G-module V' such that Iy is not generated
by homogeneous invariants of positive degree strictly less than |G)|.

Proof. In the proofs of the Propositions 8, 9 and 10 respectively, we constructed a G-
module V and a non-zero v € V such that f(v) = 0 for all homogeneous f € O(V)¢
of positive degree strictly less than |G|, but such that there exists a homogeneous
f € O(V)E of degree |G| with f(v) # 0. This shows that f ¢ O<V)$,<\GI ow). 0O
Now we use relative degree bounds for separating invariants and good degree
bounds for generating invariants of non-modular groups, that appear as a subquo-
tient, to get improved degree bounds for separating invariants in the modular case.

Proposition 11. Let char K = p and G be a finite group. Assume there exists a
chain of subgroups N C H C G such that N is a normal subgroup of H and such that
H/N is non-cyclic of order s coprime to p. Then

3|1G|  in case s is even

; <
Boen(G) = { §|G| in case s is odd.

Proof. By SEZER [16], for a non-cyclic non-modular group U, we have 3(U) < 3|U|
in case |U] is even, and B(U) < 2|U| in case |U| is odd. We now assume s is even;
the other case is essentially the same. Since Beep(U) < S(U) always holds, we get by
using Theorem 2

Bsep(G) < /Bsep(H)[G : H] < ﬂsep(N)ﬂsep(H/N)[G : H]

< BH/N)IG : H]|N| < S[H : NG : H]IN| = {6
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Example 1. Assume p = 3 and G = A4. The Klein four group is a non-cyclic
non-modular subgroup of even order. We get Gsep(As) < %|A4| = 9. Application of
Theorem 2 shows Ssep(As X Ag) < Beep(As)? < 81,

Example 2. Let Dy, be the dihedral group of order 2n. We know n < Bep(D2x) by
Corollary 3. Assume char K = p # 2 and n = p"m with p,m coprime and m > 1.
Then Dy, has the non-cyclic subgroup Dy, of even order, s0 Ssep(Dan) < %Qn = %n
So the only dihedral groups, to which the proposition above does not apply, are those
of the form Dy, which are covered by Proposition 10.

We end this section with two questions:
Question 1. Which finite groups G satisfy Bsep(G) = |G| ?

Question 2. Which finite groups G do not have a non-cyclic non-modular subquo-
tient?

The dihedral groups of Proposition 10 satisfy this property, and we get Gsep(G) =
|G| for those groups. But in characteristic 2, Bsep(S3) < |S3| by Proposition 7, so the
answer to the second question only partially helps to solve the first one.
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