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1. Introduction: Local Cross Sections and Slices

Luna’s famous Slice Theorem gives a “local description” of an action of a reductive
group G on an a�ne variety. It is modeled on the case of compact transformation groups,
but one has to take into account the existence of non-closed orbits. Also one has to modify
the concept of “local” and of “open neighborhoods” which make the whole story much
more complicated. We first describe the situation of a compact group acting continuously
on a nice topological space.

1.1. Free actions and cross sections. Let K be a compact group and let X be a
K-space, i.e. a Hausdor↵ topological space with a continuous action of G. Then the orbit
space X/G is again Hausdor↵ and the quotient map ⇡ : X ! X/G is open, closed and
proper.

Assume that the point x 2 X has a trivial stabilizer. Then one might expect that in
a suitable neighborhood of the orbit Kx the action is free and X looks like K ⇥ U where
K acts by left multiplication on K. This is indeed the case under very mild assumptions,
e.g. if K is a compact Lie group and X is locally compact.

A cross section is a continuous map � : X/G ! X such that ⇡ � � is the identity on
X/G. A local cross section defined on U ✓ X/G is a cross section of ⇡�1(U) ! U . A
first result for compact transformation groups in this setting is the following, see [Bre72,
Chap. II, Theorem 5.4].

1.1.1. Proposition. Assume that K is a compact Lie group and that X is locally
compact. If x 2 X has a trivial stabilizer, Kx = {e}, then there is a local cross section �
in a neighborhood U of ⇡(x) such that ⇡�1(U) ' K ⇥ U . Thus a free action of K on X
looks locally like K ⇥ U .

1.1.2. Example. Let us look at an algebraic example. Take the finite group G = Z/2
acting on X := C by ± id. Then the orbit space X/G can be identified with C where the
quotient map ⇡ : X ! C is given by ⇡(z) := z2. Removing the origin {0} 2 X, the action
is free and the quotient ⇡ : Ẋ := X \{0}! Ċ := C\{0} is a 2-fold covering. This is clearly
locally trivial in the C-topology, but not locally trivial in the Zariski-topology. However,
looking at the two fiber products

F = C [ C ����! X
?

?

y

⇡̃

?

?

y

⇡

C z 7!z2

����! C

Ḟ = Ċ [ Ċ ����! Ẋ
?

?

y

⇡̃

?

?

y

⇡

Ċ z 7!z2

����! Ċ

we find that F ' V(xy) ✓ C2, the union of two lines intersecting in the origin, and
that Ḟ is the disjoint union of two copies of Ċ, interchanged by G and each one mapped
isomorphically to Ċ under ⇡̃. Thus the quotient ⇡ can be trivialized, not with an open
covering of Ċ, but with the “étale” surjective map Ċ! Ċ, z 7! z2.

1.2. Associated bundles and slices. Assume again that K is a compact group
and X a K-space. What can we say if the action is not free? More precisely, how does X
look like in a neighborhood of an orbit O ' K/H? In order to explain this we make the
following construction. Consider an H-space Y and define

X := K ⇥H Y := (K ⇥ Y )/H

where H acts freely on the product K ⇥ Y by h(g, y) := (gh�1, hy). We will denote the
orbit of (g, y) by [g, y] 2 K⇥H Y . This space is called twisted product or associated bundle.
It has a number of remarkable properties. First of all, we have an action of K on K ⇥H Y
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induced by the left multiplication on K: g0[g, y] := [g0g, y]. Then, there is a natural closed
embedding Y ,! K ⇥H Y , y 7! [e, y].

1.2.1. Proposition. (1) There is a canonical bijection between the K-orbits in
K ⇥H Y and the H-orbits in Y given by O = K[g, y] 7! Hy = O \ Y . This map
induces a homeomorphism of orbit spaces (G⇥H Y )/G

⇠! Y/H, the inverse map
is given by Hy 7! G[e, y].

(2) The projection K ⇥ Y ! K induces a K-equivariant map p : K ⇥H Y ! K/H
which is a locally trivial bundle with fiber Y : p�1(gH) = gY .

Except for the last statement, the proofs are easy exercises and are left to the reader.
For the last statement, one has to use the fact that the projection K ! K/H admits local
cross sections.

1.2.2. Example. Let us give again an algebraic example. Take G := C⇤ and H :=
{±1} ✓ C⇤, and consider the action of H on Y := C by ± id as in the example above.
Then the associated bundle G⇥H Y has the following description:

C⇤ ⇥H C ⇠! C⇤ ⇥ C, [t, z] 7! (t2, tz),

the C⇤-action on C⇤ ⇥ C is given by t(s, x) = (t2s, tx), and the closed embedding C ,!
C⇤ ⇥C is z 7! (1, z). Thus C⇤(s, x)\C = {±x} and (C⇤ ⇥C)/C⇤ ' C where the quotient
map ⇡ : C⇤ ⇥ C ! C is given by (s, x) 7! x2. Finally, p : C⇤ ⇥ C ! C⇤/H ' C⇤ is the
projection prC⇤ and so p is a trivial bundle with fiber C.

1.2.3. Remark. There is an easy criterion to show that a given K-space X is an
associated bundle. Assume that there is a K-equivariant map p : X ! K/H with some
closed subgroup H ✓ K. Then Y := p�1(eH) is an H-space, and we have a canonical
homeomorphism

' : K ⇥H Y
⇠! X, [g, y] 7! gy.

In fact, ' is continuous and bijective, and the inverse map is given by x 7! [p(x), gp(x)
�1

x]

where gp(x) 2 K is a representative of p(x). We use here again the fact that K ! K/H
has local cross sections.

Now we can formulate the local structure theorem for actions of compact groups, see
[Bre72, Chap. II, Theorem 5.4].

1.2.4. Theorem. Let K be a compact Lie groups and X a locally compact K-space.
For any x 2 X there is a locally closed and Kx-stable subset S ✓ X containing x such that

(1) KS is an open neighborhood of Kx,
(2) K ⇥Kx Y ! KY , [g, y] 7! gy, is a homeomorphism.

Such an S ✓ X is called a slice in x, and KS is called a tube about Kx. The theorem
together with Proposition 1.2.1 above tells us that the action of K in a neighborhood of
an orbit O = Kx is completely determined by the action of Hx on a slice in x.

2. Flat and Étale Morphisms

In this section we discuss the concept of “local” in algebraic geometry. Since there are
no “small” open neighborhoods in the Zariski-topology we will replace them by so-called
“étale neighborhoods”. For this we have to define étale morphisms and to describe their
basic properties. In the smooth case, a morphism is étale in a point if and only if its
di↵erential is an isomorphism. In general, one has to ask in addition that the morphism
is flat.
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In this section, we will use some results from the literature, and we refer to [Har77,
III.9], [Mat89, 3.7 and 8], and [Eis95, Section 6] for more details and proofs. Our approach
is based on ”standard étale morphisms” (Example 2.1.13)

2.1. Unramified and étale morphisms. Let ' : X ! Y be a morphism, let x 2 X
and set y := '(x) 2 Y . Then the morphism ' induces a homomorphism '⇤ : OY,y ! OX,x

of local rings, i.e. '⇤(my) ✓ mx.

2.1.1. Definition. The morphism ' is unramified in x 2 X if mx = '⇤(my)OX,x.
More geometrically, this means that x is an isolated point of the fiber F := '�1(y) and F
is reduced in x.

Recall that the di↵erential d'x : TxX ! TyY vanishes on TxF ✓ TxX, and that
TxF = ker d'x in case the fiber is reduced in x. It follows that ' is unramified in x if and
only if the di↵erential d'x is injective. A immediate consequence is that an unramified
morphism ' : X ! Y has finite reduced fibers.

2.1.2. Exercise. Show that the subset {x 2 X | ' is unramified in x} ✓ X is open.
(Hint: )

Another important concept is flatness. It will play a central rôle in all what follows.
Unfortunately, there is no easy “geometric meaning” of flatness; it is a purely algebraic
concept.

2.1.3. Definition. If R is a ring, then an R-module M is called flat if the functor
N 7! N ⌦R M , N an R-module, is left exact. A morphism ' : X ! Y is called flat in
x 2 X if OX,x is a flat OY,'(x)-module (with respect to '⇤ : OY,'(x) ! OX,x).

We have the following ”Local Criterion for Flatness”, see [Eis95, Theorem 6.8].

2.1.4. Lemma. Let ' : X ! Y be a morphism, let x 2 X and set y := '(x) 2 Y . Then
' is flat in x if and only if the map my ⌦OY,y

OX,x ! OX,x is injective.

2.1.5. Exercise. Show that the projection prY : X ⇥ Y ! Y is flat.

2.1.6. Exercise. If ' : X ! Y is flat in x 2 X, then '⇤ : OY,'(x) ! OX,x is injective.
(Hint: For h 2 m'(x) denote by ah ✓ OY,'(x) the kernel of µh : f 7! hf . Then we get an exact

sequence 0 ! ah ⌦OY,'(x)
OX,x ! OX,x

µh! OX,x. Hence µh|OX,x = 0 if and only if h = 0.)

Finally, we define étale morphisms which will be the algebraic-geometric replacement
for local isomorphisms.

2.1.7. Definition. The morphism ' : X ! Y is étale in x 2 X if ' is unramified and
flat in x. Equivalently, '⇤ induces an isomorphism my ⌦OY,y

OX,x
⇠! mx where y := '(x).

2.1.8. Examples. (1) An open immersion X ,! Y is étale.
(This is clear since OX,x = OY,x for all x 2 X.)

(2) If ' : X ! Y is étale in x 2 X, then the di↵erential d'x : TxX ! T'(x)Y is an
isomorphism.
(Since mn

y ⌦OY,y
OX,x

⇠! mn
x for all n (see the following exercise) it follows that

my/m2
y

⇠! mx/m2
x is an isomorphism.)

(3) If ' : X ! Y is étale in x 2 X and y := '(x), then X is smooth in x if and only
if Y is smooth in y.
(The following exercise implies that the canonical maps mn

y/m
n+1
y ! mn

x/m
n+1
x

are isomorphisms for all n � 0. Hence grmy
OY,y ' grmx

OX,x, and the claim
follows from Theorem A.4.10.1.)
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2.1.9. Exercise. If ' : X ! Y is étale in x 2 X, then the maps mn
y ⌦OY,y OX,x ! mn

x are
isomorphisms for all n � 0.

In case X and Y are smooth, there is simple criterion for ' to be étale, see [Har77,
III. Proposition 10.4 and Exercise 10.3].

2.1.10. Proposition. Assume that X is smooth in x and Y is smooth in y. Then '
is étale in x if and only if the di↵erential d'x : TxX ! TyY is an isomorphism.

Using the implicit function theorem it follows that an étale morphism between smooth
varieties is a local homeomorphism in the C-topology. We will see that this holds in general
for any étale morphism, as a consequence of Proposition 2.1.14.

Let us recall some basic properties of flat and étale morphisms. We refer to [Har77,
III.9], [Mat89, 3.7 and 8], and [Eis95, Section 6] for more details and proofs.

2.1.11. Lemma. (1) Let  : X
⌘! Y

'! Z be a composition. If ⌘ and ' are flat
(resp. étale), then  is flat (resp. étale). If  and ⌘ are flat (resp. étale) and ⌘
is surjective, then ' is flat (resp. étale).

(2) If ' : X ! Y is flat in x 2 X, then '⇤ : OY,'(x) ! OX,x is injective, and for
every ideal a ✓ OY,'(x) we have aOX,x \OY,'(x) = a. In particular, OX,x/aOX,x

is flat over OY,'(x)/a and dimOX,x = dimOY,'(x).
(3) For an arbitrary morphism ' : X ! Y the set of points x 2 X where ' is flat

(resp. étale) is open in X.
(4) A flat morphism ' : X ! Y is open and equidimensional, i.e., if ' is flat in

x 2 X, then dimx X = dim'(x) Y + dimx '�1('(x)).

Proof. (1) This is an easy exercise which we leave to the reader.

(2) This follows immediately from the definition, see [Mat89, Theorem 7.5].

(3) For flatness this is [Mat89, Theorem 24.3]. For the étaleness one remarks that the
set of points x 2 X where the di↵erential d'x is injective is open, see Exercise 2.1.2.)

(4) See [Har77, Chap. III, Exercise 9.1 and Proposition 9.5] or [Mat89, Theo-
rem 15.1]. ⇤

A morphism ' : X ! Y is called faithfully flat if it is flat and surjective. If X and
Y are a�ne this is equivalent to the following condition: A homomorphism N ! M of
O(Y )-modules is injective if and only if O(X) ⌦O(Y ) N ! O(X) ⌦O(Y ) M is injective.
Here is a useful application, on the level of rings.

2.1.12. Lemma. Let A be a ring, and let R be an A-algebra. Let B/A be faithfully flat
and assume that B ⌦A R is a finitely generated B-algebra. Then R is finitely generated
over A.

This behavior is usually expressed in the following way. If an A-algebra R becomes
finitely generated under a faithfully flat base change, then R is finitely generated. We might
ask here which other properties of an A-algebra behave in a similar way. E.g. being an
integral domain or being reduced are such properties.

Proof. The ring R is the union of finitely generated A-subalgebras R⌫ . Since the
tensor product commutes with direct limits, lim�!(B ⌦A R⌫)

⇠! B ⌦A lim�!R⌫ = B ⌦A R,

there is a ⌫ such that B ⌦A R⌫
⇠! B ⌦A R. Since B/A is faithfully flat, this implies that

R⌫ = R. ⇤
The following example gives a general construction of an étale morphism reflecting

what we usually have in mind. Unfortunately, the proof is not easy and needs some work.
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2.1.13. Example (standard étale morphism). Let U be an a�ne variety, and let
F 2 O(U)[t] be a monic polynomial. Then the projection onto U induces a morphism
⌘ : VU⇥C(F )! U , and the following holds:

(1) The morphism ⌘ is étale in any (u, a) 2 VU⇥C(F ) such that F 0(u, a) 6= 0, where
F 0 := dF

dt 2 O(U)[t].

(2) Define Z := VU⇥C(F )F 0 . Then O(U)[t]F 0/(F )
⇠! O(Z) is an isomorphism, i.e.

the ideal (F ) ✓ O(U)[t]F 0 is perfect.

Proof. (a) The morphism p : VU⇥C(F ) ! U is finite and surjective, and Z ✓
VU⇥C(F ) is open. Set R := O(U)[t]F 0/(F ) so that O(Z) = R/

p

(0). For any u 2 p(Z)
we get R/muR = C[t]/(F (u, t) and this is a product of copies of C. It follows that
R/muR = O(Z)/muO(Z). Hence p : Z ! U has discrete and reduced fibers, and so
p : Z ! U is unramified. Clearly, R is flat over O(U). So if we show that R is reduced,
then (2) follows, and ⌘ : Z ! U is flat, hence (1).

(b) From (b) we see that m̃z := mzR ✓ R is a maximal ideal, and that we get surjective
homomorphisms

mp(z)/m
2
p(z) ⇣ mz/m

2
z ⇣ m̃z/m̃

2
z.

This implies that Rm̃z
is a regular local ring in case p(z) 2 U is a smooth point. Hence

Rm̃z
= OZ,z, because a regular local ring is an integral domain.

(c) Now we look at the canonical map ' : R !
Q

z2Z0 Rm̃z
where Z 0 := {z 2 Z |

p(z) smooth in U}. We want to show that ' is injective which implies that R is reduced.
If r 2 ker', then, for every z 2 Z 0, there is an sz /2 m̃z such that szr = 0. This implies
that Ann(r) * m̃z for all z 2 Z 0. If r 6= 0, then Ann(r) is contained in an associated prime
of R. Since every irreducible component of Z contains smooth points, it follows that every
minimal prime of R is contained in m̃z for some z 2 Z 0. So it remains to see that R has
no embedded primes, i.e. every zero divisor is contained in a minimal prime.

(d) It su�ces to prove this for the algebra A := O(U)[t]/(F ). Let p ✓ A be an
associated prime which is not minimal, and let p0 ✓ p be a minimal prime. Then p0\O(U) $
p\O(U). If a 2 p\O(U) \ p0 \O(U), then multiplication with a is injective on O(U), but
has a kernel on A. This contradicts the fact that A is flat over O(U). ⇤

A morphism of the form ⌘ : Z ! U as above is called a standard étale morphism.
These morphisms have many nice properties, e.g. a standard étale morphism is a local
homeomorphism in the C-topology. In fact, this is obvious for U = Cn by the implicit
function theorem, and using a closed embedding U ,! Cn one gets a fiber product of the
form

VU⇥C(F )F 0
✓����! VCn⇥C(F̃ )F̃ 0

?

?

y

?

?

y

U
✓����! Cn

where F̃ 2 O(Cn)[t] is a lift of F 2 O(U)[t]. Another point is the following. If F 2 O(U)[t]
has degree d as a polynomial in t, then the standard étale morphism ⌘ : VU⇥C(F )F 0 ! U
has also degree d. In particular, if ⌘ is injective, then d = 1, hence F is linear, and so ⌘ is
an open immersion. We will see below that this holds for every étale morphism.

The next result shows that every étale morphism is ”locally standard”.

2.1.14. Proposition. Let ' : X ! Y be a morphism, and assume that ' is étale in
x0 2 X. Then there is an a�ne open neighborhood U of '(x0), a standard étale morphism
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⌘ : Z ! U and an open immersion of a neighborhood V of x0 into Z such that '(V ) ✓ U
and '|V = ⌘|V : V ! U :

X
◆ ����

open

V
✓����!

open

Z
?

?

y

' '|V =

?

?

y

⌘|V
?

?

y

⌘

Y
◆ ����

open

U U

Let us first recall the following ”Local Criterion for Flatness”, see [Eis95, Theo-
rem 6.8].

2.1.15. Lemma. Let ' : X ! Y be a morphism, let x 2 X and set y := '(x) 2 Y .
Then ' is flat in x if and only if the map my ⌦OY,y

OX,x ! OX,x is injective.

As a consequence we get the next lemma which will be used in the final part of the
proof of Proposition 2.1.14.

2.1.16. Lemma. Let µ : Z1 ! Z2 and ⌘2 : Z2 ! U be morphisms. Assume that ⌘1 :=
⌘2 � µ is flat in z1 2 Z1 and that ⌘2 is étale in z2 := µ(z1). Then µ is flat in z1.

Z1
µ
> Z2

U

⌘2
_⌘1 >

If ⌘1 is étale in z1 (and ⌘2 étale in z2), then µ is étale in z1.

Proof. Since ⌘2 is étale in z2, we get muOZ2,z2 = mz2 where u := ⌘2(z2). It follows
that the first map in the composition

mu ⌦OU,u
OZ1,z1 ! mz2 ⌦OZ2,z2

OZ1,x1 ! OZ1,z1

is surjective. Since ⌘1 is flat in z1 the composition is injective, hence the second map is
injective, and this implies, by the lemma above, that µ is flat in z1. The second claim
follows, because µ is unramified in z1 in case ⌘1 is unramified in z1. ⇤

2.1.17. Remark. Lemma 2.1.15 has the following generalization, see [Mat89, The-
orem 22.3]. Let ' : X ! Y be a morphism, let x 2 X and set y := '(x) 2 Y , and let
I ✓ OY,y be an ideal. Then ' is flat in x if and only if the following holds: (i) OX,x/IOX,x

is flat over OY,y/I, and (ii) the map I ⌦OX,x ! OX,x is injective.
This has the following nice application, generalizing Lemma 2.1.16.

2.1.18. Proposition. Consider the diagram

X1
µ
> X2

Y

'2

_'1 >

where '1 is flat. Assume that for every y 2 Y the induced morphism of the (schematic)
fibers '�1

1 (y)! '�1
2 (y) is flat. Then µ is flat.

Proof. Choose x1 2 X1, and put x2 := ⌘(x1) and y := '1(x1) = '2(x2). Set
I := myOX2,x2 ✓ OX2,x2 . Then the local ring of the schematic fiber '�1

2 (y) in x1 is
OX1,x1/IOX1,x1 which is flat over the local ring OX2,x2/I of the schematic fiber '�1

2 (y) in
x2, by assumption. Moreover, my ⌦OY,y

OX1,x1 ! I ⌦OX2,x2
OX1,x1 is surjective, and the

composition with ◆ : I ⌦OX2,x2
OX1,x1 ! OX1,x1 is injective, because '1 is flat in x1. Thus

◆ is injective, and the claim follows from the remark above. ⇤
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Proof of Proposition 2.1.14. We can assume that every irreducible component
of X contains x0.

(a) There is an open embedding X ,! X̃ and a finite morphism '̃ : X̃ ! Y such that
'̃|X = '. Thus we can assume that ' is finite and surjective.

(b) There exists an a�ne open neighborhood U ✓ Y of y0 := '(x0) and a closed
embedding ⇢ : V := '�1(U) ,! U ⇥ C of the form x 7! ('(x), h(x)) where h(x0) = 1.

(c) There is an F 2 O(U)[t] with the following properties: (i) F vanishes on the image
of Y ; (ii) F 0(y0, 1) 6= 0; (iii) the leading term of F does not vanish in y0. Localizing U at
the leading term of F we can assume that F is monic.

Now we can finish the proof. By (c) we have a closed immersion V ,! VU⇥C(F ).
Since F 0(y0, 1) 6= 0 we can replace V by the open set V 0 = V \ VU⇥C(F )F 0 containing
x0, and we get a closed immersion V 0 ,! VU⇥C(F )F 0 . Moreover, the induced morphism
VU⇥C(F )F 0 ! U is a standard étale map. Thus we are in the situation of Lemma 2.1.16
which implies that the image of V 0 is open in VU⇥C(F )F 0 . ⇤

Let us draw some important consequences.

2.1.19. Proposition. (1) Consider the following fiber product.

U ⇥Y X
⌘̃����! X

?

?

y

'̃

?

?

y

'

U
⌘����! Y

If ⌘ is étale, then the fiber product is reduced and ⌘̃ is étale.
(2) An injective étale morphism is an open immersion.

Proof. (1) We can assume that X, Y and U are a�ne. If X ! Y is a standard
étale morphism, O(X) = O(Y )[t]F 0/(F ) where F 2 O(Y )[t] is a monic polynomial, then
O(U)⌦O(Y )O(X) ' O(U)[t]G0/(G) where G = ⌘⇤(F ), hence U⇥Y X is reduced and U⇥Y

X ! U is also a standard étale morphism. Now the claim follows from Proposition 2.1.14
above.

(2) We have seen above that an injective standard étale morphism is an open immer-
sion. Hence the claim follows from Proposition 2.1.14 ⇤

2.2. Étale base change. The situation of the first statement of Proposition 2.1.19
above is a special case of the following setup. Let S be a variety, let p : X ! S and
q : Y ! S two S-varieties, and let ' : X ! Y be an S-morphism, i.e. q � ' = p. If
⌘ : S0 ! S is a morphism we obtain S0-varieties X 0 := S0⇥S X and Y 0 := S0⇥S Y and an
induced S0-morphism '0 : X 0 ! Y 0, as shown in the following diagram:

(⇤)

X 0 ⌘X
> X

Y 0 ⌘Y
>

'0

>

Y

'

>

S0

q0

_
⌘

>

p0

>

S

q
_

p

>

This is usually expressed by saying that '0 : X 0 ! Y 0 is obtained from ' : X ! Y by the
base change ⌘ : S0 ! S. A basic question is what happens in case of a flat or étale base
change. E.g. the first statement of Proposition 2.1.19 above says that for a an étale base
change ⌘ : S0 ! S, the fiber products X 0 and Y 0 are reduced and ⌘X , ⌘Y are again étale.
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We will have more statements of this form later, but let us first prove the following useful
result.

2.2.1. Lemma. Let ' : X ! Y be an abstract map between varieties. If ⌘ : X 0 ! X is
an étale and surjective morphism such that the composition ' � ⌘ is a morphism, then '
is a morphism.

X 0 ⌘
> X

Y

'
_⌘�' >

Proof. Denote by �' ✓ X ⇥ Y the graph of the map '. We have to show that �'
is closed and that the induced map p : �' ! X is an isomorphism. By assumption, the
composition  := ⌘ � ' is a morphism, and we get the following commutative diagram:

(12)

� 
✓����! X 0 ⇥ Y

pr����! X 0

�:=

?

?

y

(⌘⇥idY )|� 
?

?

y

⌘⇥idY

?

?

y

⌘

�'
✓����! X ⇥ Y

pr����! X

Since ⌘ is surjective we see that (⌘ ⇥ idY )�1(�') = � . It follows that X ⇥ Y \ �' is the
image of the open set X 0⇥Y \� which is open, because ⌘⇥ idY is flat. Hence �' is closed.
Now the outer diagram of (12) is a fiber product, hence � is étale and surjective, and the
induced horizontal map � ! X 0 is an isomorphism. Therefore, �' ! X is a bijective étale
morphism, by Lemma 2.1.11(1), and thus an isomorphism, by Proposition 2.1.19(2). ⇤

2.2.2. Examples. (1) If an S-variety X becomes smooth under an étale surjec-
tive base change S0 ! S, then X is also smooth (see Example 2.1.8(3)).

(2) If an S-morphism ' : X ! Y becomes an isomorphism under an étale surjective
base change S0 ! S, then ' is an isomorphism. (This follows from the lemma
above applied to the map '�1.)

The next example is a very special case of the Slice Theorem for finite groups.

2.2.3. Example. Let G be a finite group acting on the a�ne variety X, and denote
by ⇡ : X ! X/G the quotient. Define X 0 := {x 2 X | Gx = {e}}. Then

(1) X 0 is open in X and ⇡(X 0) is open in X/G.
(2) The map (g, x) 7! (x, gx) : G ⇥ X 0 ! X 0 ⇥⇡(X0) X

0 is a G-equivariant isomor-
phism:

G⇥X 0 '��������!
(g,x) 7!(x,gx)

X 0 ⇥⇡(X0) X
0 ����! X 0

?

?

y

prX0

?

?

y

p

?

?

y

⇡|X0

X 0 X 0 ⇡|X0����! X/G

(3) The induce morphism ⇡|X0 : X 0 ! X/G is étale.

Proof. (1) The first statement is clear since X \X 0 =
S

g 6=e X
g.

(2) For any g 2 G the morphism ◆g : X 0 ! X 0 ⇥⇡(X0) X
0, x 7! (x, gx), is a closed

immersion, because p � ◆g = idX0 . Hence the fiber product X 0 ⇥⇡(X0) X
0 is the disjoint

union of copies of X 0, proving (2).

(3) For the last statement we can embed X as a closed G-stable subset into a repre-
sentation V of G and thus assume that X = V . The following argument was indicated to
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us by G.W. Schwarz. We claim that for any x 2 V 0 there exist n := dimV invariant
functions p1, . . . , pn vanishing in x such that the di↵erentials (dp1)x, . . . , (dpn)x form a
basis of the cotangent space (TxV )⇤ = mx/m2

x. In fact, the following Exercise 2.2.5 shows
that for a given cotangent vector ⇠ 2 (TxV )⇤ there is an f 2 O(V ) vanishing on Gx such
that dfgx = g⇠ for all g 2 G. It is easy to that gf has the same property for all g 2 G and
so the invariant p := 1/|G|

P

g gf vanishes at x and satisfies dpx = ⇠.
It follows that the G-invariant morphism p := (p1, . . . , pn) : V ! Cn is unramified

in gx for all g 2 G. Replacing V by a suitable G-stable a�ne open neighborhood U of
x we can assume that the fiber p�1(p(x)) is equal to Gx and is therefore reduced. This
means that the ideal I(Gx) ✓ O(U) is generated by the invariants p1, . . . , pn. But then,
the maximal idea m⇡(x) = I(Gx) \ O(U)G is also generated by p1, . . . , pn, showing that
⇡(x) is a smooth point of U/G and that d⇡x : TxU ! T⇡(x)U/G is an isomorphism. Now
the claim follows from Proposition 2.1.10. ⇤

2.2.4. Exercise. (1) Let a ✓ O(X) be an ideal. For any x /2 VX(a) we have mx \ a+
m2

x = mx, i.e. the map mx \ a ! mx/m
2
x is surjective.

(2) Let x1, . . . , xn 2 X be n di↵erent points. Then the canonical map

mx1 \mx2 \ · · · \mxn !
M

i

mxi/m
2
xi

is surjective.
(Hint: Use (1) with a := m2

x2
\ · · · \ m2

xn
to show that the image of this map contains

mx1/m
2
x1

� (0) · · ·� (0).)

2.2.5. Exercise. Use the previous exercise to show that for a finite set of points x1, . . . , xn 2
X and cotangent vectors ⇠i 2 (TxiX)⇤ there is an f 2 O(X) such that dfxi = ⇠i for all i = 1, . . . n.

3. Fiber Bundles and Principal Bundles

Fiber bundles with fiber F are morphisms ' : B ! X which look locally like U ⇥ F .
In order to get a useful concept, one has to replace the Zariski-open neighborhoods of a
point x 2 X by étale neighborhoods which are defined as étale morphisms ⌘ : U ! X such
that x 2 ⌘(U). One can define intersections of étale neighborhoods by taking the fiber
product, and one can even introduce an étale topology.

3.1. Additional structures, s-varieties. In many applications we are dealing with
varieties with an additional structure, shortly s-varieties. E.g. a vector space, a quadratic
space (i.e. a vector space with a nondegenerate quadratic form), an a�ne space, a G-variety
(i.e. a variety with an action of an algebraic group G), or a G-module. We will not give
a formal definition, but we will need the fact that it is always clear what an isomorphism
between two such s-varieties is. In particular, for every s-variety F the automorphism
group Aut(F ) is a well-defined subgroup of Aut(|F |) where |F | denotes the underlying
variety.

In the examples above, we see that Aut(F ) ✓ Aut(|F |) is a closed subgroup in case |F |
is a�ne. E.g., for a vector space V we have Aut(V ) = GL(V ), for a quadratic space (Q, q)
we have Aut(Q, q) = O(Q, q), and for an a�ne space A we have get Aut(A) = A↵(A), the
group of a�ne transformations. For an a�ne G-variety X we have Aut(X) = AutG(|X|) =
Aut(|X|)G, the group of G-equivariant automorphisms of X, and for a G-module M we
get Aut(M) = GL(M)G.

3.1.1.Remark. In many cases, the s-variety F is determined by the pair (|F |,Aut(F )).
This means the following: F is isomorphic to E if and only if there is an isomorphism
' : |F | ⇠! |E| which defines an isomorphism Aut(F )

⇠! Aut(E) by g 7! ' � g � '�1. A
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necessary and su�cient condition for this is that Aut(F ) ✓ Aut(|F |) is self-normalizing.
As an exercise, the interested reader might check that the following subgroups of Aut(Cn)
are self-normalizing: GLn,On,C⇤.

3.1.2. Lemma. Let G be a reductive group acting on an a�ne variety X. If there are
no nonconstant invariants, then EndG(X) and DomG(X) are a�ne algebraic semi-groups,
and AutG(X) is an a�ne algebraic group. Moreover, AutG(X) is closed in DomG(X) and
DomG(X) is open in EndG(X).

(Here Dom(X) denotes the semigroups of dominant endomorphisms.)

Proof. First it is clear that EndG(X) ✓ End(X) and AutG(X) ✓ Aut(X) are both
closed. Since there are no invariants the isotypic components of O(X) are finite dimen-
sional. This implies that we can find a finite direct sum W ✓ O(X) of isotypic compo-
nents of O(X) which generates O(X). Thus, we get an injective morphism ◆ : EndG(X) ,!
EndG(W ), and a commutative diagram

EndG(X)
◆����! EndG(W )

✓����! HomG(W,O(X))
?

?

y

✓
?

?

y

✓
?

?

y

✓

End(X)
,!����! Hom(W,O(X)) Hom(W,O(X))

which shows that ◆ is a closed immersion. Hence EndG(X) an algebraic semigroup. Simi-
larly, we see that DomG(X) is an algebraic semigroup and that AutG(X) is an algebraic
group. For the remaining claims we use [FK16, Proposition 3.2.1] which shows that, for
any a�ne variety X, Aut(X) is closed in Dom(X) and Dom(X) is open in End(X). ⇤

3.2. Fiber bundles. Let F be an a�ne s-variety.

3.2.1. Definition. A fiber bundle over Y with fiber F is a morphism p : B ! Y with
the following properties:

(1) Every fiber p�1(y) is an s-variety isomorphic to F ;
(2) For every point y 2 Y there is an étale neighborhood ⌘ : U ! Y such that U⇥Y B

is U -isomorphic to U ⇥ F , i.e. there is an isomorphism 'U : U ⇥ F
⇠! U ⇥X B

such that the induced morphisms F
⇠! {u} ⇥ F

'U! p�1(⌘(u) are isomorphisms
of s-varieties for all u 2 U .

The set of isomorphism classes of fiber bundles overX with fiber F is denoted byH1(X,F ).

In our definition, every fiber of p has given the structure of F , by (1), and condition
(2) makes sure that this structure is locally trivial in the étale topology. Clearly, a stronger
condition would be that a fiber bundle is locally trivial in the Zariski-topology. We denote
by H1

Zar

(X,F ) ✓ H1(X,F ) the subset of isomorphism classes of those fiber bundles which
are locally trivial in the Zariski-topology. Note also that (2) implies that the fibers of p
are reduced.

3.2.2. Remark. It is clear from the definition that for b 2 B and x := p(b) 2 X the
tangent map dpb : TbB ! TxX is surjective with kernel ker dpb = Tbp�1(x). In particular,
B is smooth in b if and only if the fiber p�1(x) ' F is smooth in b and X is smooth in x.

3.2.3. Example. Let F be an s-variety such that Aut(F ) is trivial. Then every fiber
bundle ' : B ! X with fiber F is trivial. In fact, for every fiber p�1(x) there is a unique
isomorphism  x : p�1(x)

⇠! F , and this collection ( x)x2X defines a map  : B ! F . We
claim that  is a morphism and that ( ,') : B ! F ⇥X is an isomorphism. If the bundle
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B ! X is trivial over the étale neighborhood ⌘ : U ! X, we get the following commutative
diagram:

F F F
x

?

?

prF

x

?

?

 �⌘B
x

?

?

 

U ⇥ F
'����! U ⇥X B

⌘B����! B

prU

?

?

y

?

?

y

?

?

y

'

U U
⌘����! X

Thus,  � ⌘B is a morphism, and so  |'�1(U) is a morphism, by Lemma 2.2.1. The claim
follows.

3.2.4. Example. Take F = Cn together with the action of the a�ne group A↵n. Then
Aut(F ) = AutA↵n

(Cn) is trivial, because a regular automorphism of Cn commuting with
all a�ne transformations is trivial.
(To see this, one first shows that a regular automorphism of Cn commuting with the scalar
multiplications is linear. From that the claim follows immediately.)
As a consequence, every fiber bundle with fiber the A↵n-variety Cn is trivial.

3.2.5. Example. If F is a vector space V , then one can show (see section ???) that
every fiber bundle over X with fiber V is locally trivial in the Zariski-topology, and these
bundles are usually called vector bundles over X. The same is true if F = An considered
as a�ne n-space. If X is a�ne, then every a�ne space bundle over X has the structure
of a vector bundle, but this does not hold in general. E.g., define B := P1 ⇥ P1 \� where
� ✓ P1⇥P1 is the diagonal, and let p : B ! P1 be the morphism induced by the projection
onto the first factor. Then B is an a�ne line bundle, trivial over P1 \ {0} and P1 \ {1},
but it cannot be a line bundle, because B is a�ne and so p has no sections.

A similar, but weaker concept is that of a fibration with fiber F by what we mean a
flat surjective morphism p : B ! X with the condition that every fiber is (reduced and)
isomorphic to F . A famous unsolved problem here is whether every a�ne fibration with
fiber Cn is a fiber bundle, see [KR14, Section 5]. This is not the case if the base X is not
normal. It is known to be true for n = 1 and X normal, and for n = 2 and X a smooth
curve. In these cases, the bundle is even locally trivial in the Zariski-topology.

3.2.6. Remark. Assume that the fiber F is a G-variety. Then one has a canonical
G-action on the total space B of every fiber bundle B ! X with fiber F .
In fact, there is an action of G on every fiber, and therefore a well-defined “abstract”
action of G on B which becomes a regular action under an étale base change, by condition
(2). Hence, the claim follows from the next lemma.

3.2.7. Lemma. Let Z be a variety with an “abstract” action of an algebraic group
G. Assume that there is G-variety Z̃ and a surjective étale and G-equivariant morphism
⇠ : Z̃ ! Z. Then the action of G on Z is regular.

Proof. Consider the following commutative diagram

Ỹ := G⇥ Z̃
'̃����!
'

G⇥ Z̃

idG ⇥⇠
?

?

y

?

?

y

idG ⇥⇠

Y := G⇥ Z
'����!

bijective

G⇥ Z

where '(g, z) := (g, gz) and '̃(g, z̃) := (g, gz̃). Then idG⇥⇠ is étale and surjective, and the
composition ' � (idG⇥⇠) is a morphism, and so the claim follows from Lemma 2.2.1. ⇤
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3.3. Principal bundles. An important special case is the following. Take F := G,
an algebraic group considered as a G-variety where G acts by right multiplication. A bundle
with fiber G is called a principal G-bundle. The usual definition is the following which is
equivalent, by Lemma 3.2.7 above.

3.3.1. Definition. Let G be an algebraic group. A principal G-bundle over X is a
variety P together with a right action by G and a G-invariant morphism ⇢ : P ! X with
the following property: For every x 2 X there is an étale neighborhood ⌘ : U ! X such
that the fiber product U ⇥X P is G-isomorphic to U ⇥G over U .

We denote by H1(X,G) the set of isomorphism classes of principal G-bundles over
X and by H1

Zar

(X,G) ✓ H1(X,G) the subset of those which are locally trivial in the
Zariski-topology.

3.3.2. Example. A typical example is the following. Let H be an algebraic group and
let G ✓ H be a closed subgroup. It is known that the left cosets H/G := {hG | h 2 H}
form a smooth quasi-projective variety with the usual universal properties, see [Bor91,
Chap. II, Theorem 6.8]. It follows that the projection ⇡ : H ! H/G is a principalG-bundle.
In fact, we have

H ⇥G
'��������!

(h,g) 7![h,hg]
H ⇥H/G H

⇡̃������!
[h,h0] 7!h0

H
?

?

y

prH

?

?

y

?

?

y

⇡

H H
⇡����! H/G

i.e., the fiber product H ⇥H/G H is G-isomorphic to H ⇥ G, hence a trivial principal
G-bundle over H. Since the di↵erential d⇡h is surjective for all h 2 H, the next lemma
shows that for every h 2 H there is a locally closed smooth subvariety S ✓ H such that
p|S : S ! H/G is étale. Clearly, S ⇥H/G H ' S ⇥G, and the claim follows.

3.3.3. Lemma. Let ' : X ! Y be a morphism of smooth varieties. Assume that
d'x : TxX ! T'(x)Y is surjective for some x 2 X. Then there is a closed subvariety
S ✓ X, containing x and smooth in x, such that '|S : S ! Y is étale in x.

Proof. We can assume that X and Y are both a�ne. By assumption, '⇤ induces
an injection my/m2

y ,! mx/m2
x. Thus we can find a subspace W ✓ mx of dimension

r = dimX � dimY such that mx = W � '⇤(my) � m2
x. Define S := VX(W ) ✓ X.

Then dimS � dimX � r = dimY , by Krull’s Theorem, and my/m2
y ! mx,S/m2

x,S

is surjective, because mx/m2
x ! mx,S/m2

x,S is surjective and W is in the kernel. Since
dimmy/m2

y = dimY , it follows that dimS = dimY , that S is smooth in x and that

my/m2
y

⇠! mx,S/m2
x,S is an isomorphism. This shows that '|S : S ! Y is étale in x, by

Proposition 2.1.10. ⇤
3.3.4. Remark. We will see later in section 3.7 that for G = GLn, SLn or Spn every

principal G-bundle is locally trivial in the Zariski-topology. The same holds for every
connected solvable group.

3.4. Associated bundles. The following construction of an associated bundle to a
principal bundle is essential for the rest of this section. Let H be an algebraic group, and
let p : P ! X be a principal H-bundle. If Y is an a�ne H-variety, then we can form the
orbit space

P ⇥H Y := (P ⇥ Y )/H

whereH acts by h(a, x) := (ah�1, hx). This is clearly a free action, and we have a canonical
map q : P ⇥H Y ! X, [a, x] 7! p(a), whose fibers are isomorphic to Y . Here [a, x] denotes
the H-orbit of (a, x).
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3.4.1. Lemma. The orbit space P⇥HY has the structure of a variety with the following
properties:

(1) The canonical map P ⇥ Y ! P ⇥H Y is a principal H-bundle;
(2) The map q : P ⇥H Y ! X is a fiber bundle with fiber Y .

Proof. We can assume that X is a�ne, and so P is a�ne, too. In fact, if X =
S

Xi

is an a�ne covering, then Pi := p�1(Xi) ! Xi is a principal H-bundle, and P ⇥H Y =
S

i Pi ⇥H Y . Now it is clear that if the Pi ⇥H Y satisfy the properties of lemma, then so
does P ⇥H Y .

There is an obvious candidate for (P ⇥ Y )/H, namely the ”a�ne variety” with co-
ordinate ring O(P ⇥ Y )H , but we have to show that this algebra is finitely generated. If
⌘ : U ! Y is a surjective étale morphism trivializing the principal bundle P ! X with
U a�ne, we obtain the following commutative diagram of a�ne schemes (with obvious
morphisms):

U ⇥H ⇥ Y
⌘̃⇥idY����! P ⇥ Y

?

?

y

pr

?

?

y

q

U ⇥ Y ����! SpecO(P ⇥ Y )H
?

?

y

pr

?

?

y

p

U
⌘����! X

It follows that the outer diagram is a fiber product. Now we claim that

(⇤) O(U)⌦O(X) O(P ⇥ Y )H = (O(U)⌦O(X) O(P ⇥ Y ))H = O(U)⌦O(Y ).

This implies that the invariant ring O(P ⇥X)H is finitely generated (see Lemma 2.1.12),
hence Q := SpecO(P ⇥ Y )H is an a�ne variety, and then that all diagrams are fiber
products, hence Q is the orbit space (P ⇥ Y )/H and p : Q ! X is a fiber bundle with
fiber X.

In order to show the first equality in (⇤) we look at the exact sequence ofO(X)-modules

0 ����! O(P ⇥ Y )h ����! O(P ⇥ Y )
r 7!r�hr�����! O(P ⇥ Y )

where h 2 H, and use that O(U) is flat over O(X). The second equality in (⇤) is clear,
because O(U)⌦O(X) O(P ⇥ Y ) = O(U)⌦O(H)⌦O(Y ). ⇤

3.5. Functorial properties. Let ' : G! H be a homomorphism of algebraic groups,
and let P ! X be a principal G-bundle. Then we define a principal H-bundle '⇤(P ) as
the associated bundle (3.4)

'⇤(P ) := P ⇥G H := (P ⇥H)/G

where G acts in the following way: g(p, h) := (pg�1,'(g)h). In fact, for the trivial bundle
P = X ⇥G we get

'⇤(P ) = P ⇥G H = (X ⇥G⇥H)/G
⇠! X ⇥H

where the isomorphism is given by [x, g, h] 7! (x,'(g)h). It follows that the associated
bundle P ⇥G H is a principal H-bundle. Note that '⇤(P ) = P/N in case ' : G ! H is
surjective with kernel N ✓ G.

3.5.1. Proposition. Let N ✓ G be a normal subgroup. Then the corresponding se-
quence

H0(X,N)! H0(X,G)! H0(X,G/N)
�! H1(X,N)! H1(X,G)! H1(X,G/N)
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is an exact sequence of pointed sets.

Here H0(X,G) := G(X) := Mor(X,G), and the boundary map � is defined in the
following way: Consider � 2 H0(X,G) as a section of the trivial bundle X ⇥ G/N ! X,
and let p : G ! G/N be the projection. Then Q := (idX ⇥p)�1(�(X)) ✓ X ⇥ G is a
principal N -bundle, and we set �(�) := [Q].

Proof. We will always confuse elements from H0(X,H) with sections of the trivial
bundle X ⇥H ! X.

(a) Exactness at H0(X,G/N): Assume that �(�) is trivial. This means that Q :=
(idX ⇥p)�1(�(X)) ✓ X ⇥G has a section ⌧ , and it follows that � is the image of ⌧ under
the map G! G/N . The other inclusion is clear.

(b) Exactness at H1(X,N): Let Q ! X be a principal N -bundle and assume that
Q⇥N G has a section �. Then, by construction, �(�) = [Q]. Again, the other inclusion is
clear.

(c) Exactness at H1(X,G): Let P ! X be a principal G-bundle and assume that
the image P ⇥G G/N = P/N has a section �. If q : P ! P/N is the projection, then
Q := q�1(�(X)) ✓ P is a principal N -bundle, and P ' Q ⇥N G. The other inclusion is
clear. ⇤

3.6. The correspondence between fiber bundles and principal bundles. In
this section we prove the following theorem. We will use some elementary facts about
ind-varieties (see [FK16]).

3.6.1. Theorem. Let F be an s-variety such that that Aut(F ) is an algebraic group.
Then, for any variety X, there is a canonical bijective correspondence between fiber bundles
over X with fiber F and principal Aut(F )-bundles over X.

Proof. (a) Let P ! X be a a principal Aut(F )-bundle. Then, by Lemma 3.4.1, the
associated bundle P ⇥Aut(F ) F is a fiber bundle with fiber F .

(b) For the other direction, starting with a fiber bundle q : B ! X with fiber F , we
define

P := {(x,') 2 X ⇥Mor(F,B) | ' : F ⇠! q�1(x)} ✓ X ⇥Mor(F,B).

We have to show that this is a variety and that the map p : P ! X, (x,') 7! x, is a
principal Aut(F )-bundle. It is clear that Aut(F ) acts on P from the right, (x,')� :=
(x,' � �), and that this action is simply transitiv on the fibers p�1(x) = Iso(F, q�1(x)).
Define

P̃ := {(x,') 2 X ⇥Mor(F,B) | '(F ) ✓ q�1(x)} ✓ X ⇥Mor(F,B).

It is easy to see that this is a closed ind-subvariety of X ⇥Mor(F,B).
There is an a�ne variety X 0 and a surjective étale morphism ⌘ : X 0 ! X such that

B0 := X 0 ⇥X B is trivial. Define P 0 ! X 0 and P̃ 0 ! X 0 as above:

P 0 := {(x,') 2 X 0 ⇥Mor(F,B0) | ' : F ⇠! q0
�1

(x)} ✓ X 0 ⇥Mor(F,B0),

P̃ 0 := {(x,') 2 X 0 ⇥Mor(F,B0) | '(F ) ✓ q0
�1

(x)} ✓ X 0 ⇥Mor(F,B0).

Since B0 = X 0 ⇥ F we get an isomorphism of ind-varieties  ̃ : X 0 ⇥ End(F )
⇠! P̃ 0 given

in the following way: (x,�) 7! (x, ◆x � �) where ◆x : F ! B0 is the closed immersion
z 7! (x, z) 2 X 0 ⇥ F = B0. Clearly,  ̃ induces an isomorphism  : X 0 ⇥ Aut(F )

⇠! P 0

which implies that P 0 is a variety.
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Finally, we have a surjective map ⌘̃ : P̃ 0 ! P̃ , (x0,'0) 7! (⌘(x0), ⌘B � '0) where
⌘B : B0 ! B is the canonical morphism. It is clear from the definition that ⌘̃ is a morphism
of ind-varieties and that ⌘̃(P 0) = P . This gives the following commutative diagram:

X 0 ⇥Aut(F )
 ̃����!
'

P 0 ����! P
?

?

y

✓
?

?

y

✓
?

?

y

✓

X 0 ⇥ End(F )
 ����!
'

P̃ 0 ⌘̃����! P̃
?

?

y

?

?

y

p0
?

?

y

p

X 0 X 0 ⌘����! X

It is clear from the construction that the diagrams are (set-theoretic) fiber-products. This
implies that ⌘̃ is étale which means that for any algebraic subset A ✓ P̃ the inverse
image A0 := ⌘̃�1(A) ✓ P̃ 0 is also algebraic and ⌘̃ : A0 ! A is étale. Now we use [FK16,
Proposition 3.2.1] which shows that, for any a�ne variety F , Aut(F ) is open in Dom(F )
and Dom(F ) is closed in End(F ) where Dom(F ) denotes the semigroup of dominant
endomorphisms. Since images of open sets under étale maps are open this implies first
that the image of X 0 ⇥ Dom(F ) is open in P̃ , and then that P = ⌘̃�1(⌘̃(P )) is closed in
this image, hence algebraic. The rest is easy and is left to the reader. ⇤

3.7. Special groups. In this section we collect results about special groups. The
references are [Ser58] and some unpublished notes of Domingo Luna. Let us first recall
the definition from which the importance of this notion is clear.

3.7.1. Definition. A linear algebraic group G is called special if every principal G-
bundle is locally trivial in the Zariski-topology.

Clearly, special groups are connected. The following result can be found in [Ser58].
We will deduced it from Lemma 3.7.4 below.

3.7.2. Proposition. (1) If 1 ! G0 ◆! G
⇡! G00 ! 1 is an exact sequence of

algebraic groups where G0 and G00 are special, then G is special. In particular,
products of special groups are special.

(2) The groups GLn, SLn and Spn are special.
(3) Every connected solvable group is special.

3.7.3. Remark. Grothendieck [Gro58] has shown that SLn and Spn are the only
simple groups which are special.

The poof is based on the following unpublished result due to Luna.

3.7.4. Lemma. Let G be a reductive group and W a G-module. Assume that W contains
a G-orbit Gw0 isomorphic to G and that there is a G-equivariant retraction ⇢ : U ! Gv0
where U is an open G-stable neighborhood of Gw0. Then G is special.

Proof. Let ⇡ : P ! Y be a principal G-bundle and consider a fiber F := ⇡�1(y0). We
may assume that Y and P are a�ne. Choose a G-equivariant isomorphism ↵ : F

⇠! Gw0 ✓
W . Then ↵ extends to a G-equivariant morphism ↵̃ : P !W , because W is a vector space
and G is reductive. It follows that Ũ := ↵̃�1(U) is a G-stable open neighborhood of F
and that ⇢̃ := ↵�1 � ⇢ � ↵̃ : Ũ ! F is an G-equivariant retraction. If S is a fiber of ⇢̃, then
the map G ⇥ S ! Ũ , (g, s) 7! gs, is an G-equivariant isomorphism. Hence the bundle P
is trivial over the neighborhood ⇡(Ũ) of y0. ⇤
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Proof of Proposition 3.7.2. (1) Let P ! X be a principal G-bundle. Choosing
a suitable open covering of X we can assume that ⇡⇤(P ) is trivial. Then P = ◆⇤(P 0) for
a suitable G0-principal bundle P 0, by Proposition 3.5.1. Since P 0 is locally trivial in the
Zariski-topology the same holds for P .

(2) Since GLn ✓Mn is an open orbit, the claim follows from Lemma 3.7.4. For SLn we
take the module M := Mn where SLn acts by left-multiplication. Then U := GLn ✓ Mn

retracts equivariantly to SLn by A 7! A
h

detA�1

. . .

i

. Finally, for Spn

(3) For a connected solvable group G the unipotent elements form a closed normal
unipotent subgroup U , and the quotient G/U is a torus (see ???). Since C⇤ = GL1 is
special by (2) it follows from (1) that every torus is special. Moreover, we will see below
in section 3.9 (Proposition 3.9.4) that every principal U -bundle over an a�ne variety is
trivial. Now the claim follows from (1). ⇤

3.8. Locally trivial group schemes and torsors. Let G be an algebraic group
and X a variety. A fiber bundle G ! X with fiber G is a smooth group scheme over X
which means that the multiplication G⇥X G! G and the inverse G! G are morphism
over X satisfying the usual properties. In particular, the sections G(X) := MorX(X,G)
form a group. We will call G a locally trivial group scheme (over X) with fiber G. It is
called trivial if G is isomorphic to X ⇥ G (over X). It is rather obvious how to define
homomorphisms of group schemes, closed subgroup schemes, normal subgroup schemes,
the center of a group scheme, etc. The concept of a quotient G/H is more delicate. It is
uniquely defined by the universal property of such a quotient, but it is not clear whether
it exists. We will need this only in a very special situation.

If U is a commutative unipotent group, then U has a canonical structure of a vector
space, given by the exponential map exp: LieU

⇠! U . In particular, Aut(U) = GL(U).
This implies the following result.

3.8.1. Lemma. Let U! X be a locally trivial group scheme with fiber a commutative
unipotent group U . Then U has a canonical structure of a vector bundle over X.

For any group scheme, one has the notion of a torsor generalizing the principal “prin-
cipal bundles” defined above. We will need this only for a locally trivial group scheme G
over X with fiber G.

3.8.2. Definition. A G-torsor is a morphism P ! X with an action P ⇥X G ! P
of G from the right such that P is locally isomorphic to G with the G-action by right
multiplication. The G-torsor P is called trivial if it is isomorphic to G where G acts by
right multiplication.

One has to be careful in this setting. Although every G-torsor P is locally isomorphic
to U ⇥G where G is acting by right multiplication, there is in general no global G-action
on P, except if G is trivial, i.e. G ' X ⇥ G. In that case, a G-torsor is the same as a
principal G-bundle.

3.9. Unipotent group schemes. The main result here is the following.

3.9.1. Proposition. Let U ! X be a locally trivial group scheme with fiber a com-
mutative unipotent group U . If X is a�ne, then every U-torsor is trivial.

Proof. Let P ! X be a U-torsor, and let S := {s 2 O(X) | Ps is trivial over Xs}.
We will show that 1 2 S. First of all there is a finite covering X =

S

Xsi such that
Usi

⇠! Xsi ⇥ U is trivial. Thus Psi is trivial, because every principal U -bundle over an
a�ne variety is trivial. It follows that S generates the unit ideal (1) = O(X).
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Next we claim that S is an ideal. For this we have only to show that for s1, s2 2 S
we have s1 + s2 2 S. If Y := Xs1+s2 , then Y = Ys1 [ Ys2 , and Ysi = X(s1+s2)si . Thus the
claim follows from the next lemma. ⇤

3.9.2. Lemma. Let U ! Y be a locally trivial group scheme with fiber a commutative
unipotent group U , and let P ! Y be a U-torsor. Assume that Y is a�ne and that
Y = Ys1 [ Ys2 for some s1, s2 2 O(Y ). If the torsors Psi ! Ysi are both trivial, then so is
P.

Proof. (a) If O ✓ Y is an open set, then the sections � 2 �(O,U) correspond to
automorphisms �̃ of U|O as a U-torsor: �̃(u) = u + �(p(u)), and �(x) = �̃(0x) where
0x 2 Ux is the neutral element. Thus, we can identify the group AutU(U|O) with the
additive group �(O,U), i.e. (� + ⌧ )̃ = �̃ � ⌧̃ .

(b) Now let 'i : Usi
⇠! Psi be isomorphisms of U-torsors. Then  := ('2|Us1s2

)�1 �
'1|Us1s2

is an automorphism of Us1s2 as a U-torsor. We claim that  can be written in

the form  =  2 �  �1
1 where  i 2 AutU(Usi). Then idUs1s2

=  �1
2 �  �  1, and so,

replacing 'i by '0
i := 'i � i, we see that '0

1|Us1s2
= '0

2|Us1s2
. It follows that '0

1,'
0
2 define

an isomorphism U
⇠! P as U-torsors.

(c) It remains to prove the claim in (b). In terms of sections, as explained in (a),
the claim is equivalent to the condition �(Ys1 ,U) + �(Ys2 ,U) = �(Ys1s2 ,U). Let � 2
�(Ys1s2 ,U) = �(Y,U)s1s2 . Then there is is an m > 0 such that f := (s1s2)m� 2 �(Y,U),
and we can find h1, h2 2 O(Y ) such that 1 = h1sm1 + h2sm2 . Hence

� = h1s
m
1 � + h2s

m
2 � = h1

f

sm2
+ h2

f

sm1
2 �(Y,U)s2 + �(Y,U)s1 = �(Ys2 ,U) + �(Ys1 ,U),

and the claim follows. ⇤

3.9.3. Lemma. Let U be a locally trivial group scheme over X with fiber a unipotent
group U . Then the center Z(U) ✓ U is a locally trivial group scheme with fiber Z(U), and
the quotient U/Z(U) exists and is also a locally trivial group scheme, with fiber U/Z(U).

Proof. We will assume that U is locally trivial in the Zariski-topology. The first
part is clear, because Z(X ⇥U) = X ⇥Z(U), and in this case we get X ⇥ U/X ⇥Z(U) =
X ⇥ U/Z(U). On the other hand, U/Z(U)! X is well-defined as a family of groups over
X: (U/Z(U))x := Ux/Z(U)x for all x 2 X. We have to show that this space carries the
structure of a variety such that U/Z(U) ! X is a locally trivial group scheme and that
the projection p : U! U/Z(U) has the universal property of a quotient.

Start with a finite covering X =
S

i Xi such that U|Xi
is trivial, and fix isomorphisms

'i : Xi⇥U ⇠! U|Xi . Then 'i induces an isomorphism Xi⇥Z(U)
⇠! Z(U)|Xi and a bijection

'̄i : Xi ⇥U/Z(U)
⇠! (U/Z(U))|Xi

which is fiberwise an isomorphism of groups. We endow
(U/Z(U))|Xi

with the structure given by the bijection '̄i. If x 2 X belongs to several Xj ,
then it is easy to see that the structure of U/Z(U) in a neighborhood of (U/Z(U))x is well
defined, i.e. does not depend on the choice of the Xj containing x. Thus the structure
of U/Z(U) as a variety is well defined, and with this structure U/Z(U) is a locally trivial
group scheme with fiber U/Z(U). Now it is not di�cult to see that p : U ! U/Z(U) is a
homomorphism of group schemes with the universal property of a quotient. ⇤

3.9.4. Proposition. Let U be a locally trivial unipotent group scheme over an a�ne
variety X. Then every U-torsor is trivial. In particular, for a unipotent algebraic group U
every principal U -bundle over an a�ne variety is trivial.
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Proof. Let P ! X be a U-torsor. Then one can form the quotient P̄ := P/Z(U)
which is a U/Z(U)-torsor. (This is clear in case U is locally trivial in the Zariski-topology,
and needs some work in general.) By induction on dimU we can assume that P̄ is trivial,
i.e. that we have a section � : X ! P̄ . If we take the inverse image of �(X) ✓ P̄ under
⇡ : P ! P̄ we obtain a Z(U)-torsor ⇡�1(�(X)) ✓ P which is trivial by Proposition 3.9.1.
Hence, there is a section ⌧ : X ! ⇡�1(�(X)), and therefore P is trivial as well. ⇤

3.9.5. Theorem. Let G be an algebraic group, and let U ✓ G be the unipotent radical.
For any a�ne variety X the canonical map H1(X,G)! H1(X,G/U) is injective.

Proof. We have the exact sequence H1(X,U) ! H1(X,G)
⇢! H1(X,G/U) of

pointed sets (Proposition 3.5.1). Let P ! X be a principal G-bundle and [P ] 2 H1(X,G)
its isomorphism class. In order to describe the fiber ⇢�1(⇢([P ])) ✓ H1(X,G) we use the
so-called twist construction. Define

G := P ⇥G G := (P ⇥G)//G

where G acts in the following way: g(p, h) := (pg�1, ghg�1). This is a free action and so
the quotient P ⇥G! P ⇥G G is a principal G-bundle.

We define a multiplication on G by [p, h1] · [p, h2] := [p, h1h2] where we use the fact
that G acts transitively on the fiber Px. It is easy to see that this does not depend on
the choice of p 2 Px and that it defines a morphism G⇥X G ! G. We claim that G is a
locally trivial group scheme over X with fiber G. In fact, if P = X ⇥G is trivial, then

P ⇥G G = (X ⇥G⇥G)//G
⇠! X ⇥G, (x, g, h) 7! (x, ghg�1),

and this map is an isomorphism of group schemes over X. Since U ✓ G is normal, we see
that U := P ⇥G U = (P ⇥U)//G ✓ G is a closed subgroup scheme, and it is locally trivial
with fiber U . Now the twist construction says that there is a canonical bijection between
the image of H1(X,U) in H1(X,G) and the fiber p�1(p([P ])). Thus the claim follows from
Proposition 3.9.4. ⇤

3.10. Some applications.

3.10.1. Corollary. Let X be an a�ne variety. Then every a�ne space bundle A!
X, i.e. fiber bundle with fiber An considered as an a�ne space, has the structure of a
vector bundle.

Proof. If A! X is an a�ne space bundle, then A ' P ⇥A↵n An where P ! X is a
principal A↵n-bundle, see Theorem 3.6.1. It follows from Theorem 3.9.5 that the inclusion
GLn ,! A↵n induces a bijection H1(X,GLn)

⇠! H1(X,A↵n). Hence P ' P 0 ⇥GLn A↵n

where P 0 is a principal GLn-bundle, and so

A ' P ⇥A↵n An ' P 0 ⇥GLn A↵n⇥A↵nAn ' P 0 ⇥GLn An,

showing that A has the structure of a vector bundle over X. ⇤
3.10.2. Corollary. Let G be a reductive group, and let V be a G-module without

invariants. Then every fiber bundle with fiber V is a G-vector bundle.

Proof. If V has no invariants, then AutG(V ) is an algebraic group, by Lemma 3.1.2.
Since 0 2 V is the only closed orbit, it follows that AutG(V ) fixes 0. Therefore, we get a
homomorphism AutG(V ) ! GL(T0V ) = GL(V ) whose image is GL(V )G. It is clear that
the kernel is a unipotent group since it stabilizes the flag m0 ◆ m2

0 ◆ m3
0 ◆ · · · . As in the

previous corollary, we get from Theorem 3.9.5 that every fiber bundle with fiber V and
automorphism group AutG(V ) has the structure of G-vector bundle, i.e. of a fiber bundle
with fiber V and automorphism group GL(V )G. ⇤
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The following corollary is due to Bass-Haboush [BH85]. Recall that an action of an
algebraic group on a variety is called fix-pointed if every closed orbit is a fixed point.

3.10.3. Corollary. Let X be an a�ne G-variety where G is reductive. Assume that
X is smooth and that the action is fix-pointed. Then the quotient X ! X//G has the
structure of a G-vector bundle.

Proof. We will see later, as a consequence of the Slice Theorem, that the quotient
is a fiber bundle with fiber a G-module V without invariants (Theorem 5.3.1). Now the
claim follows from the previous corollary. ⇤

4. The Slice Theorem

Now we have all the tools to formulate the important Slice Theorem due to Domingo
Luna [Lun73]. The proof is based on the so-called Fundamental Lemma which was given
in the later work [Lun75]. We first define the associated bundles in the case of reductive
groups and describe its properties which take into account that in general orbits are not
closed. An important ingredient isMatsushima’s Theorem which states that the stabilizer
of a closed orbit under a reductive group is again a reductive group. We will not prove
this here but refer to the literature.

4.1. Associated bundles for reductive groups. Let G be an algebraic group,
H ✓ G a closed subgroup, and let Y be an a�ne H-variety. Assume that H is reductive.
Then we can form the quotient

G⇥H Y := (G⇥ Y )//H

where H acts on the product G ⇥ Y by h(g, y) := (gh, h�1y). We will denote by [g, y] 2
G ⇥H Y the image of (g, y). The group G acts on G ⇥H Y by g[g0, y] := [gg0, y], and the
projection pr : G⇥ Y ! G induces a G-equivariant morphism p : G⇥H Y ! G/H.

4.1.1. Lemma. The quotient map ⇡ : G⇥ Y ! G⇥H Y is a principal H-bundle, and
p : G⇥H Y ! G/H is a fiber bundle with fiber Y . In particular, G⇥H Y is smooth in [g, y]
if and only if Y is smooth in y.

Proof. By Lemma 4.1.2 below there exists a G-module V and a closed H-equivariant
embedding ◆ : Y ,! V . From this we get the commutative diagram

G⇥ Y
idG ⇥◆����!

✓
G⇥ V

(g,x) 7!(g,gx)��������!
'

G⇥ V
?

?

y

⇡G⇥Y

?

?

y

⇡G⇥V

?

?

y

p⇥idV

G⇥H Y
⌧����!
✓

G⇥H V ����!
'

G/H ⇥ V

where ⌧ is a closed immersion and G ⇥ Y = ⇡�1
G⇥X(G ⇥H Y ). Now the first claim follows

since p⇥ idV : G⇥ V ! G/H ⇥ V is a principal H-bundle.
As for the second, we have the fiber product

G⇥ Y
⇡����! G⇥H Y

?

?

y

?

?

y

p

G ����! G/H

and the same argument as in Example 3.3.2, using Lemma 3.3.3, shows that p is a fiber
bundle. The last claim follows from Remark 3.2.2. ⇤
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4.1.2. Lemma. Let G be an algebraic groups and H ✓ G a closed subgroup. If H is
reductive, then every a�ne H-variety Y is H-isomorphic to a closed H-stable subvariety
of a G-module V .

Proof. It su�ces to show that every simple H-module W is isomorphic to an H-
stable submodule of a G-module V . Since H ✓ G is H-stable with respect to left multipli-
cation, the projection p : O(G) ! O(H) is H-equivariant. We know that O(H) contains
every simple H-module W . Then p�1(W ) is H-stable and we can find a H-equivariant
embedding W ,! p�1(W ), because H is reductive. Now the claim follows. ⇤

Lemma 4.1.1 shows that G ⇥H Y is, as a set, equal to the orbit space (G ⇥ Y )/H
discussed in the first section for compact groups. We will now show that all the properties
formulated in Proposition 1.2.1 carry over to the algebraic setting where H is reductive.
Note that we have a closed H-equivariant embedding Y ,! G ⇥H Y , y 7! [e, y]; we will
often identify Y with its image in G⇥H Y .

4.1.3. Proposition. (1) There is a bijection between the H-orbits in Y and the
G-orbits in G⇥H Y , given by Hy 7! G(e, y).

(2) The embedding Y ,! G⇥H Y induces an isomorphism Y//H
⇠! (G⇥H Y )//G.

(3) If Y0 ✓ Y is closed and H-stable, then the canonical map G⇥H Y0 ! G⇥H Y is
a closed embedding with image GY0. Moreover, GY0 \ Y = Y0.

(4) A orbit G[e, y0] is contained in the closure G[e, y] if and only if Hy0 is contained
in the closure Hy.

Proof. (1) We have already seen this in the first section.

(2) The quotient (G⇥H Y )//G can be obtained from G⇥Y by first taking the quotient
by G and then the quotient by H. Clearly, (G ⇥ Y )//G = Y , and so (G ⇥H Y )//G =
(G⇥ Y )//(G⇥H) = ((G⇥ Y )//G)//H = Y//H.

(3) The first part is clear since G ⇥ Y0 ✓ G ⇥ Y is closed and H-stable, and the last
statement follows from the fact that p : G⇥H Y ! G/H and p : G⇥H Y0 ! G/H are fiber
bundles with fibers Y and Y0, respectively, by Lemma 4.1.1.

(4) This is an easy consequence from the previous statement (3). ⇤
4.1.4. Remarks. (1) If Y is smooth, then G⇥H Y is also smooth. If Y is normal,

then G⇥H Y is also normal.
(2) For any [g, y] 2 G⇥H Y we have dim[g,y] G⇥H Y = dimy Y + dimG = dimH.
(3) For any y = [e, y] 2 Y ✓ G⇥H Y we have TyGy \ TyY = TyHy.
(4) If y0 2 Y ✓ G⇥HY is a fixed point underH, then Ty0(G⇥HY ) = Ty0Gy0�Ty0Y .

All this is not di�cult to see, and the proofs are left to the reader.

4.2. The construction of slices. Let us start with the following situation. Let G
be an algebraic group, let V be a G-module, and let O = Gx ✓ V be an orbit such that
the stabilizer Gx is reductive. Then the tangent space to the orbit is a Gx-stable subspace
TxGx ✓ TxV = V , hence admits a Gx-stable complement W :

V = TxV = TxGx�W.

We have dimW = dimV �dimGx = dimV �dimG+dimGx. Define the Gx-stable a�ne
subspace S := x+W ✓ V , and consider the morphism � : G⇥ S ! V , (g, s) 7! gs. Since
�(gh, h�1s) = �(g, s) for all h 2 Gx we obtain a G-equivariant morphism

' : G⇥Gx S ! V, [g, s] 7! gs.

4.2.1. Lemma. The morphism ' : G⇥Gx S ! V is étale in a G-stable open neighbor-
hood of the point [e, x] 2 G⇥Gx S.
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Proof. The composition � : G⇥S ! G⇥Gx S ! V is given by (g, s) 7! gs and thus
d�(e,x) : LieG�W ! V has the form (A,w) 7! Ax+w, hence is surjective. Since G⇥Gx S
and V are both smooth (Remark 4.1.4(1)), and

dimG⇥Gx S = dimG/Gx + dimW = dimTxGx+ dimW = dimV

it follows that d'[e,x] is an isomorphism and thus ' is étale in [e, x], by Proposition 2.1.10.
Since ' is G-equivariant the set of points where ' is étale is G-stable and open. ⇤

We know that the G-stable open set has the form G⇥Gx S0 where x 2 S0 ✓ S is open
and H-stable, but we cannot expect that S0 contains with every orbit its closure or is even
saturated, i.e., S0 = ⇡�1

S (⇡S(S0)), as we have seen in the compact case.
If G is also reductive, the situation is much better. First of all, we have the following

fundamental theorem, due to Matsushima.

4.2.2. Theorem (Matsushima [Mat60]). If the orbit Gx is closed, then the stabilizer
Gx is reductive.

Thus we can construct the slices above for every closed orbit Gx = Gx and obtain
commutative diagram

G⇥Gx S
'����! V

?

?

y

⇡

?

?

y

⇡V

S//Gx
'̄����! V//G

where ' is étale in an open neighborhood of [e, x], i.e. in an open set of the form U =
G⇥Gx S0. But still we do not know if U and its image '(U) are saturated. We will see in
the next section that Luna’s Slice Theorem will imply this, but is even much stronger.

4.3. Excellent morphisms and the Slice Theorem. The basic definition is the
following, see [Lun75].

4.3.1. Definition. Let X,Y be a�ne G-varieties. A G-equivariant morphism ' : X !
Y is called excellent if the following holds:

(i) The induced morphism '//G : X//G! Y//G is étale;
(ii) The morphism (⇡X ,') : X ! X//G⇥Y//G Y is an isomorphism.

In particular, ' : X ! Y is also étale.

X
(⇡X ,')����!

'
X//G⇥Y//G Y ����! Y

?

?

y

⇡X

?

?

y

⇡

?

?

y

⇡Y

X//G X//G
'//G����! Y//G

Now we can formulate the main result of this appendix.

4.3.2. Theorem (Luna’s Slice Theorem). Let X be an a�ne G-variety where G
is reductive, and let O = Gx be a closed orbit. Then there exists a locally closed a�ne Gx-
stable subset S ✓ X containing x such that the morphism ' : G ⇥Gx S ! X, [g, s] 7! gs,
is excellent and the image GS ✓ X is open and a�ne, i.e. the diagram

G⇥Gx S
'�����!

[g,s] 7!gs
X

?

?

y

?

?

y

S//Gx
'//G����! X//G

is a fiber product and both maps ' and '//G are étale.



C.4. THE SLICE THEOREM 205

A morphism G ⇥Gx S ! X as in the theorem, or simply the locally closed subset
S ✓ X with the properties of the theorem is called an étale slice in x. In general, the
structure of the slice S might be rather complicated. But if X is smooth in x we can say
more. In this case we have again a Gx-stable decomposition TxX = TxGx�W where W
is Gx isomorphic to the normal space Nx := TxX/TxGx to the orbit in x.

4.3.3. Theorem. In addition to the assumptions of the Slice Theorem above assume
that X is smooth in x. Then there exists an étale slice S ✓ X and an excellent Gx-
equivariant morphism µ : S ! Nx with a�ne image. In particular, both diagrams

G⇥Gx Nx
µ ���� G⇥Gx S

'����! X
?

?

y

⇡

?

?

y

⇡

?

?

y

⇡X

Nx//Gx
µ̄ ���� S//Gx

'̄����! X//G

are fiber products and all horizontal maps are étale.

The proofs are based on the following lemma due to Luna, called ”Lemme fondamen-
tale” in [Lun75].

4.3.4. Fundamental Lemma. Let X,Y be a�ne G-varieties, let ' : X ! Y be a
G-equivariant morphism, and let O ✓ X be a closed orbit. Assume that

(1) ' is étale in O,
(2) '(O) ✓ Y is closed,
(3) O

⇠! '(O) is an isomorphism.

Then there exists an a�ne saturated open neighborhood U of O such that '|U : U ! Y is
excellent.

The proof of this lemma will be given in the following section 4.4. We will first show
that it implies the Slice Theorem 4.3.2 and Theorem 4.3.3 above.

Proof of the Slice Theorem 4.3.2. We can assume that X is a closed G-stable
subset of a G-module V . If we choose a Gx-stable decomposition V = TxV = TxGx�W
and set SV := x +W ✓ V , then Lemma 4.2.1 shows that ' : G ⇥Gx SV ! V is étale in
a neighborhood of (e, x) and maps the closed orbit G(e, x) isomorphically onto Gx. Thus,
the assumptions of Fundamental Lemma 4.3.4 are satisfied, so that there exists an a�ne
saturated open neighborhood U ✓ G⇥Gx SV of (e, x) such that '|U : U ! V is excellent.
In addition, we can arrange that the image of U in V is a�ne. Since U is G-saturated, it
has the form G⇥Gx S0 where S0 ✓ SV is open and Gx-saturated, i.e.

G⇥Gx S0 U
'0:='|U�����! V

?

?

y

⇡

?

?

y

⇡U

?

?

y

⇡V

S0//Gx
'����! U//G

'0//G����! V//G

is a fiber product, and '0 and '0//G are both étale. Setting S := S0 \X we finally get a
fiber product

G⇥Gx S
 ����! X

?

?

y

⇡

?

?

y

⇡X

S//Gx
 //G����! X//G

with étale morphisms  and  //G and a�ne image  (G ⇥Gx S) = GS, proving the Slice
Theorem. ⇤
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Proof of Theorem 4.3.3. Let S ✓ X be an étale slice in x. Since X is smooth in
x the same holds for S, and TxX = TxGx� TxS. Hence TxS is Gx-isomorphic to Nx.

Choose a Gx-stable complement N of m2
x in mx ✓ O(S). Then N⇤ ' Nx, and we

get a canonical Gx-equivariant morphism µ : S ! N⇤ ⇠! Nx corresponding to the em-
bedding N ,! O(S). Clearly, µ is étale in x and maps the fixed point x 2 S to 0 2 Nx.
The Fundamental Lemma then implies that µ is excellent in an open a�ne Gx-saturated
neighborhood of x, and the claim follows. ⇤

4.4. Proof of the Fundamental Lemma. The following proof is due to Knop, see
[Slo89, Anhang, p. 110–112]. It is based on some unpublished notes of Luna.

We have the commutative diagram

X
'����! Y

?

?

y

⇡X

?

?

y

⇡Y

X//G
'//G����! Y//G

and points x 2 X, y := '(x) 2 Y such that the following holds:

(1) ' is étale in x;
(2) The orbits O := Gx and '(O) = Gy are closed;
(3) Gx = Gy, i.e. O

⇠! '(O) is an isomorphism.

Let I := I(O) ✓ O(X) be the ideal of O, and let \O(X) be the I-adic completion. Similarly,

we set J := I('(O)) and denote by \O(Y ) the J-adic completion. Furthermore, m :=
I \ O(X)G is the maximal ideal of ⇡X(x) and n := J \ O(Y )G is the maximal ideal of

⇡Y (y) = ('//G)(⇡X(x)). We denote by \O(X)G resp. \O(Y )G the corresponding m-adic
resp. n-adic completions. The proof of the Fundamental Lemma will follow from the next
result.

4.4.1. Lemma. The map '⇤ : O(Y ) ! O(X) induces a commutative diagram of iso-
morphisms

\O(Y )G ⌦O(Y )G O(Y )
'����! \O(X)G ⌦O(X)G O(X)

?

?

y

'
?

?

y

'

\O(Y )
'����! \O(X)

Proof. Since the set of points where ' is not étale is closed and G-stable, we can
replaceX by a special open setXf where f is an invariant, and thus assume that ' : X ! Y
is étale. Then ' : '�1(Gy)! Gy is étale, and so '�1(Gy) is a finite union of closed orbits.
Thus, replacing again X by a special open set we can assume that '�1(Gy) = Gx which
implies that I = '⇤(J)O(X).

(a) We first show that \O(Y )!\O(X) is an isomorphism. Since ' is étale, hence flat,
we get isomorphisms Jn ⌦O(Y ) O(X)

⇠! In for all n � 0, and exact sequences

0! Jn+1 ⌦O(Y ) O(X)! Jn ⌦O(Y ) O(X)! Jn/Jn+1 ⌦O(Y ) O(X)! 0.

Thus, Jn/Jn+1 ⇠! Jn/Jn+1 ⌦O(Y )/J O(X)/I
⇠! Jn/Jn+1 ⌦O(Y ) O(X)

⇠! In/In+1, and

so, by induction on n, that O(Y )/Jn ⇠! O(X)/In, and the claim follows.

(b) It remains to show that the vertical maps in the diagram above are isomor-
phisms. The coordinate ring O(X) is a direct sum of isotypic components O(X) =
L

�2⇤G
O(X)� where ⇤G is the set of isomorphism classes of irreducible G-modules, and

each O(X)� is a finitely generated O(X)G-module. These modules carry two filtrations,
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namely {m⌫O(X)�}⌫2N and {Iµ \ O(X)�}µ2N. The completion with respect to the first

filtration is \O(X)G ⌦O(X)G O(X)�. Denoting by \O(X)� the completion with respect to

the second one, we get \O(X) =
L

�2⇤G

\O(X)�. If we show that the two filtrations are
equivalent, then

\O(X)G ⌦O(X)G O(X) =
M

�2⇤G

\O(X)G ⌦O(X)G O(X)�
⇠!

M

�2⇤G

\O(X)� = \O(X),

hence the claim.

(c) In order to see that the two filtrations are equivalent, we first remark that for
all ⌫ 2 N we have m⌫O(X)� ✓ I⌫ \ O(X)�. We have to find a µ 2 N such that Iµ \
O(X)� ✓ m⌫O(X)�. For this we consider the algebra A :=

L1
n=0 I

ntn ✓ O(X)[t]. Let
r1tm1 , . . . , rktmk be generators of AG as an algebra over O(X)G = AG

0 where all mi are
positive and ri 2 m. The isotypic component A� =

L1
n=0(I

n \ O(X)�)tn is a finitely
generated AG-module, with generators s1tn1 , . . . , s`tn` where sj 2 O(X)�. We claim that
Im0⌫+n0 \ O(X)� ✓ m⌫O(X)� where m0 := maxi mi and n0 := maxj nj . In fact, let
r 2 Im0⌫+n0 \O(X)�. Then rtm0⌫+n0 2 A�, and so r can be written in the form

rtm0⌫+n0 =
X

j

pj(r1t
m1 , . . . , rkt

mk)sjt
nj .

It follows that every monomial in pj has degree at least ⌫ which implies that

r =
X

j

pj(r1, . . . , rk)sj 2 m⌫O(X)�.

This completes the proof of the lemma. ⇤
4.4.2. Remark. The proof above shows that the Fundamental Lemma holds for a�ne

schemes X,Y of finite type over an algebraically closed field of characteristic zero.

Proof of the Fundamental Lemma. Taking G-invariants in Lemma 4.4.1 we see

that ('//G)⇤ induces an isomorphism \O(Y )G
⇠! \O(X)G which means that '//G is étale in

⇡(x). Replacing X by a suitable saturated a�ne open neighborhood of x we can assume
that '//G : X//G ! Y//G is étale. We get the following diagram where the right hand
square is cartesian and the vertical maps are the quotients modulo G.

X
 ����! X//G⇥Y//G Y

'����! Y
?

?

y

⇡X

?

?

y

⇡

?

?

y

⇡Y

X//G X//G
'//G����! Y//G

By Lemma 4.4.1, applied to the morphism  : X ! Z := X//G⇥Y//G Y we obtain an iso-

morphism \O(X)G ⌦O(X)G O(Z)
⇠! \O(X)G ⌦O(X)G O(X). Since OX//G,⇡(x) ! \O(X)G

is faithfully flat where OX//G,⇡(x) is the local ring of X//G in ⇡(x), this induces an

isomorphism OX//G,⇡(x) ⌦O(X)G O(Z)
⇠! OX//G,⇡(x) ⌦O(X)G O(X), and we can find an

f 2 O(X//G) such that f(⇡(x)) 6= 0 and O(Z)f ' O(X)f . Thus, the diagram

Xf = ⇡�1((X//G)f )
'����! Y

?

?

y

⇡Xf

?

?

y

⇡Y

(X//G)f
'//G����! Y//G

is cartesian, and the claim follows. ⇤
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5. Applications of the Slice Theorem

In the following G is a reductive group and X an a�ne G-variety where the action is
nontrivial.

5.1. Representations. Assume that X is without invariants, i.e. every G-invariant
is a constant: O(X)G = C. Then X contains a unique closed orbit, Gx = Gx, and there is
an a�ne Gx-variety Y with a fixed points and without Gx-invariants, and a G-equivariant
isomorphism G⇥Gx Y

⇠! X. In particular, X is a fiber bundle over G/Gx.
If, in addition, X is smooth in Gx, then there is a representation W of Gx without

invariants and an isomorphism G ⇥Gx W
⇠! X. In particular, X is a G-vector bundle

over G/Gx. If the closed orbit is a smooth fixed point, then X is G-isomorphic to a
representation.

5.1.1. Examples. (1) Let T be torus acting faithfully on X. If T has a smooth
fixed point on X and if dimT � dimX, then X is isomorphic to a representation
of T of dimension dimT . E.g. every faithful action of an n-dimensional torus T
on Cn is T -isomorphic to a representation.
(Hint: One has to use the fact that a faithful action of torus admits orbits with
trivial stabilizer, and that every torus action on Cn has fixed points.)

(2) A two-dimensional smooth SL2-variety is isomorphic to SL2 /T , SL2 /N or to the
standard two-dimensional representation.
(Hint: The orbits of SL2 in a�ne varieties are either fixed points or of dimension�
2. In particular,X has no invariants. If there is a fixed point, thenX is isomorphic
to the two-dimensional representation C2. The two-dimensional orbits di↵erent
from SL2 /T and SL2 /N are of the form SL2 /Un where Un := {

⇥

a b
0 a�1

⇤

| an = 1},
and these are not a�ne. Hence the closure of such an orbit contains a fixed point,
and we are in the first case.)

(3) For n � 4 the only smooth n-dimensional SLn-varieties are the standard repre-
sentation Cn and its dual (Cn)⇤.
(Hint: If SLn acts non-trivially on an irreducible a�ne variety X of dimension
 n, then dimX = n and there is a dense orbit. Thus we have to show that in
case n � 4 every reductive subgroup H ✓ SLn has codimension > n.)

5.2. Free actions and principal bundles. Here is the main result.

5.2.1. Proposition. If the action of G on X is free, then X ! X//G is a principal
G-bundle. Moreover, X is smooth if and only if X//G is smooth.

Proof. Let S ✓ X be an étale slice in x 2 X. Since Gx is trivial, we get G⇥Gx S =
G⇥ S. Hence the fiber product has the form

G⇥ S
'������!

(g,s) 7!gs
X

?

?

y

pr

?

?

y

⇡X

S
'̄����! X//G

where the horizontal maps are étale and ' is G-equivariant. The claims follows. ⇤
5.2.2. Corollary. Let T be a torus acting faithfully on an a�ne variety X. Then

X contains a nonempty a�ne T -stable open set U which is T -isomorphic to T ⇥ Y with
suitable a�ne variety Y .

Proof. The subset X 0 := {x 2 X | Tx = {e}} ✓ X is nonempty, open and T -stable.
Therefore, the ideal I(X \X 0) is nonzero and T -stable, and we can find a T -semi-invariant
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f vanishing on X \ X 0. It follows that Xf is an a�ne T -variety contained in X 0, with
a free action of T . By the proposition above, the quotient Xf ! Xf//T is a principal
T -bundle and thus locally trivial in the Zariski-topology (Proposition 3.7.2(3)). The claim
follows. ⇤

What can we say if all orbits in X are closed? Consider the representation of C⇤ on
V := C2 given by t(x, y) := (tx, t2y), and remove the x-axis y = 0. Then all orbits of the
the action of C⇤ on X := Vy are closed and isomorphic to C⇤ with trivial stabilizer except
for the orbit of (0, 1) whose stabilizer is {±1}. The general result is the following.

5.2.3. Proposition. Let X be an irreducible a�ne G-variety and assume that all
orbits are closed. Then there is a closed reductive subgroup H ✓ G and a dense open
set U ✓ X//G such that ⇡�1(U) ! U is a G-fiber bundle with fiber G/H. Moreover, all
stabilizers contain a subgroup of finite index which is conjugate to H in G.

Proof. Let O = Gx ✓ X be an orbit, O = O, and let S ✓ X be a slice in x which
we can assume to be connected. Then we obtain a fiber product

G⇥Gx S
'�����!

[g,s] 7!gs
X

?

?

y

pr

?

?

y

⇡X

S
'̄����! X//G

where the horizontal maps are étale and ' is G-equivariant. In particular, S is irreducible
and all Gx-orbits in S are closed. Since S contains a fixed point this implies that all Gx

orbits are finite. In particular, G0
x acts trivially on S. Since the finite group Gx/G0

x contains
only finitely many subgroups, there is an open dense set of S whose stabilizers in G are
equal to a fixed subgroup H ✓ Gx which contains G0

x. The claims follow. ⇤

5.3. The Luna stratification. Let X be a smooth a�ne G-variety, and let O = Gx
be a closed orbit. Then Nx := TxX/TxO is called the normal space of X at x. It is a
representation of Gx, and we can form the associated bundle G ⇥Gx Nx which is called
the normal bundle at x. Clearly, the normal bundles at all x 2 O are G-isomorphic.

Denote by MG the set of isomorphism classes of associated bundles G ⇥H N where
H ✓ G is a closed reductive subgroup and N an H-module. Then we obtain a map
µX : X//G !MG which associates to z 2 X//G the normal bundle at the closed orbit in
the fiber ⇡�1(z). The main result is the following.

5.3.1. Theorem. Let X be a smooth a�ne G-variety with quotient ⇡X : X ! X//G.

(1) The image of µX(X//G) ✓MG is finite.
(2) For any � 2MG the subset (X//G)� := µ�1

X (�) is locally closed and smooth.
(3) The inverse image X� := ⇡�1

X ((X//G)�) is reduced and ⇡X : X� ! (X//G)� is a
G-fiber bundle.

The finite stratification X//G =
S

�(X//G)� is called the Luna stratification.

Proof. (1) Let � 2MG be the isomorphism class of G ⇥H N . Using the canonical
identification of (G⇥H N)//G with N//H we get

(N//H)� = NH//H ' NH and (G⇥H N)� = G⇥H ⇡�1(NH//H).

In particular, (N//H)� ✓ N//H is locally closed and smooth, and the inverse image is
reduced. Since ⇡�1

N (NH//H) = NH ⇥NN where NN ✓ N is the nullcone we finally get

(G⇥H N)� = G⇥H ⇡�1(NH ⇥NN ) = G⇥H NN ⇥NH .



210 APPENDIX C. FIBER BUNDLES, SLICE THEOREM AND APPLICATIONS

This shows that (G⇥H N)� ! (N//H)� is a trivial G-fiber bundle with fiber G⇥H NN .
(2) Let X,Y be two smooth a�ne G-varieties and let ' : X ! Y be an excellent

morphism. Then, for any � 2MG, we have '̄�1((Y//G)�) = (X//G)� and '�1(Y�) = X�.
In particular, (Y//G)� is locally closed in Y//G if and only if (X//G)� is locally closed in
X//G.

(3) Combining (1) and (2) with Theorem 4.3.3 we get our claims. ⇤
If X is an a�ne smooth G-variety such that X//G is irreducible, then there is unique

� 2MG such that (X//G)� is open. This stratum is called the principal stratum. It has
the following characterization.

5.3.2. Corollary. Let Gx ✓ X be a closed orbit and put z = ⇡X(x) 2 X//G. Then
the following conditions are equivalent.

(1) z belongs to the principal stratum;
(2) NNx is the canonical Gx-stable complement of NGx

x in Nx;
(3) ⇡X is smooth in Gx;
(4) For every closed orbit O ✓ X there is a G-equivariant morphism Gx! O.

5.3.3. Corollary ([Lun72]). Let X be an smooth a�ne G-variety. Assume that for
every x 2 X the tangent space TxX admits a Gx-invariant, non-degenerate symmetric
bilinear form. Then X contains a non-empty open set consisting of closed orbits, i.e. the
fibers of the principal stratum are orbits.

Proof. We will show that the fibers over the principal stratum (X//G)pr are orbits,
i.e. that Nx = NGx

x . For this we use the following fact: If V is a Gx-module and U ✓ V
a Gx-submodule and if both admit a Gx-invariant, non-degenerate symmetric bilinear
form, then the same holds for V/U . Using this, we can conclude that Nx/NGx

x admits
such a form. Since this space is equal to NNx

, by the previous corollary, and since every
Gx-invariant function on NNx

is a constant we get Nx/NGx
x = 0, and the claim follows. ⇤

5.4. Fix-pointed actions. Fix-pointed actions of reductive groups have been intro-
duced and studied by Bass and Haboush in the paper [BH85]. Recall that an action of
an algebraic group on a variety is called fix-pointed if every closed orbit is a fixed point.
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