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To the memory of Gian-Carlo Rota.

The purpose of this paper is to discuss the classical, and forgotten, notion of perpet-

uants, see Definition 2.13, and in particular to exhibit a basis of these elements in

Theorem 4.9, thus closing an old line of investigation started by J. J. SYLVESTER in 1882.

In order to do this we also give a proof of the classical Theorem of STROH computing

their dimensions.

Introduction

Perpetuant (see Definition 2.13) is one of the several concepts invented by J. J. SYLVESTER

in his investigations of covariants for binary forms.

One of the main goals of classical invariant theorists was to exhibit a minimal

set of generators or “Groundforms” for the rings of invariants under consideration,

in particular for covariants of binary forms. This proved soon to be a formidable task

achieved only for forms of degree up to 6. Perpetuants are strictly connected to the

quest of a minimal set of generators for a limit algebra S of covariants, defined below

in Formula 1.
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3598 H. Kraft and C. Procesi

The simplest description of S, but not very instructive, is as the subalgebra of

the polynomial ring R = C[a0, a1, a2, . . .] in the infinitely many variables ai, i = 0, . . . , ∞
which is the kernel of the derivation D = ∑∞

i=1 ai−1
∂

∂ai
.

To the best of our knowledge such an explicit description was not achieved. With

our method we shall in fact exhibit such a minimal set of generators that we call a basis

of perpetuants. This is our main new result, Theorem 3.9. The term perpetuant appears

in one of the 1st issues of the American Journal of Mathematics [21], which SYLVESTER

had founded a few years before. This name will hardly appear in a mathematical paper

of the past 70 years due to the complex history of invariant theory that was at some

time declared dead only to resurrect several decades later.

We learned of this word from GIAN-CARLO ROTA who pronounced it with an

enigmatic smile. In fact, in [9] he laments that “This area is in a particularly sorry state.”

We were surprised to find an entry in Wikipedia where one finds useful information, but

the wrong paper of STROH is quoted.

In this entry it is mentioned that MACMAHON conjectured and STROH proved the

following result.

Theorem 0.1 ([20]). The dimension of the space of perpetuants of degree n > 2 and

weight g is the coefficient of xg in

x2n−1−1

(1 − x2)(1 − x3) · · · (1 − xn)
.

For n = 1 there is just one perpetuant, of weight 0, and for n = 2 the number is given by

the coefficient of xg in x2/(1 − x2).

In order to prove our main Theorem 3.9 we need first to review in modern

language STROH’s proof that is quite remarkable and in a way already very modern,

see Theorem 2.19. The basic new idea here is to understand STROH’s mysterious

“Potenziante” as a dualizing tensor.

For a history of these ideas and the contributions of CAYLEY and HAMMOND we

refer to MACMAHON [13]. More about perpetuants can be found in [3, 6, 7, 10–12, 22–26].

Organization of the paper

The paper is divided into four sections. Section 1 establishes the basic notation and

recalls some standard techniques from classical invariant theory. Sections 2 and 3 form

the bulk of the paper. In Section 2 we give an explicit basis of S and a proof of STROH’s
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Perpetuants: A Lost Treasure 3599

Theorem. In Section 3 we prove the main theorem giving a basis of the perpetuants.

Finally, Section 4 is an appendix, explaining the role of this material in the classical

theory of binary forms. We also explain a direct approah which can be used to calculate

a minimal set of generating covariants.

1 Back to 19th century

1.1 Semi-invariants and covariants

One has to start with the classical notion of semi-invariant. The name is probably due

to CAYLEY (see [21], cf. [2]), but today, with this name, we understand a different notion,

so that we will use the term U-invariant.

Consider the n+1-dimensional vector space Pn = Pn(x) ⊂ C[x] of polynomials of

degree ≤ n in the variable x.

On this acts the additive group C+ by

p(x) �→ p(x − λ) for λ ∈ C+ and p(x) ∈ Pn.

As usual this action extends to an action of C+ as automorphisms of the algebra O(Pn)

of polynomial functions on Pn.

Definition 1.2. The algebra S(n) of U-invariants of polynomials of degree n is the

subalgebra of the algebra of polynomial functions on Pn which are invariant under the

action of the group C+:

S(n) := O(Pn)C
+

.

The symbol U is justified since, as we shall see, the space Pn can be identified

with the space of binary forms, that is homogeneous polynomials of degree n in two

variables, over which acts the group SL(2,C).

The action of C+ should be understood as the action of the unipotent subgroup

U of SL(2,C),

U :=
{[

1 a

0 1

]
| a ∈ C

}
.

Remark 1.3. For the invariant theorists of the 19th century S(n) is an avatar of

covariants of binary forms of degree n, a basic tool to compute invariants. We will

explain later what this means.
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3600 H. Kraft and C. Procesi

The operator of derivative d
dx maps Pn surjectively to Pn−1 commuting with the

actions of C+.

This induces an inclusion of duals P∗
n−1 ⊂ P∗

n ⊂ P∗
n+1 . . ., hence an inclusion of

the rings O(Pn) of polynomial functions on Pn, and finally an inclusion S(n) ⊂ S(n + 1)

of U-invariants. We thus obtain a limit ring

S =
∞⋃

n=0

S(n), the algebra of U-invariants. (1)

In order to have a more concrete description of S one needs to keep the same

coordinates for the duals. It is then necessary to write a polynomial p(x) as a sum of

divided powers, setting

x[i] := xi

i!
, p(x) :=

n∑
j=0

ajx
[n−j] =

n∑
j=0

bjx
n−j, bj := aj

(n − j)!
. (2)

Then the operator of derivative
d

dx
acts as

d

dx
x[i] = x[i−1]; hence,

d

dx
p(x) = d

dx

n∑
j=0

ajx
[n−j] =

n−1∑
j=0

ajx
[n−1−j].

It follows that the coordinates a0, a1, . . . , an−1 that are a basis of P∗
n−1 are mapped to the

same coordinates in P∗
n.

Therefore, the algebra R = C[a0, . . . , an, . . .] of polynomials in the infinitely many

variables ai, i = 0, . . . , ∞, is the union of the algebras Rn = O(Pn) of polynomials on the

spaces Pn, and the algebra S = RU is the ring of invariants of this infinite polynomial

algebra under the action of U = C+.

A basic feature of divided powers is that, in the binomial formula, the binomial

coefficients disappear:

(a + b)[i] = (a + b)i

i!
=

i∑
j=0

1

i!

(
i

j

)
ai−jbj =

i∑
j=0

a[i−j]b[j]. (3)

We thus get, for λ ∈ C+,

λ · x[i] := (x − λ)i

i!
=

i∑
j=0

(−1)jλ[j]x[i−j],
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Perpetuants: A Lost Treasure 3601

and so

λ · p(x) := λ ·
n∑

j=0

ajx
[n−j] =

n∑
j=0

aj

n−j∑
h=0

(−1)hλ[h]x[n−j−h]

=
n∑

k=0

⎛
⎝ ∑

j+h=k

(−1)hajλ
[h]

⎞
⎠x[n−k].

(4)

By duality the action of λ on the coefficients is that ak is transformed into the kth

coefficient of (−λ) · p(x), that is

λ · ak =
∑

j+h=k

ajλ
[h] =

k∑
j=0

ajλ
[k−j], (5)

for instance

λ · a0 = a0, λ · a1 = a0λ + a1, λ · a2 = a0λ[2] + a1λ + a2,

λ · a3 = a0λ[3] + a1λ[2] + a2λ + a3, . . . .

We thus see in an explicit way that the dual action on polynomials in a0, a1, . . . is defined

in a way independent of n.

The map λ �→ λ ·f (a0, a1, . . .) = f (λ ·a0, λ ·a1, . . .) is an additive 1-parameter group

of automorphisms with infinitesimal generator given by

d

dλ
f (λ · a0, λ · a1, . . .)|λ=0 =

∑
i

∂

∂ai
f (a0, a1, . . .)

d

dλ
(λ · ai)|λ=0

=
∞∑

i=1

ai−1
∂

∂ai
f (a0, a1, . . .),

because
d

dλ
(λ · ai)|λ=0 = ai−1. One deduces the next theorem which—we believe—is due

to CAYLEY.

Theorem 1.4. The algebra S of U-invariants is formed by the polynomials f in the

infinitely many variables a0, a1, a2, . . ., satisfying

Df :=
∞∑

i=1

ai−1
∂

∂ai
f (a0, a1, a2, . . .) = 0, D =

∞∑
i=1

ai−1
∂

∂ai
.
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3602 H. Kraft and C. Procesi

1.5 Weight

In classical literature, the weight is a way of counting in a monomial in the ai the sum

of the indices i appearing. That is, ai has weight i and
∏

j a
hj

j has weight
∑

j hjj. The use

of this is in the following.

Definition 1.6. A polynomial f (a0, a1, . . .) is isobaric of weight g if all the monomials

appearing in f have weight g.

Of course, every polynomial f (a0, . . . , an) decomposes in a unique way into the

sum of homogeneous and isobaric components.

Definition 1.7. The algebra R = C[a0, a1, . . .] decomposes into the direct sum of its

components Rn,g formed by the homogeneous polynomials of degree n and weight g.

This is a bigrading as algebra.

Of course, the polynomials in Rn,g depend only on the variables a0, a1, . . . , ag.

Remark 1.8. If n ≥ g, then one has Rn,g = an−g
0 Rg,g.

This definition in modern language is that of characters of a torus. It applies

to U-invariants due to the following considerations. The multiplicative group C∗ of

nonzero complex numbers acts by automorphisms on polynomials f (a0, a1, . . .) by

μ · ai = μiai. Then a polynomial f (a0, a1, . . .) is isobaric of weight g if and only if

μ · f (a0, a1, . . .) = μgf (a0, a1, . . .).

It is easy to see that this action by C∗ has the following commutation with the operator

D := ∑∞
i=1 ai−1

∂

∂ai
:

μ · Df = μ−1(D(μ · f )).

As a consequence, since D(ai) = ai−1, we have the following result.

Lemma 1.9. The operator D := ∑∞
i=1 ai−1

∂

∂ai
maps polynomials of degree n and weight

g into polynomials of degree n and weight g − 1.

By Theorem 2.4, this implies the next result.
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Perpetuants: A Lost Treasure 3603

Corollary 1.10. The isobaric components of a U-invariant are also U-invariants.

Definition 1.11. We denote by Sn the subspace of U-invariants homogeneous of degree

n and by Sn,g ⊂ Sn the ones isobaric of weight g:

Sn =
∞⊕

g=0

Sn,g, S =
∞⊕

n=0

Sn =
⊕

n,g∈N
Sn,g.

1.12 Reducible elements

In the old literature an invariant of some positive degree k is called reducible if it is

equal to a polynomial in invariants of strictly lower degree.

This idea of course applies to an element of any commutative graded algebra,

but today it is an unfortunate expression, since in commutative algebra reducible means

something else. So we shall use the word decomposable.

Nevertheless, the invariant theorists of the 19th century used this idea in order

to understand a minimal set of generators for a ring of invariants.

In modern terms, if A = ⊕∞
i=0Ai is a commutative graded algebra, with A0 = F the

base field and setting I := ⊕∞
i=1Ai, we know that a minimal set of generators for A is a

basis of I modulo I2. So in order to describe such minimal bases one has to describe I/I2,

or rather to describe a complementary space to I2 in I. This, of course, is not canonical,

and in fact it is interesting to read some disputes between SYLVESTER and FAÀ DI BRUNO

about the best choice of representatives.

In our situation, we have for each n the algebra S(n) and the corresponding

maximal ideal In. For general n little is known about In/I2
n. In fact, one of the high points

of the theory was to prove that In/I2
n is finite dimensional. This is GORDAN’s famous

finiteness theorem [4].

But what was quickly discovered is that an element of S(n) that is indecom-

posable in S(n) need not remain indecomposable in S(n + 1). In other words, the maps

In/I2
n → In+1/I2

n+1 need not be injective, or also, a minimal set of generators for S(n)

cannot be completed to one for S(n + 1). As an example we will see in Section 4.2 that

the generator D for S(3) given by Remark 5.6 is decomposable in S(4).

We are now ready to give the main definition of this paper, that of perpetuant

([21]).

Definition 1.13. A perpetuant is an indecomposable element of S(n) that remains

indecomposable in all S(k), k ≥ n.
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3604 H. Kraft and C. Procesi

In other words it gives an element of In/I2
n that lives forever, that is, it remains

nonzero in all Ik/I2
k , ∀ k ≥ n. In this sense it is perpetuant.

Of course a perpetuant is just an indecomposable element of the limit algebra S.

Thus, to describe perpetuants is strictly related to describe minimal sets of generators

for the graded algebra S. In other words, denoting by I ⊂ S the maximal homogeneous

ideal of S we want to describe I/I2.

This space decomposes into a direct sum

I/I2 =
⊕

n,g∈N
Pn,g

with Pn,g the image of Sn,g (the elements in I of degree n and weight g). We may, for

convenience and abuse, refer to this space as the space of perpetuants.

Definition 1.14. A bigraded subspace of I that is a complement of I2 will be called a

space of perpetuants.

Observe that, while the decomposable elements, that is, elements of I2, as well

as the perpetuants, that is, the elements of I \ I2, are intrinsic objects, a space of

perpetuants that is a complement of I2 in I is not intrinsic, but depends on the choice

of some basis of I, completing a basis of I2.

The theorem of Stroh gives the generating function for the dimensions of the

isobaric components of I/I2 and can be stated as

∞∑
g=0

dim(Pn,g) xg =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2n−1−1

(1 − x2)(1 − x3) · · · (1 − xn)
for n > 2,

x2/(1 − x2) for n = 2,

1 for n = 1.

In Theorem 2.19 we will construct a complement of I2 in I, see Theorem 4.9, thus giving

a possible solution to the problem posed by SYLVESTER of describing the spaces of

perpetuants.

1.15 Umbral calculus

This is one of the forgotten parts of old invariant theory, but it really is an anticipation

of some aspects of tensor calculus. The problem arises in the computation of invariants

of some group G of linear transformations on a vector space W (cf. [18] and [19]).
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Perpetuants: A Lost Treasure 3605

1st step: polarization and restitution

The 1st step is general. The homogeneous polynomial functions on W of degree k can be

fully polarized giving rise, in characteristic 0, to a G-equivariant isomorphism between

this space and the space of multilinear and symmetric functions in k copies of W. In

formulas

O(W)k = Symk(W∗) � (W∗⊗k
)Sk ,

where Symk(W∗) is the kth symmetric power of W∗, and Sk is the symmetric group in k

letters acting in the obvious way on W∗⊗k.

Given a homogeneous polynomial function f (w) on W of degree k, its polariza-

tions fα are obtained from the expansion

f (t1w1 + · · · + tkwk) =
∑

α=(α1,...,αk)
α1+···+αk=k

tαfα(w1, . . . , wk), tα := tα1
1 · · · tαk

k . (6)

The full polarization Pf is the coefficient of the product t1 · · · tk:

Pf (w1, . . . , wk) := f1,...,1(w1, . . . , wk).

It is multilinear and symmetric. In order to obtain the inverse map, called restitution,

one sets all the wi equal to w, that is, F(w1, . . . , wn) �→ F(w, . . . , w). Starting with f =
f (w) and setting wi = w in equation (6) we find

f ((t1 + · · · + tk)w) = (t1 + · · · + tk)kf (w) =
∑

tαfα(w, . . . , w).

In particular, Pf (w, . . . , w) = k! f (w) (the presence of the factor k! explains why this

procedure works well only in characteristic zero).

2nd step: umbrae of invariants

Next assume that W is some tensor representation of GL(V) for some space V. For

instance, in the classical literature one finds W = O(V)n = Symn(V∗), the space of

homogeneous polynomial functions of degree n on V. Inside W one then has some

special vectors, usually the decomposable vectors that span W and are stable under

GL(V). For instance, for W = Symn(V∗) we have the functions ϕn, the nth powers of the

linear forms ϕ ∈ V∗, or their divided powers ϕ[n].

Then a linear function on W restricted to the elements ϕ[n], ϕ ∈ V∗, gives rise to

a homogeneous polynomial of degree n on V∗, and this establishes an isomorphism,
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3606 H. Kraft and C. Procesi

between W∗ and the space of homogeneous polynomials of degree n on V∗, which

is GL(V)-equivariant. Similarly, a multilinear function on k copies of W restricted to

ϕ[n]
1 , . . . , ϕ[n]

k , ϕj ∈ V∗, gives rise to a homogeneous polynomial of degree n in each of

the k variables ϕi ∈ V∗, and this also establishes a GL(V)-equivariant isomorphism

between (W⊗k)∗ and the space of multihomogeneous polynomials of degree n on k vector

variables in V∗ (compatible with the two actions of Sk).

Thus, a multilinear invariant of k copies of W under some subgroup G ⊂ GL(V)

is encoded in a polynomial in k linear forms ϕ1, . . . , ϕk ∈ V∗, called umbrae, which

is multihomogeneous of degree n, symmetric in the variables ϕ1, . . . , ϕk, and invariant

under G.

The symbolic method

Combining the two steps above we obtain a map, denoted by E , that associates to

a multihomogeneous symmetric invariant of degree n of k umbral–variables in V∗, a

homogeneous invariant of degree k on W, after interpretation as multilinear polynomial

in k variables in W and setting all variables equal.

This is the basis of the symbolic method for binary forms where W :=
Symg(C2) = C[x, y]g that we will describe now.

1.16 Symbolic method for binary forms

For binary forms an explicit algorithmic way (which extends of course to forms in any

number of variables) is the following. A linear form is an expression of type α1x + α2y.

With the notation of (2), we have

(α1x + α2y)[g] =
g∑

i=0

α
[g−i]
1 α[i]

2 x[n−i]y[i] :=
g∑

i=0

aix
[g−i]y[i].

Let ϕi := α1,ix + α2,iy, i = 1, . . . , n, be n linear forms. A polynomial homogeneous of

degree g in each of the ϕi is a linear combination of monomials of type
∏n

i=1 α
g−ri
1,i α

ri
2,i

where 0 ≤ ri ≤ g. Then the corresponding function on W = C[x, y]g under the map E is

given by

E :
n∏

i=1

α
[g−ri]
1,i α

[ri]
2,i �→

n∏
i=1

ari
. (7)
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Perpetuants: A Lost Treasure 3607

The SL(2,C)-invariants of the forms ϕi, i = 1, . . . , k are generated by the quadratic

invariants:

(i, j) = (ϕi, ϕj) := det

[
α1,i α2,i

α1,j α2,j

]
= α1,iα2,j − α1,jα2,i.

Therefore, the space of invariants of degree k of binary forms of degree n is spanned by

the evaluation E of the symbols
∏

t(it, jt), it, jt ∈ {1, . . . , k} in which each of the indices

1, . . . , k appears exactly n times.

The 1st problem of this method is to exhibit a list of symbols that give a basis of

the corresponding invariants. But the main difficulty is to understand which symbols

correspond to decomposable invariants.

A large number of papers of 19th century invariant theory is devoted to these

problems culminating with GORDAN’s proof of finite generation; see [4], [5].

A complete answer is not known and probably too complex to be made explicit.

For this reason Theorem 1.1 of STROH, and our main result, Theorem 4.9, are quite

remarkable.

Remark 1.17.

(1) The map E is a well defined linear homomorphism from the space of

polynomials in the n variables ϕi with coordinates α1,i, α2,i and homogeneous

of degree g in each of these variables to the space of polynomials of degree

n in the variables a0, . . . , ag:

E : C[α1,1, α2,1, . . . , α1,n, α2,n](g,g,...,g) → C[a0, . . . , ag]n.

(2) In the classical literature one may see a statement as

ϕ1
∼= ϕ2

∼= . . . ∼= ϕn

to mean that the map E takes the same values when permuting the k

umbrae ϕi. More precisely, the map E is an isomorphism when restricted

to symmetric polynomials in the k variables ϕi.

(3) Finally, E is equivariant with respect to the action of GL(2,C) induced by

the action on the variables x, y.
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3608 H. Kraft and C. Procesi

Formula (7) suggests, when considering U-invariants, to work only with the

variables αi := α2,i and to replace the map E with

E :
n∏

i=1

α
[ri]
i �→

n∏
i=1

ari
, (ri ≥ 0). (8)

Notice that, in this formula the αi that do not appear, that is, for which ri = 0, contribute

each to a factor a0.

It follows that E maps linearly the space of polynomials in α1, . . . , αn to the space

of polynomials homogeneous of degree n in the variables a0, a1, a2, . . .,

E : C[α1, . . . , αn] → C[a0, a1, a2, . . .], α
[r1]
1 · · · α[rn]

n �→ ar1
· · · arn

,

where a homogeneous polynomial of degree g is mapped to an isobaric polynomial of

weight g and homogeneous of degree n. The map E commutes with the permutation

action on the αi, i = 1, . . . , n, for example,

E(α[3]
1 α[2]

2 ) = E(α[3]
3 α[2]

1 ) = an−2
0 a2a3 and E(α[2]

i α[2]
j ) = an−2

0 a2
2.

Remark 1.18. The map E is not a homomorphism of algebras. Nevertheless, if we

decompose the umbrae in two disjoint subsets α1, . . . , αh and αh+1, . . . , αk and consider

two polynomials f (α1, . . . , αh) and g(αh+1, . . . , αk) we have

E
(
f (α1, . . . , αh) · g(αh+1, . . . , αn)

) = E(f (α1, . . . , αh)) · E(g(αh+1, . . . , αn)).

In this formalism we loose the action of GL(2,C), but we still have the

translation action by C+, which commutes with E . In term of differential operators,

we see that

E ◦
n∑

i=1

∂

∂αi
=

∞∑
i=1

ai−1
∂

∂ai
◦ E . (9)

When working with U-invariants the previous umbral calculus corresponds to

the further simplification of considering, instead of binary forms, polynomials in x, and

the action is just translation x �→ x − λ. One may further restrict to monic polynomials,

and so use the formula

(x + α)[g] =
g∑

i=0

α[i]x[g−i] = x[n] +
n∑

i=1

aix
[g−i].
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Perpetuants: A Lost Treasure 3609

Given any polynomial in the a1, a2, . . . which is invariant under translation and of given

weight one can reconstruct a corresponding U-invariant by making it homogeneous by

inserting powers of a0.

2 Stroh’s Potenziante and Duality

2.1 Potenziante

Following STROH we define the potenziante by

πn,g := E

⎛
⎜⎝
⎛
⎝ n∑

j=1

λjαj

⎞
⎠

[g]
⎞
⎟⎠ =

∑
r1,...,rn∈N

r1+···+rn=g

λ
r1
1 · · · λrn

n ar1
· · · arn

(10)

where the α1 . . . , αn are all umbrae, and one uses Formula (8). Moreover,

∞∑
g=0

πn,g = E

⎛
⎝exp

n∑
j=1

λjαj

⎞
⎠ .

Notice that πn,g is a polynomial in the variables λ1, . . . , λn and the variables a0, . . . , ag.

Sometimes we need to change the variables λj, so we shall stress this dependence by

writing

πn,g = πn,g(λ; a) = πn,g(λ1, . . . , λn; a0, a1, . . . , ag).

By construction, πn,g(λ; a) is homogeneous of degree n and isobaric of weight g in the ai,

and symmetric and of degree g in the λj. So it can be developed in term of the symmetric

functions of degree g in the λj.

Definition 2.2. Denote by �n,g = C[λ1, . . . , λn]Sn
g ⊂ C[λ1, . . . , λn] the subspace of

symmetric polynomials in λ1, . . . , λn that are homogeneous of degree g.

The space �n,g has several useful bases, all indexed by partitions:

h1 ≥ h2 ≥ · · · ≥ hn ≥ 0, hi ∈ N, h1 + · · · + hn = g.

We first take as basis of �n,g the total monomial sums mh1,...,hn
, that is, the sum

over the Sn-orbit of λ
h1
1 · · · λhn

n (Sn the symmetric group on n elements) where h1 ≥ h2 ≥
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3610 H. Kraft and C. Procesi

· · · ≥ hn ≥ 0 and h1 + · · · + hn = g:

mh1,...,hn
(λ) :=

∑
Sn-orbit

σ(λ
h1
1 · · · λhn

n ).

It follows from the definition of πn,g(λ; a) (see formula (10)) that the monomial ah1
· · · ahn

appears in πn,g with coefficient mh1,...,hn
(λ). From this we easily get the following result.

Proposition 2.3.

(1) In πn,g(λ; a) the total monomial sum mh1,...,hn
(λ) has as coefficient the

product ah1
ah2

· · · ahn
:

πn,g(λ; a) = E

⎛
⎝
(

n∑
r=1

λrαr

)[g]
⎞
⎠ =

∑
h1≥...≥hn≥0
h1+···+hn=g

mh1,...,hn
ah1

ah2
· · · ahn

.

(2) These coefficients form a basis of the space C[a]n,g of homogeneous polyno-

mials in a0, a1, a2, . . . of degree n and weight g.

Example 2.4. With n = g = 3 we find

(λ1α1 + λ2α2 + λ3α3)[3] = λ3
1α[3]

1 + λ3
2α[3]

2 + λ3
3α[3]

3 + λ2
1λ2α[2]

1 α2 + λ2
1λ3α[2]

1 α3

+ λ2
2λ1α[2]

2 α1 + λ2
2λ3α[2]

2 α3 + λ2
3λ1α[2]

3 α1 + λ2
3λ2α[2]

3 α2 + λ1λ2λ3α1α2α3.

Applying E we get

(λ3
1 + λ3

2 + λ3
3)a2

0a3 + (λ2
1λ2 + λ2

1λ3 + λ2
2λ1 + λ2

2λ3 + λ2
3λ1 + λ2

3λ2)a0a1a2 + λ1λ2λ3a3
1,

which is equal to

m3,0,0(λ)a2
0a3 + m2,1,0(λ)a0a1a2 + m1,1,1(λ)a3

1.

With n = 2 and g = 4 we find

(λ1α1 + λ2α2)[4] = λ4
1α[4]

1 + λ4
2α[4]

2 + (λ3
1λ2α[3]

1 α2 + λ3
2λ1α[3]

2 α1) + λ2
1λ2

2α[2]
1 α[2]

2 .
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Perpetuants: A Lost Treasure 3611

Applying E this gives

(λ4
1 + λ4

2)a3
0a4 + (λ3

1λ2 + λ3
2λ1)a2

0a1a3 + λ2
1λ2

2a2
2,

which is equal to

m4,0(λ)a3
0a4 + m3,1(λ)a2

0a1a3 + m2,2(λ)a2
2.

Finally, with n = 3 and g = 2 we have

(λ1α1 + λ2α2 + λ3α3)[2] = λ2
1α[2]

1 + λ3
2α[2]

2 + λ3
3α[2]

3 + λ1λ2α1α2 + λ1λ3α1α3 + λ2λ3α2α3.

Applying E we get

(λ2
1 + λ2

2 + λ2
3)a2

0a2 + (λ1λ2 + λ1λ3 + λ2λ3)a0a2
1,

which is equal to

m2,0,0(λ)a2
0a2 + m1,1,0(λ)a0a2

1.

Notice that all coefficients are divisible by a0 as expected, because n > g.

2.5 Duality

Proposition 2.1 can be understood in the following way. The tensor

πn,g(λ; a) ∈ �n,g ⊗ C[a]n,g ⊂ C[λ1, . . . , λn]Sn ⊗C C[a0, . . . , ag]

defines a duality between the subspace �n,g ⊆ C[λ1, . . . , λn]Sn of homogeneous symmet-

ric polynomials of degree g in n variables, and the subspace C[a]n,g ⊆ C[a0, . . . , ag] of

polynomials, homogeneous of degree n, and with weight g.

In general, given two finite dimensional vector spaces U, W and denoting by

U∨, W∨ their duals, one has the canonical isomorphisms

U ⊗ W � Hom(U∨, W) � Hom(W∨, U). (11)

For example, if π ∈ U ⊗ W is a tensor, then the corresponding map π : U∨ → W is given

by ϕ �→ (ϕ ⊗ idW)(π).
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3612 H. Kraft and C. Procesi

A dualizing tensor π ∈ U ⊗ W is an element that corresponds, under these

isomorphisms, to an isomorphism U∨ ∼−→ W (or W∨ ∼−→ U). Thus, a dualizing tensor

π equals, for any basis u1, . . . , uk of U, to π = ∑k
i=1 ui ⊗ wi, where w1, . . . , wk is a basis

of W.

Definition 2.6. Let π ∈ U ⊗ W be a dualizing tensor. If M ⊆ U is a subspace, then

the orthogonal subspace M⊥ ⊆ W is defined to be the image of (U/M)∨ in W under the

isomorphism U∨ ∼−→ W corresponding to π .

Choosing a basis (ui)
n
i=1 of U such that (uj)

m
j=1 is a basis of M and writing π =∑

i ui⊗wi, then (wk)n
k=m+1 is a basis of M⊥. Moreover, the image of π in U/M⊗W defines

a dualizing tensor π̄ ∈ U/M ⊗ M⊥.

Remark 2.7. In general, a tensor π ∈ U ⊗ W gives, via the isomorphism (11), two maps

π1 : W∨ → U, π2 : U∨ → W (12)

and we have the following:

(1) π2 = π∨
1 , im(π1) = ker(π2)⊥, im(π2) = ker(π1)⊥.

(2) π ∈ im(π1) ⊗ im(π2) is a dualizing tensor for these two spaces.

(3) If π = ∑k
i=1 ui ⊗ wi, and if the ui are linearly independent, then the image

im(π2) of the corresponding map is the span of the elements wi. Similarly, if

the wi are linearly independent.

(4) If U ′ ⊆ U is a subspace and π ∈ U ′ ⊗ W, then the associated subspace in W

is the same when computed with U or U ′.

Sketch of Proof. Let π = ∑k
i=1 ui ⊗wi with k minimal. Then clearly both the ui as well

as the wj are linearly independent, and they span the two spaces im(π1) and im(π2).

Now the various claims follow easily. �

Applying this to the dualizing tensor

πn,g ∈ �n,g ⊗C C[a0, . . . , ag]n,g
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Perpetuants: A Lost Treasure 3613

we obtain, from Proposition 3.1, the following two isomorphisms:

�∨
n,g

∼−→ C[a]n,g : ϕ �→ (ϕ ⊗ id)(πn,g) = (ϕ ⊗ id)(
∑

hmh ⊗ ah) = ∑
hϕ(mh)ah,

C[a]∨n,g
∼−→ �n,g : ψ �→ (id ⊗ ψ)(πn,g) = (id ⊗ ψ)(

∑
hmh ⊗ ah) = ∑

hψ(ah)mh.

As a consequence of the remark above this gives the next result.

Proposition 2.8. For every subspace M ⊂ �n,g we have the orthogonal subspace M⊥ ⊂
C[a]n,g, and the duality between �n,g/M and M⊥ is given by the image of πn,g in �n,g/M⊗
C[a0, . . . , ag]n,g.

Given a basis u1, . . . , uN of �n,g such that u1, . . . , um is a basis of M, and writing

πn,g = ∑N
j=1 uj ⊗ bj, then the elements bm+1, . . . , bN form a basis of M⊥.

Now consider some homogeneous ideal J ⊂ Q[λ1, . . . , λn] and the corresponding

quotient map Q[λ1, . . . , λn] → Q[λ1, . . . , λn]/J. By restriction, we have a homomorphism

Q[λ1, . . . , λn]Sn → Q[λ1, . . . , λn]/J

with kernel Q[λ1, . . . , λn]Sn ∩J. Denoting the images of the λi by λ̄i we get an image of the

potenziante

πn,g(λ̄1, . . . , λ̄n) = E

⎛
⎜⎝
⎛
⎝ n∑

j=1

λ̄jαj

⎞
⎠

[g]
⎞
⎟⎠ ∈ C[λ̄1, . . . , λ̄n] ⊗

C
C[a0, . . . , an],

and we obtain the following result.

Proposition 2.9. If (Bi)i∈Ig is a basis of �n,g/�n,g ∩ J and if

πn,g(λ̄1, . . . , λ̄n) =
∑
i∈Ig

Bi ⊗ Ai,

then (Ai)i∈Ig is a basis of the subspace of C[a]n,g orthogonal to �n,g ∩ J.
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3614 H. Kraft and C. Procesi

2.10 Description of the U-invariants

We have seen in Theorem 2.4 that the U-invariants S = C[a0, a1, . . .]U form the kernel

of the differential operator D := ∑∞
i=1 ai−1

∂

∂ai
. Moreover, S is bigraded by degree and

weight: S = ⊕
n,g∈N Sn,g, see Definition 2.11.

A very remarkable formula

From (
n∑

i=1

∂

∂αi

)(
n∑

r=1

λrαr

)[g]

=
(

n∑
i=1

λi

)(
n∑

r=1

λrαr

)[g−1]

we obtain, by Formula (9),

∞∑
i=1

ai−1
∂

∂ai
πn,g =

(
n∑

i=1

λi

)
πg−1,n, or

D

⎛
⎝E

⎛
⎝exp

n∑
j=1

λjαj

⎞
⎠
⎞
⎠ = e1(λ) E

⎛
⎝exp

n∑
j=1

λjαj

⎞
⎠ .

(13)

Remark 2.11. The meaning of this formula is that, using the duality between

symmetric functions in n variables and polynomials in the ai of degree n, the transpose

of the operator D is the multiplication by
∑n

i=1 λi.

The remarkable formula (13) gives us a straightforward way of describing both,

the operator D, and also a basis of the U-invariants.

For this we change the basis of the space �n,g of symmetric functions from

the total monomial sums mh1,...,hn
to the monomials ek1

1 . . . ekn
n ,

∑
j jkj = g, where

ei = ei(λ1, . . . , λn) is the ith elementary symmetric function.

Expressing the total monomial sums mh1,...,hn
in the ei’s we get, for some

αh1,...,hn,k1,...,kn
∈ Z:

mh1,...,hn
=

∑
k1,...,kn

αh1,...,hn,k1,...,kn
ek1

1 . . . ekn
n . (14)

The potenziante πn,g in this new basis appears as

πn,g =
∑

0≤k1,...,kn
k1+2k2+···+nkn=g

ek1
1 . . . ekn

n Ũk1,...,kn
,
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Perpetuants: A Lost Treasure 3615

where the new elements Ũk1,...,kn
are given by

Ũk1,...,kn
=

∑
h1,...,hn

αh1,...,hn,k1,...,kn

n∏
j=1

ahj
, (15)

and also form a basis of C[a]n,g. By formula (13) we get

Dπn,g =
∑

k1,...,kn≥0∑
iki=g

ek1
1 . . . ekn

n D Ũk1,...,kn
=

∑
j1,...,jn≥0∑

iji=g−1

ej1+1
1 . . . ejn

n Ũj1,...,jn = e1πn,g−1,

which implies the following result.

Corollary 2.12.

(1) We have

D Ũk1,...,kn
=
⎧⎨
⎩0 if k1 = 0

Ũk1−1,...,kn
if k1 > 0.

(16)

(2) The elements Uk2,...,kn
:= Ũ0,k2,...,kn

form a basis of the space Sn,g of the U-

invariants of degree n and weight g.

It is interesting to remark that these results hold over Z and not just over C.

In an alternative way we can impose the relation
∑n

r=1 λr = 0 and denote by λ̄r

the class of λr modulo
∑n

r=1 λr = 0. Denote by �̄n the algebra of symmetric functions

in the λ̄r, which is a polynomial algebra over the elements e2(λ̄), . . . , en(λ̄). The space of

symmetric functions of degree g in λ̄1, . . . , λ̄n,

�̄n,g = (C[λ1, . . . , λn]Sn/(λ1 + · · · + λn))g = C[λ̄1, . . . , λ̄n]Sn
g

has as basis the monomials of weight g in the elements ē2 := e2(λ̄), . . . , ēn := en(λ̄). This

implies the following result.

Proposition 2.13.

(1) The potenziante π̄n,g(λ̄; a) ∈ �̄n,g ⊗ C[a]g has the form

π̄n,g(λ̄1, . . . , λ̄n; a0, a1, . . . , ag) =
∑

k2,...,kn≥0∑
iki=g

ēk2
2 . . . ēkn

n Uk2,...,kn
. (17)
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3616 H. Kraft and C. Procesi

(2) In particular, π̄n,g(λ̄, a) is a dualizing tensor between the space �̄n,g of

symmetric functions of degree g in λ̄1, . . . , λ̄n and the space Sn,g of U-

invariants of degree n and weight g.

(3) The elements Uk2,...,kn
= Ũ0,k2,...,kn

of formula (15) form a basis of the space

Sn,g ⊂ C[a0, . . . , an] of U-invariants of degree n and weight g, dual to the

basis ēk2
2 . . . ēkn

n of �̄n,g.

As a corollary we have

∞∑
g=0

dim(Sn,g)xg = 1

(1 − x2)(1 − x3) · · · (1 − xn)
.

Remark 2.14. CAYLEY and MACMAHON use the word non unitariants for various

symmetric functions in the differences of the roots, due to the fact that they are indexed

by partitions with no part of size 1.

As a consequence of the proposition above and of Proposition 3.8 we see that

the quotients of �̄n,g correspond to subspaces of Sn,g. So our final task is to identify the

subspace On,g of �̄n,g orthogonal to the subspace of decomposable elements of Sn,g and

from that a choice of perpetuants.

2.15 Decomposable U-invariants

For a given h ∈ N, 1 ≤ h < n we have (3):

(λ1α1 + · · · + λnαn)[g] =
g∑

j=0

(λ1α1 + · · · + λhαh)[j](λh+1αh+1 + · · · + λnαn)[g−j],

which implies, by Remark 2.18, the following decomposition of the potenziante:

πn,g(λ1, . . . , λn; a) =
g∑

j=0

πh,j(λ1, . . . , λh; a) · πn−h,g−j(λh+1, . . . , λn; a). (18)
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Perpetuants: A Lost Treasure 3617

Consider the ideal Jh ⊂ C[λ1, . . . , λn] generated by the two linear elements λ1 + · · · + λh

and λh+1 + · · · + λn (or the ideal J̄h ⊂ C[λ̄1, . . . , λ̄n] generated by λ̄1 + · · · + λ̄h). Then

C[λ1, . . . , λn]/Jh = C[λ̄1, . . . , λ̄n]/J̄h =
C[λ1, . . . , λh]/(λ1 + · · · + λh) ⊗C C[λh+1, . . . , λn]/(λh+1 + · · · + λn),

and the image of C[λ1, . . . , λn]Sn is contained in

C[λ1, . . . , λh]Sk/(λ1 + · · · + λh) ⊗C C[λh+1, . . . , λn]Sn−k/(λh+1 + · · · + λn).

Denote by Tn,g,h the subspace of this tensor product, formed by homogeneous elements

of degree g, and let �̄n,g,h ⊆ Tn,g,h be the image of �̄n,g ⊂ C[λ̄1, . . . , λ̄n]. Let us write λ̃i for

the class of λ̄i modulo J̄h, and consider the image π̄n,g,h of π̄n,g modulo J̄h. We get from

Formula (18):

π̄n,g,h =
g∑

j=0

πh,j(λ̃1, . . . , λ̃h; a) · πn−h,g−j(λ̃h+1, . . . , λ̃n; a) (19)

as an element from �̄n,g,h ⊗ Sn,g ⊂ Tn,g,h ⊗ Sn,g.

Lemma 2.16. With the notation above we have the following results.

(a) If (Bi)i∈I is a basis of �̄n,g,h and

π̄n,g,h =
∑
i∈I

Bi ⊗ Ai,

then the Ai form a basis of the U-invariants decomposable as

Sn,g,h :=
g∑
j

Sh,j · Sn−h,g−j.

In particular, the potenziante π̄n,g,h(λ̃; a) ∈ �̄n,g,h ⊗ Sn,g is a dualizing tensor

between �̄n,g,h and the space Sn,g,h ⊂ Sn,g.

(b) In the correspondence between subspaces of Sn,g and of �̄n,g given by

the potenziante π̄n,g (see Proposition 2.13(2)) the subspace Sn,g,h is the

orthogonal to �̄n,g ∩ J̄h.
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3618 H. Kraft and C. Procesi

Proof. (a) Developing Formula (19) for π̄n,g,h by using Formula (17) for all terms we get

π̄n,g,h =
g∑

j=0

∑
k′

2,...,k′
h,k′′

2,...,k′′
n−h∑

i ik′
i=j,

∑
i ik′′

i =g−j

(e′
2

k′
2 · · · e′

h
k′

h ⊗ e′′
2

k′′
2 · · · e′′

n−h
k′′

n−h)Uk′
2...,k′

h
Uk′′

2,...,k′′
n−h

,

where e′
i := ei(λ̃1, . . . , λ̃h) and e′′

i := ei(λ̃h+1, . . . , λ̃n). Now the elements Uk2,...,kh
span

the space Sh,j for j := ∑
i iki, it follows that the elements Uk′

2...,k′
h
Uk′′

2,...,k′′
n−h

span

Sn,g,h = ∑g
j=0 Sh,j · Sn−h,g−j. Since the tensor products e′

2
k′

2 · · · e′
h

k′
h ⊗ e′′

2
k′′

2 · · · e′′
n−h

k′′
n−h are

linearly independent it follows that the Ai also span Sn,g,h using parts (2) and (3) of

Remark 2.7.

It follows from Proposition 2.13(2) and Remark 2.7 that π̄n,g,h is a dualizing

tensor between �̄n,g,h, the image of �̄n,g, and a subspace S′
n,g,h ⊆ Sn,g. By the 1st part

S′
n,g,h = Sn,g,h and the Ai are also linearly independent.

(b) By Remark 2.7 (1) or Proposition 2.9 this is clear, since �̄n,g ∩ J̄h is the kernel

of the surjective map �̄n,g → �̄n,g,h. �

2.17 The symmetric functions ph and qn

The space �̄n,g ∩ J̄h consists of the symmetric functions in λ̄1, . . . , λ̄n of degree n, which

are divisible by λ̄1 +· · ·+ λ̄h. Such a symmetric function is also divisible by the elements

λ̄T := ∑
i∈T λ̄i for all subsets T ⊂ {1, . . . , n} of cardinality |T| = h.

For h < n
2 consider the symmetric function

ph :=
∏

1≤j1<j2<...<jh≤n

(λ̄j1 + λ̄j2 + · · · + λ̄jh) =
∏

T⊂{1,2,...,n}
|T|=h

λ̄T

of degree
(n

h

)
. It follows that ph is an irreducible element of �̄n and that �̄n,g∩J̄h consists

of the multiples of ph of degree g. When n = 2h is even and h > 1, then λ̄T = −λ̄{1,2,...,n}\T .

Therefore, we define

ph :=
∏

1<j2<...<jh≤2h

(λ̄1 + λ̄j2 + · · · + λ̄jh) =
∏

T⊂{1,2,...,n}
|T|=h, 1∈T

λ̄T .

We claim that ph is irreducible, of degree 1
2

(2h
h

)
and still symmetric for h > 1. In fact it

is clearly symmetric with respect to the permutations which fix 1 so it is enough to see

the symmetry under the transposition (1, 2). This fixes all factors for which λ2 = 2; as
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Perpetuants: A Lost Treasure 3619

for the product 
 of the remaining factors λ̄T , 1 ∈ T, 2 /∈ T it replaces 1 with 2 and maps

these set of factors bijectively to the set of factors associated to sets T with 1 /∈ T, 2 ∈ T.

For these sets the map T �→ {1, 2, . . . , n} \ T is a bijection with the factors of 
.

By formula λ̄T = −λ̄{1,2,...,n}\T the product of 
 is thus equal to ε
 with ε = (−1)|
|. Now

clearly |
| = (2h−2
h−1

) = 2
(2h−3

h−2

)
is even. This proves the following lemma.

Lemma 2.18. For n > 2 and h ≤ n
2 the space �̄n,g ∩ J̄n consists of the elements of �̄n,g

that are multiples of the symmetric function ph.

Let us define the following symmetric function:

qn := p1p2 · · · pm where m :=
⌊n

2

⌋
.

We claim that deg qn = 2n−1 − 1. In fact,

n−1
2∑

j=1

(
n

j

)
= 1

2

n−1∑
j=1

(
n

j

)
= 1

2
(2n − 2) = 2n−1 − 1 if n is odd,

h−1∑
j=1

(
2h

j

)
+ 1

2

(
2h

h

)
= 1

2
22h − 1 = 2n−1 − 1 if n = 2h is even.

Theorem 2.19. Let us now assume n > 2. With respect to the potenziante π̄n,g ∈ �̄n,g ⊗
Sn,g the space of decomposable U-invariants of degree n and weight g is the orthogonal

to On,g := �̄n,g ∩ (qn). It has as basis the coefficients of the potenziante in the quotient

algebra C[λ̄1, . . . , λ̄n]/(qn).

Proof. This follows from the following argument. In the correspondence between

subspaces of �̄n,g and of Sn,g given by the potenziante πn,g (Proposition 3.13(2)) we have

seen in Lemma 3.16 that the space of U-invariants decomposed as a sum of products

of U-invariants of degree h and n − h is the orthogonal of the subspace of multiples

of ph. Hence, the entire space of decomposable U-invariants is the orthogonal of the

intersection of all the subspaces of multiples of the various ph. But these symmetric

functions are all irreducible in the algebra of symmetric functions in λ̄1, . . . , λ̄n, and

distinct, so that this intersection is exactly the space of multiples of qn. �

This we believe is the main step in STROH’s proof.
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3620 H. Kraft and C. Procesi

Corollary 2.20. If Mn,g ⊂ �̄n,g is a complement to On,g := �̄n,g ∩ (qn), then the

orthogonal of Mn,g in Sn,g is a space of perpetuants (Definition 2.14) of degree n and

weight g.

Proof. This follows by duality. The orthogonal of Mn,g is a complement of the

orthogonal of On,g, which is the space of decomposable elements. �

2.21 Generating functions and proof of Stroh’s theorem

Define

Nn,g := #{2μ2 + 3μ3 + · · · + nμn = g},

the number of ways of partitioning g with numbers between 2 and n. We have

∞∑
g=0

Nn,g xg = 1

(1 − x2) · · · (1 − xn)
.

The dimension of the space �̄n,g is clearly Nn,g, and the subspace of those divisible by

an element of degree i has dimension Nn,g−i if i ≤ g and 0 otherwise. It follows that the

space On,g = (qn) ∩ �̄n,g of multiples of qn has dimension Nn,g−2n−1+1 if g ≥ 2n−1 − 1 and

0 otherwise. Now Corollary 2.20 shows that this is the dimension of the perpetuants of

degree n > 2 and weight g, and we thus get for the generating function, in degree n:

∞∑
g=2n−1−1

Nn,g−2n−1+1 xg =
( ∞∑

k=0

Nn,k xk

)
x2n−1−1 = x2n−1−1

(1 − x2) · · · (1 − xn)
.

This proves the main theorem of STROH provided we do the cases n = 1 and 2. For n = 1

we have S1 = Ca0, and so the only homogeneous perpetuant is clearly a0. For n = 2 the

only decomposable elements are the multiples of a2
0. We have

E(λ̄1α1 + λ̄2α2)[g] = λ̄
g
1E

(
(α1 − α2)[g]

)
= λ̄

g
1 E

⎛
⎝ g∑

j=0

α
[j]
1 (−α2)[g−j]

⎞
⎠ , and

E

⎛
⎝ g∑

j=0

α
[j]
1 (−α2)[g−j]

⎞
⎠ =

g∑
j=0

(−1)g−jajag−j =

=
⎧⎨
⎩0 if g is odd,∑h−1

j=0 2(−1)jajag−j + (−1)ha2
h if g = 2h is even.
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This shows that there is exactly one perpetuant of degree 2 in every even weight > 0,

and so the generating function is x2/(1 − x2) as claimed.

3 A Basis of the Perpetuants

In the next paragraph we construct an explicit basis for a space of perpetuants

(Definition 2.14).

3.1 Leading exponents

Using Corollary 2.20, we will now define a special basis in order to obtain a basis of the

perpetuants, see Theorem 3.9 below. As before, we will work in the polynomial algebra

C[λ1, . . . , λn]/(λ1 + · · · + λn) = C[λ̄1, . . . , λ̄n−1],

where λ̄i is the image of λi. For r = (r1, . . . , rn−1) ∈ Nn−1 we set λ̄r := λ̄
r1
1 · · · λ̄rn−1

n−1 , so that

any f ∈ C[λ̄1, . . . , λ̄n−1] can be written in the form f = ∑
finite cr λ̄r .

We use the usual lexicographic order ≤ on the exponents:

(r1, . . . , rn−1) < (s1, . . . , sn−1) ⇐⇒ rk < sk for k := min{i | ri �= si}.

Definition 3.2. For a nonzero polynomial f ∈ C[λ̄1, . . . , λ̄n−1], f = ∑
i cr λ̄r , the

maximum r0 := max{r | cr �= 0} is called the leading exponent of f and is denoted

by �exp(f ). Furthermore, �mon(f ) := cr0
λ̄r0 is called the leading monomial of f .

Remark 3.3. For two polynomials f , g we have �exp(f · g) = �exp(f ) + �exp(g).

As before, we denote by ē2, . . . , ēn ∈ C[λ̄1, . . . , λ̄n−1] the images of the elementary

symmetric functions e2, . . . , en ∈ C[λ1, . . . , λn].

Lemma 3.4.

(1) The leading exponent of ēh := ēh2
2 · · · ēhn

n is given by

�exp(ēh ) = (2(h2 + · · · + hn), h3 + · · · + hn, . . . , hn−1 + hn, hn) ∈ Nn−1.

(2) The leading exponents of the monomials ēh2
2 · · · ēhn

n are distinct and are

formed by all sequences (r1, . . . , rn−1) with r1 − 2r2 ∈ 2N and ri ≥ ri+1.
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3622 H. Kraft and C. Procesi

Proof. (1) The leading monomial of ēj comes from the term

λ̄1λ̄2 · · · λ̄j−1λ̄n = −λ̄1λ̄2 · · · λ̄j−1(λ̄1 + · · · + λ̄n−1)

= −λ̄2
1λ̄2 · · · λ̄j−1 + lower terms.

Therefore, we have

�exp(ē2) = (2, 0, . . . , 0), �exp(ē3) = (2, 1, 0, . . . , 0), · · · , �exp(ēn) = (2, 1, . . . , 1),

and the claim follows from Remark 3.3.

(2) This follows immediately from (1) by setting 2h2 := r1−2r2, hj := rj−1−rj, n >

j ≥ 3, hn = rn−1. �

Recall the definition of the symmetric function qn ∈ C[λ̄1, . . . , λ̄n] from

Section 2.17:

ph :=
∏

1≤j1<j2<...<jh≤n

(λ̄j1 + λ̄j2 + · · · + λ̄jh) =
∏

T⊂{1,2,...,n}
|T|=h

λ̄T for 2h < n,

pm :=
∏

1<j2<...<jm≤2m

(λ̄1 + λ̄j2 + · · · + λ̄jm) =
∏

T⊂{1,2,...,n}
|T|=m, 1∈T

λ̄T for n = 2m,

and

qn := p1 · · · pm where m :=
⌊n

2

⌋
.

Lemma 3.5. The leading exponent of qn is �exp(qn) = (2n−2, 2n−3, . . . , 2, 1).

Proof. For T := { j1, j2, . . . , jh}, 1 ≤ j1 < j2 < . . . < jh ≤ n we have

λ̄T =
⎧⎨
⎩λ̄j1 + λ̄j2 + · · · + λ̄jh if jh < n

λ̄j1 + λ̄j2 + · · · + λ̄jh−1
− ∑n−1

i=1 λ̄i if jh = n

Thus, if n ∈ T, then λ̄T = −λ̄T ′ where T ′ := {1, . . . , n} \ T. The map T �→ T ′ is a bijection

between the subsets T of {1, 2, . . . , n} containing n and of cardinality h with the subsets

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/5/3597/5802761 by guest on 17 M
arch 2021



Perpetuants: A Lost Treasure 3623

of {1, 2, . . . , n − 1} of cardinality n − h. This implies, for 2h < n:

ph = ±
∏

T⊂{1,...,n−1}
|T|=h

λ̄T

∏
T⊂{1,...,n−1}

|T|=n−h

λ̄T = ± fh fn−h

where fk :=
∏

T⊂{1,...,n−1}
|T|=k

λ̄T .

The leading term of λ̄T , T ⊂ {1, 2, . . . , n − 1} is λ̄j with j := min T, and the number of

subsets T ⊂ {1, 2, . . . , n − 1} with |T| = h and j = min T equals the number of subsets

T ⊆ { j + 1, . . . , n − 1} with |T| = h − 1. This number is equal to
(n−1−j

h−1

)
if h ≤ n − j, and 0

otherwise. Setting
(m

k

) = 0 if m < k, we see that the leading exponent of fk is given by

�exp(fk) = (
(n−2

k−1

)
,
(n−3

k−1

)
, . . . ,

(n−i−1
k−1

)
, . . . ,

( 1
k−1

)
,
( 0
k−1

)
).

(Recall that
(0
0

) = 1.) The leading exponent of ph is thus

�exp(ph) = (
(n−2

h−1

) + ( n−2
n−h−1

)
, . . . ,

(n−i−1
h−1

) + (n−i−1
n−h−1

)
, . . . ,( 1

h−1

) + ( 1
n−h−1

)
,
( 0
h−1

) + ( 0
n−h−1

)
).

If n = 2m + 1, then qn = p1 · · · pm, and we find for the leading exponent of qn, �exp(qn) =
(r1, . . . , rn−1) where

ri =
m∑

h=1

((
n − i − 1

h − 1

)
+
(

n − i − 1

n − h − 1

))
=

2m−1∑
h=0

(
2m − i

h

)
= 22m−i = 2n−i−1,

as claimed.

If n = 2m, we have qn = p1 · · · pm−1pm where pm = ∏
T⊂{1,2,...,n}
|T|=h, 1∈T

λ̄T . In this case,

the map T �→ T ′ := {1, . . . , 2m}\T is a bijection between the subsets containing 1 and 2m

and of cardinality m and the subsets of {2, 3, . . . , 2m − 1} containing m elements. Hence,

pm = ±
∏

T⊂{1,...,2m−1}
1∈T, |T|=m

λ̄T

∏
T⊂{2,...,2m−1}

|T|=m

λ̄T .

The leading monomial of the 1st product is λ̄
(2m−2

m−1 )
1 . For the 2nd product, we see as above

that the number of subsets of {2, . . . , 2m − 1} of cardinality m with minimum j ≥ 2 is
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3624 H. Kraft and C. Procesi

equal to
(2m−j−1

m−1

)
. Hence,

�exp(pm) = (
(2m−2

m−1

)
, (
(2m−3

m−1

)
, . . . ,

(2m−i−1
m−1

)
, . . . ,

( 1
m−1

)
, 0),

and thus we get for the leading exponent �exp(qn) = (r1, . . . , rn−1)

ri =
m−1∑
h=1

((
2m − i − 1

h − 1

)
+
(

2m − i − 1

2m − h − 1

))
+
(

2m − i − 1

m − 1

)

=
2m−2∑
h=0

(
2m − i − 1

h

)
= 22m−i−1 = 2n−i−1.

This proves the lemma. �

Remark 3.6. For n ≥ 4 we have

�exp(qn) = �exp(en ) where n := (0, 2n−4, 2n−5, . . . , 2, 1, 1).

Moreover, �exp(q3) = (2, 1) = �exp(ē3).

3.7 A basis for the perpetuants

Recall that �̄n,g is the space of symmetric functions of degree g in λ̄1, . . . , λ̄n,

�̄n,g = (C[λ1, . . . , λn]Sn/(λ1 + · · · + λn))g = C[λ̄1, . . . , λ̄n]Sn
g .

In the next lemma we use the partial order

(t2, . . . , tn) � (s2, . . . , sn) ⇐⇒ ti ≥ si for all i.

Lemma 3.8. For n ≥ 3 a basis Bn of a complement of On,g := �̄n,g ∩ (qn), in the space of

symmetric functions in �̄n,g, is formed by the monomials eh := ∏n
k=2 ehk

k with
∑

k khk =
g, satisfying

h = (h2, . . . , hn) � n := (0, 2n−4, 2n−5, . . . , 2, 1, 1) for n > 3,

respectively, h = (h2, h3) � (0, 1) for n = 3.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/5/3597/5802761 by guest on 17 M
arch 2021



Perpetuants: A Lost Treasure 3625

Proof. A basis of On,g is formed by the symmetric functions qnē k = qn
∏n

j=2 ē
kj

j with∑
j jkj = g − 2n−1 + 1. We have seen, in Remark 4.6, that the leading exponent of qnē k

equals the leading exponent of ē n+k . It follows that the set

Xn :=
⎧⎨
⎩qnē k |

∑
j

jkj = g − 2n−1 + 1

⎫⎬
⎭ ∪

{
ē h |

∑
i

ihi = g, h �� n

}
⊂ �̄n,g

has the same leading exponents as the basis {ē h | ∑i ihi = g} of �̄n,g. Since these leading

exponents are distinct, by Lemma 3.1(2), it follows that Xn is a basis of �̄n,g; hence, Bn

is a basis of a complement, in �̄n,g, of On,g, hence the claim. �

We have seen in Proposition 2.13 that the potenziante πn,g(λ̄; a) ∈ �̄n,g ⊗ Sn,g has

the form

πn,g(λ̄1, . . . , λ̄n; a0, a1, . . . , ag) =
∑

k2,...,kn,∑
iki=g

ek2
2 . . . ekn

n Uk2,...,kn
, (20)

where the Uk2,...,kn
form a basis of the space Sn,g ⊂ C[a0, . . . , an] of U-invariants of degree

n and weight g.

Using Corollary 2.20 with the basis Bn of a complement Mn,g ⊂ �̄n,g to On,g

constructed above we get as consequence our main result.

Theorem 3.9. The elements Uk2,...,kn
from Formula (20) with

k � n = (0, 2n−4, . . . , 2, 1, 1)

(resp. n = (0, 1)) form a basis of a space of perpetuants of degree n > 3 (resp. n = 3) and

weight g.

Observe that the decomposable elements do not have a basis extracted from the

elements Uk2,...,kn
.

Remark 3.10. Finally, in order to compute explicitly the perpetuants of Theorem 4.9

one needs to compute the numbers αh1,...,hn,k1,...,kn
of Formula (14). One possible algorithm

is to compute first

ek1
1 . . . ekn

n =
∑

h1,...,hn

βh1,...,hn,k1,...,kn
mh1,...,hn

.
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3626 H. Kraft and C. Procesi

The numbers βh1,...,hn,k1,...,kn
form an upper triangular matrix E + A of nonnegative

integers with 1 on the diagonal, and its inverse E − A + A2 − . . . has as entries the

integers αh1,...,hn,k1,...,kn
.

The integer βh1,...,hn,k1,...,kn
is computed as the coefficient of the monomial∏n

i=1 λ
hi
i in the development of ek1

1 . . . ekn
n .

4 Binary Forms

This is a complement to set into the 19th century context the theory developed. The

q + 1-dimensional vector space Pq = Pq(x) ⊂ C[x] of polynomials of degree ≤ q in the

variable x, introduced in Section 1.1, can be thought of as a non-homogeneous form of

the space, still denoted by Pq = Pq(x, y) ⊂ C[x, y], of homogeneous polynomials of degree

q in the variables x, y. These are the classical binary forms or binary q-antics. On this

space acts the group GL(2,C), and, in fact, these spaces form the list of irreducible

representations of SL(2,C). Of course this is the 1st case of the more general theory

of n-ary q-antics, that is, of homogeneous polynomials of degree q in the n variables

x1, . . . , xn.

One of the themes of Algebra of the 19th century was to study the algebra

Rq of polynomial functions on Pq that are invariant under SL(2,C), and then try the

general case of invariants of n-ary q-antics. In particular, to determine a minimal set of

generators for such an algebra. The question whether such a minimal set of generators

is finite was one of the main problems of this period, and proved by GORDAN [4] for

binary forms by a difficult combinatorial method.

The problem of finite generation of invariants for a general linear group action,

also known as HILBERT’s 14th problem, has now a very long and complex history (cf. [14,

15]) with still several open questions.

In fact, Rq is a graded algebra, and if Iq denotes the ideal of Rq formed by

elements with no constant term, the question is to study Iq/I2
q . A partial question is to

understand the graded dimension of Iq/I2
q , which by GORDAN’s theorem is a polynomial.

There are in fact various formulas for the graded dimension of Rq, but for Iq/I2
q , to

our knowledge, the only known cases are those in which one can exhibit generators for

Iq/I2
q . Thus, for binary forms only a few cases are explicitly known. It is therefore quite

remarkable that for perpetuants such a formula exists.

The reason to introduce U-invariants comes from the theory of covariants of

binary forms, a notion introduced as a tool to compute invariants of binary forms.

Covariants appear in three different forms. For more details, we refer to the literature,

e.g. [17, Chap. 15.1, Proposition 2, and Theorem 1].
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Perpetuants: A Lost Treasure 3627

Proposition 4.1. There are canonical bijections between the following objects, called

covariants of Pn of degree k and order p:

(i) SL(2,C)-equivariant polynomial maps Pn → Pp of degree k;

(ii) SL(2,C)-invariant polynomials on Pn ⊕ C2 of bidegree k, p;

(iii) U-invariants of Pn of degree k and isobaric of weight nk−p
2 .

In particular an SL(2,C)-invariant on Pn of degree k is a U-invariant of degree k and

weight nk
2 .

(The reader experienced in algebraic geometry may see that the geometric reason

behind these statements is the fact that SL(2,C)/B � P1 is compact.)

Proof. (i) ⇐⇒ (ii): Given such a polynomial map F : Pn → Pp we can evaluate the form

F(f ) in a point (x, y) ∈ C2, F̃(f , (x, y)) := F(f )(x, y) obtaining an SL(2,C)-invariant of the

desired form. The opposite construction is essentially tautological by the definition of

the actions.

(ii) ⇐⇒ (iii): Observe that a regular function on Pn ⊕ (C2 \ {0}) extends as

polynomial on Pn ⊕C2. Under SL(2,C), the space C2 \ {0} is the orbit of e1 with stabilizer

U. This implies that the polynomials on Pn ⊕C2 invariant under SL(2,C) are in bijection

with the polynomials on Pn × {e1} invariant under U.

Now consider the torus elements Dt :=
[

t−1 0
0 t

]
∈ SL(2,C). They act on the space

C2 transforming x �→ t−1x, y �→ ty. The action on the forms f ∈ Pn is

(Dt f )(x, y) = f (tx, t−1y) =
n∑

i=0

ai(tx)[n−i](t−1y)[i] =
n∑

i=0

ait
n−2ix[n−i]y[i].

In other words, Dt transforms ai �→ tn−2iai. A covariant F of degree k and order p must

be an invariant function of this transformation on Pn ⊕ C2, or

F(tna0, . . . , tn−2iai, . . . , t−nan, t−1x, ty) = F(a0, . . . , an, x, y).

By assumption, F = ∑p
i=0 Fi(a0, . . . , an)xp−iyi; hence,

F0(tna0, . . . , tn−2iai, . . . , t−nan)(t−1x)p = F0(a0, . . . , an)xp.

A monomial in F0 in the ai is of weight g; hence, it is multiplied by tnk−2g. We deduce

that for every monomial we have nk − 2g − p = 0, as required. �
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3628 H. Kraft and C. Procesi

The U-invariant F0 associated to a covariant F is called its source (or Quelle in

German). There is a simple formula to write down the covariant starting from its source,

see [8].

4.2 U-invariants for binary forms

For the algebra S(n) of U-invariants for Pn the results are not as precise as for the limit

algebra S.

In classical literature explicit computations were done correctly only up to

degree 6, and degree 8, with partial results in degree 7. With the help of computers

now one has computations up to degree 12. Here we want to give a simple method that

we believe is due to CAYLEY and that works very well up to degree 4.

Let us take a polynomial f = ∑n
i=0 aix

[n−i] with a0 �= 0. Under the transformation

x �→ x − a1
a0

it is transformed into a polynomial with a1 = 0 (cf. Formula 5):

f
(

x − a1

a2

)
= a0

(
x − a1

a0

)[n]

+ a1

(
x − a1

a0

)[n−1]

+ · · ·

= a0x[n] − a0
a1

a0
x[n−1] + · · · + a1x[n−1] + · · ·

= a0x[n] +
(

− a2
1

2a0
+ a2

)
x[n−2] + · · ·

More formally, let P0
n ⊂ Pn be the set of polynomials of degree n with a0 �= 0, and

let P′
n ⊂ P0

n be the set of polynomials of degree n with a0 �= 0, a1 = 0. The previous

remark shows that acting with U we have an isomorphism U × P′
n

∼−→ P0
n. Thus, we

have an identification of the U-invariant functions on P0
n with the functions on P′

n. More

precisely, the map (notation from Formula (4))

π : P0
n → P′

n, f �→ a1

a0
· f ,

is U-invariant, and so the pull-backs of the coordinate functions of P′
n together with a−1

0

generate the U-invariants on P0
n. By Formula (5), these pull-backs are given by

(
−a1

a0

)
· ak =

k∑
j=0

aj

(
−a1

a0

)[k−j]

= a−k+1
0 ck,
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where

ck = (−a1)[k] +
k∑

j=1

aj−1
0 aj(−a1)[k−j]

= (−a1)[k] + a1(−a1)[k−1] +
k∑

j=2

aj−1
0 aj(−a1)[k−j]

= (−1)k(1 − k)a[k]
1 +

k∑
j=2

(−1)k−jaj−1
0 aja

[k−j]
1 .

Thus, we get the following result.

Theorem 4.3. We have S(n)[a−1
0 ] = C[c2, . . . , cn][a0, a−1

0 ] where a0, c2, . . . , cn are

algebraically independent. In particular, dim S(n) = n.

Let us explicit some of these elements:

c2 = −a[2]
1 + a0a2,

c3 = 2a[3]
1 − a0a1a2 + a2

0a3,

c4 = −3a[4]
1 + a0a[2]

1 a2 − a2
0a1a3 + a3

0a4,

c5 = 4a[5]
1 − a0a[3]

1 a2 + a2
0a[2]

1 a3 − a3
0a1a4 + a4

0a5,

c6 = −5a[6]
1 + a0a[4]

1 a2 − a2
0a[3]

1 a3 + a3
0a[2]

1 a4 − a4
0a1a5 + a5

0a6.

(21)

By construction, ck is a U-invariant of degree k and weight k (cf. Definition 1.5).

Corollary 4.4. The subalgebra of S(n) generated by the U-invariants with weight equal

to the degree is the polynomial ring C[c2, . . . , cn].

4.5 An algorithm

If we want to understand U-invariants from these formulas it is necessary to compute

the intersection

S(n) = C[c2, . . . , cn][a0, a−1
0 ] ∩ C[a0, . . . , an]. (22)

A general algorithm for these types of problems has been in fact developed

by BIGATTI–ROBBIANO in a recent preprint [1]. It gives by a computer program the U-

invariants as explicit polynomials up to degree 6. The complexity of the algorithm,
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which is general, is much higher than that given by the symbolic method in the special

case of U-invariants of binary forms with which those invariants were classically

computed.

Roughly speaking the algorithm consists in finding polynomials in the ci that

are divisible by higher and higher powers of a0.

For n ≤ 4 the algorithm is quite simple and quickly gives the following.

4.5.1 The case n = 2

S2 = C[a0, c2].

4.5.2 The case n = 3

8c3
2 + 9c2

3 = a2
0(9a2

0a2
3 − 18a0a1a2a3 + 8a0a3

2 + 6a3
1a3 − 3a2

1a2
2) = a2

0D,

with D of degree 4 and weight 6, thus an SL(2,C)-invariant (Proposition 4.1), the

discriminant. The algorithm stops after this point and S3 is generated by the elements

a0, c2, c3, D modulo the relation a2
0D − 8c3

2 − 9c2
3:

S3 = C[a0, c2, c3, D], a2
0D − 8c3

2 − 9c2
3 = 0.

4.5.3 The case n=4

2c4 + c2
2 = a2

0(2a0a4 − 2a1a3 + a2
2) := a2

0B,

with B of degree 2 and weight 4, hence an SL(2,C)-invariant.

6c2B − D = −a0C with C := 2a3
2 − 6a1a2a3 + 9a0a2

3 + 6a2
1a4 − 12a0a2a4,

where C has degree 3 and weight 6, hence is an SL(2,C)-invariant. Again, the algorithm

stops here, the algebra S4 is generated by the U-invariants a0, c2, c3, B, C modulo the

relation 6a2
0c2B + a3

0C − 8c3
2 − 9c2

3, and the subalgebra of SL(2,C)-invariants is generated

by B and C.

S4 = C[a0, c2, c3, B, C], 6a2
0c2B + a3

0C − 8c3
2 − 9c2

3 = 0.

Remark 4.6. The computations above show that the indecomposable U-invariant D ∈
S3 becomes decomposable in S4.

A modern approach to computations of invariants and covariants for binary

forms can be found in the thesis of MIHAELA POPOVICIU DRAISMA [16]. There, one can

find also references to classical computations.
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