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To the memory of Gian-Carlo Rota.

The purpose of this paper is to discuss the classical, and forgotten, notion of perpet-
uants, see Definition 2.13, and in particular to exhibit a basis of these elements in
Theorem 4.9, thus closing an old line of investigation started by J. J. SYLVESTER in 1882.
In order to do this we also give a proof of the classical Theorem of STROH computing

their dimensions.

Introduction

Perpetuant (see Definition 2.13) is one of the several concepts invented by J. J. SYLVESTER
in his investigations of covariants for binary forms.

One of the main goals of classical invariant theorists was to exhibit a minimal
set of generators or “Groundforms” for the rings of invariants under consideration,
in particular for covariants of binary forms. This proved soon to be a formidable task
achieved only for forms of degree up to 6. Perpetuants are strictly connected to the
quest of a minimal set of generators for a limit algebra S of covariants, defined below

in Formula 1.
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3598 H. Kraft and C. Procesi

The simplest description of S, but not very instructive, is as the subalgebra of
the polynomial ring R = Clagy, a,,a,, ...l in the infinitely many variables a;, i =0, ..., 00
which is the kernel of the derivation D =Y ;°, a;_, aial

To the best of our knowledge such an explicit description was not achieved. With
our method we shall in fact exhibit such a minimal set of generators that we call a basis
of perpetuants. This is our main new result, Theorem 3.9. The term perpetuant appears
in one of the 1st issues of the American Journal of Mathematics [21], which SYLVESTER
had founded a few years before. This name will hardly appear in a mathematical paper
of the past 70 years due to the complex history of invariant theory that was at some
time declared dead only to resurrect several decades later.

We learned of this word from Gian-CarLo RoTa who pronounced it with an
enigmatic smile. In fact, in [9] he laments that “This area is in a particularly sorry state.”
We were surprised to find an entry in Wikipedia where one finds useful information, but
the wrong paper of STroH is quoted.

In this entry it is mentioned that MacMauON conjectured and STRoH proved the

following result.

Theorem 0.1 ([20]). The dimension of the space of perpetuants of degree n > 2 and

weight g is the coefficient of x9 in

n—1
X2 -1

1-xH1-x%---1~-x")

For n = 1 there is just one perpetuant, of weight 0, and for n = 2 the number is given by

the coefficient of x9 in x%/(1 — x?).

In order to prove our main Theorem 3.9 we need first to review in modern
language STroH's proof that is quite remarkable and in a way already very modern,
see Theorem 2.19. The basic new idea here is to understand STROH's mysterious
“Potenziante” as a dualizing tensor.

For a history of these ideas and the contributions of CavrLeEy and HAMMOND we

refer to MacManoN [13]. More about perpetuants can be found in [3, 6, 7, 10-12, 22-26].

Organization of the paper

The paper is divided into four sections. Section 1 establishes the basic notation and
recalls some standard techniques from classical invariant theory. Sections 2 and 3 form

the bulk of the paper. In Section 2 we give an explicit basis of S and a proof of STRoH's
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Perpetuants: A Lost Treasure 3599

Theorem. In Section 3 we prove the main theorem giving a basis of the perpetuants.
Finally, Section 4 is an appendix, explaining the role of this material in the classical
theory of binary forms. We also explain a direct approah which can be used to calculate

a minimal set of generating covariants.

1 Back to 19th century
1.1 Semi-invariants and covariants

One has to start with the classical notion of semi-invariant. The name is probably due
to CAYLEY (see [21], cf. [2]), but today, with this name, we understand a different notion,
so that we will use the term U-invariant.

Consider the n 4 1-dimensional vector space P, = P,,(x) C Clx] of polynomials of
degree < n in the variable x.

On this acts the additive group C* by
px) — p(x —A) for A e C* and p(x) € P,,.

As usual this action extends to an action of C* as automorphisms of the algebra O(P,)

of polynomial functions on P,,.

Definition 1.2. The algebra S(n) of U-invariants of polynomials of degree n is the
subalgebra of the algebra of polynomial functions on P, which are invariant under the

action of the group C*:

Sm) :=0@,)C".

The symbol U is justified since, as we shall see, the space P,, can be identified
with the space of binary forms, that is homogeneous polynomials of degree n in two
variables, over which acts the group SL(2,C).

The action of C* should be understood as the action of the unipotent subgroup

U of SL(2,0C),
U:=[|:1 a:||ae(C].
0 1

Remark 1.3. For the invariant theorists of the 19th century S(n) is an avatar of
covariants of binary forms of degree n, a basic tool to compute invariants. We will

explain later what this means.
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The operator of derivative % maps P, surjectively to P,,_; commuting with the

actions of CT.

This induces an inclusion of duals P;,_, C P;, C P;fz+1 ..., hence an inclusion of
the rings O(P,,) of polynomial functions on P,, and finally an inclusion S(n) C S(n + 1)
of U-invariants. We thus obtain a limit ring

o0

S= U S(n), the algebra of U-invariants. (1)
n=0

In order to have a more concrete description of S one needs to keep the same
coordinates for the duals. It is then necessary to write a polynomial p(x) as a sum of
divided powers, setting

i a

XM= ),i, px) = Za xin=il — be =, J- = —J (2)

1! = n— !

.. d d . .
Then the operator of derivative — acts as — xlil — xli=11. hence,

dx

n
dixp(x)_ Z 1 _ Z“X[n 11

It follows that the coordinates ay, a,,...,a,_, that are a basis of P;_, are mapped to the
same coordinates in P;,.

Therefore, the algebra R = Clay, ..., a,,...] of polynomials in the infinitely many
variables a;, i =0, ..., 00, is the union of the algebras R,, = O(P,,) of polynomials on the
spaces P,, and the algebra S = RV is the ring of invariants of this infinite polynomial
algebra under the action of U = C*.

A basic feature of divided powers is that, in the binomial formula, the binomial

coefficients disappear:

@+b)’ 1[0 i li~s1 i)
th_ E(,) b =3 ®

j=0 " j=0

(a+bl =

We thus get, for » € CT,

sl (X W Z( 1yl

j=0
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and so

A-pEx)=A- ZaX[n -l _ Za Z( l)h)\[h] [n—j—hl
Jj=0  h=0

j=0

n
=S S et | xnH,

k=0 \ j+h=k

By duality the action of A on the coefficients is that a; is transformed into the kth
coefficient of (—1) - p(x), that is

=3 apl = Za Ak, ©

Jj+h=k

for instance

A-ag=ag, A-a;=agir+a, A-azzaok[2]+alk+a2,

roag=ag\® +a P +antag,. ...

We thus see in an explicit way that the dual action on polynomials in @, a4, ... is defined
in a way independent of n.
Themap A — A-f(ay,a;,...) =f(r-ag, A-a,,...)is an additive 1-parameter group

of automorphisms with infinitesimal generator given by

d d d
af()\ . ao,)\, . al"")|)\=0 = Za—aif(ao,al,...)a()\ ~ai)|)\=0

4

_Za —f(ay,a;,...),

l

d . : .
because — (1 - a;)|;,¢ = a;_;. One deduces the next theorem which—we believe—is due

dir
to CAYLEY.

Theorem 1.4. The algebra S of U-invariants is formed by the polynomials f in the

infinitely many variables a,, a;,a,, ..., satisfying
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1.5 Weight

In classical literature, the weight is a way of counting in a monomial in the a; the sum
of the indices i appearing. That is, a; has weight i and ]_[j aj’ has weight Zj hj]. The use

of this is in the following.

Definition 1.6. A polynomial f(ay, a,,...) is isobaric of weight g if all the monomials

appearing in f have weight g.

Of course, every polynomial f(ay,...,a,) decomposes in a unique way into the

sum of homogeneous and isobaric components.

Definition 1.7. The algebra R = Clay, a,,...] decomposes into the direct sum of its
components R, ; formed by the homogeneous polynomials of degree n and weight g.

This is a bigrading as algebra.

Of course, the polynomials in Ry g depend only on the variables ay, a,, ... ,Gg.

Remark 1.8. Ifn > g, then one has Rn,g = agngglg.

This definition in modern language is that of characters of a torus. It applies
to U-invariants due to the following considerations. The multiplicative group C* of
nonzero complex numbers acts by automorphisms on polynomials f(ay, a;,...) by

w-a; = ,uiai. Then a polynomial f(ag, a;,...) is isobaric of weight g if and only if

M 'f(ao, CLl, .o .) = Mgf(ao, al, .o .).

It is easy to see that this action by C* has the following commutation with the operator
D=3 U gg
w-Df = p~ D).

As a consequence, since D(a;) = a;_;, we have the following result.

d . .
Lemma 1.9. The operator D :=>°, a;_; Ta maps polynomials of degree n and weight

g into polynomials of degree n and weight g iy

By Theorem 2.4, this implies the next result.
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Corollary 1.10. The isobaric components of a U-invariant are also U-invariants.

Definition 1.11. We denote by S,, the subspace of U-invariants homogeneous of degree

n and by S, ; C S, the ones isobaric of weight g:

o o
S, =S,y S=PBS,= P S,
g=0 n=0 n,geN

1.12 Reducible elements

In the old literature an invariant of some positive degree k is called reducible if it is
equal to a polynomial in invariants of strictly lower degree.

This idea of course applies to an element of any commutative graded algebra,
but today it is an unfortunate expression, since in commutative algebra reducible means
something else. So we shall use the word decomposable.

Nevertheless, the invariant theorists of the 19th century used this idea in order
to understand a minimal set of generators for a ring of invariants.

In modern terms, if A = ©7° A, is a commutative graded algebra, with A; = F the
base field and setting I := @;°,A;, we know that a minimal set of generators for A is a
basis of I modulo I2. So in order to describe such minimal bases one has to describe I/Iz,
or rather to describe a complementary space to I? in I. This, of course, is not canonical,
and in fact it is interesting to read some disputes between SyLvVESTER and FAA DI BRUNO
about the best choice of representatives.

In our situation, we have for each n the algebra S(n) and the corresponding
maximal ideal I,,. For general n little is known about I,,/I2. In fact, one of the high points
of the theory was to prove that I,/I2 is finite dimensional. This is Gorpan's famous
finiteness theorem [4].

But what was quickly discovered is that an element of S(n) that is indecom-
posable in S(n) need not remain indecomposable in S(n + 1). In other words, the maps
I,/I? — I, ,/I% | need not be injective, or also, a minimal set of generators for S(n)
cannot be completed to one for S(n + 1). As an example we will see in Section 4.2 that
the generator D for S(3) given by Remark 5.6 is decomposable in S(4).

We are now ready to give the main definition of this paper, that of perpetuant

([21]).

Definition 1.13. A perpetuant is an indecomposable element of S(n) that remains

indecomposable in all S(k), k > n.
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In other words it gives an element of I, /IEL that lives forever, that is, it remains
nonzero in all Ik/Iz, V k > n. In this sense it is perpetuant.

Of course a perpetuant is just an indecomposable element of the limit algebra S.
Thus, to describe perpetuants is strictly related to describe minimal sets of generators
for the graded algebra S. In other words, denoting by I C S the maximal homogeneous
ideal of S we want to describe I/I2.

This space decomposes into a direct sum

1% = EB P,

n,geN

with P, ; the image of S, ; (the elements in I of degree n and weight g). We may, for

convenience and abuse, refer to this space as the space of perpetuants.

Definition 1.14. A bigraded subspace of I that is a complement of I? will be called a

space of perpetuants.

Observe that, while the decomposable elements, that is, elements of I?, as well
as the perpetuants, that is, the elements of I \ I?, are intrinsic objects, a space of
perpetuants that is a complement of I? in I is not intrinsic, but depends on the choice
of some basis of I, completing a basis of I?.

The theorem of Stroh gives the generating function for the dimensions of the

isobaric components of I/I? and can be stated as

x2" -1
forn > 2,
00 (1-x)1-x%.--(1—-x")
Z dun(Pn,g)Xg = 1x2/(1 — x2) forn =2,
g=0
1 forn =1.

In Theorem 2.19 we will construct a complement of I? in I, see Theorem 4.9, thus giving
a possible solution to the problem posed by SviLvisTER of describing the spaces of

perpetuants.

1.15 TUmbral calculus

This is one of the forgotten parts of old invariant theory, but it really is an anticipation
of some aspects of tensor calculus. The problem arises in the computation of invariants

of some group G of linear transformations on a vector space W (cf. [18] and [19]).
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1st step: polarization and restitution

The 1st step is general. The homogeneous polynomial functions on W of degree k can be
fully polarized giving rise, in characteristic 0, to a G-equivariant isomorphism between
this space and the space of multilinear and symmetric functions in k copies of W. In

formulas
O(W), = Sym* (W*) = (W**)%,

where SymF(W*) is the kth symmetric power of W*, and Sy, is the symmetric group in k
letters acting in the obvious way on W*®.
Given a homogeneous polynomial function f(w) on W of degree k, its polariza-

tions f,, are obtained from the expansion

foywy++hwp) = D EOf,(wy,.wy), =1y gk (6)

a=(oy,..., k)
ay+-+ag=k

The full polarization Pf is the coefficient of the product ¢, - - - t;:

Pf(wy,...,wp) :=f 1(wy,..., wg).

It is multilinear and symmetric. In order to obtain the inverse map, called restitution,
one sets all the w; equal to w, that is, F(wy,...,w,) — F(w,...,w). Starting with f =

f(w) and setting w; = w in equation (6) we find

f((t1+..-+tk)w):(tl—|—~--—|—tk)kf(w):Ztafa(w,...,W).

In particular, Pf(w,...,w) = k!f(w) (the presence of the factor k! explains why this

procedure works well only in characteristic zero).

2nd step: umbrae of invariants
Next assume that W is some tensor representation of GL(V) for some space V. For
instance, in the classical literature one finds W = O(V), = Sym™(V*), the space of
homogeneous polynomial functions of degree n on V. Inside W one then has some
special vectors, usually the decomposable vectors that span W and are stable under
GL(V). For instance, for W = Sym”™(V*) we have the functions ¢", the nth powers of the
linear forms ¢ € V*, or their divided powers ¢™.

Then a linear function on W restricted to the elements ¢!, ¢ € V*, gives rise to

a homogeneous polynomial of degree n on V*, and this establishes an isomorphism,

1202 YOJel\ /| uo }senb Aq 19/Z08G//65E/S/1 Z0Z/2101E/UIWl/WOoo"dNo-olwapede/:sdpy Wwoly papeojumod



3606 H. Kraft and C. Procesi

between W* and the space of homogeneous polynomials of degree n on V*, which
is GL(V)-equivariant. Similarly, a multilinear function on k copies of W restricted to
go[I”], .. .,<p,[c”], @; € V*, gives rise to a homogeneous polynomial of degree n in each of
the k variables ¢; € V*, and this also establishes a GL(V)-equivariant isomorphism
between (W®%)* and the space of multihomogeneous polynomials of degree n on k vector
variables in V* (compatible with the two actions of S).

Thus, a multilinear invariant of k copies of W under some subgroup G C GL(V)

is encoded in a polynomial in k linear forms ¢,,...,¢;, € V*, called umbrae, which
is multihomogeneous of degree n, symmetric in the variables ¢,,..., ¢, and invariant
under G.

The symbolic method
Combining the two steps above we obtain a map, denoted by E, that associates to
a multihomogeneous symmetric invariant of degree n of k umbral-variables in V*, a
homogeneous invariant of degree k on W, after interpretation as multilinear polynomial
in k variables in W and setting all variables equal.

This is the basis of the symbolic method for binary forms where W :=
Sym9(C?) = Clx, yl, that we will describe now.

1.16 Symbolic method for binary forms

For binary forms an explicit algorithmic way (which extends of course to forms in any
number of variables) is the following. A linear form is an expression of type a;x + a,y.
With the notation of (2), we have

(0% + )9 = Z“ 1[0l 1l ZaXLg i1l

Let ¢; := oy ;X + oy ¥, i = 1,...,n, be n linear forms. A polynomial homogeneous of

g-ri T1i
1,1 a21

where 0 < r; < g. Then the corresponding function on W = Clx, y]g under the map E is

degree g in each of the ¢; is a linear combination of monomials of type [] «

given by

g Lok ] = [T 2

i=1
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The SL(2,C)-invariants of the forms ¢;, i = 1,...,k are generated by the quadratic
invariants:
o

i %

@) = (¢;, ¢;) := det |: :| =00 — & ;00 -

O‘l,j az,j
Therefore, the space of invariants of degree k of binary forms of degree n is spanned by
the evaluation E of the symbols [[,(i;,j,), i;,j; € {1,..., k} in which each of the indices
1,...,k appears exactly n times.

The 1st problem of this method is to exhibit a list of symbols that give a basis of
the corresponding invariants. But the main difficulty is to understand which symbols
correspond to decomposable invariants.

A large number of papers of 19th century invariant theory is devoted to these
problems culminating with GorpaN’s proof of finite generation; see [4], [5].

A complete answer is not known and probably too complex to be made explicit.
For this reason Theorem 1.1 of STRoH, and our main result, Theorem 4.9, are quite

remarkable.

Remark 1.17.

(1) The map E is a well defined linear homomorphism from the space of
polynomials in the n variables ¢; with coordinates o, ;, o, ; and homogeneous
of degree g in each of these variables to the space of polynomials of degree

n in the variables q, . .. Qg

E: (C[alyl,oczyl, .. ,al,n,azyn]@'gw”g) — Cla,, ..., ag]n.

(2) In the classical literature one may see a statement as

to mean that the map E takes the same values when permuting the k
umbrae ¢;. More precisely, the map E is an isomorphism when restricted
to symmetric polynomials in the k variables ¢;.

(3) Finally, E is equivariant with respect to the action of GL(2,C) induced by

the action on the variables x, y.
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Formula (7) suggests, when considering U-invariants, to work only with the

variables «; := «, ; and to replace the map E with

n n
E: [~ []a,, @:i=0. (8)

Notice that, in this formula the «; that do not appear, that is, for which r; = 0, contribute
each to a factor a,.

It follows that E maps linearly the space of polynomials in «y, ..., «,, to the space
of polynomials homogeneous of degree n in the variables ag, a;,a,, ...,

] Ol[lrll . [rn]

E: Cloy,...,a,] = Clag,a,,ay,.. .1, > a, --a

n'
where a homogeneous polynomial of degree g is mapped to an isobaric polynomial of
weight g and homogeneous of degree n. The map E commutes with the permutation

actionon thew;, i =1,...,n, for example,
E(Olls] [2]) E(Ol[3] [2]) — a(T)Z 2a2a3 and E((Y[Z]Ol[zl) Tl 2a%

Remark 1.18. The map E is not a homomorphism of algebras. Nevertheless, if we
decompose the umbrae in two disjoint subsets «,..., @, and «,_;,...,a; and consider

two polynomials f(a,,...,ap) and g(ay,_ 1, ..., @) we have

E(f(al,...,ah) ~g(ah+1,...,an)) =E(f(oy,....ap) - E(G(ap ..., 0p)).

In this formalism we loose the action of GL(2,C), but we still have the
translation action by C*, which commutes with E. In term of differential operators,
we see that

0 o« d
Eo;a—al ;ai_la—aioE. (9)

When working with U-invariants the previous umbral calculus corresponds to
the further simplification of considering, instead of binary forms, polynomials in x, and
the action is just translation x — x — A. One may further restrict to monic polynomials,

and so use the formula

x4 )9 = Z“m lg—il —x[”]+Zax[9 il
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Perpetuants: A Lost Treasure 3609

Given any polynomial in the a,, a,, ... which is invariant under translation and of given
weight one can reconstruct a corresponding U-invariant by making it homogeneous by
inserting powers of a.

2 Stroh’s Potenziante and Duality

2.1 Potenziante

Following STroHu we define the potenziante by

n lg]
I _ st T
g =E | [She)] |= 3 ipoama, e, (10
j=1 r1,..Tn€N
ri+--+rp=g

where the o, ..., «, are all umbrae, and one uses Formula (8). Moreover,

o] n
2 g =E e D ke
g=0 Jj=1
Notice that 7, ; is a polynomial in the variables ,,...,4, and the variables ay, ..., a,.

Sometimes we need to change the variables A;, so we shall stress this dependence by

writing
Tpg = Tngia) =1y (A1, ..o Api Qi @y, -, Gg).

By construction, r, ;(4; @) is homogeneous of degree n and isobaric of weight g in the a;,
and symmetric and of degree g in the A;. So it can be developed in term of the symmetric

functions of degree g in the A;.

Definition 2.2, Denote by En'g = C[Al,...,kn]g" C CIrq,...,2,] the subspace of

symmetric polynomials in A, ..., A, that are homogeneous of degree g.

The space %, ; has several useful bases, all indexed by partitions:

hy>hy,>--->h, >0, h;eN, h +---+h,=g.

We first take as basis of X, ; the total monomial sums my, _, ,thatis, the sum

over the S,,-orbit of )Li“ ool (S,, the symmetric group on n elements) where h; > h, >

1202 YOJel\ /| uo }senb Aq 19/Z08G//65E/S/1 Z0Z/2101E/UIWl/WOoo"dNo-olwapede/:sdpy Wwoly papeojumod



3610 H. Kraft and C. Procesi

>0andh;+---+h, =g

My, )= D> ol k),

Sy -orbit

It follows from the definition of 7, ;(%; @) (see formula (10)) that the monomial a, ---ay,

appears in 7, , with coefficient my, ; (1). From this we easily get the following result.

Proposition 2.3.

(1) In m,4(;a) the total monomial sum my  ; (1) has as coefficient the

product ay, ap, - - ap,

'

nn,g()\" a)=E (2 )‘rar) = Z My by @y @y " Ay,
r=1

h1>..>hp>0
hy+-+hn=g

(2) These coefficients form a basis of the space Clal,, 4 of homogeneous polyno-

mials in ay, a;, a,, ... of degree n and weight g.

Example 2.4. With n =g = 3 we find

(g + Apaty + Aga0)B = 230l 4 33al 4 236l + 220,01, + 22050 Pay

+ 12 a4+ 22000y + 320 aPay + 22halPlay + A dphaa, a0
Applying E we get
A3+ 23 +ad)adag + Wy + A2hg 4+ A%A, + A3hg + A0 +A30y)a0aa, + A Aghgad,
which is equal to
Ma3,0,0(Ma3az +my 1 o()aga a, +my 1 (0)aj.
With n = 2 and g = 4 we find

(A0 + Apa)™ = 2%l +adel + 03ng0ay + 234 aPay) + 233Dl
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Applying E this gives

OF+apada, + W3, +A30))ada a; + A2r%a3,

which is equal to
m4yo(k)aga4 +mg, ()L)a%ala3 +my, (A)a%.

Finally, with n = 3 and g = 2 we have

(Mg + Apaty + Agag)® = 220 4230l 4+ 230 + A Aoy + Ay hgayag + Aphganas.

Applying E we get
O+ 25 +2Daday + (Ary + Ay + Aghg)agad,

which is equal to
2 2
My 0,0(R)a5a, + My 1 o(R)agai.

Notice that all coefficients are divisible by a, as expected, because n > g.

2.5 Duality

Proposition 2.1 can be understood in the following way. The tensor

Tpghi@) € B, 4 ®Clal, , C Clhy, ..., 4,15 & Clay, ..., a,]

defines a duality between the subspace 2, ; € ClAy, ..., kn]S" of homogeneous symmet-
ric polynomials of degree g in n variables, and the subspace (C[a]n,g c Clay, ..., ag] of

polynomials, homogeneous of degree n, and with weight g.
In general, given two finite dimensional vector spaces U, W and denoting by

UY, WY their duals, one has the canonical isomorphisms

U® W ~Hom(UY, W) ~ Hom(W", U). (11)

For example, if 7 € U ® W is a tensor, then the corresponding map n: UY — W is given

by ¢ > (p ® idy) (7).
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3612 H. Kraft and C. Procesi

A dualizing tensor 1 € U ® W is an element that corresponds, under these
isomorphisms, to an isomorphism UY — W (or W¥ — U). Thus, a dualizing tensor
7 equals, for any basis u;,...,uy of U, tow = Z§=1 u; ® w;, where wy, ..., wy, is a basis
of W.

Definition 2.6. Letn € U ® W be a dualizing tensor. If M C U is a subspace, then
the orthogonal subspace M+ C W is defined to be the image of (U/M)" in W under the

isomorphism UY — W corresponding to 7.

Choosing a basis (u;)}’; of U such that (uj)j”;1 is a basis of M and writing 7 =
2. u;®w;, then (wp)p_, ., is abasis of M. Moreover, the image of 7 in U/M®W defines
a dualizing tensor 7 € U/M ® M~.

Remark 2.7. In general, a tensor 7 € U ® W gives, via the isomorphism (11), two maps

WY > U, 7,:U > W (12)

and we have the following:

(1) my=mny,im(m,) = ker(r,)t, im(r,) = ker(r;)*.

(2) 7 €im(mr;) @ im(w,) is a dualizing tensor for these two spaces.

(38) Ifr= Z?Zl u; ® w;, and if the u; are linearly independent, then the image
im(m,) of the corresponding map is the span of the elements w;. Similarly, if
the w; are linearly independent.

(4) If U’ C U is a subspace and = € U’ ® W, then the associated subspace in W

is the same when computed with U or U'.

Sketch of Proof. Letrn = Zle u; ® w; with k minimal. Then clearly both the u; as well

as the w; are linearly independent, and they span the two spaces im(r;) and im(ry).

Now the various claims follow easily. |

Applying this to the dualizing tensor

Tpg € Zng®c Clag, ..., agl, 4
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we obtain, from Proposition 3.1, the following two isomorphisms:

Ty = Clal, g @ (9 ®id)(m, ) = (¢ ®1d) (X my, ® ay) = X pe(my)ay,

(C[a],vl'g = Thgt ¥ (d®Y)(r, o) = Ad®@Y)(Xpmy, ® ap) = 2y (ap)my,.

As a consequence of the remark above this gives the next result.

Proposition 2.8. For every subspace M C X, ;, we have the orthogonal subspace Mt c

Clal, 4. and the duality between ¥, /M and M+ is given by the image of TpginX, ./ M®
Clay, . .. ,ag]n,g.

Given a basis uy,..., uy of ¥, ; such that uy,..., u,, is a basis of M, and writing
Tpg = Z}VZI u;i ® bJ-, then the elements b,,  ;,..., by form a basis of ML,

Now consider some homogeneous ideal J C Q[A;,...,A,] and the corresponding
quotient map Q[A;,...,A,] = QIA,,...,A,]1/J. By restriction, we have a homomorphism

Qlhy, ... 2% = QIAy, ... AT

with kernel Q[ ... ,An]sn NJ. Denoting the images of the A; by ; we get an image of the

potenziante
lg]

n
Mgt dg) =E || D X € Cliy, ..., Al ®¢ Clag, ..., a,),
j=1

and we obtain the following result.

Proposition 2.9.  If (B);;, is a basis of X, ;/%,, ;N J and if

T[Tl,g()_\'l' . ,)_\.n) = ZBL ®Al’

1ely

then (4;);cy, is a basis of the subspace of Clal,, ; orthogonal to X, ; N J.
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3614 H. Kraft and C. Procesi
2.10 Description of the U-invariants
We have seen in Theorem 2.4 that the U-invariants S = Clag, a,, .. ]V form the kernel

d
of the differential operator D := > 7, ai—l%' Moreover, S is bigraded by degree and
i

weight: S = EBn,geN Sp,gr S€€ Definition 2.11.

A very remarkable formula

(g ai%) (rZ:, )\rcxr)[g] = (an: M) (g )wr)[gu

we obtain, by Formula (9),

From

o0

n
d
Zai—l Tng = Z’\i Tg—1nr O
Bai P

i=1

n n
D|E|exp Z Aot =e; (M) E |exp Z Aot
j=1 j=1

Remark 2.11. The meaning of this formula is that, using the duality between
symmetric functions in n variables and polynomials in the a; of degree n, the transpose

of the operator D is the multiplication by >, A;.

The remarkable formula (13) gives us a straightforward way of describing both,
the operator D, and also a basis of the U-invariants.

For this we change the basis of the space X, ; of symmetric functions from
the total monomial sums my, , to the monomials e’fl ek, 2.jJkj = g, where
e; =e;(Ay,..., A,) is the ith elementary symmetric function.

Expressing the total monomial sums m, , in the e;/s we get, for some

Oy, iy din € L

— k1 k
Mhy oy = D Fhy s den @1 - € (14)
ki,...kn
The potenziante r,, ; in this new basis appears as
_ k1 kn 71
7Tn'g = Z el . en" Ukl,...,kn'

0<ki,...kn
k1+2ko+-+nkn=g
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Perpetuants: A Lost Treasure 3615

where the new elements f]kl,...,kn are given by

n
Utrodn = D Fhrederroden | | Oy
hi,...hn Jj=1

and also form a basis of Clal,, ;. By formula (13) we get

_ k1 k m _ j1+1 in 7 _
D, , = Z el ...eDly o= Z A enl, i =em,
ky...kn>=0 J1jnz0
> iki=g > iji=g—1

which implies the following result.

Corollary 2.12.
(1) We have

~ 0 ifk, = 0
DUkl,.A.,kn -

f]kl—l,...,kn if kl > 0.

(15)

(16)

(2) The elements Uy, j = f]o,kz,.i.,kn form a basis of the space S, ; of the U-

invariants of degree n and weight g.

It is interesting to remark that these results hold over Z and not just over C.

In an alternative way we can impose the relation > ; 4, = 0 and denote by A,

the class of A, modulo >, A, = 0. Denote by £, the algebra of symmetric functions

in the Xr, which is a polynomial algebra over the elements e, ™), ... e, (1). The space of

symmetric functions of degree g in Ay,...,A,,

Tng = (Chy, . 2 0%y + o+ Ap))g = ClAy, .. A IS

has as basis the monomials of weight g in the elements &, := e,(%), ..., &, := e, (1). This

implies the following result.

Proposition 2.13.

(1) The potenziante 7, ;(; @) € £, ; ® Clal; has the form

.z z R
Tpgiree i hpi Qo Gy, Gg) = Z e’ ... e Uy, g
k2:-<:/kn20
2 tki=g

(17)
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3616 H. Kraft and C. Procesi

(2) In particular, ﬁn,g():,a) is a dualizing tensor between the space X, , of
symmetric functions of degree g in 2,,...,1, and the space S,, of U-
invariants of degree n and weight g.

(3) The elements Uy, ; = i]O,kz,‘..,kn of formula (15) form a basis of the space
Spg C Clag, ..., a,] of U-invariants of degree n and weight g, dual to the
basis &2 ... &k of Shng

As a corollary we have

1
(1-x2)1-x3---1—-x")"

o0
> dim(s,, ,)x9 =
g=0

Remark 2.14. CavrLEy and MacMaHON use the word non unitariants for various
symmetric functions in the differences of the roots, due to the fact that they are indexed

by partitions with no part of size 1.

As a consequence of the proposition above and of Proposition 3.8 we see that
the quotients of f]n,g correspond to subspaces of S, ;. So our final task is to identify the
subspace O, , of f)n,g orthogonal to the subspace of decomposable elements of S, ; and

from that a choice of perpetuants.

2.15 Decomposable U-invariants

For a given h € N, 1 < h < n we have (3):
g , .
Aoy +--- + )‘nan)[g] = ZO‘IO‘I +ot )‘ho‘h)[]] (Aht1@pgr + -0+ )‘nan)[g_ﬂ'
j=0
which implies, by Remark 2.18, the following decomposition of the potenziante:

g
Trgire i@ = D T i(hys o Ay @) Ty g {Api1s- - hgi @). (18)
j=0
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Perpetuants: A Lost Treasure 3617

Consider the ideal J,, C CIA,,...,A,] generated by the two linear elements A, 4 --- 4+ A,
and Aj,, + -+ A, (or the ideal J, C CIA,,...,,] generated by &, + - - - + ;). Then

ClAy, .- Al T, = ClAy, ... AL )/T, =

Clhy,eo o Apl/ g+ 4+ ) ®c Clayy, oo Apl/ gy + -+ Ap),
and the image of C[A, ..., An]‘gn is contained in
Clgsee o AR/ g 4 -4 hy) ® Clhgpgs o Al /gy + - -+ Ap).

Denote by T, 4 5, the subspace of this tensor product, formed by homogeneous elements
of degree g, and let %, , , € T, ; 5, be the image of £, ; C CIhy, ..., 4,]. Let us write A, for
the class of A; modulo J;,, and consider the image Tp,gn Of Ty g modulo Jy,. We get from

Formula (18):

g
Fpgh = D ThjOr i@ T g iGpyrse o hyi @) (19)
j=0

as an element from £, , ® S, ; C Ty g4 © Sy g-

Lemma 2.16. With the notation above we have the following results.

(@) If (B)); is a basis of £, , , and

ﬁn,g'h e ZB” ®Ai’

iel
then the A; form a basis of the U-invariants decomposable as

g

Sngh = D Shj" Sn-hg—j-
7

In particular, the potenziante ﬁn'g'h(i; a)e in,g,h ® Sy g is a dualizing tensor
between ¥, ;, and the space S, ;, C Sy 4.

(b) In the correspondence between subspaces of S, , and of %, , given by
the potenziante 7, , (see Proposition 2.13(2)) the subspace S, is the

orthogonal to %, ; N Jj,.
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3618 H. Kraft and C. Procesi

Proof. (a) Developing Formula (19) for Tp,g,n DY using Formula (17) for all terms we get

g
/ 4
7_Tn,g,h _ Z Z (e’2k2 . kj, ® e”k "elr/thk"_h)Uk’ x ng, K
J=0 Ky, K Ky K,
>iiki=j, > ik{=g-j

where €, := e;(X;,...,A;) and e/ := e;(Aj4,, ..., Ay,). Now the elements U,...k, SPan

h
the space Sp; for j := >;ik; it follows that the elements Uk,..k,Uk;,.. g, Span
) k)

//k vk

59
Spgh = ZJ':o Sh,j * Sn—n,g—j- Since the tensor products e, k@ €y 2---e, ,"nh are

linearly independent it follows that the A; also span Sn,g,h using parts (2) and (3) of
Remark 2.7.

It follows from Proposition 2.13(2) and Remark 2.7 that 7, ;) is a dualizing
the image of ©

tensor between ¥ and a subspace S;Lg,h C S,g- By the 1st part

ngh' n,g'

S, gh = Sn,gn and the 4; are also linearly independent.
(b) By Remark 2.7 (1) or Proposition 2.9 this is clear, since in,g NJj, is the kernel

of the surjective map %, , — %, . [ |
2.17 The symmetric functions pj, and gy,
The space %,, , N Jj, consists of the symmetric functions in 4,, ..., 4, of degree n, which

are divisible by A; +- -+ 4. Such a symmetric function is also divisible by the elements
Ap = > ;rA; for all subsets T C {1,...,n} of cardinality |T| =

For h < 7 consider the symmetric function

R T AR | I
1<j1<ja<...<jp<n TC{I,Z,.}:L.,n}
IT|=

of degree (};). It follows that py, is an irreducible element of ¥, and that ¥, ﬂjh consists
of the multiples of pj, of degree g. When n = 2h is even and h > 1, then A, = _X{I,Z,...,n}\T'

Therefore, we define

Dy = [T &+i++x0=J]
1<jo<...<jp<2h Tc{l1,2,..n}
|T|=h, 1€T
2h

We claim that py, is irreducible, of degree 5 (h) and still symmetric for h > 1. In fact it
is clearly symmetric with respect to the permutations which fix 1 so it is enough to see

the symmetry under the transposition (1, 2). This fixes all factors for which A, = 2; as
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Perpetuants: A Lost Treasure 3619

for the product IT of the remaining factors Ay, 1 € T, 2 ¢ T it replaces 1 with 2 and maps
these set of factors bijectively to the set of factors associated to sets Twith1 ¢ T, 2 € T.
For these sets the map T +— {1,2,...,n}\ T is a bijection with the factors of II.

By formula Ay = —(; 5, the product of IT is thus equal to €IT with ¢ = (=1)!"!l. Now

2h—2

clearly | = (') = 2(2,?__23) is even. This proves the following lemma.

Lemma 2.18. Forn > 2 and h < } the space %, ;N J, consists of the elements of %,

that are multiples of the symmetric function p,.

Let us define the following symmetric function:

n
4y, '=DP1Py Dy, Where m := LEJ .
We claim that degg,, = 2" ! — 1. In fact,
n “1m
()-22()
h—1

()16

Theorem 2.19. Let us now assume n > 2. With respect to the potenziante 7,, , € f)n,g ®

3
L

1
5(2” —2y=2"1_1 if n is odd,

N | —

ygt

1

<
Il
~

1
EZZh —1=2"1_1 if n = 2h is even.

j=1

S,,g the space of decomposable U-invariants of degree n and weight g is the orthogonal
to 0,4 = in,g N (g,). It has as basis the coefficients of the potenziante in the quotient
algebra ClA,,...,2,1/(q,)-

Proof. This follows from the following argument. In the correspondence between
subspaces of E_Jn'g and of Sp,g 8iven by the potenziante Tng (Proposition 3.13(2)) we have
seen in Lemma 3.16 that the space of U-invariants decomposed as a sum of products
of U-invariants of degree h and n — h is the orthogonal of the subspace of multiples
of p;,. Hence, the entire space of decomposable U-invariants is the orthogonal of the
intersection of all the subspaces of multiples of the various p;,. But these symmetric
functions are all irreducible in the algebra of symmetric functions in Xl, ... ,in, and

distinct, so that this intersection is exactly the space of multiples of g,,. |

This we believe is the main step in STROH's proof.
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Corollary 2.20. If M, , C %, , is a complement to O, , := £, N (q,), then the
orthogonal of M, in S, , is a space of perpetuants (Definition 2.14) of degree n and

weight g.

Proof.  This follows by duality. The orthogonal of M, , is a complement of the

orthogonal of O, ,, which is the space of decomposable elements. |

n.g’
2.21 Generating functions and proof of Stroh’s theorem

Define

Ny, g =#2pny +3us+---+nu, =gh

the number of ways of partitioning g with numbers between 2 and n. We have

ZN x9 = 1 .
g (1—x2%)..-(1—x")

The dimension of the space f)n,g is clearly N,, ,, and the subspace of those divisible by

g’
an element of degree i has dimension N, ,_; if i < g and O otherwise. It follows that the
space O, ; = (g,) N £, 4 of multiples of g, has dimension N, ;_yn-1,, if g > 2" —1 and
0 otherwise. Now Corollary 2.20 shows that this is the dimension of the perpetuants of

degree n > 2 and weight g, and we thus get for the generating function, in degree n:

n—1
X2 -1

o0 o0
g _ k on-1l_1
Z Nn,g—Z”*I—i-lX _(ZNI’L,kX )X = (1 —Xz)(l —X”)
k=0

g=2n-1-1

This proves the main theorem of STrRoH provided we do the casesn =1 and 2. Forn =1
we have S; = Cqa, and so the only homogeneous perpetuant is clearly a,. For n = 2 the

only decomposable elements are the multiples of ag. We have

g '
E(h oy + Ayay)9 = ME ((0‘1 _ az)[gl) =WE Zayl(_az)[g_ﬂ and
j=0

g _ g ,
E(> oV~ | = > (-1)9Vaja,_; =
Jj=0 Jj=0
0 if g is odd,

h-19(-1Ya;a, ; + (-1ha? if g =2his even.
j=0 %g—j h
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This shows that there is exactly one perpetuant of degree 2 in every even weight > 0,

and so the generating function is x?/(1 — x?) as claimed.

3 A Basis of the Perpetuants

In the next paragraph we construct an explicit basis for a space of perpetuants
(Definition 2.14).

3.1 Leading exponents

Using Corollary 2.20, we will now define a special basis in order to obtain a basis of the

perpetuants, see Theorem 3.9 below. As before, we will work in the polynomial algebra

Clrg, e igl/ g + -4+ 2) =Claq, oo Ay g ],

where 2; is the image of A;. Forr = (ry,...,r,_;) € N*"! we set A¥ := 2! --- A"}, so that
any f € Clhy, ..., A,_,] can be written in the form f = 3" 4, C, A"
We use the usual lexicographic order < on the exponents:
(ryveoiTp_y) < (Sy,...,8,_1) &= 71 <sgfork:=minfi|r; #s;}.

Definition 3.2. For a nonzero polynomial f € Cliy,..., A, ;1 f = >;c.AF, the
maximum r, := max{r | ¢, # 0} is called the leading exponent of f and is denoted

by £y (f). Furthermore, £, (f) == croiro is called the leading monomial of f.

Remark 3.3. For two polynomials f,g we have ZeXp(f -g) = Eexp(f) + Lexp(9)-

As before, we denote by e,, ..., e, € (C[Xl, ... ,)_Ln_l] the images of the elementary
symmetric functions e,,...,e, € ClA,..., A,
Lemma 3.4.

(1) The leading exponent of & := égz g s given by

loxp@™) = 2(hy + -+ hy), hg+ -+ hy, .. By +hy hy) € NVTL

(2) The leading exponents of the monomials égzn-éﬁ" are distinct and are

formed by all sequences (ry,...,r,_ ;) withr; —2r, € 2Nand r; > ry, ;.
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Proof. (1) The leading monomial of e; comes from the term

Ahg - Ai A :_5‘15‘2"'5‘]'—1()_“1+"'+)_‘n—1)

= —A3ky---2;_; + lower terms.
Therefore, we have
Eexp(éz) = (2!01 s !0)! Eexp(é3) = (21 1r01 s ro)r e 'Eexp(én) = (27 ]-I RN

and the claim follows from Remark 3.3.

(2) This follows immediately from (1) by setting 2h, :=r; —2ry, h; :=1;

J j=1r 7y

jz 3, hn = T'n_l.

Recall the definition of the symmetric function g, € Cliq,...
Section 2.17:

P = H ()_\j1+)_‘j2+"'+)_‘jh = H Lr for2h < n,
1<ji<j2<...<jp<n Tc{1,2,...,n}
|T|=h
P, = I1 M+r,++2)= [ *r forn=2m,
l1<jo<...<jm<2m Tc{1,2,...n}
|T|=m, 1€T

and
q, '=D; - Py Where m := LZJ .

Lemma 3.5. The leading exponent of q,, is £,,,(q,,) = =2 2n=3 . 21).

Proof. For T :={j,.jy,...,Jp} 1 <J; <Jg <...<Jp <n wehave
XT: )“J'1+ jo T .+)\]'h if jp <n

= = o n—l_ . . _
hjy dgy e ddy =2y Ay i =m

1),

—r, n >
]

Ayl from

Thus, if n € T, then A = —Ap where T’ := (1,...,n}\ T. The map T — T’ is a bijection

between the subsets T of {1, 2,...,n} containing n and of cardinality h with the subsets
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of {1,2,...,n — 1} of cardinality n — h. This implies, for 2h < n:

ph==x [ * ] ’*r==%fifun

IT|=h IT|=n—h
where f;, 1= H Ap
Tc{l,...n—1}
IT|=k

The leading term of Ay, T C {1,2,...,n — 1} is Xj with j := min T, and the number of
subsets T C {1,2,...,n — 1} with |T| = h and j = min T equals the number of subsets
TC{j+1,...,n—1}with |T| = h — 1. This number is equal to (",:_1;]) ifh<n—j and 0

otherwise. Setting (7,?) = 0if m < k, we see that the leading exponent of f; is given by

Lo = (D), G20 T () (2

(Recall that (J) = 1.) The leading exponent of pj, is thus

Cop®@p) = (D) + G20 () + (o)

(hi1)4_(n—i—l)’(h91)4_(n—%—l))

If n =2m+1, then g,, = p; - - - p,,,, and we find for the leading exponent of q,,, £,,,(q,) =

(ry,...,1,_1) where
m . . 2m—1 .
n—i—1 n—i—1 2m —1 dm—i ;
r. = — — 2 m—i — 27’1—1—1,
l Z(( h—1 )*(n—h—l)) 2 ( n )
h=1 h=0
as claimed.
If n = 2m, we have q,, = p; - - P;_1Pm Where p,, = [Irc(1,2,...n) iT. In this case,
|T|=h, 1T
themap T +— T’ :={1,...,2m}\ T is a bijection between the subsets containing 1 and 2m
and of cardinality m and the subsets of {2,3,...,2m — 1} containing m elements. Hence,

pm=% [ * [l *
Tc{l,..2m—1}  TcC(2,..2m—1}
1€T,|T|l=m |T|=m

2m—2
The leading monomial of the 1st product is A; ™' ”. For the 2nd product, we see as above

that the number of subsets of {2,...,2m — 1} of cardinality m with minimum j > 2 is
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equal to (2mm—_]1—1) Hence,

2m-2\ (2m-3 2m—i-1 1
Eexp(pm) = ((r:zn—l )’ ((r:Ln—l )’ et ( n;l_l1 )’ et (m—l)’o)’
and thus we get for the leading exponent ¢,,,(q,,) = (11, ..., T_1)

B “rrom—i—1 N 2m—i—1 N 2m—i—1
ri_h h-1 om—h—1 m—1

1

3

N
3

2(Zm—i—l

h ) — 22m—i—1 — 2n—i—1.

h=0

This proves the lemma. n

Remark 3.6. For n > 4 we have
Cexp(dn) = Loyp(€™) where n := (0,277%,2"7°,...,2,1,1).

Moreover, £y, (q3) = (2,1) = Loy, (€3).

3.7 A basis for the perpetuants

Recall that E_Jn'g is the space of symmetric functions of degree g in XI,. crhp
z_:n,g = (Clry, ... ,)\n]sn/()»l + -+ )‘n))g = (C[)_»l, e ,)_»n]g”.
In the next lemma we use the partial order

(ty, ..., t,) = (Sy,...,8,) < t;>s;foralli.

Lemma 3.8. Forn > 3 a basis B, of a complement of 0, ; := in,g N(q,,), in the space of

symmetric functions in £,, ,, is formed by the monomials e := []}_, eZ" with >, khy =

n.g’

g, satisfying
h=(h,,...,h,) % n:=0,2""*2""5 . ,21,1) forn >3,

respectively, h = (h,, hg) # (0,1) for n = 3.
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. . . . - _kj .
Proof. A basis of 0, ; is formed by the symmetric functions a.e¥ = q, [T ej’ with
ijkj = g —2"! 4 1. We have seen, in Remark 4.6, that the leading exponent of qnék

equals the leading exponent of @2tk It follows that the set
X, =1q,e" 1> jki=g—2""+1tU {éh | > ih;=g, h zn] CZhg
j i

has the same leading exponents as the basis (el | >.ith; =g} of in'g. Since these leading
exponents are distinct, by Lemma 3.1(2), it follows that X, is a basis of b
of O

ng hence, 5,

is a basis of a complement, in ¥ hence the claim. [ |

ng’' n,g’

We have seen in Proposition 2.13 that the potenziante m,, ;(1; @) € £, ,® S, , has

the form
Y . _ k: k
TpgAirihyiGg Ay, Gg) = Z e’ ...e'Up, 1. (20)
kz,...,kn,
2 iki=g
where the Uy, ; form abasis of the space S, ;, C Clay, ..., a,] of U-invariants of degree

n and weight g.
Using Corollary 2.20 with the basis B, of a complement M, , C f]n,g to 0,
constructed above we get as consequence our main result.

Theorem 3.9. The elements Uy, ; from Formula (20) with
k>n=(0,2"%..211)

(resp. n = (0, 1)) form a basis of a space of perpetuants of degree n > 3 (resp. n = 3) and

weight g.

Observe that the decomposable elements do not have a basis extracted from the

elements Uy, i .

Remark 3.10. Finally, in order to compute explicitly the perpetuants of Theorem 4.9
one needs to compute the numbersay ;& of Formula (14). One possible algorithm

is to compute first

k1 k
ey et = D Buysrodon Mty
hi,...hn
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The numbers B;, ¢ form an upper triangular matrix E + A of nonnegative
integers with 1 on the diagonal, and its inverse E — A + A% — ... has as entries the
integers ap,  h kiikn-
The integer By, h. k.. .k, 18 computed as the coefficient of the monomial

I, A?i in the development of elf‘ ek,
4 Binary Forms

This is a complement to set into the 19th century context the theory developed. The
g + 1-dimensional vector space P, = P,(x) C Clx] of polynomials of degree < g in the
variable x, introduced in Section 1.1, can be thought of as a non-homogeneous form of
the space, still denoted by P, = P,(x,y) C Clx, yl, of homogeneous polynomials of degree
q in the variables x, y. These are the classical binary forms or binary g-antics. On this
space acts the group GL(2,C), and, in fact, these spaces form the list of irreducible
representations of SL(2,C). Of course this is the 1st case of the more general theory
of n-ary g-antics, that is, of homogeneous polynomials of degree g in the n variables
Xqseeo Xy,

One of the themes of Algebra of the 19th century was to study the algebra
R, of polynomial functions on P, that are invariant under SL(Z,C), and then try the
general case of invariants of n-ary g-antics. In particular, to determine a minimal set of
generators for such an algebra. The question whether such a minimal set of generators
is finite was one of the main problems of this period, and proved by Gorpan [4] for
binary forms by a difficult combinatorial method.

The problem of finite generation of invariants for a general linear group action,
also known as HILBERT's 14th problem, has now a very long and complex history (cf. [14,
15]) with still several open questions.

In fact, R, is a graded algebra, and if I, denotes the ideal of R, formed by
elements with no constant term, the question is to study I, /Ig. A partial question is to
understand the graded dimension of I /I 2, which by Gorpan’s theorem is a polynomial.
There are in fact various formulas for the graded dimension of R, but for Iq/Ig, to
our knowledge, the only known cases are those in which one can exhibit generators for
Iq/Ig. Thus, for binary forms only a few cases are explicitly known. It is therefore quite
remarkable that for perpetuants such a formula exists.

The reason to introduce U-invariants comes from the theory of covariants of
binary forms, a notion introduced as a tool to compute invariants of binary forms.
Covariants appear in three different forms. For more details, we refer to the literature,

e.g. [17, Chap. 15.1, Proposition 2, and Theorem 1].
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Proposition 4.1. There are canonical bijections between the following objects, called

covariants of P, of degree k and order p:

(i) SL(2,C)-equivariant polynomial maps P, — P, of degree k;

(ii) SL(2,C)-invariant polynomials on P, & C? of bidegree k, p;

nk—p
5 -

(iii) U-invariants of P, of degree k and isobaric of weight

In particular an SL(2,C)-invariant on P, of degree k is a U-invariant of degree k and

weight ”Tk

(The reader experienced in algebraic geometry may see that the geometric reason
behind these statements is the fact that SL(2,C)/B ~ P! is compact.)

Proof. (i) <= (ii): Given such a polynomial map F: P, — P, we can evaluate the form
F(f) in a point (x,y) € C?, ﬁ'(f, (x,v)) := F(f)(x,y) obtaining an SL(2, C)-invariant of the
desired form. The opposite construction is essentially tautological by the definition of
the actions.

(ii) <= (iii): Observe that a regular function on P, ® (C% \ {0}) extends as
polynomial on P, @ C2. Under SL(2, C), the space C?\ {0} is the orbit of e; with stabilizer
U. This implies that the polynomials on P, @ C? invariant under SL(2, C) are in bijection
with the polynomials on P, x {e;} invariant under U.

Now consider the torus elements D, := [t_l 0] € SL(2,C). They act on the space

0t
C? transforming x +— t1x, y > ty. The action on the forms f € P,, is

n n
(Dt f) (X,Y) =f(tX, t_ly) — Z ai(tX)[n—l](t—ly)[l] — Z aitn_ZIX[n_l]Y[l]-
i=0 i=0

In other words, D, transforms a; — t" ?!a,. A covariant F of degree k and order p must

be an invariant function of this transformation on P, & C?, or

F(t"ay,.. .,t”_Ziai,...,t_”an,t_lx, ty) =F(ag,...,a,, X, 7).
By assumption, F = Zf:o Fiaq,..., an)Xp_iyi; hence,
Fo(t"ay, ..., t" %a;, ...t "a,)(t 1x)P = Fy(ag, ..., a,)xP.

A monomial in F; in the a; is of weight g; hence, it is multiplied by t"%~29_ We deduce

that for every monomial we have nk — 2g — p = 0, as required. |
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The U-invariant F, associated to a covariant F is called its source (or Quelle in
German). There is a simple formula to write down the covariant starting from its source,

see [8].

4.2 U-invariants for binary forms

For the algebra S(n) of U-invariants for P,, the results are not as precise as for the limit
algebra S.

In classical literature explicit computations were done correctly only up to
degree 6, and degree 8, with partial results in degree 7. With the help of computers
now one has computations up to degree 12. Here we want to give a simple method that
we believe is due to CavLEY and that works very well up to degree 4.

Let us take a polynomial f = > aix["*i] with a; # 0. Under the transformation

x> x — 4 it is transformed into a polynomial with a; = 0 (cf. Formula 5):

ao
[n] [n—1]
a a a
f( __l)zao( __1) +a1( __1) L
a; ) 2]

a
— aOX[n] _ aO_IX[n—ll NI alxln—ll I
a

a2
=aox[”]+ " +a, X[n—2]+.“
2a,

More formally, let P2 C P, be the set of polynomials of degree n with a, # 0, and
let P, C P9 be the set of polynomials of degree n with a, # 0, a; = 0. The previous
remark shows that acting with U we have an isomorphism U x P, — P9. Thus, we
have an identification of the U-invariant functions on P} with the functions on P},. More

precisely, the map (notation from Formula (4))

a
n:P2—>P;l, f|—>a—1-f,
0

is U-invariant, and so the pull-backs of the coordinate functions of P}, together with a; !

generate the U-invariants on PO. By Formula (5), these pull-backs are given by
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where

k

- »

cp = (_al)[k] 4 Za{) aj(_al)[k 1
1

k

_ i—1 7

— (_al)[k]+a1(_a1)[k 1]+Za10 aj(_al)[k 71
j=2

k
= (-D*A - kal + > (-1 a] a7
j=2
Thus, we get the following result.

Theorem 4.3. We have S(n)[aal] = C[cz,...,cn][ao,a(jl] where ay,cy,...,c, are

algebraically independent. In particular, dim S(n) = n.

Let us explicit some of these elements:

[2]

Cy = —aj +agay,

c;= 2a% —ajaa, +adda,,

¢, = —3a* + agaPa, — aZa,a, + ala,, (21)
cs = 4a® —ayalla, +a2aPa, — ada,a, + agas,

ce = —5a¥ + apa'¥a, — a2aPa, + ada?a, — ata,as + alas.

By construction, ¢, is a U-invariant of degree k and weight k (cf. Definition 1.5).

Corollary 4.4. The subalgebra of S(n) generated by the U-invariants with weight equal

to the degree is the polynomial ring Clc,, ..., c,l.

4.5 An algorithm

If we want to understand U-invariants from these formulas it is necessary to compute

the intersection
S(n) =Cley, ..., cyllag, ag'1NClay, ..., a,l. (22)

A general algorithm for these types of problems has been in fact developed
by BicaTTI-ROBBIANO in a recent preprint [1]. It gives by a computer program the U-

invariants as explicit polynomials up to degree 6. The complexity of the algorithm,
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which is general, is much higher than that given by the symbolic method in the special
case of U-invariants of binary forms with which those invariants were classically
computed.

Roughly speaking the algorithm consists in finding polynomials in the c; that
are divisible by higher and higher powers of a.

For n < 4 the algorithm is quite simple and quickly gives the following.

4.5.1 Thecasen=2
4.5.2 Thecasen =3
8¢5 + 9¢3 = af(9agas — 18aya,a,a; + 8ayas + 6aia; — 3atal) = a3D,

with D of degree 4 and weight 6, thus an SL(2,C)-invariant (Proposition 4.1), the
discriminant. The algorithm stops after this point and S, is generated by the elements

g, C3, €3, D modulo the relation a3D — 8¢5 — 9¢3:
_ 2 3 2
Sy =Clag, ¢y, c53,D], agD —8c; —9c35 =0.

4.5.3 The case n=4
2 _ 2 2y ._ 2
2¢, + ¢5 = ag(2aga, — 2a a4 + aj) = agB,

with B of degree 2 and weight 4, hence an SL(2, C)-invariant.
6c,B — D = —a,C with C := 2a3 — 6a,a,a; + 9a,a3 + 6a2a, — 12aya,a,,

where C has degree 3 and weight 6, hence is an SL(2, C)-invariant. Again, the algorithm
stops here, the algebra S, is generated by the U-invariants a, c,, c5, B, C modulo the
relation 6a3c,B +ajC — 8¢5 —9c3, and the subalgebra of SL(2, C)-invariants is generated
by B and C.

S, = Clag, ¢y, c3,B,Cl, 6aic,B+a3C —8c3 —9c3 = 0.

Remark 4.6. The computations above show that the indecomposable U-invariant D €

S; becomes decomposable in S,.

A modern approach to computations of invariants and covariants for binary
forms can be found in the thesis of Miuatera Poproviciu DraisMA [16]. There, one can

find also references to classical computations.
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