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Abstract. The paper starts with the following simple observation. Let V be
a representation of a reductive group G, and let f1, f2, . . . , fn be homogeneous
invariant functions. Then the polarizations of f1, f2, . . . , fn define the nullcone
of k ≤ m copies of V if and only if every linear subspace L of the nullcone
of V of dimension ≤ m is annhilated by a one-parameter subgroup (shortly
a 1-PSG). This means that there is a group homomorphism λ : C∗ → G such
that limt→0 λ(t)x = 0 for all x ∈ L.

This is then applied to many examples. A surprising result is about the
group SL2 where almost all representations V have the property that all linear
subspaces of the nullcone are annihilated. Again, this has interesting applica-
tions to the invariants on several copies.

Another result concerns the n-qubits which appear in quantum computing.
This is the representation of a product of n copies of SL2 on the n-fold tensor
product C2 ⊗ C2 ⊗ · · · ⊗ C2. Here we show just the opposite, namely that the
polarizations never define the nullcone of several copies if n ≥ 3.

(An earlier version of this paper, distributed in 2002, was split into two
parts; the first part with the title “On the nullcone of representations of re-
ductive groups” is published in Pacific J. Math. 224 (2006), 119–140.)

1. Linear subspaces of the nullcone

In this paper we study finite dimensional complex representations of a reductive
algebraic group G. It is a well-known and classical fact that the nullcone NV of such
a representation V plays a fundamental role in the geometry of the representation.
Recall that NV is defined to be the union of all G-orbits in V containing the origin
0 in their closure. Equivalently, NV is the zero set of all non-constant homogeneous
G-invariant functions on V .

In a previous paper [KrW06] we have seen that certain linear subspaces of the
nullcone play a central role for understanding its irreducible components. In this
paper we will discuss arbitrary linear subspaces of the nullcone NV of a representa-
tion V of a reductive group G and show how they relate to questions about system
of generators and systems of parameter for the invariants.

We first recall the definition of a polarization of a regular function f ∈ O(V ).
For k ≥ 1 and arbitrary parameters t1, . . . , tk we write

(1) f(t1v1 + t2v2 + · · · + tkvk) =
∑

i1,i2,...,ik

Pi1,··· ,ik
f(v1, . . . , vk) · ti11 ti22 · · · tik

k .
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Then the regular functions Pi1,··· ,ik
f defined on the sum V ⊕k of k copies of the

original representation V are called polarizations of f . Here are a few well-known
and easy facts.

(a) If f is homogeneous of degree d then Pi1,··· ,ik
f is multihomogeneous of

multidegree (i1, · · · , ik) and thus i1 + · · · + ik = d unless Pi1,··· ,ik
f = 0.

(b) If f is G-invariant then so are the polarizations.
(c) For a subset A ⊂ O(V ) the algebra C[PA] ⊂ O(V ⊕k) generated by the

polarizations Pa, a ∈ A, contains all polarizations Pf for f ∈ C[A].

It is easily seen from examples that, in general, the polarizations of a system of
generators do not generate the invariant ring of more than one copy (see [Sch07]).
However, we might ask the following question.

Main Question. Given a set of invariant functions f1, . . . , fm defining the null-
cone of a representation V , when do the polarizations define the nullcone of a direct
sum of several copies of V ?

From now on let G denote a connected reductive group. An important tool in the
context is the Hilbert-Mumford criterion which says that a vector v ∈ V belongs
to the nullcone NV if and only if there is a one-parameter subgroup (abbreviated:
1-PSG) λ∗ : C∗ → G such that limt→0 λ(t)v = 0 ([Kr85, Kap. II]). We will say that
a 1-PSG λ annihilates a subset S ⊂ V if limt→0 λ(t)v = 0 for all v ∈ S.

Proposition 1. Let V be a representation of G and let f1, f2, . . . , fr be homoge-
neous invariants defining the nullcone NV . For every integer m ≥ 1 the following
statements are equivalent:

(i) Every linear subspace L ⊂ NV of dimension ≤ m is annihilated by a 1-PSG
of G.

(ii) The polarizations Pfi define the nullcone of V ⊕k for all k ≤ m.

Proof. By the very definition (1), the polarizations Pi1,··· ,ik
fi vanish in a tuple

(v1, . . . , vk) ∈ V ⊕k if and only if the linear span 〈v1, . . . , vk〉 consists of elements of
the nullcone NV . �

A first application is the following result about commutative reductive groups.

Proposition 2. Let D be a commutative reductive group and let V be a repre-
sentation of D. Assume that O(V )D is generated by the homogeneous invariants
f1, . . . , fr. Then the polarizations Pfi define the nullcone of V ⊕k for any number
k of copies of V .

Proof. The represention V has a basis (v1, . . . , vn) consisting of eigenvectors of D,
i.e., there are characters χi ∈ X(D) (i = 1, . . . , n) such that hvi = χi(h) · vi for
all h ∈ D. Denote by x1, . . . , xn the dual basis so that O(V ) = C[x1, . . . , xn]. It
is well-known that the invariants are generated by the invariant monomials in the
xi. Hence, the nullcone is a union of linear subspaces: NV =

⋃

j Lj , where Lj is

spanned by a subset of the basis (v1, . . . , vn). If v ∈ Lj is a general element, i.e.
all coordinates are non-zero, and if limt→0 λ(t)v = 0, then λ also annihilates the
subspace Lj . Thus every linear subspace of NV is annihilated by a 1-PSG. �

Remark 1. The example of the representation of C∗ on C2 given by t(x, y) :=
(tx, t−1y) shows that the polarizations of the invariants do not generate the ring of
invariants of more than one copy of C

2.
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For the study of linear subspaces of the nullcone the following result turns out
to be useful.

Proposition 3. If there is a linear subspace L of NV of a certain dimension d,
then there is also a B-stable linear subspace of NV of the same dimension where B
is a Borel subgroup of G.

Proof. The set of linear subspaces of the nullcone of a given dimension d is easily
seen to form a closed subset Z of the Grassmanian Grd(V ). Since Z is also stable
under G it has to contain a closed G-orbit. Such an orbit always contains a point
which is fixed by B, and this point corresponds to a B-stable linear subspace of V
of dimension d. �

2. Some examples

Let us give some instructive examples.

Example 1 (Orthogonal representations). Consider the standard representation
of SOn on V = Cn. Then a subspace L ⊂ V belongs to the nullcone if and only
if L is totally isotropic with respect to the quadratic form q on V . Then V can be
decomposed in the form V = V0 ⊕ (L ⊕ L′) such that q|V0

is non-degenerate, L′ is
totally isotropic and L⊕L′ is the orthogonal complement of V0. It follows that the
1-PSG λ of GL(V ) given by

λ(t)v :=











t · v for v ∈ L,

t−1 · v for v ∈ L′,

v for v ∈ V0,

belongs to SOn and annihilates L. Therefore, the polarizations of q define the
nullcone of any number of copies of C

n. Here the polarizations of q are given by
the quadratic form q applied to each copy of V in V ⊕m and the associated bilinear
form β(v, w) := 1

2
(q(v + w) − q(v) − q(w)) applied to each pair of copies in V ⊕m.

Of course, this result is also an immediate consequence of the First Fundamental
Theorem for On or SOn (see [GoW98, Theorem 4.2.2] or [Pro07, 11.2.1]).

Example 2 (Conjugacy classes of matrices). Let GL3 act on the 3 × 3-matrices
M3(C) by conjugation and consider the following two matrices:

J :=





0 1 0
0 0 1
0 0 0



 and N :=





0 0 0
1 0 0
0 −1 0





It is easy to see that sJ + tN is nilpotent for all s, t ∈ C. However, JN is a non-zero
diagonal matrix and so there is no 1-PSG which annihilates the two-dimensional
subspace L := 〈J, N〉 of the nullcone of M3. It follows that the polarizations of the
functions X 7→ tr Xk (1 ≤ k ≤ 3) do not define the nullcone of two and more copies
of M3.

The polarizations for two copies are the following 9 homogeneous invariant func-
tions defined for (A, B) ∈ M3 ⊕ M3:

tr A, trB, tr A2, tr AB, trB2, tr A3, trA2B, trAB2, trB3.

(Use the fact that tr ABA = tr A2B etc.) It is an interesting fact that these 9
functions define a subvariety Z of M3⊕M3 of codimension 9 and so the nullcone of
M3⊕M3 is an irreducible component of Z. However, the invariant ring of M3⊕M3
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has dimension 10 (= 18−8) and so a system of parameters must contain 10 elements.
It was shown by Teranishi [Te86] that one obtains a system of parameters by
adding the function trABAB, and a system of generators by adding, in addition,
the function trABA2B2.

Conjecture. The polarizations of the functions X 7→ trXj (j = 1, . . . , n) for two

copies of Mn define a subvariety Z of codimension n2+3n
2

which is a set-theoretic
complete intersections and has the nullcone as an irreducible component.
(Note that the number of polarizations of these n functions is 2+3+ · · ·+(n+1) =
n2+3n

2
and that this number is also equal to the codimension of the nullcone (see

[KrW06, Example 2.1]).

Remark 2. It has been shown by Gerstenhaber [Ge58] that a linear subspace L
of the nilpotent matrices N in Mn of maximal possible dimension

(

n
2

)

(see Proposi-
tion 3) is conjugate to the nilpotent upper triangular matrices, hence annihilated by
a 1-PSG. Jointly with Jan Draisma and Jochen Kuttler we have generalized
this result to arbitrary semisimple Lie algebras, see [DKK06].

Example 3 (Symmetric matrices, see [KrW06, Example 2.4]). Consider the repre-
sentation of G := SO4 on S2

0(C4), the space of trace zero symmetric 4×4-matrices.
This is equivalent to the representation of SL2 × SL2 on V2 ⊗ V2 where V2 is the
space of quadratic forms in 2 variables. The invariant ring is a polynomial ring
generated by the functions fi := tr X i, 2 ≤ i ≤ 4. A direct calculation shows that
every two-dimensional subspace of the nullcone is annihilated by a 1-PSG. This
implies that the polarizations of the functions f2, f3, f4 define the nullcone for two
copies of S2

0(C4). Since the number of polarizations is 12 = 3 + 4 + 5 which is the
dimension of the invariant ring (i.e. of the quotient (S2

0 (C4) ⊕ S2
0(C4))// SO4), we

see that these 12 polarizations form a system of parameters. (This completes the
analysis given in [WaW00].)

These examples show that there are two basic questions in this context:

Question 1. What are the linear subspaces of the nullcone of a representation V ?

Question 2. Given a linear subspace U ⊂ NV of the nullcone of a representation
V , is there a 1-PSG which annihilates U?

We now give a general construction where we get a negative answer to Question 2
above. Denote by C2 = Ce0 ⊕ Ce1 the standard representation of SL2.

Proposition 4. Let V be a representation of a reductive group H. Consider the
representation W := C2 ⊗ V of G := SL2 × H.

(a) For every v ∈ V the subspace C2 ⊗ v belongs to the nullcone NW .
(b) If v ∈ V \ NV then there is no 1-PSG λ of G such that limt→0 λ(t)w = 0

for all w ∈ C2 ⊗ v.

Proof. (1) Clearly, e0 ⊗ v ∈ NW for any v ∈ V . Hence {g e0 ⊗ v | g ∈ SL2} ⊂ NW ,
and the claim follows since C2 ⊗ v = {g e0 ⊗ v | g ∈ SL2} ∪ {0}.

(2) Assume that limt→0 λ(t)w = 0 for all w ∈ C2 ⊗ v. Write v =
∑

vj such that
λ(t)vj = tj · vj and choose f ∈ C2 such that λ(t)f = ts · f where s ≤ 0. Since
v /∈ NV there exists a k ≤ 0 such that vk 6= 0. Then λ(t)(f ⊗ vk) = ts+k · (f ⊗ vk)
which leads to a contradiction since s + k ≤ 0. �
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Corollary 1. If the representation V admits non-constant G-invariants, then the
polarizations of the invariants of W := C2 ⊗ V do not define the nullcone of 2 or
more copies of W .

Corollary 2. For n ≥ 3 the polarizations of the invariants of the n-qubits Qn :=
C2⊗C2⊗· · ·⊗C2 (n factors) under SL2×SL2×· · ·×SL2 do not define the nullcone
of two or more copies of Qn.

3. General polarizations

For our applications we have to generalize the notion of polarization introduced
in Section 1. Let V be a finite dimensional vector space and f ∈ O(V ⊕k) a (multiho-
mogeneous) regular function on k copies of V . Fixing m ≥ k and using parameters
tij , 1 ≤ i ≤ k, 1 ≤ j ≤ m where m ≥ k we write, for (v1, v2, . . . , vm) ∈ V ⊕m,

(2) f(
∑

j

t1jvj ,
∑

j

t2jvj , · · · ,
∑

j

tkjvj) =
∑

A

tAPAf(v1, v2, . . . , vm).

where A = (aij) runs through the k×m-matrices with non-negative integers aij and
tA :=

∏

ij t
aij

ij . The regular (multihomogeneous) functions PAf ∈ O(V ⊕m) obtained
in this way are again called polarizations of f . As before, if V is a representation
of G and f a G-invariant function, then so are the polarizations PAf . The next
lemma is an immediate consequence of the definition.

Lemma 1. Let f ∈ O(V ⊕k), v1, . . . , vm ∈ V where m ≥ k and denote by U :=
〈v1, v2, . . . , vm〉 ⊂ V the linear span of v1, . . . , vm. Then the following two state-
ments are equivalent.

(i) f vanishes on U⊕m ⊂ V ⊕m.
(ii) PAf(v1, . . . , vm) = 0 for all polarizations PAf of f .

Let us go back to the general situation of a representation of a connected re-
ductive group G on a vector space V . Denote by LV the set of linear subspaces
of V which are annihilated by a 1-PSG of G and which are maximal under this
condition, and by MV the set of all maximal linear subspaces of the nullcone NV

of V .
We can regard LV and MV as closed G-stable subvarieties of the Grassmannian

Gr(V ) =
⋃

1≤d≤dimV Grd(V ). We have seen in [KrW06] that LV consists of a finite

number of closed orbits. In particular, dimLV ≤ dim G/B.

Proposition 5. Let k < m be positive integers and assume that the invariant
functions f1, . . . , fn ∈ O(V ⊕k)G define the nullcone NV ⊕k . If every linear subspace
U ⊂ NV with k < dimU ≤ m is annihilated by a 1-PSG, then the polarizations
PAfi define the nullcone NV ⊕m of V ⊕m.

Proof. Assume that for a given v = (v1, . . . , vm) we have PAfi(v1, . . . , vm) = 0 for
all polarizations PAfi. Define U := 〈v1, . . . , vm〉. By the lemma above U⊕k belongs
to the nullcone of V ⊕k, hence U ⊂ NV . If dim U > k, then by assumption U is
annihilated by a 1-PSG and so (v1, . . . , vm) ∈ NV ⊕m .

If dim U ≤ k, then, after possible rearrangement of {v1, . . . , vm}, we can assume
that U = 〈v1, . . . , vk〉. Since (v1, . . . , vk) ∈ NV ⊕k , by assumption, it follows again
that U is annihilated by a 1-PSG. �
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Example 4. For the standard representation of SLn on V := Cn there are no
invariants for less than n copies, and O(V ⊕n)SLn = C[det]. Therefore, the determi-
nants det(vi1vi2 · · · vin

) define the nullcone on any number of copies of V . In fact,
one knows that they even generate the ring of invariants, by the so-called “First
Fundamental Theorem for SLn” (see [Pro07, 11.1.2]).

Example 5. For the standard representation of Sp2n on V := C2n there are no
invariants on one copy, and O(V ⊕ V )Sp

2n = C[f ] where f(u, v) is the skew form
defining Sp2n ⊂ GL2n. As in the orthogonal case (see Example 1), one easily sees
that every linear subspace of the nullcone is annihilated by a 1-PSG. Hence, the
skew forms fij = f(vi, vj) define the nullcone of any number of copies of V . Again,
the “First Fundamental Theorem” shows that these invariants even generate the
invariant ring (see [GoW98, Theorem 4.2.2] or [Pro07, 11.2.1]).

Example 6 (see Example 2). Applying the proposition to the case of the adjoint
representation of GLn on the matrices Mn we get the following result. If the invari-
ants f1, . . . , fk define the nullcone of

(

n
2

)

− 1 copies of Mn, then the polarizations
PAfi define the nullcone of any number of copies of Mn.

For n = 3 this implies (see Example 2) that the traces {trAi, tr AiAj , tr AiAjAk,
trAiAjAkAℓ} define the nullcone of any number of copies of M3.

Let mV denote the maximal dimension of a linear subspace of the nullcone NV .

Corollary 3. If f1, . . . , fn ∈ O(V ⊕mV )G define the nullcone NV ⊕mV , then the
polarizations PAfi define the nullcone of any number of copies of V .

4. Nullcone of several copies of binary forms

In this section we study the invariants and the nullcone of representations of the
group SL2. We denote by Vn := C[x, y]n the binary forms of degree n considered
as a representation of SL2. Recall that in this setting the form yn ∈ Vn is a highest
weight vector with respect to the standard Borel subgroup B ⊂ SL2 of upper
triangular matrices.

The main result of this section is the following.

Theorem 4. Consider the irreducible representation Vn of SL2. Assume that n > 1
and that the homogeneous invariant functions f1, f2, . . . , fm ∈ O(Vn)SL2 define the
nullcone of Vn. Then the polarizations of the fi’s for any number N of copies of Vn

define the nullcone of V ⊕N
n .

The following result is a main step in the proof.

Lemma 2. Let h1, h2 ∈ Vn be two non-zero binary forms. Assume that every non-
zero linear combination αh1 + βh2 has a linear factor of multiplicity > n

2
. Then h1

and h2 have a common linear factor of multiplicity > n
2
.

Proof. We can assume that h1 and h2 are linearly independent. Fix a number k ∈ N

such n
2

< k ≤ n and define the following subsets of Vn ⊕ V1:

Yk := {(f, ℓ) ∈ Vn ⊕ V1 | ℓk divides f}.

This is a closed subset of Vn ⊕ V1, because Yk = SL2 · (W ⊕ Cy) where W :=
⊕n

i=k Cxn−iyi, and W ⊕ Cy is a B-stable linear subspace of Vn ⊕ V1. Moreover,
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Yk is stable under the action of C∗ by scalar multiplication on V1. Therefore, the
quotient Yk\(W ×{0})/C∗ is a vector bundle p : Vk → P(V1), namely the subbundle
of the trivial bundle Vn ×P(V1) whose fiber over [ℓ] is the subspace ℓk · Vn−k ⊂ Vn.
It is clear that this vector bundle can be identified with the associated bundle
SL2 ×

B W → SL2/B = P
1.

Now consider the following subset of C2 × P(V1)

Lk := {((α, β), [ℓ]) ∈ C
2 × P(V1) | ℓk divides αh1 + βh2}.

Lk is the inverse image of Vk under the morphism ϕ : C2×P(V1) → Vn×P(V1) given
by ((α, β), [ℓ]) 7→ (αh1 + βh2, [ℓ]), and so Lk is a closed subvariety of C2 × P(V1).
Since ϕ is a closed immersion we can identify Lk with a closed subvariety of the Vk.

If two linearly independent members f1, f2 of the family αh1 + βh2 have the
same linear factor ℓ of multiplicity ≥ k, then all the members of the family have
this factor and we are done. Otherwise, the morphism p : Lk → P(V1) induced by
the projection is surjective and the fibers are lines of the form Cf ×{[ℓ]}. Hence Lk

is a subbundle of Vk. It follows from the construction of Lk as a subbundle of the
trivial bundle of rank 2 that Lk is isomorphic to O(−1). The following Lemma 3
shows that this bundle cannot occur as a subbundle of SL2 ×B W → SL2/B = P1

provided that n > 1. �

Remark 3. It was shown by Matthias Bürgin in his thesis (see [Bü06]) that the
following generalization of Lemma 2 holds. Let f, h ∈ C[t] be two polynomials and
k an integer ≥ 2. Assume that every linear combination λf + µh has a root of
multiplicity ≥ k. Then f and h have a common root of multiplicity ≥ k.

Lemma 3. Denote by V +
n the B-stable subspace of Vn consisting of positive weights.

Then we have

SL2 ×
B V +

n ≃

{

O(−k)k if n = 2k − 1,

O(−k − 1)k if n = 2k.

Proof. If M is a B-module we denote by M(i) the module obtained from M by

tensoring with the character

[

t 0
0 t−1

]

7→ ti. If V(M) := SL2×B M then V(M(i)) =

V(M)(−i). With this notation we have the following isomorphisms as B-modules:

V +
2k−1 ≃ Vk−1(k) and V +

2k ≃ Vk−1(k + 1).

Since SL2 ×B Vm is the trivial bundle of rank m + 1 the claim follows. �

Now we can give the proof of our Main Theorem of this section.

Proof of Theorem 4. Let h = (h1, h2, . . . , hN ) ∈ V N
n an n-tupel of forms such that

all polarizations of all fi vanish on h. This implies that fi(α1h1 + α2h2 + · · · +
αNhN) = 0 for all (α1, α2, . . . , αN ) ∈ CN and all i’s. It follows that α1h1 + α2h2 +
· · · + αNhN belongs to the nullcone of Vn for all (α1, α2, . . . , αN ) ∈ CN , hence
they all have a linear factor ℓ of multiplicity > n

2
. Using Lemma 2 above, an easy

induction shows that the hi must have a common linear factor ℓ of multiplicity
> n

2
. Thus h belongs to the nullcone of V N

n . �

From the proof above we immediately get the following generalization of our
Theorem 4.
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Theorem 5. Consider the representation V = Vn1
⊕Vn2

⊕ · · ·⊕Vnk
of SL2, where

1 < n1 < n2 < · · · < nk. Assume that the multihomogeneous invariant functions
f1, f2, . . . , fm ∈ O(V )SL2 define the nullcone of V . Then the polarizations of the fi’s

to the representation Ṽ = V N1

n1
⊕V N2

n2
⊕ · · · ⊕V Nk

nk
for any k-tuple (N1, N2, . . . , Nk)

define the nullcone of Ṽ .

Remark 4. One can also include the case n1 = 1 by either assuming that N1 = 1
or by adding the invariants [i, j] of V N1

1 to the set of polarizations. (Recall that
[i, j](ℓ1, . . . , ℓN) := [ℓi, ℓj] := αiβj − αjβi where ℓi = αix + βiy ∈ V1.) Since the
covariants O(V )U can be identified with the invariants O(V ⊕ V1) the theorem
above has some interesting consequences for covariants.

Example 7 (Covariants of V N
3 ). The covariants of V N

3 can be identified with the
invariants of V N

3 ⊕V1. The case N = 1 is well-known and classical: O(V3⊕V1)
SL2 =

C[h, f1,3, f2,2, f3,3], where h is the discriminant of V3 and the fi,j are bihomogenous
invariants of degree (i, j) corresponding to V3 ⊂ O(V3)1, V2 ⊂ O(V3)2 and V1 ⊂
O(V3)3. Recall that an embedding Vn ⊂ O(V3)d defines a covariant ϕ : V3 → Vn

of degree d and thus an invariant fd,n : (f, ℓ) 7→ [ϕ(f), ℓn] where the bracket [·, ·]
denotes the invariant bilinear form on Vn × Vn.

It is easy to see that h, f1,3, f2,2 form a system of parameters, i.e. define the
nullcone of V3 ⊕ V1. Therefore, their polarizations (in the variables of V3) define
the nullcone of V N

3 ⊕ V1 for any N ≥ 1. Therefore, we always have a system of
parameters in degree 4 and thus can easily calculate the Hilbert series for small
N , e.g.:

HilbV 2

3
⊕V1

=
h2

(1 − t2)(1 − t4)6
and HilbV 3

3
⊕V1

=
h3

(1 − t2)3(1 − t4)8

where

h2 := 1 + 6t4 + 13t6 + 12t8 + 13t10 + 6t12 + t16

and

h3 := 1 + 24t4 + 62t6 + 177t8 + 300t10 + 320t12 + 300t14+

177t16 + 62t18 + 24t20 + t24

For the calculation we use the fact (due to Knop [Kn89]) that the degree of the
Hilbert series is ≤ − dimV and that the numerator is palindromic since the
invariant ring is Gorenstein. The Theorem of Weyl implies that the covariants
for V N

3 are obtained from those of V 3
3 by polarization. Since the representation is

symplectic they are even obtained from V 2
3 by polarization (see Schwarz [Sch87]).

5. Generators and system of parameters for the invariants of

3-qubits

Lemma 4. Consider the polynomial ring C[a11, a22, a33, a12, a13, a23] in the coeffi-
cients of a quadratic form in 3 variables and put

d := det





a11 a12 a13

a12 a22 a23

a13 a23 a33



 .
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Then the elements {a11−a22, a22−a33, a12, a13, a23, d} form a homogeneous system
of parameters.

Proof. The proof is easy: One simply shows that the zero set of these functions is
the origin. �

Let us now consider N copies of the standard representation Cn of the complex
orthogonal group On = On(C): W := CN ⊗Cn. The first fundamental theorems for
On and SOn tells us that the invariants under On are generated by the quadratic
invariants

∑n
ν=1 xiνxjν (1 ≤ i ≤ j ≤ N) and that for SOn we have to add the

n× n minors of the matrix (xiν ). In terms of representation theory this means the
following. We have (by Cauchy’s formula)

S2
C

N ⊗ C ⊂ S2(CN ⊗ C
n) and

∧n
CN ⊗ C ⊂ Sn(CN ⊗ Cn),

where C denotes the trivial representation of SOn, and these subspaces form a
generating system for S(CN ⊗ Cn)SOn .

As before we denote by Vm the irreducible representation of SL2 of dimension
m + 1. We apply the above first to the the case of three copies of the irreducible 3-
dimensional representation V2 of SL2: W = C3⊗V2. Then the subspaces S2C3⊗V0

and
∧3

C3 ⊗ V0 form a minimal generating system for the SL2-invariants. Thus we
get 6 generators in degree 2 and one generator in degree 3.

Now we consider the space C3 ⊗V2 as a representation of SO3 × SL2 and denote
the 6 quadratic generators by a11, a22, a33, a12, a13, a23 with the obvious meaning.
Then the cubic generator q satisfies the relation

q2 = det





a11 a12 a13

a12 a22 a23

a13 a23 a33



 .

Moreover, the space S2C3 decomposes under SO3 into the direct sum of two irre-
ducible representations

S2
C

3 = S2
0C

3 ⊕ C

where C is the trivial representation. In terms of coordinates, C is spanned by
a11 + a22 + a33 and S2

0C3 by {a11 − a22, a22 − a33, a12, a13, a23}. With Lemma 6
above we therefore have the following result.

Proposition 6. Consider the representation W := C
3 ⊗ V2 of SO3 × SL2. Then

the 5-dimensional subspace S2
0(C3) ⊗ V0 ⊂ S2(W ) together with the 1-dimensional

subspace
∧3

C3 ⊗ V0 ⊂ S3(W ) form a homogeneous system of parameters for the
invariants S(W )SL2 .

We want to apply this to the invariants of two copies of 3-qubits, i.e. to the
representation

V := V1 ⊗ V1 ⊗ V1 ⊕ V1 ⊗ V1 ⊗ V1 = C
2 ⊗ V1 ⊗ V1 ⊗ V1

of G := SL2 × SL2 × SL2. We consider this as a representation of SL2 × SO4:

V = C
2 ⊗ V1 ⊗ C

4

where C4 is the standard representation of SO4. As a representation of SO4 this
is the direct sum of 4 copies of the standard representation. Therefore, the SO4

invariants are generated by S2(C2⊗V1)⊗V0 ⊂ S2(V ) and
∧4

(C2⊗V1)⊗V0 ⊂ S4(V ),
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i.e. we have ten generators in degree 2 and one generator q4 in degree 4. Moreover,
the induced morphism

π1 : V → S2(C2 ⊗ V1)

is surjective (and homogeneous of degree 2), and π1 is the quotient map under O4.
The generator q4 is invariant under the full group G. The 10-dimensional represen-
tation S2(C2 ⊗ V1) decomposes under SL2 in the form

S2(C2 ⊗ V1) = S2(C2) ⊗ V2 ⊕
2

∧

C
2 ⊗ V0 = C

3 ⊗ V2 ⊕ C ⊗ V0.

Thus there is G-invariant q2 in degree 2 given by the second summand. We have seen
above that the SL2-invariants of C3⊗V2 are generated by six invariants in degree 2
and one in degree 3, represented by the subspaces S2(C3) ⊗ V0 ⊂ S2(C3 ⊗ V2) and
∧3

C3 ⊗V0 ⊂ S3(C3 ⊗V2). This proves the first part of the following theorem. The
second part is an immediate consequence of Proposition 6 above.

Theorem 6. The SL2 × SL2 × SL2-invariants of (C2 ⊗ C2 ⊗ C2)⊕2 are generated
by one invariant q2 in degree 2, seven invariants p1, . . . , p6, q4 in degree 4 and one
invariant q6 in degree 6. A homogeneous system of parameters for the invariant ring
is given by q2, p1, . . . , p5, q6 where p1, . . . , p5 span the subspace S2

0(C3) ⊗ V0 stable
under SO3 acting on C3.

Remark 5. The generating invariants have the following bi-degrees: deg q2 = (1, 1),
deg q4 = (2, 2), deg q6 = (3, 3), and the bi-degrees of the pi’s are (4, 0), (3, 1), (2, 2),
(2, 2), (1, 3), (0, 4).

Remark 6. The invariants of C2⊗C2⊗C2 under G = SL2 × SL2 × SL2 are generated
by one invariant p of degree 4. It is given by the consecutive quotient maps

p : C
2 ⊗ C

2 ⊗ C
2 = C

2 ⊗ C
4 / SO4

−−−−→ S2
C

2 = V2

/ SL2

−−−−→ C.

The nullcone p−1(0) is irreducible of dimension 7 and contains a dense orbit, namely
the orbit of v0 := e1⊗ e1⊗ e0 + e1⊗ e0⊗ e1 + e0⊗ e1⊗ e1. (In fact, it easy to see, by
Hilbert’s criterion, that v0 is in the nullcone; moreover, the annihilator of v0 in
LieG has dimension 2, hence Gv0 is an orbit of dimension 7.) Therefore, all fibres
of p are irreducible (of dimension 7) and contain a dense orbit. More precisely, we
have the following result. (We use the notation eijk := ei ⊗ ej ⊗ ek.)

Proposition 7. The nullcone of C2 ⊗ C2 ⊗ C2 contains six orbits, the origin {0},
the orbit Ge111 of the highest weight vector which is of dimension 4, the dense orbit
G(e110+e101+e011) of dimension 7, and the three orbits of the elements e100+e010,
e010 + e001, e001 + e100 which are of dimension 5 and which are permuted under the
symmetric group S3 permuting the three factors in the tensor product.

Proof. The weight vector eijk has weight

εijk := ((−1)i+1, (−1)j+1, (−1)k+1) ∈ Z
3 = X(C∗ × C

∗ × C
∗)

and so the set XV of weights of V := C2 ⊗ C2 ⊗ C2 consists of the vertices of a
cube in R3 centered in the origin. There are four maximal unstable subset of XV

in the sense of [KrW06, Definition 1.1], up to the action of the Weyl group, namely
the set of vertices of the three faces of the cube containing the highest weight ε111,
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and the set {ε111, ε011, ε101, ε110}. The corresponding maximal unstable subspaces
of V are (see [KrW06, Definition 1.2]):

W1 := 〈e111, e110, e101, e100〉

W2 := 〈e111, e110, e011, e010〉

W3 := 〈e111, e011, e101, e001〉

U := 〈e111, e011, e101, e110〉.

It follows that the nullcone is given as a union

NV = GU ∪ GW1 ∪ GW2 ∪ GW3.

The subspace U is stabilized by B × B × B whereas W1 = e1 ⊗ C2 ⊗ C2 is stable
under B × SL2 × SL2, and similarly for W2 and W3. Since the spaces Wi are not
stable under G we get dim GWi = dimWi + 1 = 5, and so GU = NV .

The group SL2×SL2 has three orbits in C2⊗C2, the dense orbit of e1⊗e0+e0⊗e1,
the highest weight orbit of e1⊗e1, and {0}. This shows that G(e110 + e101) = GW1

and that GW1 \G(e110 +e101) ⊂ Ge111, and similarly for W2 and W3. One also sees
that the elements e110 + e101, e110 + e011, and e101 + e011 represent three different
orbits of dimension 5, all containing the highest weight orbit in their closure. In
fact, GW1 = {ge1⊗ v | g ∈ G and v ∈ C2 ⊗C2}, and so ge1 ⊗ v is not in W2 except
if v is a multiple of ge1 ⊗ ge1. In particular, GW1 ∩ GW2 ∩ GW3 = Ge111.

Finally, it is easy to see that (B⊗B⊗B)v0 = C∗e110 ×C∗e101 ×C∗e011 ×Ce111.
Hence, Gv0 = GU = NV and NV \ Gv0 ⊂ GW1 ∪ GW2 ∪ GW3. �

Proposition 8. The invariants in degree 4 of any number of copies of Q3 define
the nullcone. In particular, for any N ≥ 1 there is a system of parameters of Q⊕N

3

in degree 4.

Proof. We can identify CN ⊗ Q3, as a representation of SL2
3, with CN ⊗ C2 ⊗ C4,

as a representation of SL2 × SO4. The quotient of CN ⊗C2 ⊗C4 by O4 is given by

π : C
N ⊗ C

2 ⊗ C
4 → S2(CN ⊗ C

2),

where the image of π is the closed cone of symmetric matrices of rank ≤ 4 (First
Fundamental Theorem for the orthogonal group, see [GoW98, Theorem 4.2.2] or
[Pro07, 11.2.1]). This means that the O4-invariants are generated by the obvious
quadratic invariants. Moreover, the morphism π is SL2-equivariant.

As a representation of SL2 we have

S2(CN ⊗ C
2) = S2(CN ) ⊗ V2 ⊕

∧2
C

N ⊗ C

where V2 is the 3-dimensional irreducible representation of SL2 corresponding to the
standard representation of SO3, and C denotes the trivial representation. Again,
consider this as a representation of O3. Then the O3-invariants are generated by
the quadratic (and the linear) invariants. Summing up we see that the invariant
ring

(O(Cn ⊗ Q3)
O4)O3

is generated by the elements of degree 2 and 4. By construction,

(O(Cn ⊗ Q3)
O4)O3 ⊂ (O(Cn ⊗ Q3)

SL2×SL2)SL2 = O(Cn ⊗ Q3)
SL2×SL2×SL2

and the latter is a finite module over the former. Therefore, both quotients have the
same nullcone and so the nullcone is defined by invariants in degree 2 and 4. �
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Remark 7. The representation Q3 ⊕ Q3 has one invariant of degree 2 and eight
invariants of degree 4. Since the dimension of the quotient is 7 it follows that there
is a system of parameters for the invariant ring consisting of seven invariants of
degree 4. A priori it is not clear that there is also a system of parameters consisting
of one invariant of degree 2 and six invariants of degree 4 as suggested by the
Hilbert series which has the form

HilbQ3⊕Q3
=

1 + t4 + t6 + t10

(1 − t2)(1 − t4)6
.

However, the analysis above shows that in case of 2 copies of Q3 we obtain the
following composition of quotient maps

π : Q3 ⊕ Q3
π1−−−−→ S2C2 ⊗ V2 ⊕ C

π2−−−−→ S2S2C2 ⊕ C

where π1 is the quotient by O4 and π2 the quotient by O3. Since both morphisms
π1 and π2 are surjective in this case it follows that the zero fiber N of π is defined
by the quadratic invariant and six invariants of degree 4. As we remarked above the
(reduced) zero fiber of π is the nullcone of Q3⊕Q3 with respect to SL2×SL2×SL2,
hence these seven invariants form a homogeneous system of parameters for the ring
of invariants.
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[Bü06] Bürgin, M.: Nullforms, Polarization, and Tensor Powers Thesis, University of Basel,
2006.

[DKK06] Draisma, J.; Kraft, H.; Kuttler, J.: Nilpotent subspaces of maximal dimension in

semisimple Lie algebras. Compositio Math. 142 (2006) 464–476.
[Ge58] Gerstenhaber, M.: On nilalgebras and linear varieties of nilpotent matrices, I. Amer.

J. Math. 80 (1958) 614–622.
[GoW98] Goodman, R.; Wallach, N.R.: Representations and Invariants of the Classical Groups.

Cambridge University Press, Cambridge, 1998.
[Kn89] Knop, F.: Der kanonische Modul eines Invariantenringes. J. Algebra 127 (1989) 40–54.
[Kr85] Kraft, H.: Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik,

vol. D1, Vieweg Verlag, Braunschweig/Wiesbaden, 1985. (2., durchgesehene Auflage)
[KrW06] Kraft, H. and Wallach, N.R.: On the nullcone of representations of reductive groups.

Pacific J. Math. 224 (2006), 119–140.
[MeW02] Meyer, D. A. and Wallach, N.: Invariants for multiple qubits: the case of 3 qubits. Math-

ematics of quantum computation, 77–97, Comput. Math. Ser., Chapman & Hall/CRC,
Boca Raton, FL, 2002.

[Pro07] Procesi, C.: Lie Groups: An Approach through Invariants and Representations. Springer
Universitext, Springer Verlag, New York, 2007.

[Sch87] Schwarz, G. W.: On classical invariant theory and binary cubics. Ann. Inst. Fourier 37

(1987) 191–216.
[Sch07] Schwarz, G. W.: When do polarizations generate? Transformation Groups (2007), to

appear.
[Te86] Teranishi, Y.: The ring of invariants of matrices. Nagoya Math. J. 104 (1986) 149–161.
[WaW00] Wallach, N. R.; Willenbring, J.: On some q-analogs of a theorem of Kostant-Rallis.

Canadian J. Math. 52 (2000) 438–448.

Hanspeter Kraft

Mathematisches Institut der Universität Basel,

Rheinsprung 21, CH-4051 Basel, Switzerland



POLARIZATIONS AND NULLCONE 13

Nolan R. Wallach

Department of Mathematics

University of California, San Diego

9500 Gilman Drive, La Jolla, CA 92093-0112, USA

E-mail address: Hanspeter.Kraft@unibas.ch, nwallach@uscd.edu


