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Abstract Let G be a complex reductive group and V a G-module. Let � WV !
V==G be the quotient morphism defined by the invariants and set N .V / WD
��1.�.0//. We consider the following question. Is the null cone N .V / reduced,
i.e., is the ideal of N .V / generated by G-invariant polynomials? We have complete
results when G is SL2, SL3 or a simple group of adjoint type, and also when G is
semisimple of adjoint type and the G-module V is irreducible.
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1 Introduction

Let G be a reductive complex algebraic group and let V be a finite-dimensional
G-module. Let � WV ! V==G be the categorical quotient morphism given by the
G-invariant functions on V , and let

N WD ��1.�.0// D fv 2 V j Gv 3 0g � V

be the null cone. We say that V is coreduced if N is reduced. This means that
the ideal I.N / � O.V / of the set N is generated by the invariant functions
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m0 WD O.V /G \ I.N /, the homogeneous maximal ideal of O.V /G , and so
I.N / D IG.N / WD m0O.V /, where we use O.X/ to denote the regular functions
on a variety X . If it is important to specify the group or representation involved, we
will use notation such as .V;G/, N .V /, NG.V /, etc.

We say that V is strongly coreduced if every fiber of � is reduced. We can
reformulate this in terms of slice representations. Let Gv be a closed orbit. Then
Gv is reductive and we have a splitting of Gv-modules,

V D Tv.Gv/˚Nv:

Then .Nv;Gv/ is the slice representation of Gv at v. We show that the fiber
��1.�.v// is reduced if and only if .Nv;Gv/ is coreduced (Remark 4.1). Hence
V is strongly coreduced if and only if every slice representation of V is coreduced.

A main difficulty in our work is that, a priori, V may be coreduced but � may
have a nonreduced fiber F ¤ N . We conjecture that this is never the case:

Conjecture 1. A coreduced G-module is strongly coreduced.

Recall that V is cofree if O.V / is a free module over O.V /G . Equivalently,
� WV ! V==G is flat. In the cofree case the associated cone to any fiber F (see
[BK79] or [Kra84, II.4.2]) is the null cone. From this one can immediately see that
N reduced implies that F is reduced, so the conjecture holds when V is cofree.
There is another case in which the associated cone of F is N : the case in which
the isotropy group H of the closed orbit Gv � F has the same rank as G, i.e.,
contains a maximal torus T of G. This was first noticed by RICHARDSON [Ric89,
Proposition 5.5]. If the slice representation ofH at v is not coreduced, then neither is
.V;G/ (Proposition 5.1). For an irreducible representation V of G, having V T ¤ 0

means that the weights of V are in the root lattice; equivalently, the center of G
acts trivially on V . Hence we have a representation of the adjoint group G=Z.G/.
This explains why many of our results require that the group be adjoint, or that at
least one of the irreducible components of our representation contains a zero weight
vector.

For SL2 and SL3 we have a complete classification of the coreduced modules. In
the case of SL3, the coreduced modules are either cofree (for which there is a finite
list of possibilities) or one has the direct sum of arbitrarily many copies of C3 and
.C3/� (§11). We would guess that something similar holds for representations of any
simple algebraic group G. Besides the infinite series of coreduced representations
involving the representations of the smallest dimension for SLn and Spn (see
§9), any coreduced module should be cofree (and for this there is a finite list of
possibilities). If one replaces coreduced by strongly coreduced, then our techniques
should be sufficient to establish this result. For irreducible representations we show
that strongly coreduced and cofree are equivalent (§4), which is the first step. If G
is adjoint, our classification of the coreduced representations produces a finite list
of cofree representations. In case G is semisimple adjoint and not simple and the
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representation is faithful and irreducible, our classification shows that there are
finitely many coreduced representations, all of which are again cofree. In these cases
the group has two simple factors (Theorem 8.3). We would also guess that one can
add at most finitely many representations to these and still remain coreduced, but
we have not carried out the details. In general, to carry the classification any further,
new techniques are needed.

Here is a summary of the contents of this paper. In §2 we present elementary
results and determine the coreduced representations of tori (Proposition 2.13).
In Section 3 we show how to use covariants to prove that a null cone is not
reduced and as an application we determine the coreduced representations of SL2
(Theorem 3.7). In §4 we show that every cofree irreducible representation of a
simple algebraic group is coreduced (Theorem 4.10) and that, sort of conversely,
every irreducible representation of a simple group which is strongly coreduced is
cofree (Theorem 4.12). In §5 we consider modules V with V T ¤ 0, T a maximal
torus of G. We develop methods (based on weight multiplicities) to show that a
slice representation at a zero weight vector is not coreduced (we say that V has a
bad toral slice). We then show that V has a bad toral slice if all the roots ofG appear
in V with multiplicity two or more (Proposition 5.17).

In §6 we apply our techniques to find the maximal coreduced representations of
the adjoint exceptional groups (Theorem 6.9). The case of F4 is rather complicated
and needs some heavy computations (see Appendix A). In §7 we do the same
thing for the classical adjoint groups (Theorem 7.1), and in §8 we determine the
irreducible coreduced representations of semisimple adjoint groups (Theorem 8.3).
This is not straightforward, e.g., the representation .C7 ˝ C

7;G2 � G2/ is not
coreduced, but showing this is difficult (see Appendix B).

In §9 we show that, essentially, the classical representations of the classical
groups are coreduced (with a restriction for SOn). This is a bit surprising, since
these representations are often far from cofree. In §11 we classify the coreduced
representations of SL3 (not just PSL3). To do this, we need to develop some
techniques for finding irreducible components of null cones (see §10). These
techniques should be useful in other contexts.

Acknowledgments. We thank Michel Brion and John Stembridge for helpful
discussions and remarks, and Jan Draisma for his computations. We thank the
referee for helpful comments.

2 Preliminaries and elementary results

We begin with some positive results. Let G be a reductive group. We do not
assume that G is connected, but when we say that G is semisimple this includes
connectivity. Let V be a finite-dimensional G-module.
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Proposition 2.1. Suppose that G is semisimple and that V satisfies one of the
following conditions.

(1) dimV==G � 1;
(2) V D AdG.

Then V is coreduced.

Proof. If dimV==G D 0, then N D V is reduced. If dimV==G D 1, then
O.V /G is generated by a homogeneous irreducible polynomial f and its zero
set N is reduced. If V is the adjoint representation of G, then N is irreducible
of codimension equal to the rank ` of G. Since N is defined by ` homogeneous
invariants and the rank of d� is ` on an open dense subset of N , it follows that N
is reduced and even normal ([Kos63]). ut
Example 2.2. Suppose that G is finite and acts nontrivially on V . Then N D f0g
(as set) is not reduced since not all the coordinate functions can be G-invariant.

Let V be a G-module. Then V==G parameterizes the closed G-orbits in V . Let
Gv be a closed orbit and let Nv be the slice representation of Gv . We say that Gv is
a principal orbit and that Gv is a principal isotropy group if O.Nv/Gv D O.NGv

v /.
In other words, Nv is the sum of a trivial representation and a representation N 0

v

with O.N 0
v/
Gv D C. The principal isotropy groups form a single conjugacy class of

G and the image of the principal orbits in V==G is open and dense. We say that V
is stable if N 0

v D .0/; equivalently, there is an open dense subset of V consisting
of closed orbits. If G is semisimple and there is a nonempty open subset of points
with reductive isotropy group, then V is stable. In particular, if the general point in
V has a finite isotropy group, then the representation is stable with finite principal
isotropy groups.

Our example above generalizes to the following.

Remark 2.3. Let V be a G-module where G=G0 ¤ feg. If G=G0 acts nontrivially
on the quotient V==G0, then V is not coreduced. Note that, for example, G=G0 acts
nontrivially if the principal isotropy group of .V;G/ is trivial.

Proposition 2.4. Assume that .V;G0/ is not coreduced. Then .V;G/ is not
coreduced.

Proof. The null cones for G0 and G are the same (as sets). There is an f 2 I.N /
which is not in IG0.N /. Hence f 62 IG.N / and .V;G/ is not coreduced. ut

For the next three more technical results we have to generalize the definition of
coreducedness to pointed G-varieties.

Definition 2.5. A pointedG-variety is a pair .Y; y0/ where Y is an affineG-variety
and y0 is a fixed point. A pointed G-variety .Y; y0/ is coreduced if the fiber
��1.�.y0// is reduced where � WY ! Y==G is the quotient morphism.
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Lemma 2.6. Let .X; x0/ be a pointed G-variety and Y � X a closed G-stable
subvariety containing x0. Assume that the ideal I.Y / of Y is generated by
G-invariant functions. Then .X; x0/ is coreduced if and only if .Y; x0/ is coreduced.

Proof. Let m � O.X/G be the maximal ideal of �.x0/ where � WX ! X==G is the
quotient morphism, and let n � O.Y /G denote the image of m. By assumption, the
ideal mO.X/ contains I.Y / and so O.Y /=.nO.Y // ' O.X/=.I.Y /CmO.X// D
O.X/=.mO.X//. ut
Example 2.7. Let V be a G-module. Denote by �n the n-dimensional trivial
representation and let F � V ˚ �n be a G-stable hypersurface containing 0.
If G is semisimple, then F is defined by a G-invariant polynomial. Hence .F; 0/
is coreduced if and only if V is coreduced.

Lemma 2.8. Let .X; x0/ be a pointedG-variety. LetH be a reductive group acting
on X such that G sends H -orbits to H -orbits. Assume that every G-invariant
function on X is H -invariant. If .X; x0/ is coreduced with respect to G, then so
is .X==H; �.x0//.

Proof. Put Y WD X==H . Then G acts on Y , because G preserves the H -invariant
functions O.X/H � O.X/. Suppose that f is an element of O.Y / which
vanishes on the null fiber NG.Y; �H .x0//. By assumption, NG.X; x0/ D
��1
H .NG.Y; �H .x0/// and so f ı �H vanishes on NG.X; x0/. Hence f ı �H DP
i ai bi where the ai areG-invariant and vanish at x0. Since f ı�H isH -invariant,

we may average the bi over H and assume that they are in O.X/H . But then
ai D Nai ı �H and bi D Nbi ı �H for unique Nai 2 O.Y /G and Nbi 2 O.Y /. Thus
f D P

i Nai Nbi and so .Y; �H .x0// is coreduced. ut
Example 2.9. If .V;G/ is a coreduced representation and H � G a closed normal
subgroup, then .V==H; �H .0// is coreduced (with respect to G=H ).

Example 2.10. Let .X; x0/ be a pointed G-variety, let W be a G-module of
dimension n and letH D SOn acting as usual on C

n. Consider the pointed .G�H/-
variety .Y; y0/ WD .X � .W ˝ C

n/; .x0; 0//. Assume that G ! GL.W / has
image in SL.W /. We claim that if .Y; y0/ is a coreduced .G � H/-variety, then
.X � S2.W �/; .x0; 0// is a coreduced G-variety.

By Classical Invariant Theory (see [Pro07]), the generators of the invariants of
.nCn;SOn/ are the inner product invariants fij of the copies of Cn together with
the determinant d . The relations are generated by the equality d2 D det.fij /.
Identifying nCn with W ˝ C

n we see that the quadratic invariants transform by
the representation S2.W �/ of G, the determinant d transforms by

Vn
.W �/ D �1,

and the relation is G-invariant. Now applying Lemmas 2.8 and 2.6 gives the claim.

Lemma 2.11. Let .Y; y0/ be a pointed G-variety and Z � Y a closed G-stable
subvariety containing y0. Suppose that there is a G-equivariant retraction
pW .Y; y0/ ! .Z; y0/. If .Y; y0/ is coreduced, then so is .Z; y0/.

Proof. Clearly, if y is in the null cone of Y , then p.y/ is in the null cone ofZ. Thus
if f 2 O.Z/ vanishes on the null cone of Z, then ef WD p�f 2 O.Y / vanishes
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on the null cone of Y . By hypothesis we have that ef D P
i ai bi where the ai are

invariants vanishing at y0. Restricting to Z we get a similar sum for f . Hence Z is
coreduced. ut
Example 2.12. (1) If .V1˚V2;G/ is a coreduced representation, then so is .Vi ; G/,

i D 1; 2.
(2) If .V;G/ is a coreduced representation and H � G a closed normal subgroup,

then .V H ;G/ is also coreduced.
(3) Let Vi be a Gi module, i D 1, 2. Then .V1 ˚ V2;G1 � G2/ is coreduced

if and only if both .V1;G1/ and .V2;G2/ are coreduced. Here we use that
N .V1 ˚ V2/ D N .V1/ � N .V2/.

We finish this section with the case of tori which is quite easy. We will then see
in Section 5 that this case can be applied to representations containing zero weights.

Proposition 2.13. Let V be a T -module where T is a torus. Let ˛1; : : : ; ˛n be the
nonzero weights of V . Then V is coreduced if and only if the solutions of

X

i

mi˛i D 0; mi 2 N;

are generated by solutions where the mi are zero or one.

It is well-known that the monoid of relations
P

i mi˛i D 0, mi 2 N is generated by
the indecomposable relations, i.e., by relations which cannot be written as a sum of
two nontrivial relations. So a necessary and sufficient condition for coreducedness
is that the indecomposable relations

P
i ni˛i D 0, ni 2 N, satisfy ni D 0 or 1.

Proof. We may assume that V T D 0. Let x1; : : : ; xn be a weight basis of V �
corresponding to the ˛i . Suppose that there is an indecomposable relation where,
say, m1 � 2. Then the monomial x1x

m2
2 : : : xmnn vanishes on the null cone, but it is

not in the ideal of the invariants. Hence our condition is necessary.
On the other hand, suppose that the indecomposable relations are of the desired

form. Now any polynomial vanishing on N .V / is a sum of monomials with this
property, and a monomial p vanishing on N .V / has a power which is divisible by
an invariant monomial q without multiple factors. But then p is divisible by q and
so N .V / is reduced. ut
Corollary 2.14. Let T D C

�. Then N .V / is reduced if and only if O.V /T D C or
the nonzero weights of V are ˙k for a fixed k 2 N.

3 The method of covariants

In this section we explain how covariants can be used to show that a representation
is not coreduced. As a first application we classify the coreduced representations
of SL2.
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Let G be a reductive group and V a representation of G. A G-equivariant
morphism 'WV ! W where W is an irreducible representation of G is called a
covariant of V of typeW . Clearly, covariants of typeW can be added and multiplied
with invariants and thus form an O.V /G-module Cov.V;W / which is known to be
finitely generated (see [Kra84, II.3.2 Zusatz]).

A nontrivial covariant 'WV ! W defines a G-submodule '�.W �/ � O.V / iso-
morphic to the dualW �, and every irreducibleG-submodule of O.V / isomorphic to
W � is of the form '�.W �/ for a suitable covariant '. Moreover, ' vanishes on the
null cone N if and only if '�.W �/ � I.N /. We say that ' is a generating covariant
if ' is not contained in m0 Cov.V;W /, or equivalently, if '�.W �/ is not contained
in IG.N /. Thus we obtain the following useful criterion for non-coreducedness.

Proposition 3.1. If ' is a generating covariant which vanishes on N , then V is not
coreduced.

Remark 3.2. Let f 2 O.V /G be a generating homogeneous invariant of positive
degree, i.e., f 2 m0 nm2

0. Then the differential df WV ! V � is a generating
covariant. In fact, using the contraction .df; Id/ D deg f � f , we see that if
df D P

i fi'i where the fi are homogeneous nonconstant invariants, then f D
1

deg f

P
i fi .'i ; Id/ 2 m2

0.

Example 3.3. Let G be SL2 and V D sl2 ˚ sl2 where sl2 D Lie SL2 is the Lie
algebra of SL2. Then the null cone N .V / consists of commuting pairs of nilpotent
matrices, and so the covariant

'W sl2 ˚ sl2 ! sl2; .A;B/ 7! AB � 1

2
tr.AB/

�
1 0

0 1

�

vanishes on N .V /, i.e., '�.sl2/ � I.N /. But '�.sl2/ is bihomogeneous of degree
.1; 1/ and therefore is not contained in IG.N / because there are no invariants of
degree 1.

Example 3.4. Let G be SO4 and V D C
4 ˚C

4 ˚C
4. The weights of C4 relative to

the maximal torus T D SO2 � SO2 are ˙"1, ˙"2, and the degree 2 invariants (dot
products) qij W .v1; v2; v3/ 7! vi � vj , 1 � i � j � 3, generate the invariant ring. Let
VCC denote the span of the positive weight vectors and let VC� denote the span of
the weight vectors corresponding to "1 and �"2. Then N D GVCC [ GVC�, and
an easy calculation shows that every homogeneous covariant V ! C

4 of degree
3 vanishes on the null cone N . Now, using LiE (see [vLCL92]), one finds that
there are 19 linearly independent homogeneous covariants of type C

4 of degree 3,
whereas there are 6 linearly independent invariants in degree 2, and obviously 3
linear covariants of type C

4. Therefore, there is at least one generating covariant of
type C

4 in degree 3 and so V is not coreduced. (See Theorem 9.1(4) for a more
general statement.)

We now use our method to classify the cofree SL2-modules. Starting with the
natural representation on C

2 we get a linear action on the coordinate ring O.C2/ D
CŒx; y� where x has weight 1 with respect to the standard torus T D C

� � SL2.
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The homogeneous components Rm WD CŒx; y�m of degree m give all irreducible
representations of SL2 up to isomorphism. A binary form f 2 Rm will be written as

f D
mX

iD0
ai

 
m

i

!

xiym�i

so that the corresponding coordinate functions xi are weight vectors of weight
m � 2i . The null cone of Rm consists of those forms f that have a linear factor
of multiplicity strictly greater than m

2
. More generally, for any representation V of

SL2, we have

N D SL2 VC;

where VC is the sum of all weight spaces of strictly positive weight. In particular,
N is always irreducible.

Example 3.5. The binary forms of degree 4 have the following invariants:

A WD x0x4 � 4x1x3 C 3x22 and H WD det

2

4
x0 x1 x2
x1 x2 x3
x2 x3 x4

3

5

classically called “Apolare” and “Hankelsche Determinante” which generate the
invariant ring (see [Sch68]). It is easy to see that the null cone N .R4/ D
SL2.Cx3y ˚ Cx4/ is the closure of the 3-dimensional orbit of x3y and thus has
codimension 2. A simple calculation shows that the Jacobian Jac.H;A/ has rank 2
at x3y. It follows that N .R4/ is a reduced complete intersection. (One can deduce
from rank Jac.H;A/ D 2 that A;H generate the invariants.)

Example 3.6. The representation kR1 D R1 ˚ R1 ˚ � � � ˚ R1 (k copies) can
be identified with the space M2�k.C/ of 2 � k-matrices where SL2 acts by left
multiplication. Then the null cone N is the closed subset of matrices of rank � 1,
which is the determinantal variety defined by the vanishing of the 2 � 2-minors
Mij D x1ix2j � x2ix1j , 1 � i < j � k. It is known that the ideal of N is
in fact generated by the minors Mij . This is an instance of the so-called Second
Fundamental Theorem, see [Pro07, Chap. 11, Section 5.1]. Thus N is reduced, and
the minors Mij generate the invariants.

Theorem 3.7. Let V be a nontrivial coreduced representation of SL2 where
V SL2 D .0/. Then V is isomorphic to R2, R3, R4 or kR1, k � 1.

It is shown in [Dix81] that the representations Rn are not coreduced for n � 5. Our
proof is based on the following results.

Lemma 3.8. Let V be a representation of SL2 and 'WV ! Rm a homogeneous
covariant of degree d .
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(1) If d > m, then '.N / D .0/.
(2) If ˙ Id acts trivially on V and 2d > m, then '.N / D .0/.

Proof. Let VC � V be the sum of the positive weight spaces. Since N D SL2 VC
it suffices to show that ' vanishes on VC. Choose coordinates x1; : : : ; xn on V
consisting of weight vectors and let z D x

k1
1 x

k2
2 � � � xknn be a monomial occurring

in a component of '. Then
P

i ki D d and the weight of z occurs in Rm. Since
m < d the monomial z must contain a variable xi with a weight � 0, and so, z
vanishes on VC. This proves (1).

For (2) we remark that V contains only even weights and so a variable xi with
nonpositive weight has to appear in z as soon as 2d > m. ut
Lemma 3.9. Let V be a nontrivial representation of SL2 not isomorphic to
R1;R2;R3 or R4. Then the principal isotropy group is either trivial or equal to
f˙ Idg.

Proof. This is well known for the irreducible representations Rj , j � 5. Let T and
U denote the usual maximal torus and maximal unipotent subgroup of SL2. Denote
by Hi the generic stabilizer of Ri , i D 1; 2; 3 and 4. Then we have H1 D U ,

H2 D T , H3 D f
�
� 0

0 �2

�

j �3 D 1g ' Z=3 and

H4 D f
�
� 0

0 �3

�

j �4 D 1g [ f
�
0 �

��3 0
�

j �4 D 1g ' eQ8;

the group of quaternions of order 8. It is easy to see that the generic stabilizer of
H1 and H3 on any nontrivial representations of SL2 is trivial, and that the generic
stabilizer of H2 and H4 on the R2j , j > 0, is f˙ Idg. ut
Proof (of Theorem 3.7). For V D R2 or R3 the quotient V==SL2 is one-dimensional
and so both are coreduced. In Examples 3.5 and 3.6 we have seen that R4 and kR1
are coreduced. So it remains to show that any other representation V of SL2 is not
coreduced.

By Lemma 3.9 we can assume that the principal isotropy group is trivial
or f˙ Idg. In the first case, V contains a closed orbit isomorphic to SL2. By
Frobenius reciprocity, we know that the multiplicity of Rm in O.SL2/ is equal to
dimRm D m C 1. This implies that the rank of the O.V /G-module Cov.V;Rm/
is at least m C 1. Since we may assume that V is not kR1, removing all but one
copy of R1 gives a module V 0 which still has trivial principal isotropy groups. By
Example 2.12(1) it is sufficient to show that V 0 is not coreduced. Now there has to be
a generating homogeneous covariant 'WV 0 ! R1 of degree > 1. By Lemma 3.8(1)
and Proposition 3.1 it follows that V 0 is not coreduced, hence neither is V .

Now assume that the principal isotropy group is f˙ Idg. As above this implies
that the rank of Cov.V;R2/ is at least 3. Since R2 ˚ R2 is not coreduced
(Example 3.3) we can assume that V contains at most one summand isomorphic
to R2. It follows that there is a generating homogeneous covariant 'WV ! R2 of
degree > 1, and the claim follows by Lemma 3.8(2) and Proposition 3.1. ut
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4 Cofree representations

Let G be a (connected) reductive group, V a G-module and � WV ! V==G the
quotient morphism.

Remark 4.1. LetGv be a closed orbit with slice representation .Nv;Gv/. Then, by
LUNA’s slice theorem, the fiber F WD ��1.�.v// is isomorphic to G �Gv N .Nv/
which is a bundle over G=Gv ' Gv with fiber N .Nv/. Hence F is reduced if and
only if Nv is coreduced.

If the fiber F D ��1.z/ is reduced, then F is smooth in a dense open set U � F

which means that the rank of the differential d�u equals dimV �dimu F for u 2 U .
Thus we get the following criterion for non-coreducedness.

Lemma 4.2. If X is an irreducible component of N .V / and the rank of d� on X
is less than the codimension of X in V , then V is not coreduced.

Recall that a G-module V is said to be cofree if O.V / is a free O.V /G-module.
Equivalently, O.V /G is a polynomial ring (V is coregular) and the codimension
of N .V / is dimV==G. See [Sch79] for more details and a classification of cofree
representations of simple groups.

Proposition 4.3. Let V be a cofree G-module. If the null cone is reduced, then so
is every fiber of � WV ! V==G, and every slice representation of V is coreduced.

Proof. Since V is cofree, the map � is flat. By [Gro67, 12.1.7], note that the set
fv 2 V j ��1.�.v// is reduced at vg is open in V . But this set is a cone. Thus if
the null cone is reduced, then so is any fiber of � , and every slice representation is
coreduced. ut

For a cofree representation V the (schematic) null cone N .V / is a complete
intersection. Using SERRE’s criterion [Mat89, Ch. 8] one can characterize quite
precisely when N .V / is reduced.

Proposition 4.4. Let V be a cofree G-module. Then V is coreduced if and only if
rank d� D codimN .V / on an open dense subset of N .V /.
Example 4.5. Let G D SLn and V WD S2.Cn/� ˚ C

n. The quotient map
� WV ! C

2 is given by the two invariants f WD det.q/ and h WD q.v/ of bidegrees
.n; 0/ and .1; 2/ where .q; v/ 2 V . An easy calculation shows that for n D 2 the
differential d� has rank � 1 on the null cone. Hence

.S2.C2/� ˚ C
2;SL2/

is not coreduced, which we already know from Theorem 3.7.
We claim that for n � 3 the null cone is irreducible and reduced. Set qk WD

x2k C x2kC1 C � � � C x2n,

Xk WD fqkg � fv 2 C
n j qk.v/ D 0g � V and XnC1 WD f0g � C

n:
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Then N .V / D SnC1
kD2 SLn �Xk . Since dim SLn �Xk D dim SLn qk C n � 1 for 2 �

k � n we get codim SLn �X2 D 2 < codim SLn �Xk for all k > 2, and so N .V / D
SLn �X2 is irreducible. Moreover,

df.q2;v/.q;w/ D a11 and dh.q2;v/.q;w/ D
nX

iD2
2viyi C q.v/;

where v D .v1; : : : ; vn/, q D P
aij xixj and w D .y1; : : : ; yn/. It follows that the

two linear maps df.q2;v/ and dh.q2;v/ are linearly independent on a dense open set of
X2, hence the claim.

In order to see that the null cone is reduced in a dense set we can use the following
result due to KNOP [Kno86]. Recall that the regular sheet SV of a representation
.V;G/ of an algebraic group is the union of the G-orbits of maximal dimension.

Proposition 4.6. Let .V;G/ be a representation of a semisimple group and let
� WV ! V==G be the quotient map. Assume that x 2 V belongs to the regular
sheet and that �.x/ is a smooth point of the quotient. Then � is smooth at x.

Corollary 4.7. Let .V;G/ be a cofree representation of a semisimple group.
Assume that the regular sheet SV of V meets the null cone N .V / in a dense set.
Equivalently, assume that every irreducible component of the null cone contains a
dense orbit. Then .V;G/ is coreduced.

Let � be an automorphism of finite order of a semisimple group H and let
G denote the identity component of the fixed points H� . Given any eigenspace
V of � on the Lie algebra g of G, we have a natural representation of G
on V . These representations .V;G/ are called � -representations. They have been
introduced and studied by VINBERG, see [Vin76]. Among other things he proved
that � -representations are cofree and that every fiber of the quotient map contains
only finitely many orbits. As a consequence of Corollary 4.7 above we get the
following result.

Corollary 4.8. Every � -representation .V;G/ whereG is semisimple is coreduced.

Remark 4.9. The corollary above was first established by PANYUSHEV [Pan85].

Finally we can prove the main result of this section.

Theorem 4.10. An irreducible cofree representation V of a simple group G is
coreduced.

Proof. It follows from the classification (see [Pop76, KPV76, Sch79]) that the only
irreducible cofree representations of the simple groups that are not � -representations
(or have one-dimensional quotient) are the spin representation of Spin13 and the
half-spin representations of Spin14. For these representations, GATTI–VINIBERGHI

[GV78] show that every irreducible component of the null cone has a dense orbit. ut
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Example 4.11. Here is an example of a cofree but not coreduced representation.
Let G D SL2 and let V D sl2 ˚ sl2 ' 2R2. Example 3.3 shows that V is not
coreduced. Here is a different proof. Each copy ofR2 has a weight basis fx2; xy; y2g
relative to the action of the maximal torus T D C

�. The null cone isU�.Cx2˚Cx2/

where U� is the maximal unipotent subgroup of G opposite to the usual Borel
subgroup. One can easily see that d�.˛x2;ˇx2/ is nontrivial only on the vectors
.�y2; ıy2/, giving a rank of two. But V is cofree with codimN .V / D 3. Thus
V is not coreduced.

We can prove a sort of converse to the theorem above. Recall that V is strongly
coreduced if every fiber of � is reduced; equivalently, every slice representation of
V is coreduced.

Theorem 4.12. A strongly coreduced irreducible representation of a simple group
G is cofree.

If G is simple, then we use the ordering of Bourbaki [Bou68] for the simple roots
˛j of G and we let 'j denote the corresponding fundamental representations. We
use the notation �j to denote the 1-dimensional representation of C� with weight j .

Proof. We use the techniques of [KPV76] (but we follow the appendix of [Sch78]).
Let V be non-coregular (which is the same as V not being cofree by the classi-
fications [Pop76, KPV76]). If V is '31.A3/ or '32.A3/, then there is a closed orbit
with finite stabilizer whose slice representation is not coregular. Thus the slice
representation is certainly not trivial, hence V is not strongly coreduced. Otherwise,
there is a copy T D C

� � SL2 � G and a closed orbit Gv, v 2 V T , such that the
identity component G0

v of the stabilizer Gv of v has rank 1. Moreover, one of the
following occurs:

(1) G0
v D T and the slice representation of Gv , restricted to T , has at least 3 pairs

of nonzero weights ˙a, ˙b, ˙c (where we could have a D b D c).
(2) The module is '1'2.A3/ or '2'3.A3/, Gv centralizes G0

v D T and the slice
representation is �2 C �1 C ��1 C �2 C ��2 where �n denotes the n-dimensional
trivial representation.

(3) G0
v D SL2 and the slice representation of Gv , restricted to T , contains at least 4

pairs of weights ˙a, ˙b, : : :.

If, in case (1) above, the weights are not of the form ˙a for a fixed a, then the
G-module V is not strongly coreduced by Corollary 2.14. The same remark holds
in case (3). Of course, in case (2), the module is not strongly coreduced. We went
through the computations again and saw in which cases the weights of the slice
representations were of the form ˙a for a fixed a. One gets a list of representations
as follows. (The list is complete up to automorphisms of the group.)

(4) 'i .An/, 5 � i , 2i � nC 1.
(5) 'n.Bn/, n � 7.
(6) 'n.Dn/, n � 9.
(7) 'i .Cn/, 3 � i � n, n � 5.
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For the groups of type A and C, consider SL2 � G such that the fundamental
representation restricted to SL2 is 2R1C�1. For the groups of type B and D consider
SL2 � G such that the fundamental representation restricted to SL2 is 4R1C� . Then
using the techniques of [KPV76] one sees that there is a closed orbit in V SL2 whose
stabilizer has identity component SL2 such that the slice representation restricted
to SL2 contains at least two copies of R2. Hence the slice representation is not
coreduced. ut

We know from the [KPV76] and [Pop76] that an irreducible representation of
a simple group is cofree if and only if it is coregular. Thus we get the following
corollary.

Corollary 4.13. Let .V;G/ be an irreducible representation of a simple group.
Then the following are equivalent:

.V;G/ cofree ” .V;G/ coregular ” .V;G/ strongly coreduced.

5 The method of slices and multiplicity of weights

Let G be a reductive group and T � G a maximal torus. It is well known that the
orbit Gv is closed for any zero weight vector v 2 V T . We say that V is a G-module
with a zero weight if V T ¤ .0/. The basic result for such modules is the following.

Proposition 5.1. Let V be a G-module with a zero weight. If the slice representa-
tion at a zero weight vector is not coreduced, then neither is V .

For the proof we use the following result originally due to RICHARDSON [Ric89,
Proposition 5.5]. If X � V is a closed subset of a vector space V , then the
associated cone CX of X is defined to be the zero set of fgr f j f 2 I.X/g
where grf denotes the (nonzero) homogeneous term of f of highest degree. If V is
a G-module and X a closed subset of a fiber F ¤ N .V / of the quotient map, then
CX D C�X n C

�X (cf. [BK79, §3]).

Lemma 5.2. Suppose that Gv has the same rank as G. Then the associated cone of
F WD ��1.�.v// is equal to N .V /.
Proof. We know that the associated cone of every fiber of � is contained in N .V /.
For the reverse inclusion we can assume that T � Gv . Let v0 2 N .V /. Then
Tgv0 3 0 for a suitable g 2 G. This implies that T .gv0 C v/ 3 v and so Cgv0 C
v � F . The lemma follows since gv0 2 C�.Cgv0 C v/. ut

Proof (of Proposition 5.1). Suppose that N .V / is reduced, and let 0 ¤ f 2
I.F / where F is as in the lemma above. Then the leading term gr f lies in
the ideal of N .V /, so that there are homogeneous fi 2 m0 and homogeneous
hi 2 O.V / such that gr f D P

i fihi where deg fi C deg hi D deg grf for all i .
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Then ef WD P
i .fi � fi .v//hi lies in IG.F / and gr f D gref . Replacing f by

f � ef we are able to reduce the degree of f . Hence by induction we can show
that f 2 IG.F /. Thus F is reduced. ut
Remark 5.3. The proof above shows that the conclusion of Proposition 5.1 holds
in a more general situation. If the slice representation at v 2 V is not coreduced and
the associated cone of ��1.�.v// is equal to N .V /, then V is not coreduced.

Example 5.4. We use the proposition above to give another proof that the irre-
ducible representations R2m of SL2 are not coreduced form � 3 (see Theorem 3.7).
We have RT2m D Cxmym, and a zero weight vector v has stabilizer T ' C

� if m
is odd and N.T / if m is even. The slice representation of T at v has the weights
˙4; : : : ;˙2m (each with multiplicity one), and so, for m � 3, we have at least
the weights ˙4 and ˙6. But then the slice representation restricted to T is not
coreduced by Corollary 2.14, hence neither are the representations R2m of SL2 for
m � 3.

Let G be semisimple with Lie algebra g. If � is a dominant weight of G, let
V.�/ denote the corresponding simple G-module. Recall that the following are
equivalent:

(i) V.�/ has a zero weight;
(ii) All weights of V.�/ are in the root lattice;

(iii) � is in the root lattice;
(iv) The center of G acts trivially on V.�/.

Remark 5.5. Let V be a nontrivial simple G-module with a zero weight. Then the
short roots are weights of V.�/ and the highest short root is the smallest nontrivial
dominant weight. This follows from the following result due to STEINBERG, see
[Ste98]. (We thank John Stembridge for informing us of this result.)

Lemma 5.6. Let � � � be dominant weights. Then there are positive roots ˇi ,
i D 1; : : : ; n, such that

(1) � � � D ˇ1 C ˇ2 C � � � C ˇn, and
(2) � � ˇ1 � � � � � ˇj is dominant for all j D 1; : : : ; n.

Example 5.7. Let G be a semisimple group and g its Lie algebra. If V is
a G-module with a zero weight, then the representation of G on g ˚ V is
not coreduced. This is a special case of a result of PANYUSHEV, see [Pan99,
Theorem 4.5].

Proof. Let T � G be a maximal torus and ˛ a (short) root. Put T˛ WD .ker˛/0.
Then, for a generic x 2 LieT˛ � g we haveGx D CentG T˛ D G˛ �T˛ whereG˛ '
SL2 or ' PSL2, and so the slice representation at x 2 g is Lie.Gx/ ' sl2 C �`�1
where ` D rankG. Now consider the slice representation .S;Gx/ at .x; 0/ 2 g˚V .
Since V has a zero weight all short roots are weights of V (Remark 5.5) and thus the
fixed points ST˛ are of the form .sl2˚W;G˛/ whereW is a nontrivial SL2-module.
Using Example 2.12(2) the claim follows from Theorem 3.7. ut
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If there is a v 2 V T such thatG0
v D T , then we can use Proposition 2.13 to show

that the slice representation at v is not coreduced by giving an indecomposable
relation of the weights of the slice representation which involves coefficients � 2.
We will see that this is a very efficient method to prove non-coreducedness in many
cases.

The lemma below follows from [Ric89, Proposition 3.3]. For completeness we
give a proof.

Lemma 5.8. Let G be a semisimple group and let V be a G-module. Then all the
roots of g are weights of V if and only if there is a zero weight vector v 2 V T whose
isotropy group is a finite extension of the maximal torus T of G.

Proof. Clearly if .Gv/0 D T , then the roots of g are weights of V . Conversely,
assume all the roots appear and let ˛ be a root of g. The weight spaces, with weight
a multiple of ˛, form a submodule of V for the action of the corresponding copy of
SL2. Since ˛ occurs as a weight of V , this module is not the trivial module. Hence
there is a v 2 V T such that x˛.v/ ¤ 0 where x˛ 2 g is a root vector of ˛. Thus the
kernel of x˛ is a proper linear subspace of V T and there is a v 2 V T which is not
annihilated by any x˛ . Then the isotropy subalgebra of v is t. ut
Definition 5.9. We say that a representation V of G has a toral slice if there is a
v 2 V T such that G0

v D T . We say that V has a bad slice if there is a v 2 V T such
that the slice representation at v restricted to G0

v is not coreduced, and that V has a
bad toral slice if, in addition, G0

v D T .

Now Proposition 5.1 can be paraphrased by saying that a representation with a
bad slice is not coreduced.

Example 5.10. Consider the representation .S3k.C3/;SL3/, k � 2. Then the
isotropy group of the zero weight vector is a finite extension of the maximal torus
T of SL3, and the slice representation W of the torus contains the highest weight
2k˛ C kˇ as well as the weights �k˛ and �kˇ. Thus there is the “bad” relation

.2k˛ C kˇ/C 2.�k˛/C .�kˇ/ D 0;

and so V has a bad toral slice.

Example 5.11. The following representations are not coreduced.

(1) G D SL2 � SL2 on .sl2 ˝ sl2/˚ .Ri ˝Rj /, i C j � 1;
(2) G D SL2 � SL2 � SL2 on .sl2 ˝ sl2 ˝ C/˚ .C ˝ sl2 ˝ sl2/.

Proof. (1) Let t 2 sl2 be a nonzero diagonal matrix. The stabilizer of

v D t ˝ t 2 sl2 ˝ sl2

is C
� � C

�. If i is odd, then the slice representation contains the weights
.˙2;˙2/ and .˙1; 0/ or .˙1;˙1/, and so we find the bad relations

.2; 2/C .2;�2/C 4.�1; 0/ D 0 or .2; 2/C 2.�1;�1/ D 0:
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The same argument applies if j is odd. If i and j are both even and i > 0, then
the slice representation contains the weights .˙2;˙2/ and .˙2; 0/, and so we
find the bad relation

.2; 2/C .2;�2/C 2.�2; 0/ D 0:

(2) The stabilizer of v D t ˝ t ˝xCx˝ t ˝ t where 0 ¤ x 2 C is C� �C
� �C

�.
The slice representation contains the weights .˙2;˙2; 0/ and .0;˙2; 0/, and
we can proceed as in (1).

ut
Example 5.12. Consider the second fundamental representation of Sp6: '2.C3/ D
V2
0C

6 WD V2
.C6/=Cˇ where ˇ 2 V2

.C6/ is the invariant form. It has the isotropy
group Sp2 � Sp4 with slice representation

V2
0C

4C�1. We claim that .2
V2
0C

6;Sp6/
is not coreduced, although it is cofree ([Sch79]). In fact, the slice representation is
.2
V2
0C

4 C C
2 ˝ C

4 C �2;Sp2 � Sp4/. Quotienting by Sp2 we get a hypersurface
F � 3

V2
0C

4 C �3 defined by an Sp4-invariant function. Now the claim follows
from Example 2.7, because .3

V2
0 C

4;Sp4/ D .3C5;SO5/ is not coreduced as we
will see in Theorem 9.1(4).

Next we want to show that a representation V is not coreduced if the weights
contain all roots with multiplicity at least 2. This needs some preparation.

Lemma 5.13. Let .V;G/ and .W;H/ be two representations. Let v 2 V and w 2
W be nonzero zero weight vectors with slice representations .NV ˚ �n;Gv/ and
.NW ˚ �m;Hw/ where NGv

V D 0 and NHw
W D 0. Then the slice representation

NV˝W of Gv �Hw at v ˝ w contains

.V ˚.m�1/ ˚NV ;Gv/˚ .W ˚.n�1/ ˚NW ;Hw/

˚ ..g=gv ˚NV /˝ .h=hw ˚NW /;Gv �Hw/:

Proof. The lemma follows from the decomposition .V;Gv/ D .g=gv˚N ˚�n/ and
similarly for .W;Hw/, and the fact that

Tv˝w..G �H/v˝ w/ D g.v/˝ w C v˝h.w/ � g=gv ˝ �m C �n ˝h=hw: ut

Corollary 5.14. (1) The two slice representations .NV ;Gv/ and .NW ;Hw/ occur
as subrepresentations of the slice representation at v˝w. In particular, if .V;G/
has a bad slice, then so does .V ˝W;G �H/.

(2) The slice representation at v˝w containsNV ˝NW , g=gv ˝h=hw, g=gv ˝NW
and NV ˝ h=hw.

(3) If n > 1 (resp. m > 1), then the slice representation contains a copy of W
(resp. V ).
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Remark 5.15. Since Gv and Hw have maximal rank, the isotropy group of v ˝ w
can at most be a finite extension ofGv�Hw. Note also that the corollary generalizes
in an obvious way to a representation of the form

.V1 ˝ V2 ˝ � � � ˝ Vk;G1 �G2 � � � � �Gk/;

where each .Vi ; Gi / is a representation with a zero weight.

Proposition 5.16. Let G D G1 � � � � � Gk be a product of simple groups and
V D V1˝� � �˝Vk a simpleG-module where k > 1. Assume that all roots ofG occur
in V . Then V is coreduced if and only if G is of type A1 � A1 and V D sl2 ˝ sl2.

Proof. By Lemma 5.8 the product T D T1 � � � � �Tk of the maximal tori appears as
the connected component of the isotropy group of an element v1 ˝ � � � ˝ vk 2 V T

where vi is a generic element in V Ti
i . Denote by Wi WD NVi the slice representation

at vi . Then the tensor products Wi1 ˝ � � � ˝ Wim where i1 < � � � < im appear as
subrepresentations of the slice representation at v (see Remark 5.15 above).

First, assume that k > 2. Choose simple roots ˛; ˇ; � ofG1,G2,G3, respectively.
Then

.˛ C ˇ/C .ˇ C �/C .˛ C �/C 2.�˛ � ˇ � �/ D 0

is an indecomposable relation with a coefficient > 1.
Now assume that k D 2 and that rankG1 > 1 and choose two adjacent simple

roots ˛; ˇ of G1 so that ˛ C ˇ is again a root. Let � be a simple root of G2. Then
the relation

.˛ C �/C .˛ � �/C 2.ˇ � �/C 2.�.˛ C ˇ/C �/ D 0

is indecomposable, but contains coefficients > 1.
As a consequence, G is of type

A1 � A1;

and V D R2r ˝R2s . Calculating the representation of the maximal torus of A1� A1
at the zero weight vector shows that V is coreduced only for r D s D 1. ut
Proposition 5.17. Let G be a semisimple group and let V be a G-module. Assume
that all roots of G are weights of V with multiplicity at least 2. Then V admits a
bad toral slice.

Proof. Choose a generic element v of the zero weight space V T of V . Then .Gv/0 D
T by Lemma 5.8, and all roots occur in the slice representation W of T at v as well
as the highest weights of V . We will show that there is a bad relation.

If not all simple factors of G are of type A, then there is always a root ˛ which
expressed in terms of simple roots has some coefficient � 2: ˛ D P

i ni˛i where
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f˛1; : : : ; ˛rg is a set of simple roots of g, ni 2 N, and nj > 1 for some j . But then
˛ CP

i ni .�˛i / D 0 is a bad relation and thus N is not coreduced.
We may thus assume that G is of type

An1 � An2 � � � � � Ank ;

for n1 � n2 � � � � � nk � 1. Let f˛1; : : : ; ˛ng be a set of simple roots, n WD n1 C
n2C� � �Cnk . We can assume that the highest weights of the irreducible components
of V are all of the form 	 D P

i ni˛i where ni 2 f0; 1g. It is easy to see that such a
weight is dominant if and only if 	 is a sum of highest roots. Thus each irreducible
component Vk of V is a tensor product of certain slnj ’s. Now it follows from the
previous proposition that either Vk is isomorphic to slj or isomorphic to sl2 ˝ sl2.
If n1 > 1, then sln1 ˚ sln1 must occur and so V is not coreduced (Example 5.7). The
remaining cases where G is of type A1 � A1 � � � � � A1 follow immediately from
Example 5.11. ut

We finish this section with a criterion for the non-coreducedness of an irreducible
representation of a simple group. We begin with a lemma about weights and
multiplicities. Let U denote a maximal unipotent subgroup of G.

Lemma 5.18. Let �; � be nonzero dominant weights of g.

(1) If there is a weight of V.�/ of multiplicity m, then there are nonzero weights in
V.�C �/ with multiplicity � m.

(2) Suppose that zero is a weight of V.�/. Then the multiplicities of the nonzero
weights of V.�/ are bounded below by the multiplicities of the (short) roots.

Proof. Let v� 2 V.�/; v� 2 V.�/ be highest weight vectors. Recall that the
coordinate ring O.G=U / is a domain and contains every irreducible representation
of G exactly once. Therefore, the multiplication with v� is injective and sends V.�/
into V.�C �/, i.e., V.�/˝ Cv� ,! V.�C �/ as a T -submodule, and we have (1).

For (2), recall that the highest short root is the smallest dominant weight
(Remark 5.5). Looking at root strings (see Remark 5.5 and Lemma 5.6) we see
that the multiplicity of the highest short root has to be at least that of an arbitrary
nonzero weight. ut

The following criterion will be constantly used for the classifications in the
following sections. Let G be a simple group. We use the notation '; ; : : : for
irreducible representations of G and denote by ' the Cartan product of ' and  .

Criterion 5.19. Let '; be irreducible representations of G with a zero weight.
Then ' has a bad toral slice in the following cases.

(i) ' has a bad toral slice.
(ii) ' contains a nonzero weight of multiplicity > 1.

(iii) The zero weight of ' has multiplicity > 1.

Proof. As in the proof above, every nonzero weight vector w 2  defines an
embedding ' ,! ' which shows that ' contains all sums of two (short) roots
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and therefore all roots. Thus ' has a toral slice. In case (i) we choose for w 2  

a weight vector of weight 0 and obtain a T -equivariant embedding ' ,! ' which
shows that ' has a bad toral slice.

In case (ii) the (short) roots occur in ' with multiplicity at least 2. Now let ˛
be a short root. Then 2˛ and ˛ occur in a toral slice representation, and we have the
bad relation .2˛/C 2.�˛/ D 0.

Finally, (iii) implies (ii) by Lemma 5.18(1). ut
Remark 5.20. Let G be of type A, D or E so that all roots have the same length.
If ' D 'i1'i2 � � �'ik is a coreduced representation with a zero weight, then either
k D 1 or all 'ij are multiplicity-free. In all other cases, ' has a bad toral slice.
(If k > 1 and if one of the 'ij has a weight space of multiplicity � 2, then the roots
occur in ' with multiplicity � 2, by Lemma 5.18, and thus ' is not coreduced, by
Proposition 5.17.)

6 Coreduced representations of the exceptional groups

Let G be an exceptional simple group. In this section we classify the coreduced
representations V of G which contain a zero weight. We know that each irreducible
summand of V is coreduced (Example 2.12(1)). We show that all coreduced repre-
sentations with a zero weight are contained in maximal coreduced representations
all of which we determine. The types En and G2 are easy consequences from what
we have done so far, but the type F4 turns out to be quite involved.

Proposition 6.1. LetG be a simple group of type E and let V be aG-module with a
zero weight. If V is coreduced, then V is the adjoint representation of G. Any other
V with a zero weight has a bad toral slice.

Proof. Since the groups of type E are simply laced, every irreducible representation
' with a zero weight contains all roots and thus has a toral slice. Now it follows
from Lemma 6.2 below that every representation of the form ' ˚ V where V is
nontrivial has a bad toral slice. Hence a coreduced representation with a zero weight
is irreducible.

(a) Let G D E8. One can check with LiE that the fundamental representations
of G, except for the adjoint representation '1.E8/, contain the roots with
multiplicity � 2. Since the zero weight of '1.E8/ has multiplicity � 2, it follows
from Criterion 5.19 that every irreducible representation except for the adjoint
representation has a bad toral slice.

(b) Let G D E7. Of the fundamental representations only '1 D g D AdG,
'3, '4 and '6 are representations of the adjoint group. Using LiE one shows
that every fundamental representation, except for '1 and the 56-dimensional
representation '7, has a nonzero weight of multiplicity at least 6. Hence, by
Remark 5.20, the only other candidates for a coreduced representation besides
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'1 are '2k7 , k � 1. But '27 , contains the roots with multiplicity 5. Thus every
irreducible representation except for the adjoint representation has a bad toral
slice.

(c) Let G D E6. From the fundamental representations only '2 D g and '4
are representations of the adjoint group. By LiE, '3; '4 and '5 have nonzero
weights of multiplicity at least 5, and '21 ; '1'6 and '26 have nonzero weights of
multiplicities at least 4. Thus all irreducible representations with a zero weight,
except for the adjoint representation '2, have a bad toral slice. ut

Lemma 6.2. Let G be a simple group of type E, V a G-module and T � G a
maximal torus. Then V, considered as a representation of T , is not coreduced.

Proof. We have to show that the weights 
 D f	ig of V admit a “bad relation,”
i.e., an indecomposable relation

P
i ni	i D 0 where ni � 0 and at least one

nj � 2 (Proposition 2.13). This is clear if 
 contains the roots, in particular for
all representations of E8.

For E7 we first remark that !1; !3; !4; !6 are in the root lattice and !7 � !2; !5
in the usual partial order. This implies that for every dominant weight 	 we have
either !1 � 	 or !7 � 	. Thus the weights of V either contain the roots or the Weyl
orbit of !7. Using LiE one calculates the Weyl orbit of !7 and shows that there is a
“bad relation” among these weights.

Similarly, for E6 one shows that for a dominant weight 	 not in the root lattice,
one has either !1 � 	 or !6 � 	. Then, using LiE, one calculates the Weyl orbit of
!1 and shows that there is a “bad relation” among these weights. Since !6 is dual to
!1 its weights also have a “bad relation.” ut

We prepare to consider F4. The following result will be used several times in
connection with slice representations at zero weight vectors.

Lemma 6.3. Let G be semisimple and let V be a G-module where V G D 0. Let
H � G be a maximal connected reductive subgroup which fixes a nonzero point
v 2 V . Then Gv � V is closed with stabilizer a finite extension of H .

Proof. Since H is maximal, NG.H/=H is finite so that Gv is closed [Lun75].
Similarly, Gv can only be a finite extension of H . ut

For the maximal subgroups of the simple Lie groups see the works of Dynkin
[Dyn52b, Dyn52a].

Example 6.4. Let V D '2.Cn/, n � 3. Then H WD C1 � Cn�1 is a maximal
subgroup of Cn where .'1.Cn/;C1 � Cn�1/ D '1.C1/˚ '1.Cn�1/. Now H fixes a
line in V . Thus a finite extension ofH (actuallyH itself) is the stabilizer of a closed
orbit, and one easily sees that the slice representation is �1C'2.Cn�1/. By induction
one sees that the principal isotropy group of '2.Cn/ is a product of n copies of SL2.

Example 6.5. Let G D F4 which is an adjoint group. Now '1 D g and '4 is
the irreducible 26-dimensional representation whose nonzero weights are the short
roots. The representations '2 and '3 contain the roots with multiplicities at least two.
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Moreover, '21 ; '1'4 and '24 contain the roots with multiplicities at least 3. Hence
every irreducible representation of G except for '1 and '4 has a bad toral slice.

Proposition 6.6. The representations '1.F4/ and 2'4.F4/ are the maximal core-
duced representations of F4. Moreover, the representation 2'4.F4/ contains a dense
orbit in the null cone.

Proof. The sum '1 C '4 is not coreduced because the slice representation of the
maximal torus is not coreduced (the nonzero weights are the short roots and these
contain a bad relation). This leaves us to consider copies of '4. We know that 2'4
is cofree ([Sch79]). So it suffices to show that 3'4 is not coreduced and that 2'4
contains a dense orbit in the null cone. For both statements we use some heavy
calculations which are given in Appendix A, see Proposition A.1. ut
Example 6.7. Let G D G2 which is an adjoint group. The fundamental represen-
tation '1 of dimension 7 and '2 (adjoint representation) are the only coreduced
irreducible representations. This follows from Criterion 5.19, because '21 contains a
nonzero weight of multiplicity � 2.

Proposition 6.8. Let G D G2. Then 2'1 and the adjoint representation '2 are the
maximal coreduced representations of G.

Proof. See [Sch88] for the invariant theory of G2. The invariants of 2'1 are just
the SO7-invariants, so this representation is coreduced (see Theorem 9.1(4)). NowV3
.'1/ contains a copy of '1, and it is easy to see that the corresponding covariant

vanishes on the null cone of 3'1. In fact, this holds for any covariant of type '1 of
degree � 3. Since the covariant is alternating of degree 3, it cannot be in the ideal
of the quadratic invariants. More precisely, we have S2.'1 ˝ C

3/G D �1 ˝ S2C3,
and so in S3.'1 ˝ C

3/ we have

S2.'1 ˝ C
3/G � .'1 ˝ C

3/ D '1 ˝ .S2C3 � C3/;

and this space does not contain '1 ˝V3
C
3. Thus 3'1 is not coreduced.

To see that '1 C '2 is not coreduced we choose a nontrivial zero weight vector
in '2 D g which is annihilated by a short root ˛. Then the isotropy group has rank 2
and semisimple rank 1, and the slice representation contains two copies of .R2;A1/,
hence is not coreduced (Theorem 3.7). ut

Let us summarize our results.

Theorem 6.9. The following are the maximal coreduced representations of the
exceptional groups containing a zero weight.

(1) For En: the adjoint representations '2.E6/; '1.E7/; '1.E8/.
(2) For F4: Ad F4 D '1.F4/ and 2'4.F4/.
(3) For G2: Ad G2 D '2.G2/ and 2'1.G2/.
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Remark 6.10. The proofs above and in Appendix A show that if an irreducible
representation .V;G/ of an adjoint exceptional group G is not coreduced, then V
has a bad slice.

7 Coreduced representations of the classical groups

In this section we classify the coreduced representations V of the simple adjoint
groups of classical type. If G is adjoint and simply laced, i.e., of type A or D, then a
reducible representation V is not coreduced by Proposition 5.17, and so the maximal
coreduced representations are all irreducible. We will see that this is also true for G
of type Cn, n � 3, but not for type Bn.

The case of SL2 has been settled in Theorem 3.7 even without assuming that the
center acts trivially. So we may assume that the rank of G is at least 2.

Theorem 7.1. Let G be a simple classical group of rank at least 2. Then,
up to automorphisms, the following representations are the maximal coreduced
representations of G=Z.G/.

(1) G D An, n � 2: Ad An D '1'n, '22.A3/, '
3
1.A2/;

(2) G D Bn, n � 2: Ad Bn D '2.Bn/ .'22 if n=2/, '21.Bn/, n'1.Bn/;
(3) G D Cn, n � 3: Ad Cn D '21.Cn/, '2.Cn/, '4.C4/;
(4) G D Dn, n � 4: Ad Dn D '2.Dn/, '21.Dn/.

In Section 4 we showed that every irreducible cofree representation of a simple
group is coreduced. Looking at the list above and the one in Theorem 6.9 we see
that we have the following partial converse.

Corollary 7.2. Let G be a simple adjoint group and V an irreducible representa-
tion of G. Then V is coreduced if and only if V is cofree.

We start with type An, n � 2. Recall that 'p WD Vp
C
nC1, p D 1; : : : ; n.

Lemma 7.3. Consider the representations 'p and 'q of SLnC1 where 1 � p � q �
n and n � 2. Then there is a nonzero weight of 'p'q of multiplicity � 2 except in
the cases

(1) '21 or '2n,
(2) '1'n,
(3) '22.SL4/,

where the zero weight has multiplicity greater than one in (2) and (3).

Proof. It is easy to calculate that the weight 2"1 C � � � C 2"p�1 C "p C � � � C "qC1
occurs in 'p ˝ 'q with multiplicity q � p C 2 and that it occurs in 'p�1 ˝ 'qC1
once. Since 'p ˝ 'q D 'p'q C 'p�1 ˝ 'qC1 we see that our weight occurs with
multiplicity q � p C 1 in 'p'q . This gives us a nonzero weight of multiplicity at
least two, except in the following two cases:
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(1) '1'n where the above weight is the zero weight, and
(2) '2p where 1 � p � n.

However, in the second case, we can suppose, by duality, that 2p � n C 1. If
2p � n, then one sees as above that "1 C � � � C "2p occurs with multiplicity 1

p

�
2p
p�1
�

which is at least 2 as long as p > 1. If 2p D n C 1, then one computes that
"1 � "2 D 2"1 C "3 C � � � C "2p occurs with multiplicity 1

p�1
�
2p�2
p�2

�
which is � 2 as

long as p > 2. Thus the only possibilities are '21 and '22.SL4/. ut
The next lemma was proved by STEMBRIDGE. We give a slightly different

version of his proof.

Lemma 7.4. Let ' be an irreducible representation of PSLnC1, n � 2. Then the
roots of G occur with multiplicity at least two in ', except in the following cases.

(1) The adjoint representation '1'n;
(2) 'k.nC1/

1 .SLnC1/ or its dual, k D 1; 2; : : :;
(3) '22.SL4/ D '21.D3/.

Proof. The representation ' has highest weight 	 D P
i 	i!i where the !i are the

fundamental dominant weights and
P

i i	i is a multiple of n. Now, Lemma 5.18
together with Lemma 7.3 above implies that the only irreducible representations of
PSLnC1 containing the roots with multiplicity one are those listed. ut
Proposition 7.5. Let n � 2. The nontrivial irreducible coreduced representations
of PSLnC1 are the adjoint representation '1'n, '22.SL4/, '31.SL3/ and '32.SL3/. All
other irreducible representations admit a bad toral slice.

Proof. By Proposition 5.17 we know that the only candidates for coreduced irre-
ducible representations of PSLn are those listed in Lemma 7.4 above. So it remains
to show that Skm.Cm/ is not coreduced form > 3 and form D 3; k > 2. Form � 4

the slice representation at a generic fixed point of the maximal torus T contains
the weights ˇi WD km"i and the weight ˛ WD �k.2"1 C 2"2 C "3 C � � � C "m�2/
of the monomial .x3 � � � xm�2x2m�1x2m/k which satisfy the indecomposable relation
m˛ C 2ˇ1 C 2ˇ2 C ˇ3 C � � � C ˇm�2 D 0, and so the slice representation is not
coreduced.

For m D 3 and k > 1 we have the weights ˇi WD 3k"i and the weight
˛ WD �3.k � 1/"1 � 3.k � 2/"2 of the monomial x32x

3.k�1/
3 which satisfy the

indecomposable relation k˛C .k� 1/ˇ1 C .k� 2/ˇ2 D 0. Again it follows that the
slice representation is not coreduced. ut

Now we look at type Bn.

Proposition 7.6. LetG D SO2nC1 be the adjoint group of type Bn, n � 2. Then the
only nontrivial irreducible coreduced representations are the adjoint representation
'2, the standard representation '1 and '21 . All other irreducible representations
admit a bad toral slice.

The representations '2 and '21 are maximal coreduced, whereas k'1 is coreduced
if and only if k � n.
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Proof. The highest weights of irreducible representations of G are just sums of the
highest weights !1; : : : ; !n�1; 2!n of the representations W` WD V`

.C2nC1/ for
1 � ` � n. For ` D 2m C 1 or 2m, m � 2, one can compute that the weights
of W` contain the roots of G with multiplicity

�
n�2
m�1

�
which is at least 2. Thus W`

admits a non-coreduced slice representation of a maximal torus and is therefore not
coreduced for ` � 4. For ` D 3, hence n � 3, we have the weights ˙"i ˙ "j ˙ "k
where 1 � i < j < k � n as well as the weights ˙"i , 1 � i � n where the latter
have multiplicity � 2. Now the relation

."1 C "2 C "3/C .�"1 C "2 C "3/C 2.�"2/C 2.�"3/ D 0 (1)

is indecomposable and so the slice representation of the maximal torus is not
coreduced.

Now let V be an irreducible representation of G with highest weight 	 DP
i mi!i . If mi > 0 for some i � 3 then, by Criterion 5.19, V has a non-coreduced

slice representation of a maximal torus, and thus is not coreduced.
Hence we are left with 	 D r!1 C s!2 where s is even in case n D 2. Let us

first assume that n > 2. Since '22 contains the roots with multiplicity � dimW T
2 D

n � 3 and since the weights of '1'2 contain the indecomposable weight relation
.2"1C"2/C2.�"1/C.�"2/ D 0 and the short roots occur with multiplicity> 1, we
are reduced to the highest weights r!1. If r � 3, we have the roots and the weights
3"1 and �2"1 which lead one to see that the slice representation is not coreduced.

The arguments in the case n D 2 are the same (one has to replace '2 by '22
everywhere).

Finally, we have to look at direct sums of '1, '2 and '21 . We will see in
Theorem 9.1(2) that k'1 is coreduced if and only if k � n. Since '2 and '21 contain
all roots it remains to show that '21 C '1 and '2 C '1 are not coreduced. First,
consider '21 , n � 4. The subgroup SO3 � SO2n�2 is maximal in SO2nC1, it has
rank n and has slice representation '41.A1/ ˚ '21.Dn�1/ C �1. If we add a copy of
'1.Bn/, then we have a subrepresentation .'41 C '21 ;A1/ which is not coreduced.
The details work out similarly for n D 2 and n D 3. We are left with AdG C '1.
The slice representation of the group SO3 �.SO2/

n�1 contains two copies of the
standard representation of SO3 on C

3 which is not coreduced (Theorem 3.7). Hence
AdG C '1 is not coreduced. ut

For type Dn we get the following result. Recall that only irreducible representa-
tions of PSO2n can be coreduced (Proposition 5.17).

Proposition 7.7. Let G D PSO2n be the adjoint group of type Dn, n � 4. Then
the only nontrivial coreduced representations are the adjoint representation '2,
'21 , '23.D4/ and '24.D4/, and these are maximal coreduced. All other irreducible
representations admit a bad toral slice.

Proof. The highest weights of representations of SO2n are just sums of the highest
weights !1; : : : ; !n�2; !n�1C!n of the representationsW` WD V`

.C2n/ for 1 � ` �
n�1 and twice the highest weights !n�1 and !n of the two half-spin representations.
Moreover, '2n�1 ˚ '2n ' Wn WD Vn

.C2n/.
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The representations W2m for m > 1 contain the roots of G with multiplicity�
n�2
m�1

� � 2. The representations Wk for k odd, k > 1, have no zero weights, but
they contain the weights of '1 with multiplicity greater than one. Hence the Cartan
products WkW` for k; ` � n � 1 odd, k C ` � 4, contain the adjoint representation
more than once, so that the representations are not coreduced. We already know that
'21 is coreduced and by Criterion 5.19 no power '2k1 is coreduced for k � 2.

It remains to consider those representations ' of PSO2n that are Cartan products
with '2n�1 or '2n. If n � 6 is even, then both contain the roots at least three times,
hence ' is not coreduced. If n D 4, then '23 and '24 are outer isomorphic to '21 which
is coreduced. If ' is not exactly one of these representations, then it is not coreduced
by Criterion 5.19. If n is odd, then '2n�1 and '2n both contain the weights of W1 at
least three times, and so ' contains the roots with multiplicity at least 3 and is not
coreduced. ut

For type Cn we will use the following lemma.

Lemma 7.8. Let H1; : : : ;H4 be copies of SL2 and let Vi ' C
2 have the standard

action of Hi . Let H D Q
i Hi and V D L

i<j Vij where Vij D Vi ˝ Vj . Then
.V;H/ is not coreduced.

Proof. Consider the subrepresentation V 0 WD V12 ˚ V14 ˚ V23 ˚ V34 ˚ V24.
We have the quotient mapping (by H1) from V12 ˚ V14 to V 0

24 ˚ �2 where V 0
24 is

another copy of V24. The image is a hypersurface F defined by an equation saying
that the invariant of .V 0

24;H2 �H4/ is the product of the coordinate functions on �2.
By Lemmas 2.6 and 2.8 (see Examples 2.7 and 2.9) the representation V 0

24 ˚ V23 ˚
V34˚V24˚�2 ofH2�H3�H4 is coreduced if V 0 is coreduced. Quotienting by the
action ofH3, we similarly obtain a representation .V 0

24˚V 00
24˚V24˚�4;H2�H4/ '

.3C4 ˚ �4;SO4/ which is not coreduced (Example 3.4). Hence .V 0;H/ and .V;H/
are not coreduced. ut

The fundamental representations 'i of Cn are given by '1 D C
2n, '2 DV2

C
2n=Cˇ, and 'i D Vi

C
2n=ˇ ^Vi�2

C
2n for i D 3; : : : ; n where ˇ 2 V2

C
2n

is the invariant form. They can be realized as the irreducible subspaces
Vi
0.C

2n/ �
Vi
.C2n/ of highest weight !i WD "1C� � �C"i . The generators of the representations

of the adjoint group G D PSp2n are the 'i for i even and the 'i'j for i and j odd.

Proposition 7.9. Let G D PSp2n be the adjoint group of type Cn, n � 3. Then the
nontrivial irreducible coreduced representations ofG are the adjoint representation
'21 , '2 and '4.C4/, and these are all maximal. Moreover, all other irreducible
representations admit a bad slice.

Proof. (a) First consider the case of 'i'j where i and j are odd. We may suppose
that j � 3. Then 'j contains the weight "1 C "2 C "3 (it is a dominant weight
which is the highest weight of 'j minus a sum of positive roots). By the action
of the Weyl group we have all the weights ˙"1 ˙ "2 ˙ "3. In 'i (and 'j ) we
similarly have all the weights ˙"k . Thus 'i'j contains the roots 2"1 and "1�"2,
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hence all the roots. Moreover, we have the following indecomposable relation
of weights in 'i'j (none of which are roots):

.2"1 C "2 C "3/C .2"1 � "2 � "3/
C 2.�"1 C 2"2 C "3/C 2.�"1 � 2"2 � "3/ D 0: (2)

Hence 'i'j has a bad toral slice and is therefore not coreduced. The same holds
for every Cartan product of 'i'j with any other representation of G.

Now '41 is a representation of G, but since '21 contains the trivial representa-
tion n times, '41 contains the adjoint representation at least n times, hence has a
bad toral slice and is not coreduced. Therefore, the adjoint representation '21 is
the only coreduced irreducible representation ' D 'i1'i2 � � �'im of G where at
least one ik is odd.

(b) Now we consider representations '2i , 2i � n. These representations, one can
show as above, contain the short roots of G. But the long roots do not occur.
Hence the connected component of the isotropy group at a generic zero weight
vector is covered by a product H WD Qn

jD1 Hj , where each Hj is the copy of
SL2 in G corresponding to the positive long root 2"j . If n � 5 and 2i � 4, then
the slice representation contains the subrepresentation

M

1�j<k�n
Vjk where Vjk WD .C2 ˝ C

2;Hj �Hk/;

which is not coreduced (Lemma 7.8). Finally, one easily sees that any product
'2i'2j contains all the roots as well as the zero sum of weights given above
in equation (2). This includes the case where a factor is '2 or '4. Hence the
irreducible coreduced representations of G are as claimed.

(c) It remains to show that the coreduced representations of G are all irreducible.
As seen above, the connected component of the isotropy group at a generic
zero weight vector of '2 is covered by a product H WD Qn

jD1 Hj , where
each Hj is the copy of SL2 in G corresponding to the positive long root 2"j .
If we add another copy of '2 or the adjoint representation '21 , then the slice
representation contains

L
1�j<k�n Vjk where Vjk WD .C2 ˝ C

2;Hj � Hk/,
which is not coreduced for n � 4. The same holds if n D 4 and we add
a copy of '4.C4/. This proves the claim for n � 4, because '21 and '4.C4/

contain all roots. For '2.C3/ C '21.C3/ we have the slice representation of
H D H1 � H2 � H3 on V12 ˚ V13 ˚ V23 ˚ h1 ˚ h2 ˚ h3 ˚ �2 where the
Hi are copies of SL2 and the Vij are as above. Consider the subrepresentation
.V 0;H1�H2/ WD .V12˚h1˚h2;H1�H2/. The principal isotropy group of h1 is
C

� �H2 where C� acts on V12 with weights ˙1. Let h0
2 denote a second copy of

h2. Then the quotient of V12 by C
� is a quadratic hypersurface in h0

2 C �1 which
equates the quadratic invariant of h0

2 and the square of the coordinate function
on �1. Thus, as in Lemma 7.8, the fact that the representation .h2Ch0

2C�1;H2/

is not coreduced (Example 5.12) implies that V 0 is not coreduced, hence neither
is '2.C3/ C '21.C3/. Finally, 2'2.C3/ is not coreduced as we have seen in
Example 5.12. ut
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Remark 7.10. The proofs above show that if an irreducible representation .V;G/
of an adjoint classical group G is not coreduced, then V has a bad slice. We have
already seen in the previous section that the same holds for the exceptional groups
(Remark 6.10).

8 Irreducible coreduced representations of semisimple groups

In this section we classify the irreducible coreduced representations of adjoint
semisimple groups.

Example 8.1. The representation .C2nC1 ˝ C
2mC1;SO2nC1 � SO2mC1/ is the

isotropy representation of a symmetric space. (Consider the automorphism � of

SO2.nCmC1/ given by conjugation with
h

Id2nC1 � Id2mC1

i
.) It now follows from

[KR71, Theorem 14, p. 758] that this representation is coreduced for all n;m � 1.
Of course, this is also an example of a � -representation, hence coreduced by
Corollary 4.8.

Example 8.2. The representation .V;G � H/ D .C3 ˝ '1.G2/;SO3 �G2/ is
coreduced. In fact, .V;H/ is cofree and the quotient V==H is the SO3-module
'41 ˚ �2 which is cofree and coreduced. Hence .V;G �H/ is cofree too. Now the
proper nontrivial slice representations of .3'1;G2/ are .2C3 C 2.C3/� C �3;SL3/
(coreduced by Theorem 9.1) and .2C2 C �6;SL2/ (coreduced by Theorem 3.7).
Thus every fiber of � WV ! V==H is reduced, except for the zero fiber, which has
codimension 7. Thus the null cone of .V;G � H/, which has codimension 4, is
reduced off of a subset of V of codimension 7, hence .V;G �H/ is coreduced.

Surprisingly, these two examples are the only irreducible coreduced representa-
tions besides those where G is simple.

Theorem 8.3. The coreduced irreducible representations of a semisimple non-
simple adjoint group are

.'1.Bn/˝ '1.Bm/;Bn � Bm/ and .'21.A1/˝ '1.G2/;A1 � G2/:

The proof needs some preparation. We first construct a list of non-coreduced
representations which will help to rule out most candidates.

Example 8.4. Let .V;G/ D .Cn ˝ C
m C C

n;SOn � SOm/ where m; n � 2. We
show that V is not coreduced. There are three cases. Recall that

.S2.Cn/˚ C
n;SOn/

is not coreduced even for n D 2.
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(1) n < m. Quotienting by the action of SOm we obtain S2.Cn/˚ C
n which is not

coreduced, hence neither is V (Example 2.9).
(2) n D m. By Example 2.10 the representation V is not coreduced since

quotienting by Om we obtain the non-coreduced representation S2.Cn/˚ C
n.

(3) n > m. We have at most n copies of Cn, so by Example 2.10 we may quotient
by the action of On to arrive at the representation

S2.Cm/˚ C
m

which is not coreduced. Hence V is not coreduced.

We have seen in Corollary 5.14 that for two representations .V;G/ and .W;H/
with a zero weight, if .V;G/ has a bad slice, then so does .V ˝W;G�H/. Together
with Remarks 6.10 and 7.10 this implies that we need only consider tensor products
of the irreducible coreduced representations .V;G/ of the simple adjoint groups.
They fall into five types.

(1) .V;G/ D '21.A1/ D .C3;SO3/.
(2) .V;G/ D '41.A1/ or there is a slice representation .W;H/ where H0 D T is a

maximal torus of G (of rank at least 2) and W contains weight spaces of roots
˛, ˇ and �.˛ C ˇ/ or W contains �2 and weight spaces ˙˛.

(3) .V;G/ D '1.Bn/, n � 2.
(4) .V;G/ D '1.G2/.
(5) .V;G/ D '4.F4/, '4.C4/, or '2.Cn/, n � 3.

Note that the representations '21.Dn/, n � 3 and '21.Bn/, n � 2, are of type (2) as
is the representation '31.A2/. We consider tensor products of the various types of
representations.

Lemma 8.5. Let .V1;G1/ be of type (2) and let .V2;G2/ be of arbitrary type. Then
.V1 ˝ V2;G1 �G2/ has a bad slice.

Proof. We leave the case that .V1;G1/ or .V2;G2/ is '41.A1/ to the reader. It will be
clear from our techniques what to do in this case. Let T1 be a maximal torus of G1
fixing v1. First, assume that the weights of the slice representation at v1 contain roots
˛, ˇ and �˛ � ˇ. Let T2 be a maximal torus of G2. Suppose first that .V2;G2/ D
.C3;SO3/, Let v2 2 V2 be a zero weight vector and let � be a nonzero weight
of .V2; T2/. Then by Corollary 5.14 the slice representation of T1 � T2 at v1 ˝ v2
contains the weights

�� C ˛; � C ˇ; � � ˛ � ˇ; and � � � ˛ � ˇ:

We have the minimal zero sum

2.�� C ˛/C 2.� C ˇ/C .� � ˛ � ˇ/C .�� � ˛ � ˇ/ D 0;
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hence the slice representation of T1 � T2 is not coreduced. The same argument
works in case .V2;G2/ is of type (2). Now suppose that .V2;G2/ D '1.Bn/,
n � 2. Then we have a slice representation of SO2n �T1 containing the irreducible
components C2n˝C˛ , C2n˝Cˇ and C

2n˝C�˛�ˇ . Quotienting by SO2n we obtain
a representation of T1 with weights

2˛; 2ˇ; ˛ C ˇ; �˛; �ˇ and � 2˛ � 2ˇ:
Hence the slice representation is not coreduced. The same argument works in case
.V2;G2/ is of type (5). For type (4) we get a slice representation of SL3 �T1
containing

C
3 ˝ C˛; C

3 ˝ Cˇ; .C
3/� ˝ C�˛�ˇ; and .C3/� ˝ C˛;

and quotienting by SL3 we obtain a T1-representation with weights �ˇ, �˛, 2˛ and
˛ C ˇ. Hence we have a non-coreduced slice representation.

Finally, assume that the slice representation at v1 contains �2 and weights ˙˛
and that .V2;G2/ is of arbitrary type. Let ˙� be nonzero weights of V2. Because of
the �2, the slice representation at v1˝v2 contains the weights of V2 (Corollary 5.14).
Hence we have weights ˙˛ ˙ � and ˙� . and the minimal bad relation

.˛ C �/C .�˛ C �/ � 2.�/ D 0:

Thus .V1 ˝ V2;G1 �G2/ is not coreduced. ut
We are left with type (1) and types (3–5).

Lemma 8.6. Suppose that .V1;G1/ is of type (1) or (3) or (5) and that .V2;G2/ is
of type (5). Then .V1 ˝ V2;G1 �G2/ has a bad slice.

Proof. First assume that .V1;G1/ is '1.Bn/, n � 1 (type (1) or type (3)). If .V2;G2/
is '4.F4/, then there is a (principal) slice representation of D4 on �2 where
.'4.F4/;D4/ D .'1 C '3 C '4 C �2/ while .V1;G1/ has a slice representation
of SO2n on �1 where .V1;SO2n/ D .C2n C �1;SO2n/. By Corollary 5.14 there is
a subrepresentation of a slice representation of .V1 ˝ V2;G1 � G2/ which is of
the form .C2n ˝ C

8 ˚ C
2n;SO2n � SO8/. It follows from Example 8.4 that the

slice representation is not coreduced.
If .V2;G2/ is '2.Cm/, m � 4, then there is a slice representation .W;H/ D

.�2 C '2;SL2 � SL2 �Cm�2/ where .'2.Cm/;H/ contains

.C2 ˝ C
2;SL2 � SL2/ ' .C4;SO4/:

There is a non-coreduced subrepresentation of the slice representation of
.V1 ˝ V2;G1 �G2/ of the form .C2n ˝ C

4 ˚ C
2n;SO2n � SO4/. The case of

'2.C3/ is only notationally different and the case of '4.C4/ is similar. Finally, if
.V1;G1/ is of type (5), then the same techniques produce a non-coreduced slice
representation at a zero weight vector. ut

We leave the proof of the following to the reader.
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Lemma 8.7. A tensor product .V1 ˝ V2;G1 � G2/ has a bad slice if .V1;G1/ is
'1.G2/ (type (4)) and .V2;G2/ is of type (5).

We are now left with the problem of tensor products of representations of types
(1), (3) and (4). First, we handle types (1) and (3).

Proposition 8.8. Let 3 � 2k C 1 � 2mC 1 � 2nC 1 and

.V;G/ D .C2nC1 ˝ C
2mC1 ˝ C

2kC1;SO2nC1 � SO2mC1 � SO2kC1/:

Then the slice representation at the zero weight vector is not coreduced.

Proof. The slice representation at the zero weight vector is

.W;H/ D .C2n ˝ C
2m ˝ C

2k C C
2n ˝ C

2m

C C
2m ˝ C

2k C C
2n ˝ C

2k;SO2n � SO2m � SO2k/:

If k > 1, consider the subrepresentation C
2m ˝ C

2k ˚ C
2n ˝ C

2k . Quotienting by
SO2m � SO2n we get .2S2.C2k/;SO2k/ which is not coreduced. Using Example 2.9
we see that .V;G/ is not coreduced.

Now assume that k D 1 but m > 1. We have a subrepresentation

C
2n ˝ C

2m ˚ C
2m ˝ C� ˚ C

2m ˝ C��;

where the C˙� are irreducible representations of SO2k ' C
� of weight ˙1.

Quotienting by O2n we obtain the representation

.S2.C2m/˚ C
2m ˝ C� ˚ C

2m ˝ C��;SO2m � SO2/:

Let ˙"1; : : : ;˙"m be the weights of C2m for the action of the maximal torus T of
SO2m. Then the slice representation of S2.C2m/ at a generic zero weight vector is,
up to trivial factors, the sum of the C˙2"i . Hence we have a slice representation of
T � SO2 containing

C�2"1 ˚ C�2"2 ˚ .C"1 ˝ C�/˚ .C"2 ˝ C��/:

This last representation is not coreduced.
Now assume that n � m D k D 1. We rename the weight "1 of SO2m D SO2 to

be just ". Then we have the subrepresentation

.C2n ˝ C"/˚ .C2n ˝ C�/˚ .C�" ˝ C��/:

Quotienting by O2n we get a representation

C2" ˚ C2� ˚ .C" ˝ C�/˚ .C�" ˝ C��/

of C� � C
� which is not coreduced. ut
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Proposition 8.9. Let .V;G/ D .C2nC1 ˝ C
7;SO2nC1 �G2/, n � 2, or

.C3 ˝ C
3 ˝ C

7;SO3 � SO3 �G2/:

Then .V;G/ has a bad slice.

Proof. We leave the latter case to the reader. In the former case we have the slice
representation (minus the trivial factor)

.W;H/ D .C2n ˝ .C3 ˚ .C3/�/;SO2n � SL3/:

If n � 3, then quotienting by O2n we obtain the representation

.S2.C3/˚ S2.C3
�
/˚ C

3 ˝ C
3�
;SL3/

which is not coreduced.
We are left with the case .W;H/ D .C4 ˝ .C3 ˚ C

3�
/;SO4 � SL3/. Consider

a 1-parameter subgroup � of SO4 � SL3 whose action on C
4 has weights ˙1 and

on C
3 has weights 2; 0;�2. Then Z�, the span of the positive weight vectors, has

dimension 12 (which is not surprising since .W;H/ is self-dual of dimension 24).
Note that Z� is in the null cone and is stable under a Borel subgroup B of H . Now
one can show that the dimension of U�Z� is 17 D 12 C dimU�, the maximal
possible, where U� is the maximal unipotent subgroup of H opposite B . Hence
HZ� is a component of the null cone (see section 10 for more details).

The positive weights of � on W are 1 and 3 and the negative weights are �1
and �3. This implies that the differential of an invariant of degree > 4 vanishes on
Z�, hence on HZ�. But we have only 4 generating invariants in degree at most 4,
and so the null cone is not reduced along HZ�, because codimHZ� D 7. ut

We are left with the case G2 � G2 acting on C
7 ˝ C

7.

Proposition 8.10. The representation .C7 ˝ C
7;G2 � G2/ is not coreduced.

We have two proofs of this, and both need some computations. They are given
in Appendix B.

9 Classical invariants

Classical Invariant Theory describes the invariants of copies of the standard
representations of the classical groups, e.g., the GL.V /- or SL.V /-invariants of
mV ˚ nV � or the Sp.V /-invariants of mV where mV WD V ˚m denotes the direct
sum of m copies of V . In this context we will prove the following theorem.

Theorem 9.1. (1) The representation .pV ˚ qV �;GL.V // is coreduced for all
p; q � 0. The null cone is irreducible if and only if p C q � n.
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(2) The representation .pV ˚ qV �;SL.V // is coreduced for all p; q � 0. The null
cone is irreducible in the following cases: p C q � n or .p; q/ D .n; 1/ or
.p; q/ D .1; n/.

(3) The representations .mV;Sp.V // are coreduced for all m � 0, and the null
cone is irreducible and normal.

(4) The representations .mV;O.V //, .mV;SO.V // are coreduced if and only if
2m � dimV . The null cone is irreducible and normal for 2m < dimV .

The basic reference for this section is [Sch87]. Denote by Tm, Bm and Um the
subgroups of GLm consisting of diagonal, upper triangular, and upper triangular
unipotent matrices. If 	 is a dominant weight, i.e., 	 D Pm

iD1 	i "i 2 X.Tn/ DLm
iD1 Z"i and 	1 � 	2 � � � � � 	m, we denote by  	 or  	.m/ the corresponding

irreducible representation of GLm. In the following, we will only deal with
polynomial representations of GLm, so that 	i � 0 for all i . Set j	j WD P

	i and
define the height of a dominant weight by ht.	/ WD maxfi j 	i > 0g.

The famous CAUCHY formula describes the decomposition of the symmetric
powers of a tensor product where we consider  	.m/˝  �.k/ as a representation
of GLm � GLk (see [Sch87, (1.9) Theorem]).

Proposition 9.2.

Sd .Cm ˝ C
k/ D

M

j	jDd; ht.	/�minfm;kg
 	.m/˝  	.k/:

If 	 is a dominant weight of height r , then  	.m/ makes sense for any m � r .
In fact,  	 is a functor and  	.V / is a well-defined GL.V /-module for every vector
space V of dimension � r . In particular, if �WG ! GL.V / is a representation of a
reductive group G, then all  	.V / for ht.	/ � dimV are representations of G as
well. From the CAUCHY formula we thus get

O.mV /d D Sd .Cm ˝ V �/ D
M

j	jDd; ht.	/�min.m;dimV /

 	.m/˝  	.V
�/

as a representation of GLm �G. Taking Um-invariants we find

O.mV /Umd D Sd .Cm ˝ V �/Um D
M

j	jDd; ht.	/�min.m;dimV /

 	.V
�/; (	)

where the torus Tm � GLm acts on  	.V �/ with weight 	. Thus the algebra
O.mV /Um is Z

m-graded, and the homogeneous component of weight 	 is the
G-module  	.V

�/. In particular, O.mV /Um is multiplicity-free as a GL.V /-
module. It follows that the product  	.V �/ �  �.V �/ in O.mV / is equal to
 	C�.V �/. This leads to the following definition.

Definition 9.3. LetG be a connected reductive group and letA be aG-algebra, i.e.,
a commutative C-algebra with a locally finite and rational action of G by algebra
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automorphisms. Two simple submodules U; V � A are called orthogonal if the
product U � V � A is either zero or simple and isomorphic to the Cartan (highest
weight) component of U ˝ V .

The result above can therefore be expressed by saying that all irreducible
GL.V /-submodules of O.mV /Um are orthogonal to each other. The following
crucial result is due to BRION [Bri85, Lemme 4.1].

Proposition 9.4. Let A be a G-algebra and let V1; V2;W � A be simple
submodules. Assume that V1; V2 are both orthogonal to W . Then any simple factor
of V1 � V2 is orthogonal to W .

We will also need the following result about U -invariants (see [Kra84, III.3.3]).

Proposition 9.5. Let G be a connected reductive group, U � G a maximal
unipotent subgroup, and let A be a finitely generatedG-algebra. Then A is reduced,
resp. a domain, resp. normal if and only if AU is reduced, resp. a domain, resp.
normal.

Another consequence of formula .	/ is that O.mV /Um D O.nV /Un for all m �
n D dimV .

We start with the groups GL.V / and SL.V / acting on W WD pV ˚ qV �. It is
known that the GL.V /-invariants are generated by the bilinear forms

fij W .v1; : : : ; vp; �1; : : : ; �q/ 7! �j .vi /:

If V �
i is the i th copy of V � in W � � O.W / and Vj the j th copy of V , then

V �
i � Vj D sl.V / ˚ Cfij in O.W /, and so V �

i and Vj are orthogonal in O.W /=I
where I is the ideal generated by the invariants fij . It follows from Proposition 9.4
above that all simple submodules of O.pV / are orthogonal to all simple submodules
in O.qV �/ modulo I . Thus the GL.V /-homomorphism

O.pV /Up ˝ O.qV �/Uq ! .O.pV ˚ qV �/=I /Up�Uq

is surjective, and the same holds if we take invariants under U WD Up �UV �Uq �
GLp � GL.V / � GLq where UV � GL.V / is a maximal unipotent subgroup. This
also shows that the .Up � Uq/-invariants do not change once p � n or q � n, so
that we can assume that p; q � n.

Now we have O.pV /U D CŒx1; : : : ; xp� where xi 2 Vi
V � is a highest

weight vector. Similarly, O.qV �/U D CŒy1; : : : ; yq�, and thus we get a surjective
homomorphism

'WCŒx1; : : : ; xp; y1; : : : ; yq� ! .O.pV ˚ qV �/=I /U : (		)

Proof (of both Theorem 9.1(1) and (2)). We claim that the kernel of ' is generated
by the products xrys where r C s > n. This implies that we have an isomorphism

.O.pV ˚ qV �/=I /U ' CŒx1; : : : ; xp; y1; : : : ; yq�=.xiyj j i C j > n/;
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and so Np;q WD N .pV ˚ qV �/ is reduced, by Proposition 9.5. We also see that the
ideal .xiyj j i C j > n/ is prime if and only if it is .0/, i.e., when p C q � n. This
proves the theorem for GL.V /.

To prove the claim we first remark that the kernel of ' is spanned by monomials,
because ' is equivariant under the action of the maximal torus Tp � Tq . Moreover,
it is not difficult to see that '.xrys/ D 0 if rC s > n; see [Sch87, Remark 1.23(2)].

Now let f WD xi1 � � � xipyj1 � � � yjq be a monomial which is not in the ideal
.xiyj j i C j > n/. Then r C s � n where r WD max.pi / and s WD max.qj /.
If .e1; : : : ; en/ is a basis of V and .e�

1 ; : : : ; e
�
n / the dual basis of V �, then we

can assume that xi D e�
n�iC1 ^ e�

n�iC2 ^ � � � ^ e�
n and yj D e1 ^2 ^ � � � ^

ej . Now it is clear that the monomial f does not vanish at the point w WD
.0; : : : ; 0; en�rC1; : : : ; en; e�

1 ; : : : ; e
�
s ; 0; : : : ; 0/ which is in the null cone Np;q .

For the group SL.V / there are more invariants, namely the determinants

di1���in WD det

2

6
4

vi1
:::

vin

3

7
5 where i1 < i2 < � � � < in, and d�

j1���jn WD det

2

6
4

�j1
:::

�jn

3

7
5 where

j1 < j2 < � � � < jn. These invariants only appear if p � n, resp. q � n. In
particular, we have the same invariants and the same null cone in case p; q < n.
From the surjectivity of the map ' in .		/ above we see that there remain only the
cases where either p D n and q � n, or q D n and p � n. Let J denote the
ideal generated by the SL.V /-invariants. Then JU D IU C .xn/ if p D n > q,
JU D IU C .yn/ if p < n D q, and JU D IU C .xn; yn/ if p D n D q. Hence

.O.pV ˚ qV �/=J /U ' CŒx1; : : : ; xp0 ; y1; : : : ; yq0 �=.xiyj j i C j > n/

where p0 WD min.p; n � 1/ and q0 WD min.q; n � 1/. The rest of the proof is as
above. ut

Next we study the case where V is a symplectic space, i.e., V is equipped with
a nondegenerate skew form ˇ, dimV D 2n. We have the group G WD Sp.V / �
GL.V / which preserves ˇ. Then the invariants of mV are generated by the bilinear
maps

ˇij W .v1; : : : ; vn/ 7! ˇ.vi ; vj /; 1 � i < j � m:

We denote by  k WD Vk
0 V

� � Vk
V � (k D 1; : : : ; n) the fundamental

representations of Sp.V / where
Vk

V � D Vk
0 V

� ˚ ˇ ^Vk�2
V �. We know from

equation .	/ that O.mV /Umk contains a unique copy of
Vk

V � for k � min.m; n/.

Lemma 9.6. Let I � O.mV / be the ideal generated by the invariants ˇij . Then in
O.mV /Um we have

(1)
Vk

V � D  k .mod I / for k D 1; : : : ;min.m; n/;
(2)

Vk
V � �V`

V � D  k ` .mod I / for 1 � k � ` � min.m; n/.
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Proof. Part (1) is clear since  kC2 D VkC2
V �=ˇ

Vk
V �. For part (2) let

x1; : : : ; xn 2 V � correspond to the positive weights "1; : : : ; "n and let y1; : : : ; yn
correspond to the �"j . A simple submodule occurring in k � ` has a highest weight
vector containing a unique term � WD x1 ^ � � � ^ xk � ˛ where ˛ is an `-fold wedge
product of a certain number of xi and yj . But the only possibility for obtaining a
highest weight of Sp.V / is ˛ D x1 ^ � � � ^ xq ^ yk�rC1 ^ � � � ^ yk where q � `

and r D ` � q. This gives the highest weight of a (unique) copy of  p q where
p D k � r .

Suppose that r > 0. We have an element ˇr in .
Vr
.V �/˝Vr

.V �//Sp.V / where
ˇr.v1 ^ � � � ^ vr ;w1 ^ � � � ^ wr / D det.ˇ.vi ;wj //. Here the vi and wj are elements
of V . It is easy to see that ˇr projects to a nontrivial invariant element ˇ0

r of  r r ,
and that ˇ0

r 2 I r . Then the product of ˇ0
r with  p q �  p �  q is a copy of  p q

in  k `, and we have (2). ut
Proof (of Theorem 9.1(3)). It follows from the lemma above and Proposition 9.4 that
all simple submodules in O.mV /Um are orthogonal and the covariants are generated
by  1; : : : ;  m0 where m0 WD min.m; n/. Let UV � Sp.V / be a maximal unipotent
subgroup and let xk 2 Vk

0 V
� � O.mV /Umk be a highest weight vector. Then we

have a surjective homomorphism

'WCŒx1; : : : ; xm0 � ! .O.mV /=I /Um�UV :

If W � V is a maximal isotropic subspace, then W ˚m is contained in the null cone
of mV , and for a suitable choice of W , the function xk does not vanish on W ˚m
for k � m0. This implies that ' is an isomorphism, because the action of Tm on
CŒx1; : : : ; xm0 � has one-dimensional weight spaces, and so the kernel of ' is linearly
spanned by monomials. Now the theorem for Spn follows from Proposition 9.5. ut

Finally, let V be a quadratic space, i.e., an n-dimensional vector space with a
nondegenerate quadratic form q. The O.V /-invariants of mV are generated by the
bilinear maps

qij W .v1; : : : ; vm/ 7! q.vi ; vj /; 1 � i � j � m:

The SO.V /-modules  k WD Vk
V � are simple if 2k < n. For n D 2m  m WDVm

V � is simple as an O.V /-module, but decomposes as  m D  C
m ˚  �

m as an
SO.V /-module.

Lemma 9.7. Let 2m � n and let I � O.mV / be the ideal generated by the
invariants qij . Then in O.mV /Um we have

(1)  k �  ` D  k ` .mod I / for 1 � k � ` � min.m; n�1
2
/;

(2) If n D 2m, then  C
m �  �

m D 0 .mod I /.

Proof. Let n D 2s or 2s C 1 so that m � s. We consider a weight basis x1; : : : ; xs
and y1; : : : ; ys (and a zero weight element z if n is odd). First suppose that n is even.
For (1) we can then proceed as in the symplectic case. The only difference is that we



454 Hanspeter Kraft and Gerald W. Schwarz

use the invariant bilinear form q to generate an element q0
r lying in . r r/SO.V / and

in I r . As for (2), the highest weight vectors are x1^� � �^xm and x1^� � �^xm�1^ym.
Their product is the image of q0

1˝ m�1 m�1 in  C
m  

�
m . The argument of (1) shows

that any other irreducible occurring in  C
m �  �

m also lies in I .
Now suppose that n is odd. Then the argument for (1) above goes through except

when the zero weight vector appears in the expression for ˛. So suppose that ˛ D
x1 ^ � � � ^ x`�1 ^ z. Then

x1 ^ � � � ^ xk � ˛ C .x1 ^ � � � ^ x`�1 ^ x`C1 � � � ^ xk ^ z/ � .x1 ^ � � � ^ x`/
is a vector in  k � `. It is obtained from .x1 ^ � � � ^ xk/ � .x1 ^ � � � ^ x`/ by applying
elements of U�. Hence we don’t have a new irreducible component of  k �  `. ut
Proof (of Theorem 9.1(4)). Choose highest weight vectors xk 2 Vk

V � for 2k < n
and xC

m 2  C
m , x�

m 2  �
m for n D 2m. The preceding lemma and Proposition 9.4

show that the induced maps

CŒx1; : : : ; xm� ! .O.mV /=I /Um�UV for 2m < n; and

CŒx1; : : : ; x
C
m ; x

�
m�=.x

C
m x

�
m/ ! .O.mV /=I /Um�UV for 2m D n

are surjective. The weights �.xk/ of the highest weight vectors (with respect to
Tm � TV , TV a maximal torus of SO.V /) are linearly independent, except that in
case n D 2m we have �.xC

m / C �.x�
m/ D 2�.xm�1/. It follows that the algebras

on the left-hand side are multiplicity free, and so the kernels of the two maps are
spanned by monomials. But it is easy to see that none of the xk , xṁ vanish on the
null cone, and so the two maps are isomorphisms. Again using Proposition 9.5 we
obtain the theorem for the groups O.V / and SO.V / in the case where 2m � n.

It remains to show that the null cone is not reduced for 2m > n. Let n D 2k. (The
case n D 2k � 1 is similar and will be left to the reader.) We may take m D k C 1.
Then in degree k C 1 we find the submodule M WD VkC1

C
kC1 ˝ VkC1

V �, by
CAUCHY’s formula (Proposition 9.2). The SO.V /-module

VkC1
V � is simple and

isomorphic to  k�1 D Vk�1
V . We claim that M vanishes on the null cone N , but

is not contained in the ideal I generated by the invariants.
The first part is clear, because N D O.V / �.kC1/W whereW � V is a maximal

isotropic subspace, and every function f1^� � �^fkC1 vanishes on .kC1/W because
dimW D k.

For the second part, we remark that the module  k�1 appears the first time in
degree k � 1, in the form

Vk�1
C
kC1 ˝Vk�1

V �. If M � I , then M must belong
to the product

O..k C 1/V /
SO.V /
2 � .Vk�1

C
kC1 ˝Vk�1

V �/

which is a quotient of .S2.CkC1/˝Vk�1
C
kC1/˝Vk�1

V �. But the tensor product
S2.CkC1/˝Vk�1

C
kC1 does not contain the “determinant”

VkC1
C
kC1 as a GLkC1-

module. ut
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10 Non-reduced components of the null cone

We need some information about null cones (see [Hes80, KW06, Ric89] for more
details). Let G be a connected reductive complex group, T � G a maximal torus
and V a G-module. Let X.T / D Hom.T;C�/ denote the character group of T and
let Y.T / D Hom.C�; T / denote the group of 1-parameter subgroups of T . Then
Y.T / and X.T / are dually paired: h�; �i D n if �.�.t// D tn. For any � 2 Y.T /

we set

Z� WD fv 2 V j lim
t!0

�.t/v D 0g D
M

�2X.T /;h�;�i>0
V�

where V� � V denotes the weight space of weight �. These Z� are called positive
weight spaces. Then the Hilbert–Mumford theorem says that N is the union of
the sets GZ�, � 2 Y.T /. In fact, one needs only a finite number of elements of
Y.T /. Pick a system of simple roots for G. Then using the action of the Weyl
group, we can assume that any given � is positive when paired with the simple roots
˛1; : : : ; ˛` 2 X.T /, ` D dimT . In fact, we can always assume that the pairings are
strictly positive and that � only takes the value 0 on the zero weight. We call such
elements of Y.T / generic. Now Z� is stable under the action of the Borel B , thus
GZ� is closed in the Zariski topology, andGZ� is irreducible. Thus there are finitely
many generic �i such that the sets GZ�i are the irreducible components of N .

Remark 10.1. We will use this description of the null cone to show that a given
homogeneous covariant  WV ! W of degree d vanishes on the null cone,
generalizing Lemma 3.8. It suffices to show that  vanishes on Z� for the relevant
generic �’s. Denote by �1; : : : ; �m the weights of Z�. If  ¤ 0 on Z�, then the
highest weight � of W is of the form

P
i di�i where

P
i di D d . (This follows

from the B-equivariance of  .) Hence  vanishes if � cannot be expressed as such
a sum.

Let
.V / denote the set of weights of V . For � 2 Y.T /, let
� denote the subset
of 
.V / of elements which pair strictly positively with �. A subset 
 � 
.V /

is called admissible if 
 D 
� for a generic �. In this case set Z
 WD Z�. We
will often switch between looking at generic elements of Y.T / (or Y.T /˝ Q) and
corresponding subsets
 � 
.V /. We say that an admissible
 is dominant ifGZ

is a component of the null cone.

Here is a way to show that the null cone N is not reduced.

Proposition 10.2. Let 
 � 
.V / be dominant and let W � V be a T -stable
complement of Z
. Assume that for any z 2 Z
 the differential d�z restricted
to W has rank < codimV GZ
, or, equivalently; there is a subspace W 0 � W

of dimension > codimGZ
 Z
 such that the differential of any invariant vanishes
on W 0. Then no point of GZ
 � N is reduced.
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Proof. Either condition implies that the rank of d�z is less than the codimension of
GZ
 for any z 2 Z
. ut
Remark 10.3. Let .v1; : : : ; vn/ be a basis of V consisting of weight vectors of
weight �1; : : : ; �n, and let .x1; : : : ; xn/ be the dual basis. If f D xi1 � � � xid is a
monomial of weight zero, then an xi such that �i … 
 has to appear. If two such xi
appear in f , then clearly .df /jZ
 D 0. This gives our first method to show that N
is not reduced.

(1) Let
0 be the complement of
 in
.V /. Let d 2 N be minimal such that every
zero weight monomial f containing exactly one factor xi corresponding to a
weight from 
0 has degree � d .

(2) Show that there are not enough invariants of degree � d , i.e., show that the
number of invariants of degree � d is strictly less than the codimension of
GZ
.

If W is irreducible of highest weight 	, we denote the highest weight of the dual
representation,W � by 	�. The next result will give us another way to see if the null
cone is not reduced. It uses the method of covariants introduced in section 3 (see
Proposition 3.1).

Proposition 10.4. Let 'WV ! W be a covariant, whereW is irreducible of highest
weight 	. Let
 � 
.V / be admissible and assume that ' does not vanish onGZ
.
Then 	� 2 N
.

Proof. Let W � be the subspace of O.V / corresponding to '. Let f be a highest
weight vector of W �. Then f has weight 	� and f does not vanish on GZ
 by
assumption. It follows that f contains a monomial m D xi1xi2 � � � xid where the
corresponding vik all belong to Z
, i.e., 	� D �i1 C �i2 C � � � C �id 2 N
. ut
Remark 10.5. This proposition will be used in the following way.

(1) Find a suitable highest weight 	 and an integer d such that 	� cannot be written
as a sum of more than d weights from 
.

(2) Show that there are generating covariants of type W	 in degree > d .

By the proposition above this implies that the generating covariants from (2) vanish
on GZ
. In order to apply Proposition 3.1 one has to fix d and check (1) for any
admissible 
.

We finish this section by giving some criteria to find the dominant 
 among the
admissible ones. Let 
1 and 
2 be admissible subsets of 
.V /. Set Zi WD Z
i ,
i D 1; 2. We say that 
2 dominates 
1, and we write 
1 � 
2, if GZ1 � GZ2.
Given � 2 W; the Weyl group of G, let 
.�/

1 WD f	 2 
1 j �.	/ 2 
2g and let

Z
.�/
1 denote the sum of the weight spaces with weights in 
.�/

1 .

Lemma 10.6. Let 
1 and 
2 be admissible. Then 
2 dominates 
1 if and only if
there is a � 2 W such that BZ.�/

1 is dense in Z1.
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Proof. Suppose that 
1 � 
2. Let z 2 Z1. Then there is a g 2 G such that
gz 2 Z2. Write g D u�b where b 2 B , u 2 U and � 2 W (Bruhat decomposition).
Since b and u preserve the Zi , we see that bz 2 Z

.�/
1 . Thus Z1 is the union of the

constructible subsets BZ.�/
1 , � 2 W , and one of them must be dense.

Conversely, suppose that some BZ.�/
1 is dense in Z1. Since �.BZ.�/

1 / lies in
GZ2 and GZ2 is closed, we see that GZ1 � GZ2. ut

The condition that BZ.�/
1 is dense in Z1 has some consequences for the weights

of Z.�/
1 . Denote by ˚C the set of positive roots, i.e., the weights of b WD LieB .

Lemma 10.7. Let Z be a B-module and Z0 � Z a T -stable subspace. If BZ0 is
dense in Z, then


.Z/ � 
.Z0/C .˚C [ f0g/:

In particular, 
.Z0/ contains the set ˝ WD f	 2 
.Z/ j 	 … 
.Z/C ˚Cg.

Proof. The tangent map of B � Z0 ! Z at a point .e; z0/ has the form .X; v/ 7!
Xz0 C v, and so bZ0 C Z0 D Z. If z 2 Z0 is a weight vector of weight 	, then
b z � L

!2˚C[f0gZ	C! , hence 
.Z/ is as claimed. ut
Proposition 10.8. Let 
1;
2 � 
.V / be admissible subsets. Define ˝1 WD
f	 2 
1 j 	 62 
1 C ˚Cg and suppose that Q�0˝1 contains the simple roots.
Then 
1 � 
2 implies that 
1 � 
2.

Proof. Let � be as in Lemma 10.6. Then 
.�/
1 contains ˝1 by Lemma 10.7. This

in turn implies that 
2 is positive on �.˛j /, j D 1; : : : ; `. Thus each �.˛j / is a
positive root and so � is the identity. Hence ˝1 � Z2 and thus 
1 � 
2. ut
Corollary 10.9. Suppose that G D SL3 with simple roots ˛ and ˇ. Let 
 D 
� �

.V / be admissible and maximal with respect to set inclusion. Suppose that 

contains nonzero weights of the form 	1 WD �a˛ C bˇ and 	2 WD c˛ � dˇ where
the coefficients a, b, c and d are nonnegative rational numbers. Then
 is dominant.

Proof. Let ˝ � 
 be the minimal elements. We may assume that 	1 and 	2 are in
˝. Clearly b; c ¤ 0. If a D 0 or d D 0, then the hypotheses of Proposition 10.8
are satisfied. If a; d ¤ 0, then h�; 	1i > 0 and h�; 	2i > 0 forces bc � ad > 0.
Thus the inverse of the matrix . c �a�d b / has positive entries, so that the hypotheses
of Proposition 10.8 are satisfied and 
 is dominant. ut

See Example 11.2 below for a calculation of components of a null cone.

11 Coreduced representations of SL3

In this section we classify the coreduced representations of G D SL3
(Theorems 11.10 and 11.12).
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We denote the representation V WD 'r1'
s
2 by V Œr; s�, r; s 2 N, and its highest

weight by Œr; s�. Let ˛ and ˇ be the simple roots of G. We denote a weight p˛C qˇ

of a representation of G by .p; q/ where p, q 2 .1=3/Z and p C q 2 Z. Hence
˛ D .1; 0/ D Œ2;�1�, ˇ D .0; 1/ D Œ�1; 2�, and so

Œr; s� D .
2r C s

3
;
r C 2s

3
/ and .p; q/ D Œ2p � q; 2q � p�:

Moreover, Œr; s� is in the root lattice if and only if r 
 s mod 3.
We leave the following lemma to the reader (see Lemma 5.6).

Lemma 11.1. Let V WD V Œr; s� be an irreducible representation of G and set
.p; q/ D Œr; s�.

(1) The dominant weights of V Œr; s� are the weights Œr 0; s0� obtained starting with
Œr; s� and using the following inductive process: Œr 0; s0� gives rise to Œr 0�2; s0C1�
if r 0 � 2 and to Œr 0 C 1; s0 � 2� if s0 � 2. Finally, Œ1; 1� gives rise to Œ0; 0�.
Equivalently, the dominant weights of V Œr; s� are those of the form .k; l/ WD
.p � a; q � b/ where a, b 2 N, 0 � k � 2l and 0 � l � 2k.

(2) The Weyl group orbit of the dominant weight .k; l/ is

a. .k; l/, .l � k; l/, .k; k � l/, .l � k;�k/, .�l; k � l/, .�l;�k/ if k ¤ 2l and
l ¤ 2k,

b. .2l; l/, .�l; l/, .�l;�2l/ if k D 2l and
c. .k; 2k/, .k;�k/ and .�2k;�k/ if l D 2k.

(3) Let .p; q/ be dominant, p ¤ q, and let W � .p; q/ be the Weyl group orbit of
.p; q/. Then

max

� �k
`

j .k; `/ 2 W � .p; q/
�

D min.p; q/

jp � qj ;

min

� �k
`

j .k; `/ 2 W � .p; q/; �k
`
> 0

�

D jp � qj
min.p; q/

:

Suppose that 
.V / is not contained in the root lattice. Then let 
˛ denote the
weights .p; q/ of V where p > 0. We define 
ˇ similarly. Note that 
˛ is stable
under the simple reflection �ˇ and that 
ˇ is stable under the simple reflection �˛ .

Example 11.2. Consider the module V D V Œ3; 1�. Then the dominant weights are
Œ3; 1�, Œ1; 2�, Œ2; 0� and Œ0; 1�. Thus the weights of V are

(1) .7=3; 5=3/, .�2=3; 5=3/, .7=3; 2=3/, .�2=3;�7=3/, .�5=3; 2=3/,
.�5=3;�7=3/ (the W-orbit of Œ3; 1�);

(2) .4=3; 5=3/, .1=3; 5=3/, .4=3;�1=3/, .1=3;�4=3/, .�5=3;�1=3/,
.�5=3;�4=3/ (the W-orbit of Œ1; 2�);

(3) .4=3; 2=3/, .�2=3; 2=3/, .�2=3;�4=3/ (the W-orbit of Œ2; 0�);
(4) .1=3; 2=3/, .1=3;�1=3/, .�2=3;�1=3/ (the W-orbit of Œ0; 1�).
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Let � 2 Y.T / ˝ Q be generic. We may assume that �.˛/ D 1 and, of course, we
have �.ˇ/ > 0. Then �.ˇ/ has to avoid the values 2=5, 5=2, 4, 1=4 and 1, so there
are six cases to consider.

Case 1: Let
1 correspond to 2=5 < �.ˇ/ < 1. It is easy to see that
1 is maximal.
Then 
1 is dominant by Corollary 10.9 since .�2=3; 5=3/ and .1=3;�1=3/ are
�-positive.

Case 2: Let 
 correspond to 0 < �.ˇ/ < 1=4. Then 
 D 
˛ is � WD �ˇ-stable so
that �.
.�// D �.
 \ 
1/. Now 
 \ 
1 is 
 n f.1=3;�4=3/g, hence 
.�/ is

 n f.1=3; 5=3/g where .1=3; 5=3/ has multiplicity one. Thus UZ.�/


 is dense in
Z
 so that
 < 
1. (One can also see directly that U�Z1 hasZ
 in its closure.)
Now it is easy to calculate that dimGZ
 < dimGZ1, so that 
 D 
˛ is not
dominant.

Case 3: Let 
 correspond to 1=4 < �.ˇ/ < 2=5. Then 
 � 
1.
Case 4: Let 
2 correspond to 5=2 < �.ˇ/ < 4. Then 
2 is maximal and
.�5=3; 2=3/ and .4=3;�1=3/ are �-positive, so that 
2 is dominant by
Corollary 10.9.

Case 5: Let 
 correspond to 1 < �.ˇ/ < 5=2. Then 
 � 
1.
Case 6: Let 
 correspond to �.ˇ/ > 4. Then 
 D 
ˇ and as in Case 2 we see that

 < 
1 and that 
 is not dominant.

Thus there are only two components of the null cone, GZ
1 and GZ
2 correspond-
ing to cases 1 and 4. Note that neither 
˛ nor 
ˇ is dominant.

Lemma 11.1 does not tell us anything about multiplicities of weights, but the
following result gives us some lower bounds, which suffice for our uses. If Œr; s� is a
weight of V , then we denote by VŒr;s� � V the corresponding weight space.

Lemma 11.3. Let r D r0 C r 0 and s D s0 C s0 where r 0 
 s0 mod 3. Then every
weight of V Œr0; s0� occurs in V Œr; s� with multiplicity at least the dimension of the
zero weight space V Œr 0; s0�Œ0;0�.

Proof. As in Lemma 5.18 this follows from the fact that O.G=U / is a domain and
that the product of the copies of V Œr0; s0� and V Œr 0; s0� in O.G=U / is just the copy
of V Œr; s� ut
Example 11.4. Consider V Œ3; 2�. Then the multiplicity of Œ1; 0� is at least the
multiplicity of the zero weight in V Œ2; 2�, which is 3. The multiplicity of Œ2; 1�
is similarly seen to be at least 2. Thus the multiplicities of the dominant weights
of V Œ3; 2� are at least as follows: Œ3; 2�, Œ4; 0�, Œ1; 3� and Œ0; 2� with multiplicity
one, Œ2; 1� with multiplicity two and Œ1; 0� with multiplicity three. In fact, these
multiplicities are correct, except that Œ0; 2� actually has multiplicity two.

In Example 11.2 we have seen that neither
˛ nor
ˇ is dominant. But this is an
exception as shown by the following result.

Lemma 11.5. Let V D V Œr; s� where r � s.

(1) If r � s 
 1 mod 3, then 
ˇ is dominant.
(2) If r � s 
 2 mod 3 and Œr; s� ¤ Œ3; 1� or Œ5; 0�, then 
˛ is dominant.
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Proof. For t > 0 define �t 2 Y.T / by �t .˛/ D 1 and �t .ˇ/ D t , and set
t WD 
�t .
Define

T WD ft > 0 j �t .	/ D 0 for some 	 2 
.V Œr; s�/; 	 ¤ 0g:

We have T D ft1; t2; : : : ; tmg where 0 < t1 < t2 < � � � < tm, so there are m C 1

admissible subsets 
.i/, i D 0; : : : ; m, defined by 
.i/ WD 
t for ti < t < tiC1,
where t0 D 0; tmC1 D 1. Clearly,
.0/ D 
˛ ,
.m/ D 
ˇ , and
˛ (resp.
ˇ) is not
maximal if and only if 
˛ � 
.1/ (resp. 
ˇ � 
.m�1/). Note that if �t ..k; l// D 0,
then t D �k=l .

(1) First suppose that r � s 
 1 mod 3 and let .p; q/ D Œr; s�. Then Œ1; 0� D
.2=3; 1=3/ is a weight of V , and the ˛-string through Œ1; 0� has the form

˙ D ..�q; 1=3/; .�q C 1; 1=3/; : : : ; .2=3; 1=3/; : : : ; .q C 1=3; 1=3//

where .�q; 1=3/ is in the W-orbit of .qC1=3; q/. Note that #˙ D 2qC4=3. Since
the case V D V Œ1; 0� is obvious we can assume that q � 4=3, hence #˙ � 4.

Claim 1: We have tm D 3q and tm�1 D 3q � 3, and these values are attained at
the first two weights .�q; 1=3/ and .�q C 1; 1=3/ of the ˛-string ˙ . In particular,

ˇ � 
.m�1/ and #.˙ \
.m0// � #˙ � 2 for m0 � m � 2.

This implies that 
ˇ is dominant. In fact, suppose that 
ˇ < 
 for some

admissible
. SetZˇ WD Z
ˇ . There is a � 2 W such thatBZ.�/

ˇ is dense inZˇ and

�.

.�/

ˇ / � 
 (Lemma 10.6). Clearly
.�/

ˇ has to contain a subset˙ 0 of the ˛-string
˙ which omits at most one element and contains .�q; 1=3/ (see Lemma 10.7). Since
˙ 0 contains at least 3 elements it is easy to see that � D e and � D �˛ are the only
elements from W which send ˙ 0 to elements which have at least one positive ˛ or
ˇ coefficient. Thus �.˙ 0/ � 
\˙ . By the claim above, this implies that 
 D 
ˇ

or 
 D 
.m�1/ and so 
 � 
ˇ .

(2) Now suppose that r � s 
 2 mod 3. Then Œ0; 1� D .1=3; 2=3/ is a weight of
V , and the ˇ-string through Œ0; 1� has the form

˙ D ..1=3;�q C 1=3/; .1=3;�q C 4=3/; : : : ; .1=3; 2=3/; : : : ; .1=3; q//

where .1=3;�qC1=3/ is in the W-orbit of .q�1=3; q/. Note that #˙ D 2qC4=3.

Claim 2: If #˙ � 6 (i.e., q � 8=3), then t1 D 1=.3q�1/ and t2 D 1=.3q�4/, and
these values are attained at the first two weights .1=3;�qC1=3/ and .1=3;�qC4=3/
of the ˇ-string ˙ . Moreover, 
˛ � 
.1/ and #.˙ \
.m0// � #˙ � 2 for m0 � 2.

Now the same argument as above implies that 
˛ is dominant. Note that the
condition q � 8=3 is satisfied for Œr; s� ¤ Œ2; 0�, Œ3; 1� or Œ5; 0�. For V Œ2; 0� there are
only two admissible sets, 
˛ and 
ˇ , both are dominant and N D GZ˛ D GZˇ .
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(3) It remains to prove the two claims. Let r � s 
 1 mod 3. We use the first
formula given in Lemma 11.1(3) for a dominant .p0; q0/:

�.p0;q0/ WD max

� �k
`

j .k; `/ 2 W � .p0; q0/
�

D min.p0; q0/
jp0 � q0j

By assumption we have q � 4=3. If .p0; q0/ � .p; q/ is dominant, then jp0 � q0j �
1=3. Thus

tm D max.�.p0;q0/ j .p0; q0/ dominant; .p0; q0/ � .p; q// D �.qC1=3;q/ D 3q;

and this value is attained at a single weight of V; namely at the weight .�q; 1=3/ 2
W �.qC1=3; q/. It follows that tm�1 is either equal to�.q�2=3;q�1/ D 3.q�1/ or equal
to�.p0;q/ for a suitable p0 � p, p0 ¤ qC1=3. But then p0 D q�2=3 or p0 D qC4=3
and in both cases we get�.p0;q/ � 3.q�1/, because q � 4=3. Hence tm�1 D 3.q�1/
and this value is attained at the weight .�q C 1; 1=3/ 2 W � .q � 2=3; q � 1/. As a
consequence,
ˇ � 
m�1 D 
ˇnf.�q; 1=3/g, and .�q; 1=3/; .�qC1; 1=3/ … 
m0

for m0 � m � 2. This proves Claim 1.

For r � s 
 2 mod 3 we use the second formula in Lemma 11.1(3) for a
dominant .p0; q0/:

�.p0q0/ WD min

� �k
`

j .k; `/ 2 W � .p0; q0/;
�k
`
> 0

�

D jp0 � q0j
min.p0; q0/

:

The minimal values of jp0�q0j are 1=3 and 2=3 and they are attained at .q0�1=3; q0/
and .q0 C 2=3; q0/. Thus, for a fixed q0 the minimal values of �.p0;q0/ are 1=.3q0 � 1/
and 2=.3q0/. Since q � 8=3 > 4=3 we get

t1 D min
�
�.p0;q0/ j .p0; q0/ � .p; q/ dominant

� D �.q�1=3;q/ D 1=.3q � 1/;

and this value is attained at a single weight, namely at .1=3;�q C 1=3/ 2 W �
.q � 1=3; q/. It follows that t2 is either equal to �.qC 2=3; q/ D 2=.3q/ or equal to
�.q�4=3; q�1/ D 1=.3q�4/. Since q � 8=3we get 3q�4 D .3=2/qC..3=2/q�
4/ � .3=2/q. Hence t2 D 1=.3q�4/ and this value is attained at .1=3;�qC4=3/ 2
W � .q � 4=3; q � 1/. Now Claim 2 follows as above. ut
Remark 11.6. Let 
 D 
˛ or 
ˇ . Then Z
 is stabilized by a parabolic subgroup
of codimension 2, hence codimGZ
 Z
 � 2.

We need the following estimate on the dimension of S3.V /G :

Proposition 11.7. Let r � s � 0. Then

(1) The multiplicity of Œr � s; 0� in V Œr; 0�˝ V Œ0; s� is
�
sC2
2

�
.

(2) The multiplicity of Œr � s; 0� in V Œr; s� is s C 1.
(3) The multiplicity of V Œs; r� in V Œr; s�˝ V Œr; s� is at most s C 1.
(4) The dimension of S3.V Œr; s�/G is at most s C 1, hence there are at most s C 1

linearly independent cubic invariants of V Œr; s�.
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Proof. Let e1, e2 and e3 be the usual basis of C3 and let f1, f2, f3 be the dual basis.
Then the weight vectors of weight Œr�s; 0� in V Œr; 0�˝V Œ0; s� have basis the vectors
er�t1 m ˝ f s�t

1 m�, where 0 � t � s and m is a monomial of degree t in e2 and e3
andm� is the same monomial in f2 and f3. Thus the dimension of this weight space
is 1C � � � C .s C 1/, giving (1).

Part (2) follows from the fact that

V Œr; 0�˝ V Œ0; s� D V Œr; s�˚ V Œr � 1; 0�˝ V Œ0; s � 1�:

This is an immediate consequence of Pieri’s formula (see [Pro07, formula (10.2.2)
in 9.10.2]).

The multiplicity of V Œs; r� in V Œr; s� ˝ V Œr; s� is bounded by the multiplicity
of the weight Œr; s� � .r; s/ in V Œr; s� since Œr; s� C .Œr; s� � .r; s// D Œs; r�. Now
Œr; s�� .r; s/ D 1=3.�rC s; r � s/ which is in the W-orbit of 1=3.2r �2s; r � s/ D
Œr � s; 0�. Thus (2) implies (3). Clearly (3) implies (4). ut
Example 11.8. Assume that r � s � 1 and that r � s 
 2 mod 3. Then the
multiplicities of the weights of V Œ0; 1� and V Œ3; 1� in V Œr; s� are � s, and the
multiplicities of the weights of V Œ2; 0� are � s C 1 in case r � 5.

(In fact, for V Œ3; 1� the multiplicities are � dimV Œr�3; s�1�Œ0;0� by Lemma 11.3
and dimV Œr�3; s�1�Œ0;0� � dimV Œr�3; s�1�Œr�s�2;0� D s by Proposition 11.7(2).
The other cases follow by similar arguments.)

Proposition 11.9. Let V D V Œr; s� where r C s � 4 or .r; s/ D .2; 1/ or .r; s/ D
.1; 2/. Then there is an irreducible component N1 of N such that the rank of d� is
less than the codimension of N1 in V on N1. In particular, N is not reduced.

An immediate consequence is

Theorem 11.10. Let V be an irreducible representation of G D SL3. Then V is
coreduced if and only if V is on the following list:

(1) V Œ1; 0�, V Œ2; 0�, V Œ3; 0�;
(2) V Œ0; 1�, V Œ0; 2�, V Œ0; 3�;
(3) V Œ1; 1�.

Equivalently, V is coreduced if and only if it is cofree.

Proof (of Proposition 11.9). We may assume that V D V Œr; s� where r � s and
V Œr; s� does not appear in (1), (2) or (3) of the theorem. Let .p; q/ D Œr; s�. We are
constantly applying Remarks 10.3 and 10.5.

Case 1: Assume that r�s 
 1 mod 3 and consider
 D 
ˇ which is dominant by
Lemma 11.5. Recall that codimGZ
 Z
 � 2. First suppose that s � 1 and r > 2.
Then Œ1; 3� and Œ0; 2� are weights of V . Let � 2 Y.T / correspond to
ˇ . Then � is
negative on the weights .2=3;�2=3/ and .�4=3;�2=3/ in the W-orbit of Œ0; 2�,
on the weights .�7=3;�2=3/ and .5=3;�2=3/ in the W-orbit of Œ1; 3� and on
the weight .�1=3;�2=3/ in the W-orbit of Œ1; 0� which occurs with multiplicity
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at least s C 1 since Œr � s; 0� has multiplicity s C 1 by Proposition 11.7(2).
These negative weights can be paired with at most quadratic expressions in
the positive weights (just look at the coefficients of ˇ). Now there are at most
s C 1 cubic invariants (and no quadratic invariants), hence N is not reduced if
s � 1, r > 2.
If .r; s/ D .2; 1/, then we have the following negative weights: .2=3;�2=3/,
.�4=3;�2=3/ and .�1=3;�2=3/ (with multiplicity 2). There is only a one-
dimensional space of degree 3 invariants, and so N is not reduced.
If s D 0, then the cases to consider are V Œ4; 0�, V Œ7; 0�, etc. If r � 7, then
we have a dominant weight Œ1; 3� whose W-orbit contains .�7=3;�2=3/ and
.5=3;�2=3/. We still have .2=3;�2=3/, .�4=3;�2=3/ and .�1=3;�2=3/. Since
there is at most one degree 3 invariant, N is not reduced.
We are left with the case of V Œ4; 0�. Here we have negative weights .2=3;�2=3/,
.�4=3;�2=3/ and .�1=3;�2=3/ as well as .�1=3;�5=3/ and .�4=3;�5=3/ in
the W-orbit of Œ2; 1�. Thus N is not reduced since there are only two irreducible
invariants of degree � 6 (the Poincaré series of O.V /G is 1C t 3 C 2t6 C : : : ).

Case 2: Assume that r � s 
 2 mod 3. For the cases Œr; s� D Œ3; 1� or Œ5; 0� see
Example 11.11 below. So we may assume that 
 D 
˛ is dominant. If s � 1

(and so r � 5), then among the dominant weights we have Œ3; 1�with multiplicity
at least s, Œ2; 0� with multiplicity at least sC 1 and Œ0; 1� with multiplicity at least
s (see Example 11.8). The W-orbit of Œ3; 1� contains the weights .�2=3; 5=3/
and .�2=3;�7=3/ with negative ˛-coefficient, the W-orbit of Œ2; 0� contains
.�2=3; 2=3/ and .�2=3;�7=3/ and the W-orbit of Œ0; 1� contains .�2=3;�1=3/.
Since there is at most an .s C 1/-dimensional space of degree 3 invariants, N is
not reduced. If s D 0 (and so r � 5), then we have the weights Œ3; 1�, Œ2; 0� and
Œ0; 1� with multiplicity one, and N is not reduced because dimS3.V /G � 1.

Case 3: If r � s 
 0 mod 3, then we are in the adjoint case and the claim follows
from Proposition 7.5. ut

Example 11.11. Let V D V Œ3; 1�. Then from Example 11.2 we see that there
are two dominant 
, one corresponding to �.˛/ D 1 and 2=5 < �.ˇ/ < 1

(choose �.ˇ/ D 1=2) and the other to �.˛/ D 1 and 5=2 < �.ˇ/ < 4 (choose
�.ˇ/ D 3). Neither 
˛ nor 
ˇ is dominant. Consider the case where �.ˇ/ D 1=2.
Then the minimal positive weights (in terms of their �-value) are .1=3;�1=3/ and
.�2=3; 5=3/, both having �-value 1=6. Now consider the covariants of type V Œ1; 0�.
The highest weight is .2=3; 1=3/where �.2=3; 1=3/ D 5=6. Thus the highest degree
in which the covariant could occur in S�.V / and not vanish on GZ� is 5. One gets
the same bound in case �.ˇ/ D 3. The Poincaré series of the invariants is 1Ct 3C: : :
and for the V Œ1; 0� covariants it is 4t5 C 44t8 C : : : . Thus there are generating
covariants in degree 8, which vanish on N , so that N is not reduced.

If V D V Œ5; 0�, then the calculations of Example 11.2 show that the dominant

 again correspond to �.ˇ/ D 1=2 or 3. (The only new weights are (10/3,5/3),
.�5=3,5/3) and (�5=3;�10=3) and they give rise to no new ratios.) Hence the
highest degree in which the covariant V Œ1; 0� could occur in S�.V / and not vanish
on GZ� is again 5. The covariant V Œ1; 0� first occurs in degree 5, with multiplicity
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one. But since the principal isotropy group of V is trivial, the V Œ1; 0� covariants
have to have generators in higher degree, and these necessarily vanish on N . Thus
N is not reduced.

We now have the following result, which uses Theorem 11.10.

Theorem 11.12. Let G D SL3 and V be a nontrivial reducible coreduced G-
module with V G D 0. Then, up to isomorphism and taking duals, we have the
following list:

(1) kV Œ1; 0�C `V Œ0; 1�, k C ` � 2.
(2) V Œ2; 0�C V Œ0; 1�.

Proof. We already know that the representations in (1) and (2) are coreduced by
Theorem 9.1 and Example 4.5. We have to show that combinations not on the list
are not coreduced.

Consider V Œ1; 1� together with another irreducible. For V Œ1; 1� there is a closed
orbit with isotropy group double covered by SL2 �C�. The slice representation (as
representation of the double cover) is �1CR2. If we add V Œ1; 0�we get an additional
copy of R1 ˝ �1 C ��2 in the slice representation. Quotienting by C

� we get the
hypersurface in �1 C R2 C R2 where the quadratic invariant of the second copy of
R2 vanishes. The hypersurface is not coreduced (see Example 3.3), hence V Œ1; 1�C
V Œ1; 0� is not coreduced. For V Œ1; 1� C V Œ2; 0� one can easily see that the slice
representation of the maximal torus is not coreduced, and for V Œ3; 0� one uses the
slice representation at the zero weight vector to rule out a coreduced sum involving
V Œ3; 0�.

Next consider 2V Œ2; 0� which is cofree with generating invariants in bidegrees
.3; 0/; .2; 1/; .1; 2/; .0; 3/, and choose the 1-parameter subgroup � with weights
.1; 1;�2/. Then one can easily see that the codimensions of GZ� is 4 D codimN
and that the rank of the differentials of the invariants is 2 on GZ�. Hence the
representation is not coreduced.

The representation V Œ2; 0� C V Œ0; 2� is again cofree with generating invariants
in degrees (3,0), (1,1), (2,2), (0,3). For the same � one computes that the rank is 3,
while the codimension of GZ� is 4 D codimN , so this possibility is ruled out. We
cannot add V Œ1; 0� to V Œ2; 0� since the rank of the two generating invariants is only
1 on the null cone.

Finally, we have to show that V WD V Œ2; 0�C 2V Œ0; 1� (not cofree but coregular)
is not coreduced. Consider the 1-parameter subgroup with weights .2;�1;�1/.
This clearly gives a maximal dimensional component of the null cone and it
has codimension 3 D dimV==G � 1. The 1-parameter subgroup with weights
.1; 1;�2/ gives something of codimension 5, which is too small to be an irreducible
component of N since it is cut out by 4 functions. Hence N is irreducible. But V
has the slice representation 2R2 C �1 of SL2 whose null cone is not reduced but also
has codimension three. Thus the associated cone to the fiber F ' G �SL2 N .2R2/
is N .V /. We know that F is not reduced (Example 3.3), hence by Remark 5.3, V is
not coreduced. ut
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Appendix A Computations for F4

Let G be a simple group of type F4 and let V D '4 be the 26-dimensional
representation of G. The main result of this appendix is the following proposition.

Proposition A.1. The representation .V ˚n; G/ is coreduced if and only if n � 2.
Moreover, V and V ˚ V are both cofree and contain a dense orbit in the null cone.

We will use the notation introduced in Section 10. The nonzero weights of V are
the short roots of F4. Hence Z� is the span of the positive short root spaces for
any generic � 2 Y.T / which implies that the null cone N .V ˚n/ is irreducible for
any n. We also know that V ˚ V is cofree with dim.V ˚ V /==G D 8 [Sch79],
hence dimN .V ˚ V / D 44. Let us look at the following statements which imply
the proposition.

(a) V ˚ V ˚ V is not coreduced.
(b) V ˚ V is coreduced.
(c) There is a dense orbit in the null cone of V ˚ V .

Although we know that (c) implies (b) (Corollary 4.7) we will present direct
proofs of all three claims. They are based on some explicit computations.

Proof (of statement (a)). There is a maximal subgroup of type B4 of F4 where
.'4.F4/;B4/ D '1 C '4 C �1. (For more see the discussion after Lemma A.2.)
The slice representation of B4 on '4.F4/ is '1.B4/ C �1. To prove that 3'4.F4/ is
not coreduced, it suffices to prove that V1 WD 3'1.B4/C 2'4.B4/ is not coreduced.
Now D4 is a maximal subgroup of B4 and V 0 WD 2'1.D4/C2'3.D4/C2'4.D4/ is a
slice representation of V1 at a zero weight vector. So we have to show that V 0 is not
coreduced. Since our representations are self-dual, we will deal with the symmetric
algebra S.V 0/ in place of O.V 0/.

Recall thatG is now D4 and V 0 is as above. We have
V2

'1 D V2
'3 D V2

'4 D
'2, the adjoint representation. In the tensor product of three copies of '2 we have 7
copies of '2, but only five of them are in the ideal generated by the invariants. (This
can be checked using LiE). We will show now that every covariant of type '2 inV2

'1 ˝V2
'3 ˝V2

'4 � S.V 0/.2;2;2/ vanishes on the null cone, i.e., vanishes on
Z� for every generic � 2 Y.T /.

Recall that the weights of '1 are ˙"i , those of '3 are 1=2.˙"1 ˙ "2 ˙ "3 ˙ "4/

where the number of minus signs is even. The weights of '4 look similar, but have
an odd number of minus signs. We use the notation .˙ ˙ ˙˙/ for these weights.

There is an outer automorphism  of D4 of order 2 (coming from the Weyl group
of B4) which normalizes the maximal torus, fixes "1; "2; "3 and sends "4 to �"4. IfG
is of type D4 and if �i WG ! GL.Vi / denotes the i th fundamental representation 'i ,
then �1 ı  ' �1, �2 ı  ' �2, and �3 ı  ' �4. Thus there is a linear automorphism

�WV 0 ��! V 0 which is  -equivariant, i.e., �.gv/ D .g/�.v/. It follows that � has
the following properties:
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(1) � sends G-orbits to G-orbits. In particular, �.N / D N .
(2) �.V 0

	/ D V 0
.	/.

(3) If  WV 0 ! V 00 is a covariant of type '2 in
V2

'1 ˝V2
'3 ˝V2

'4, then so is
 ı �WV 0 ! V 00.

This implies that for every 1-PSG � we have �.Z�/ D Z.�/ and that if all
 WV 0 ! V 00 as in (3) vanish on Z�, then they vanish on Z.�/ too.

As a consequence, we can assume that "1 > "2 > "3 > "4 > 0. This implies that
the following weights are positive:

f"1; "2; "3; "4g � 
.'1/;

f.C C CC/; .C � C�/; .C C ��/g � 
.'3/;

f.C C C�/; .C C �C/; .C � CC/g � 
.'4/:

Since .� C C�/ < .� C CC/ we see that there are only three cases of maximal
positive weight spaces to be considered.

(1) f"1; "2; "3; "4g, f.C C CC/; .C � C�/; .C C ��/; .� C C�/g and
f.C C C�/; .C � CC/; .C C �C/; .� C CC/g;

(2) f"1; "2; "3; "4g, f.C C CC/; .C � C�/; .C C ��/; .C � �C/g and
f.C C C�/; .C � CC/; .C C �C/; .C � ��/g;

(3) f"1; "2; "3; "4g, f.C C CC/; .C � C�/; .C C ��/; .C � �C/g and
f.C C C�/; .C � CC/; .C C �C/; .� C CC/g.

Now we have to calculate the positive weights in
V2

'1,
V2

'3 and
V2

'4 which
come from the positive weights in the two copies of '1; '3; and '4. For

V2
'1 we

get f"i C "j j i < j g in all three cases. For the two others we find the following
sets.

(1)
V2

'3: f"i C "j j i < j < 4g [ f"i � "4 j i < 4g;
V2

'4: f"i C "j j i < j g.
(2)

V2
'3: f"1 ˙ "j j j > 1g;

V2
'4: f"1 ˙ "j j j > 1g.

(3)
V2

'3: f"1 ˙ "j j j > 1g;
V2

'4: f"i C "j j i < j g.

Now it is easy to see that in all three cases there is no way to write the highest weight
"1 C "2 of '2 as a sum of three positive weights, one from each

V2. Hence .V 0;D4/

is not coreduced and we have proved (a). ut
Proof (of statement (b)). Since V ˚ V is cofree the null cone is (schematically) a
complete intersection. Therefore it suffices to find an element v 2 N .V ˚ V / such
that the differential d�v of the quotient morphism � WV ˚V ! Y at v has maximal
rank 8 D dimY .

The nonzero weights of '4.F4/ are ˙"i , i D 1; : : : ; 4 (the nonzero weights of
'1.B4/) and .1=2/.˙"1 ˙ "2 ˙ "3 ˙ "4/ (the weights of '4.B4/). We will abbreviate
the latter weights as .˙˙˙˙/ from now on. The positive weights are the "i and the
weights of '4.B4/ where the coefficient of "1 is positive. Let v˙i denote a nonzero
vector in the weight space of ˙"i , let v0 denote a zero weight vector and let vCCCC
denote a nonzero vector in the weight space .C C CC/ and similarly for vCCC�,
etc. We claim that d� has rank 8 at the point v D .v2 C v3 C vC��C C vC���/ 2
2'1.B4/C 2'4.B4/.
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The invariants of 2'4.F4/ are the polarizations of the degree 2 invariant and the
degree 3 invariant of one copy of '4.F4/ together with an invariant of degree .2; 2/
[Sch78]. The restriction of the degree 2 invariant to '1.B4/ C '4.B4/ is the sum
of the degree two invariants there (see [Sch78] for descriptions of the invariants of
.2'1 C 2'4;B4/.). Clearly the differentials of the degree 2 invariants of 2'4.F4/ at
v have rank 3 when applied to the subspace spanned by the vectors v�2, v�3 in the
two copies of '1.B4/. There is only one degree 3 generator in .'1 C '4;B4/ and it
is the contraction of '1 with the copy of '1 in S2.'4/. Another way to think of the
invariant is as the contraction of '4 with the copy of '4 in '1 ˝ '4. Now the highest
weight vector of the copy of '4 in '1 ˝ '4 is (up to some nonzero coefficients)

v1 ˝ v�CCC C v2 ˝ vC�CC C v3 ˝ vCC�C C v4 ˝ vCCC� C v0 ˝ vCCCC:

From this one derives the form of the other weight vectors of '4 � '1 ˝ '4 and
restricting to v one gets contributions to the weights .CC�C/, .CC��/, .C�CC/
and .C�C�/. Thus the differential of the degree 3 invariant of '1.F4/ at v vanishes
on '4 except on v��C�, v��CC, v�C�� and v�C�C. Now polarizing it is easy to
see that the four generators of degree 3 have differential of rank 4 at v when applied
to vectors in 2'4.B4/.

There remains the generator of degree 4. Restricted to B4 one easily sees that the
invariant is a sum of two generators (modulo products of the generators of degree 2),
one of which is the invariant which contracts the copy of

V2
.'1/ � S2.2'1/ with

the copy in
V2
.'4/ � S2.2'4/ and the other which is of degree 4 in 2'4.B4/ (and

doesn’t involve 2'1). Now the highest weight vector of
V2
.'1/ � V2

.'4/ is (up to
nonzero scalars)

vCCCC ^ vCC�� C vCCC� ^ vCC�C

from which it follows that the weight vector of weight �"2 � "3 does not vanish on
vC��� C v���C. Now in

V2
.'1/ � S2.2'1/ we have v2 ^ v3 of weight "2 C "3.

Hence the differential of the degree 4 invariant evaluated at v does not vanish on
v���C and the rank of the differentials of the 8 invariants is indeed 8. Thus 2'4.F4/
is coreduced. ut
Proof (of statement (c)). Recall that the root system R of G has the following 3
parts A, B and C :

A D f˙"i g; B D f˙"i ˙ "j j i < j g; C D f1
2
.˙"1 ˙ "2 ˙ "3 ˙ "4/g

with cardinality #A D 8, #B D 24 and #C D 16. Thus

g D LieG D h˚
M

ˇ2A[B[C
gˇ
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where h D LieT is the Cartan subalgebra and T � G a maximal torus. The weights

 D 
V of the representation V are the short roots A [ C together with the zero
weight 0. The nonzero weight spaces V	 are 1-dimensional, and the zero weight
space V0 D V T has dimension 2. This implies the following.

Lemma A.2. Let ˇ 2 R be a root and 	 2 
 a weight of V . If ˇC	 is a weight of
V , then gˇV	 is a nontrivial subspace of VˇC	.

Note that gˇV0 D Vˇ and gˇV�ˇ � V0 is 1-dimensional for every short root
ˇ 2 A [ C .

The subspace g0 WD h˚L
ˇ2A[B gˇ � g is the Lie algebra of a maximal

subgroup G0 � G of type B4, and the representation V decomposes under G0 into
V D �1 ˚ '1.B4/˚ '4.B4/ where '4.B4/ D L

�2C V� , '1.B4/ D VA ˚L
˛2A V˛ ,

and VA WD '1.B4/T � V0. It follows that g˛V�˛ D VA for ˛ 2 A, but g�V�� ª VA
for � 2 C , so that g˛V�˛ C g�V�� D V0.

The basic idea for the calculations is the following. To every vector v 2 V we
define its weight support !.v/ � A [ C [ f0A; 0C g in the following way. Write v
as a sum of weight vectors, v D P

A v˛ CP
C v� C v0. Then

!.v/ WD f˛ 2 A j v˛ ¤ 0g [ f� 2 C j v� ¤ 0g [

8
ˆ̂
<

ˆ̂
:

; if v0 D 0;

f0Ag if v0 2 VA n f0g;
f0C g if v0 2 V0 n VA:

This extends in an obvious way to the weight support of elements from V ˚V . Now
we look at a pair v D .v0; v00/ D .v˛0 C v� 0 ; v˛00 C v� 00/ 2 V ˚ V where ˛0; ˛00 2 A
and � 0; � 00 2 C are distinct weights. Define

˝.v/ WD f!.xˇv/ j ˇ 2 A [ B [ C g [ f˛0; ˛00; � 0; � 00g;

where xˇ 2 gˇ is a (nonzero) root vector. This is the set of weight supports of
generators of gv where we use that hv D Cv˛0 ˚ Cv� 0 ˚ Cv˛00 ˚ Cv� 00 .

Our problem can now be understood in the following way. We are given a matrix
M of column vectors from which we want to calculate the rank. We replace M by
the “support matrix” ˝.M/ which is obtained from M by replacing each nonzero
entry by 1. How can one find a lower bound for the rank of M from ˝.M/?

There is an obvious procedure. We first look for a column of ˝.M/ which
contains a single 1, let us say in row i . Then we remove all other 1’s in row i and
repeat this procedure as often as possible to obtain a matrix ˝.M/0. It is clear that
this “reduced” matrix ˝.M/0 is again the support matrix of a matrix M 0 which is
obtained by column reduction from M . This first step is called “column reduction.”

Now we apply row reduction toM 0 which amounts to looking at rows of˝.M/0
which contain a single 1. Then we delete all other 1’s in the corresponding column.
Again we repeat this procedure as often as possible and obtain a matrix˝.M/00. We
call this procedure “row reduction.” It is clear now that a lower bound for the rank
of M is given by the number of columns of ˝.M/00 containing a single 1.
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Now we choose v 2 V ˚ V as above with weights

.˛0; � 0; ˛00; � 00/ D ."3; 1=2."1 � "2 � "3 C "4/; "2; 1=2."1 � "2 � "3 � "4//:

We obtain a set ˝.v/ with 45 elements where each element’s weight support has
cardinality at most two. (We use Mathematicar to perform these and the following
calculations.) After applying the “column reduction” we obtain a new set˝.v/0 that
contains 44 elements where 34 of them contain a single weight. For the remaining
10 elements, the “row” reduction produces 10 sets with a single weight. Thus we
get dimGv D dim gv D 44 D 2 dimV � dimV==G, and we are done. ut
Remark A.3. We are grateful to Jan Draisma who did some independent calcula-
tions (using GAP) to show that there is a dense orbit in the null cone of V ˚ V .

Appendix B Computations for G2 � G2

The main result of this appendix is the following proposition. We will give two
proofs.

Proposition B.1. The representation .C7 ˝ C
7;G2 � G2/ is not coreduced.

Proof (First Proof of Proposition B.1). The nontrivial part of the slice representation
at the zero weight vector is G WD SL3 �SL3 on the four possible versions of .W WD
C
3 or W �/ tensored with .W WD C3 or W

�
/. Set V1 WD W ˝W , V2 WD W ˝W

�
,

V3 WD W � ˝W and V4 WD W � ˝W
�
.

Lemma B.2. The G-module

V WD V1 C V2 C V3 C V4

is not coreduced.

We have a group N of order 8 that acts on V by interchanging W and W �, W
and W

�
as well as interchanging W , W � with W , W

�
. Then N normalizes the

action of G. Here are the steps in the proof of the proposition above.

(1) We show that there is a minimal generator f of the invariants of .V;G/ which
is multihomogeneous of degree (3,3,3,3) in the four irreducible subspaces of V .

(2) We show that, up to the action of the Weyl group and N , there are eight
1-parameter subgroups � of G such that the union of the GZ� is N .V /.

(3) We show that for each such �, the differential of f vanishes on Z�.

It then follows from Remark 3.2 that V is not coreduced.
Let R D CŒa1; : : : ; an� be a finitely generated N

d -graded ring where the ai are
homogeneous. Recall that a1; : : : ; am are a regular sequence in R if a1 is not a zero
divisor and ajC1 is not a zero divisor in R=.Ra1 C � � � C Raj /, 1 � j < m.
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We may write R as a quotient R D CŒx1; : : : ; xn�=I where the image of xi in
R is ai , i D 1; : : : ; n. Let Is denote the elements of I homogeneous of degree
s WD .s1; : : : ; sd /, sj 2 N and let NI denote I=.x1; : : : ; xm/. We leave the proof of
the following lemma to the reader.

Lemma B.3. Let R, etc. be as above. Then Is ! NIs is an isomorphism for all
s 2 N

d .

The lemma says that we can determine the dimension of the space of relations of
the ai in degree s by first setting a1; : : : ; am to zero.

Lemma B.4. There is a generator f of R WD O.V /G of multidegree .3; 3; 3; 3/.

We used LiE to compute a partial Poincaré series of R:

1C .ps C qr/C 2.p2s2 C q2r2/C .p3 C q3 C r3 C s3/

C 2.p3q3 C p3r3 C q3s3 C r3s3/C 3.p3s3 C q3r3/

C 2.q3ps C r3ps C p3qr C s3qr/

C 6.q3p2s2 C r3p2s2 C p3q2r2 C s3q2r2/

C 13.p3q3r3 C p3q3s3 C p3r3s3 C q3r3s3/

C 4pqrs C 10.pq2r2s C p2qrs2/C 18.pq3r3s C p3qrs3/

C 37p2q2r2s2 C 86.p2q3r3s2 C p3q2r2s3/C 265p3q3r3s3:

If there were no relations among the generators of R of degree at most .3; 3; 3; 3/,
then the Poincaré series would indicate that we have generators in degree .a; b; c; d/
of a certain multiplicity which we denote by gen.a; b; c; d/. We list the relevant
gen.a; b; c; d/, modulo symmetries given by the group N .

(1) gen.0110/ D 1

(2) gen.0220/ D 1

(3) gen.3000/ D 1

(4) gen.3300/ D 1

(5) gen.0330/ D 0

(6) gen.1111/ D 3

(7) gen.3110/ D 1

(8) gen.3220/ D 3

(9) gen.3330/ D 3

(10) gen.1221/ D 5

(11) gen.1331/ D 2

(12) gen.2222/ D 14

(13) gen.3223/ D 13

(14) gen.3333/ D 11
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It is easy to see that the representations Vi C Vj , 1 � i < j � 4 are cofree. Now
V2 C V3 has generators in degrees (3,0), (0,3), (1,1) and (2,2) while V1 C V2 has
generators in degrees (3,0), (0,3) and (3,3). Thus it is easy to see that we have a
regular sequence in R consisting of the (determinant) invariants of degree 3 and
those of degree .0110/, .0220/, .1001/ and .2002/.

Lemma B.5. Suppose that we are in one of the cases above, except for .2222/,
.3223/ and .3333/. Then R has gen.abcd/ generators in degree .abcd/.

Proof. We set the invariants of our regular sequence equal to zero and see if we
have any relations. But then there are no nonlinear polynomials in the remaining
generators in the degrees we are worried about. ut
Proof (of Lemma B.4). As usual, we set the elements of our regular sequence equal
to zero. This does not change the number of minimal generators of degree .3333/.
Now how can we have fewer generators than gen.3333/ in degree .3333/? This
can only occur if there is a degree .abcd/ with an “unexpected” relation such that
.3333/ � .abcd/ is the degree of a generator not in our regular sequence. Thus the
only problem could occur because of relations in degree .2222/ multiplied by the 3
generators f1, f2 and f3 in degree .1111/. Moreover, modulo our regular sequence,
the unexpected relations in degree .2222/ have the form .r D P

ij cij fifj / D 0.
Thus there are unexpected relations r1; : : : rd , d � 6. For each relation rk we add
an additional generator yk in degree .2222/ and to get the correct count of non-
generators in degree .3333/ we have to adjust our formal count by adding 3d (from
the product of the yk by the fi ) and subtracting the dimension of the span of the
fi rk in the polynomial ring CŒf1; f2; f3�. But the correction is by less than 11:

Case 1. d � 5. Then we have a correction of at most 3d � d � 10.

Case 2. d D 6. Then the correction is 18 � dimS3.C3/ D 8. ut
We now have our generator f of degree (3333). Next we need to calculate the

irreducible components of the null cone, up to the action of N .
Let � be a 1-parameter subgroup of G WD SL3 �SL3 whose weights for C3 are

a, b and c and whose weights for C
3

are a, b and c. We have that a � b � c and
similarly for a, etc. We also can assume that no weight of V is zero. Of course,
many choices of a, etc. will give the same subset Z� in V . We say that a particular
choice of a, etc. is a model if it gives the correct Z�.

The action of our group N does not change the weights that occur, just in which
of the four components they occur. Thus to show that df vanishes on N .V /, we
can always reduce to the case that a > a and that the other numbers are negative (or
zero). For every possibility we will give a model such that df vanishes on Z�.

Lemma B.6. We have that c � b � c � c � c C a � b C a � b � c � b � b.
Moreover, c � b < 0 and not both c � c and b � b are positive.

Proof. The string of inequalities is obvious. If c�b > 0, then b�c > 0 and adding
we get that �aCa > 0 which is a contradiction. Similarly, not both c� c and b�b
can be positive. ut
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Given the lemma, there are eight possibilities for the signs of c�b, c�c; : : : ; b�b
which we present in matrix form. In another matrix, we present the values a, b, c,
a, b and c of a 1-parameter subgroup � which is a model for the signs. Note that the
signs tell you exactly which vectors in V are in the positive weight space of �.

0

B
B
B
B
B
B
B
B
B
B
B
@

�1 �1 �1 �1 �1 �1
�1 �1 �1 1 �1 �1
�1 �1 �1 1 1 �1
�1 �1 �1 1 1 1

�1 �1 1 1 �1 �1
�1 �1 1 1 1 �1
�1 �1 1 1 1 1

�1 1 1 1 1 �1

1

C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
@

4 �2 �2 1 0 �1
8 �3 �5 4 �2 �2
4 �1 �3 2 0 �2
3 0 �3 2 �1 �1
6 �3 �3 4 �2 �2
8 �3 �5 6 �2 �4
7 �2 �5 6 �3 �3
4 �2 �2 3 0 �3

1

C
C
C
C
C
C
C
C
C
C
C
A

Proof of Lemma B.2. Consider signs which have the 1-parameter subgroup � with
weights

�
8 �3 �5 6 �2 �4� as model. Then the largest negative weight occurring

in V is �14 while the positive weights occurring in V1; : : : ; V4 are

.1; 3; 4; 6; 14/; .1; 2; 10; 12/; .1; 1; 3; 9; 11/; .7; 7; 5; 9/:

Now consider a monomial m in the weight vectors which occurs in f . If df does
not vanish on Z� then there is a monomial with only one negative weight vector.
But the sum of the positive weights occurring inm is at least 3C3C3C2	5 D 19

which is greater than 14. Hence this is impossible and df vanishes on GZ�. One
similarly (and more easily) sees that df vanishes on GZ� in the other 7 cases.

This finishes the first proof of Proposition B.1. ut
Second Proof of Proposition B.1. The weights of V D C

7 are the short roots of
G WD G2 together with 0, and all weight spaces are 1-dimensional. We use the
notation 
 WD f˙˛;˙ˇ;˙.˛Cˇ/; 0g where ˛Cˇ is the highest weight. Thus the
weight spaces of V ˝ V are given by the tensor products V� ˝ V� , .�; �/ 2 
�
.

We first determine the maximal positive subspaces of W WD V ˝ V , up to the
action of the Weyl group. If � is a one-parameter subgroup of G �G we denote by
W� the sum of the �-positive weight spaces, i.e.,

V� WD
M

�.�;�/>0

W.�;�/:

The 1-PSG � is defined by the values a WD .�; .˛; 0//, b WD .�; .ˇ; 0//, a0 WD
.�; .0; ˛//, b0 WD .�; .0; ˇ//. Using the action of the Weyl group, we can assume
that

a; b; a0; b0 > 0; a � b; a0 � b0; fa; b; aC bg \ fa0; b0; a0 C b0g D ;:

We can also assume that a > a0; we will then get the other maximal positive
subspaces by the symmetry .�; �/ 7! .�; �/. Now V� depends only on the relative
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position of the values a C b > a � b and the values a0 C b0 > a0 � b0. It is not
difficult to see that there are eight cases.

(1) aC b > a > b > a0 C b0 > a0 � b0 represented by � D .5; 4; 2; 1/;
(2) aC b > a > a0 C b0 > b > a0 � b0 represented by � D .6; 4; 3; 2/;
(3) aC b > a0 C b0 > a � b > a0 � b0 represented by � D .6; 5; 4; 3/;
(4) aC b > a > a0 C b0 > a0 > b > b0 represented by � D .5; 2; 3; 1/;
(5) aC b > a0 C b0 > a > a0 > b > b0 represented by � D .6; 4; 5; 3/;
(6) aC b > a > a0 C b0 � a0 > b0 � b represented by � D .7; 1; 4; 2/;
(7) aC b > a0 C b0 > a > a0 > b > b0 represented by � D .6; 2; 4; 3/;
(8) a0 C b0 > aC b > a > a0 � b0 > b represented by � D .6; 2; 5; 4/.

To get the full set of maximal positive subspaces we have to add the 8 �’s obtained
from the list above by replacing .a; b; a0; b0/ with .a0; b0; a; b/.

Now we used LiE to look at the covariants of type �1 ˝ V . The multiplicities of
this covariant in degrees 1 to 9 are .0; 0; 1; 1; 3; 5; 12; 18; 41/, and the dimensions of
the invariants in these degrees are .0; 1; 1; 3; 2; 8; 7; 17; 19/. It follows that at most
37 D 1 � 12 C 1 � 5 C 3 � 3 C 2 � 1 C 8 � 1 covariants of degree 9 are in the ideal
generated by the invariants, hence there are generating covariants of this type in
degree 9. Now we have to show that for every positive weight space V� the highest
weight .0; ˛ C ˇ/ of � ˝ V cannot be expressed as a sum of 9 weights from V�.
Because of duality, each V� has dimension 24 D .7 	 7 � 1/=2. If we denote by 
�

the set of weights of V�, this amounts to prove that the system

X

	2
�
x		 D .0; ˛ C ˇ/;

X

	2
�
x	 D 9

has no solution in nonnegative integers x	. Note that the first condition consists in
4 linear equations in 24 variables. Now we used Mathematica to show that there are
no solutions for each one of the sixteen maximal positive weight spaces Z� given
above.
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