REGULARIZATION OF RATIONAL GROUP ACTIONS

HANSPETER KRAFT

ABSTRACT. We give a modern proof of the Regularization Theorem of ANDRE
WEIL which says that for every rational action of an algebraic group G on a
variety X there exist a variety Y with a regular action of G and a G-equivariant
birational map X --» Y. Moreover, we show that a rational action of G on
an affine variety X with the property that each g from a dense subgroup of G
induces a regular automorphism of X, is a regular action.

The aim of this note is to give a modern proof of the following Regularization
Theorem due to ANDRE WEIL, see [Wei55]. We will follow the approach in [Zai95].
Our base field k is algebraically closed. A wvariety is an algebraic k-variety, and an
algebraic group is an algebraic k-group.

Theorem 1. Let G be an algebraic group and X a variety with a rational action
of G. Then there exists a variety Y with a regular action of G and a birational
G-equivariant morphism ¢: X --» Y.

We do not assume that G is linear or connected, nor that X is irreducible. This
creates some complications in the arguments. The reader is advised to start with
the case where G is connected and X irreducible in a first reading.

We cannot expect that the birational map ¢ in the theorem is a morphism.
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Take the standard Cremona involution o of P?, given by (z : y : z) — (4, 2z
which collapses the coordinate lines to points. This cannot happen if ¢ is a regular
automorphism. However, removing these lines, we get k* x k* where o is a well-
defined automorphism.

More generally, consider the rational action of G := PSLsy x PSLy on P? induced
by the birational isomorphism P' x P! --» P2. Then neither an open set carries a

regular G-action, nor P? can be embedded into a variety Y with a regular G-action.

As we will see in the proof below, one first constructs a suitable open set U C X
where the rational action of G has very specific properties, and then one shows that
U can be equivariantly embedded into a variety Y with a regular G-action.

1.1. Rational maps. We first have to define and explain the different notion used
in the theorem above. We refer to [Blal6] for additional material and more details.

Recall that a rational map ¢: X --+ Y between two varieties X,Y is an equiva-
lence class of pairs (U, ¢yy) where U C X is an open dense subset and ¢py: U — Y a
morphism. Two such pairs (U, ¢y) and (V, ¢y ) are equivalent if ¢y |uny = dv|vnv-
We say that ¢ is defined in € X if there is a (U, ¢y) representing ¢ such that
x € U. The set of all these points forms an open dense subset Dom(¢) C X
called the domain of definition of ¢. We will shortly say that ¢ is defined in x if
x € Dom(¢).
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For all (U, ¢y) representing ¢: X --» Y the closure ¢y (U) C Y is the same

closed subvariety of Y. We will call it the closed image of ¢ and denote it by ¢(X).
The rational map ¢ is called dominant if m =Y. It follows that the composition
1) o ¢ of two rational maps ¢: X --» Y and ¢: Y --» Z is a well-defined rational
map Yo ¢: X --» Z in case ¢ is dominant.

A rational map ¢: X --» Y is called birational if it is dominant and admits an
inverse ©¥: Y --+ X ¥ o ¢ =idx. It then follows that v is also dominant and that
¢ o = idy. Clearly, v is well-defined by ¢, and we shortly write ¢ = ¢~ 1. It is
easy to see that ¢ is birational if and only if there is a (U, ¢y/) representing ¢ such
that ¢y: U — Y is an open immersion with a dense image. The set of birational
maps ¢: X --» X is a group under composition which will be denoted by Bir(X).

A rational map ¢: X --» Y is called biregular in z if there is an open neighbor-
hood U C Dom(¢) of x such that ¢|y: U < Y is an open immersion. It follows
that the subset X' := {x € X | ¢ is biregular in z} is open in X, and the induced
morphism ¢: X’ < Y is an open immersion. This implies the following result.

Lemma 1. Let ¢: X --» Y be a birational map. Then the set
Breg(¢) := {z € X | ¢ is biregular in x}
is open and dense in X.

Remark 1. If X is irreducible, a rational dominant map ¢: X --» Y defines
a k-linear inclusion ¢*: k(Y) — k(X) of fields. Conversely, for every inclusion
a: k(Y) < k(X) of fields there is a unique dominant rational map ¢: X --» Y
such that ¢* = a. In particular, we have an isomorphism Bir(X) = Auty(k(X))
of groups, given by ¢ — (¢*)~ 1.

1.2. Rational group actions.

Definition 1. Let X, Z be varieties. A map ¢: Z — Bir(X) is called a morphism
if there is an open dense set U C Z x X with the following properties:
(i) The induced map (z,x) — ¢(2)(z): U — X is a morphism of varieties.
(ii) For every z € Z the open set U, := {zx € X | (z,2) € U} is dense in X.
(iii) For every z € Z the birational map ¢(z): X --» X is defined in U,.
Equivalently, we have a rational map ®: Z x X — X such that, for every z € Z,
(i) the open subset Dom(®) N ({z} x X) C {2} x X is dense, and
(ii) the induced rational map ®,: X --» X, x — ®(z, z), is birational.
This definition allows to define the ZARISKI-topology on Bir(X) in the following
way.

Definition 2. A subset S C Bir(X) is closed if for every morphism p: Z — Bir(X)
the inverse image p~1(S) C Z is closed.

Now we can define rational group actions on varieties. Let G be an algebraic
group and let X be a variety.

Definition 3. A rational action of G on X is a morphism p: G — Bir(X) which
is a homomorphism of groups.

As we have seen above this means that we have a rational map (denoted by the
same letter) p: G x X --» X such that the following holds:
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(a) Dom(p) N ({g} x X) is dense in {g} x X for all g € G,
(b) the induced rational map pg: X --» X, x — p(g, ), is birational,
(c) the map g — pg is a homomorphism of groups.
If p is defined in (g,z) and p(g,z) = y we will say that g -  is defined and
g-x=y.
We will also use the birational map
p:GxX-—>GxX, (g,2) (9,0(9,7)),
see section 1.5 below.

Remark 2. Note that if p: G x X --» X is defined in (g, z), then pg: X --» X is
defined in z, but the reverse implication does not hold. An example is the following.
Consider the regular action of the additive group G, on the plane A2 = k? by
translation along the z-axis: s-x : =z + (s,0) for s € G, and x € A% Let B: X —
A2 be the blow-up of A2 in the origin. Then we get a rational G-action on X,
p: Gy x X --» X. It is not difficult to see that p is defined in (e, z) if and only
if B(x) # 0, i.e.  does not belong to the exceptional fiber, but clearly, p. = id is
defined everywhere.

If ¢: Z — Bir(X) is a morphism such that ¢(Z) C Aut(X), the group of regular
automorphisms, one might conjecture that the induced map Z x X — X is a
morphism. I don’t know how to prove this, but maybe the following holds.

Conjecture. Let p: G — Bir(X) be a rational action. If p(G) C Aut(X), then p
is a reqular action.

We can prove this under additional assumptions.

Theorem 2. Let p: G — Bir(X) be a rational action where X is affine. Assume
that there is a dense subgroup I' C G such that p(I') C Aut(X). Then the G-action
on X 1is reqular.

The proof will be given in the last section 1.9.

Definition 4. Given rational G-actions p on X and g on Y, a dominant rational

map ¢: X — Y is called G-equivariant if the following holds:

(Equi) For every (g,z) € G x X such that (1) p is defined in (g, =), (2) ¢ is defined
in z and in p(g,z), and (3) p is defined in (g, #(x)), we have ¢(p(g,x)) =

(g, o(x)).

Note that the set of (g,2) € G x X satisfying the assumptions of (Equi) is open
and dense in G x X and has the property that it meets all {g} x X in a dense open
set.

Remark 3. If G acts rationally on X and if X’ C X is an nonempty open subset,
then G acts rationally on X', and the inclusion X’ < X is G-equivariant. Moreover,
if G acts rationally on X and if ¢: X --» Y is a birational map, then there is
uniquely define rational action of G on Y such that ¢ is G-equivariant.

Note that for a rational G-action p on X and an open dense set X’ C X with
induced rational G-action p’ we have

Dom(p’) = {(g,z) € Dom(p) | x € X' and g-x € X'},
Breg(p') = {(g,z) € Breg(p) | z € X" and g -z € X'}.
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1.3. The case of a finite group G. Assume that G is finite and acts rationally
on an irreducible variety X. Then every g € G defines a birational map g: X --» X
and thus an automorphism ¢* of the field k(X) of rational functions on X. In this
way we obtain a homomorphism G — Auty(k(X)) given by g — (g*) L.

By Remark 3 above we may assume that X is affine. Hence k(X) is the field
of fractions of the coordinate ring O(X). Since G is finite we can find a finite-
dimensional k-linear subspace V' C k(X) which is G-stable and contains a system
of generators of O(X).

Denote by R C k(X)) the subalgebra generated by V. By construction,

(a) R is finitely generated and G-stable, and

(b) R contains O(X).
In particular, the field of fractions of R is k(X). If we denote by Y the affine variety
with coordinate ring R, we obtain a regular action of G on Y and a birational
morphism %: Y — X induced by the inclusion O(X) C R. Now the Regularization
Theorem follows in this case with ¢ :=~1: X --» Y.

There is a different way to construct a “model” with a regular G-action, without
assuming that X is irreducible. In fact, there is always an open dense set X, € X
where the action is regular. It is defined in the following way (cf. Definition 5
below). For g € G denote by X, C X the open dense set where the rational map
pg: T+ g -x is biregular. Then X ¢, := ﬂgec X, is open and dense in X and the
rational G-action on X,es is regular. In fact, p, is biregular on X,es, hence also
biregular on h - X,eg for all h € G which implies that & - Xieg C Xieg-

1.4. A basic example. We now give an example which should help to understand
the constructions and the proofs below. Let X be a variety with a regular action
of an algebraic group G. Choose an open dense subset U C X and consider the
rational G-action on U. Then X := U e gU C X is open and dense in X and
carries a regular action of G.

The rational G-action p on U is rather special. First of all we see that p is defined
in (g,u) if and only if g-u € U. This implies that p is defined in (g, u) if and only of
pg is defined in u. Next we see that if p is defined in (g,u), then p: GxU --» Gx U,
(9,2) — (g,p(g,x)), is biregular in (g,u). And finally, for any x the (open) set of
elements g € G such that p is biregular in (g, x) is dense in G.

A first and major step in the proof is to show (see section 1.5) that for every
rational G-action on a variety X there is an open dense subset X,cz C X with the
property that for every x € X, the rational map p: G X Xieg -+ G X Xjog i
biregular in (g, ) for all g in a dense (open) set of G. Then, in a second step in
section 1.6, we construct from X,e; a variety Y with a regular G-action together
with an open G-equivariant embedding X,ez — Y.

1.5. G-regular points and their properties. Let X be a variety with a rational
action p: G x X --+» X of an algebraic group G. Define

p: Gx X --»GxX, (9,2) (g9,p(g,7)).

It is clear that Dom(p) = Dom(p) and that  is birational with inverse p~1(g,y) =

(9:0(97 " y)), ie. pt

(9:2) = (g7, 2).
The following definition is crucial.

=7opor where 7: G x X =5 G x X is the isomorphism
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Definition 5. A point x € X is called G-regular for the rational G-action p on X
if Breg(p) N (G x {z}) is dense in G x {z}, i.e. p is biregular in (g, x) for all g in a
dense (open) set of G. We denote by X,.s C X the set of G-regular points.

Let A\,: G = G be the left multiplication with g € G. For every h € G we have
the following commutative diagram

This implies the following result.

Lemma 2. With the notation above we have the following:
(a) If p is defined in (g,x) and py, defined in g -z, then p is defined in (hg,x).
(b) If p is biregular in (g,x) and pp biregular in g - x, then p is biregular in
(hg, z).
The main proposition is the following.

Proposition 1. (a) Xyeg is open and dense in X.
(b) If x € Xieg and if p is biregular in (g,x), then g - & € Xyeg-

Proof. (a) Let G = Go UGy U --- UG, be the decomposition into connected com-
ponents. Then D; := Breg(p) N (G; x X) is open and dense for all ¢ (Lemma 1),
and the same holds for the image D; C X under the projection onto X. Since
Xreg = D;, the claim follows.

(b) If p is biregular in (g, ), then p~! = 7o por is biregular in (g, g - ), hence p
is biregular in 7(g,g-7) = (g7, g- x). If z is G-regular, then pj, is biregular in x for
all h from a dense open set G’ C G. Now Lemma 2(b) implies that p is biregular
in (hg™',g-z) for all h € G’, hence g -z € X;eq- O

1

Note that for an open dense set U C X a point € U might be G-regular
for the rational G-action on X, but not for the rational G-action on U. However,
Proposition 1(b) implies the following result.

Corollary 1. For the rational G-action on X,es every point is G-reqular.

This allows to reduce to the case of a rational G-action such every point is
G-regular.

Lemma 3. Assume that X = Xyeg. If pg is defined in x, then py is biregular in x.
Proof. Assume that p, is defined in « € X. There is an open dense subset G’ C G

such py, is biregular in g-z and ppq is biregular in z for all h € G’. Since ppg = propg
we see that pg is biregular in x. O

For a rational map ¢: X --» Y the graph I'(¢) is defined in the usual way:
I(¢) :={(z,y) € X XY | ¢ is defined in = and ¢(z) = y}.

In particular, pry (I'(¢)) = Dom(¢) and pry (I'(¢)) = ¢(Dom()).
The next lemma will play a central role in the construction of the regularization.

Lemma 4. Consider a rational G-action p on a variety X and assume that every
point of X is G-reqular. Then, for every g € G, the graph I'(py) is closed in X x X.
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Proof. Let I :=T'(p,) be the closure of the graph of p, in X x X. We have to show
that for every (zo,yo) € T' the rational map p, is defined in z, or, equivalently,
that the morphism 71 := pr; [r: I' = X induced by the first projection is biregular
in (2o, yo)-

Choose h € G such that pjg is biregular in x¢ and pj, is biregular in yg, and
consider the induced birational map @ := (ppy X pp): X x X --» X x X. If @ is
defined in (z,y) € I'(py), y := g- x, then ®(z,y) = ((hg) -z, (hg) - ) € A(X) where

A(X) :={(z,z) € X x X | z € X} is the diagonal. It follows that ®(I") C A(X).

PhgXPh

X x X -——-+ > X x X

Since ® is biregular in (zg, yo), we see that ¢ := ®|p: T' --» A(X) is also biregular
in (z0,y0). By construction, we have ppg o m1 = pr; o¢. Since ppg is biregular in
71 (w0, o) and ¢ is biregular in (xo,y0) (and pry [a¢x) is an isomorphism) it follows
that 7y is biregular in (xq,yo), hence the claim. O

The last lemma is easy.

Lemma 5. Consider a rational action p of G on a variety X. Assume that there is
a dense open set U C X such that p defines an open immersion p: GXxU — Gx X.
Then the open dense subset Y := Ugg -U C X carries a regular G-action.

Proof. 1t is clear that every p, induces an isomorphism U —+ g - U. This implies
that Y is stable under all p,. It remains to see that the induced map G x Y — Y
is a morphism. By assumption, this is clear on G x U, hence also on G x g - U for
all g € G, and we are done. O

1.6. The construction of a regular model. In view of Corollary 1 our Theo-
rem 1 will follow from the next result.

Theorem 3. Let X be a variety with a rational action of G. Assume that every
point of X is G-regular. Then there is a variety Y with a regular G-action and a
G-equivariant open immersion X — Y.

From now on X is a variety with a rational G-action p such that X,., = X. Let
S :={g0 :=¢,91,92,-.-,9m} C G be a finite subset. These g;’s will be carefully
chosen in the proof of Theorem 2 below. Let X(© X1 X (™) be copies of the
variety X. On the disjoint union X(S) := XO U XM y...U X we define the
following relations between elements xz;, z; € =t

(1) For any i: z; ~ 2, <= x; =a;
(2) For ¢ # j: zj~x; <= Portg; is defined in x; and sends z; to x;.
It is not difficult to see that this defines an equivalence relation. (For the symmetry

one has to use Lemma 3.) Denote by X(S) := X(S)/ ~ the set of equivalence
classes endowed with the induced topology.
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Lemma 6. The maps 1;: = — X (S) are open immersions and endow X (S) with
the structure of a variety.

Proof. By definition of the equivalence relation and the quotient topology the nat-
ural maps ¢;: 2 — X (S) are injective and continuous. Denote the image by X,
We have to show that X(@ is open in X (S), or, equivalently, that the inverse im-
age of X0 in X(S) is open. This is clear, because the inverse image in Z of the
intersection X N XU is the open set of points where p oo is defined.

It follows that X (S) carries a unique structure of a prevariety such that the maps
1i: E < X(S) are open immersions. It remains to see that the diagonal A(X(S)) C
X(S) x X(S) is closed. For this it suffices to show that Ay := A(X(S)) N (X@ x
X(j)) is closed in X® x X for all i,7. This follows from Lemma 4, because Aj;;
is the image of F(pg;lgi) C = x XU, In fact, for #; € = and x; € X we have
(%;,%;) € A;j if and only if z; ~ x;. This means that Po-ty, is defined in z; and

pgjflgi(l'i) =zj, le (z;,2;) € I‘(pg;lgi). O

Fixing the open immersion ¢o: X = X(©) « X(S) we obtain a rational G-action
= ps on X(S) such that 1o is G-equivariant (Remark 3). If we consider each
as the variety X with the rational G-action p()(g,z) := p(giggi_l,:v), then, by
construction of X(S), the open immersions ¢;: Z < X(S) are all G-equivariant.

[1] i

Lemma 7. For all i, the rational map pg, is defined on X©) and defines an iso-
morphism pg, : X0 = x @),

Proof. Consider the open immersion 7; := ¢; o Lali X0 ey X(S) with image X @
We claim that 7,(Z) = g¢; - Z. It suffices to show that this holds on an open dense
set of X Let U C X be the open dense set where g; - x is defined. For z € U
and y := ¢; - x € X we get, by definition, to(y) = ¢;(x). On the other hand,
to(y) = to(g:i - ) = ¢ - to(x). Hence, g; - to(z) = ¢;(x), and so 7;(Z) = g¢; - Z for all
NS LQ(U). [l

Proof of Theorem 3. (a) Since X,e; = X, we see that for any € X there is a
g € G such that (g,x) € D, hence J, gD = G x X where G acts on G x X by
left-multiplication on G. As a consequence, we have | J; ;D = G x X for a suitable
finite subset S = {go = €,91,...,9m} C G. This set S will be used to construct
X(9).

(b) Let D@ C G x X© be the image of D, and consider the rational map
ps: Gx X© -5 G x X(9), (9,%) — (g,p(g, Z)). We claim that pg is biregular. In
fact, for any ¢, the map (g, x) — (g,¢-x) is the composition of (g, x) — (g, (gi_lg):z:)
and (g,y) — (g, 9:y) where the first one is biregular on ¢; D(®) with image in G' x
X and the second is biregular on G x X(©, by Lemma 7. Now the claim follows,
because G x X =], ¢; D by (a).

(c) It follows from (b) that the rational action p of G on X(S) has the property,
that pg defines an open immersion G x X < G x X(S). Now Theorem 3 follows
from Lemma 5, setting ¥ := X(95). O
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1.7. Normal and smooth models. If X is an irreducible G-variety, i.e. a variety
with a regular action of G, then it is well-known that the normalization X has
a unique structure of a G-variety such that the normalization map 7: X = X is
G-equivariant. If X is reducible, X = |J, X;, we denote by X the disjoint union of
the normalizations of the irreducible components X;, X = Uif(,;, and by n: X 5 X
the obvious morphism which will be called the normalization of X. The proof of
the following assertion is not difficult.

Proposition 2. Let X be a G-variety and n: X — X its normalization. Then
there is a unique reqular G-action on X such that n is G-equivariant.

It is clear that for any G-variety X the open set Xgno0tn Of smooth points is
stable under G. Thus smooth models for a rational G-action always exist.

The next result, the equivariant resolution of singularities, can be found in
KOLLAR’s book [Kol07]. He shows in Theorem 3.36 that in characteristic zero there
is a functorial resolution of singularities BR(X): X’ — X which commutes with
surjective smooth morphisms. This implies (see his Proposition 3.9.1) that every
action of an algebraic group on X lifts uniquely to an action on X",

Proposition 3. Assume chark = 0, and let X be a G-variety. Then there is a
smooth G-variety Y and a proper birational G-equivariant morphism ¢: Y — X.

1.8. Projective models. The next results show that there are always smooth
projective models for connected algebraic groups G. More precisely, we have the
following propositions.

Proposition 4. Let G be a connected algebraic group acting on a normal variety
X. Then there exists an open cover of X by quasi-projective G-stable varieties.

Proposition 5. Let G be a connected algebraic group acting on a mormal quasi-
projective variety X . Then there exists a G-equivariant embedding into a projective
G-variety.

Outline of Proofs. Both propositions are due to SUMIHIRO in case of a connected
linear algebraic group G [Sum74, Sum75]. They were generalized to a connected
algebraic group G by BRION in [Bril0, Theorem 1.1 and Theorem 1.2]. |

In this context let us mention the following equivariant CHOW-Lemma. For a
connected linear algebraic group G it was proved by SUMIHIRO [Sum74] and later
generalized to the non-connected case by REICHSTEIN-YOUSSIN [RY02]. It implies
that projective models always exist for linear algebraic groups G.

Proposition 6 ([Sum74, Theorem 2|, [RY02, Proposition 2]). Let G be a linear
algebraic group. For every G-variety X there exists a quasi-projective G-variety Y
and a proper birational G-equivariant morphism Y — X which is an isomorphism
on a G-stable open dense subset U CY.

1.9. Proof of Theorem 2. We start with a rational action p: G — Bir(X) of an
algebraic group G on a variety X, and we assume that there is a dense subgroup
I' C G such that p(I') C Aut(X).

(a) We first claim that the rational G-action on the open dense set X,ep C X is
regular. For every « € X,y there is a g € I' such that p is biregular in (g, z). Since,
by assumption, the p, are biregular on X for all h € T' it follows from Lemma 2(b)
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that p is biregular in (¢’, x) for any ¢’ € T'. Moreover, by Proposition 1(b), we have
g’ - ¢ € Xyeg, hence X,q is stable under I'.

By Theorem 3 we have a G-equivariant open immersion X;e; < Y where Y is a
variety with a regular G-action. Since the complement C':=Y \ Xieg is closed and
I'-stable we see that C is stable under I' = G, hence the claim.

(b) From (a) we see that the rational map p: G x X --+» X has the following
properties:

(i) There is a dense open set X;ee C X such that p is regular on G x Xg.
(ii) For every g € T' the rational map p,: X — X, z — p(g,z), is a regular
isomorphism.
Now the following lemma implies that p is a regular action in case X is affine,
proving Theorem 2. O

Lemma 8. Let X,Y,Z be varieties and let ¢: X XY --» Z be a rational map
where Z is affine. Assume the following:
(a) There is an open dense set U CY such that ¢ is defined on X X U;
(b) There is a dense set X' C X such that the induced maps ¢,: {x} XY — Z
are morphisms for all x € X'

Then ¢ is a regular morphism.

Proof. We can assume that Z = A, so that ¢ = F is a rational function on X x Y.
We can also assume that X,Y are affine and that U = Y} with a non-zero divisor
f € O(Y). This implies that f*F € O(X x Y) = O(X) ® O(Y) for some k > 0.
Write f*F =" | h; ® f; with k-linearly independent h, ..., h, € O(X). Setting
Fy(y) := f(x,y) for z € X, the assumption implies that F,, = > I, hz(x)% is a
regular function on Y for all z € X”.

We claim that there exist z1, ..., 2, € X’ such that the nxn-matrix (h;(2;))}';—;
is invertible. This implies that the rational functions J{—; are k-linear combinations

of the F,, = f(z;,y) € O(Y). Hence they are regular, and thus F' is regular. The
lemma follows.

It remains to prove the claim. Assume that we have found z1,...,z,, € X' (m <
n) such that the m x m-matrix (h;(z;)){"_; is invertible. Then there are uniquely
defined A1, ..., Ay, € k such that hy, 1 (x;) = Z;”:l Ajhj(x;) fori=1,...,m. Since

hi,..., hm, by are linearly independent, it follows that hu,+1 # Z;”:l Ajh;. This
implies that there exists z;, 11 € X’ such that hy,1(Xmi1) # Zj;l Xl (Zme1),

and so the matrix (h; (x]))znj;ll is invertible. Now the claim follows by induction. [
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