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Abstract The first part of this paper is a refinement of WINKELMANN’s work on invariant
rings and quotients of algebraic group actions on affine varieties, where we take a more
geometric point of view. We show that the (algebraic) quotient X/G given by the possibly
not finitely generated ring of invariants is “almost” an algebraic variety, and that the quotient
morphism 77 : X — X/G has a number of nice properties. One of the main difficulties comes
from the fact that the quotient morphism is not necessarily surjective. These general results
are then refined for actions of the additive group G,, where we can say much more. We
get a rather explicit description of the so-called plinth variety and of the separating variety,
which measures how much orbits are separated by invariants. The most complete results are
obtained for representations. We also give a complete and detailed analysis of ROBERTS’
famous example of a an action of G, on 7-dimensional affine space with a non-finitely
generated ring of invariants.

1 Introduction

In all classification problems invariants play an important role. They let one distinguish non-
equivalent objects, characterize specific elements, or detect certain properties. For instance,
the genus of a complex smooth projective curve C determines the topology of the compact
surface C, and the discriminant of a polynomial tells us whether it has multiple roots. But
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232 E. Dufresne, H. Kraft

there are many other examples of important invariants, like the ALEXANDER-polynomial of
a knot or the DEDEKIND ¢ -function of a number field.

In the algebraic setting where we work over an algebraically closed field k, we can often
reduce a classification problem to the following general situation. There is an algebraic
variety X representing the objects, and an algebraic group G acting on X such that two
objects x, y € X are equivalent if and only if they belong to the same orbit under G. In this
case the classification problem amounts to describing the orbit space X/G. Clearly, X/G
inherits some properties from X: it has a topology and the (continuous) functions on X/G
correspond to the (continuous) G-invariant functions on X. Of course, we would like to
see X/G again as an algebraic variety, but this cannot work in general, because X usually
contains nonclosed orbits, and so X /G contains nonclosed points.

If X is an affine variety with coordinate ring O(X), we can look at the subalgebra O (X )6 ¢
O(X) of G-invariant functions and consider the morphism

nx: X — X/ G := Spec O(X)°

induced by the inclusion. It is a categorical quotient in the category of affine k-schemes,
and has the usual universal property: Every G-invariant morphism X — Y factors uniquely
through mx. In some sense this is the best schematic approximation to the orbit space. We
will say that X /G is the quotient scheme and wx: X — X/ G the quotient morphism or
shortly the guotient.

If G is reductive, then O(X)C is finitely generated and so X/ G is an affine variety.
Moreover, mx has some nice properties ([19, chap. 1.2 Theorem 1.1]):

e 7wy is G-closed: If Z C X is G-stable and closed, then wx (Z) is closed.
o wx is G-separating: If Z, Z' C X are disjoint G-stable closed subsets, then wx(Z) N
ax(Z') =g.

In particular, wy is surjective and every fiber contains a unique closed orbit. Thus the variety
X/ G classifies the closed orbits in X. In good situations, the general orbits are closed, and
so, at least generically, X / G is the orbit space.

If G is not reductive, then all this fails to be true. In particular, the invariant ring might not
be finitely generated and so the quotient X /G is not an algebraic variety, and the quotient
morphism my is usually not surjective. The fact that X /G is not of finite type is considered
to be the main difficulty in handling non-reductive groups. We think that the non-surjectivity
of wy is even a more serious problem.

One of the aims of this paper is to show that the quotient X /G as a k-scheme is “almost
algebraic” in the following sense. An open subset U of a k-scheme is called an algebraic
variety or shortly algebraic if U, as a reduced scheme, is separated and of finite type. (The
separatedness is generally not an issue here, because we are working with affine schemes.)
Then we show that X /G contains large open algebraic subsets and that it shares many
properties with algebraic varieties. This is explained in Sects. 2 and 4 which are inspired
by WINKELMANN’s work [25]. For example, if the base field is uncountable, then X/ G is a
JACOBSON scheme which implies that the ZARISKI topology on X /G is determined by the
ZARISKI topology on the k-rational points of X /G.

To have an idea of our approach and our results let us give a geometric interpretation
of ROBERTS famous example of an action of the additive group G, = (k, +) on A’ with
a non-finitely generated ring of invariants. The details are given in the last Sect. 9. Let
w: A7 — A7 G, be the quotient.

(a) The fixed point set F := (A7)®« ~ A* is mapped under 7 to a single point 7(0) €
A7//((—?’442
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Invariants and separating morphisms 233

(b) The complement AZ J = A\ F is a principal G -bundle over its image 1t (AZ ) C X/Gq
which is an open algebraic subset and contains every open algebraic subset U of A7 |G

(c) The image of wis w(A7) = 7 (Ald) U {m(0)}.

(d) The complement (A7 JGy)\t (AZ 4) IS isomorphic to A,

An important new feature is the concept of a separating morphism ¢: X — Y where Y
is an algebraic variety (cf. [3, section 2.3]). This means that ¢ is G-invariant and separates
the same orbits as 7y does. Such morphisms always exist even when the invariants are not
finitely generated, but finding a “nice” separating morphism is usually a difficult task. For
ROBERTS example we get the following.

(e) There exists a separating morphism ¢ AT — A% such that Y := (A7) is normal of
dimension 6.

(f) The induced map §: A’ )G, — Y is injective. It defines a homeomorphism (A7) —
(A7) and an isomorphism n’(AZd) — <p(A,77d).

(2) H:=Y\@(A]) is a hypersurface in Y, and O(A")®« = O(Y\H).

Another important concept is the separating variety which measures how much the invari-
ants separate the orbits. It is defined as the reduced fiber product Sy := X xx;c X and
contains the closure of the graph I'y := {(gx, x) | g € G, x € X}. If a general fiber of the
quotient map is an orbit and if G is connected, then I'x is an irreducible component of the
separating variety. But even in nice situations, the separating variety may have additional
components. In general, the meaning of these other components is not yet well understood,
except for some special cases (see below). For ROBERTS’ example we find the following.

(h) The separating variety has two irreducible components: Sy1 = Ty7 U F x F, both of
dimension 8.

The most complete results are obtained for actions of the additive group G,, in particular for
representations of G, (Sects. 5-7). This part of our work was inspired by certain calculations
done by ELMER and KOHLS in [8]. An important tool here is the geometric interpretation of
the zero set Py of the plinth ideal (Definition 5.2). If X is factorial, then X\ Py is equal to
the open set X4 where X is locally a G,-bundle. In Sect. 8 we generalize some of the results
for representations of G, to G,-actions induced by actions of SLj.

To prepare the reader for the difficulties in working with non-finitely generated algebras
we describe an easy example in Sect. 3.

2 General setup and notation
2.1 Invariants

Our base field k is algebraically closed. In the second part, starting with Sect. 5, we study
Gg-actions and will assume that char k = 0. Since we have to deal with non-finitely generated
rings of invariants, we will work in the category of reduced k-schemes Z. However, from the
geometric point of view we are mainly interested in the k-rational points of Z which will
denote by Z(k). In this setting, a variety Z is a reduced separated k-scheme of finite type,
and in this case we will often confuse the scheme Z with its k-rational points Z (k).
Throughout this paper, we let X be a normal affine variety and G an algebraic group acting
on X. We denote by O(X) the k-algebra of regular functions on X and by O(X)¢ c O(X)
the subalgebra of G-invariant functions. The quotient is defined to be the affine k-scheme
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234 E. Dufresne, H. Kraft

X/ G := Spec O(X)°.

If the base field k is uncountable, a famous result of KRULL’s implies that X / G is a JACOBSON
scheme, i.e., O(X)C is a JACOBSON ring [13]. This means that every radical ideal of O(X)®
is the intersection of maximal ideals. Moreover, every closed point of X is k-rational in this
case, since O(X)Y is contained in a finitely generated k-algebra. It follows that the ZARISKI-
topology on X / G is completely determined by the ZARISKI-topology on the k-rational points
(X/ G)(k). This allows to work with k-rational points which are the only interesting objects
from a geometric point of view, as mentioned above.

Remark 2.1 1If the k-algebra R is not a JACOBSON ring, then there is a prime ideal p C R
which is not the intersection of the maximal ideal containing p. In geometric terms this means
the following. Denote by Z C Spec R the closed subscheme defined by p, and let Z.,; C Z
be the subset of closed points. Then the closure Z; in Spec R is strictly contained in Z.

2.2 Quotient morphism

The inclusion O(X)® — O(X) defines the quotient morphism
T=mnyx: X —> X/G.

Although O(X)© might not be finitely generated, hence X /G is not of finite type, we will
see that the quotient X / G contains large open subschemes which are varieties. For this we
need the following result due to DERKSEN and KEMPER [4, Propositions 2.7 and 2.9].

Proposition 2.2 Let R be a k-algebra. Define
fr :=1{f € R | Ry is finitely generated} U {0}.

Then fg is a radical ideal of R. If R is contained in a finitely generated k-domain, then

fr # (0).
The ideal fg will be called the finite generation ideal.

Remark 2.3 The open subset Spec R\V(fg) C Spec R is the union of all open subsets
U C Spec R which are algebraic. In fact, each such U is a finite union of open affine vari-
eties U;, and each U; is a finite union of some (Spec R) £ We will denote the complement
Spec R\V(fr) by (Spec R)aig:

(Spec R)aig := Spec R\V(jg) = U U C SpecR.
UcCSpec R
U open algebraic
Note that (Spec R) 4, is itself a variety if and only if f is the radical of a finitely generated
ideal. On the other hand, (Spec R) g is always JACOBSON and its closed points coincide with
its k-rational points.

Definition 2.4 Let Z = Spec R be an affine k-scheme. If A C Z is a closed subset we define
I(A) C R to be the (radical) ideal of functions vanishing on A.

(a) dim Z := Kdim R is the KRULL-dimension of R.

(b) If Z is reduced and irreducible, i.e., if R is a domain, then k(Z) := Q(R) denotes the
field of fractions of R.

(c) If R is a domain, then tdegy, R := tdeg, Q(R) is the transcendence degree of the field
extension Q(R)/k.
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Invariants and separating morphisms 235

(d) If A C Z is closed, then codimz A := minf{htp | p D 1(A), p prime} where ht p is the
height of the prime ideal p.

As an example, we will see later in Theorem 4.3(a) that the quotient X / G is always finite
dimensional, and that dim X /G = tdeg, O(X )O.

2.3 Algebraic varieties

Assume that Z = Spec R is a variety. Then Z = | J; Z; is a finite union of irreducible closed
subsets, and dim Z = max; {dim Z;}. Moreover, if Z is irreducible, then dim Z = tdeg, R,
and for every irreducible closed subset A C Z we have dim A + codimz A = dim Z.

Finally, if ¢: Z — Y is a morphism where Y is an arbitrary reduced k-scheme, and if
A C Z is a closed subscheme, then ¢(A(k)) is dense in ¢(A) C Y. As mentioned before,
this last statement holds more generally if Z is a JACOBSON scheme.

3 A first example

Let us discuss an interesting example. While it does not quite fit in our setting—it does not
arise from a quotient of an algebraic group action on a normal affine variety—it has a similar
behavior.

Consider the graded subring R := k[x, xy, xyz, xy3, ...] C Kk[x, y] generated by the
monomials xyk, k=0,1,..., and set Z := Spec R.

(a) The finite generation ideal fr of R is equal to the homogeneous maximal ideal mo =
(x, xy, xy2,...), and mg = v/xR.

(b) We have Z\{mo} = Z,, and this is an affine algebraic variety with coordinate ring
k[x, x 71, y]

Now consider the morphism 7 : A> — Z given by the inclusion R C k[x, y]. (This
morphism plays the role of the quotient morphism.)

() m: A2 > Zis surjective and induces an isomorphism (AD), Sz -
(d) 7: A2 — Z is a closed morphism.

Finally, we consider the affine morphism ¢: A2 — AZ? given by (x, y) — (x, xy). (This
morphism plays the role of a separating morphism.)

(e) ¢ factors through

A2

Xz
P

2

>

and @ is injective. Hence ¢ separates the same points of A as 7 does.
(f) @ induces a homeomorphism Z — ¢(A2%) = Af, U {0}.

The proofs are not difficult and are left to the reader. They are based on the following
lemma.

Lemma 3.1 (a) We have R = k & mg where mg = xk[x, y] = (x,xy,xyz, ...) s the
homogeneous maximal ideal of R.
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236 E. Dufresne, H. Kraft

(b) Let f € k[x, y]. Then

Sklx,y] if f € mp;
Sklx,yIN R =1 fR if f € R\mg;
xfHR iff ¢ R.

4 Separating morphisms
4.1 Separation

The so-called separation property will play an important role in this paper. The notion
goes back to DERKSEN and KEMPER [3, section 2.3.2], and is also implicit in the work of
WINKELMANN [25, Lemma 7].

Definition 4.1 Let X be an affine G-variety. A G-invariant morphism ¢: X — Y where ¥
is an affine variety is a separating morphism if it satisfies the following Separation Property:

(SP) Ifx,x" € X(k) are separated by an invariant f € O(X)%,ie.,if f(x) # f(x'), then
p(x) # o(x)).

Remark 4.2 1f chark = 0, then the separation property (SP) implies that ¢* induces an
isomorphism k(¢ (X)) 5 k(X/G). If chark > 0, we say that ¢ is strongly separating if ¢
is separating and induces an isomorphism k(¢ (X)) 5Sk(X 1G).

It is shown in [3, Theorem 2.3.15] that separating morphisms always exist. In more
algebraic terms this means that one can find a finitely generated separating subalgebra
R C O(X)Y,i.e., a subalgebra which separates the same k-rational points of X as the invari-
ant functions. We can always add invariant functions to R, and thus assume that R is normal
and that Q(R) = k(X / G), if necessary. Thus, a strongly separating morphism ¢: X — Y
with ¥ normal always exists. A basic problem is to find a separating algebra with a small
number of generators.

4.2 Main results

A G-invariant morphism ¢: X — Y where Y is an affine variety always factors through the
quotient morphism7: X — X/ G:

Then ¢ is separating if and only if ¢ is injective on the image 7 (X (k)) C (X/G)(k) of the
k-rational points. In the paper [25] WINKELMANN studies this general set-up and proves a
number of fundamental results, e.g. that every such invariant ring O (X)€ is the ring of global
regular functions on a quasi-affine variety and vice versa. Some of his results are contained
and extended in the following theorem, where we take a geometric point of view. From that
point of view we are mainly interested in the images 7 (X) C X/ G and ¢(X) C Y and how
they are related to (X/G)ug = X/ G\V(fxyc) where fx;c C O(X)C denotes the finite
generation ideal (Proposition 2.2, Remark 2.3).
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Invariants and separating morphisms 237

Theorem 4.3 Let X be a normal affine variety with an action of an algebraic group G and
denote by w: X — X/ G the quotient morphism. Let ¢: X — Y be a dominant separating
morphism where Y is a normal affine variety.

(@ If A C X is an irreducible closed subset, then dimmw(A) = dim¢@(A) and
codimy ;G w(A) = codimy ¢(A). In particular,

dim X /G = dim Y = tdeg, O(X)°.

(b) The map ¢: X)) G — Y induces a homeomorphism m(X) ;i(X).
(c) Let Cx := X/ G\7(X) be the complement. Then codimy;c Cx > 1.
(d) The complement X | G\(X | G)aig has codimension > 1in X | G.

Now assume that ¢ is strongly separating, and let Cy := Y \@(X) be the complement of the
image of ¢.
(e) ¢* induces an isomorphism O(Y \Cy) 5 O(X)°.
(f) ' (Y\Cy) C (X/G)ayg, and the induced map ¢~ (Y \Cy) — Y\Cy is an
isomorphism of varieties.
(g) ¢ induces an open immersion (X |/ G)alg\a — Y.

Let us draw some diagrams. Suppose ¢ is strongly separating. The statements (b) and (f)
give

X)G <= n(X) <= ¢ ' (Y\Cy) > (X/ Gy

\W \Lhomeo \L:

Y > @(X) > Y\Cy

and from (e) we have
O(X/G) = 0(g~'(¥\Cy) =~ O(Y\Cy).
From the statements (b) and (g) we get

X)G <— (X)) <— X)G\Cx <— (X))G)uy \ Cx

J/@ \Lhomeo \Lhomeo :Lopen immersion

Y P(X) <= Y\ p(Cx) ==Y\ ¢(Cx)

Corollary 4.4 Assume ¢: X — Y is dominant and strongly separating with Y normal.
If 1(X) 2 (X/)G)ay, then (X[ G)ay is algebraic and ¢ induces an open immersion
(X)Gaig — Y.

Proof Let U C (X/ G)aig be an open algebraic subset. Then ¢: U — Y is injective and
birational, hence an open immersion by ZARISKI’s Main Theorem ([18, III.§9, page 209]).

Thus ¢((X/ G)ag) € Y isopenand ¢: (X[ G)ag 5 @((X/ G)alg) is an isomorphism. O

Corollary 4.5 Assume ¢: X — Y is dominant and strongly separating. If Y is factorial,
then O(X)9 is finitely generated and ¢: X )G — Y is an open immersion. In particular,
X)G =Yy :=Y\Vy(f) for a suitable f € O(Y).

Proof (a) If codimy Cy > 1, then O(Y\Cy) = O(Y) and s0 @: X/G — Y is an isomor-
phism, by Theorem 4.3(d).
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238 E. Dufresne, H. Kraft

(b) If codimy Cy = 1, then we have Cy = Vy(f)UC where f € O(Y) and codimy C > 1,
because Y is factorial. Hence f, f~! € O(Y\Cy) ~ O(X/G), and so (X G) € Yy.

Thus we can replace Y by Y and get from (a) that X/ G Sy fe O

Corollary 4.6 If V is a rational representation of G and if ¢: V — Y is dominant and
strongly separating with Y factorial, then ¢: V|G S Yisan isomorphism.

Proof Thisis clear from the previous corollary, because O (V)€ does not contain nonconstant
invertible functions. O

Remark 4.7 In the case where G is reductive, this last corollary is an easy consequence of
IGUSA’s Criterion [10, Lemma 4].

We say that an affine k-scheme Z = Spec R is a cone with apex zo, if R = @, Ri is a
positively graded ring with Ry = k and zo is the homogeneous maximal ideal. Geometrically
this means that Z admits an action of the multiplicative group G, := k* with a single closed
orbit, namely the fixed point zo. An affine variety X is called a G-cone if X is a cone and the
G-action commutes with the G,,-action. In particular, the apex xg is a fixed point for G. In
this case (X /G, w(x0)) is a cone, and the finite generation ideal fx /¢ is homogeneous.

Corollary 4.8 Let (X, xo) be a normal affine G-cone and (Y, yo) a normal affine cone.
Assume that ¢: X — Y is homogeneous, dominant and strongly separating. If m(Xo) €

(X)) G)aig and & '(vo) = {m(x0)}, then : X)) G S Yisan isomorphism. In particular,
O(X)Y is finitely generated.

Proof The complement of (X /G)ae in X/ G is a closed cone, hence empty, because it does
not contain the apex. Thus O(X)© is finitely generated. Since ¢: X /G — Y is homogeneous
and ¢~ (yg) = {mw(x0)} it follows that @ is finite (see e.g. [26, Ch. VII, page 198, Lemma]).
By Theorem 4.3(f) it is also an open immersion, hence an isomorphism. O

Note that the special case of Corollary 4.8 for a representation of a reductive group G is
contained in [3, Proposition 2.3.12].

4.3 Proof of Theorem 4.3

The proof needs some preparation.

Lemma 4.9 Let W be anirreducible affine variety, R € O(W) ak-subalgebraandy: W —
Z = Spec R the induced morphism. Then thereis an f € fg and a finite surjective morphism
p: Wp — Zp x k", where m := dim W — tdeg,. Q(R), such that ¥|w, = prz, op:

Wr Lz, x k"

lﬂ\ \Lprz 7

Zs
In particular; there is a subset U C (W) which is open, algebraic and dense in Z.

Proof By firstinverting some f € fg we can assume that R is finitely generated. In this case
the result is well known, cf. [1, Chap.V.3.1, Corollary 1]. O

The next two results can be found in [25, Lemmas 1, 2, and 6]. The first is due to NAGATA
[20].
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Lemma 4.10 The invariant ring R := O(X)% is a KRULL-ring, i.e., it satisfies the following
conditions:

(@R = ﬂpeﬂp Ry, where P is the set of the primes of R of height 1;

(b) Ry is a discrete valuation ring for all p € P;

(c) For any nonzeror € R the set {p € P | p > r} is finite.

(A reference for KRULL-rings is [16, §12].)

Lemma 4.11 Let S C X/ G be an irreducible closed subscheme of codimension 1, and put
H :=r"'(S) C X. Then S = n(H).

Lemma 4.12 Foranyr € O(X)C we have Vxyc(r) = n(Vx(r)).

Proof We can assume that r is neither zero nor invertible. Then rO(X)% = Ménite p) is
a finite intersection of symbolic powers ([16, §12, page 88, Corollary to Theorem 12.3]).
Hence Vx /6 (r) = Ufnie Si Where S; are irreducible closed subschemes of codimension 1.
Now the claim follows from the previous lemma. O

We will also need the following result; the proof is easy and left to the reader.

Lemma 4.13 Let Y be an irreducible variety, C C Y an irreducible closed subset of codi-
mension d and U C Y a nonempty open set. Then there is a chain

Y=CyDC;D---DCys=C
of closed irreducible subsets such that

(i)codimy C; = j for j=0,...,d, and
@) C;NU £ forj<d.

Proof of Theorem 4.3 (a) Lemma 4.9 implies that there is an open set U C A such that

(U) is open, algebraic and dense in 7 (A), and that ¢ (U) is open, algebraic and dense in
@(A). Now (U (k)) — ¢(U (k)) is bijective, since ¢ is separating. As 7 (U) and ¢(U)
are algebraic, it follows that dim 7 (A) = dim 7 (U) = dim ¢(U) = dim o(A).
To get the equality for the codimensions, we choose a nonempty open subset O C X
such that 7 (O) is open and algebraic in X/ G, and such that U := ¢(0O) is open in Y.
From Lemma 4.13 there is a sequence Co = Y D C; D -+ D Cq = ¢(A) of closed
irreducible subsets C; with dimC; = dimY — j such that C; N U # @ for j < d.
Since ¢: m(0O) — ¢(0) is a bijective morphism of varieties, we see that, for j < d,
B; = ¢—I(Cj) N (0) is irreducible of dimension dimY — j, and that B; C B;_.
It remains to see that B4 2 m(A), since this implies that codimy;c 7(A) > d =
codimy m If not, using again Lemma 4.9, we can find a subset U C 7 (A) which is
open and dense in 7 (A) and such that U N By_; = @. Then the image ¢(U) is disjoint
from @¢(By—1 N (0)). Since ¢(By—1 N7 (0)) = Cy_1, it follows that p(A) = ¢(U) is
not contained in Cy_1, contradicting the assumption.

(b) The same argument as above shows that, for irreducible closed subsets A, B C X with
7(A) ¢ 7w(B),wehave (A) € ¢(B). It follows that the map 7 (X) — ¢(X) is injective,
hence bijective, and open, hence a homeomorphism.

(c) Forp € X/ G wehave p € Cx = (X/G)\n(X) if and only if 7 (Vx (p)) S V(p) where
V(p) denotes the zero set in X /G. Assume now that codimy;c Cx = 1. This means
that Cx contains an irreducible closed subscheme S of codimension 1 corresponding

to a prime ideal p € Cy of height 1. It follows that 7 (7 ~1(S)) S S, contradicting
Lemma 4.11.
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240 E. Dufresne, H. Kraft

(d) Let S C X/ G be an irreducible hypersurface and let p C R := O(X) be the cor-
responding prime ideal of height 1. Then, by Lemma 4.11 and (b), H = ¢(S) is

an irreducible hypersurface, and so the corresponding prime ideal p’ := p N O(Y)
has also height 1. Moreover, O(Y), S R, g O(R) = Q(O(X)G), by construc-

tion. Since O(Y), is a discrete valuation ring this implies that O(Y), = R,. But
every irreducible hypersurface H C Y not contained in Cy is of the form @(S), hence
O \Cy) = mp’:pﬂO(Y) o)y = ﬂp Rp = R, by Lemma 4.10.

(e) If f € I(Cy),then Yy C Y\Cy,and so O(Y) s D O(Y\Cy) = O(X)Y by (e). Thus ¢
induces an isomorphism (X /G) s >~ Y, and so (X/ G) s is algebraic.

(f) By (b), o: X/G\Cx — Y is injective and birational. Hence, for every open algebraic
subset U C X/ G, the map ¢: U\Cx — Y isan open immersion, by ZARISKI's Main
Theorem (see [18, II1.§9, page 209]).

(g) By construction, ¢(¢~1(Cy)) does not contain a hypersurface, and neither does o 1(Cy)
by Lemma 4.11 and (a). The claim now follows since ¢! (Cy) D X/G\(X/ G)aig, as
we have seen in the proof of (f). O

5 Gg-actions, local slices, and the plinth variety
5.1 G,-bundles

From now on we assume that chark = 0. In this and the following sections we focus on
Gg-varieties, i.e., varieties with an action of the additive group G, >~ (k, +). A G,-variety X
(not necessarily affine) is called a trivial G,-bundle if there is a G,-equivariant isomorphism
GgxY S5 x , or, equivalently, if there is a G,-equivariant morphism X — G,. In this case,
Y can be identified with the orbit space X/G,, and the quotient morphism 7 : X — X/G,
admits a section. If X is affine, then X/G, = Spec O(X)®«, and this is an algebraic variety.

The G,-variety X is called a principal G,-bundle (for short, a G,-bundle) if there is a G-
invariant morphism 7 : X — Z and an open covering Z = |J; U; such that p~}(U;) — U;
is a trivial G,-bundle for all i. In this case, Z can be identified with the orbit space X /G,
and the morphism 7 has the usual universal properties. Again, if X is affine, then X/G, =
Spec O(X)Ca, and this is an algebraic variety.

5.2 Local slices

Now let X be an affine G,-variety. The G,-action defines a locally nilpotent vector field
D € Vec(X) := Derg(O(X)) which determines the G,-action. Its kernel coincides with the
ring of invariants: ker D = O(X yGa If s € O(X)% is a nonzero invariant and s = D f for
some f € O(X), then D(£) = 1 and thus the morphism

f

= X5 —> G,
s

is G,-equivariant. Such morphisms are called local slices. It follows that the affine open set X g
is a trivial G,-bundle, and X;/G, = Spec O(X;)C. In particular, O(X)C = (O(X)Ca),
is finitely generated and so s belongs to the finite generation ideal: s € fxc,

Definition 5.1 Let X be an affine G,-variety. The ideal px )5, C O(X )Ca generated by all
s € O(X)C of the form s = Df for some f € O(X) is called the plinth ideal:

px/G, := D(O(X)) Nker D € O(X)%.
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The corresponding (reduced) closed subscheme Px ¢ C X/ G is called the plinth scheme
of X/ G whereas the zeros set Px := Vx(px/c,) C X is called the plinth variety of X. By
definition, we have Py = ﬂ_l(Px//G), and px/c, € fx/G,-

The next result shows that outside the plinth variety the quotient morphism is a principal
Gg-bundle.
Proposition 5.2 We have n(X\Px) = X |G\ Px G, and this is an open algebraic variety
of X Gy. Moreover, the morphism 7w : X\Px — X [Gy\Pxq, is a principal G,-bundle.

Proof If s = Df and Ds = 0, then 7 (X;) = (X/G,)s, and this is an open subset of X /G,
which is an affine variety. Since we can cover X \ Px with finitely many X;; we see that
T (X\Px) = Usepy,q, X/ G)s = X/ G\Px /g is also covered by finitely many open affine
varieties (X ) G); T hence is a variety. It remains to see that 7 separates the G,-orbits on X\Pyx.
This is clear for two orbits contained in the same X 5 Ifo,cX 5 and 0> C X\ X, " then
the invariant s; vanishes on O, but not on Oj. m]

Definition 5.3 Let X be a G,-variety. Define Xp; € X to be the union of all open G,-stable
subsets U which are trivial G,-bundles:

de = U U.

UCX open
U a trivial G4-bundle

If X is affine, it follows from Proposition 5.2 that X \ Px < Xjpq. We will see later
(Example 8.4) that the inclusion may be strict. However, this cannot happen if X is factorial.

Proposition 5.4 Let X be a factorial affine G,-variety. Then
Xpa = X\ Px.

In particular, 7(Xpq) S X )G is an open subvariety, and Xpq — 7w (Xpq) is a principal
Gg-bundle.

Proof In the definition of X, we can assume that all U; are affine. Since X is factorial, this
implies that U; = X, for a suitable invariant 7;. On the other hand, if X/ is a trivial G,-bundle
where 1 € O(X)%«, then there is an i € O(X,) such that Dh = 1. Writing h = f17* we see
that s := ¥ = Df, and so X; = X; is of the form above. O

6 The case of a representation

6.1 Representations and the null cone

Let V be representation of G, over a field k of characteristic zero. Then V extends to
a representation of SLp := SLy(k), where G, is identified with the unipotent subgroup
. 1 . .

U C SLp vias +— |:0 i], (see [12, I11.3.9]). It follows that the invariants O(V)®a are
finitely generated (WEITZENBOCK s Theorem, loc. cit.), and the multiplicative group G,, acts
linearly on V, (¢, v) > ¢ - v, via the identification # > |:t - € T C SL,. This defines a

decomposition of V' into weight spaces:

vz@vk, Vi:={veV|t v=rv).
k
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Since the invariants are finitely generated, the quotient V /G, := Spec O(X)%« is an
affine variety. As usual, the nullcone is defined by N’ = Ny := 77! (7 (0)) C V. Recall that
the WEYL-group W =~ Z/27Z of SL, acts on the zero weight space Vo = V& . The nontrivial

element of W is represented by the matrix o = [(1) (;1 i| € SL,.

Theorem 6.1 @Ny =VH =@,V
b) Py = V\Vpy = Vo @& V. In particular, Py = Ny if and only if the SL,-
representation V does not contain odd-dimensional irreducible representations.
(¢c) The image w(Py) C V |Gy is closed. The induced map m|p,: Py — m(Py) is
given by the SL,-invariants and has a factorization

pr 0

Pv=VTaoW Vo Vo/W —2— m(Py)

where 1y is the quotient by W and 7 is finite and bijective.

Remark 6.2 ELMER and KOHLS [8] gave an explicit construction of separating sets for inde-
composable representations, which were later extended to any representation by DUFRESNE,
ELMER, and SEZER [6].

The proof of the theorem needs some preparation.

6.2 Invariants and covariants

Let V be a representation of SL>. The graded coordinate ring O(V) = @ ;. O(V)g is a
locally finite and rational SLy-module. A homogeneous irreducible submodule F C O(V)y
is classically called a covariant of degree d and weight r, where r is the weight of the
highest weight vector fy of F. This means that fj is a homogeneous G,-invariant and that
t- fo=1t" fofort € Gy. In particular, dim F = r + 1. Thus, we always have r > 0, and
r = Oifand only if fpis an SLy-invariant. We will say that fp is a homogeneous G,-invariant
of degree d and weight r.

Clearly, the invariants O(V )% are linearly spanned by the homogeneous G, -invariants of
degree d and weight r where d, r > 0. Moreover, the homogeneous G,-invariants of degree
d and weight r > 0 linearly span the plinth ideal py = ker D Nim D where D € Vec(V)
is the locally nilpotent vector field corresponding to the G,-action (see Definition 5.1). This
shows that the G,-invariants are generated by py together with the SL;-invariants.

In the following, we denote by V [r] the irreducible SL;-module of highest weight n, i.e.,
dim V[n] = n + 1. One can take V[n] := k[x, yl,, the binary forms of degree n, with the
standard linear action of SL;. It follows that the element o € SL, representing the nontrivial
element of the Weyl group acts trivially on V[n]pif nisodd orn = 0 (mod 4), and by (—id)
ifn =2 (mod 4).

In the proof below we will need the following classical result from invariant the-
ory of binary forms. Choose a basis of weight vectors of V[n] such that O(V[n]) =
k[xo, x1, ..., x,], where x; has weight n — 2i.

Lemma 6.3 Asan SLy-module we have the CLEBSCH- GORDAN decomposition O(V [n])y ~
VI2n] @ V[2n — 4] @ V[2n — 8] @ - - -. The corresponding quadratic G,-invariants fi €
V[2n — 4k1%« have weight 2n — 4k and are of the form

Ji = aoxoxor +arxixok—1 + -+ +akx,f, k=0,1,2,...,|n/2],

where all coefficients o j are nonzero.
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Proof For the binary forms V [2k] of even degree 2k there is a unique quadratic SL,-invariant
which has the form A = yoxoxor + yix1X2%—1 + -+ + ykx,% € k[xo, ..., x;] where all
coefficients y; are nonzero (see [23, Satz 2.6]; the invariant A is classically called “Apolare™).
Now k[xo, ..., x] C k[xo, ..., x,] = O(V[n]) is a G,-stable subalgebra, hence A is a
quadratic G,-invariant in O(V [n]) of weight 2n — 4k, and so fj is a multiple of A. ]

Proof of Theorem 6.1 (a) Denote by k? ~ V[1] the standard representation of SL, and
consider the closed embedding V <> V @ k? given by v — (v, e1). Then we have the
following diagram (see [12, II1.3.2]):

v 2 . w=vekr

Nl lﬂ
V)G, ——> W/ SL,

In particular, Ny = ¢~ '(Mw) = Nw N V. The HILBERT-Criterion tells us that the
elements w = (v, a) € Ny are characterized by the condition that 0 € G, gw for a
suitable g € SL; (see [12, I11.2.1]). This implies that w = (v, e) belongs to Ny if and
only if 0 € G,,v, i.e.ifand only if v € VT,

(b) We first show that for every v € V\ (VT @ Vj) there is a homogeneous G -invariant f
of weight > 0 such that f(v) # 0. For that we can assume that V is irreducible, i.e.,
V = V[n]. We have O(V) = k[xo, x1, ..., x,], where x; has weight n — 2i. Thus x;
vanishes on VT if and only if 2i < n, and x; vanishes on V* @ Vj if and only if 2i < n.
Now letv = (ag, ai, ..., a,) € V\(V* @ Vp), and let a;, be the first nonzero coefficient.
Then the quadratic G,-invariant f; from Lemma 6.3 above gives fx(v) = aka,% # 0,
and since k < n/2 the G,-invariant fi has a positive weight.
It remains to show that every homogeneous G,-invariant f of weight > 0 vanishes on
VT @ Vj. But this is clear, because every monomial m = xgoxf' ...xff” of positive
weight must contain an x; of positive weight, i.e., with 2i < n. Hence m vanishes on
VT e V.

(c) The same argument shows that a homogeneous SL;-invariant restricted to V+ & Vj does
not depend on VT This implies that the induced morphism

wtlpy: Pv = 7(Py) € V/)Gqa
is given by the SLj-invariants and has the following factorization

pr TTSLy \ Vo

Vo 7 (Py) =m (Vo) C V/SLy

Py=VteWw

where msp,: V. — V/SL, is the quotient by SL>. The following lemma shows that
7TSL, |v, induces a finite bijective morphism Vo/ W — m(Py ), as claimed. ]

The following general result was pointed out to us by the referee.

Lemma 6.4 Let G be a connected reductive group with maximal torus T and Weyl group
W. For any affine G-variety Z the natural map Z7 /W — Z /G is finite and injective.

Proof The finiteness follows from [15, 2.1 Théoreme]. Also, for any z € Z T the orbit

Gz C Z is closed, since the stabilizer contains a maximal torus, and Gz N X7 is a unique
W -orbit, because all maximal tori in G, are conjugate. O
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7 The separating variety
7.1 Definitions

In Sect. 4, we discussed separating morphisms in the general context of a G-variety. We
now introduce the separating variety Sx of a G-variety X, which measures how much the
invariants separate the orbits (see [11, Section 2]). Set

Sy ={(x,y) X x X | f(x) = f(y forall f e OX)%} = | 7' x7'(2),
zeX)G

where 7: X — X/ G is the quotient morphism. More schematically, the separating variety
of X is the reduced fiber product (X X x/G X)red- If ¥ € X is a G-stable subvariety, we write
Sxy =8SxN I xY).

The separating variety Sy contains the closure of the graph

My :={(gx.x)|g€G.xeX}=|JGrxGx S X x X.

xeX

Note that 'y = Sy exactly when the quotient 7 is almost geometric, i.e., when all nonempty
fibers of 7 are orbits. Also, if I"'x is closed, then all orbits are closed and have the same
dimension. (The first statement is clear, and the second follows since Gx x {x} = p, ! (x)
where p>: 'y — X is the second projection.)

More generally, we have the following result, which is a first step to determine the closure
Ty and to decide whether Ty = Sy. For simplicity, we assume that G is connected which
implies that T'y is irreducible.

Proposition 7.1 Let G be connected and X a normal affine G-variety. Assume that there is
a dense open set U C X || G such that o~ (u) is nonempty and contains a dense orbit for all
closed points u € U. Set X' := 7" (U) € X and P := X\X'.

(a) Sx,p is closed and Sy = Txu Sx, p. In particular, T'x is an irreducible component
OfSX.
() If 1~ (u) is a single orbit for every closed point u € U, then

Sx=Tx USxp=TxUSxp=TxUSxp.

(c) Assume in addition that X' is smooth, thfat the G-action on X' is free, and that
codimy P > 1. Then either Uy is closed, or I'x\I"x has codimension I in T'x.

Proof (a) If X/ G is the disjoint union O U A, where U is open and A closed, then Sy =
Sx.z-1(0) Y Sx.7-1(4) Where Sx ;-1(¢) is open, Sy ,-1(4) is closed, and the union is
disjoint. Take (x, y) € Sy x’. Then n(x) = n(y) =: u € U. By assumption, the fiber
7~ (u) contains a dense orbit, say Gz = 7' (u). Hence,

oy erntu)yxn N u)y=GzxGz=Gzx Gz C Ty =T'y.

It follows that Sy = Sx x' USx p = ﬂ USx p.
(b) Since the fibers over U are orbits, we get Sy x» = I'yy = T'x N (X’ x X’), and so

Sx =8x,x USx,p=Tx USx p.

The claim follows.
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(c) Consider the morphism u: G x X — X x X, (g, x) — (gx x), whose image is I'y.
By assumption, it induces an isomorphism po: G X X' 5 Ty, and thus, a birational
morphismfi: GxX — I', where I' — Ty is the normalization. If codlmr x\['xys > 1,
then by IGUSA’s criterion [10], ft is an isomorphism, and so I'x is closed. O

Remark 7.2 The first statement of the proposition above has the following converse: If T'y is
an irreducible component of Sx, then the general fiber of m: X — X/ G contains a dense
orbit.

In order to see this, we can replace X /G be a dense open set and thus assume that
X/ G is affine algebraic, that 7: X — X /G is flat, and that the fibers are irreducible
of dimension n. Then every irreducible component of Sx = X Xx;¢ X has dimension
2dim X —dim X/ G = dim X + n (see [9, Corollary 9.6 in Chap. III]). On the other hand,
dim Ty = dim X + d where d := max{dim Gx | x € X}. Hence n = d and so the general
fiber contains a dense orbit.

7.2 The case of G,-varieties

If X is a G,-variety, then, by Proposition 5.2, the quotient 7: X\Py — m(X\Px) is a
Gg-bundle. This implies the following corollary.
Corollary 7.3 If X is a normal affine G,-variety, then

Sx =Txpy USx,py =T'x USx,py = l—‘ixUSX,'px,

and Ty is an irreducible component of Sx.

In the remaining part of this section, we determine the irreducible components of Sy for
a representation V of G, (cf. [7], where this is done for indecomposable representations).
We have seen in Theorem 6.1(c) that the image 7 (Py) C V /G, is closed and the induced
morphism 7 |p, : Py — 7(Py) has a factorization

pr 0

Py =Vt Vo Vo/W —Z— x(Py), ()

where 7 is the linear projection onto W and 7 is finite and bijective. If v € Py = Vo @ VT,
we denote by vy the component of v in Vj. Define the following closed subsets of Sp,:

C:={(,v) € Py x Py | vy =10}, Coy:={(v,v) € Py x Py | vj =0 (vo)}.

Both are irreducible and isomorphic to Vo x (VT x V). Now the factorization () implies
the following result.

Lemma 7.4 (a) If o acts trivially on Vy, then Sp,, = C = Cy is irreducible.
(b) If o acts nontrivially on Vy, then Sp,, = C U C, has two irreducible components.
In particular, Sp,, is equidimensional of dimension dim V.

Now we can formulate our main result about the separating variety Sy .

Theorem 7.5 We have Sy = Ty if and only if the Weyl group acts trivially on Vo, or if
V = V[2] & k™. Otherwise, Sy has two irreducible components:

Sy =Ty UuUC,

where dimTy = dim V + 1 and dim C = dim V.
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Proof We can assume that V512 = (0). In fact, if V = W @ k™, then 'y = 'y x k" and
Sy = Sw x k™. Itis easy to see that for V = V[2] we have Sy = Ty. In all other cases, we
have dim V™ > 2 which implies that the component C is not contained in I'y. On the other
hand, Ty = I'y U C, by Lemma 7.6 below, and the claim follows from Lemma 7.4. ]

Lemma 7.6 We have Ty = 'y U C,,.

The proof needs some preparation. If X is a variety and R a k-algebra, we define the
R-valued points by X (R) := Mor(Spec R, X). Denote by k[[¢] the power series ring and
by k(1)) its field of fractions. We have a canonical inclusion X (k[¢]]) € X (k(#))) and a
canonical map X (k[[#]]) — X (k) = X which will be denoted by x = x(¢) > x(0) = x|;=0-.
We will constantly use the following known fact. For completeness we include a short proof.

Lemma 7.7 If¢o: X — Yisamorphismandy € ¢(X), thenthereisanx = x(t) € X (k(?)))
such that ¢(x) € Y (k[t]) and ¢(x)|;=0 = y. Moreover, if y & ¢(X), then x ¢ X (k[[t]D).

Proof We first claim that there is an irreducible curve D C Y such thaty € D and D Ng(X)
is open and dense in D. This is obvious if ¥ = k”". In general, we can assume that Y is
normal and dimY > 1. Then we choose a finite surjective morphism v : ¥ — k” and use
the Going-down property of v to show that there is an irreducible hypersurface in H C Y
which contains y and meets ¢(X) in a dense set. Now the claim follows by induction. (A
stronger result can be found in [17, Lemma on page 56]: Any two points of an irreducible
variety can be connected by an irreducible curve.)
As a consequence we see that there is a smooth curve C, a point ¢ € C and a morphism
p: C\{c} = X such that ¢ o p: C\{c} — Y extends to a morphism p: C — Y with
plc) =y:
C\{c} —— C
pl Bl pe) =y
x—2>vy
The completion @C,c is isomorphic to k[[¢]] and the corresponding point p = p(¢) € C(k[¢])
has the property p(0) = c. Clearly, p € (C\{c})(k(?))), and so x := p(p) € X(k(?))) has
the required property: ¢(x) = p(p) € Y(k[[z]) and ¢(x)|;=0 = p(c) = y. If x € X &[],
then y = ¢(x)];=0 = ¢(x(0)) € ¢(X), proving the second claim. ]

Proof of Lemma 7.6 We know from Proposition 7.1 that E := 'y N Sp, = I'v\I'y,, has
codimension 1 in Ty, hence E is either C, C,, or C U C, by Lemma 7.4.

We now show that I'y\I'y € C,, which implies that Ty = 'y UCy, hence the claim. Let
(v',v") € Ty\T'y C Sp, . Since I'y is the image of the morphism j1: G, x V. — V x V,
(s, v) — (sv,v), there are element s(¢) € G, (k(#))\G, (k[#])) and v(r) € V(k[z]) such
that the following holds:

(@) v(0) =v";
() s@®v() € V&[T and (s(©)v(1)]i=0 = v'.

If vj € (Vo)?, then v = vj = oy, and so (v/,v”) € C,. Thus we can assume that v is
not fixed by o, and we have to show that v, = o vy = —v;.

Now we use LUNA’s Slice Theorem in the point v. Denote by 7 C SL; the diagonal
matrices identified with G,, as above, and by U C SL, the upper triangular unipotent
matrices, which we can identify with G,. There is a T-stable subspace W C V containing
v; such that the morphism p: SLy#rW — V given by u([g, w]) = gw is étale in a
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SL;-saturated open neighborhood of [e, v(’)’ ] (see [24]). Here the bundle SL, x7 W is the
quotient (SLy x W)/ T under the action 7 (g, w) := (gt~", tw), and the quotient morphism
SLy xW — SL, x7 W is a principal T-bundle. Since principal 7-bundles are locally trivial
for the ZARISKI topology, this implies that we can lift the elements v(¢) and s(#)v(¢) to
SL, xW, i.e., there are elements g(t) € SLa(k[[¢]), w(t) € W(k[¢]) and p(¢) € T (k1))
such that the following holds:

@) g(Hw(t) = v(r), hence g(O)w(0) = v";
®) g@) == s()g®p@®)~" € SLy(klr]) and w(r) := p(H)w(r) € Wk[r]), hence
g(Hw(t) = s(t)v(r) and g(0)w(0) = v'.

Setting

1 0
so=[y T] e =[2 Sl vo=[" ]

where £ (1) € k(O)\KIT, a(t), b(1), c(t), d () € k[[¢], and r(¢) € k((¢)), we get
r~a+ fe) b+ df)r]

rle dr

g0 =sgnpn)~! = [

Obviously, p(t) ¢ T (kl[z]]), since s(¢) ¢ U (k[[¢]). Thus either (¢) € tk[[¢] and c(0) = 0,
or r(1)~! e tk[[¢] and d(0) = 0. In the first case we get

2(0) € l[g ﬂ c SLZ] — Band 3(0) € [[i Z] c SLZ] = Bo, (1)
and in the second
g(0) € Bo and g(0) € B. 2)

Moreover, since w(t) = p(H)w(t), we get w(0)9 = w(0)o. Also note that for any b € B and
u € Vo® VT we have (bu)y = uo.

Assume now that we are in case (1). Since g(0)w(0) = v” € Vo @ VT, we get w(0) €
Vo® VT, hence w(0)g = (g(0)w(0))g = v(’)’. On the other hand, g(0) € Bo and g(0)w(0) =
v e Vo @ VT, hence ow(0) € Vo & VT and (cw(0))g = vj. Thus vy, = o w(0)g =
—w(0)g = —w(0)g = —vyg, i.e. (v, v") € Cy, and the claim follows. Case (2) is similar. O

8 G,-actions on SL;-varieties

In this section, we generalize some of the results obtained for representations of G, to
affine SLy-varieties. As in Sect. 6 we identify G, with the unipotent subgroup U C SL,
via 5§ — [(1) i:|, and G,, with the maximal torus 7 C SL; via ¢t — |:(l) t91:|' Thus
every SLp-variety X can be regarded as a G,-variety. These G,-varieties have some very

special properties, e.g. the following classical result which was already used in the proof of
Theorem 6.1 (see [12, I11.3.2]).

Lemma 8.1 Let X be an affine SLy-variety and denote by k* the standard representation
of SLo. Then the closed Gg-equivariant embedding X < X x k%, x +> (x, e1), induces an
isomorphism X |G, = (X x k) SLy. In particular, the G,-invariants O(X)Ca are finitely
generated.
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An immediate consequence is that for every closed embedding X — Y of affine SL;-
varieties the induced map X /G, — Y /G, is also a closed embedding.

Proposition 8.2 Let V be a representation of SLy and X C V a closed SLy-stable subset.

(@) Sy =Sy N (X x X).

(b) Foranyv € (Vo ® V1Y) N X we have vy € X.

(c) Px = Py N X. More precisely, the image of the plinth ideal py under the restriction
map is the plinth ideal px G, .

(d) Sx.py = Sy, py, N (X x X).

Proof (a) The inclusion Sy € Sy N (X x X) is obvious. Take (x,x’) € Sy N (X x X).
We have f(x) = f(x) forall f € O(V)Ca Since every element in O(X)C is the
restriction to X of an element in O(V )%, we get h(x) = h(x) forall h € O(X)Ca, and
so (x, x’) € Sy.

(b) Note that vy € G,,v, and the claim follows, since X is closed and SL,-stable.

(c) Therestriction map O(V) — O(X) is SLy-equivariant and so the image of an irreducible
SL;-subrepresentation W C O(V) is either (0) or isomorphic to W. Therefore, the
generators of py g, are mapped onto the generators of px /g, -

(d) This is clear from what has been said so far.

m}

Proposition 8.3 Let V be a representation of SLy and X C V a closed SLy-stable subset.
Set Xo := X®n = X N Vq. Then the following are equivalent:

(i) Sx = Tx;

(i) Tx =Ty N (X x X) and (xo + V) N X = Guxg for all xo € Xo\(X0)°.

Proof Since 'y =T'y N X and Ty =Ty U C, (Lemma 7.6), we get
Tx CTyN(X x X) =Ty U(Cs N(X x X)) C Sx,
and from Sy = I'y U C, U C we obtain
Sy =Sy N(X x X)=Tx U(Cy N(X x X)) U(CN(X x X)).

Therefore, Ty = Sy ifand only if Ty 2 T'y N (X x X) and (C\C,) N (X x X) C I'x. But
the latter condition is clearly equivalent to (xo + V) N X = G,xo for all xg € X\ (X0)°.
O

Example 8.4 Let X := SL, /T where T is acting by right multiplication on SL,. This variety
is the smooth 2-dimensional affine quadric X = V(xz — y> 4+ y) C k>, and the quotient map
is given by

L, SLy — X, [‘C’ z] > (ab, ad, cd).

Clearly, X is an SLj-variety where the action is induced by left multiplication on SL,, and
thus a G,-variety. The quotient by G, is A!, and the quotient map is given by

SL, /T > [LCZ Z:|T|—>cd, ie. X3 (x,y,2) 2.

The plinth ideal is generated by z and is reduced. The plinth variety Py consists of the two
orbits ) := UT and 03 := UoT where o := [? 51], and 50 Xqg = X\ (01 U 0,).
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Moreover, the induced morphisms X\O; — A! are both trivial G,-bundles, and so X\O; ~ A?
fori = 1,2.Thus X;g = X,butm: X — AlisnotaG,-bundle, because 7 ~1(0) = O;U 0.
It follows that

Iy = |J 0 xOisopeninSx =Tx U (01 x 02)U(01 x O1).
O orbit

Since Sy C X x X is the hypersurface defined by f := 7 o pr; —7 o pry, the irreducible
components of Sy have codimension 1 in X x X, hence Sy = I'x.

Example 8.5 Now let us look at Y := SL, /N, where N = T U ¢T is the normalizer of
T. Then o induces an automorphism of order 2 on X = SL, /T commuting with the G-
action, and the automorphism —id on the quotient X /G, = A'. Thus ¥ = X/(o’) and
Y/)G, = Al/{£id} ~ Al. Since ¢(01) = 0, in the notation of Example 8.4 we see
that the plinth variety Py = 7~1(0) is a single orbit, but the plinth ideal py is not prime.
Therefore, 7: ¥ — Al is a geometric quotient, but not a principal G,-bundle. In this case,
de = Yalg = X\Py, and SY = Fy.

9 ROBERTS’ example

In this section we discuss ROBERTS’ counterexample to HILBERT’s fourteenth problem [22].
We assume that char k = 0 and define an action of the additive group G, on A’ as follows:

s - (a1, a2, a3, b1, by, b3, ©) = (a1, a2, a3, by + sai, by + sa3, by + sa3, ¢ + s(arazaz)?) .

It corresponds to the locally nilpotent vector field

D: )638—i—)c38—i—)cSa—i—(xxx)za
= A A A 1X2X3) >
Yayr T Pay, Py 0z
where we use the coordinates O(A7) = k[x, x2, x3, Y1, v2, y3, z]. Put R := O(A7)G" and

letw: A7 — A7 )G, := Spec(R) denote the quotient morphism.
The x; are invariants, and D(y;) = x?, hence xi3 € PAT G, and so

(x1, X2, X3) € \/Pa7/6, S fa7/c,

(see Definition 5.1). It follows that A} — (A7 /Gy)y, is a trivial G,-bundle for i = 1,2, 3.
This allows to find the following additional invariants:

12 =X Y2 — X3 Y1, W13 = X] Y3 — XAV, U3 = X3y3 — X3y,
B = x12 — X3x3)1, Bo1 1= X2z — XPx3y2, Ba1 = X3z — X3V
Define the following subalgebras of the ring of invariants R:
Ro = klx1, x2, x3, u12, u13, u23] C Ry := RolBi1, P21, B31] C R.
We then have
(R1)y, = O(A7)§“ = 01" fori=1,23. (%)
Using a symbolic computation software like SINGULAR [2], it is easy to see that Y :=

Spec Ry C A® is the normal hypersurface defined by the equation x%u 12 +x§ u3 +x§ uy3 =0,
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and that Y := Spec R C A has dimension 6 and its ideal 7 (Y) is generated by the following
5 functions:

2 2 2
xiui2 — x3B21 + x2831, x5u13 — x1831 + x3B11, X3u23 — x2B11 + x1 821,
unpu 13Uz (X1x2B31 + x2x3 11 + x3x1621) + U123 + u13f; + u23,3331,

2 2 2
X1x2x3u12u13u23 + X1u1287) + x2u13 B85 + x3u23 B3]

Remark 9.1 The given relations between the generators of Rg and R; imply that the ideals
(x1,x2,x3)Ro C Rp and (x1, x2, x3) Ry C R; are prime, that

Ro/(x1, x2, x3) >~ kl[ui2, u13, uz3]and
Ri/(x1, x2, x3) 2 Klu12, u13, u23, fi1, Bi2, B3/ wiaBiy + ui3 B3 + u23ﬁ§1)~

In particular, Vy, (x1, x2, x3) =~ A3, and Vy (x1, x2,x3) C A% is a normal hypersurface of
dimension 5.

Lemma 9.2 The variety Y is normal.

Proof Again, using for example SINGULAR [2], one verifies that the ideal x{ R; is radical.
Let f € Q(R) be integral over Ry, that is, suppose f satisfies an equation

ff=af™ taf*+ - +a,

where a; € Ry. Since (Rj)y, is normal, we have x{"f € R; for some m > 0. We choose a
minimal m with this property. It follows from the equation above that (x{" f )¥ € x1 Ry, hence
x" f € x1Ry, and thus f € Ry, because of the minimality of m. O

The action of G, on A7 commutes with the (G,,)>-action with weights
(1,0,0), (0, 1,0), (0,0, 1), (3,0, 0), (0, 3,0), (0,0, 3), (2,2, 2),

and so (Gm)3 also acts on A’ /Gq. As the invariants u;;, B;; are multihomogeneous, ((Gym)3
also acts on Yy and Y.

The following two propositions collect the main properties of 7: A” — A’/G,. Most
statements follow from what we have done so far. The difficult part is the description of the
finite generation ideal fx g, -

Recall that P,7 C A’ denotes the plinth variety, 7,7 /G. C A7 /G, the plinth scheme
(Definition 5.1), and Su7 C A7 x A’ the separating variety (Sect. 7).

Proposition 9.3 (@) Py7 = (ANC = V7 (x1, x2, x3) =~ A%, and
Ay =AN\Py =A] UAL UA].
(b) (Py7) = w((AT)%) = {w (0)}, and
7 (A7) = (AT JGa)xy U (A [G)ry U (A7 [G)sy U (0)} = m(Afy) U {m(0)}.
(c) The separating variety Sy7 has two irreducible components:
Sp7 =T 47 U (Pyr x Py1),

both of dimension 8.
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(d) We have fA7)G, = VX1, x0,x3) = /PAT G and so
(AT )G a)atg = m(Ay) = T(AD\{(0)} = A" )G\ Py1/g, -

In particular, (A7//Ga)a1g is algebraic.
(e) PM//G,, = VM//G,, (x1, x2, x3) is isomorphic to A3,

The inclusion R C R defines an invariant morphism ¢: A7 — ¥ which factors through the
quotient 7:

A E A yG,
PV
Y

Proposition 9.4 (a) @ induces an isomorphism 7 (A];) — @(A] ).
(b) Y is normal and ¢ is a separating morphism.
(¢) C :=Vy(x1,x2,x3) CY is ahypersurface and O(A7)Ga =0 \0).
(d) @ induces a closed immersion Py1)c, < Y with image in C. In particular,
@: A7 )G, — Y is injective.

A proof that ¢ is a separating morphism and that (c) holds already appeared in [5, Example
4.2].

Proof Statement (a) holds since (A7 /Ga)x; = Yy, by (%) above. We have seen in Lemma 9.2
that Y is normal, and the morphism ¢ is injective on (A7) since o(m(x0)) = p(xp) €
Vy (x1, X2, x3), proving (b).

(c) follows from Theorem 4.3(e), because Y \ (A7) = Vy (x1, x2, x3)\ {@(0)}.

For (d) we have to show that R; 5> R —» R/fa1)0, = O(Py1g,) is surjective and
contains xi, X2, x3 in its kernel. For this we use two results which will be proved below.
By Proposition 9.3(d) we have faryc = ~(x1,x2, x3). Hence, by Lemma 9.8, we get
R/fA7//Ga = kliu12, u13, 23], and so Ry — R/f,7 is surjective and contains xi, x2, x3
in the kernel. m]

Proof of Proposition 9.3(a)~(c) We have 7~ (V7 ¢, (x1, X2, x3)) = 7~ ! (7(0)), implying
(a). As r(w ! (VM//G,, (x1, x2, x3))) = {7 (0)}, (b) follows. Finally, (c) follows from (a) and
Corollary 7.3. O

The proofs of the remaining statements (d) and (e) need some preparation. They will be
given at the end of the section.

To prove that (’)(A7)G“ is not finitely generated, ROBERTS showed in [22, Lemma3] that
there exist invariants of the form

x;Z" + terms of lower z-degree

fori = 1,2,3 and n > 0. Later, KURODA proved (see [14, Theorem3.3]) that any set S
of such invariants, together with u12, u13, u23, forms a SAGBI-basis for the lexicographic
monomial ordering with x; < x3 < x3 < y1 < y2 < y3 < z. We will improve this statement
in Lemma 9.6 below.

Recall that if R is a subalgebra of a polynomial ring, then for a given monomial ordering,
a SAGBI-basis is a subset S C R such that kK[LT(S)] = k[LT(R)] where LT(S) denotes the
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set of leading terms of the polynomials in S (see [21]). Such a basis always generates R.
Note that for KURODA’s SAGBI-bases S defined above we always have

LT(S) = {x}y2, X33, x3y3, x,;2" | j € {1,2,3},n > 0}

Lemma 9.5 There exist invariants Bi, forn > 0 and i = 1,2, 3 which are multihomoge-
neous and of the form

Bin = x;2" — nxjxtyic"”! (%)
n
2 4 2. 4 5 -2
+ (2) (X Xk i Ve + XXX Vi yj — X7 XXk )z
+ terms of lower z-degree

Proof By symmetry it suffices to look at the case i = 1. We know from [22, Lemma3]
that invariants S, with leading term x;z" exist, and we can clearly assume that they are
multihomogeneous of degree (2n + 1, 2n, 2n), hence

Bin =x12" + fiz" ' + 2" + terms of lower z — degree

where f1, fo € klx,y] = klx1,x2,x3, y1,y2, 3], deg fi = (3,2,2) and deg f> =
(5,4, 4). From D(B1,) = 0 we get the following differential equations

D(f1) = —nx1D(z) = —nx{x3x3
D(f») = —(n— 1) fiD() = —(n — Dx}x3x3 fi,

which have the special solutions

n
hy = —nx%x%yl, and hp = (

2) (xfx§x3y1y3 + xTxax§yiya — xfxzxsyzys) .

An easy calculation shows thatker D Nk[x, y]3,2,2) = [kx3x2x§, andso f1 = h; + cx?x%x%
for some ¢ € k. But then we may replace 81, by Bi, — cx; x2x32 B1n—1, which has the form
xz" — nxzx,%yiz’l_l + terms of lower z-degree. Thus we can assume that f; = hy, and
hence f, = hy + ¢, where D(cp) = 0. It is not difficult to see that

ker D Nklx, y1(5,4,4) = kx?xéx? (&) ka%xzxg‘ulz ® kxlzxéx3u13

Subtracting from Bj, a suitable linear combination of the invariants xfxgxgl Bin-2,
xlxgxg‘un B1n—2 and x1x§x3u13 B1n—2, we can assume that f> = hy, and the claim fol-
lows. O

Define Sy := {u12, u13, u23, Bin | i = 1,2,3, and0 < n < N} and set Ry :=k[Sy] C
R for all N > 0, extending our definition of the subalgebras Ry and R above. One easily
sees that Ry is the ring formed by the invariants of z-degree 0, that is, the invariants of the
induced G,-action on the hyperplane V,7(z) C A’. The Ry for N > 1 yield a family of
separating morphisms ¢y : A’ — Yy := Spec(Ry), and, by KURODA’s result mentioned
above, we have R = |J Rwn.

The following lemma is crucial.

Lemma 9.6 Forall N > 0 the subalgebra K[LT(Ry)] C R is generated by LT(Sy). Equiv-
alently, Sy is a SAGBI-basis of Ry.

Proof Put by, := LT(Bi,) and m;j := LT (u;):

3 3 3
bin = xiZ", mi2 =x{y2, mi3=x7y3, m3 =x3y3.
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(a) We first claim that the relations between these leading term are generated by

b1nbimbiimoasz — byboybormiz =0 where0 <n <m <k <N, and
binbjm — biwbjy =0where0 <n<m <N,m+n=m'+n">1, i, je{l,23}.

This is not difficult and we leave the details to the reader.
(b) It remains to show that, when we substitute the polynomials §;, defined in Lemma 9.5
in the relations above, the leading term of the result belongs to k[LT(Sy)], that is:

LT(BinBimBrku2s — BonPomPaku13) € kK[LT(Sy)], and
LT(BinBjm — Bin' Bjm') € K[LT(Sy)].

(bl) A simple computation shows that 81, B1m B1x423 — BonBam P2ku13 has z-degree n +
m + k and leading term —xfxgyzzm”*k = —b3,b3ub3rm1, which is indeed in
K[LT(Sy)].

(b2) A similar computation shows that 81,82, — Bin Bam has z-degree n + m — 1 and
leading term (n — n’)x?x%yzz”“”_l = (n — n")b3,b3,—1m12, which also belongs
to k[LT(Sn)].

(b3) It remains to consider B1,B1m — BiwPim'- For m + n < 1 this expression is
0, and for m + n > 2 it has z-degree m + n — 2 and leading term (nm —
n’m’)x?x2x3y2y3z”+’"’2 which s equal to (mn—m'n"Ymiaym3b3y—1b3y—1 ifn > 0
and to (—m'n"Ymym3b29b3 ,—2 if n = 0, with both belonging to k[LT(Sy)]. O

For subalgebras B; C B, C R the conductor is defined as usual by [B; : By] := {b €
B, | bB; C By}.

Lemma 9.7 (a) If f € Randdeg, f < N, then f € Ry.
(b) (x1,x2, x3)Ry+1 S Rp.
(©) [Ry : Rn+110 Ro = (x1, x2, x3) Ro.

Proof (a) This statement is clear for N = 0. If deg, f = N > 0, then LT(f) is a monomial
in LT(S) of z-degree N, and thus a monomial in LT(Sy). Now Lemma 9.6 implies that
LT(f) = LT(f) for some f € Ry. Thus deg, (f — f) < N, and the claim follows by
induction.

(b) We have LT(x; 8 n+1) = LT(Bi18;n), and so deg_(x;B;j n+1 — Bi1Bjn) < N, hence
(xiBjN+1 — Bi1Bjn) € Ry by (a), and thus x; B n+1 € Ry.

(c) Assume that fRy+1 C Ry for some f € Ro. Then ff;iny1 € Ry for all i, hence
LT(fBi n+1) € LT(Ry). Thus LT(fB; n4+1) = LT(f)x;z¥*! is a monomial in LT(Sy).
It follows that this monomial contains at least two factors of the form x;z" = LT(8;,).
This implies that LT( f), as a monomial in LT(Sp), contains a factor x ;. Hence, LT(f) =
xj LT( f ) for some f € Ry, and so f — x; f < f. Now the claim follows by induction
since xjRy+1 C Ry, by (b). m]

Lemma 9.8 If f € R is a multihomogeneous invariant whose multi-degree is not congruent
to (k,k, k) modulo 3, then f* € (xi,x2,x3). In particular, ﬂjz.n € (x1,x2,x3)R for all

j € {1,2,3}, n > 0. Moreover, the radical p := /(x1, x2, x3) R is generated by {B;,,} and
R/p =Kklu12, u13, ur3] is a polynomial ring in 3 variables.

Proof By induction, it suffices to show that LT( f 2y = LT(h) where h € (x1, x2, x3). But
LT(f), as a monomial in LT(S), must contain a factor of the form x; or x;z since otherwise
the multi-degree is congruent to (k, k, k) modulo 3. Hence, LT ( f 2y contains a factor x;, and
so LT(f?) = LT(x; p) for some p € R.
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Next we remark that u;; ¢ p, for all i, j. In fact, if ufi € (x1, X2, x3)R, then LT(ui.‘/.) =

LT (u; j)k is amonomial in LT(Sp) containing a factor x ; which is impossible. Since B;,, € p it
follows that R /p is generated by the (nonzero) images of 112, u13, u23 which are algebraically
independent, because their multi-degrees are linearly independent. Thus, R /p is a polynomial
ring in 3 variables, and p is generated by {B;,}. O

Proof of Proposition 9.3(d)—(e) For (d) we already know that x1, x2, x3 € fx/c,, hence

A/ (x1,x2,x3) € fx/G,, and by Lemma 9.8 we have B;, € fxyg, for all i,n. Now let
f € fxyc,- Since R = Ro + (Bin)R we can assume that f € Ry. Since Ry is finitely
generated there is an N > 0 such that Ry = (Ry) y, and so fkﬂl- N+1 € Ry for some k > 0
and all i. Hence fk € (x1, x2, x3) R by Lemma 9.7(c), and (d) follows.

Finally, (e) follows from the above and Lemma 9.8. O
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