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Abstract The first part of this paper is a refinement of Winkelmann’s work on invariant
rings and quotients of algebraic group actions on affine varieties, where we take a more
geometric point of view. We show that the (algebraic) quotient X//G given by the possibly
not finitely generated ring of invariants is “almost” an algebraic variety, and that the quotient
morphism π : X → X//G has a number of nice properties. One of the main difficulties comes
from the fact that the quotient morphism is not necessarily surjective. These general results
are then refined for actions of the additive group Ga , where we can say much more. We
get a rather explicit description of the so-called plinth variety and of the separating variety,
which measures how much orbits are separated by invariants. The most complete results are
obtained for representations. We also give a complete and detailed analysis of Roberts’
famous example of a an action of Ga on 7-dimensional affine space with a non-finitely
generated ring of invariants.

1 Introduction

In all classification problems invariants play an important rôle. They let one distinguish non-
equivalent objects, characterize specific elements, or detect certain properties. For instance,
the genus of a complex smooth projective curve C determines the topology of the compact
surface C , and the discriminant of a polynomial tells us whether it has multiple roots. But
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232 E. Dufresne, H. Kraft

there are many other examples of important invariants, like the Alexander-polynomial of
a knot or the Dedekind ζ -function of a number field.

In the algebraic setting where we work over an algebraically closed field k, we can often
reduce a classification problem to the following general situation. There is an algebraic
variety X representing the objects, and an algebraic group G acting on X such that two
objects x, y ∈ X are equivalent if and only if they belong to the same orbit under G. In this
case the classification problem amounts to describing the orbit space X/G. Clearly, X/G
inherits some properties from X : it has a topology and the (continuous) functions on X/G
correspond to the (continuous) G-invariant functions on X . Of course, we would like to
see X/G again as an algebraic variety, but this cannot work in general, because X usually
contains nonclosed orbits, and so X/G contains nonclosed points.

If X is an affine varietywith coordinate ringO(X), we can look at the subalgebraO(X)G ⊂
O(X) of G-invariant functions and consider the morphism

πX : X → X//G := SpecO(X)G

induced by the inclusion. It is a categorical quotient in the category of affine k-schemes,
and has the usual universal property: Every G-invariant morphism X → Y factors uniquely
through πX . In some sense this is the best schematic approximation to the orbit space. We
will say that X//G is the quotient scheme and πX : X → X//G the quotient morphism or
shortly the quotient.

If G is reductive, then O(X)G is finitely generated and so X//G is an affine variety.
Moreover, πX has some nice properties ([19, chap. 1.2 Theorem 1.1]):

• πX is G-closed: If Z ⊂ X is G-stable and closed, then πX (Z) is closed.
• πX is G-separating: If Z , Z ′ ⊂ X are disjoint G-stable closed subsets, then πX (Z) ∩

πX (Z ′) = ∅.
In particular, πX is surjective and every fiber contains a unique closed orbit. Thus the variety
X//G classifies the closed orbits in X . In good situations, the general orbits are closed, and
so, at least generically, X//G is the orbit space.

If G is not reductive, then all this fails to be true. In particular, the invariant ring might not
be finitely generated and so the quotient X//G is not an algebraic variety, and the quotient
morphism πX is usually not surjective. The fact that X//G is not of finite type is considered
to be the main difficulty in handling non-reductive groups. We think that the non-surjectivity
of πX is even a more serious problem.

One of the aims of this paper is to show that the quotient X//G as a k-scheme is “almost
algebraic” in the following sense. An open subset U of a k-scheme is called an algebraic
variety or shortly algebraic if U , as a reduced scheme, is separated and of finite type. (The
separatedness is generally not an issue here, because we are working with affine schemes.)
Then we show that X//G contains large open algebraic subsets and that it shares many
properties with algebraic varieties. This is explained in Sects. 2 and 4 which are inspired
by Winkelmann’s work [25]. For example, if the base field is uncountable, then X//G is a
Jacobson scheme which implies that the Zariski topology on X//G is determined by the
Zariski topology on the k-rational points of X//G.

To have an idea of our approach and our results let us give a geometric interpretation
of Roberts famous example of an action of the additive group Ga = (k,+) on A7 with
a non-finitely generated ring of invariants. The details are given in the last Sect. 9. Let
π : A7 → A7//Ga be the quotient.

(a) The fixed point set F := (A7)Ga ≃ A4 is mapped under π to a single point π(0) ∈
A7//Ga ;
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Invariants and separating morphisms 233

(b) The complementA7
bd := A7\F is a principalGa-bundle over its imageπ(A7

bd) ⊂ X//Ga
which is an open algebraic subset and contains every open algebraic subsetU ofA7//Ga ;

(c) The image of π is π(A7) = π(A7
bd) ∪ {π(0)}.

(d) The complement (A7//Ga)\π(A7
bd) is isomorphic to A3.

An important new feature is the concept of a separating morphism ϕ : X → Y where Y
is an algebraic variety (cf. [3, section 2.3]). This means that ϕ is G-invariant and separates
the same orbits as πX does. Such morphisms always exist even when the invariants are not
finitely generated, but finding a “nice” separating morphism is usually a difficult task. For
Roberts example we get the following.

(e) There exists a separating morphism ϕ : A7 → A9 such that Y := ϕ(A7) is normal of
dimension 6.

(f) The induced map ϕ̄ : A7//Ga → Y is injective. It defines a homeomorphism π(A7) →
ϕ(A7) and an isomorphism π(A7

bd)
∼−→ ϕ(A7

bd).
(g) H := Y\ϕ(A7

bd) is a hypersurface in Y , and O(A7)Ga = O(Y\H).

Another important concept is the separating varietywhichmeasures howmuch the invari-
ants separate the orbits. It is defined as the reduced fiber product SX := X ×X//G X and
contains the closure of the graph $X := {(gx, x) | g ∈ G, x ∈ X}. If a general fiber of the
quotient map is an orbit and if G is connected, then $X is an irreducible component of the
separating variety. But even in nice situations, the separating variety may have additional
components. In general, the meaning of these other components is not yet well understood,
except for some special cases (see below). For Roberts’ example we find the following.

(h) The separating variety has two irreducible components: SA7 = $A7 ∪ F × F , both of
dimension 8.

Themost complete results are obtained for actions of the additive groupGa , in particular for
representations ofGa (Sects. 5–7). This part of our work was inspired by certain calculations
done by Elmer and Kohls in [8]. An important tool here is the geometric interpretation of
the zero set PX of the plinth ideal (Definition 5.2). If X is factorial, then X \PX is equal to
the open set Xbd where X is locally aGa-bundle. In Sect. 8 we generalize some of the results
for representations of Ga to Ga-actions induced by actions of SL2.

To prepare the reader for the difficulties in working with non-finitely generated algebras
we describe an easy example in Sect. 3.

2 General setup and notation

2.1 Invariants

Our base field k is algebraically closed. In the second part, starting with Sect. 5, we study
Ga-actions andwill assume that char k = 0. Sincewe have to deal with non-finitely generated
rings of invariants, we will work in the category of reduced k-schemes Z . However, from the
geometric point of view we are mainly interested in the k-rational points of Z which will
denote by Z(k). In this setting, a variety Z is a reduced separated k-scheme of finite type,
and in this case we will often confuse the scheme Z with its k-rational points Z(k).

Throughout this paper, we let X be a normal affine variety andG an algebraic group acting
on X . We denote by O(X) the k-algebra of regular functions on X and by O(X)G ⊂ O(X)
the subalgebra of G-invariant functions. The quotient is defined to be the affine k-scheme
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234 E. Dufresne, H. Kraft

X//G := SpecO(X)G .

If the base field k is uncountable, a famous result of Krull’s implies that X//G is a Jacobson
scheme, i.e.,O(X)G is a Jacobson ring [13]. This means that every radical ideal ofO(X)G

is the intersection of maximal ideals. Moreover, every closed point of X is k-rational in this
case, sinceO(X)G is contained in a finitely generated k-algebra. It follows that the Zariski-
topology on X//G is completely determined by the Zariski-topology on the k-rational points
(X//G)(k). This allows to work with k-rational points which are the only interesting objects
from a geometric point of view, as mentioned above.

Remark 2.1 If the k-algebra R is not a Jacobson ring, then there is a prime ideal p ⊂ R
which is not the intersection of the maximal ideal containing p. In geometric terms this means
the following. Denote by Z ⊂ Spec R the closed subscheme defined by p, and let Zcl ⊂ Z
be the subset of closed points. Then the closure Zcl in Spec R is strictly contained in Z .

2.2 Quotient morphism

The inclusion O(X)G ↪→ O(X) defines the quotient morphism

π = πX : X → X//G.

Although O(X)G might not be finitely generated, hence X//G is not of finite type, we will
see that the quotient X//G contains large open subschemes which are varieties. For this we
need the following result due to Derksen and Kemper [4, Propositions 2.7 and 2.9].

Proposition 2.2 Let R be a k-algebra. Define

fR := { f ∈ R | R f is finitely generated} ∪ {0}.
Then fR is a radical ideal of R. If R is contained in a finitely generated k-domain, then
fR ̸= (0).

The ideal fR will be called the finite generation ideal.

Remark 2.3 The open subset Spec R\V(fR) ⊂ Spec R is the union of all open subsets
U ⊂ Spec R which are algebraic. In fact, each such U is a finite union of open affine vari-
eties Ui , and each Ui is a finite union of some (Spec R) f j . We will denote the complement
Spec R\V(fR) by (Spec R)alg:

(Spec R)alg := Spec R\V(fR) =
⋃

U⊂Spec R
U open algebraic

U ⊆ Spec R.

Note that (Spec R)alg is itself a variety if and only if fR is the radical of a finitely generated
ideal. On the other hand, (Spec R)alg is always Jacobson and its closed points coincide with
its k-rational points.

Definition 2.4 Let Z = Spec R be an affine k-scheme. If A ⊂ Z is a closed subset we define
I (A) ⊂ R to be the (radical) ideal of functions vanishing on A.

(a) dim Z := Kdim R is the Krull-dimension of R.
(b) If Z is reduced and irreducible, i.e., if R is a domain, then k(Z) := Q(R) denotes the

field of fractions of R.
(c) If R is a domain, then tdegk R := tdegk Q(R) is the transcendence degree of the field

extension Q(R)/k.
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Invariants and separating morphisms 235

(d) If A ⊂ Z is closed, then codimZ A := min{ht p | p ⊃ I (A), p prime} where ht p is the
height of the prime ideal p.

As an example, we will see later in Theorem 4.3(a) that the quotient X//G is always finite
dimensional, and that dim X//G = tdegk O(X)G .

2.3 Algebraic varieties

Assume that Z = Spec R is a variety. Then Z = ⋃
i Zi is a finite union of irreducible closed

subsets, and dim Z = maxi {dim Zi }. Moreover, if Z is irreducible, then dim Z = tdegk R,
and for every irreducible closed subset A ⊂ Z we have dim A + codimZ A = dim Z .

Finally, if ϕ : Z → Y is a morphism where Y is an arbitrary reduced k-scheme, and if
A ⊂ Z is a closed subscheme, then ϕ(A(k)) is dense in ϕ(A) ⊂ Y . As mentioned before,
this last statement holds more generally if Z is a Jacobson scheme.

3 A first example

Let us discuss an interesting example. While it does not quite fit in our setting—it does not
arise from a quotient of an algebraic group action on a normal affine variety—it has a similar
behavior.

Consider the graded subring R := k[x, xy, xy2, xy3, . . .] ⊂ k[x, y] generated by the
monomials xyk , k = 0, 1, . . ., and set Z := Spec R.

(a) The finite generation ideal fR of R is equal to the homogeneous maximal ideal m0 =
(x, xy, xy2, . . .), and m0 =

√
x R.

(b) We have Z \ {m0} = Zx , and this is an affine algebraic variety with coordinate ring
k[x, x−1, y]
Now consider the morphism π : A2 → Z given by the inclusion R ⊂ k[x, y]. (This

morphism plays the role of the quotient morphism.)

(c) π : A2 → Z is surjective and induces an isomorphism (A2)x
∼−→ Zx .

(d) π : A2 → Z is a closed morphism.

Finally, we consider the affine morphism ϕ : A2 → A2 given by (x, y) 0→ (x, xy). (This
morphism plays the role of a separating morphism.)

(e) ϕ factors through π

A2 π
> Z

A2

ϕ̄∨ϕ >

and ϕ̄ is injective. Hence ϕ separates the same points of A2 as π does.
(f) ϕ̄ induces a homeomorphism Z → ϕ(A2) = A2

y ∪ {0}.
The proofs are not difficult and are left to the reader. They are based on the following

lemma.

Lemma 3.1 (a) We have R = k ⊕ m0 where m0 = xk[x, y] = (x, xy, xy2, . . .) is the
homogeneous maximal ideal of R.
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236 E. Dufresne, H. Kraft

(b) Let f ∈ k[x, y]. Then

f k[x, y] ∩ R =

⎧
⎪⎨

⎪⎩

f k[x, y] if f ∈ m0;
f R if f ∈ R\m0;
(x f )R if f /∈ R.

4 Separating morphisms

4.1 Separation

The so-called separation property will play an important role in this paper. The notion
goes back to Derksen and Kemper [3, section 2.3.2], and is also implicit in the work of
Winkelmann [25, Lemma 7].

Definition 4.1 Let X be an affine G-variety. A G-invariant morphism ϕ : X → Y where Y
is an affine variety is a separating morphism if it satisfies the following Separation Property:

(SP) If x, x ′ ∈ X (k) are separated by an invariant f ∈ O(X)G , i.e., if f (x) ̸= f (x ′), then
ϕ(x) ̸= ϕ(x ′).

Remark 4.2 If char k = 0, then the separation property (SP) implies that ϕ∗ induces an
isomorphism k(ϕ(X)) ∼−→ k(X//G). If char k > 0, we say that ϕ is strongly separating if ϕ

is separating and induces an isomorphism k(ϕ(X)) ∼−→ k(X//G).

It is shown in [3, Theorem 2.3.15] that separating morphisms always exist. In more
algebraic terms this means that one can find a finitely generated separating subalgebra
R ⊂ O(X)G , i.e., a subalgebra which separates the same k-rational points of X as the invari-
ant functions. We can always add invariant functions to R, and thus assume that R is normal
and that Q(R) = k(X//G), if necessary. Thus, a strongly separating morphism ϕ : X → Y
with Y normal always exists. A basic problem is to find a separating algebra with a small
number of generators.

4.2 Main results

A G-invariant morphism ϕ : X → Y where Y is an affine variety always factors through the
quotient morphism π : X → X//G:

X
π
> X//G

Y

ϕ̄∨ϕ >

Then ϕ is separating if and only if ϕ̄ is injective on the image π(X (k)) ⊂ (X//G)(k) of the
k-rational points. In the paper [25] Winkelmann studies this general set-up and proves a
number of fundamental results, e.g. that every such invariant ringO(X)G is the ring of global
regular functions on a quasi-affine variety and vice versa. Some of his results are contained
and extended in the following theorem, where we take a geometric point of view. From that
point of view we are mainly interested in the images π(X) ⊂ X//G and ϕ(X) ⊂ Y and how
they are related to (X//G)alg = X//G\V(fX//G) where fX//G ⊂ O(X)G denotes the finite
generation ideal (Proposition 2.2, Remark 2.3).
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Invariants and separating morphisms 237

Theorem 4.3 Let X be a normal affine variety with an action of an algebraic group G and
denote by π : X → X//G the quotient morphism. Let ϕ : X → Y be a dominant separating
morphism where Y is a normal affine variety.

(a) If A ⊂ X is an irreducible closed subset, then dim π(A) = dim ϕ(A) and
codimX//G π(A) = codimY ϕ(A). In particular,

dim X//G = dim Y = tdegk O(X)G .

(b) The map ϕ̄ : X//G → Y induces a homeomorphism π(X)
∼−→ ϕ(X).

(c) Let CX := X//G\π(X) be the complement. Then codimX//G CX > 1.
(d) The complement X//G\(X//G)alg has codimension > 1 in X//G.

Now assume that ϕ is strongly separating, and let CY := Y\ϕ(X) be the complement of the
image of ϕ.

(e) ϕ̄∗ induces an isomorphism O(Y \CY )
∼−→ O(X)G.

(f) ϕ̄−1(Y \CY ) ⊆ (X//G)alg, and the induced map ϕ̄−1(Y \CY )
∼−→ Y \CY is an

isomorphism of varieties.
(g) ϕ̄ induces an open immersion (X//G)alg\CX ↪→ Y .

Let us draw some diagrams. Suppose ϕ is strongly separating. The statements (b) and (f)
give

X//G < ⊃ π(X) < ⊃ ϕ̄−1(Y \CY ) ⊂ > (X//G)alg

Y

ϕ̄∨
< ⊃ ϕ(X)

homeo∨
< ⊃ Y \CY

≃∨

and from (e) we have

O(X//G) = O(ϕ̄−1(Y \CY ) ≃ O(Y \CY ).

From the statements (b) and (g) we get

Corollary 4.4 Assume ϕ : X → Y is dominant and strongly separating with Y normal.
If π(X) ⊇ (X//G)alg, then (X//G)alg is algebraic and ϕ̄ induces an open immersion
(X//G)alg ↪→ Y .

Proof Let U ⊆ (X//G)alg be an open algebraic subset. Then ϕ̄ : U → Y is injective and
birational, hence an open immersion by Zariski’s Main Theorem ([18, III.§9, page 209]).
Thus ϕ̄((X//G)alg) ⊆ Y is open and ϕ̄ : (X//G)alg

∼−→ ϕ̄((X//G)alg) is an isomorphism. ⊓6

Corollary 4.5 Assume ϕ : X → Y is dominant and strongly separating. If Y is factorial,
then O(X)G is finitely generated and ϕ̄ : X//G → Y is an open immersion. In particular,
X//G ≃ Y f := Y\VY ( f ) for a suitable f ∈ O(Y ).

Proof (a) If codimY CY > 1, then O(Y\CY ) = O(Y ) and so ϕ̄ : X//G ∼−→ Y is an isomor-
phism, by Theorem 4.3(d).
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238 E. Dufresne, H. Kraft

(b) If codimY CY = 1, then we have CY = VY ( f )∪C where f ∈ O(Y ) and codimY C > 1,
because Y is factorial. Hence f, f −1 ∈ O(Y \CY ) ≃ O(X//G), and so ϕ̄(X//G) ⊆ Y f .
Thus we can replace Y by Y f and get from (a) that X//G

∼−→ Y f . ⊓6
Corollary 4.6 If V is a rational representation of G and if ϕ : V → Y is dominant and
strongly separating with Y factorial, then ϕ̄ : V//G ∼−→ Y is an isomorphism.

Proof This is clear from the previous corollary, becauseO(V )G does not contain nonconstant
invertible functions. ⊓6
Remark 4.7 In the case where G is reductive, this last corollary is an easy consequence of
Igusa’s Criterion [10, Lemma 4].

We say that an affine k-scheme Z = Spec R is a cone with apex z0, if R = ⊕
i≥0 Ri is a

positively graded ring with R0 = k and z0 is the homogeneous maximal ideal. Geometrically
this means that Z admits an action of themultiplicative groupGm := k∗ with a single closed
orbit, namely the fixed point z0. An affine variety X is called a G-cone if X is a cone and the
G-action commutes with the Gm-action. In particular, the apex x0 is a fixed point for G. In
this case (X//G,π(x0)) is a cone, and the finite generation ideal fX//G is homogeneous.

Corollary 4.8 Let (X, x0) be a normal affine G-cone and (Y, y0) a normal affine cone.
Assume that ϕ : X → Y is homogeneous, dominant and strongly separating. If π(X0) ∈
(X//G)alg and ϕ̄−1(y0) = {π(x0)}, then ϕ̄ : X//G ∼−→ Y is an isomorphism. In particular,
O(X)G is finitely generated.

Proof The complement of (X//G)alg in X//G is a closed cone, hence empty, because it does
not contain the apex. ThusO(X)G is finitely generated. Since ϕ̄ : X//G → Y is homogeneous
and ϕ̄−1(y0) = {π(x0)} it follows that ϕ̄ is finite (see e.g. [26, Ch. VII, page 198, Lemma]).
By Theorem 4.3(f) it is also an open immersion, hence an isomorphism. ⊓6

Note that the special case of Corollary 4.8 for a representation of a reductive group G is
contained in [3, Proposition 2.3.12].

4.3 Proof of Theorem 4.3

The proof needs some preparation.

Lemma 4.9 LetW bean irreducible affine variety, R ⊆ O(W )ak-subalgebra andψ : W →
Z := Spec R the inducedmorphism. Then there is an f ∈ fR and a finite surjective morphism
ρ : W f → Z f × km, where m := dimW − tdegk Q(R), such that ψ |W f = prZ f

◦ρ:

W f
ρ
> Z f × km

Z f

prZ f∨ψ >

In particular, there is a subset U ⊆ ψ(W ) which is open, algebraic and dense in Z.

Proof By first inverting some f ∈ fR we can assume that R is finitely generated. In this case
the result is well known, cf. [1, Chap.V.3.1, Corollary 1]. ⊓6

The next two results can be found in [25, Lemmas 1, 2, and 6]. The first is due toNagata
[20].
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Invariants and separating morphisms 239

Lemma 4.10 The invariant ring R := O(X)G is aKrull-ring, i.e., it satisfies the following
conditions:

(a) R = ⋂
p∈P Rp where P is the set of the primes of R of height 1;

(b) Rp is a discrete valuation ring for all p ∈ P;
(c) For any nonzero r ∈ R the set {p ∈ P | p ∋ r} is finite.
(A reference for Krull-rings is [16, §12].)

Lemma 4.11 Let S ⊂ X//G be an irreducible closed subscheme of codimension 1, and put
H := π−1(S) ⊂ X. Then S = π(H).

Lemma 4.12 For any r ∈ O(X)G we have VX//G(r) = π(VX (r)).

Proof We can assume that r is neither zero nor invertible. Then rO(X)G = ⋂
finite p

(np ) is
a finite intersection of symbolic powers ([16, §12, page 88, Corollary to Theorem 12.3]).
Hence VX//G(r) =

⋃
finite Si where Si are irreducible closed subschemes of codimension 1.

Now the claim follows from the previous lemma. ⊓6
We will also need the following result; the proof is easy and left to the reader.

Lemma 4.13 Let Y be an irreducible variety, C ⊂ Y an irreducible closed subset of codi-
mension d and U ⊂ Y a nonempty open set. Then there is a chain

Y = C0 ⊃ C1 ⊃ · · · ⊃ Cd = C

of closed irreducible subsets such that

(i) codimY C j = j for j = 0, . . . , d, and
(ii) C j ∩U ̸= ∅ for j < d.

Proof of Theorem 4.3 (a) Lemma 4.9 implies that there is an open set U ⊆ A such that
π(U ) is open, algebraic and dense in π(A), and that ϕ(U ) is open, algebraic and dense in
ϕ(A). Now π(U (k)) → ϕ(U (k)) is bijective, since ϕ is separating. As π(U ) and ϕ(U )

are algebraic, it follows that dim π(A) = dim π(U ) = dim ϕ(U ) = dim ϕ(A).
To get the equality for the codimensions, we choose a nonempty open subset O ⊆ X
such that π(O) is open and algebraic in X//G, and such that U := ϕ(O) is open in Y .
From Lemma 4.13 there is a sequence C0 = Y ⊃ C1 ⊃ · · · ⊃ Cd = ϕ(A) of closed
irreducible subsets C j with dimC j = dim Y − j such that C j ∩ U ̸= ∅ for j < d .
Since ϕ̄ : π(O) → ϕ(O) is a bijective morphism of varieties, we see that, for j < d ,
Bj := ϕ̄−1(C j ) ∩ π(O) is irreducible of dimension dim Y − j , and that Bj ⊂ Bj−1.
It remains to see that Bd−1 ⊇ π(A), since this implies that codimX//G π(A) ≥ d =
codimY ϕ(A). If not, using again Lemma 4.9, we can find a subset U ⊂ π(A) which is
open and dense in π(A) and such that U ∩ Bd−1 = ∅. Then the image ϕ̄(U ) is disjoint
from ϕ̄(Bd−1 ∩ π(O)). Since ϕ̄(Bd−1 ∩ π(O)) = Cd−1, it follows that ϕ(A) = ϕ̄(U ) is
not contained in Cd−1, contradicting the assumption.

(b) The same argument as above shows that, for irreducible closed subsets A, B ⊂ X with
π(A) ! π(B), we have ϕ(A) ! ϕ(B). It follows that themapπ(X) → ϕ(X) is injective,
hence bijective, and open, hence a homeomorphism.

(c) For p ∈ X//G we have p ∈ CX = (X//G)\π(X) if and only if π(VX (p)) " V(p) where
V(p) denotes the zero set in X//G. Assume now that codimX//G CX = 1. This means
that CX contains an irreducible closed subscheme S of codimension 1 corresponding
to a prime ideal p ∈ CX of height 1. It follows that π(π−1(S)) " S, contradicting
Lemma 4.11.
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(d) Let S ⊂ X//G be an irreducible hypersurface and let p ⊂ R := O(X)G be the cor-
responding prime ideal of height 1. Then, by Lemma 4.11 and (b), H := ϕ̄(S) is
an irreducible hypersurface, and so the corresponding prime ideal p′ := p ∩ O(Y )
has also height 1. Moreover, O(Y )p′ ⊆ Rp " Q(R) = Q(O(X)G), by construc-
tion. Since O(Y )p′ is a discrete valuation ring this implies that O(Y )p′ = Rp. But
every irreducible hypersurface H ⊂ Y not contained in CY is of the form ϕ̄(S), hence
O(Y \CY ) =

⋂
p′=p∩O(Y ) O(Y )p′ = ⋂

p Rp = R, by Lemma 4.10.
(e) If f ∈ I (CY ), then Y f ⊂ Y \CY , and so O(Y ) f ⊃ O(Y \CY ) = O(X)G by (e). Thus ϕ̄

induces an isomorphism (X//G) f ≃ Y f , and so (X//G) f is algebraic.
(f) By (b), ϕ̄ : X//G\CX → Y is injective and birational. Hence, for every open algebraic

subset U ⊂ X//G, the map ϕ̄ : U \CX → Y is an open immersion, by Zariski’s Main
Theorem (see [18, III.§9, page 209]).

(g) By construction, ϕ(ϕ−1(CY )) does not contain a hypersurface, and neither does ϕ̄−1(CY )

by Lemma 4.11 and (a). The claim now follows since ϕ̄−1(CY ) ⊃ X//G\(X//G)alg, as
we have seen in the proof of (f). ⊓6

5 Ga-actions, local slices, and the plinth variety

5.1 Ga-bundles

From now on we assume that char k = 0. In this and the following sections we focus on
Ga-varieties, i.e., varieties with an action of the additive groupGa ≃ (k,+). AGa-variety X
(not necessarily affine) is called a trivial Ga-bundle if there is aGa-equivariant isomorphism
Ga × Y

∼−→ X , or, equivalently, if there is a Ga-equivariant morphism X → Ga . In this case,
Y can be identified with the orbit space X/Ga , and the quotient morphism π : X → X/Ga
admits a section. If X is affine, then X/Ga = SpecO(X)Ga , and this is an algebraic variety.

TheGa-variety X is called a principal Ga-bundle (for short, aGa-bundle) if there is aGa-
invariant morphism π : X → Z and an open covering Z = ⋃

i Ui such that p−1(Ui ) → Ui
is a trivial Ga-bundle for all i . In this case, Z can be identified with the orbit space X/Ga
and the morphism π has the usual universal properties. Again, if X is affine, then X/Ga =
SpecO(X)Ga , and this is an algebraic variety.

5.2 Local slices

Now let X be an affine Ga-variety. The Ga-action defines a locally nilpotent vector field
D ∈ Vec(X) := Derk(O(X)) which determines the Ga-action. Its kernel coincides with the
ring of invariants: ker D = O(X)Ga . If s ∈ O(X)Ga is a nonzero invariant and s = Df for
some f ∈ O(X), then D( f

s ) = 1 and thus the morphism

f
s
: Xs → Ga

isGa-equivariant. Suchmorphisms are called local slices. It follows that the affine open set Xs
is a trivial Ga-bundle, and Xs/Ga = SpecO(Xs)

Ga . In particular, O(Xs)
Ga = (O(X)Ga )s

is finitely generated and so s belongs to the finite generation ideal: s ∈ fX//Ga

Definition 5.1 Let X be an affine Ga-variety. The ideal pX//Ga ⊂ O(X)Ga generated by all
s ∈ O(X)Ga of the form s = Df for some f ∈ O(X) is called the plinth ideal:

pX//Ga := D(O(X)) ∩ ker D ⊆ O(X)Ga .
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The corresponding (reduced) closed subscheme PX//G ⊂ X//G is called the plinth scheme
of X//G whereas the zeros set PX := VX (pX//Ga ) ⊂ X is called the plinth variety of X . By
definition, we have PX = π−1(PX//G), and pX//Ga ⊆ fX//Ga .

The next result shows that outside the plinth variety the quotient morphism is a principal
Ga-bundle.

Proposition 5.2 We have π(X\PX ) = X//Ga\PX//Ga and this is an open algebraic variety
of X//Ga. Moreover, the morphism π : X \PX → X//Ga\PX//Ga is a principal Ga-bundle.

Proof If s = Df and Ds = 0, then π(Xs) = (X//Ga)s , and this is an open subset of X//Ga
which is an affine variety. Since we can cover X \PX with finitely many Xs j we see that
π(X\PX ) =

⋃
s∈pX//Ga

(X//G)s = X//G\PX//G is also covered by finitely many open affine
varieties (X//G)s j , hence is a variety. It remains to see thatπ separates theGa-orbits on X\PX .
This is clear for two orbits contained in the same Xs j . If O1 ⊂ Xs j and O2 ⊂ Xsk \Xs j , then
the invariant s j vanishes on O2, but not on O1. ⊓6
Definition 5.3 Let X be aGa-variety. Define Xbd ⊆ X to be the union of all openGa-stable
subsets U which are trivial Ga-bundles:

Xbd :=
⋃

U⊆X open
U a trivialGa -bundle

U.

If X is affine, it follows from Proposition 5.2 that X \PX ⊆ Xbd . We will see later
(Example 8.4) that the inclusion may be strict. However, this cannot happen if X is factorial.

Proposition 5.4 Let X be a factorial affine Ga-variety. Then

Xbd = X\PX .

In particular, π(Xbd) ⊆ X//Ga is an open subvariety, and Xbd → π(Xbd) is a principal
Ga-bundle.

Proof In the definition of Xbd we can assume that all Ui are affine. Since X is factorial, this
implies thatUi = Xti for a suitable invariant ti . On the other hand, if Xt is a trivialGa-bundle
where t ∈ O(X)Ga , then there is an h ∈ O(Xt ) such that Dh = 1. Writing h = f t−k we see
that s := tk = Df , and so Xs = Xt is of the form above. ⊓6

6 The case of a representation

6.1 Representations and the null cone

Let V be representation of Ga over a field k of characteristic zero. Then V extends to
a representation of SL2 := SL2(k), where Ga is identified with the unipotent subgroup

U ⊂ SL2 via s 0→
[
1 s
0 1

]
, (see [12, III.3.9]). It follows that the invariants O(V )Ga are

finitely generated (Weitzenböck’s Theorem, loc. cit.), and the multiplicative groupGm acts

linearly on V , (t, v) 0→ t · v, via the identification t 0→
[
t
t−1

]
∈ T ⊂ SL2. This defines a

decomposition of V into weight spaces:

V =
⊕

k

Vk, Vk := {v ∈ V | t · v = tkv}.
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Since the invariants are finitely generated, the quotient V//Ga := SpecO(X)Ga is an
affine variety. As usual, the nullcone is defined byN = NV := π−1(π(0)) ⊆ V . Recall that
theWeyl-groupW ≃ Z/2Z of SL2 acts on the zero weight space V0 = VGm . The nontrivial

element of W is represented by the matrix σ =
[
0 −1
1 0

]
∈ SL2.

Theorem 6.1 (a) NV = V+ := ⊕
k>0 Vk.

(b) PV = V \Vbd = V0 ⊕ V+. In particular, PV = NV if and only if the SL2-
representation V does not contain odd-dimensional irreducible representations.
(c) The image π(PV ) ⊂ V//Ga is closed. The induced map π |PV : PV → π(PV ) is
given by the SL2-invariants and has a factorization

PV = V+ ⊕ V0
pr−−−−→ V0

π0−−−−→ V0/W
π̄−−−−→ π(PV )

where π0 is the quotient by W and π̄ is finite and bijective.

Remark 6.2 Elmer and Kohls [8] gave an explicit construction of separating sets for inde-
composable representations, which were later extended to any representation by Dufresne,
Elmer, and Sezer [6].

The proof of the theorem needs some preparation.

6.2 Invariants and covariants

Let V be a representation of SL2. The graded coordinate ring O(V ) = ⊕
d≥0 O(V )d is a

locally finite and rational SL2-module. A homogeneous irreducible submodule F ⊂ O(V )d
is classically called a covariant of degree d and weight r , where r is the weight of the
highest weight vector f0 of F . This means that f0 is a homogeneous Ga-invariant and that
t · f0 = tr f0 for t ∈ Gm . In particular, dim F = r + 1. Thus, we always have r ≥ 0, and
r = 0 if and only if f0 is an SL2-invariant.Wewill say that f0 is a homogeneousGa-invariant
of degree d and weight r .

Clearly, the invariantsO(V )Ga are linearly spanned by the homogeneousGa-invariants of
degree d and weight r where d, r ≥ 0. Moreover, the homogeneousGa-invariants of degree
d and weight r > 0 linearly span the plinth ideal pV = ker D ∩ im D where D ∈ Vec(V )

is the locally nilpotent vector field corresponding to the Ga-action (see Definition 5.1). This
shows that the Ga-invariants are generated by pV together with the SL2-invariants.

In the following, we denote by V [n] the irreducible SL2-module of highest weight n, i.e.,
dim V [n] = n + 1. One can take V [n] := k[x, y]n , the binary forms of degree n, with the
standard linear action of SL2. It follows that the element σ ∈ SL2 representing the nontrivial
element of theWeyl group acts trivially on V [n]0 if n is odd or n ≡ 0 (mod 4), and by (− id)
if n ≡ 2 (mod 4).

In the proof below we will need the following classical result from invariant the-
ory of binary forms. Choose a basis of weight vectors of V [n] such that O(V [n]) =
k[x0, x1, . . . , xn], where xi has weight n − 2i .

Lemma 6.3 As an SL2-module we have theClebsch- Gordan decompositionO(V [n])2 ≃
V [2n] ⊕ V [2n − 4] ⊕ V [2n − 8] ⊕ · · · . The corresponding quadratic Ga-invariants fk ∈
V [2n − 4k]Ga have weight 2n − 4k and are of the form

fk = α0x0x2k + α1x1x2k−1 + · · · + αk x2k , k = 0, 1, 2, . . . , ⌊n/2⌋,
where all coefficients α j are nonzero.
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Proof For the binary forms V [2k] of even degree 2k there is a unique quadratic SL2-invariant
which has the form A = γ0x0x2k + γ1x1x2k−1 + · · · + γk x2k ∈ k[x0, . . . , xk] where all
coefficients γi are nonzero (see [23, Satz 2.6]; the invariant A is classically called “Apolare”).
Now k[x0, . . . , x2k] ⊂ k[x0, . . . , xn] = O(V [n]) is a Ga-stable subalgebra, hence A is a
quadratic Ga-invariant in O(V [n]) of weight 2n − 4k, and so fk is a multiple of A. ⊓6

Proof of Theorem 6.1 (a) Denote by k2 ≃ V [1] the standard representation of SL2 and
consider the closed embedding V ↪→ V ⊕ k2 given by v 0→ (v, e1). Then we have the
following diagram (see [12, III.3.2]):

V
ϕ−−−−→ W := V ⊕ k2

π

⏐⏐-
⏐⏐-π

V//Ga
≃−−−−→ W//SL2

In particular, NV = ϕ−1(NW ) = NW ∩ V . The Hilbert-Criterion tells us that the
elements w = (v, a) ∈ NW are characterized by the condition that 0 ∈ Gm gw for a
suitable g ∈ SL2 (see [12, III.2.1]). This implies that w = (v, e1) belongs to NW if and
only if 0 ∈ Gmv, i.e. if and only if v ∈ V+.

(b) We first show that for every v ∈ V \(V+ ⊕ V0) there is a homogeneous Ga-invariant f
of weight > 0 such that f (v) ̸= 0. For that we can assume that V is irreducible, i.e.,
V = V [n]. We have O(V ) = k[x0, x1, . . . , xn], where xi has weight n − 2i . Thus xi
vanishes on V+ if and only if 2i ≤ n, and xi vanishes on V+ ⊕ V0 if and only if 2i < n.
Now let v = (a0, a1, . . . , an) ∈ V\(V+⊕V0), and let ak be the first nonzero coefficient.
Then the quadratic Ga-invariant fk from Lemma 6.3 above gives fk(v) = αka2k ̸= 0,
and since k < n/2 the Ga-invariant fk has a positive weight.
It remains to show that every homogeneous Ga-invariant f of weight > 0 vanishes on
V+ ⊕ V0. But this is clear, because every monomial m = xd00 xd11 . . . xdnn of positive
weight must contain an xi of positive weight, i.e., with 2i < n. Hence m vanishes on
V+ ⊕ V0.

(c) The same argument shows that a homogeneous SL2-invariant restricted to V+ ⊕V0 does
not depend on V+. This implies that the induced morphism

π |PV : PV → π(PV ) ⊆ V//Ga

is given by the SL2-invariants and has the following factorization

PV = V+ ⊕ V0
pr−−−−→ V0

πSL2 |V0−−−−→ π(PV ) = π(V0) ⊂ V//SL2

where πSL2 : V → V//SL2 is the quotient by SL2. The following lemma shows that
πSL2 |V0 induces a finite bijective morphism V0/W → π(PV ), as claimed. ⊓6

The following general result was pointed out to us by the referee.

Lemma 6.4 Let G be a connected reductive group with maximal torus T and Weyl group
W. For any affine G-variety Z the natural map ZT /W → Z//G is finite and injective.

Proof The finiteness follows from [15, 2.1 Théorème]. Also, for any z ∈ ZT , the orbit
Gz ⊂ Z is closed, since the stabilizer contains a maximal torus, and Gz ∩ XT is a unique
W -orbit, because all maximal tori in Gz are conjugate. ⊓6
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7 The separating variety

7.1 Definitions

In Sect. 4, we discussed separating morphisms in the general context of a G-variety. We
now introduce the separating variety SX of a G-variety X , which measures how much the
invariants separate the orbits (see [11, Section 2]). Set

SX := {(x, y) ∈ X × X | f (x) = f (y) for all f ∈ O(X)G} =
⋃

z∈X//G
π−1(z) × π−1(z),

where π : X → X//G is the quotient morphism. More schematically, the separating variety
of X is the reduced fiber product (X ×X//G X)red. If Y ⊆ X is a G-stable subvariety, we write
SX,Y := SX ∩ (Y × Y ).

The separating variety SX contains the closure of the graph

$X := {(gx, x) | g ∈ G, x ∈ X} =
⋃

x∈X
Gx × Gx ⊆ X × X.

Note that $X = SX exactly when the quotient π is almost geometric, i.e., when all nonempty
fibers of π are orbits. Also, if $X is closed, then all orbits are closed and have the same
dimension. (The first statement is clear, and the second follows since Gx × {x} = p−1

2 (x)
where p2 : $X → X is the second projection.)

More generally, we have the following result, which is a first step to determine the closure
$X and to decide whether $X = SX . For simplicity, we assume that G is connected which
implies that $X is irreducible.

Proposition 7.1 Let G be connected and X a normal affine G-variety. Assume that there is
a dense open set U ⊆ X//G such that ϕ−1(u) is nonempty and contains a dense orbit for all
closed points u ∈ U. Set X ′ := π−1(U ) ⊆ X and P := X\X ′.

(a) SX,P is closed and SX = $X ∪ SX,P . In particular, $X is an irreducible component
of SX .
(b) If π−1(u) is a single orbit for every closed point u ∈ U, then

SX = $X ′ ∪ SX,P = $X ∪ SX,P = $X ∪ SX,P .

(c) Assume in addition that X ′ is smooth, that the G-action on X ′ is free, and that
codimX P > 1. Then either $X is closed, or $X\$X ′ has codimension 1 in $X .

Proof (a) If X//G is the disjoint union O ∪ A, where U is open and A closed, then SX =
SX,π−1(O) ∪ SX,π−1(A) where SX,π−1(O) is open, SX,π−1(A) is closed, and the union is
disjoint. Take (x, y) ∈ SX,X ′ . Then π(x) = π(y) =: u ∈ U . By assumption, the fiber
π−1(u) contains a dense orbit, say Gz = π−1(u). Hence,

(x, y) ∈ π−1(u) × π−1(u) = Gz × Gz = Gz × Gz ⊆ $X ′ = $X .

It follows that SX = SX,X ′ ∪ SX,P = $X ∪ SX,P .
(b) Since the fibers over U are orbits, we get SX,X ′ = $X ′ = $X ∩ (X ′ × X ′), and so

SX = SX,X ′ ∪ SX,P = $X ′ ∪ SX,P .

The claim follows.
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(c) Consider the morphism µ : G × X → X × X , (g, x) 0→ (gx, x), whose image is $X .
By assumption, it induces an isomorphism µ0 : G × X ′ ∼−→ $X ′ , and thus, a birational
morphism µ̃ : G×X → $̃, where $̃ → $X is the normalization. If codim$X

$X\$X ′ > 1,
then by Igusa’s criterion [10], µ̃ is an isomorphism, and so $X is closed. ⊓6

Remark 7.2 The first statement of the proposition above has the following converse: If $X is
an irreducible component of SX , then the general fiber of π : X → X//G contains a dense
orbit.

In order to see this, we can replace X//G be a dense open set and thus assume that
X//G is affine algebraic, that π : X → X//G is flat, and that the fibers are irreducible
of dimension n. Then every irreducible component of SX = X ×X//G X has dimension
2 dim X − dim X//G = dim X + n (see [9, Corollary 9.6 in Chap. III]). On the other hand,
dim $X = dim X + d where d := max{dimGx | x ∈ X}. Hence n = d and so the general
fiber contains a dense orbit.

7.2 The case of Ga-varieties

If X is a Ga-variety, then, by Proposition 5.2, the quotient π : X\PX → π(X\PX ) is a
Ga-bundle. This implies the following corollary.

Corollary 7.3 If X is a normal affine Ga-variety, then

SX = $X\PX ∪ SX,PX = $X ∪ SX,PX = $X ∪ SX,PX ,

and $X is an irreducible component of SX .

In the remaining part of this section, we determine the irreducible components of SV for
a representation V of Ga (cf. [7], where this is done for indecomposable representations).
We have seen in Theorem 6.1(c) that the image π(PV ) ⊂ V//Ga is closed and the induced
morphism π |PV : PV → π(PV ) has a factorization

PV = V+ ⊕ V0
pr−−−−→ V0

π0−−−−→ V0/W
π̄−−−−→ π(PV ), (∗)

where π0 is the linear projection ontoW and π̄ is finite and bijective. If v ∈ PV = V0 ⊕V+,
we denote by v0 the component of v in V0. Define the following closed subsets of SPV :

C := {(v, v′) ∈ PV × PV | v′
0 = v0}, Cσ := {(v, v′) ∈ PV × PV | v′

0 = σ (v0)}.
Both are irreducible and isomorphic to V0 × (V+ × V+). Now the factorization (∗) implies
the following result.

Lemma 7.4 (a) If σ acts trivially on V0, then SPV = C = Cσ is irreducible.
(b) If σ acts nontrivially on V0, then SPV = C ∪ Cσ has two irreducible components.
In particular, SPV is equidimensional of dimension dim V .

Now we can formulate our main result about the separating variety SV .

Theorem 7.5 We have SV = $V if and only if the Weyl group acts trivially on V0, or if
V = V [2] ⊕ km. Otherwise, SV has two irreducible components:

SV = $V ∪ C,

where dim $V = dim V + 1 and dimC = dim V .
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Proof We can assume that V SL2 = (0). In fact, if V = W ⊕ km , then $V = $W × km and
SV = SW × km . It is easy to see that for V = V [2] we have SV = $V . In all other cases, we
have dim V+ ≥ 2 which implies that the component C is not contained in $V . On the other
hand, $V = $V ∪ Cσ by Lemma 7.6 below, and the claim follows from Lemma 7.4. ⊓6

Lemma 7.6 We have $V = $V ∪ Cσ .

The proof needs some preparation. If X is a variety and R a k-algebra, we define the
R-valued points by X (R) := Mor(Spec R, X). Denote by k[[t]] the power series ring and
by k((t)) its field of fractions. We have a canonical inclusion X (k[[t]]) ⊂ X (k((t))) and a
canonical map X (k[[t]]) → X (k) = X which will be denoted by x = x(t) 0→ x(0) = x |t=0.
We will constantly use the following known fact. For completeness we include a short proof.

Lemma 7.7 Ifϕ : X → Y is amorphismand y ∈ ϕ(X), then there is an x = x(t) ∈ X (k((t)))
such that ϕ(x) ∈ Y (k[[t]]) and ϕ(x)|t=0 = y. Moreover, if y /∈ ϕ(X), then x /∈ X (k[[t]]).

Proof We first claim that there is an irreducible curve D ⊂ Y such that y ∈ D and D∩ϕ(X)
is open and dense in D. This is obvious if Y = kn . In general, we can assume that Y is
normal and dim Y > 1. Then we choose a finite surjective morphism ψ : Y → kn and use
the Going-down property of ψ to show that there is an irreducible hypersurface in H ⊂ Y
which contains y and meets ϕ(X) in a dense set. Now the claim follows by induction. (A
stronger result can be found in [17, Lemma on page 56]: Any two points of an irreducible
variety can be connected by an irreducible curve.)

As a consequence we see that there is a smooth curve C , a point c ∈ C and a morphism
ρ : C \{c} → X such that ϕ ◦ ρ : C \{c} → Y extends to a morphism ρ̃ : C → Y with
ρ̃(c) = y:

C\{c} ⊂ > C

ρ̃(c) = y

X

ρ∨ ϕ
> Y

ρ̃∨

The completion ÔC,c is isomorphic to k[[t]] and the corresponding point p = p(t) ∈ C(k[[t]])
has the property p(0) = c. Clearly, p ∈ (C \{c})(k((t))), and so x := ρ(p) ∈ X (k((t))) has
the required property: ϕ(x) = ρ̃(p) ∈ Y (k[[t]]) and ϕ(x)|t=0 = ρ̃(c) = y. If x ∈ X (k[[t]]),
then y = ϕ(x)|t=0 = ϕ(x(0)) ∈ ϕ(X), proving the second claim. ⊓6

Proof of Lemma 7.6 We know from Proposition 7.1 that E := $V ∩ SPV = $V \$Vbd has
codimension 1 in $V , hence E is either C , Cσ , or C ∪ Cσ by Lemma 7.4.

We now show that $V\$V ⊆ Cσ , which implies that $V = $V ∪Cσ , hence the claim. Let
(v′, v′′) ∈ $V \$V ⊆ SPV . Since $V is the image of the morphism µ : Ga × V → V × V ,
(s, v) 0→ (sv, v), there are element s(t) ∈ Ga(k((t)))\Ga(k[[t]]) and v(t) ∈ V (k[[t]]) such
that the following holds:

(a) v(0) = v′′;
(b) s(t)v(t) ∈ V (k[[t]]) and (s(t)v(t))|t=0 = v′.

If v′′
0 ∈ (V0)σ , then v′

0 = v′′
0 = σv′′

0 , and so (v′, v′′) ∈ Cσ . Thus we can assume that v′′
0 is

not fixed by σ , and we have to show that v′
0 = σv′′

0 = −v′′
0 .

Now we use Luna’s Slice Theorem in the point v′′
0 . Denote by T ⊂ SL2 the diagonal

matrices identified with Gm as above, and by U ⊂ SL2 the upper triangular unipotent
matrices, which we can identify with Ga . There is a T -stable subspace W ⊂ V containing
v′′
0 such that the morphism µ : SL2 ∗T W → V given by µ([g, w]) := gw is étale in a

123

Author's personal copy



Invariants and separating morphisms 247

SL2-saturated open neighborhood of [e, v′′
0 ] (see [24]). Here the bundle SL2 ∗T W is the

quotient (SL2 ×W )//T under the action t (g, w) := (gt−1, tw), and the quotient morphism
SL2 ×W → SL2 ∗T W is a principal T -bundle. Since principal T -bundles are locally trivial
for the Zariski topology, this implies that we can lift the elements v(t) and s(t)v(t) to
SL2 ×W , i.e., there are elements g(t) ∈ SL2(k[[t]]), w(t) ∈ W (k[[t]]) and p(t) ∈ T (k((t)))
such that the following holds:

(a′) g(t)w(t) = v(t), hence g(0)w(0) = v′′;
(b′) g̃(t) := s(t)g(t)p(t)−1 ∈ SL2(k[[t]]) and w̃(t) := p(t)w(t) ∈ W (k[[t]]), hence
g̃(t)w̃(t) = s(t)v(t) and g̃(0)w̃(0) = v′.

Setting

s(t) =
[
1 f (t)
0 1

]
, g(t) =

[
a(t) b(t)
c(t) d(t)

]
, p(t) =

[
r(t) 0
0 r(t)−1

]
,

where f (t) ∈ k((t))\k[[t]], a(t), b(t), c(t), d(t) ∈ k[[t]], and r(t) ∈ k((t)), we get

g̃(t) = s(t)g(t)p(t)−1 =
[
r−1(a + f c) (b + d f )r

r−1c dr

]
.

Obviously, p(t) /∈ T (k[[t]]), since s(t) /∈ U (k[[t]]). Thus either r(t) ∈ tk[[t]] and c(0) = 0,
or r(t)−1 ∈ tk[[t]] and d(0) = 0. In the first case we get

g(0) ∈
{[∗ ∗

0 ∗

]
∈ SL2

}
=: B and g̃(0) ∈

{[∗ ∗
∗ 0

]
∈ SL2

}
= Bσ, (1)

and in the second

g(0) ∈ Bσ and g̃(0) ∈ B. (2)

Moreover, since w̃(t) = p(t)w(t), we get w̃(0)0 = w(0)0. Also note that for any b ∈ B and
u ∈ V0 ⊕ V+ we have (bu)0 = u0.

Assume now that we are in case (1). Since g(0)w(0) = v′′ ∈ V0 ⊕ V+, we get w(0) ∈
V0⊕V+, hencew(0)0 = (g(0)w(0))0 = v′′

0 . On the other hand, g̃(0) ∈ Bσ and g̃(0)w̃(0) =
v′ ∈ V0 ⊕ V+, hence σ w̃(0) ∈ V0 ⊕ V+ and (σ w̃(0))0 = v′

0. Thus v
′
0 = σ w̃(0)0 =

−w̃(0)0 = −w(0)0 = −v′′
0 , i.e. (v

′, v′′) ∈ Cσ , and the claim follows. Case (2) is similar. ⊓6

8 Ga-actions on SL2-varieties

In this section, we generalize some of the results obtained for representations of Ga to
affine SL2-varieties. As in Sect. 6 we identify Ga with the unipotent subgroup U ⊂ SL2

via s 0→
[
1 s
0 1

]
, and Gm with the maximal torus T ⊂ SL2 via t 0→

[
t 0
0 t−1

]
. Thus

every SL2-variety X can be regarded as a Ga-variety. These Ga-varieties have some very
special properties, e.g. the following classical result which was already used in the proof of
Theorem 6.1 (see [12, III.3.2]).

Lemma 8.1 Let X be an affine SL2-variety and denote by k2 the standard representation
of SL2. Then the closed Ga-equivariant embedding X ↪→ X × k2, x 0→ (x, e1), induces an
isomorphism X//Ga

∼−→ (X ×k2)//SL2. In particular, theGa-invariantsO(X)Ga are finitely
generated.
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An immediate consequence is that for every closed embedding X ↪→ Y of affine SL2-
varieties the induced map X//Ga → Y//Ga is also a closed embedding.

Proposition 8.2 Let V be a representation of SL2 and X ⊂ V a closed SL2-stable subset.

(a) SX = SV ∩ (X × X).
(b) For any v ∈ (V0 ⊕ V+) ∩ X we have v0 ∈ X.
(c) PX = PV ∩ X. More precisely, the image of the plinth ideal pV under the restriction
map is the plinth ideal pX//Ga .
(d) SX,PX = SV,PV ∩ (X × X).

Proof (a) The inclusion SX ⊆ SV ∩ (X × X) is obvious. Take (x, x ′) ∈ SV ∩ (X × X).
We have f (x) = f (x ′) for all f ∈ O(V )Ga . Since every element in O(X)Ga is the
restriction to X of an element in O(V )Ga , we get h(x) = h(x ′) for all h ∈ O(X)Ga , and
so (x, x ′) ∈ SX .

(b) Note that v0 ∈ Gmv, and the claim follows, since X is closed and SL2-stable.
(c) The restrictionmapO(V ) → O(X) is SL2-equivariant and so the image of an irreducible

SL2-subrepresentation W ⊂ O(V ) is either (0) or isomorphic to W . Therefore, the
generators of pV//Ga are mapped onto the generators of pX//Ga .

(d) This is clear from what has been said so far.
⊓6

Proposition 8.3 Let V be a representation of SL2 and X ⊂ V a closed SL2-stable subset.
Set X0 := XGm = X ∩ V0. Then the following are equivalent:

(i) SX = $X ;
(ii) $X = $V ∩ (X × X) and (x0 + V+) ∩ X = Gax0 for all x0 ∈ X0\(X0)

σ .

Proof Since $X = $V ∩ X and $V = $V ∪ Cσ (Lemma 7.6), we get

$X ⊆ $V ∩ (X × X) = $X ∪ (Cσ ∩ (X × X)) ⊆ SX ,

and from SV = $V ∪ Cσ ∪ C we obtain

SX = SV ∩ (X × X) = $X ∪ (Cσ ∩ (X × X)) ∪ (C ∩ (X × X)).

Therefore, $X = SX if and only if $X ⊇ $V ∩ (X × X) and (C\Cσ )∩ (X × X) ⊂ $X . But
the latter condition is clearly equivalent to (x0 + V+) ∩ X = Gax0 for all x0 ∈ X0\(X0)

σ .
⊓6

Example 8.4 Let X := SL2 /T where T is acting by rightmultiplication on SL2. This variety
is the smooth 2-dimensional affine quadric X = V(xz− y2+ y) ⊂ k3, and the quotient map
is given by

πSL2 : SL2 → X,
[
a b
c d

]
0→ (ab, ad, cd).

Clearly, X is an SL2-variety where the action is induced by left multiplication on SL2, and
thus a Ga-variety. The quotient by Ga is A1, and the quotient map is given by

SL2 /T ∋
[
a b
c d

]
T 0→ cd, i.e. X ∋ (x, y, z) 0→ z.

The plinth ideal is generated by z and is reduced. The plinth variety PX consists of the two

orbits O1 := UT and O2 := UσT where σ :=
[
0 −1
1 0

]
, and so Xalg = X \(O1 ∪ O2).
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Moreover, the inducedmorphisms X\Oi → A1 are both trivialGa-bundles, and so X\Oi ≃ A2

for i = 1, 2. Thus Xbd = X , butπ : X → A1 is not aGa-bundle, becauseπ−1(0) = O1∪O2.
It follows that

$X =
⋃

O orbit

O × O is open in SX = $X ∪ (O1 × O2) ∪ (O2 × O1).

Since SX ⊂ X × X is the hypersurface defined by f := π ◦ pr1 −π ◦ pr2, the irreducible
components of SX have codimension 1 in X × X , hence SX = $X .

Example 8.5 Now let us look at Y := SL2 /N , where N = T ∪ σT is the normalizer of
T . Then σ induces an automorphism of order 2 on X = SL2 /T commuting with the Ga-
action, and the automorphism − id on the quotient X//Ga = A1. Thus Y = X/⟨σ ⟩ and
Y//Ga = A1/{± id} ≃ A1. Since σ (O1) = O2 in the notation of Example 8.4 we see
that the plinth variety PY = π−1(0) is a single orbit, but the plinth ideal pY is not prime.
Therefore, π : Y → A1 is a geometric quotient, but not a principal Ga-bundle. In this case,
Ybd = Yalg = X \PY , and SY = $Y .

9 ROBERTS’ example

In this section we discuss Roberts’ counterexample to Hilbert’s fourteenth problem [22].
We assume that char k = 0 and define an action of the additive group Ga on A7 as follows:

s · (a1, a2, a3, b1, b2, b3, c) :=
(
a1, a2, a3, b1 + sa31, b2 + sa32, b3 + sa33, c + s(a1a2a3)2

)
.

It corresponds to the locally nilpotent vector field

D := x31
∂

∂y1
+ x32

∂

∂y2
+ x33

∂

∂y3
+ (x1x2x3)2

∂

∂z
,

where we use the coordinates O(A7) = k[x1, x2, x3, y1, y2, y3, z]. Put R := O(A7)
Ga and

let π : A7 → A7//Ga := Spec(R) denote the quotient morphism.
The xi are invariants, and D(yi ) = x3i , hence x

3
i ∈ pA7//Ga

, and so

(x1, x2, x3) ⊆ √
pA7//Ga

⊆ fA7//Ga

(see Definition 5.1). It follows that A7
xi → (A7//Ga)xi is a trivial Ga-bundle for i = 1, 2, 3.

This allows to find the following additional invariants:

u12 := x31 y2 − x32 y1, u13 := x31 y3 − x33 y1, u23 := x32 y3 − x33 y2,

β11 := x1z − x22 x
2
3 y1, β21 := x2z − x21 x

2
3 y2, β31 := x3z − x21 x

2
2 y3.

Define the following subalgebras of the ring of invariants R:

R0 := k[x1, x2, x3, u12, u13, u23] ⊂ R1 := R0[β11,β21,β31] ⊂ R.

We then have

(R1)xi = O(A7)
Ga
xi = O(A7

xi )
Ga for i = 1, 2, 3. (∗)

Using a symbolic computation software like Singular [2], it is easy to see that Y0 :=
Spec R0 ⊂ A6 is the normal hypersurface defined by the equation x31u12+x32u13+x33u23 = 0,
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and that Y := Spec R1 ⊂ A9 has dimension 6 and its ideal I (Y ) is generated by the following
5 functions:

x21u12 − x3β21 + x2β31, x22u13 − x1β31 + x3β11, x23u23 − x2β11 + x1β21,

u12u13u23(x1x2β31 + x2x3β11 + x3x1β21)+ u12β3
11 + u13β3

21 + u23β3
31,

x1x2x3u12u13u23 + x1u12β2
11 + x2u13β2

21 + x3u23β2
31.

Remark 9.1 The given relations between the generators of R0 and R1 imply that the ideals
(x1, x2, x3)R0 ⊂ R0 and (x1, x2, x3)R1 ⊂ R1 are prime, that

R0/(x1, x2, x3) ≃ k[u12, u13, u23] and
R1/(x1, x2, x3) ≃ k[u12, u13, u23,β11,β12,β13]/(u12β3

11 + u13β3
21 + u23β3

31).

In particular, VY0(x1, x2, x3) ≃ A3, and VY (x1, x2, x3) ⊂ A6 is a normal hypersurface of
dimension 5.

Lemma 9.2 The variety Y is normal.

Proof Again, using for example Singular [2], one verifies that the ideal x1R1 is radical.
Let f ∈ Q(R1) be integral over R1, that is, suppose f satisfies an equation

f d = a1 f d−1 + a2 f d−2 + · · · + ad ,

where ai ∈ R1. Since (R1)x1 is normal, we have xm1 f ∈ R1 for some m ≥ 0. We choose a
minimalm with this property. It follows from the equation above that (xm1 f )d ∈ x1R1, hence
xm1 f ∈ x1R1, and thus f ∈ R1, because of the minimality of m. ⊓6

The action of Ga on A7 commutes with the (Gm)
3-action with weights

(1, 0, 0), (0, 1, 0), (0, 0, 1), (3, 0, 0), (0, 3, 0), (0, 0, 3), (2, 2, 2),

and so (Gm)
3 also acts on A7//Ga . As the invariants ui j ,βi j are multihomogeneous, (Gm)

3

also acts on Y0 and Y .
The following two propositions collect the main properties of π : A7 → A7//Ga . Most

statements follow from what we have done so far. The difficult part is the description of the
finite generation ideal fX//Ga .

Recall that PA7 ⊂ A7 denotes the plinth variety, PA7//Ga
⊂ A7//Ga the plinth scheme

(Definition 5.1), and SA7 ⊂ A7 × A7 the separating variety (Sect. 7).

Proposition 9.3 (a) PA7 = (A7)Ga = VA7(x1, x2, x3) ≃ A4, and

A7
bd = A7\PA7 = A7

x1 ∪ A7
x2 ∪ A7

x3 .

(b) π(PA7) = π((A7)Ga ) = {π(0)}, and

π(A7) = (A7//Ga)x1 ∪ (A7//Ga)x2 ∪ (A7//Ga)x3 ∪ {π(0)} = π(A7
bd) ∪ {π(0)}.

(c) The separating variety SA7 has two irreducible components:

SA7 = $A7 ∪ (PA7 × PA7),

both of dimension 8.
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(d)We have fA7//Ga
= √

(x1, x2, x3) =
√
pA7//Ga

, and so

(A7//Ga)alg = π(A7
bd) = π(A7)\{π(0)} = A7//Ga\PA7//Ga

.

In particular, (A7//Ga)alg is algebraic.
(e) PA7//Ga

= VA7//Ga
(x1, x2, x3) is isomorphic to A3.

The inclusion R1 ⊂ R defines an invariant morphism ϕ : A7 → Y which factors through the
quotient π:

A7 π
> A7//Ga

Y

ϕ̄∨ϕ >

Proposition 9.4 (a) ϕ̄ induces an isomorphism π(A7
bd)

∼−→ ϕ(A7
bd).

(b) Y is normal and ϕ is a separating morphism.
(c) C := VY (x1, x2, x3) ⊂ Y is a hypersurface and O(A7)

Ga = O(Y \C).
(d) ϕ̄ induces a closed immersion PA7//Ga

↪→ Y with image in C. In particular,
ϕ̄ : A7//Ga → Y is injective.

Aproof that ϕ is a separatingmorphism and that (c) holds already appeared in [5, Example
4.2].

Proof Statement (a) holds since (A7//Ga)xi ≃ Yxi by (∗) above. We have seen in Lemma 9.2
that Y is normal, and the morphism ϕ̄ is injective on π(A7) since ϕ̄(π(x0)) = ϕ(x0) ∈
VY (x1, x2, x3), proving (b).

(c) follows from Theorem 4.3(e), because Y \ϕ(A7) = VY (x1, x2, x3)\{ϕ(0)}.
For (d) we have to show that R1

ϕ̄→ R ! R/fA7//Ga
= O(PA7//Ga

) is surjective and
contains x1, x2, x3 in its kernel. For this we use two results which will be proved below.
By Proposition 9.3(d) we have fA7//G = √

(x1, x2, x3). Hence, by Lemma 9.8, we get
R/fA7//Ga

= k[ū12, ū13, ū23], and so R1 → R/fA7 is surjective and contains x1, x2, x3
in the kernel. ⊓6

Proof of Proposition 9.3(a)–(c) We have π−1(VA7//Ga
(x1, x2, x3)) = π−1(π(0)), implying

(a). As π(π−1(VA7//Ga
(x1, x2, x3))) = {π(0)}, (b) follows. Finally, (c) follows from (a) and

Corollary 7.3. ⊓6

The proofs of the remaining statements (d) and (e) need some preparation. They will be
given at the end of the section.

To prove that O(A7)
Ga is not finitely generated, Roberts showed in [22, Lemma3] that

there exist invariants of the form

xi zn + terms of lower z-degree

for i = 1, 2, 3 and n ≥ 0. Later, Kuroda proved (see [14, Theorem3.3]) that any set S
of such invariants, together with u12, u13, u23, forms a SAGBI-basis for the lexicographic
monomial ordering with x1 ≺ x2 ≺ x3 ≺ y1 ≺ y2 ≺ y3 ≺ z. We will improve this statement
in Lemma 9.6 below.

Recall that if R is a subalgebra of a polynomial ring, then for a given monomial ordering,
a SAGBI-basis is a subset S ⊂ R such that k[LT(S)] = k[LT(R)] where LT(S) denotes the
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set of leading terms of the polynomials in S (see [21]). Such a basis always generates R.
Note that for Kuroda’s SAGBI-bases S defined above we always have

LT(S) = {x31 y2, x31 y3, x32 y3, x j zn | j ∈ {1, 2, 3}, n ≥ 0}.
Lemma 9.5 There exist invariants βin for n ≥ 0 and i = 1, 2, 3 which are multihomoge-
neous and of the form

βin = xi zn − nx2j x
2
k yi z

n−1 (∗∗)

+
(
n
2

)
(x2i x

4
j xk yi yk + x2i x j x

4
k yi y j − x5i x j xk y j yk)z

n−2

+ terms of lower z-degree

Proof By symmetry it suffices to look at the case i = 1. We know from [22, Lemma3]
that invariants β1n with leading term x1zn exist, and we can clearly assume that they are
multihomogeneous of degree (2n + 1, 2n, 2n), hence

β1n = x1zn + f1zn−1 + f2zn−2 + terms of lower z − degree

where f1, f2 ∈ k[x, y] := k[x1, x2, x3, y1, y2, y3], deg f1 = (3, 2, 2) and deg f2 =
(5, 4, 4). From D(β1n) = 0 we get the following differential equations

D( f1) = −nx1D(z) = −nx31 x
2
2 x

2
3

D( f2) = −(n − 1) f1D(z) = −(n − 1)x21 x
2
2 x

2
3 f1,

which have the special solutions

h1 := −nx22 x
2
2 y1, and h2 :=

(
n
2

) (
x21 x

4
2 x3y1y3 + x21 x2x

4
3 y1y2 − x51 x2x3y2y3

)
.

An easy calculation shows that ker D∩k[x, y](3,2,2) = kx31 x
2
2 x

2
3 , and so f1 = h1+cx31 x

2
2 x

2
3

for some c ∈ k. But then we may replace β1n by β1n − cx21 x
2
2 x

2
3 β1 n−1, which has the form

x1zn − nx2j x
2
k yi z

n−1 + terms of lower z-degree. Thus we can assume that f1 = h1, and
hence f2 = h2 + c2, where D(c2) = 0. It is not difficult to see that

ker D ∩ k[x, y](5,4,4) = kx51 x
4
2 x

4
3 ⊕ kx21 x2x

4
3u12 ⊕ kx21 x

4
2 x3u13

Subtracting from β1n a suitable linear combination of the invariants x41 x
4
2 x

4
3 β1 n−2,

x1x2x43u12 β1 n−2 and x1x42 x3u13 β1 n−2, we can assume that f2 = h2, and the claim fol-
lows. ⊓6

Define SN := {u12, u13, u23,βin | i = 1, 2, 3, and 0 ≤ n ≤ N } and set RN := k[SN ] ⊂
R for all N ≥ 0, extending our definition of the subalgebras R0 and R1 above. One easily
sees that R0 is the ring formed by the invariants of z-degree 0, that is, the invariants of the
induced Ga-action on the hyperplane VA7(z) ⊂ A7. The RN for N ≥ 1 yield a family of
separating morphisms ϕN : A7 → YN := Spec(RN ), and, by Kuroda’s result mentioned
above, we have R = ⋃

N RN .
The following lemma is crucial.

Lemma 9.6 For all N ≥ 0 the subalgebra k[LT(RN )] ⊂ R is generated by LT(SN ). Equiv-
alently, SN is a SAGBI-basis of RN .

Proof Put bin := LT(βin) and mi j := LT(ui j ):

bin = xi zn, m12 = x31 y2, m13 = x31 y3, m23 = x32 y3.
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(a) We first claim that the relations between these leading term are generated by

b1nb1mb1km23 − b2nb2mb2km13 = 0 where 0 ≤ n ≤ m ≤ k ≤ N , and

binb jm − bin′b jm′ = 0 where 0 ≤ n ≤ m ≤ N ,m+n = m′+n′ ≥ 1, i, j ∈ {1, 2, 3}.
This is not difficult and we leave the details to the reader.

(b) It remains to show that, when we substitute the polynomials βin defined in Lemma 9.5
in the relations above, the leading term of the result belongs to k[LT(SN )], that is:

LT(β1nβ1mβ1ku23 − β2nβ2mβ2ku13) ∈ k[LT(SN )], and
LT(βinβ jm − βin′β jm′) ∈ k[LT(SN )].

(b1) A simple computation shows that β1nβ1mβ1ku23 − β2nβ2mβ2ku13 has z-degree n +
m + k and leading term −x31 x

3
3 y2z

m+n+k = −b3nb3mb3km12, which is indeed in
k[LT(SN )].

(b2) A similar computation shows that β1nβ2m − β1n′β2m′ has z-degree n + m − 1 and
leading term (n − n′)x31 x

2
3 y2z

n+m−1 = (n − n′)b3nb3m−1m12, which also belongs
to k[LT(SN )].

(b3) It remains to consider β1nβ1m − β1n′β1m′ . For m + n ≤ 1 this expression is
0, and for m + n ≥ 2 it has z-degree m + n − 2 and leading term (nm −
n′m′)x61 x2x3y2y3z

n+m−2 which is equal to (mn−m′n′)m12m13b2 n−1b3m−1 if n > 0
and to (−m′n′)m12m13b20b3 n−2 if n = 0, with both belonging to k[LT(SN )]. ⊓6

For subalgebras B1 ⊂ B2 ⊂ R the conductor is defined as usual by [B1 : B2] := {b ∈
B2 | bB2 ⊂ B1}.
Lemma 9.7 (a) If f ∈ R and degz f ≤ N, then f ∈ RN .

(b) (x1, x2, x3)RN+1 ⊆ RN .
(c) [RN : RN+1] ∩ R0 = (x1, x2, x3)R0.

Proof (a) This statement is clear for N = 0. If degz f = N > 0, then LT( f ) is a monomial
in LT(S) of z-degree N , and thus a monomial in LT(SN ). Now Lemma 9.6 implies that
LT( f ) = LT( f̃ ) for some f̃ ∈ RN . Thus degz( f − f̃ ) < N , and the claim follows by
induction.

(b) We have LT(xiβ j N+1) = LT(βi1β j N ), and so degz(xiβ j N+1 − βi1β j N ) ≤ N , hence
(xiβ j N+1 − βi1β j N ) ∈ RN by (a), and thus xiβ j N+1 ∈ RN .

(c) Assume that f RN+1 ⊂ RN for some f ∈ R0. Then fβi N+1 ∈ RN for all i , hence
LT( fβi N+1) ∈ LT(RN ). Thus LT( fβi N+1) = LT( f )xi zN+1 is a monomial in LT(SN ).
It follows that this monomial contains at least two factors of the form x j zn = LT(β jn).
This implies that LT( f ), as a monomial in LT(S0), contains a factor x j . Hence, LT( f ) =
x j LT( f̃ ) for some f̃ ∈ R0, and so f − x j f̃ ≺ f . Now the claim follows by induction
since x j RN+1 ⊂ RN , by (b). ⊓6

Lemma 9.8 If f ∈ R is a multihomogeneous invariant whose multi-degree is not congruent
to (k, k, k) modulo 3, then f 2 ∈ (x1, x2, x3). In particular, β2

jn ∈ (x1, x2, x3)R for all
j ∈ {1, 2, 3}, n ≥ 0. Moreover, the radical p := √

(x1, x2, x3)R is generated by {βin} and
R/p = k[ū12, ū13, ū23] is a polynomial ring in 3 variables.

Proof By induction, it suffices to show that LT( f 2) = LT(h) where h ∈ (x1, x2, x3). But
LT( f ), as a monomial in LT(S), must contain a factor of the form xi or xi z since otherwise
the multi-degree is congruent to (k, k, k) modulo 3. Hence, LT( f 2) contains a factor xi , and
so LT( f 2) = LT(xi p) for some p ∈ R.

123

Author's personal copy



254 E. Dufresne, H. Kraft

Next we remark that ui j /∈ p, for all i, j . In fact, if uki j ∈ (x1, x2, x3)R, then LT(uki j ) =
LT(ui j )k is a monomial in LT(S0) containing a factor x j which is impossible. Since βin ∈ p it
follows that R/p is generated by the (nonzero) images of u12, u13, u23 which are algebraically
independent, because their multi-degrees are linearly independent. Thus, R/p is a polynomial
ring in 3 variables, and p is generated by {βin}. ⊓6

Proof of Proposition 9.3(d)–(e) For (d) we already know that x1, x2, x3 ∈ fX//Ga , hence√
(x1, x2, x3) ⊆ fX//Ga , and by Lemma 9.8 we have βin ∈ fX//Ga for all i, n. Now let

f ∈ fX//Ga . Since R = R0 + (βin)R we can assume that f ∈ R0. Since R f is finitely
generated there is an N > 0 such that R f = (RN ) f , and so f kβi N+1 ∈ RN for some k > 0
and all i . Hence f k ∈ (x1, x2, x3)R by Lemma 9.7(c), and (d) follows.

Finally, (e) follows from the above and Lemma 9.8. ⊓6
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