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VARIETIES CHARACTERIZED BY THEIR ENDOMORPHISMS

Rafael B. Andrist and Hanspeter Kraft

Abstract. We show that two varieties X and Y with isomorphic endomorphism semi-

groups are isomorphic up to field automorphism if one of them is affine and contains a
copy of the affine line. A holomorphic version of this result is due to the first author.

1. Introduction

It is a well-known fact that an affine variety X over an algebraically closed field k is
determined (up to isomorphism) by its k-algebra of polynomial functions O(X). It is
natural to ask whether other algebraic structures like the group of automorphisms or
the semigroup of endomorphisms could determine a variety.

In general, the automorphism group might consist only of the identity, and the
endomorphism semigroup might consist of the identity and the constant self-maps
(see Proposition 3.1). Considering only automorphisms is usually hopeless, and the
situation is not even clear in the case of C

n where the automorphism group is huge.
The advantage of semigroups lies in the natural one-to-one correspondence between
points of the variety and its constant maps. Moreover, any such isomorphism of semi-
groups Φ: End(X) → End(Y ) is induced by conjugation with a map ϕ : X → Y , i.e.,
Φ(f) = ϕ ◦ f ◦ ϕ−1 (see Remark 2.3).

For topological spaces and continuous endomorphisms, the characterization by en-
domorphisms has been studied in detail, see e.g., the survey by Magill [Mag75].

For complex manifolds and holomorphic endomorphisms, the question has been in-
vestigated first by Hinkkannen in 1992 [Hin92] who showed with elementary methods
that a map ϕ : C → C which conjugates endomorphisms of C (i.e., entire holomorphic
functions on C) to endomorphisms of C is a composition of a continuous field isomor-
phism and a holomorphic automorphism of C, i.e., ϕ(z) = az + b or ϕ(z) = az + b
with a, b ∈ C, a �= 0.

In 1993, Eremenko [Ere93] proved for Riemann surfaces admitting non-constant
bounded holomorphic functions that they are determined by their semigroup of endo-
morphisms. His result and method of proof was extended to bounded domains in C

n

by Merenkov [Mer02] in 2002 and to the case of C
n by Buzzard and Merenkov [BM03]

in 2003.
The case of C

n was generalized to Stein manifolds which contain a properly em-
bedded copy of the affine complex line by the first author [And11] using a different
method. The basic idea is to consider O(X) as a subset of End(X) with the help of
the embedded affine line, and the crucial part is to identify the affine line after con-
jugation. This is possible due to the generalization of Hartogs’ theorem on separate
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analyticity [Har06] to complex Lie groups and making use of the fact that the affine
line can be viewed as a Lie group.

We will solve here the problem in the algebraic setting, see Theorem 2.1 below.

Remark 1.1. If an affine variety X admits a unipotent automorphism u of infinite
order, then it contains many affine lines, namely the non-trivial orbits under the action
of the additive group k+ := 〈u〉. The existence of such actions is measured by the
so-called Makar–Limanov-invariant; see [ML96].

2. The main results

From now on we assume that the base field k is algebraically closed of arbitrary
characteristic. We will confuse the affine line A

1 with the field k so that A
1 has the

structure of a field. In our setting, a variety X is a k-variety, and X is not necessarily
irreducible.

Theorem 2.1. Let X and Y be varieties and assume that there exists an isomorphism
End(X) � End(Y ) of semigroups. If X is affine and contains a closed subvariety
isomorphic to A

1, then X � Yσ where σ is an automorphism of the base field k.

(Here Yσ denotes the variety obtained from Y by twisting with the morphism
Specσ−1 : Spec k → Spec k.)

There is a canonical embedding X ↪→ End(X) by sending x ∈ X to the constant
map γx with value x. The following lemma is clear.

Lemma 2.2. The endomorphism γ ∈ End(X) is a constant map if and only if γ◦f =
γ for all f ∈ End(X). Moreover, we have f ◦ γx = γf(x) for any f ∈ End(X) and
x ∈ X.

Remark 2.3. The lemma implies that an isomorphism Φ: End(X) ∼−→ End(Y ) in-
duces a bijection ϕ : X → Y , because Φ(γx) is again a constant function, hence of the
form γy for some y ∈ Y . Moreover, we get Φ(f) = ϕ ◦ f ◦ ϕ−1 for all f ∈ End(X).
In fact, this is clear for the constant maps, by definition of ϕ, and then follows for all
f ∈ End(X) from the second part of the lemma.

This leads to the following definition.

Definition 2.4. A map ϕ : X → Y is called conjugating if it is bijective and induces a
homomorphism Φ: End(X) → End(Y ) by f 	→ ϕ◦f ◦ϕ−1. It is called iso-conjugating
if, in addition, the induced homomorphism Φ: End(X) → End(Y ) is an isomorphism.

Now the theorem above is a consequence of the next result.

Theorem 2.5. Let X,Y be two k-varieties and ϕ : X → Y an iso-conjugating map.
If X is affine and contains a closed subvariety isomorphic to A

1, then there is an
automorphism σ of k such that the composition of ϕ with the canonical map Y → Yσ

is an isomorphism X
∼−→ Yσ of varieties.
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3. Endo-free varieties

The following shows that the theorems do not hold if we drop the assumption that
one of the varieties contains a copy of the affine line. Call a variety X endo-free if
the only endomorphisms are the identity and the constant maps. In this case we can
identify End(X) with the semigroup {id} ∪X where the multiplication on X is given
by x ◦ y = x. This shows that every bijective map ϕ : X → Y between two endo-free
varieties is iso-conjugating. Hence Theorem 2 cannot hold for an endo-free variety.

Proposition 3.1. If k is not the algebraic closure of a finite field, then there exist
endo-free smooth affine k-varieties of arbitrary dimension.

As pointed out by the referee the assumption on k is necessary. In fact, for k = Fp

any k-variety is defined over a finite field and thus admits the Frobenius
endomorphism.

Let A be a simple abelian variety with a polarization λL : A → A∨ defined by a
very ample invertible sheaf L. Recall that λL(a) := t∗aL ⊗ L−1 where ta : A → A
is the translation x 	→ x + a. Denote by F := kerλL the finite kernel of λL. It
follows from Bertini’s Theorem (see [Har77, Chapter II, Theorem 8.18]) that there
is a prime divisor D on A such that L = L(D) and that Supp(D) ∩ F = {0} where
Supp(D) ⊂ A denotes the underlying hypersurface. Moreover, A \ Supp(D) is affine.
For a ∈ A we use the notation Da to denote the translated divisor ta(D) = D+ a, so
that L(Da) = t∗−aL(D).

Lemma 3.2. If Supp(Da) = Supp(Db), then a = b.

Proof. If Supp(Da) = Supp(Db), then Da = Db as divisors and so λL(−a) = λL(−b),
hence a− b ∈ F = kerλL. Since 0 ∈ Supp(D) we get a ∈ Supp(Da) = Supp(D) + a =
Supp(D) + b, hence a− b ∈ Supp(D) which implies a = b. �
Lemma 3.3. Let ϕ : A → A be a morphism, and let a ∈ A be an element of infinite
order. If ϕ(Supp(D)) ⊆ Supp(D) and ϕ(Supp(Da)) ⊆ Supp(Da), then ϕ = id.

Proof. Every morphism ϕ : A → A is the composition of a homomorphism with a
translation: ϕ(x) = ρ(x) + d ([Mil08, Corollary 1.2]). Since A is simple and the im-
age of ϕ is not a single point, it follows that ϕ and ρ are both surjective, hence
ϕ(Supp(D)) = Supp(D) = ρ(Supp(D))+d. It follows that Supp(D)+a = Supp(Da) =
ϕ(Supp(Da)) = ϕ(Supp(D))+ρ(a) = Supp(D)+ρ(a), and so ρ(a) = a by Lemma 3.2.
This implies that ρ(na) = na for all n ∈ Z, hence ρ = id, because Za ⊂ A is
Zariski-dense. Finally, we have Supp(D) = ϕ(Supp(D)) = Supp(D)+d, and so d = 0,
hence ϕ = id. �
Lemma 3.4. Let a1, . . . , am ∈ A be distinct elements of infinite order where m ≥ 1.
Then every non-constant morphism ψ : A\Supp(D+Da1 +· · ·+Dam) → A\Supp(D+
Da1 + · · · +Dam) is an isomorphism of finite order which extends to A.

Proof. The morphism ψ extends to a (finite surjective) morphism ϕ : A→ A, because
every rational map from a non-singular variety to an abelian variety is regular, see
[Mil08, Theorem 3.2]. By construction, ϕ(Supp(D +Da1 + · · · +Dam)) = Supp(D +
Da1 +· · ·+Dam), hence ϕ permutes the irreducible components Supp(Dai). Therefore,
a suitable power of ϕ leaves every Supp(Dai) invariant, hence satisfies the assumptions
of Lemma 3.3, and the claim follows. �
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Recall that the isomorphisms of A stabilizing D form a finite group IsoD(A),
because D is very ample. In fact, the linear system |D| defines a closed embedding
of IsoD(A) into some PGLn(k), hence IsoD(A) is a linear algebraic group, and every
linear algebraic group of isomorphisms of an abelian variety is finite.

Proposition 3.5. Let a, b ∈ A be two elements of infinite order and assume that

(1) b �= ±a, a �= 2b, b �= 2a;
(2) For any automorphism ρ ∈ Aut(A) of order 3 of the form ρ = ψ−ψ(0) where

ψ ∈ IsoD(A), we have b �= a+ ρ(a) and a �= b+ ρ(b).

Then the variety A \ Supp(D +Da +Db) is endo-free.

Proof. Any isomorphism ϕ : A ∼−→ A of order 2 is a either a translation tc with a 2-
torsion element c ∈ A2, or it is of the form ϕ(x) = −x+ d. Similarly, an isomorphism
ϕ : A ∼−→ A of order 3 is either a translation tc with a 3-torsion element c ∈ A3,
or it is of the form ϕ(x) = ρ(x) + d where ρ is an automorphism of order 3 and
d+ ρ(d) + ρ2(d) = 0.

Now let ψ : A \ Supp(D +Da +Db) → A \ Supp(D +Da +Db) be a non-constant
morphism. By Lemma 3.4, ψ extends to an isomorphism ϕ : A ∼−→ A permuting the
hypersurfaces Supp(D), Supp(Da), Supp(Db). If ϕ is not the identity, then we are in
one of the following three cases.

(i) ϕ has order 2 and fixes Supp(D). Then ϕ(x) = −x + d and so Supp(D) =
ϕ(Supp(D)) = −Supp(D) + d. Hence, ϕ(Supp(Da)) = −(Supp(D) + a) + d =
Supp(D)− a which is different from Supp(D) + b by assumption. So this case
cannot occur.

(ii) ϕ has order 2 and fixes Supp(Db). Again ϕ(x) = −x + d, and Supp(Da) =
Supp(D) + a = ϕ(Supp(D)) = −Supp(D) + d. But then

ϕ(Supp(Db)) = −(Supp(D) + b) + d = Supp(D) + a− b

which is different from Supp(Db) = Supp(D) + b, by assumption. So this case
cannot occur either, as well as the case where ϕ fixes Supp(Da).

(iii) ϕ has order 3. We can clearly assume that ϕ(Supp(D)) = Supp(Da) and that
ϕ(Supp(Da)) = Supp(Db). Moreover, ϕ(x) = ρ(x) + d with an automorphism
ρ of order 3. In addition, ψ := ϕ − a ∈ IsoD(A) and ρ = ψ − ψ(0). First we
get Supp(Da) = Supp(D) + a = ϕ(Supp(D)) = ρ(Supp(D)) + d, and then

Supp(D) + b = Supp(Db) = ϕ(Supp(Da)) = ϕ(Supp(D) + a) =

= ρ(Supp(D)) + ρ(a) + d = Supp(D) + a+ ρ(a),

hence b = a+ ρ(a), contradicting assumption (2).

Thus ϕ = id and the claim follows. �

Proof of Proposition 3.1. Let A be a simple abelian variety. If k is not the algebraic
closure of a finite field, then the elements of A of infinite order form a dense set.
Moreover, the conditions (1) and (2) of Proposition 3.5 define a non-empty open set
of A× A, because IsoD(A) is finite. Thus we can find pairs (a, b) of elements of A of
infinite order satisfying the assumptions of Proposition 3.5. �
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4. Iso-conjugating maps

For S ⊂ End(X) and x0 ∈ X we define the following zero set :

V(S, x0) := {x ∈ X | f(x) = x0 for all f ∈ S} ⊂ X.

This is clearly a closed subset of X.

Lemma 4.1. If ϕ : X → Y is a conjugating map and Φ: End(X) → End(Y ) the
corresponding homomorphism, then ϕ(V(S, x0)) = V(Φ(S), ϕ(x0)).

Proof. Recall that ϕ is bijective. We have

x ∈ V(S, x0) ⇐⇒ f(x) = x0 for all f ∈ S

⇐⇒ ϕ(f(x)) = ϕ(x0) for all f ∈ S

⇐⇒ Φ(f)(ϕ(x)) = ϕ(x0) for all f ∈ S

⇐⇒ ϕ(x) ∈ V(Φ(S), ϕ(x0)). �

Remark 4.2. In general, not every closed subset A ⊂ X is of the form V(S, x0).
However, if X is affine and contains a copy of the affine line, then we have an embed-
ding O(X) = Mor(X,A1) ⊂ End(X), and one gets VX(S) = V(S, 0) for S ⊂ O(X)
and 0 ∈ A

1 ⊂ X where VX(S) ⊂ X is the zero set of S. Hence, in this case every
closed subset A ⊂ X is of the form V(S, x0).

Lemma 4.3. Let ϕ : X → Y be a conjugating map where X is affine. If A ⊂ X
is a closed subset isomorphic to A

1, then ϕ(A) ⊂ Y is closed and the induced map
ϕ|A : A→ ϕ(A) is conjugating.

Proof. By the previous remark and Lemma 4.1 the subset B := ϕ(A) ⊂ Y is closed.
Moreover, the restriction O(X) → O(A) is surjective. This implies that Mor(X,A) →
Mor(A,A) = End(A) is surjective, because A � A

1. If α ∈ End(A) and α̃ : X → A
a lift of α, then Φ(α̃) = ϕ ◦ α̃ ◦ ϕ−1 ∈ End(Y ) maps B into itself, and Φ(α̃)|B =
ϕ|A ◦ α ◦ (ϕ|A)−1 ∈ End(B). �

5. Algebraic fields

The basic ingredient in the proof of Theorem 2.5 is the following result.

Proposition 5.1. Let ϕ : A
1 → Z be a conjugating map. Then there is an isomor-

phism ψ : Z ∼−→ A
1 such that the composition ψ◦ϕ : A

1 → A
1 is a field automorphism.

Proof. The variety Z inherits from A
1 the structure of a commutative field isomorphic

to k such that the additions αz0 : z 	→ z + z0, the multiplications μz0 : z 	→ z0z and
the power maps z 	→ zn, n ∈ N, are morphisms. It follows that Z is smooth.

Let 0 resp. 1 ∈ Z be the identity elements for addition resp. multiplication, and
put Z∗ := Z \ {0}.

(a) Z is connected, hence irreducible. In fact, if Z0 denotes the connected com-
ponent of 0, then any other component has the form z0 + Z0. Since 0 ∈ Z0

and 0 = z0 0 ∈ z0Z
0 it follows that z0Z0 = Z0 for all z0 ∈ Z∗. Hence Z = Z0,

because Z0 contains elements �= 0.
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(b) Let 
 be a prime different from char k, and denote by λ : Z → Z the power map
z 	→ z�. Put K := λ∗(k(Z)) ⊆ k(Z) and denote by Ks ⊂ k(Z) the separable
closure of K in k(Z). Let Z̃ be the normal closure of Z in Ks. Then we get
the following commutative diagram where λ̄ is finite and purely inseparable,

hence bijective, and π is finite and separable. Moreover, the multiplications
μz induce automorphisms μ̄z of Z̃ such that the following diagram commutes:

As a consequence, π : Z̃∗ → Z∗ is smooth, because π is smooth on a non-empty
open set U ⊂ Z̃ and therefore smooth in μ̄z(U) for all z ∈ Z∗.

(c) The map π : Z̃ → Z is ramified in 0̄ := λ̄(0) ∈ Z̃. In fact, consider the
multiplication μζ where ζ is a primitive 
th root of unity. From above, we get
the following commutative diagram:

The differential of μ̄ζ in 0̄ is a non-trivial automorphism of the tangent space
T0̄Z̃, because the order of μζ is prime to char(k). Hence, dπ0̄ : T0̄Z̃ → T0Z
cannot be an isomorphism.

(d) Now the “purity of the branch locus” implies that dimZ = 1 (cf. [AK71],
[AK73]). Hence Z is either an affine or a projective smooth curve. In both
cases, Z∗ is a smooth affine algebraic curve whose automorphism group is
infinite, and so Z∗ � A

1 \ {0} or Z∗ � A
1. In the second case, Z̃ � P

1 which
is impossible, because P

1 has no automorphism of order 
 with a single fixed
point. Thus Z � A

1, and there is a unique isomorphism ψ : Z ∼−→ A
1 with
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ψ(0) = 0 and ψ(1) = 1. It follows that ρ := ψ ◦ ϕ : A
1 → A

1 is a conjugating
map with ρ(0) = 0 and ρ(1) = 1.

(e) It remains to see that ρ is a field automorphism. The map ρ ◦ μz ◦ ρ−1 is an
automorphism of A

1 fixing 0 and sending 1 to ρ(z), hence it is equal to μρ(z).
It follows that

ρ(z1z2) = ρ(μz1(z2)) = (ρ ◦ μz1 ◦ ρ−1)(ρ(z2)) = μρ(z1)(ρ(z2)) = ρ(z1)ρ(z2).

Similarly, we see that ρ ◦ αz ◦ ρ−1 is a fixed point free automorphism of A
1

sending 0 to ρ(z), hence is equal to αρ(z) which implies, as before, that ρ(z1 +
z2) = ρ(z1) + ρ(z2). �

Remark 5.2. In case of k = C it suffices to consider only the additive structure on Z.
A result of Palais’ [Pal78] on separately polynomial maps then shows that Z has the
structure of an algebraic group. Using the Euclidean topology on Z and the universal
covering C

d → Z one could conclude, as in the holomorphic setting (see [And11]),
that Z is isomorphic to C.

6. Proof of the main result

For a variety Y and a field automorphism σ : k → k we define Yσ := Spec k ×Spec k Y
using the base change Specσ−1 : Spec k → Spec k. Thus, we have a canonical bijec-
tion πσ : Yσ → Y which sends closed sets into closed sets and induces an isomorphism
End(Yσ) ∼−→ End(Y ), i.e., πσ is iso-conjugating. If Y ⊂ kn is defined by the poly-
nomials f1, . . . , fm, then Yσ ⊂ kn is defined by the polynomials fσ

1 , . . . , f
σ
m where

(
∑

i cix
i)σ :=

∑
i σ

−1(ci)xi, and the map πσ : Yσ → Y is given by (a1, . . . , an) 	→
(σa1, . . . , σan). In particular, (An)σ = A

n and πσ = σ in this case.

Proof of Theorem 2.5. We fix a closed embedding A
1 ⊆ X. Since X is affine, the

image of A
1 is a zero set of the form V(S, 0) and so Z := ϕ(A1) ⊂ Y is closed and the

induced map A
1 → Z is conjugating (Lemma 4.3). It follows from Proposition 5.1 that

there is an isomorphism ψ : Z → A
1 such that the composition σ := ψ ◦ ϕ : A

1 → A
1

is a field automorphism. Composing ϕ with π−1
σ : Y → Yσ and replacing Y by Yσ we

can assume that there is an embedding A
1 ⊆ Y such that ϕ|A1 = idA1 :

X
ϕ−−−−→ Y

∪
�
⏐
⏐ ∪

�
⏐
⏐

A
1

A
1

We thus obtain an embedding O(X) = Mor(X,A1) ⊂ End(X), and similarly for Y .
Moreover, for f ∈ O(Y ), we find

ϕ∗(f) = f ◦ ϕ = ϕ−1 ◦ f ◦ ϕ ∈ Mor(X,A1) = O(X).

The same holds for (ϕ−1)∗ which shows that ϕ∗ : O(Y ) → O(X) is an isomorphism.
Since X is affine, it follows that ψ := ϕ−1 : Y → X is a morphism inducing an
isomorphism ψ∗ : O(X) ∼−→ O(Y ). Now the claim follows from Lemma 6.1 below. �
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Lemma 6.1. Let Y be a variety. Assume that O(Y ) is finitely generated and that the
canonical morphism ψY : Y → SpecO(Y ) is bijective. Then Y is affine, and ψY is an
isomorphism.

Proof. Zariski’s Main Theorem in Grothendieck’s form ([Gro67, Théorème 8.12.6],
cf. [Mum99, Chapter III, Section 9]) implies that ψY admits a factorization ψY = τ ◦η,

where η is an open immersion and τ a finite morphism. From this we get inclusions
O(Y ) ⊆ O(Y ′) ⊆ O(Y ), and thus τ is an isomorphism. It follows that ψY is a bijective
open immersion, hence an isomorphism. �
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