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Lecture 1: Introduction/Overview
Idea: GK = Gal(K

s|K), K a field, K
s

a separable closure of K, (resp. πét
1 (X) = πét

1 (X, x),
X algebraic variety over base S, geometric point x : Spec(K

s
) → X,) gives information on K

(resp. X)
Good (‘anabelian’): isomorphism type of K (resp. X) ‘obtainable’
Even better: object isomorphic to K (resp. X) ‘constructible’ from GK (resp. πét

1 (X))
example 0: GK trivial ⇔ K separably closed
example 1: X smooth projective curve over C. Then, by [1, Corollaire XII.5.2] we have

πét
1 (X) = ̂πtop

1 (X(C))
prf.

≈
̂〈

α1, . . . , αg, β1, β2, . . . , βg |
g∏
i=1

[αi, βi] = 1

〉prf.

.

Hence, πét
1 (X) encodes only the topological genus g.

More interesting cases: Let us look at GQ = Gal(Q/Q) and related objects. (One can
replace GQ with GK , K a number field, in the following discussion.)

example 2:

Theorem 1 (Artin 1924 [2]). K ⊂ Q a subfield. Then, GK is non-trivial finite ⇔ ∃ι : Q ↪→ R
such that K = ι−1(R) ⇔ ∃ archimedean place v of Q such that K = QDv

(Dv = StabGQ(v)
decomposition group).

Proof. See Section 1.8.

Corollary 1. The decomposition groups of archimedean places are the finite non-trivial closed
subgroups of GQ.

Recall (for now): a place of K is an equivalence class of absolute values on K.
Write P(K) for the places of K. Note that P(Q) = lim←−K⊆Q number field

P(K).

Pf (K) = non-archimedean places, P∞(K) = archimedean places
Question: What about non-archimedean places?

Theorem 2 (Neukirch 1969 [25]). K ⊂ Q. Then, (GK is solvable, has l-cohomological di-
mension 2 for any prime l and either there exists a prime p 6= 2 such that the maximal pro-p
quotient Gk(p) of GK is a free pro-p group of rank 2 or Gk(2) is a Demuskin group of rank
3) ⇔ GK ≈ Gal(L/L) (L/Qp finite extension) ⇔ ∃ι : Q ↪→ Qp such that ι−1(Qp) ⊆ K ⇔ ∃!
v ∈ Pf (Q) such that K is finite extension of QDv

.

Corollary 2. ∃ group-theoretic characterization of decomposition subgroups of GQ.

Tools for proof of Theorem 2:

uniqueness: Dv ∩Dw = {1} for any v 6= w ∈ P(Q). (Hence, QDv ·QDw
= Q.)

existence: - class field theory, - Brauer groups Br(K) = H2(GK , K
∗
), - Hasse principle (K

a number field):

1→ Br(K)→
∑

v ∈ P(K)

Br(Kv)→
∑

invv Q/Z→ 1,

- structure of absolute Galois groups of local fields
1.1 The anabelian geometry of finitely generated fields

Theorem 3 (Neukirch 1969 [25], Uchida [47]). K, L number fields. Then, Φ : GK → GL is
an isomorphism ⇒ ∃! φ : L

s → K
s

such that Φ(g) = φ−1gφ. In particular, K ≈ L and

Isom(L,K)→ Isom(GK , GL)/ Inn(GL),

where for σ : L → K we choose a lifting σ : L
s → K

s
. This induces σ∗ : GK = Gal(K

s|K) →
Gal(L

s|L) = GL, ϕ 7→ σ−1 ◦ ϕ ◦ σ, unique up to inner automorphisms of GL.
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Sketch of proof:
(1) Theorems 1 and 2 give a bijection between P(K

s
) ≈ P(L

s
).

(2) From this, deduce a correspondence P(K) ≈ P(L).
(3) Show that the primes splitting completely in L/Q and K/Q agree.
(4) Assume L, K normal for simplicity: Use Cebotarev’s Theorem.
Generalizations:
(1) (Neukirch 1969 [24]) In Theorem 12 we can replace the isomorphism Φ : GK → GL by

an isomorphism Gmax.solv.
K → Gmax.solv.

L , where Gmax.solv. denotes the maximal solvable quotient
of G.

(2) (Uchida 1977 [48]) function fields (transcendence degree 1 over finite field)
(3) (Pop 1995 [31, 32, 33, 44]) finitely generated fields (i.e. fields that are finitely generated

over their prime fields)
1.2 Some anabelian yoga (after Grothendieck,...)
Want: precise notion of anabelian categories to talk about above results.
Caveat: The following is only correct for bases S → Spec(Q). Otherwise inseparability

issues.
A subcategory A ⊂ SchS,conn. is S-anabelian if
(1) ∀X, Y ∈ obj(A) : morphA(X, Y ) = IsomSchS

(X, Y )
(2) X 7→ πét

1 (X) induces fully faithful (covariant) functor A → G, obj(G) = profinite groups
with augmentations G2 → πét

1 (S), morph(G1, G2) = Isomπét
1 (S)(G1, G2)/ Inn(ker(G2 → πét

1 (S))).
Above (Pop): Finitely generated fields (at least those of characteristic 0 with our notations)

form an anabelian category over Spec(Z).

Conjecture 1 (Grothendieck 1983 [9]). Let K be a number field. Then, hyperbolic curves over
K form an anabelian category over Spec(K).

hyperbolic = smooth, geometrically connected, negative Euler characteristic χ = 2−2g−n <
0

Examples: P1 \ {0, 1,∞}, E \ {P}, hyperelliptic curves
Note: πét

1 (X) non-abelian iff g(X) ≥ 2. This explains the term ‘anabelian’.

Theorem 4 (Tamagawa 1997 [46]). K number field. The affine hyperbolic curves over K form
an anabelian category over Spec(K).

Proof: hyperbolic curves over finite fields, Uchida’s technique

Theorem 5 (Mochizuki 1996 [20]). K number field. The hyperbolic curves over K form an
anabelian category over Spec(K).

Proof: builds upon Theorem 4.
Mochizuki was also able to prove the following unexpected result:

Theorem 6 (Mochizuki 1999 [22]). L/Qp local field. The proper hyperbolic curves over L form
an anabelian category over Spec(L).

Proof: uses p-adic Hodge theory
1.3 A model-theoretic analogue
Replace GK ≈ GL by Th(K) ≈ Th(L), where Th(K) is the first-order theory associated

with K considered as a model of the standard theory of fields. (This means K and L have the
same elementary type.)

Conjecture 2. K,L finitely generated fields. Then, Th(K) ≈ Th(L) implies K ≈ L.
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As of today, this conjecture is still open in general.1 Many cases are proven in [34].
1.4 The ‘anabelian’ geometry of local fields
Given Theorem 6, is there a version of Theorem 12 for local fields L/Qp?
Hope: GK ≈ GL ⇒ K ≈ L. This is totally wrong.
In fact,

Theorem 7 (Jannsen-Wingberg [13], Diekert 1984 [5]). Let L/Qp a local field and assume√
−1 ∈ L if p = 2. Then, GL ≈ an explicit pro-finite (topologically) finitely generated group.

For the precise description of GL (if p 6= 2) see Theorem 7.5.14 in the web-version of [29].

Theorem 8 (Jarden-Ritter [14], Ritter 1978 [37], Jenkner [15]). L,K/Qp local fields and assume√
−1 ∈ L if p = 2. Then, GL ≈ GK if and only if L0 = K0 (L0, K0 maximal abelian subfield

of L, K) and [L : Q] = [K : Q].

Solution: Use more group-structure, namely the upper ramification filtration Γ
(r)
K of GK

Write Gfilt.
K = (GK , (Γ

r
K)r∈Z) and Isomfilt. for filtration-preserving isomorphism.

Theorem 9 (Mochizuki 1996 [21]). K,L local fields. Then,

Isom(L,K)→ Isomfilt.(G
filt.
K , Gfilt.

L )/ Inn(GL)

is an isomorphism.

This result is the little brother of Theorem 6; its proof uses p-adic Hodge theory.

1The proof in [39] is incorrect, cf. [40].

http://www.mathi.uni-heidelberg.de/~schmidt/NSW2e/
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Lecture 2: Introduction/Overview II
Recall (last time): S-anabelian categories A ⊂ SchS,conn., A → G, X 7→ (πét

1 (X)→ πét
1 (S)).

The category A is anabelian iff

morphA(X, Y ) = IsomSchS
(X, Y ) = Isomπét

1 (S)(π
ét
1 (X), πét

1 (Y ))/ Innπét
1 (Y )(ker(πét

1 (Y )→ πét
1 (S))).

No mention of base points. Well-defined by fact (3) below. (Here, a base point s → S is
chosen and all x, y must map to s.)

Question: What about homomorphisms/objects of different dimension?
1.5 The Section conjecture
Facts on πét

1 (X, x) (References: [1] or [45] (nice read))
Recall: étale = flat and unramified
(1) SGA I [1]: X connected algebraic variety, x→ X geometric point. Consider fiber functor

F(X,x) : FEt/X → Sets, Y 7→ HomX(x, Y ) = ‘point y ∈ Y over x (= image of x in X) and
k(y)→ k(x)’. Set πét

1 (X, x) = Aut(F ). The group πét
1 (X, x) classifies the finite étale coverings

of X in analogy to the topological fundamental group classifying topological coverings.
Fact: ∃ inverse system (Xi, xi)→ (X, x), i ∈ I, of finite étale Galois coverings such that

lim−→HomX(Xi, Y ) = F(X,x)(Y ) (pro-representable).

lim←−(Xi, xi) = pro-étale universal covering (X̃, x̃) of (X, x). πét
1 (X, x) = AutX(X̃, x̃) = lim←−AutX(Xi).

Hence, πét
1 (X, x) is pro-finite.

Example: Gm,C has finite étale-coverings ϕn : Xn = Gm → Gm, t 7→ tn, n ≥ 1. X̃ is the
pro-scheme lim←−nXn with morphisms Xn → Xm, t 7→ tn/m, if m|n. From AutGm(ϕn : Xn →
Gm) = µn(C) we infer AutGm(X̃) = µ(C) ≈ Ẑ. (Base-points ‘do not matter’ in this case by
(2).)

(2) functoriality: Given x→ X, y → Y , f : X → Y , f(x) = y.
X → Y induces FEt/Y → FEt/X , Z 7→ Z ×Y X. It is easy to see that

F(X,x)(Z ×Y X) = HomX(x, Z ×Y X) = HomY (x, Z) = HomY (y, Z) = F(Y,y)(Z),

where in the second equation f(x) = y is used. Get πét
1 (X, x)→ πét

1 (Y, y).
(3) different base points: If x′ is another geometric point, then ∃γ : FX,x ≈ FX,x′ (an étale

path). This induces a map πét
1 (X, x)→ πét

1 (X, x′), g 7→ γ◦g◦γ−1. If γ′ : FX,x ≈ FX,x′ is another

one, then γ′◦γ−1 ∈ Aut(FX,x′) = πét
1 (X, x′). Conclusion: ∃ isomorphism πét

1 (X, x)→ πét
1 (X, x′),

unique up to composing with an inner automorphism of πét
1 (X, x′).

Relative version: (S, s) base, x, x′ over s. X → S. Can demand that γ : FX,x ≈ FX,x′ induces
the identity on pull-backs of FEt/S (i.e., F(X,x)(Z ×S X) = F(S,s)(s, Z) = F(X,x′)(Z ×S X) for

all Z ∈ FEt/X). Uniqueness up to composing with Innπét
1 (X)(ker(πét

1 (X)→ πét
1 (S))) (instead of

Inn(πét
1 (X))).

(4) homotopy exact sequence ([1, Théorème IX.6.1]: K a field, X → Spec(K) an algebraic
variety, x : Spec(K

s
)→ X = X ⊗K K

s → X → Spec(K) a geometric point. Then,

πét
1 (X/K) : 1→ πét

1 (X, x)→ πét
1 (X, x)→ πét

1 (Spec(K), x) ≈ GK → 1 (1)

Back to above question: Recall

morphG(G1, G2) = Isomπét
1 (S)(G1, G2)/ Inn(ker(G2 → πét

1 (S))).

Try instead:

morphG(G1, G2) = Homπét
1 (S)(G1, G2)/ Inn(ker(G2 → πét

1 (S))).
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Given K be a number field (or a finitely generated field), X a hyperbolic curve over K, set
S = Spec(K), G1 = πét

1 (S) = GK , G2 = πét
1 (X, x). Outcome:

X(K) = HomSpec(K)(Spec(K), X) =? HomGK
(GK , π

ét
1 (X, x))/ Inn(ker(πét

1 (X, x)→ GK)) =: Sπét
1 (X/K).

Note that ker(πét
1 (X, x) → GK)) = πét

1 (X, x) by (1). Hence, Sπét
1 (X/K) are πét

1 (X, x)-conjugacy
classes of splittings of (1).

In analogy to Theorem 12, ∃ a canonical map κ : X(K) → Sπét
1 (X/K) (profinite Kum-

mer map): Let a : Spec(K) → X. Choose a : Spec(K
s
) → X over a. (3) above: GK =

πét
1 (Spec(K), x) → πét

1 (X, a). Relative version of (2): Get a homomorphism GK → πét
1 (X, x),

unique up to inner conjugation with π(X, x) (not just π(X, x)).

Lemma 1. κ is injective.

Proof. Jacobian embedding, Mordell-Weil theorem, and factorization

A(K)

zz

� t

classical Kummer map δ

&&

Sπét
1 (A/K)

∼ // H1(K, πét
1 (A))

Recall (classical Kummer map):

1→ A(K
s
)[n]→ A(K

s
)→[n] A(K

s
)→ 1

induces long exact sequence

1→ A(K)[n]→ A(K)→[n] A(K)→δn H1(K,A(K
s
)[n])→ · · ·

Take the inverse limit over n: as πét
1 (A) = lim←−A(K

s
)[n] (as GK-modules, [23, Section 18]) we

get δ : A(K) → H1(K, πét
1 (A)) with kernel

⋂
n≥1[n]A(K) = 0 by Mordell-Weil (K-rational

points finitely generated over Z).

X(K) ≈ im(κ) ⊂ Sπét
1 (X/K) = diophantine sections

Conjecture 3 ((strong) Section Conjecture sSC [9]). If X is projective, then all sections in
Sπét

1 (X/K) are diophantine.

Problem: For non-projective hyperbolic curves, missing points (= cusps) give cuspidal sec-
tions - incorporate this!

Relation with Mordell Conjecture:
(1) Endow Sπét

1 (X/K) with a topology; idea: finite étale covers X ′ → X induce maps
Sπét

1 (X′/K) → Sπét
1 (X/K); their images form an open basis of the topology.

(2) Fact ([43, Proposition 97]): This topology is pro-finite, hence Sπét
1 (X/K) is compact.

(3) Faltings’ Theorem ⇒ induced topology on im(κ) ⊂ Sπét
1 (X/K) is discrete. Idea: the

sections associated with finitely many points can be easily separated. (Note, a closed subgroup
of a profinite group is the intersection of all opens containing it.)

Open problems: Show this without Faltings’ Theorem. Show that Sπét
1 (X/K) is discrete.

Some variants:
(1) (Weak Section Conjecture wSC)X projective smooth curve of genus 2. Then, Sπét

1 (X/K) 6=
∅ ⇒ X(K) 6= ∅.

(2) birational versions (i.e. splittings of

1→ GK(X)K
s → GK(X) → GK → 1)
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(3) Replace K by other fields (finitely generated, local fields)
(4) Describe diophantine sections for finite fields (Tamagawa [46])

(5) Push out by maximal pro-p quotient πét
1 (X, x)→ πét

1
pro−p

(X, x); the analogue of sSC is
then wrong (Hoshi [12])

1.6 Evidence for the Section conjecture
(1) Stix [43], Harari-Szamuely [11]: There exist hyperbolic curves without sections. ⇒ sSC

holds for them.
Problem: Prove for a single (!) curve that it has a finite but non-zero number of sections.
(2) Hain [10]: no universal sections; simplified:

Theorem 10. Let k a number field (or a p-adic local field) C →Mg universal curve of genus
g ≥ 5 over k. K = k(Mg). x→ C ⊗k K a geometric point. Then,

1→ πét
1 (C ⊗k K

s
, x)→ πét

1 (C ⊗k K, x)→ GK → 1

does not split.

(3) Koenigsmann 2005 [17]: birational section conjecture over p-adic local fields.
Proof: model-theory
(4) Pop-Stix 2015+ [30]: valuative version of section conjecture over p-adic local fields. To

wit, a reformulation of Conjecture (resp. its p-adic analogue) 3 is

Conjecture 4. X projective, hyperbolic curve over a number field (resp. a p-adic local field)
K. Then, for each section s : GK → πét

1 (X) there exists v ∈ P(K(X̃)), K(X̃) the function
field of the universal pro-étale cover X̃, such that

• s(GK) ⊆ Dv (Dv = decomposition group of v in πét
1 (X)),

• v|K is trivial, and

• v|K(X) has residue field K.

Indeed, the two last conditions give a rational point giving rise to Dv (and hence to s). As
Dv ≈ GK compatibly with the projection to GK , the first condition actually implies s(GK) =
Dv.

The result of Pop and Stix is

Theorem 11. X projective, hyperbolic curve over a p-adic local field K. Then, for each section
s : GK → πét

1 (X) there exists v ∈ P(K(X̃)), K(X̃) the function field of the universal pro-étale
cover X̃, such that

• s(GK) ⊆ Dv (Dv = decomposition group of v in πét
1 (X)).

In summary, the image of every section is contained in the decomposition subgroup of a
place P(K(X̃)). However, this place does not need to come from a rational point as the other
two conditions from Conjecture 4 are missing.

1.7 Not in this lecture
Bogomolov’s birational anabelian program etc. ([4, 35])
Kim’s anabelian geometry ([16])
Grothendieck-Teichmüller theory
1.8 Proof of Artin’s Theorem
In this section, we provide Artin’s original elementary proof for Theorem 1. A more modern

proof using Galois cohomology can be found in [29, Theorem 12.1.7]. We do not need this
theorem in the sequel so this section may be skipped.

Let K be a subfield of algebraic numbers such that Q/K is a finite field extension.
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Lemma 2. Let K ⊂ Q be a subfield of finite index. Then, Q = K(
√
−1).

Proof. We assume first that Gal(Q/K) is of prime order p; we claim that p = 2 and Q =
K(
√
−1) in this case. Write ζpn for an (arbitrarily fixed) primitive pn-th root of unity in Q.

As [Q(ζp) : Q] = p− 1, we have ζp ∈ K. By Kummer theory (e.g. [27, Theorem IV.3.2]), there
exists α ∈ Q such that Q = K(α) and αp ∈ K.

In contrast, ζp2 /∈ K. To derive a contradiction, assume that ζp2 ∈ K. The polynomial

f(X) = Xp2 − αp ∈ K[X] cannot be irreducible as it is of degree p2. Writing β ∈ Q for a p-th
root of α, the roots of f are ζ ip2β (0 ≤ i < p2). None of these is in K, since otherwise β ∈ K
and α = βp ∈ K. Hence, f has an irreducible factor g ∈ K[X] of degree p. This gives again a
contradiction to α /∈ K because g(0) ∈ K is of the form ζ ip2βp = ζ ip2α for some integer i.

We have Q = K(ζp3), which means that ζp3 must be a root of a polynomial h ∈ K[X]
with deg(h) = p. In addition, h ∈ Q(ζp3)[X] and hence the coefficients of h are contained
in F = K ∩ Q(ζp3). Evidently, [Q(ζp3) : F ] = p and thus [F : Q] = p(p − 1). If p is odd,
Gal(Q(ζp3)/Q) ≈ (Z/p3Z)× is cyclic and F = Q(ζp2) because both are subfields of index p in
Q(ζp3). This implies the contradiction ζp2 ∈ K and we infer that p = 2. Now, Q = K(ζp2) =
K(
√
−1) as claimed.

Let now Q/K be an arbitrary finite extension. We may assume that Q 6= K(
√
−1). Under

this assumption, there exists a field K(
√
−1) ⊆ F ( Q such that [Q : F ] is a prime number.

By the above, this implies Q = F (
√
−1) = F – a clear contradiction.

It remains to establish that K is the decomposition field of a real place. For this, we have
to prove an intermediate result first.

Lemma 3. If α is a sum of squares
∑n

i=1 β
2
i , βi ∈ K, then α is a square in K.

Proof. We establish first that −1 is not a sum of two squares in K. For this, assume that
−1 = γ2

1 + γ2
2 with γi ∈ K. As

√
−1 /∈ K, we have γi 6= 0. Consider now the polynomial

f(X) = (X2 − γ1)2 + γ2
2 ∈ K[X].

Its roots are ±
√
γ1 ±

√
−1γ2 ∈ Q. Evidently, none of these roots can be contained in K as

otherwise
√
−1 ∈ K. In addition, [Q : K] = 2. Therefore, f has an irreducible factor g of

degree 2 over K. The constant term g(0) ∈ K is a product of two roots of f and thus equals
±(γ1 ±

√
−1γ2) or ±

√
γ2

1 + γ2
2 = ±

√
−1. However, none of these numbers can be contained in

K; this contradiction yields that −1 is not a sum of two square in K.
We next show that each element β ∈ K is either a square γ2 or a negative square −γ2

(γ ∈ K). Indeed, β is a square in Q = K(
√
−1). This means β = γ2 with γ = γ1 + γ2

√
−1,

γi ∈ K. Squaring this equation, we obtain γ1γ2 = 0. If γ1 = 0 then β = −γ2
2 and if γ2 = 0 then

β = γ2
1 . This shows our claim.

For proving the lemma, it suffices to show that the sum of any two squares is a square itself.
For this, let β = γ2

1 + γ2
2 with γi ∈ K. We may also assume that β 6= 0. It is shown above that

there exists γ ∈ K× such that β is either γ2 or −γ2. We infer(
γ1

γ

)2

+

(
γ2

γ

)2

= ±1.

As −1 is not a sum of two squares in K, it follows that β = γ2 as claimed.

We now conclude the proof of Artin’s Theorem: If −1 is a sum of squares in K then −1
itself is a square in K by the above lemma. This would contradict K(

√
−1) = Q 6= K. We can

hence apply Lemma 4 below to any number field L ⊂ K. It shows that P∞(L) contains a real
place. Exhausting K by an ascending chain of number fields Li, it follows that K itself has a
real place and this finishes the proof of Artin’s Theorem 1.
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Lemma 4. Let L be a totally imaginary number field (i.e., L has no real places). Then, −1 is
a sum of squares in L.

Proof. Let α be such that L = Q(α) and let f ∈ Q[X] be the monic minimal polynomial of α.
As f has no real zeros, f(x) > 0 for all x ∈ R. The leading term dominates for large |x| and a
compactness arguments shows that f(x) > c for some positive constant c. Hence, there exists
some positive integer n such that (1 − n−2)f(X) − n−2 ∈ Q[X] is also positive on R. From
Lemma 5 below, we know that there exist polynomials gi ∈ Q[X] such that

(1− n−2)f(X)− n−2 =
∑
i

gi(X)2

Evaluation at X = α gives a presentation of −n−2 as a sum of squares in L. This finishes the
proof.

Lemma 5 (Landau [18]). Let P ∈ Q[X] be a polynomial that takes non-negative values on the
reals. Then, P can be written as a sum of squares

∑
Pi(X)2 with Pi ∈ Q[X].

Proof. Evidently, P must be of even degree deg(P ). We proceed by induction on deg(P ). Every
positive rational number is evidently a sum of squares as

a

b
=
ab

b2
=

1

b2
+

1

b2
+ · · ·+ 1

b2︸ ︷︷ ︸
ab summands

.

This settles the case deg(P ) = 0. Assume now deg(P ) = 2k, k ≥ 1, and that the lemma is
already established for all 2k′ < 2k. We may assume that P is monic and write

P (X) = X2k + a2k−1X
2k−1 + · · ·+ a0.

Replacing P (X) with Q(X) = P (X − a2k−1/2k), we may and do assume a2k−1 = 0. In
addition, we can assume that P has no real zero ξ. Otherwise, expanding P locally near X = ξ
yields that the zero order ordX=ξ(P ) is even. Decomposing f into its distinct linear factors
f =

∏
(X −αi)ni , we set f1 =

∏
ni even(X −αi)ni/2 and f2 =

∏
ni odd(X −αi)ni . Note that both

fi are products of Q-irreducible factors in f and hence have rational coefficients. In conclusion,
f = f 2

1 f2 with deg(f1) 6= 0 and deg(f2) = 2k′. As 2k′ = deg(f2) < deg(f) = 2k, f2 is a sum
of squares in Q[X] by the induction hypothesis. In the sequel, we assume that P has only
complex conjugate zeros. Write

P (X) =
k∏
i=1

(X − xi − iyi)(X − xi + iyi) =
k∏
i=1

((X − xi)2 + y2
i ), xi ∈ R, yi ∈ R×.

By assumption,
∑k

i=1 xi = −a2k−1/2 = 0. In addition, Q(X) = P (X)−
∏k

i=1(X − xi)2 ∈ R[X]

attains only values larger than
∏k

i=1 y
2
i > 0 on R. Furthermore, deg(Q) ≤ 2k − 1 and hence

deg(Q) ≤ 2k − 2 by positive definiteness. The X2k−2-coefficient of Q is
∑k

i=1 y
2
i > 0 and hence

deg(Q) = 2k− 2 and there exists a positive constant c such that Q(x) >
(

1
2

∑k
i=1 y

2
i

)
x2k−2 for

all |x| > c. It is easy to see that we can approximate the reals xi ∈ R by rationals x′i ∈ Q such
that

∑k
i=1 x

′
i = 0 and∣∣∣∣∣

2k∏
i=1

(x− xi)2 −
2k∏
i=1

(x− x′i)2

∣∣∣∣∣ ≤ 1

2
·

{∏k
i=1 y

2
i if |x| ≤ c(∑k

i=1 y
2
i

)
x2k−2 if |x| > c

.
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In conclusion,

Q′(X) = P (X)−
2k∏
i=1

(x− x′i)2 ∈ Q[X]

satisfies

Q′(x) = P (x)−
2k∏
i=1

(x− xi)2

︸ ︷︷ ︸
Q(x)

+

(
2k∏
i=1

(x− xi)2 −
2k∏
i=1

(x− x′i)2

)
> 0

for all real x. By our inductive hypothesis, Q′(X) is a sum of squares and the same is true for
P (X).
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Lecture 3: The Theorem of Neukirch-Uchida I
2 The Theorem of Neukirch-Uchida
Global field: either a) a number field (i.e., a finite extension of Q) or b) a finitely gener-

ated field of transcendence degree 1 over a finite field Fq (i.e., a function field of a positive
characteristic curve).

Global fields = fields of Kronecker dimension 1
Recall from the Introduction:

Theorem 12 (Neukirch 1969 [25], Uchida 1976 [47], Uchida 1977 [48]). K, L be global fields.
Then, Φ : GK → GL is an isomorphism ⇒ ∃! φ : L

s → K
s

such that φ(L) = K and Φ(g) =
φ−1gφ. In particular, K ≈ L and

Isom(L,K)→ Isom(GK , GL)/ Inn(GL),

where for σ : L → K we choose a lifting σ : L
s → K

s
. This induces σ∗ : GK = Gal(K

s|K) →
Gal(L

s|L) = GL, ϕ 7→ σ−1 ◦ ϕ ◦ σ, unique up to inner automorphisms of GL.

Additional reference (for my own record): [26]
2.1 Local Correspondence
In this section, we want to establish

Lemma 6. The isomorphism Φ : GK → GL induces a bijection Pf (K
s
) → Pf (L

s
) of non-

archimedean places. This bijection is characterized uniquely by the fact that Φ(Dv) = Dw if
v ∈ Pf (K

s
) is sent to w ∈ Pf (L

s
).

It should be noted that this induces not only a correspondence Pf (K) ≈ Pf (L) but also

correspondences Pf (K
H

) ≈ Pf (L
Φ(H)

) for any closed subgroup H; for two places v, w ∈ Pf (K)

restrict to the same place of K
H

if and only if their decomposition groups Dv, Dw ⊂ GK are
conjugate by an element of H. To be precise, we define a bijection Pf (K) → Pf (L) in the
following way: For any v ∈ Pf (K) there exists a place ṽ ∈ Pf (K) such that ṽ|K = v. By the
above lemma, there is a unique place w ∈ Pf (L) such that Dṽ = Φ(Dw̃). Evidently, choosing
a different ṽ changes Dṽ into a one of its Gal(K/K)-conjugates, hence Dw̃ into one of its
Gal(L/L)-conjugates. The restriction w|L ∈ Pf (L) is hence unique.

Strategy of proof:
(1) Decomposition groups Dv, v ∈ Pf (K

s
), correspond biuniquely to places. For any

place v ∈ Pf (K
s
) there is a unique decomposition group Dv but we may have Dv = Dw for

v 6= w ∈ Pf (K
s
).

(2) Φ sends decomposition groups of GK to decomposition groups of GL.
We start with (1):

Lemma 7. Let v, w ∈ P(K
s
) two distinct places of K

s
. Then, Dv ∩Dw = {1}.

Some spectacular consequences:
1. Every decomposition group Dv ⊆ GK is its own normalizer.
Proof: Suppose σ ∈ GK is such that σDvσ

−1 = Dv. This implies Dσv = Dv and hence
σv = v. By the definition of Dv, this means σ ∈ Dv.

2. L/K finite Galois extension of global fields. GK → Aut(GL) is injective.
Proof: Let σ ∈ GK such that σ ◦ τ ◦ σ−1 = τ for all τ ∈ GL. Let Dv ⊂ GK be any

non-archimedean decomposition group. Then, Dv ∩GL = σDvσ
−1 ∩GL = Dσv ∩GL. As both

Dv ∩GL and Dσv ∩GL have infinite cardinality, it follows that v = σv.
3. In particular, GK has trivial center.
Proof: This is just the case L = K above.
In fact, we will even show
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Theorem 13 (F.K. Schmidt [41]). Let F be a non-separably closed field. Then, F is Henselian
for at most one non-archimedean place v (= equivalence class of absolute values | · |v on F ).

A field F with absolute value | · |v is Henselian if | · |v extends uniquely to every algebraic
extension. If (F, | · |v) is a Henselian field, we will denote the unique extension of | · | to F s

again
by | · |. One can prove that a field F with non-archimedean absolute value | · | is Henselian iff
OF/mF is a Henselian local ring.

Note: We work here with absolute values and hence our results are restricted to rank 1
valuations. Recall that we call two absolute values equivalent if they induce the same topology
on F . All here can be done for general valuations as well, appropriately (!) modified. See [6,
Chapter 4]. Examples: p-adic local fields L/Qp, fixed fields (K

s
)Dv , v ∈ P(K

s
).

A converse to Schmidt’s Theorem is also true: If F is separably closed then F is Henselian
with respect to all its valuations; this is rather obvious as valuations do not split in purely
inseparable extensions (cf. [6, Corollary 3.2.10]).

Proof of Lemma 7. (K
s
)Dv ·(Ks

)Dw is Henselian both for v and w. By Theorem 13 it is separably
closed. Hence, (K

s
)Dv · (Ks

)Dw = K
s

and Dv ∩Dw = 1.

Before we start with the proof of Theorem 13, we recall an important lemma:

Lemma 8 (Krasner’s Lemma). Let (F, |·|) be non-archimedean Henselian with separable closure
(F

s
). Let α ∈ F s

with F -conjugates α = α1, . . . , αn. For each β ∈ F s
,

|α− β| < min
2≤i≤n

|α− αi|

implies F (α) ⊆ F (β).

Proof. Start with σ ∈ Gal(F
s
/F (β)). As we have to prove σα = α we may assume that σα = αi

for some 1 < i ≤ n. Since both | · | and |σ(·)| extend the value | · | on F , we must have |σx| = |x|
for all x ∈ F s

. Hence, we have |β − αi| = |σ−1(β − α)| = |β − α| and

|α− αi| ≤ min{|α− β|, |β − αi|} < min
2≤i≤n

|α− αi|

by assumption. This is a clear contradiction.

Actually, Krasner’s Lemma is equivalent to being Henselian [6, Exercise 4.5.2]. We apply
Lemma 8 to obtain:

Lemma 9. Let F be a complete local field with separable closure F
s
. f1 ∈ F [X] a separable

polynomial of degree d. There exists a constant c(f1) > 0 such that each f2 ∈ F [X], deg(f2) = d,
with |f1 − f2| < c(f1) has the same splitting field as f1 in F

s
.

Here, if | · | is an absolute value on F , set |
∑d

i=0 aiX
i| = max0≤i≤d {|ai|}.

Proof. The case F = C is trivial. The case F = R is likewise easy by continuity of roots; for if f1

has a non-real root then any sufficiently near polynomial f2 has also a non-real root and hence
both splitting fields are C. In the sequel, we may and do assume that F is non-archimedean.
Write f1 = c1

∏d
i=1(X − αi) and f2 = c2

∏d
j=1(X − βj). We have

min
1≤j≤d

|αi − βj|d ≤ |c2|−1|f2(αi)| = |c2|−1|f2(αi)− f1(αi)| ≤ |f2 − f1|max{|c2|−1, |c2|−1|αi|d}.

Hence, we may arrange that |αi− βj| < min1≤i<j≤n |αi−αj| by making c(f1) sufficiently small.
In other words, there exists j(i) so that |αi − βj(i)| < min1≤i<j≤n |αi − αj|. This j(i) can be
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easily seen to be unique by the triangle inequality. Furthermore, for each i1 6= i2 we have
max{|βj(i1) − αi1 |, |αi2 − βj(i2)|} < |αi1 − αi2| and hence

|βj(i1) − βj(i2)| = max{|βj(i1) − αi1 |, |αi1 − αi2|, |αi2 − βj(i2)|} = |αi1 − αi2 |.

From |αi − βj(i)| < min1≤i<j≤n |αi − αj| it follows by Krasner’s Lemma that F (αi) ⊆ F (βj(i)).
Finally, from |αi − βj(i)| < min1≤i<j≤n |βi − βj| it follows that F (βi(j)) ⊆ F (αi).

Proof of Theorem 13. Let | · |v and | · |w be two non-equivalent values. We show that each
α ∈ F

s
is contained in F . Let f1 ∈ F [X] be the minimal polynomial of α. Choose any

f2 =
∏d

i=1(X − αi) ∈ F [X] with αi ∈ F (i.e. such that f2 decomposes into linear factors over
F ). By the approximation theorem ([6, Theorem 2.4.1]) (a corollary of Chinese Remainder
Theorem), there exists f ∈ F [X] such that |f − f1| < c(f1) and |f − f2| < c(f2). With
9, we conclude that F (α) = F (f1) = F (f) = F (f2) = F . As α ∈ F

s
arbitrary, F

s
= F .

Contradiction!

For the second part of the proof of Lemma 6, we need some group cohomology and class
field theory. We briefly summarize the basics in the next two sections.
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Lecture 4: The Theorem of Neukirch-Uchida II
2.2 Interlude: Group Cohomology
Reference: [28, Chapter 1]
Group cohomology: Now: G a finite group, A a G-module. Later: G a pro-finite group, A

a discrete G-module.
Standard resolution: exact complex of free Z[G]-modules

0← Z←ε X0 ←δ1 X1 ←δ2 · · · ,

with X0 = Z[G] and Xq = ⊕(σ1,··· ,σq)∈GqZ[G](σ1, . . . , σq), q ≥ 1 (q-cells). The map ε : Z[G]→ Z
is the augmentation map

∑
σ∈G nσ(σ) 7→

∑
σ∈G nσ, d1((σ)) = σ − 1, and

dq((σ1, . . . , σq)) = σ1(σ2, . . . , σq)+

q−1∑
i=1

(−1)i(σ1, . . . , σi−1, σiσi+1, σi+2, · · · , σq)+(−1)q(σ1, . . . , σq−1).

D(G−mod) = discrete G-modules
group cohomology: Hn(G,A) = ExtnD(G−mod)(Z, A) = Hn(HomG(X·, A)).

Hn(G,A) has interpretation as mapsGn → A (modulo sth.): (σ1, . . . , σn) 7→ ϕ((σ1, . . . , σn)).

0→ HomG(X0, A)→ HomG(X1, A)→ · · · ,

long exact sequence: 0 → A → B → C → 0, then 0 → H0(G,A) → H0(G,B) →
H0(G,C)→ H1(G,A)→ · · · .

Examples:
(1) H0(G,A) = AG = {a ∈ A | ∀σ ∈ G : aσ = a}.
(2) H1(G,A) = {c : G → A | c(στ) = c(σ)c(τ)σ}/ ∼, where c1 ∼ c2 if there exists a ∈ A

such that c1(σ)c2(σ)−1 = σa/a.
(3) A discrete topological group with trivial G-action, H1(G,A) = Hom(G,A).

group homology: Hn(G,A) = Tor
D(G−mod)
n (A,Z).

All of this works in the slightly more general setting where G is a profinite group and A is
a discrete G-module. However, Z[G] has to be replaced by the complete group algebra Z[[G]]
and all maps have to be continuous. In the description of Hn(G,A) by explicit maps Gn → A
nothing changes except for the fact that continuity has to be supposed everywhere. For details,
see [36].

Inflation: H ⊆ G normal subgroup, q ≥ 0. For x : G/H × · · · × G/H → AH define
inf(x) : G× · · · ×G→ A by

inf(x)(g1, . . . , gq) = x(g1 mod H, . . . , gq mod H).

Get inf : Hq(G/H,AH)→ Hq(G,A).
Restriction: H a subgroup of G, q ≥ 0. For x : G×· · ·×G→ Aq define res(x) : H×· · ·×H →

A by ‘restriction’. Get res : Hq(G,A)→ Hq(H,A).
Hochschild-Serre spectral sequence: G profinite, H closed normal subgroup, A a G-module.

Epq
2 = Hp(G/H,Hq(H,A))⇒ Hp+q(G,A)

Inflation-Restriction Sequence:

0→ H1(G/H,AH)→inf H1(G,A)→res H1(H,A)

is exact. Some extension: If H i(H,A) = 0 for i = 1, . . . , q − 1, q ≥ 1, then

0→ Hq(G/H,AH)→inf Hq(G,A)→res Hq(H,A)
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is exact.
Induced modules: H a subgroup of G. A is G/H-induced, if there exists a H-submodule

D ⊆ A such that A =
⊕

σ∈G/H σD.

Shapiro’s Lemma: Let A =
⊕

σ∈G/H σD be G/H-induced. Then, Hq(G,A) = Hq(H,D)

(canonical isomorphism).
Dimension shift: 0 → A →

∑
σ∈G σA0 = Maps(G,A0) → A1 → 0. A0 = A with trivial

G-action.
Torsion: If the order of G is coprime to p, then H i(G,A)(p) = 0, i > 0. (by [29][1.6.10]

H i(G,A) injects into H i(G(p), A), G(p) a p-Sylow subgroup)
Limits: Hn(lim←−iGi, lim−→i

Ai) = lim−→i
Hn(Gi, Ai). (maps canonical)

Two applications:
1. G profinite, A discrete G-module. Then, G = lim←−U open

G/U and A = lim−→AU . Hence,

Hn(G,A) = lim−→i
Hn(G/U,AU). Thus, profinite group cohomology is just an inverse limits of

ordinary group cohomology.
2. G profinite, H a closed subgroup. Then, H =

⋂
U open, H ⊂ U U = lim←−U open, H ⊂ U U (with

inclusions as morphisms). Thus, Hn(H,A) = lim−→U open, H ⊂ U H
n(U,A). (Each co-cycle lifts to

an open supergroup.)

Tate cohomology modules Ĥ i: I hope I will not use them.
cohomological p-dimension: cdp(G) = minimal n such that Hq(G,A)(p) = 0 for all q > n

and all discrete torsion G-modules A. (Equivalently: Hq(G,A) = 0 for all q > n and all discrete
p-torsion G-modules)

Facts: (1) H closed subgroup of G, then cdp(H) ≤ cdp(G) (Shapiro’s Lemma); in fact,
equality holds if p - [G : H]

(2) cdp(G) = cdp(G
(p)), G(p) p-Sylow subgroup of G. (a corollary of (1))

(3) If G is a pro-p group, then cdp(G) ≤ n ⇔ Hn+1(G,Z/pZ) = 0. (This uses that every
discrete simple p-primary G-module is isomorphic to Z/pZ if G is pro-p; this is not completely
trivial: see [36, Lemma 7.1.5])

Remark: (3) is very useful in combination with (2).
2.3 Interlude: Class Field Theory I
Notation: WriteH i(L|K,A) (resp.H i(K,A)) instead ofH i(Gal(L/K), A) (resp.H i(GK , A)).

Also cdp(K) = cdp(GK).
General remark: inner automorphisms induces the identity maps on cohomology (nothing

happens for AG = H0(G,A) + dimension shift)
Hilbert’s Satz 90: L|K Galois field extension, then H1(L|K,L×) = 0.
Brauer groups: k a field, Br(k) = central simple algebras over k (central: center = k,

simple = no two-sided ideals) modulo similarity (∼). A ∼ B iff A⊗k Mr(k) ∼= B ⊗k Ms(k).
a central simple algebra (c.s.a.) splits in l/k if A⊗k l is a matrix algebra.
subgroup Br(l|k) generated by those c.s.a. that split in l
Facts:
(1) H2(k, k

×
) = Br(k) such that H2(l|k, l×) = Br(l|k) (w.r.t. inflation).

(2) the restriction map Br(k)→ Br(l) is given by [A] 7→ [A⊗k l].
(3) suppose l =

⋃
li, then Br(l) = lim−→i

Br(li) (maps = restrictions).
(4) k a finite field, then Br(k) = 0. (Let l/k be a finite extension. Then Gal(l/k) is a finite

cyclic group and the group cohomology is hence of periodicity = 2. Furthermore, l× is a finite
Gal(l/k)-module, hence the Herbrand coefficient = 1. By Hilberts Satz 90 all = 1 for q ≥ 1).

Relation with cohomological dimension:

Lemma 10. K field, char(K) 6= p. We have Br(L)(p) = 0 for every finite separable extension
L|K if and only if cdp(K) ≤ 1.
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Proof. Let F ⊂ K
s

be the fixed field of a p-Sylow group of GK . Then, cdp(K) = cdp(F ) and
µp ⊂ F ([K(µp) : K]|p − 1). Now, we have to prove 0 = H2(F,Z/pZ) = H2(F, µp). Let
F =

⋃
Fi with [Fi : K] <∞ and µp ⊂ Fi. Use Kummer sequence

1→ µp → (K
s
)× →·p (K

s
)× → 1

and Hilbert 90: H2(Fi, µp) = ker(Br(Fi)→·p Br(Fi)) = Br(Fi)[p] = 0. A limit givesH2(F, µp) =
Br(F )[p] = lim−→Br(Fi)[p] = 0.

Conversely, if cdp(K) ≤ 1 then Br(L)[p] = 0 for all finite extensions L/K. Indeed, cdp(K) ≤
1 implies cdp(L) ≤ 1 and the Kummer exact sequence (plus Hilbert’s Theorem 90)

1→ µp → (K
s
)× →·p (K

s
)× → 1

yields 0 = H2(L, µp) = Br(L)[p].

Local class field theory:
K,L local non-archimedean fields. ∃ canonical isomorphism

inv : Br(K) = H2(K,K
×

)→ Q/Z

s.t.
H2(L|K,L×)→ [L : K]−1Z/Z (inflation).

Furthermore,

H2(K,K
×

) //

res
��

Q/Z

·[L:K]

��
H2(L,L

×
) // Q/Z

Fact: H2(K,K
×

) =
⋃
L|K unramified H

2(L|K,K×).

Corollary: Brauer group Br(K) ≈ Q/Z.
There is also an archimedean analogue of this, which is rather simple: In fact, Br(R) = Z/2Z

and Br(C) = {1}.
We note an important consequence for later use:

Lemma 11. l a prime. K a local non-archimedean field. K ⊆ F ⊆ K
s
. Then, Br(F )(l) = 0

iff l∞|[F : K] and Br(F )(l) = Ql/Zl iff l∞ - [F : K].

Proof. We know that

Br(F )(l) = lim−→
Qp⊂K⊂F,[K:Qp]<∞

Br(K)(l) = lim−→
Qp⊂K⊂F,[K:Qp]<∞

Ql/Zl,

and the morphisms in the limit are the restrictions, namely Ql/Zl ≈ Br(K)(l) → Br(L)(l) ≈
Ql/Zl is multiplication by [L : K] for each extension L/K of local fields.

Lemma 12. A field K of characteristic p has p-dimension cdp(K) ≤ 1.

Proof. Let F be the fixed field of a p-Sylow group of GK . Then, cdp(K) = cdp(F ) and we
have to prove H2(F,Z/pZ) = 0. For this we use the long exact sequence associated to the
Artin-Schreier exact sequence (℘(X) = Xp −X):

0→ Z/pZ→ K
s →℘ K

s → 0.

As H i(F,K
s
) = 0, i > 0 (by normal basis theorem, the additive module of each finite extension

F ⊂ F0 ⊂ K
s

is induced), we have H2(F,Z/pZ) = 0.
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Lemma 13. K a p-adic field local or a field of Laurent power series. l 6= char(K) an arbitrary
prime. Then, cdl(K) = 2.

(To be precise, one can show that cdp(K) = 2 if char(K) 6= p and cdp(K) = 1 if char(K) =
p.)

Proof of Theorem 13. cdl(K) ≥ 2: This follows from Br(K) ≈ Q/Z and Lemma 10 above.
cdl(K) ≤ 2: Let Knr be the maximal unramified extension of K. By Hochschild-Serre,

Hp(Knr|K,Hq(Knr, A)) =⇒ Hp+q(K,A).

Hence, it suffices to show that Gal(Knr/K) and Knr have cohomological l-dimension ≤ 1.
Gal(Knr/K): isomorphic to the absolute Galois group of a finite field (Brauer group = 0,

Lemma 12).

Knr: Let F be a finite extension of Knr. Then H2(F,K
×

)(l) = Br(F )(l) = 0 by restrictions
from the fact that l∞|[F : K]. Hence, cdl(K

nr) = 1 by Lemma 10 above.

Global class field theory: K,L global fields
Ideles: IK =

∏′
v∈P(K) K

×
v (restricted product with respect to Ov ⊆ Kv)

Decomposition of cohomology: L/K Galois, H i(L|K, IL) = ⊕vH i(Lw|Kv, L
×
w). (For any v

one just chooses just one w ∈ P(L) above v ∈ P(K).)
Idele group: I = lim−→[L:K]<∞ IL

By limit: H i(K, I) = ⊕vH i(Kv, Kv
×

) (note Kv = Kw, w|v, by Krasner).
Facts:
(1) H1(K, I) = 0. Hence, H2(L|K, I) ↪→ H2(K, I) by inflation-restriction sequence.

(2) H2(K,K
×

) =
⋃
L|K cyclic H

2(L|K,K×).

Invariant map: H2(K, I)→ Q/Z given by
∑

v invv in above decomposition.
ker(inv) = H2(K,K×) ⊂ H2(K, I) (diagonal map).

Theorem 14 (Hasse principle for Brauer groups, Theorem 8.1.17 in [29]). Let K be a global
field. Then, there is an exact sequence

1→ Br(K)→
⊕

v ∈ P(K)

Br(Kv)→
∑

invv Q/Z→ 1.

As H2(K, I) = H2(GK , I) = ⊕v∈P(K)H
2(Dv, Kv

×
), this Hasse principle follows from

1→ H2(K, (K
s
)×)→ H2(K, I)→

∑
invv Q/Z→ 1.

We derive the important consequence:

Corollary 3. Let K be a global field and K ⊆ F ⊆ K
s
. Then, the canonical map Br(F ) →∏

v∈P(F ) Br(Fv) is injective and surjects onto each finite number of factors.

Proof. Restrictions induce a commuting diagram:

1 // Br(K) //

res

��

⊕v∈P(K) Br(Kv)
∑
invv //

��

Q/Z //

·[L:K]

��

1

1 // Br(L) // ⊕w∈P(L) Br(Lw)
∑
invw // Q/Z // 1

In the middle vertical map, η ∈ Br(Kv) is send to
∑

w|v resLw|Kvη. Taking direct limits, which
preserve exactness, we obtain the exact sequence

1 // lim−→K⊂L⊂F,[L:K]≤∞ Br(L) // lim−→K⊂L⊂F,[L:K]≤∞

∏
w∈P(F ) Br(Lw)

Note that lim−→K⊂L⊂F,[L:K]≤∞ Br(L) = Br(F ). The assertion follows.
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Lecture 5: The Theorem of Neukirch-Uchida III
2.1 Local Correspondence (cont.)
Recall K,L global fields, Φ : GK → GL isomorphism. Let K and L be the separable closures

of K and L. We will have no use for the algebraic closure in this lecture and I should have
never introduced K

s
instead of K for the separable closure.

Lemma 14. Let v ∈ Pf (K). Then, Br(K
Dv

) ≈ Q/Z.

Proof. We show that for any w 6= v in Pf (K
Dv

) we have (K
Dv

)w = Kw and hence Br((K
Dv

)w) =
0. The lemma follows directly from Corollary 3. The proof is similar to that of Theorem 13,
which means that we use Lemma 9 and the approximation theorem. In fact, let α ∈ Kw with

minimal polynomial f1(X) ∈ (K
Dv

)w[X]. In addition, choose a random separable polynomial

f2(X) ∈ K
Dv

[X] that splits completely in linear factors over K
Dv

. By the approximation

theorem, there exists some f(X) ∈ KDv
[X] such that |f − f1|w < c(f1) and |f − f2|v < c(f2)

with c(fi) the constant from Lemma 9. By this lemma, K
Dv

= K
Dv

(f2) = K
Dv

(f) and

(K
Dv

)w(f1) = (K
Dv

)w(f) = (K
Dv

)w. This shows that α ∈ (K
Dv

)w. As α is arbitrary we infer

(K
Dv

)w = Kw as claimed.

Lemma 15. l 6= 2 a prime. K ⊆ F ⊆ K
s

a subfield. Then, F is Henselian if for all finite
extensions F ⊂ F0 ⊂ K

s
we have Br(F0)[l] ≈ Z/lZ.

Proof. As Br(F )[l] ≈ Z/lZ, there must exist a unique (!) non-archimedean place v of F such
that Br(Fv)[l] ≈ Z/lZ by Corollary 3. Let p be the rational prime dividing v. By Lemma 11,
we have even Br(Fv)(l) ≈ Ql/Zl and l∞ - [Fv : Qp]. We claim that F is Henselian for v. Assume
that v extends to two different places v1 and v2 in a finite extension F0 of F . Then, again by
Corollary 3 we deduce

Br(F0)� Br(F0,v1)× Br(F0,v2).

This is not possible as Br(F0)[l] ≈ Z/lZ and Br(F0,v1)[l] ≈ Br(F0,v2)[l] ≈ Z/lZ. Indeed, the
prime l divides [F0,vi : Qp], i ∈ {1, 2}, only finitely many times and hence Br(F0,vi) ≈ Ql/Zl,
i ∈ {1, 2}. In conclusion, F is Henselian for v.

We need another lemma that shows that the characteristic of K is an invariant of the
absolute Galois group GK . It is common usage to refer to such pieces of information that can
be determined solely from knowing an absolute Galois group as group-theoretic. It should not
be forgotten that there is usually an additional assumption on the objects considered, e.g. one
restricts to Galois groups of global fields in Lemma 16.

Lemma 16. Let K be a global or local field. Then, char(K) = p if cdp(K) ≤ 1 and char(K) = 0
if there is no such prime p.

Proof. K global field: Assume char(K) = l > 0. Then, cdl(K) ≤ 1 by Lemma 12. Assume now
char(K) 6= l and choose an arbitrary non-archimedean place v of K. By Lemma 13, cdl(Dv) = 2
and hence cdl(K) ≥ 2 as Dv ⊂ GK .

K local field: same (easier) proof.

As a corollary, note that GK ≈ GL implies that either K and L are both number fields or
both function fields (of the same characteristic). As a late addendum to Krasner’s Lemma 8, I
would like to indicate the following consequence:

Lemma 17. Let K be a local field. For each positive integer n, (n, char(K)) = 1, there are
only finitely many extensions L/K of degree n.
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Not that the assertion is trivial for archimedean local fields. The assumption (n, char(K)) =
1 is necessary because the maximal pro-p quotient GK(p) of a local field K with characteristic
p is free of infinite rank (cf. [29, Proposition 6.1.7]). In this situation, there are hence infinitely
many distinct extensions of degree p.

Proof. It suffices to show that a local field has only finitely many totally ramified and finitely
many unramified extensions of given degree n.

By (the well-known) [7, Theorem II.3.6], any totally ramified extension L/K is generated
by the root of an Eisenstein polynomial

f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0,

where ai ∈ mK , 0 ≤ i ≤ n − 1, and a0 /∈ m2
K . The space of all such polynomials, considered

as a subset of Kn, is compact as K is locally compact. Now, any Eisenstein polynomial is
irreducible [7, Theorem II.3.6] and in particular separable (by our assumption on n) so that we
may apply our Lemma 9 to each of them. We infer that nearby Eisenstein polynomials span the
same local field L so that by compactness there are only finitely many distinct totally ramified
extensions L of K having degree n.

The unramfied extensions of K are generated by roots of unity ([38, Theorem 2.4.3]). There
are only finitely many subfields of the maximal cyclotomic extension of K of any given degree
n and this concludes the proof.

Eventually, we can now prove

Lemma 18. v ∈ Pf (K
s
). Then Φ(Dv) = Dw for a place w ∈ Pf (L

s
).

The place w is unique by Lemma 7.

Proof. We show that Φ(Dv) is contained in a decomposition group Dw. By symmetry, Φ−1(Dw)
is then also contained in a decomposition group Dw. By Lemma 7, Dv = Dw and hence
Dw = Φ(Dv).

Let l be an odd prime such that l - char(K), char(L). Let H be any open subgroup of

Dv such that µl ⊂ (K
s
)H =: F

(1)
0 and µl ⊂ (L

s
)Φ(H) =: F

(2)
0 . (One can find even a group-

theoretic version of this condition although this is not strictly needed here: In the number field
case, the condition on H may be that it contains the intersection of all open subgroups of Dv

having degree dividing l− 1. By Lemma 17 this is a finite intersection so that there exist such
subgroups H. In the function field case, we need a constant field extension and also this could
be described in group-theoretic terms as will follow from some results of next lecture.)

K L

F
(1)
0 = K

H
L

Φ(H)
= F

(2)
0

F (1) = K
Dv

L
Φ(Dv)

= F (2)

K L

Kummer

1→ µp → K
× →·p K× → 1



19

implies

· · · → H1(F
(1)
0 , K

×
)→ H2(F

(1)
0 , µl)→ H2(F

(1)
0 , K

×
)→ H2(F

(1)
0 , K

×
)→ H3(F

(1)
0 , µl)→ · · ·

Now, by Hilbert 90 H1(F
(1)
0 , K

×
) = 0. It follows that

H2(F
(1)
0 , µl) = ker(H2(F

(1)
0 , K

×
)→·l H2(F

(1)
0 , K

×
)) = Br(F

(1)
0 )[l]

Similarly, H2(F
(2)
0 , µl) = Br(F

(2)
0 )[l]. By assumption on H, we have µl ≈ Z/lZ as G

F
(i)
0

-modules

(i = 1, 2). By Lemma 14, we have Br(F
(1)
0 ) ≈ Q/Z. Hence,

Z/lZ ≈ Br(F
(1)
0 )[l] = H2(F

(1)
0 , µl) = H2(F

(1)
0 ,Z/lZ) = H2(F

(2)
0 ,Z/lZ) = H2(F

(2)
0 , µl) = Br(F

(2)
0 )[l].

Since H was arbitrary, it follows by Lemma 15 that F
(2)
0 is Henselian. This means that there

exists a unique w ∈ Pf (L) such that Φ(H) ⊆ Dw. (w is non-archimedean because of l 6= 2.)
It remains to show that even Φ(Dv) ⊆ Dw; for this, we show that F (2) is Henselian for

w|F (2) . Let w1 = w|
F

(2)
0
, w2, . . . , wn be the extensions of w|F (2) to F

(2)
0 . By Corollary 3, we have

a surjection

Br(F
(2)
0 )(l)�

n∏
i=1

Br((F
(2)
0 )wi

)(l)

As Br(F
(2)
0 )[l] ≈ Z/lZ and Br((F

(2)
0 )wi

)(l) ≈ Ql/Zl by Lemma 11, we have n = 1. Hence,

F (2) = L
Φ(Dv)

is Henselian for w. We conclude that Φ(Dv) ⊆ Dw.

Note that nor Lemma 15 nor the above proof shows that the decomposition groups of a
global fields are group-theoretic (i.e., that they may be determined solely from the absolute
Galois group). The problem is that the Brauer group Br(F ) (resp. Br(F )[l]) does also depend
on F× (resp. µl), which is not obtainable from the subgroup GF of GK . However, it can be
shown that this is the case by more refined tools. The criterion from [25, Satz 8] is given in
Theorem 2 above.

2.4 The Theorem of Neukirch-Uchida: Normal number fields
We recall the definition of Dirichlet density and various well-known corollaries of the Ceb-

otarev density theorem. Our reference is [27, Section VII.13].
Let S be a set of rational primes. Provided that it exists, the limit

d(S) = lim
s→1

Re(s)>1

∑
p∈S p

−s∑
p prime p

−s

is called the Dirichlet density of S. We just need this density for a special type of sets S. For
any number field K, we set

S(K) = {p ∈ Q prime | OK has [K : Q] distinct prime ideals over p}.

In other words, S(K) consists of the rational primes that split completely in K/Q. The fol-
lowing facts are straightforward consequences of the Cebotarev density theorem ([27, Corollary
VII.13.6]):

1. The Dirichlet density of S(K) exists and d(S(K)) ≥ [K : Q]−1.
2. Additionally, K/Q is normal if and only if d(S(K)) = [K : Q]−1.
We now want to establish a first result in the direction of the Neukirch-Uchida Theorem 12.

Lemma 19. Let K and L be number fields in Q and assume that K is normal. Then, GK ≈ GL

implies K = L (as subfields of Q).
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It is not necessary to fix here a common algebraic closure Q; this is just done to be in
line with [27, Section VII.13]. It should also be mentioned that Lemma 19 is not trivially
equivalent to Theorem 12 for normal number fields because there is no functoriality in Lemma
19. However, Lemma 19 is the main tool to prove Theorem 12 as we shall see.

Proof. Recall that Lemma 6 establishes a bijection Pf (K) ≈ Pf (L), v 7→ w, such that the
corresponding decomposition groups Dv and Dw are isomorphic. As Dv ≈ Gal(Kv/Kv), we
will see in the next lecture (Lemma 20) that the local fields Kv and Lw have the same residue
characteristic, and the same absolute ramification and inertia degrees. Additionally, for any
rational prime p there is the well-known identity

∑
p|v[Kv : Qp] = [K : Q] (see e.g. [27, Corollary

II.8.4]) and we derive [K : Q] = [L : Q]. From these facts, we infer that GK ≈ GL implies
S(K) = S(L). As K/Q is normal, d(S(K)) = [K : Q]−1. It follows that d(S(L)) = [L :
Q]−1 and hence L/Q is also normal. Consequently, the composite KL is also normal over Q.
Furthermore, S(KL) = S(K) ∩ S(L) = S(K) implies

[KL : Q]−1 = d(S(KL)) = S(K) = [K : Q]−1

and hence L ⊆ KL = K. Similarly, we have K ⊆ L and the assertion is proven.
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Lecture 6: The Theorem of Neukirch-Uchida IV

2.5 Absolute Galois groups of local fields I: Group-theoretic data

Easy: A local field is archimedean if |GK | ∈ {1, 2}.
From now on, let K be a non-archimedean local field.

Recall group-theoretic means all information on K that is encoded somehow in the abstract
topological group GK .

Lemma 20. Let K be a non-archimedean local field. The following are group-theoretic (i.e.,
encoded in GK):

1. the characteristic char(K),

2. the GK-module µ(K
×

);

3. the residue field OK/mK (resp. the absolute inertia degree fK = |OK/mK |);

4. the inertia subgroup IK ⊂ Gal(K/K);

5. the Frobenius class Frob in GK/IK;

6. the unit group UK and the group of principal units U
(1)
K = 1 + mK;

7. the multiplicative group K×;

8. the valuation ord : K× � Z;

9. the universal norm residue symbol (·, K) : K× → Gab
K .

In addition, if K is a p-adic local field, the following are also group-theoretic data:

a. the residue characteristic p;

b. the degree [K : Qp];

c. the absolute ramification degree eK.

Admittedly, the formulation of our above lemma is rather vague. To understand its actual
meaning do note the following when reading the proof: Given GK as an abstract topological
group, we give a – rather lengthy but purely group-theoretic – description of a subgroup UK(G)
(resp. K×(G)) in Gab

K such that UK ≈ UK(G) (resp. K× ≈ K×(G)). In fact, K×(G) is nothing
but the image of K× under the universal norm residue symbol; this is not its group-theoretic
description, of course. Moreover, with the second assertion we mean to give a GK-module

µ(G) that is isomorphic to the GK-module µ(K
×

). One could and sometimes should be more
precise at these places but statements as above are common in anabelian geometry. In any
case, a clear consequence is that any isomorphism GK ≈ GL for local fields K and L induces
unique isomorphisms K× ≈ L× and the various data (e.g., characteristic, residue characteristic,
degrees) coincide.

To prove Lemma 20, we need some more local class field theory.

2.6 Interlude: Class Field Theory II

Here: Tate cohomology Ĥ i instead of ordinary group cohomology H i. For this, one starts
from a more complicated complex
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. . . X−2d−2

oo X−1d−1

oo X0d0

oo

ε
~~

X1d1

oo X2d2

oo . . .
d3

oo

Z
µ

aa

}}
0 0

``

From this, Ĥ i = H i if i ≥ 1 but Ĥ0 6= H0 and the Ĥ i, i < 0, are all new. For any details, I
refer to [28, Section I.2].2

Most importantly, the restriction of ordinary group homology extends to Tate cohomology
naturally ([28, Definition I.4.9]). However, its extension to negative degrees is defined by
compatibility conditions and not as simple and explicit as for positive degrees. In contrast,
inflation maps are not even defined for Ĥ i, i ≤ 0. Be warned!

Class Formations:
A very convenient way to formulate class field theory both in the local and the global case

employs the axiomatic notion of a class formation as in [3, Chapter XIV] or [28].
A formation is a pair (G,A) consisting of a profinite group G and a discrete G-module A.

With applications in mind, we denote the open subgroups of G by GK and the index K is
called a ‘field’. The field K0 such that GK0 = G is the ‘base field’. For any inclusion GL ⊆ GK ,
we write K ⊆ L (or L|K) and [L : K] = [GK : GL] is called the degree of this ‘extension’
L|K. An extension L|K is called normal if GL is a normal subgroup of GK . It is called finite if
[L : K] is finite. In addition, we write AK for AGK . Concerning cohomology groups, we adopt a
notation that is compatible with our previous one: We write Hq(L|K,AL) (or even Hq(L|K))
for Hq(GK/GL, AL). For any tower N ⊇ L ⊇ K with N |K normal, we let

resL : Hq(N |K,AN)→ Hq(N |L,AN)

be the standard restriction of group cohomology.
A formation (G,A) is a field formation if for any finite normal extension L|K we have

H1(L|K,AL) = 1

(Hilbert 90, formally). For a field formation (G,A) the inflation-restriction sequence

0→ H2(L1|K,AL1)→inf H2(L2|K,AL2)→res H2(L2|L1, AL2)

is exact whenever L2|L1|K is a chain of normal extensions. Consequently, we have injections

H2(L1|K,AL1) ↪→ lim←−
L2|K

H2(L2|K,AL2) = H2(GK , A)

This allows us to consider each H2(L|K,AL), L|K a normal extension, as a subgroup of
H2(GK , A). In the sequel, this is tacitly assumed.

A field formation (G,A) is called a class formation if for any finite normal extension there
exists an isomorphism

invL|K : H2(L|K,AL) −→ [L : K]−1Z/Z

such that

1. If L2 ⊇ L1 ⊇ K are normal finite extensions, then invL1|K = invL2|K |H2(L1|K,AL1
).

2The standard cohomology Hi in loc.cit. is the Tate cohomology denoted by Ĥi here.
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2. If N ⊇ L ⊇ K are open subgroups with N |K normal, then

invN |L ◦ resL = [L : K] · invN |K .

Local Class Field Theory:
Main reference is [28]. Let K be a local non-archimedean field. (This will serve as the base

field of our class formation denoted K0 above.) GK = Gal(K/K) its absolute Galois group.
KH the fixed field of H in K.

By definition, Ĥ0(L|K,K×) = K×/NL/KL
× and Ĥ−2(L|K,Z) ≈ Gal(L/K)ab by an elemen-

tary argument [28, Proposition I.3.19].

(GK , K
×

) is a class formation ([28, Theorem II.5.6]) in the sense of Artin and Tate [3]:

∃! fundamental class uL/K ∈ Ĥ2(L|K,L×) of L/K
cup product with uL/K yields the Nakayama map

Gal(L/K)ab = Ĥ−2(L|K,Z) −→ Ĥ0(L|K,L×) = K×/NL/KL
×

of local class field theory ([28, Theorem II.1.9]), which is an isomorphism.
Its inverse is the (Artin) reciprocity map recL/K : K×/NL/KL

× → Gal(L/K)ab.
(Classical) norm residue symbol

(·, L/K) : K× → Gal(L/K)ab, α 7→ recL/K(α).

Facts: (1) Norm subgroups NL|KL
×, L a finite extension = finite index subgroups of K×

[28, Theorem II.6.3]
(2)
⋂

[L:K]<∞NL|KL
× = 1 (see [28, Corollary II.3.6])

Projective limit: universal residue symbol (·, K) : K× ↪→ Gab
K ; gives identification of Gab

K

with the profinite completion K̂× (see [28, Theorem II.5.13]).
Split exact sequence

1 // UK // K×
val // Z // 0,

where UK is the group of units and val : K× → Z is the (normalized) p-adic valuation on K.

For both the p-adic and the profinite topology on UK translates of U
(n)
K = 1 + mn

K form a
basis. Therefore, the profinite and the p-adic topology on UK coincide. Particularly, UK equals
its profinite completion. In conclusion, the above exact sequence induces an exact sequence

1 // UK // Gab = K̂×
v̂al // Ẑ // 0. (2)

Denote by KH the subfield of K that is fixed by H. From (2), we get for each open normal

subgroup H ⊆ G the multiplicative module K̂×H . If H is normal we get also its GK-module
structure. Indeed, by [28, Theorem 1.11.d] (σa,KH) = σ(a,KH)σ−1 for any a ∈ KH and any
σ ∈ GK ; this makes sense as (a,KH) ∈ Hab and σHσ−1 = H by assumption. This means

precisely that the GK-action on K×H ⊂ K̂×H = Hab is extended by the action of GK on Hab

through conjugation. The embedding K ↪→ KH corresponds to the (classical) Verlagerung
(transfer) Ver : Gab → Hab [28, Theorem 1.11.b]. This means that the following diagram is
commutative:

K

(·,K)
��

� � // KH

(·,KH)
��

Gab Ver // Hab

(3)

Note that the Verlagerung (transfer) Gab → Hab is nothing but the (cohomological) restriction

res : Ĥ−2(G,Z)→ Ĥ−2(H,Z) associated with H ⊆ G (cf. [28, Definition I.4.10]).
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Global Class Field Theory:
Let K be a global field. (This serves as the base field K0 of our class formation.) For each

finite extension L of K, we denote by IL its idèle group and by CL = IL/L
× its idèle class group.

For an extension L2/L1 of global fields containing K one has a standard inclusion IL1 ↪→ IL2 ,
inducing an inclusion CL1 ↪→ CL2 ([28, Proposition III.2.6]). In addition, the profinite Galois
group GK = Gal(K/K) induces (continuous) homomorphisms IK → IσK and CK → CσK . If
L2/L1 is normal with Galois group G = Gal(L2/L1) then IL1 = IGL2

([28, Proposition III.2.5])
and CL1 = CG

L2
by Hilbert’s Satz 90 ([28, Theorem III.2.7]). We set C = lim−→L

CL with L ranging

over all finite extensions of K in K and with respect to the above inclusions. It is easy to see
that the maps CL → CσL mentioned above give arise to a continuous automorphism σ of C.
This makes C a discrete GK-module and CGL = CL for all fields K ⊆ L ⊆ K.

Now, (GK , C) is a class formation ([28, Theorem III.6.9]).

Hence, as above: ∃! fundamental class uL/K ∈ Ĥ2(L|K,CL) of L/K
Nakayama map (isomorphism!) of global class field theory:

Gal(L/K)ab = Ĥ−2(L|K,Z) −→ Ĥ0(L|K,CL) = CK/NL/KCL

As in the local theory, we get a global universal norm residue symbol

IK/K
× = CK → Gab

K

We write IK → Gab
K , a 7→ (a,K), for the composition of this map with the quotient IK →

IK/K
×. We call this the Artin symbol (or map). The image of CK in Gab

K is still dense in
the pro-finite topology but the kernel DK is non-trivial if K is a number field. In fact, DK

is the connected component of CK that contains the identity. For more details, including the
structure of DK , see [3, Theorem IX.3]. If K is a function field, then IK/K

× = CK → Gab
K

is still injective (see [3, Section VIII.3]). This means that the kernel of the Artin symbol is
precisely K×.

There is a close relation between global and local reciprocity: For each place v ∈ P(K), we
choose a lifting ṽ ∈ P(K) and an embedding ιv : GKv = Dṽ ↪→ GK . Note that the induced
map GKv → Gab

K does not depend on the lifting ṽ as all such liftings are GK-conjugates. Via
this map, we consider (ap, Kv) as an element of Gab

K in the sequel.

Lemma 21. ([28, Theorem 6.15] or [3, Corollary VII.3.2]) Let K be a global field. For each
a = (av) ∈ IK, we have

(a,K) =
∏

v∈P(K)

(av, Kv).

2.5 Absolute Galois groups of local fields I: Group-theoretic data (cont.)

Proof of Lemma 20. (1) is already done in Lemma 16 above

(2) For each finite Galois extension L ⊇ K we have µ(L̂×) = µ(L×) by the above exact

sequence (2) and we obtained L̂× as a GK-module above.
(3) As the residue field is finite, it suffices to show that its cardinality is prescribed by GK .

If K is a function field (resp. a p-adic field) then the multiplicative group of the residue field is
isomorphic to the roots of unity µ(K×) (resp. the roots of unity in µ(K×) with order coprime
to the residue characteristic p). Note that the residue characteristic p in the p-adic case is
obtained by (a) below.

(4) By using (3) for an arbitrary open subgroup H ⊂ G we can determine whether KH/K
is unramified (i.e., whether fKH

/fK = [G : H]). The intersection of all such subgroups H is
precisely the inertia subgroup IK .
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(5) As the maximal unramified extension is contained in the maximal cyclotomic extension,

the Frobenius Frob ∈ GK/IK can be characterized completely by its action on µ(K
×

).
(6) By [28, Theorem II.4.10], the unit group UK is isomorphic to the image of IK in Gab

K . In

addition, U
(1)
K is the (unique) p-Sylow subgroup of UK .

(7) Again by [28, Theorem II.4.10], the image of K× in K̂× ⊂ Gab
K is generated by a lifting

of Frob ∈ GK/IK and the image IK in Gab
K .

(8) We have constructed K× and UK as subgroups of K×. Now, K×/UK ≈ Z and we can
single out the right orientation because uniformizers of K× are sent to liftings of the Frobenius
Frob via the universal norm residue map (cf. [28, Theorem II.4.10]).

(9) This is rather tautological as we have described the image of K× in Gab
K under the

universal norm residue map in group-theoretic terms above.
(a), (b) As a profinite group, Gab has a natural structure of Ẑ-module.3 In particular, it is

a Zl-module for any prime l. Using the p-adic logarithm we deduce that an open (i.e., finite

index) subgroup of UK is isomorphic to Z[K:Qp]
p (see [27, Theorem II.5.7]). Consequently, the

exact sequence (2) shows that dimQp(Gab ⊗Ẑ Qp) = [K : Qp] + 1 for the residue characteristic
p and dimQl

(Gab ⊗Ẑ Ql) = 1 for any other prime l. This yields p and [K : Qp]. (In less fancy
terms, Gab ⊗Ẑ Zl is the pro-l completion of Gab and Gab ⊗Ẑ Ql = Gab ⊗Zl

Ql the quotient by its
torsion.)

(c) Use [K : Qp] = eKfK .

3In fact, let G be a profinite group and x ∈ G. Let λ ∈ Ẑ and ni ∈ ZN be a sequence converging to λ. It is
easy to see that xni converges with respect to the profinite topology of G. In addition, the limit xλ does only
depend on λ and not on the sequence ni. In this way, G is endowed with a natural structure of Ẑ-module. See
also [36, Lemma 4.1.1].
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Lecture 7: The Theorem of Neukirch-Uchida V

2.7 The Theorem of Neukirch-Uchida: Function fields

In this section, we establish Theorem 12 in the case of function fields. For this, let K be a
function field of characteristic p and L an arbitrary global field. By Lemma 16, GK ≈ GL implies
that L is also a function field of characteristic p. This already implies that Isom(L,K) 6= ∅ (i.e.,
the algebraic closures are non-canonically isomorphic). Let Φ : GK → GL be an isomorphism.
We have to show that there exists a unique φ : K → L such that φ(K) = L and Φ(g) = φgφ−1.

Uniqueness of φ: Suppose φ1, φ2 : K → L are such that φ1gφ
−1
1 = Φ(g) = φ2gφ

−1
2 for all

g ∈ GK . In other words, (φ−1
1 φ2)g(φ−1

1 φ2)−1 = g for all g ∈ GK . This means that g is contained
in the center of GK . However, we observed that GK has trivial center as a consequence of
Lemma 7. Hence, φ1 = φ2.

Existence of φ:4 Let v ∈ P(K) and ṽ ∈ P(K) a place above v. Then, the decomposition
group

Dṽ = {g ∈ GK | gṽ = ṽ}

is isomorphic to Gal(Kv/Kv) and by Lemma 20 (7) we can ‘reconstruct’ the multiplicative
monoid K×v ⊆ Dab

ṽ from this Galois group. If w ∈ P(L) corresponds5 to v, then Dab
ṽ ≈ Dab

w̃

induces a canonical isomorphism K×v ≈ L×w . Using also assertion (6) from Lemma 20, we get
an isomorphism φI : IK → IL by taking restricted products over the various local fields and
their unit groups. In addition, from Lemma 20 (9) and Lemma 21 we get the Artin symbol
(·, K) : IK → Gab

K (resp. (·, L) : IL → Gab
L ) such that we have a commutative diagram

IK
(·,K) //

φI
��

Gab
K

Φab

��
IL

(·,L) // Gab
L .

The kernel of the global Artin map (·, K) (resp. (·, L)) is K× (resp. L×). In this way, we
obtain an isomorphism φ : K× → L× from the above diagram. We also obtain the embed-
dings ιv : K× ↪→ K×v for free and the local valuations ordv : K× → Z from Lemma 20
(8). We write div(x) for the divisor

∑
v∈P(K) ordv(x)[v] ∈

⊕
v∈P(K) Z[v] as well as div0(x) =∑

v∈P(K),ordv(x)>0 ordv(x)[v] (resp. div∞(x) = −
∑

v∈P(K),ordv(x)<0 ordv(x)[v]). All of these defini-
tions are compatible – in the obvious sense, which we leave to the reader to make precise – with
the isomorphism φ as can be easily seen. For D1 =

∑
v∈P(K)mv[v] and D2 =

∑
v∈P(K) nv[v],

we write D1 4 D2 if and only if mv ≤ nv for all v ∈ P(K). This gives a partial ordering on⊕
v∈P(K) Z[v]. In addition, for each D =

∑
v∈P(K) mv[v] we call supp(D) = {v ∈ P(K) | mv 6=

0} its support.

We want to show that φ extends to an additive map K = K× ∪ {0} → L = L× ∪ {0}.
By abuse of notation, we denote this map again by φ. This slight abuse of notation should
not be confusing. Let K0 =

⋂
v∈P(K) ker(ordv) (resp. L0 =

⋂
v∈P(L) ker(ordv)) be the constant

functions in K (resp. L). Note that φ sends K0 isomorphically onto L0 by the group-theoreticity
of valuations stated in Lemma 20 (8). We start with establishing additivity on this restriction.

Lemma 22. φ|K0 : K0 → L0 is additive. Consequently, φ|K0 is an isomorphism of fields.

4We follow the original proof of Uchida [48] here. In order to prove Theorem 4, Tamagawa gives a stronger
result in [46, Lemma 4.7], which (among other refinements) actually claims that the field K can be given
explicitly by a group-theoretic construction from GK (i.e., the field K is group-theoretic in our terminology).
Then, GK ≈ GL immediately implies K ≈ L.

5See the comment below Lemma 6 on how to obtain a bijection P(K) ≈ P(L) from the bijection P(K) ≈
P(L) of Lemma 6.
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Before we start with the proof of this lemma, let us make some general observations: Let
x, y ∈ K× be two non-zero functions and let v ∈ P(K)\ supp(div(x))∪ supp(div(y)) be a place
such that neither x nor y has a zero or pole at v. Then,

x− y ∈ mv ⇐⇒ x/y ∈ U (1)
Kv
⇐⇒ φ(x)/φ(y) ∈ U (1)

Lw
⇐⇒ φ(x)− φ(y) ∈ mw. (4)

The first (resp. third) equivalence can be proved easily by considering the expansions of x and
y (resp. φ(x) and φ(y)) in a uniformizer at v (resp. w). The middle equivalence follows from
the description of the principal units as in Lemma 20 (6).

In addition, it should not be overlooked that φ(−1) = −1 as we use it in the proof below
demands a proof. For p = 2, this reduces to φ(1) = 1 and there is nothing to proof. For odd
characteristic p, −1 is characterized as the unique element x of K× (resp. L×) such that x 6= 1
and x2 = 1. This description in ‘multiplicative terms’ yields what we want.

Proof of Lemma 22. For the proof, we choose a non-constant x ∈ K× with minimal denomina-
tor div∞(x). This means that div∞(x0) 4 div∞(x) implies div∞(x0) = 0 (i.e., x0 ∈ K×0 ). Note
that also φ(x) ∈ L× has minimal denominator. Let now λ ∈ K×0 . Our first goal is to show that

φ(x+ λ)− φ(x) = φ(λ). (5)

We do this in two steps. First, we show that the left hand side is a constant (i.e., is contained
in L×0 ). We can then prove the equality by evaluation at a point. Note that

div∞(x+ λ) = div∞(x)

and hence
div∞(φ(x+ λ)) = div∞(φ(x)).

Consequently,
div∞(φ(x+ λ)− φ(x)) 4 div∞(φ(x)).

If this inequality is strict then φ(x+λ)−φ(x)) ∈ L×0 by minimality of φ(x). Thus, assume that

div∞(φ(x+ λ)− φ(x)) = div∞(φ(x)). (6)

We establish that also

supp(div0(φ(x+ λ)− φ(x))) ⊆ supp(div∞(φ(x)). (7)

Let w /∈ supp(div∞(φ(x)) (i.e., φ(x) has no pole at w) be a place of L and let v ∈ P(K)
be the place corresponding to w. By compatibility, ordw(φ(x)) ≥ 0 implies ordv(x) ≥ 0,
ordv(x + λ) ≥ 0, and thus ordw(φ(x + λ)) ≥ 0. By (4), λ = (x + λ) − x /∈ mv implies
φ(x + λ) − φ(x) /∈ mw. In other words, w /∈ supp(div0(φ(x + λ) − φ(x))) and we deduce (7).
However, (6) and (7) are only simultaneously satisfiable if div0(φ(x+λ)−φ(x)) = 0 and hence
φ(x+ λ)− φ(x)) ∈ L×0 in any case. Now, we use again (4) in evaluating φ(x+ λ)− φ(x) at an
arbitrary w ∈ supp(div0(φ(x+ λ))). Again, let v ∈ P(K) correspond to w. By our assumption
on w, ordv(x + λ) > 0 and hence ordv(x) = 0 as λ is a non-zero constant. By (4), it follows
that φ(x) + φ(λ) = φ(x)− φ(−λ) ∈ mv and therefore

φ(x+ λ)− φ(x) ≡ φ(λ) mod mv.

This immediately implies (5). Let now λ1, λ2 ∈ K0. We want to show that

φ(λ1 + λ2) = φ(λ1) + φ(λ2). (8)



28

The case λ1 = 0 or λ2 = 0 is trivial so that we may assume that both are non-zero constants.
In addition, for λ2 = −λ1 the above equality reduces to φ(0) = φ(λ1) + φ(−λ1) and this is
easily seen to be true. Therefore, we may and do assume that λ2 6= −λ1 (i.e., λ1 + λ2 ∈ K×0 ).

Let y ∈ K× have minimal denominator. Note that if y has a minimal denominator then so
has y + λ for any λ ∈ K0. Applying (5) with x = y + λ1 and λ = λ2 ∈ K×0 yields

φ((y + λ1) + λ2)− φ(y + λ1) = φ(λ2);

applying it with x = y and λ = λ1 ∈ K×0 yields

φ(y + λ1)− φ(y) = φ(λ1);

finally applying it with x = y and λ = λ1 + λ2 ∈ K×0 yields

φ(y + (λ1 + λ2))− φ(y) = φ(λ1 + λ2),

Subtracting the third of the above three equations of the sum of the other two yields (8).
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Lecture 8: The Theorem of Neukirch-Uchida VI
For any two corresponding places v ∈ P(K) and w ∈ P(L), φ : K× → L× induces an

isomorphism UKv/U
(1)
Kv
→ ULw/U

(1)
Lw

of multiplicative monoids by Lemma 20 (6). For each local

field F of positive characteristic, UF/U
(1)
F can be identified canonically with the multiplicative

group of the residue field OF/mF by (4). Hence, φ induces canonically isomorphisms φv :
k×v → l×w where k×v (resp. l×w) is the residue field of Kv (resp. Lw). Abusing notation, we write
φv : kv → lw for the extension of φv satisfying φv(0) = 0.

Lemma 23. φv : kv → lw is additive (i.e., an isomorphism of fields).

Proof. This is an obvious consequence of Lemma 22 if the constants K0 surject onto kv. In the
general case, there is a finite extension K0 of K and a lifting ṽ ∈ P(K0) so that its constants
K0 surject onto k0,ṽ. Let L0 be the field corresponding to K0 via Φ and w̃ ∈ P(L0) the
place corresponding to ṽ. Checking various compatibilities, one can deduce the additivity of
φv : kv → lw from the additivity of φ0,ṽ : k0,ṽ → l0,w̃.

With these ample preparations, we can finally prove that φ : K → L is additive. As φ is
already multiplicative, it suffices to show that φ(x+1) = φ(x)+1 for all x ∈ K; for this implies

φ(x+ y) = φ(y)φ(x/y + 1) = φ(y)(φ(x/y) + 1) = φ(y)(φ(x)/φ(y) + 1) = φ(x) + φ(y)

for all x, y ∈ K. Let v /∈ supp(div∞(x)) be a place of K and w the corresponding place of L.
By Lemma 23, we have

φ(x+ 1) ≡ φv(x+ 1) ≡ φv(x) + φv(1) ≡ φ(x) + φ(1) ≡ φ(x) + 1 mod mw.

As this congruence is true for all but finitely many places w ∈ P(L), we have φ(x+1) = φ(x)+1.
Hence, φ : K → L is an isomorphism of fields. Furthermore, for any open subgroup H of

GK we obtain an isomorphism φH : K
H → L

Φ(H)
by the above procedure. From their very

construction, these must be compatible with each other. Thus we obtain an isomorphism
φ : K → L prolonging φ : K → L, abusing notation.

For Theorem 12, it remains to demonstrate that Φ(g) = φgφ−1 for any g ∈ GK . This follows
from the commutativity of the following diagram:

L0
//

Φ(g)

��

IL0
//

Φ(g)

��

Gab
L0

Φ(g)(·)Φ(g)−1

��
K0

//

g

��

φ

GG

IK0
//

g

��

φI

GG

Gab
K0

g(·)g−1

��

Φab

GG

L0
// IL0

// Gab
L0

K0
//

φ

GG

IK0
//

φI

GG

Gab
K0
.

Φab

GG

Here, most commutation relations come directly from the construction. The only external
ingredient is the commutativity of the right front and right back square, which is mainly [28,
Theorem 1.11.d] (cf. the section on local class field theory above).

2.8 The Theorem of Neukirch-Uchida: General number fields
Let K and L be number fields. In this section, we finally establish Theorem 12 for them.

For this, let Φ : GK → GL be an isomorphism. We want to show that there exists a unique
φ : L→ K such that φ(L) = K and Φ(g) = φ−1gφ.

Uniqueness of φ: This is proven in the same way as for function fields.
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Existence of φ: For each normal open subgroup H of GK , Φ induces an isomorphism
ΦH : GK/H → GL/Φ(H). By using compactness, it suffices to establish Lemma 24 below. For
this, we introduce the set

IsomL,K(L,K) = {φ ∈ Isom(L,K) | φ(L) = K and φ|L : L→ K is an isomorphism},

which has a natural topology as a pro-set; we describe a basis for this topology: With each finite
normal extension L ⊂ N1 ⊂ L, we can associate a unique finite normal extension K ⊂ N2 ⊆ K.
Indeed, if φ ∈ IsomL,K(L,K) then we set N2 = φ(N1). For any other φ′ ∈ IsomL,K(L,K), there
exists some ψ ∈ GK such that φ′ = ψ ◦ φ. As N1 and hence N2 are normal, it follows that
φ′(N1) = ψ(φ(N1)) = ψ(N2) = N2. Hence, N2 does not depend on the choice of φ and may be
associated with N1. For any N1 with associated N2, there is a restriction map

resN1 : IsomL,K(L,K)→ IsomL,K(N1, N2)

and IsomL,K(L,K) = lim←−N1,N2
IsomL,K(N1, N2) as sets. The profinite topology on Isom(L,K) is

the inverse limit of the discrete topologies on the finite sets Isom(N1, N2). This topology coin-
cides with the topology induced from the bijection IsomL,K(L,K) ≈ GL (resp. IsomL,K(L,K) ≈
GK) induced by post-composition (resp. pre-composition) with any element of IsomK,L(K,L).

Lemma 24. Let H be a normal open subgroup of GK such that its fixed field K0 = K
H

is
normal over Q (!). Then, there exists an isomorphism φH in IsomL,K(L,K) such that

(φH)∗ : GK → GL, g 7→ φ−1
H ◦ g ◦ φH ,

induces ΦH : GK/H → GL/Φ(H).

We can indicate now how Lemma 24 implies Theorem 12. For each H as in Lemma 24, the
set

KH = {φ ∈ IsomL,K(L,K) | res
K

H (φ)−1 ◦ σ ◦ res
K

H (φ) = ΦH(σ) for all σ ∈ Gal(K
H
/K)}

is compact and φ induces Φ if and only if φ ∈
⋂
H KH . By Lemma 24, each KH is non-

empty. We infer that
⋂
H KH is non-empty, settling the existence part of the Neukirch-Uchida

Theorem.6

Let L/K be a Galois extension of number fields and p (resp. P) a prime ideal of K (resp.
L) such that LP/Kp is unramified. Then, we have inertia group I(P|p) = 1 and decomposition
group D(P|p) = Gal(lP/kp) with lP (resp. kp) the residue field of LP (resp. Kp). In this

situation, we write
(
L/K
P

)
for the unique (!) element in D(P|p) ⊂ Gal(L/K) corresponding to

the Frobenius of Gal(lP/kp). In other words,
(
L/K
P

)
is the unique element σ ∈ D(P|p) such that

σx ≡ xp mod P

for all x ∈ OL. From this description, it is obvious that for any homomorphism φ : L→ L′ we
have (

φ(L)/φ(K)

φ(P)

)
= φ ◦

(
L/K

P

)
◦ φ−1.

6This is a standard argument: Let Kn, n ∈ N, be a descending chain of non-empty compact (= quasi-
compact and Hausdorff) sets. Un = K0 \Kn, n ∈ N, is an ascending chain of open subsets of K0. Furthermore,⋃
n Un = K0 if

⋂
nKn = ∅. In this case, there is some n0 such that K0 =

⋃
n Un = Un0

= K0 \Kn0
and hence

Kn0
= ∅ – a contradiction.
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Lecture 9: The Theorem of Neukirch-Uchida VII

Proof of Lemma 24. We prove the lemma first in the case that GK/H ≈ Gal(K0/K) is

cyclic with generator σ. Write L0 = L
Φ(H)

. By the Cebotarev density theorem (cf. [27,
Theorem VII.13.4]), there exists a rational prime p that is unramified in K0 and a prime p
above p such that σ =

(
K0/Q

p

)
. There is a lifting σ̃ ∈ GK and a place v|p such that σ̃ ∈ Dv is

sent to the Frobenius x 7→ xp of Gal(F̄p/Fp) by the canonical map Dv � Dv/Iv = Gal(F̄p/Fp).
By the local correspondence established in Lemma 6, Φ associates with v ∈ Pf (K) a place
w ∈ Pf (L) such that Dv ≈ Dw. As local Galois groups determine the residue characteristics of
the underlying p-adic fields (Lemma 20 (a)) w lies also over p. By restriction, w gives rise to a
prime p′ of L0 over p. By Lemma 20 (c), p is unramified in L0/Q. There exists an isomorphism
φH ∈ Isom(L,K) (not IsomL,K(L,K)!) such that φH(p′) = p by Hilbert’s ramification theory
(see e.g. [27, Theorem I.9.1]). In addition, φH(L0) = K0 – in other words, φ−1

H Φ(H)φH = H
– follows directly from our version of the Neukirch-Uchida theorem for normal number fields.
Indeed, GφH(L0) ≈ GL0 and Φ induces an isomorphism GL0 ≈ GK0 so that we may apply Lemma
19 to K0, φH(L0) ⊂ K.

With any g ∈ GK we can associate now two (in general different) elements of Gal(L/Q),
both Φ(g) and (φH)∗(g) = φ−1

H gφH . The assertion of the lemma boils down to the statement
that their restrictions to Gal(L0/Q) are equal. As σ generates Gal(K0/K), it suffices to prove
this with g = σ̃. On the one hand, Φ(σ̃) is a Frobenius of Dw = Φ(Dv) by Lemma 20 (5) and
hence

Φ(σ̃)|L0 =

(
L0/Q
p′

)
.

On the other hand, φH(p′) = p implies that

φ−1
H |L0

(
K0/Q
p

)
φH |L0 =

(
φ−1
H (K0)/φ−1

H (Q)

φ−1
H (p)

)
=

(
L0/Q
p′

)
.

This shows that (φH)∗ induces ΦH . In addition, we infer

φH(L) = φH(L
〈Φ(H),Φ(σ̃)〉

) = φH(L
〈φHHφ−1

H ,φH σ̃φ
−1
H 〉) = K

〈H,σ̃〉
= K

〈σ〉
0 = K.

In other words, φH ∈ IsomL,K(L,K). This completes the proof in the cyclic case.
From now on, we consider general GK/H = Gal(K0/K). In the sequel, we identify

both K and L with Q. In particular, we consider both K and L as subfields of Q. Evidently,

this does not lead to any loss of generality. Write N = K
H

= L
Φ(H)

and G = Gal(N/Q). Let

p be a prime such that p > #G = n and let G̃ = Fp[G] oρ G be the semidirect product such
that ρ(g) ∈ Aut(Fp[G]) is multiplication with g considered as element of the group ring Fp[G].
By Lemma 25, the embedding problem

GQ

����

?

��
1 // Fp[G] ι

// G̃ κ
// G // 1

(9)

has a proper solution. This means that there exists a normal extension M/N such that Fp[G] =
Gal(M/N); we use this identification without explicit mention in the sequel. With this, we have
g ◦ λ ◦ g−1 = ρ(g)(λ) = g · λ for all λ ∈ Gal(M/N) and all g ∈ G. Additionally, Φ : GK → GL

induces a homomorphism

Φ0 : Fp[G] = Gal(M/N) −→ Gal(M/N) = Fp[G].
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We claim that Φ0 is of a rather simple shape. Namely, we assert that there exists some h ∈ G
such that Φ0(λ) = h ·λ for all λ ∈ Fp[G]. As a first approximation, we prove for each λ ∈ Fp[G]
the existence of some hλ ∈ G with Φ0(λ) = hλ · λ. This is clear if λ = 0 so that we work with
a non-zero λ ∈ Fp[G] from now on. Let K1 (resp. L1) be the fixed field of 〈λ〉 ⊆ Gal(M/N)
(resp. 〈Φ0(λ)〉 ⊆ Gal(M/N)). As Gal(M/K1) = 〈λ〉 is cyclic and M is normal, the cyclic case
of Lemma 24 shows that there exists some φ ∈ IsomL1,K1(Q,Q) such that

φ∗ : GK1 → GL1 , g 7→ φ−1 ◦ g ◦ φ,

induces Φ0|Gal(M/K1) : Gal(M/K1)→ Gal(M/L1) by restriction. In other words,

Φ0(λ) = (φ|M)−1 ◦ λ ◦ φ|M = hλ · λ, where hλ = (φ|N)−1 ∈ G.

It follows that Fp[G] =
⋃
h∈G Uh with Uh = {λ ∈ Fp | Φ0(λ) = h · λ}. If no Uh is equal to Fp[G]

then #Uh ≤ pn−1 for all h ∈ G. This implies

pn = #Fp[g] ≤
∑
h∈G

#Uh ≤ npn−1 < pn

by assumption on p. As this is a clear contradiction, there exists some h ∈ G such that
Φ0(λ) = h · λ for all λ ∈ Fp[G]. In addition, h = hλ = (φ|N)−1. For given g ∈ Gal(N/K), we
have to prove that

ΦH(g) = (φ|N)−1 ◦ g ◦ φ|N = hgh−1.

We have Φ0(g) = hg by the above and Φ0(g) = Φ0(g · 1) = ΦH(g) · Φ0(1) follows from a direct
consideration. Combining these gives h · g = ΦH(g)Φ0(1) = ΦH(g)h and hence hgh−1 = ΦH(g)
as claimed.

The following lemma and its proof are beyond the scope of this lecture. In order to formulate
it, we introduce some terminology first. Let K be an arbitrary field. A Hilbert set of K is a
subset of Kr, r an arbitrary positive integer, of the form

{(a1, . . . , ar) ∈ Kr | f(a1, . . . , ar, X) ∈ K[X] defined and irreducible},

where fi(T1, . . . , Tr, X) ∈ K(T1, . . . , Tr)[X], i = 1, . . . ,m, are irreducible separable polynomials
over K(T1, . . . , Tr). A field is called Hilbertian if every Hilbert set is nonempty. An important
class of Hilbertian fields are number fields (see [8, Section 13.3] for a proof). In contrast, p-adic
local fields are not Hilbertian. In fact, the absolute Galois groups of Hilbertian fields can never
be small (i.e., have only finitely many subgroups of index n for each positive integer n) by [8,
Lemma 16.11.5] whereas the absolute Galois group of a p-adic local field is always small by
Lemma 17.

Next we introduce embedding problems. Let K be some base field with absolute Galois
group Γ = Gal(K/K). In addition, let N |K a finite normal extension with Galois group G =

Gal(N/K). Let G̃ be a group extension of G by some group H. We search for homomorphisms

ϕ̃ : G→ G̃ such that the following diagram commutes:

Γ

ϕ

��ϕ̃��
1 // H ι

// G̃ κ
// G // 1

(10)

These homomorphisms ϕ̃ are called the solutions of the embedding problem (10). A solution
is called proper if it is an epimorphism. Proper solutions are directly related to inverse Galois
theory. Indeed, associating with a proper solution the fixed field Ñ = Nker(ϕ̃), proper solutions
correspond uniquely to normal extensions N ⊆ Ñ ⊆ K such that Gal(Ñ/N) = H. Finally, the
embedding problem is called split if the horizontal exact sequence in (10) splits and abelian if
H is an abelian group.
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Lemma 25. [19, Theorem IV.2.4] Let K be a Hilbertian field. Any split embedding problem
with abelian kernel has a proper solution.

For historical completeness, it should be mentioned that we only need the case where K is
a number field. In this special case, Lemma 25 appeared first in [42] and was proven by mainly
class field theoretic tools. In addition, a more Galois cohomological proof of the above lemma
is given in [28].
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