
Praktikum II “Mathematik am Computer” FS 2020
Prof. M. Grote Universität Basel
D. Felder, A. Heinimann, S. Michel, C. Pütz, F. L. Rios, G. Schefer

MATLAB Tutorial

(von Clemens Staub, Michaela Mehlin, HS 2010, überarbeitet von Dennis Tröndle, HS 2017)

MATLAB ist eine Software zur Lösung mathematischer Probleme und zur grafischen Darstellung
der Ergebnisse. Matlab ist primär für numerische Berechnungen mithilfe von Matrizen ausgelegt,
woher sich auch der Name ableitet: MATrix LABoratory.
Matlab dient im Gegensatz zu Computeralgebrasystemen wie Maple nicht der symbolischen, son-
dern primär der numerischen (zahlenmäßigen) Lösung von Problemen. Programmiert wird unter
Matlab in einer proprietären Programmiersprache, die auf dem jeweiligen Computer interpretiert
wird. Grosse Programme können aus Skripts oder Funktionen zusammengefügt werden. Durch die
vereinfachte, mathematisch orientierte Syntax der Matlab-Skriptsprache und die umfangreichen
Funktionsbibliotheken für zum Beispiel Statistik, Signal- und Bildverarbeitung ist die Erstellung
entsprechender Programme wesentlich einfacher möglich als z. B. unter C.
Matlab wird am Mathematischen Institut der Uni Basel vorwiegend in den Veranstaltungen zur
Numerik, sowohl in der Bachelor- wie auch in der Masterstufe eingesetzt.
In der Institutsbibliothek und in der UB sind Handbücher zu Matlab zu finden. Weitere Informa-
tionen sind auf der Webseite des Herstellers Mathworks zu finden:
http://www.mathworks.ch/

1 Operatoren und Werte

Im Command Window nimmt Matlab Befehle direkt entgegen. Nach der Eingabeaufforderung, ge-
kennzeichnet durch >>, können Befehle eingegeben und durch drücken von Enter ausgeführt wer-
den. Mit den Pfeiltasten können früher eingegebene Befehle wieder aufgerufen werden. Mit clc

kann das Command Window geleert werden. Versuche einige einfache Berechnungen auszuführen
und achte auf die Präzedenz-Regeln der Operatoren. Mit Klammern kannst du diese beeinflussen.

>> 1 + 2 - 3 * 4 / 5 ^ 6

ans =

2.9992

>> 1 + (2 - 3) * 4 / 5 ^ 6

ans =

0.9997

Matlab benutzt die Dezimaldarstellung (mit . als Trennzeichen) für Zahlen und versteht e als
Zehner-Potenz-Faktor, sowie i oder j als imaginäre Zahl. Man sollte e also nicht für exp(1)

halten und i oder j nur als imaginäre komplexe Zahl (i =
√
−1) benutzen und nicht - auch wenn

es möglich ist - als Variablennamen.

1

>> 5e-2

ans =

0.0500

>> i + 1

ans =

1.0000 + 1.0000i

2 Variablen

Das ans in der Ausgabe ist eine Variable, in welcher Matlab das letzte Ergebnis speichert. Mit =
können wir selbst Variablen definieren (nicht mit := wie in Maple). Mit who bzw. whos sowie im
Fenster Workspace können wir die aktuell definierten Variablen betrachten.

>> x = 1

x =

1

>> y = 1

y =

1

>> z = x + y

z =

2

Die Ausgabe kann unterdrückt werden, indem der Befehl mit Semikolon (;) abgeschlossen wird.
Das sollte man sich angewöhnen und es nur weglassen, wenn man die Ausgabe tatsächlich sehen
will.
Matlab kennt verschiedene Typen von Variablen und wählt meist automatisch den geeigneten
Typ aus. Mit dem Befehl whos kann man den Typ der aktuell definierten Variablen sehen. Dabei
können Variablen vom Typ logical die Werte true und false bzw. 1 und 0 aufnehmen, der Typ
int ganze Zahlen, double reelle Zahlen bis zu einer Genauigkeit von grob 16 Dezimalstellen (mit
den Befehlen format long bzw. format short kann man sich 15 oder nur 5 Nachkommastellen
anzeigen lassen) und char Buchstaben, um nur die wichtigsten zu nennen.

>> x = int8(1); y = 1 - i; z = ’Hallo’; a = true; whos

Name Size Bytes Class Attributes

a 1x1 1 logical

2

x 1x1 1 int8

y 1x1 16 double complex

z 1x5 10 char

Mit clear x kann eine bestimmte Variable x gelöscht werden. Mit clear all der gesamte Workspace.
Alle aktuellen Variablen (der sog. Workspace) können mit dem Befehl save MeineDaten.mat in
eine Datei gespeichert werden und mit load MeineDaten wieder geladen werden. Achtung, Va-
riablen mit demselben Namen werden dadurch überschrieben! Die Datei MeineDaten.mat wird
mit dem Befehl oben im aktuellen Verzeichnis gespeichert. Mit dem Befehl pwd (für print wor-
king directory) kann dieses bestimmt und mit cd (für change directory) geändert werden. (cd ..

wechselt in das nächsthöhere Verzeichnis). Mit ls kann man sich vergewissern, welche Dateien zur
Verfügung stehen.

Um den Verlauf der eingegebenen Befehle mitzuschneiden gibt es den Befehl
diary MeinTagebuch.txt. Mit diary off beendet man die Aufzeichnung. Dies kann praktisch
sein, um die Lösungen der ersten Aufgaben zu speichern.

3 Matrizen

Matlab hat seinen Namen - wie bereits erwähnt - deswegen, weil fast alle Variablen in Mat-
lab Matrizen bzw. Arrays (Tabellen oder Felder) sind. Eine eindimensionale Matrix nennen wir
gewöhnlich einen Vektor. Eine einzelne Zahl kann man sich als eindimensionale Matrix mit einem
einzigen Eintrag denken.
Matrizen kann man auf unterschiedliche Weisen erzeugen. Am einfachsten geht das mit eckigen
Klammern, wobei man durch ein Komma oder ein Leerzeichen eine neue Spalte und durch ein
Semikolon eine neue Zeile erzeugt.

>> A = [17, 62, -38; 72, -9, 25]

A =

17 62 -38

72 -9 25

Die Einträge einer Matrix bzw. eines Vektors können auf mehrere Weisen angesprochen werden.
Einerseits können mit natürlichen Zahlen, in runden Klammern direkt auf die Variable folgend,
erst die Zeile und dann die Spalte angegeben werden. So ist A(2,1) der Wert 72. Andererseits
kann mit einer einzigen Zahl ein bestimmter Eintrag bezeichnet werden, da Matlab die Einträge
entlang der Spalten durchnummeriert. Zum Beispiel ist A(5) gleich −38. Eine weitere Methode
auf bestimmte Einträge einer Matrix zuzugreifen ist, dass man eine ihr eine gleich grosse Matrix
vom Typ (logical) mit 1 an den gewünschten Stellen und 0 überall sonst übergibt. Dazu später
mehr.
Eckige Klammern können auch dazu benutzt werden mehrere Matrizen oder Vektoren zu grösseren
Matrizen zu kombinieren:

>> A = [1 2]; B = [3 4]; [A; B]

ans =

1 2

3 4

3

In Matlab kann man mithilfe von : einfach einen Vektor mit auf- oder absteigenden Einträgen
erstellen:

>> a = 1:5

a =

1 2 3 4 5

Mehrere Doppelpunkte geben den Abstand an, den die Einträge eines Vektors haben sollen:

>> a = 0:0.25:1

a =

0 0.2500 0.5000 0.7500 1.0000

>> a = 10:-2:4

a =

10 8 6 4

Diese Schreibweise erzeugt immer Zeilenvektoren, die entsprechenden Spaltenvektoren erhält man
durch Transposition mit ’:

>> a = (1:5)’

a =

1

2

3

4

5

Im Unterschied zu einigen anderen Programmiersprachen steuert man den ersten Eintrag eines
Vektors a mit a(1) und nicht mit a(0) an.

Natürlich kann man mit Matrizen auch rechnen. Es muss dabei immer darauf geachtet werden,
wie eine Operation auf eine Matrix wirkt. Die meisten Operatoren (also Funktionen wie exp,
sin, cos oder Oprationen wie + und -) wirken elementweise, d.h. die Operation wird für jeden
Eintrag separat ausgeführt. sin(A) ist dasselbe wie sin(A(1,1)), sin(A(1,2)) usw. Aufpassen
muss man bei den *, /, und ^. Diese berechnen die zugehörigen Matrixoperationen, d.h. A*B

ist die aus linear Algebra bekannte Matrixmultiplikation, A/B die Matrixdivision und A^2 die
Matrixpotenz. Die entsprechenden elementweisen Operatoren sind .*, ./, und .^(beachte den
jeweils vorangehenden Punkt). A * B und A .* B (und B * A !) sind also nicht dasselbe, wenn A

und B Matrizen sind.

4

>> A = [4 6; 8 2]; B = [-0.05 0.15; 0.2 -0.10]; A * B, A .* B

ans =

1.0000 -0.0000

0 1.0000

ans =

-0.2000 0.9000

1.6000 -0.2000

Das heisst u.a. also auch, dass A * B nur definiert ist, wenn A gleich viele Spalten wie B Zeilen
hat. Das ist verletzt, wenn die Fehlermeldung Inner matrix dimensions must agree. auftritt.
x’ * y berechnet das Skalarprodukt (xty) von zwei Spaltenvektoren x und y.

>> x = (0:4)’; y = (1:5)’;

>> x’*y

ans =

40

Der Ausdruck x .* y (also zwei Spaltenvektoren) multipliziert den i-ten Eintrag von x mit dem i-
ten Eintrag von y, ergibt also einen Vektor mit dem Eintrag xi ·yi an der Stelle i. Stimmen hier nun
die Vektoren in der Grösse nicht überein, meldet Matlab den Fehler Matrix dimensions must agree.

>> x.*y

ans =

0

2

6

12

20

In neueren Matlab-Versionen mutlipliziert x .* y’ (ein Spaltenvektor, der mit einem Zeilenvektor
eintragsweise multipliziert wird) jeden Eintrag von x mit jedem Eintrag von y und gibt eine Matrix
aus, die an der Stelle (i, j) den Eintrag xi · yj hat.

>> x.*y’

ans =

0 0 0 0 0

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5

Die Grösse einer Matrix kann mit dem Befehl size() (oder length() für einen Vektor) bestimmt
werden.

4 Funktionen

Matlab bietet eine Vielzahl bereits eingebauter Funktionen. Diese reichen von den elementaren
Funktionen (z.B. sin, log, exp, . . .) über statistische Tests bis hin zu komplexen numerischen
Verfahren. Mit dem Befehl doc gelangt man zur ausführlichen Dokumentation, in der man nach
geeigneten Funktionen suchen kann. Zu einer spezifischen Funktion bekommt man mit dem Befehl
help Funktionsname weitere Hilfe.
Funktionen haben jeweils Eingabe- und Ausgabewerte. Mehrere davon werden durch Kommas (,)
getrennt. Manchmal sprechen wir von den Eingabewerten als Argumente und von den Ausgabe-
werten als dem Funktionswerte. Erstere folgen der Funktion in runden Klammern. Letztere kann
man sich ausgeben lassen oder in eine Variable speichern, indem man hinter die Funktion die
Variable schreibt:

>> y = cos(3.14)

y =

-1.0000

Funktionen in Matlab können unterschiedlich darauf reagieren, wieviele Argumente oder Ausgabe-
werte man eingibt bzw. verlangt. Wollen wir beispielsweise die Maxima der Matrix A = [2 11 5; 7 3 13]

bestimmen, so gibt uns max(A,[],1) (oder auch einfach max(A)) das Maximum in jeder Spalte,
also [7 11 13], und max(A,[],2) das Maximum in jeder Zeile, also [11 13]’. Verlangen wir
bloss einen Ausgabewert, indem wir x = max(A) schreiben, erhalten wir wie erwartet den obi-
gen Vektor. Geben wir noch einen zweiten Ausgabewert hinzu, [x,y] = max(A), so liefert uns
max noch einen zweiten Vektor, dessen Einträge die Indizes der maximalen Einträge in den Spal-
ten sind. Diese verschiedenen Verwendungsweisen dokumentiert die Hilfe zu einem Befehl (bspw.
help max oder doc max). Es lohnt sich, sich mit dem dort und in allen Hilfeseiten verwendeten
Schema vertraut zu machen.

Neben help und doc ist auch der Befehl lookfor nützlich um den Namen einer Funktion zu
finden. Matlab bietet auch die Vervollständigung von Befehlen mit der Tabulator-Taste an. cos +
Tabulator bietet so eine Auswahl aus cos, cosd (für Ausgaben in Grad statt Radiant) und cosh

(für den Cosinus Hyperbolicus).

5 Plotten

Zweidimensionale Zeichnungen (sogenannte Plots) erstellt man in Matlab, indem man einen Vektor
x definiert, der in der gewünschte Auflösung oder Feinheit der Abszissenachse (horizontal) die x-
Werte enthält, z.B. x = -3:0.01:3, und einen Vektor y, der entsprechend viele Funktionswerte
enthält, z.B. y = x.^2;

plot(x,y) plottet dann die Parabel in ein neues Fenster. Ein solches Bild nennt Matlab figure
und überschreibt diese jeweils mit dem neusten Plot. Mit dem Befehl figure(n) (mit n ∈ N) kann
man im voraus angeben welchen Plot man bearbeiten und/oder überschreiben möchte.
Plottet man eine weitere Funktion, wird ein bereits existierender Plot überschrieben. Mit hold on

kann man das Überschreiben verhindern und stattdessen mehrere Plots im gleichen Fenster kom-
binieren. hold off hebt dies wieder auf. Ein Beispiel:

6

>> clear all

>> x = -3:0.01:3;

>> figure(1)

>> plot(x,x.^2);

>> figure(2)

>> plot(x,-x.^2+10);

>> hold on

>> plot(x,x)

>> hold off

>> figure(1)

>> plot(x,cos(x),x,sin(x),’--’)

>> hold on

>> plot(x,0,’r-’);

>> legend(’Cosinus’,’Sinus’)

Einen Titel fügt man mit title(’...’), die x- bzw. y-Achsenbeschriftung mit xlabel(’...’)

bzw. ylabel(’...’)
Mehr Informationen gibt wie immer help plot und etwas anschaulicher demo matlab graphics

6 Logische Ausdrücke

Logische Ausdrücke sind Aussagen wie “A ist grösser als 0” oder “B ist nicht gleich 5”, also
Ausdrücke, die entweder wahr oder falsch sind. Wie alles in Matlab werden auch logische Ausdrücke
in einer Matrix oder einem Vektor dargestellt. Diese sind dann vom Typ logical, deren Einträge
1 oder 0 bzw. true oder false sind. Dazu verbindet man Zahlen und Vektoren oder Matrizen
mit == (gleich), ~= (nicht gleich (äussere Negation)), <, >, <=, >=.
Vergleichen wir damit zwei Matrizen oder Vektoren A und B, müssen sie selbstverständlich gleich
gross sein, da so die jeweils korrespondierenden Einträge A(i, j) und B(i, j) miteinander verglichen
werden. Das Resultat ist dann eine gleich grosse Matrix mit 1 oder 0 als Einträgen. Es können aber
auch Matrizen mit einer einzigen Zahl verglichen werden. Matlab vergleicht dann jeden Eintrag
der Matrix einzeln mit dieser einen Zahl.

>> x = 1:10; x >= 5

ans =

0 0 0 0 1 1 1 1 1 1

Matlab kennt auch viele eingebaute Funktionen, welche logische Matrizen liefern. Diese nennt man
auch Prädikate. Möchte man beispielsweise die Primzahlen zwischen 1 und 10 wissen, so kann man
schreiben:

>> isprime(x)

ans =

0 1 1 0 1 0 1 0 0 0

Logische Ausdrücke lassen sich mit sog. Junktoren zu komplexen Aussagen verbinden, diese sind:
& für und, | für oder und xor für entweder-oder. Eine logische Matrix lässt sich mit ~ (nicht)
verneinen, d.h. aus wahr wird falsch und umgekehrt.

7

Weitere Befehle kann man in der Dokumentation finden (z.B. Qunatoren und short-circuit Ope-
ratoren).
Logische Ausdrücke sind einerseits nützlich für die if-Ausdrücke und while-Schleifen, die wir
im Abschnitt 8.1 behandeln. Andererseits kann man in Matlab logische Indizes benutzen, um
mit Vektoren und Matrizen zu arbeiten, d.h. wir können einen Vektor oder eine Matrix A mit
einem logischen Vektor oder einer Logischen Matrix genau an den Stellen bearbeiten, an denen ein
logischer Ausdruck wahr ist. Möchten wir z.B. in einem Vektor alle negativen Zahlen quadrieren,
können wir das wie folgt tun:

>> x = -5:5;

>> my_indices = x < 0

my_indices =

1x11 logical array

1 1 1 1 1 0 0 0 0 0 0

>> x(my_indices) = x(my_indices).^2

x =

25 16 9 4 1 0 1 2 3 4 5

7 m-Files

Bis jetzt haben wir Matlab als interaktive Rechenumgebung verwendet. Natürlich wird man
grössere Projekte nicht einfach im Command Window ausführen. Eine Folge von Befehlen kann
man in sog. m-Files abspeichern. Das sind gewöhnliche Textdateien mit der Dateiendung “.m”.
Durch klciken auf New → Script kann man eine neue m-File erstellen.
Erstellt man beispielsweise eine m-File mit dem Namen MeineMatrixA.m und dem Inhalt

A = [35,1,6,26,19,24;

3,32,7,21,23,25;

31,9,2,22,27,20;

8,28,33,17,10,15;

30,5,34,12,14,16;

4,36,29,13,18,11;];

so lässt sich die Matrix A leicht verändern und kann einfach wiederverwendet werden. Wird
die Datei MeineMatrixA.m nun im aktuellen Verzeichnis abgespeichert, kann die Matrix A mit
dem Befehl MeineMatrixA in den Workspace geladen werden. Bis hierhin unterscheidet sich dies
nicht vom Umgang mit .mat-Dateien. Erstelle nun folgende m-File und speichere sie im aktuellen
Verzeichnis ab.

% Was ist die Quadratwurzel von 2?

format long

a = 2

8

a = (a + 2/a)/2

a = (a + 2/a)/2

a = (a + 2/a)/2

Grundsätzlich führt Matlab ein m-File einfach Zeile für Zeile aus, so als würden die Befehle im
Command Window eingegeben. Dabei sind alle Variablen im Workspace zugänglich und dort
gespeichert, wie zum Beispiel die Variable a in diesem Skript. Es wird nun wichtig, jede Zeile,
die man nicht explizit im Command Window ausgegeben haben will, mit einem Semikolon (;) zu
beenden, damit man dort den Überblick behält.
Eine m-File kann, wie bereits erwähnt, mit ihrem Namen (ohne .m) im Command Window auf-
gerufen werden oder, wenn die Datei im Editor von Matlab geöffnet, ist mit der Taste F5 bezie-
hungsweise dem Button Run.
Man darf als Dateinamen für m-Files, wie auch bei den Variablen, nicht den Namen einer bereits
existierenden Funktion nehmen, sonst wird diese überschrieben. Ebenso darf in einer m-File eine
Variable nicht denselben Namen tragen wie die m-File selbst.
Zur besseren Übersicht können in ein m-File Kommentare geschrieben werden. Eine solche Zeile
muss mit einem Prozentzeichen (%) beginnen, dann wird sie von Matlab ignoriert. Kommentare
sind eine sehr wichtige Sache, will man sicher stellen, dass auch jemand anderes oder man selbst
nach einer gewissen Zeit noch versteht, was man programmiert hat.

8 Ablaufkontrolle: if, for, while

Um den Ablauf eines Programms zu bestimmen, kennt Matlab, wie viele andere Programmier-
sprachen auch, Befehle zur Steuerung: if-, for- und while-Konstrukte.
Diese Sprachelemente kann man auch direkt im Command Window eingeben, meistens verwendet
man sie aber in m-Files und Matlab-Funktionen.
Ihnen ist allen gemeinsam, dass sie kontrollieren ob oder wie oft ein Abschnitt des Skripts aus-
geführt werden soll. Der betreffende Abschnitt wird von dem entsprechenden Schlüsselwort zu-
sammen mit einem end umrahmt.
Es kann helfen, die Funktionsweise in einen deutschen Satz zu übersetzen, damit der Ablauf des
Programms an dieser Stelle klar wird.

8.1 if-then-else

if dient dazu, einen Abschnitt nur unter gewissen Bedingungen auszuführen. Also etwa so: ”Wenn
dies und das der Fall ist, so tue folgendes”.

if (x > y)

disp(’x ist groesser als y’);

end

Ein if-Ausdruck kann auch auf einer Zeile geschrieben werden. Allerdings müssen Ausdrücke, die
nicht durch ein Semikolon abgetrennt sind, durch ein Komma abgetrennt werden, z.B.
if x > y, y = x; end

Anweisungen, die, wenn die Bedingung falsch ist, anstelle der nach if aufgeführten Befehle aus-
geführt werden sollen, können nach else angegeben werden. Unser obiger Satz wird dazu ergänzt
um ”... und sonst tue folgendes”.

9

if (x>y)

disp(’x ist groesser als y’);

else

disp(’y ist groesser oder gleich x’);

end

Wir können auch noch eine weitere Bedingung einbauen mit elseif, die wir mit ”wenn aber”wieder
geben können. Bspw. also ”Wenn x grösser ist als y dann tue folgendes ..., wenn aber x gleich y
ist, dann tue folgendes ..., sonst tue folgendes”

if (x>y)

disp(’x ist groesser als y’);

elseif (x=y)

disp(’x ist gleich y’);

else

disp(’x ist kleiner als y’);

end

8.2 for

Mit einer for-Schleife kann ein Abschnitt beliebig oft wiederholt werden. In jedem Schritt der
for-Schleife nimmt eine Variable, die sogenannte Laufvariable, dabei einen vorher festgelegten
Wert an. Übersetzt man die for-Schleife in einen deutschen Satz, wäre dies “Für jedes k aus [...]
tue dies ...” oder “Tue das folgende mit jedem k aus [...]”.
Als Beispiel gibt der folgende Code in jedem Schritt der for-Schleife den Wert der Laufvariable
k im Command Window aus:

for k = 1:5

disp(’Jetzt hat k den Wert:’);

disp(k);

end

Beachte, dass k auch Werte aus einem beliebigen Vektor annehmen kann:

M = [5,-10,7,3,-1.1];

for k = M

disp(’Jetzt hat k den Wert:’);

disp(k);

end

8.3 Effizienz

Die folgende Bemerkung ist so wichtig, dass sie ihren eigenen Abschnitt verdient. for-Schleifen
sind sehr nützlich und wahrscheinlich das am häufigsten eingesetzte Sprachelement. Da Matlab
aber dahingehend optimiert wurde, Matrizen zu bearbeiten, sollte man sich immer überlegen, ob
es nicht eine Funktion gibt, die direkt auf den Elementen operiert, anstatt eine for-Schleife zu
benutzen. D.h., möchte man die Quadrate der ersten fünf Primzahlen berechnen, könnte man das
folgendermassen tun:

p=[2,3,5,7,11];

for k = 1:5

p(k)=p(k)^2;

end

10

Wir haben aber den Operator .^ kennengelernt, dieselbe Operation kann man also auch so
ausführen:

p=[2,3,5,7,11];

p=p.^2;

Dies spart nicht nur Schreibarbeit, sondern vor allem auch Rechenzeit. Bei kleinen Aufgaben ist
das natürlich nicht spürbar. Berechnet man jedoch Datensätze mit mehreren tausend Einträgen,
so benötigt die for-Schleife jedoch wesentlich mehr Zeit. Betrachte folgendes Beispiel (tic und
toc messen die Zeit, die in den Codezeilen dazwischen benötigt wurde):

x = 1:10000;

tic

for k = x

y(k) = k^2;

end

toc

tic

z = x.^2;

toc

8.4 while

Der deutsche Merksatz für die while-Schleife wäre: “Solange gilt, dass ..., wiederhole folgendes
...”. Ähnlich wie bei der for-Schleife kann ein Abschnitt damit beliebig oft wiederholt werden,
allerdings nur, solange eine bestimmte Bedingng erfüllt ist. Dazu wird ein logischer Ausdruck
immer vor dem nächsten Durchlauf evaluiert. Sobald dieser den Wahrheitswert 0 bzw. false

annimmt, wird die Schleife abgebrochen. Man muss hierbei natürlich genau darauf achten, dass
sich dieser Ausdruck in dem wiederholten Abschnitt irgendwie verändert, oder dass man die
Schleife ggf. mit dem Befehl break unterbricht, z.B. in einem if-Ausdruck, sonst läuft die while-
Schleife immer weiter. Man kann mit der while-Schleife zum Beispiel

√
2 mit einer Abweichung

von 0.001 annähern:

>> a = 2;

while abs(a^2-2) > 0.001

a = (a + 2/a)/2;

end

disp(a);

9 Funktionen

Matlab erlaubt es nicht nur, mFiles zu schreiben, welche die bereits eingebauten Funktionen
aufrufen, sondern auch das Schreiben von eigenen Funktionen. M-Files, wie wir sie bis jetzt kennen,
sind blosse Skripts, die kein Eingabeargumente akzeptieren und keine Ausgabewerte übergeben,
sondern bearbeiten einfach den Workspace. Funktionen hingegen können Eingabewerte (Input)
entgegennehmen, sie verarbeiten und Ausgabewerte (Output) zurückgeben. Ein einfaches Beispiel
einer Funktion ist eine m-File my_square.m mit folgendem Inhalt:

function y = my_square(x)

y = x.^2;

end

11

Man kann diese Funktion verwenden wie eine eingebaute Funktion:

y = my_square(5)

y =

25

Probiere dies einmal aus. Es ist unbedingt erforderlich, dass das m-File denselben Namen wie die
Funktion hat. Weiter darf der Name natürlich nicht schon für eine andere Funktion in Matlab
stehen und auch nicht für eine Variable oder eine .mat-Datei verwendet werden.

Ein Funktions-m-File muss immer mit dem Schlüsselwort function beginnen, gefolgt von den
Ausgabevariablen, dem Funktionsnamen und den Eingabevariablen in der gewünschten Reihen-
folge: output = funktions_name(input). Eine Funktion kann auch mehrere Inputs und Outputs
haben: [x, y, z] = fun(a,b,c).

Funktionen sind von gewöhnlichen m-Files wesentlich darin unterschieden, dass sie einen eigenen
geschützten “Lebensraum” (englisch Scope) haben. D.h. in der Funktion [u,v] = MeineFunktion(x,y)

stehen die Variablen x und y zur Verfügung und werden die Variablen u und v erstellt, sie “leben”
aber nicht im Workspace, sondern nur innerhalb der Funktion, wenn diese aufgerufen wird. D.h.
wenn ich die Funktion aufrufe, übergebe ich ihr einen Wert oder eine Variable mit einem Wert.
Dieser wird durch die Funktion aber nicht verändert und kann auch einen beliebigen Namen ha-
ben: f(z, t), f(2, 3), etc. Speichere ich den Output der Funktion in eine weitere Variable, so
muss auch diese nicht den in der Funktion angegebenen Namen tragen:
[out1, out2] = f(in1, in2)

out2 ist gewissermassen eine Kopie von v am Ende der Funktion f . Mache dir dies mit einem
eigenen Beispiel und der folgenden Abbildung klar.

in1 = [1 2 3];
in2 = sqrt(2);

[out1 out2] = MeineFunktion(in1, in2);

var1 = out1 + out2;function [u, v] = MeineFunktion(x, y)

u = x ./ y;
v = y + 2*x;

MeineFunktion.m

Skript.m

Wer noch raffinierter mit Ein- und Ausgabevariablen umgehen möchte, kann die Dokumentation
nach den Befehlen varargin, varargout, nargin, nargout durchsuchen. Weiter kennt Matlab
auch noch anonyme und Sub-Funktionen. Ebenso lohnt es sich, sich mit den Datentypen cell

und struct vertraut zu machen. Dies würde jedoch den Rahmen dieser Einführung sprengen.

12

