Praktikum II “Mathematik am Computer” FS 2020
Prof. M. Grote Universitidt Basel
D. Felder, A. Heinimann, S. Michel, C. Piitz, F. L. Rios, G. Schefer

MATLAB Tutorial
(von Clemens Staub, Michaela Mehlin, HS 2010, iiberarbeitet von Dennis Trondle, HS 2017)

MATLARB ist eine Software zur Losung mathematischer Probleme und zur grafischen Darstellung
der Ergebnisse. Matlab ist primér fiir numerische Berechnungen mithilfe von Matrizen ausgelegt,
woher sich auch der Name ableitet: MATrix LABoratory.

Matlab dient im Gegensatz zu Computeralgebrasystemen wie Maple nicht der symbolischen, son-
dern primér der numerischen (zahlenméfiigen) Losung von Problemen. Programmiert wird unter
Matlab in einer proprietiren Programmiersprache, die auf dem jeweiligen Computer interpretiert
wird. Grosse Programme kénnen aus Skripts oder Funktionen zusammengefiigt werden. Durch die
vereinfachte, mathematisch orientierte Syntax der Matlab-Skriptsprache und die umfangreichen
Funktionsbibliotheken fiir zum Beispiel Statistik, Signal- und Bildverarbeitung ist die Erstellung
entsprechender Programme wesentlich einfacher méglich als z. B. unter C.

Matlab wird am Mathematischen Institut der Uni Basel vorwiegend in den Veranstaltungen zur
Numerik, sowohl in der Bachelor- wie auch in der Masterstufe eingesetzt.

In der Institutsbibliothek und in der UB sind Handbiicher zu Matlab zu finden. Weitere Informa-
tionen sind auf der Webseite des Herstellers Mathworks zu finden:

http://www.mathworks.ch/

1 Operatoren und Werte

Im Command Window nimmt Matlab Befehle direkt entgegen. Nach der Eingabeaufforderung, ge-
kennzeichnet durch >>, konnen Befehle eingegeben und durch driicken von Enter ausgefiithrt wer-
den. Mit den Pfeiltasten konnen friither eingegebene Befehle wieder aufgerufen werden. Mit clc
kann das Command Window geleert werden. Versuche einige einfache Berechnungen auszufiihren
und achte auf die Prazedenz-Regeln der Operatoren. Mit Klammern kannst du diese beeinflussen.

> 1+2-3%x4/5"86
ans =
2.9992
> 1+(2-3)*%4/5"6
ans =
0.9997
Matlab benutzt die Dezimaldarstellung (mit . als Trennzeichen) fiir Zahlen und versteht e als
Zehner-Potenz-Faktor, sowie i oder j als imagindre Zahl. Man sollte e also nicht fiir exp(1)

halten und i oder j nur als imaginére komplexe Zahl (i = y/—1) benutzen und nicht - auch wenn
es moglich ist - als Variablennamen.

>> be-2

ans =

0.0500
> i+ 1
ans =

1.0000 + 1.0000i

2 Variablen

Das ans in der Ausgabe ist eine Variable, in welcher Matlab das letzte Ergebnis speichert. Mit =
konnen wir selbst Variablen definieren (nicht mit := wie in Maple). Mit who bzw. whos sowie im
Fenster Workspace kénnen wir die aktuell definierten Variablen betrachten.

> x =1

v

v
<
I

[E

Die Ausgabe kann unterdriickt werden, indem der Befehl mit Semikolon (;) abgeschlossen wird.
Das sollte man sich angewthnen und es nur weglassen, wenn man die Ausgabe tatsidchlich sehen
will.

Matlab kennt verschiedene Typen von Variablen und wahlt meist automatisch den geeigneten
Typ aus. Mit dem Befehl whos kann man den Typ der aktuell definierten Variablen sehen. Dabei
konnen Variablen vom Typ logical die Werte true und false bzw. 1 und 0 aufnehmen, der Typ
int ganze Zahlen, double reelle Zahlen bis zu einer Genauigkeit von grob 16 Dezimalstellen (mit
den Befehlen format long bzw. format short kann man sich 15 oder nur 5 Nachkommastellen
anzeigen lassen) und char Buchstaben, um nur die wichtigsten zu nennen.

>> x = int8(1); y = 1 - i; z = ’Hallo’; a = true; whos
Name Size Bytes Class Attributes

a 1x1 1 logical

X 1x1 1 1int8
y 1x1 16 double complex
z 1x5 10 char

Mit clear x kann eine bestimmte Variable x geloscht werden. Mit clear all der gesamte Workspace.
Alle aktuellen Variablen (der sog. Workspace) konnen mit dem Befehl save MeineDaten.mat in
eine Datei gespeichert werden und mit load MeineDaten wieder geladen werden. Achtung, Va-
riablen mit demselben Namen werden dadurch iiberschrieben! Die Datei MeineDaten.mat wird
mit dem Befehl oben im aktuellen Verzeichnis gespeichert. Mit dem Befehl pwd (fur print wor-
king directory) kann dieses bestimmt und mit cd (fiir change directory) gedndert werden. (cd ..
wechselt in das ndchsthohere Verzeichnis). Mit 1s kann man sich vergewissern, welche Dateien zur
Verfiigung stehen.

Um den Verlauf der eingegebenen Befehle mitzuschneiden gibt es den Befehl
diary MeinTagebuch.txt. Mit diary off beendet man die Aufzeichnung. Dies kann praktisch
sein, um die Losungen der ersten Aufgaben zu speichern.

3 Matrizen

Matlab hat seinen Namen - wie bereits erwihnt - deswegen, weil fast alle Variablen in Mat-
lab Matrizen bzw. Arrays (Tabellen oder Felder) sind. Eine eindimensionale Matrix nennen wir
gewohnlich einen Vektor. Eine einzelne Zahl kann man sich als eindimensionale Matrix mit einem
einzigen Eintrag denken.

Matrizen kann man auf unterschiedliche Weisen erzeugen. Am einfachsten geht das mit eckigen
Klammern, wobei man durch ein Komma oder ein Leerzeichen eine neue Spalte und durch ein
Semikolon eine neue Zeile erzeugt.

>> A = [17, 62, -38; 72, -9, 25]
A=

17 62 -38
72 -9 25

Die Eintrége einer Matrix bzw. eines Vektors kénnen auf mehrere Weisen angesprochen werden.
Einerseits konnen mit natiirlichen Zahlen, in runden Klammern direkt auf die Variable folgend,
erst die Zeile und dann die Spalte angegeben werden. So ist A(2,1) der Wert 72. Andererseits
kann mit einer einzigen Zahl ein bestimmter Eintrag bezeichnet werden, da Matlab die Eintrage
entlang der Spalten durchnummeriert. Zum Beispiel ist A(5) gleich —38. Eine weitere Methode
auf bestimmte Eintréige einer Matrix zuzugreifen ist, dass man eine ihr eine gleich grosse Matrix
vom Typ (logical) mit 1 an den gewiinschten Stellen und 0 iiberall sonst iibergibt. Dazu spéter
mehr.

Eckige Klammern kénnen auch dazu benutzt werden mehrere Matrizen oder Vektoren zu grosseren
Matrizen zu kombinieren:

>> A =1[12]; B= [34]; [A; B]

In Matlab kann man mithilfe von : einfach einen Vektor mit auf- oder absteigenden Eintrigen
erstellen:

> a = 1:56

1 2 3 4 5

Mehrere Doppelpunkte geben den Abstand an, den die Eintriage eines Vektors haben sollen:

v
Y
o

]

0:0.25:1

0 0.2500 0.5000 0.7500 1.0000

\
\

o
|

= 10:-2:4

10 8 6 4

Diese Schreibweise erzeugt immer Zeilenvektoren, die entsprechenden Spaltenvektoren erhélt man
durch Transposition mit ’:

>> a = (1:5)?

gD W N

Im Unterschied zu einigen anderen Programmiersprachen steuert man den ersten Eintrag eines
Vektors a mit a(1) und nicht mit a(0) an.

Natiirlich kann man mit Matrizen auch rechnen. Es muss dabei immer darauf geachtet werden,
wie eine Operation auf eine Matrix wirkt. Die meisten Operatoren (also Funktionen wie exp,
sin, cos oder Oprationen wie + und -) wirken elementweise, d.h. die Operation wird fiir jeden
Eintrag separat ausgefithrt. sin(A) ist dasselbe wie sin(A(1,1)), sin(A(1,2)) usw. Aufpassen
muss man bei den *, /, und ~. Diese berechnen die zugehérigen Matrixoperationen, d.h. A*B
ist die aus linear Algebra bekannte Matrixmultiplikation, A/B die Matrixdivision und A~2 die
Matrixpotenz. Die entsprechenden elementweisen Operatoren sind .*, ./, und .~ (beachte den
jeweils vorangehenden Punkt). A * Bund A .* B (und B * A!) sind also nicht dasselbe, wenn A
und B Matrizen sind.

>> A =1[46; 82]; B=[-0.050.15; 0.2 -0.10]; A * B, A .* B
ans =

1.0000 -0.0000
0 1.0000

ans =

-0.2000 0.9000
1.6000 -0.2000

Das heisst u.a. also auch, dass A * B nur definiert ist, wenn A gleich viele Spalten wie B Zeilen
hat. Das ist verletzt, wenn die Fehlermeldung Inner matrix dimensions must agree. auftritt.
x’ * y berechnet das Skalarprodukt (z'y) von zwei Spaltenvektoren x und y.

>> x = (0:4)’; y = (1:5)7;
>> x7*y

ans =
40
Der Ausdruck x .* y (also zwei Spaltenvektoren) multipliziert den i-ten Eintrag von x mit dem i-

ten Eintrag von y, ergibt also einen Vektor mit dem Eintrag x;-y; an der Stelle ¢. Stimmen hier nun
die Vektoren in der Grosse nicht iiberein, meldet Matlab den Fehler Matrix dimensions must agree.

>> x. *y
ans =
0
2
6
12
20

In neueren Matlab-Versionen mutlipliziert x .* y’ (ein Spaltenvektor, der mit einem Zeilenvektor
eintragsweise multipliziert wird) jeden Eintrag von x mit jedem Eintrag von y und gibt eine Matrix
aus, die an der Stelle (¢,) den Eintrag x; - y; hat.

>> x.xy’
ans =
0 0 0 0 0
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20

Die Grosse einer Matrix kann mit dem Befehl size () (oder length() fiir einen Vektor) bestimmt
werden.

4 Funktionen

Matlab bietet eine Vielzahl bereits eingebauter Funktionen. Diese reichen von den elementaren
Funktionen (z.B. sin, log, exp,...) iiber statistische Tests bis hin zu komplexen numerischen
Verfahren. Mit dem Befehl doc gelangt man zur ausfiihrlichen Dokumentation, in der man nach
geeigneten Funktionen suchen kann. Zu einer spezifischen Funktion bekommt man mit dem Befehl
help Funktionsname weitere Hilfe.

Funktionen haben jeweils Eingabe- und Ausgabewerte. Mehrere davon werden durch Kommas ()
getrennt. Manchmal sprechen wir von den Eingabewerten als Argumente und von den Ausgabe-
werten als dem Funktionswerte. Erstere folgen der Funktion in runden Klammern. Letztere kann
man sich ausgeben lassen oder in eine Variable speichern, indem man hinter die Funktion die
Variable schreibt:

>> y = cos(3.14)

y =
-1.0000

Funktionen in Matlab kénnen unterschiedlich darauf reagieren, wieviele Argumente oder Ausgabe-

werte man eingibt bzw. verlangt. Wollen wir beispielsweise die Maxima der Matrix A = [2 11 5; 7 3 13]
bestimmen, so gibt uns max (A, [1,1) (oder auch einfach max(A)) das Maximum in jeder Spalte,

also [7 11 13], und max (A, [],2) das Maximum in jeder Zeile, also [11 13]’. Verlangen wir

bloss einen Ausgabewert, indem wir x = max(A) schreiben, erhalten wir wie erwartet den obi-

gen Vektor. Geben wir noch einen zweiten Ausgabewert hinzu, [x,y] = max(A), so liefert uns

max noch einen zweiten Vektor, dessen Eintridge die Indizes der maximalen Eintrédge in den Spal-

ten sind. Diese verschiedenen Verwendungsweisen dokumentiert die Hilfe zu einem Befehl (bspw.

help max oder doc max). Es lohnt sich, sich mit dem dort und in allen Hilfeseiten verwendeten
Schema vertraut zu machen.

Neben help und doc ist auch der Befehl lookfor niitzlich um den Namen einer Funktion zu
finden. Matlab bietet auch die Vervollstéandigung von Befehlen mit der Tabulator-Taste an. cos +
Tabulator bietet so eine Auswahl aus cos, cosd (fiir Ausgaben in Grad statt Radiant) und cosh
(fiir den Cosinus Hyperbolicus).

5 Plotten

Zweidimensionale Zeichnungen (sogenannte Plots) erstellt man in Matlab, indem man einen Vektor
x definiert, der in der gewiinschte Auflésung oder Feinheit der Abszissenachse (horizontal) die z-
Werte enthilt, z.B. x = -3:0.01:3, und einen Vektor y, der entsprechend viele Funktionswerte
enthélt, z.B. y = x.72;

plot(x,y) plottet dann die Parabel in ein neues Fenster. Ein solches Bild nennt Matlab figure
und iiberschreibt diese jeweils mit dem neusten Plot. Mit dem Befehl figure(n) (mit n € N) kann
man im voraus angeben welchen Plot man bearbeiten und/oder tiberschreiben méchte.

Plottet man eine weitere Funktion, wird ein bereits existierender Plot iiberschrieben. Mit hold on
kann man das Uberschreiben verhindern und stattdessen mehrere Plots im gleichen Fenster kom-
binieren. hold off hebt dies wieder auf. Ein Beispiel:

>> clear all

>> x = -3:0.01:3;

>> figure(1)

>> plot(x,x.72);

>> figure(2)

>> plot(x,-x.72+10);

>> hold on

>> plot(x,x)

>> hold off

>> figure(1)

>> plot(x,cos(x),x,sin(x),’-=’)
>> hold on

>> plot(x,0,’r-’);

>> legend(’Cosinus’,’Sinus’)

Einen Titel fiigt man mit title(’...”), die x- bzw. y-Achsenbeschriftung mit xlabel(’...’)
bzw. ylabel(’...”)
Mehr Informationen gibt wie immer help plot und etwas anschaulicher demo matlab graphics

6 Logische Ausdriicke

Logische Ausdriicke sind Aussagen wie “A ist grosser als 07 oder “B ist nicht gleich 57, also
Ausdriicke, die entweder wahr oder falsch sind. Wie alles in Matlab werden auch logische Ausdriicke
in einer Matrix oder einem Vektor dargestellt. Diese sind dann vom Typ logical, deren Eintrige
1 oder O bzw. true oder false sind. Dazu verbindet man Zahlen und Vektoren oder Matrizen
mit == (gleich), "= (nicht gleich (dussere Negation)), <, >, <=, >=.

Vergleichen wir damit zwei Matrizen oder Vektoren A und B, miissen sie selbstversténdlich gleich
gross sein, da so die jeweils korrespondierenden Eintriige A(i, j) und B(i, j) miteinander verglichen
werden. Das Resultat ist dann eine gleich grosse Matrix mit 1 oder 0 als Eintrédgen. Es kénnen aber
auch Matrizen mit einer einzigen Zahl verglichen werden. Matlab vergleicht dann jeden Eintrag
der Matrix einzeln mit dieser einen Zahl.

> x = 1:10; x >= b
ans =

0 0 0 0 1 1 1 1 1 1

Matlab kennt auch viele eingebaute Funktionen, welche logische Matrizen liefern. Diese nennt man
auch Prddikate. Mochte man beispielsweise die Primzahlen zwischen 1 und 10 wissen, so kann man
schreiben:

>> isprime(x)
ans =

0 1 1 0 1 0 1 0 0 0

Logische Ausdriicke lassen sich mit sog. Junktoren zu komplexen Aussagen verbinden, diese sind:
& fir und, | fiir oder und xor fiir entweder-oder. Eine logische Matrix ldsst sich mit ~ (nicht)
verneinen, d.h. aus wahr wird falsch und umgekehrt.

Weitere Befehle kann man in der Dokumentation finden (z.B. Qunatoren und short-circuit Ope-
ratoren).

Logische Ausdriicke sind einerseits niitzlich fiir die if-Ausdriicke und while-Schleifen, die wir
im Abschnitt 8.1 behandeln. Andererseits kann man in Matlab logische Indizes benutzen, um
mit Vektoren und Matrizen zu arbeiten, d.h. wir kénnen einen Vektor oder eine Matrix A mit
einem logischen Vektor oder einer Logischen Matrix genau an den Stellen bearbeiten, an denen ein
logischer Ausdruck wahr ist. Méchten wir z.B. in einem Vektor alle negativen Zahlen quadrieren,
konnen wir das wie folgt tun:

>> x = -5:5;
>> my_indices = x < 0

my_indices =

1x11 logical array

>> x(my_indices) = x(my_indices)." 2
X —3

25 16 9 4 1 0 1 2 3 4 5

7 m-Files

Bis jetzt haben wir Matlab als interaktive Rechenumgebung verwendet. Natiirlich wird man
grossere Projekte nicht einfach im Command Window ausfithren. Eine Folge von Befehlen kann
man in sog. m-Files abspeichern. Das sind gewohnliche Textdateien mit der Dateiendung “.m”.
Durch klciken auf New — Secript kann man eine neue m-File erstellen.

Erstellt man beispielsweise eine m-File mit dem Namen MeineMatrixA.m und dem Inhalt

A = [35,1,6,26,19,24;
3,32,7,21,23,25;
31,9,2,22,27,20;
8,28,33,17,10,15;
30,5,34,12,14,16;
4,36,29,13,18,11;]1;

so ldsst sich die Matrix A leicht verindern und kann einfach wiederverwendet werden. Wird
die Datei MeineMatrixA.m nun im aktuellen Verzeichnis abgespeichert, kann die Matrix A mit
dem Befehl MeineMatrixA in den Workspace geladen werden. Bis hierhin unterscheidet sich dies
nicht vom Umgang mit .mat-Dateien. Erstelle nun folgende m-File und speichere sie im aktuellen
Verzeichnis ab.

% Was ist die Quadratwurzel von 27
format long

a=2

a=(a+ 2/a)/2
a=(a+ 2/a)/2
a=(a+ 2/a)/2

Grundsétzlich fithrt Matlab ein m-File einfach Zeile fiir Zeile aus, so als wiirden die Befehle im
Command Window eingegeben. Dabei sind alle Variablen im Workspace zuginglich und dort
gespeichert, wie zum Beispiel die Variable a in diesem Skript. Es wird nun wichtig, jede Zeile,
die man nicht explizit im Command Window ausgegeben haben will, mit einem Semikolon (;) zu
beenden, damit man dort den Uberblick behélt.

Eine m-File kann, wie bereits erwihnt, mit ihrem Namen (ohne .m) im Command Window auf-
gerufen werden oder, wenn die Datei im Editor von Matlab ge6ffnet, ist mit der Taste F5 bezie-
hungsweise dem Button Run.

Man darf als Dateinamen fiir m-Files, wie auch bei den Variablen, nicht den Namen einer bereits
existierenden Funktion nehmen, sonst wird diese iiberschrieben. Ebenso darf in einer m-File eine
Variable nicht denselben Namen tragen wie die m-File selbst.

Zur besseren Ubersicht kénnen in ein m-File Kommentare geschrieben werden. Eine solche Zeile
muss mit einem Prozentzeichen (%) beginnen, dann wird sie von Matlab ignoriert. Kommentare
sind eine sehr wichtige Sache, will man sicher stellen, dass auch jemand anderes oder man selbst
nach einer gewissen Zeit noch versteht, was man programmiert hat.

8 Ablaufkontrolle: if, for, while

Um den Ablauf eines Programms zu bestimmen, kennt Matlab, wie viele andere Programmier-
sprachen auch, Befehle zur Steuerung: if-, for- und while-Konstrukte.

Diese Sprachelemente kann man auch direkt im Command Window eingeben, meistens verwendet
man sie aber in m-Files und Matlab-Funktionen.

Thnen ist allen gemeinsam, dass sie kontrollieren ob oder wie oft ein Abschnitt des Skripts aus-
gefithrt werden soll. Der betreffende Abschnitt wird von dem entsprechenden Schliisselwort zu-
sammen mit einem end umrahmt.

Es kann helfen, die Funktionsweise in einen deutschen Satz zu iibersetzen, damit der Ablauf des
Programms an dieser Stelle klar wird.

8.1 if-then-else

if dient dazu, einen Abschnitt nur unter gewissen Bedingungen auszufiihren. Also etwa so: ” Wenn
dies und das der Fall ist, so tue folgendes”.

if (x > y)
disp(’x ist groesser als y’);
end

Ein if-Ausdruck kann auch auf einer Zeile geschrieben werden. Allerdings miissen Ausdriicke, die
nicht durch ein Semikolon abgetrennt sind, durch ein Komma abgetrennt werden, z.B.

if x >y, y = x; end

Anweisungen, die, wenn die Bedingung falsch ist, anstelle der nach if aufgefiihrten Befehle aus-
gefiihrt werden sollen, kénnen nach else angegeben werden. Unser obiger Satz wird dazu ergéinzt
um ”... und sonst tue folgendes”.

if (x>y)

disp(’x ist groesser als y’);
else

disp(’y ist groesser oder gleich x’);
end

Wir kénnen auch noch eine weitere Bedingung einbauen mit elseif, die wir mit ” wenn aber” wieder
geben konnen. Bspw. also ”Wenn z grosser ist als y dann tue folgendes ..., wenn aber x gleich y
ist, dann tue folgendes ..., sonst tue folgendes”

if (x>y)

disp(’x ist groesser als y’);
elseif (x=y)

disp(’x ist gleich y’);
else

disp(’x ist kleiner als y’);
end

8.2 for

Mit einer for-Schleife kann ein Abschnitt beliebig oft wiederholt werden. In jedem Schritt der
for-Schleife nimmt eine Variable, die sogenannte Laufvariable, dabei einen vorher festgelegten
Wert an. Ubersetzt man die for-Schleife in einen deutschen Satz, wire dies “Fiir jedes k aus [...]
tue dies ...” oder “Tue das folgende mit jedem k aus |...]
Als Beispiel gibt der folgende Code in jedem Schritt der for-Schleife den Wert der Laufvariable
k im Command Window aus:

7

for k = 1:5
disp(’Jetzt hat k den Wert:’);
disp(k);

end

Beachte, dass k auch Werte aus einem beliebigen Vektor annehmen kann:

M= [5,-10,7,3,-1.1];

for k = M
disp(’Jetzt hat k den Wert:’);
disp(k);

end

8.3 Effizienz

Die folgende Bemerkung ist so wichtig, dass sie ihren eigenen Abschnitt verdient. for-Schleifen
sind sehr niitzlich und wahrscheinlich das am haufigsten eingesetzte Sprachelement. Da Matlab
aber dahingehend optimiert wurde, Matrizen zu bearbeiten, sollte man sich immer iiberlegen, ob
es nicht eine Funktion gibt, die direkt auf den Elementen operiert, anstatt eine for-Schleife zu
benutzen. D.h., mochte man die Quadrate der ersten fiinf Primzahlen berechnen, kbnnte man das
folgendermassen tun:

p=[2,3,5,7,11];
for k = 1:5

p(k)=p(k) ~2;
end

10

Wir haben aber den Operator .~ kennengelernt, dieselbe Operation kann man also auch so
ausfithren:

p=[2,3,5,7,11];
p=pP-"2;

Dies spart nicht nur Schreibarbeit, sondern vor allem auch Rechenzeit. Bei kleinen Aufgaben ist
das natiirlich nicht spiirbar. Berechnet man jedoch Datenséitze mit mehreren tausend Eintréigen,
so benotigt die for-Schleife jedoch wesentlich mehr Zeit. Betrachte folgendes Beispiel (tic und
toc messen die Zeit, die in den Codezeilen dazwischen benttigt wurde):

x = 1:10000;
tic
for k = x

y(k) = k™2;
end
toc
tic

z =x.72;
toc
8.4 while
Der deutsche Merksatz fiir die while-Schleife wire: “Solange gilt, dass ..., wiederhole folgendes

...>. Ahnlich wie bei der for-Schleife kann ein Abschnitt damit beliebig oft wiederholt werden,
allerdings nur, solange eine bestimmte Bedingng erfiillt ist. Dazu wird ein logischer Ausdruck
immer vor dem néchsten Durchlauf evaluiert. Sobald dieser den Wahrheitswert 0 bzw. false
annimmt, wird die Schleife abgebrochen. Man muss hierbei natiirlich genau darauf achten, dass
sich dieser Ausdruck in dem wiederholten Abschnitt irgendwie verindert, oder dass man die
Schleife ggf. mit dem Befehl break unterbricht, z.B. in einem if-Ausdruck, sonst lduft die while-
Schleife immer weiter. Man kann mit der while-Schleife zum Beispiel /2 mit einer Abweichung
von 0.001 anndhern:

>> a = 2;

while abs(a~2-2) > 0.001
a= (a+ 2/a)/2;

end

disp(a);

9 Funktionen

Matlab erlaubt es nicht nur, mFiles zu schreiben, welche die bereits eingebauten Funktionen
aufrufen, sondern auch das Schreiben von eigenen Funktionen. M-Files, wie wir sie bis jetzt kennen,
sind blosse Skripts, die kein Eingabeargumente akzeptieren und keine Ausgabewerte iibergeben,
sondern bearbeiten einfach den Workspace. Funktionen hingegen kénnen Eingabewerte (Input)
entgegennehmen, sie verarbeiten und Ausgabewerte (Output) zuriickgeben. Ein einfaches Beispiel
einer Funktion ist eine m-File my_square.m mit folgendem Inhalt:

function y = my_square(x)
y = x.72;

11

Man kann diese Funktion verwenden wie eine eingebaute Funktion:

y = my_square(5)

'y':
25

Probiere dies einmal aus. Es ist unbedingt erforderlich, dass das m-File denselben Namen wie die
Funktion hat. Weiter darf der Name natiirlich nicht schon fiir eine andere Funktion in Matlab
stehen und auch nicht fiir eine Variable oder eine .mat-Datei verwendet werden.

Ein Funktions-m-File muss immer mit dem Schliisselwort function beginnen, gefolgt von den
Ausgabevariablen, dem Funktionsnamen und den Eingabevariablen in der gewiinschten Reihen-
folge: output = funktions_name (input). Eine Funktion kann auch mehrere Inputs und Outputs
haben: [x, y, z] = fun(a,b,c).

Funktionen sind von gewdhnlichen m-Files wesentlich darin unterschieden, dass sie einen eigenen
geschiitzten “Lebensraum” (englisch Scope) haben. D.h. in der Funktion [u,v] = MeineFunktion(x,y)
stehen die Variablen x und y zur Verfiigung und werden die Variablen u und v erstellt, sie “leben”
aber nicht im Workspace, sondern nur innerhalb der Funktion, wenn diese aufgerufen wird. D.h.
wenn ich die Funktion aufrufe, iibergebe ich ihr einen Wert oder eine Variable mit einem Wert.
Dieser wird durch die Funktion aber nicht verédndert und kann auch einen beliebigen Namen ha-
ben: £(z, t), £(2, 3), etc. Speichere ich den Output der Funktion in eine weitere Variable, so
muss auch diese nicht den in der Funktion angegebenen Namen tragen:

[outl, out2] = f(inl, in2)

out2 ist gewissermassen eine Kopie von v am Ende der Funktion f. Mache dir dies mit einem
eigenen Beispiel und der folgenden Abbildung klar.

inl = [1 2 3];
in2 = sqrt(2);

[outl out2] = MeineFunktion(inl, in2);

[‘

1
varl = out] function [u, v] = MeineFunktion(x, y)

Skript.m

MeineFunktion.m

Wer noch raffinierter mit Ein- und Ausgabevariablen umgehen méochte, kann die Dokumentation
nach den Befehlen varargin, varargout, nargin, nargout durchsuchen. Weiter kennt Matlab
auch noch anonyme und Sub-Funktionen. Ebenso lohnt es sich, sich mit den Datentypen cell
und struct vertraut zu machen. Dies wiirde jedoch den Rahmen dieser Einfiihrung sprengen.

12

