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1 Beschreibende Statistik

In der beschreibenden Statistik geht es darum, grosse und untibersichtliche Datenmengen so
aufzubereiten, dass wenige aussagekriftige Kenngrossen und Graphiken entstehen.

1.1 Grundbegriffe

In der Statistik nennt man Objekte, auf die sich eine statistische Untersuchung beziehen,
statistische Elemente oder Merkmalstrdger. Die Menge aller dieser Merkmalstriger heisst
Grundgesamtheit. Wie der Name sagt, interessieren uns an den Merkmalstrigern gewisse
Eigenschaften oder Merkmale. Die moglichen Werte, die ein Merkmal annehmen kann, heissen
Merkmalsausprigungen.

Beispiele
‘ Grundgesamtheit ‘ Merkmal ‘ Merkmalsausprdgungen
Alle Studierenden der Alter (in Jahren) ...,19,20,21,...
Vorlesung Mathematik IT
Béaume in der Schweiz Baumart Ahorn, Birke, Arve, ...
Arbeitslose in Basel-Stadt Schulabschluss Gymnasium, Sekundarschule,
keiner, ...
Eingesammelte Bebbi-Sécke (351) | Gewicht (in kg) ...,28,35.5,49.7, . ..
Tage des Januars 2020 Durchschnitts- ...,2,4.5,6,. ..
temperatur (in °C)

Bei Merkmalen unterscheidet man zwischen qualitativen und quantitativen Merkmalen.

Qualitative Merkmale

Dies sind Merkmale, die artméssig erfassbar sind und keine physikalische Masseinheit beno-
tigen. Weiter wird hier unterschieden zwischen
e nominalen Merkmalen

Die Merkmalsausprigungen werden nur dem Namen nach unterschieden, ohne Wertung.

Beispiele: Baumart, Vorname, Studienfach, Nationalitét

e ordinalen Merkmalen
Die Merkmalsausprigungen weisen eine natiirliche Rangordnung auf.

Beispiele: Schulabschluss, Hausnummern, Lawinengefahrenskala

Quantitative Merkmale

Dies sind Merkmale, die durch Zahlen erfassbar sind und eine physikalische Masseinheit
haben. Weiter wird hier unterschieden zwischen

o diskreten Merkmalen
Die Merkmalsauspriagungen sind isolierte Zahlenwerte. Werte dazwischen kénnen nicht
angenommen werden.
Beispiele: Alter in Jahren, Anzahl Studierende pro Studienfach, Anzahl Einwohner



o stetigen Merkmalen
Diese Merkmale konnen (theoretisch) jeden Wert innerhalb eines Intervalls annehmen.

Beispiele: Gewicht, Durchschnittstemperatur, Grosse, Geschwindigkeit

Skalierung von Merkmalen

Man kann Merkmale auch hinsichtlich der Skala, auf der sie gemessen werden, unterscheiden.
Von der Skala hiangt ab, ob mit den Merkmalsausprigungen sinnvoll gerechnet werden kann.

e Nominale Skala

In einer nominalen Skala werden Zahlen als Namen ohne mathematische Bedeutung ver-
wendet. Rechnen mit solchen Zahlen ist sinnlos.

Beispiele: Postleitzahlen, Codes
Zum Beispiel haben wir die Postleitzahlen

4051 Basel
8102 Oberengstringen (ZH)

Es ist 8102 = 2 - 4051, aber Oberengstringen ist nicht doppelt so gross wie Basel.
e Ordinale Skala

Die natiirliche Ordnung der Zahlen ordnet die Objekte nach einem bestimmten Kriterium.
Vergleiche sind sinnvoll, Differenzen und Verhéltnisse jedoch nicht.

Beispiele: Priifungsnoten, Hausnummern, Lawinengefahrenskala

Es gilt |18 — 16| = |18 — 20| = 2, doch die Distanz des Hauses mit der Nummer 18 zu den
Héusern mit den Nummern 16 und 20 ist im Allgemeinen nicht gleich gross.

o Intervallskala
Der Nullpunkt ist willkiirlich. Differenzen sind sinnvoll, Verhéltnisse jedoch nicht.
Beispiele: Temperatur in °C und in °F, Hohe in m iiber Meer

Zum Beispiel hat die Aussage “Heute ist es doppelt so warm wie gestern” in °F eine andere
Bedeutung als in °C.

e Verhdltnisskala
Der Nullpunkt ist natiirlich fixiert. Differenzen und Verhéltnisse sind sinnvoll.

Beispiele: Geschwindigkeit, Gewicht, Masse, Volumen

Im Folgenden werden wir es meistens mit (quantitativen) Merkmalen auf einer Intervall- oder
Verhiltnisskala zu tun haben. Solche Merkmalsausprigungen entstehen durch Messungen.

Stichprobe

Eine Stichprobe ist eine zufillig ausgewihlte endliche Teilmenge aus einer Grundgesamtheit.
Hat diese Teilmenge n Elemente, so spricht man von einer Stichprobe vom Umfang n. Zum
Beispiel werden 10 Studierende der Vorlesung Mathematik II zufiillig ausgewéhlt. Dann sind
diese 10 Studierenden eine Stichprobe vom Umfang 10 der Grundgesamtheit aller Studieren-
den der Vorlesung Mathematik II.



1.2 Haufigkeitsverteilung

Messdaten, das heisst Merkmalsauspriagungen eines Merkmals, fallen zunéchst ungeordnet in
einer sogenannten Urliste an. Um einen Uberblick iiber die Daten zu gewinnen, bestimmt
man die Héufigkeitsverteilung des Merkmals (in der Stichprobe).

Das Merkmal X habe die k verschiedenen Merkmalsausprigungen aq,...,ar. Wir ent-
nehmen eine Stichprobe vom Umfang n und notieren die Werte x1,...,x, der Stichprobe
(Urliste). Nun zéhlen wir, wie oft jede Merkmalsauspragung a; in der Stichprobe auftritt.
Diese Anzahl h; nennt man absolute Héufigkeit von a;, fiir j =1,... k:

hj = Anzahl der z; mit der Ausprigung a;
Die relative Hiufigkeit f; von ay, fiir j = 1,...,k, ist gegeben durch
hs
fi=-2.

n

Es gilt
0<h;<n und hi+--+h,=n,

und Division durch n ergibt
0<f;<1 und it +fi=1.
Die Menge der Paare
{(aj,hj) | j=1,....k} bazw. {(ajfj)|j=1,....k}

nennt man Hdufigkeitsverteilung des Merkmals X in der Stichprobe. Sie kann mit Hilfe einer
Haiufigkeitstabelle bestimmt und graphisch durch ein Stab- oder Balkendiagramm dargestellt
werden. Auf der waagrechten Achse werden die Merkmalsausprigungen a1, ..., ap abgetragen
und dariiber je ein Stab oder Balken, dessen Hohe der absoluten, bzw. relativen Haufigkeit
entspricht.

Beispiel
Bei einer Befragung gaben 20 Personen Auskunft iiber die Anzahl Zimmer in ihrer Wohnung,.
Dies ergab die folgende Urliste:
2,4,3,4,2,3,4,5,2,1,3,2,5,3,3,4,1,2,3,3
Es ist also n = 20 und das Merkmal X = (Anzahl Zimmer) hat die Ausprégungen a; = 1,

CL2:2, CL3:3, CL4:4, a5:5.
Die Haufigkeitstabelle sieht so aus:

Anzahl Zimmer | Strichliste Héufigkeiten
a; absolut h; ‘ relativ f;
1
2
3
4
5

‘ Summe




Stabdiagramm mit absoluten Haufigkeiten:

milil

0 1 2 3 4 5 6

Werden im Stabdiagramm die relativen anstatt die absoluten Hiufigkeiten abgetragen, dndert
sich nur die Beschriftung der senkrechten Achse. Allerdings ist dann der Umfang der Stich-
probe nicht mehr ersichtlich.

Stetige Merkmale

Ist das (quantitative) Merkmal X stetig oder die Anzahl k& der Merkmalsausprigungen von
X viel grosser als der Stichprobenumfang n, dann ist das vorher beschriebene Vorgehen nicht
sinnvoll, da die Haufigkeiten h; sehr klein sind, bzw. viele h; gleich Null sind. In diesem Fall
fassen wir die Merkmalsauspriagungen zu Klassen zusammen.

Seien wieder x1, ..., x, die Werte der Stichprobe und nehmen wir an, sie liegen im Intervall
[a,b). Dann unterteilen wir das Intervall [a,b) in m (halboffene) Teilintervalle

[a17a2)7 [a27a3)7 [a37a4)7"'7 [am,am+1)

mit a = a1 < as <az < - - < ay < ame1 = b. Das Intervall [a, a;41) nennt man j-te Klasse.
Nun z#hlt man, wie viele der Stichprobenwerte x1, ..., x, in die einzelnen Klassen fallen.
Die absolute Hdiufigkeit h; der j-ten Klasse ist gegeben durch

h; = Anzahl der x; mit z; € [a;,a;41)
und die relative Hiufigkeit f; der j-ten Klasse ist
h;
f 7 = ; .
Die Menge der Klassen mit ihren Haufigkeiten heisst klassierte Hdufigkeitsverteilung.
Bei der Klassenbildung geht natiirlich Information verloren. Die Verteilung der Werte
innerhalb einer Klasse ist nicht mehr erkennbar. Viele Klassen bedeuten einen geringen In-
formationsverlust, aber wenige Klassen eine bessere Ubersicht. Bei der Suche nach einem

Kompromiss helfen die folgenden Faustregeln:

e m < +/nund 5 <m < 20 fiir die Anzahl Klassen m und den Stichprobenumfang n

e Die Klassenbreiten (d.h. Intervalllingen) sollten alle gleich sein.

Graphisch stellt man eine klassierte Haufigkeitsverteilung mit Hilfe eines Histogramms
dar. Die Intervallgrenzen aq,...,a,+1 werden auf der waagrechten Achse abgetragen und
iiber jeder Klasse ein Rechteck gezeichnet, dessen Flidche proportional zur Haufigkeit der
jeweiligen Klasse ist.



Beispiel
Von 30 (fiktiven) Studentinnen der Pharmazie wurden die Koérperlédngen (in cm) gemessen:

166, 168, 178, 177, 173, 163, 164, 167, 165, 162, 156, 163, 174, 165, 171, 169, 169,
159, 151, 163, 180, 170, 157, 170, 163, 160, 154, 178, 167, 161

Es ist also n = 30 und das Merkmal X = Korperlinge nimmt in der Stichprobe Aus-
pragungen im Intervall [151,181) an. Wir wihlen m = 5 Klassen. Dies ergibt die folgende
H#ufigkeitstabelle:

J Klasse j | Strichliste Haufigkeiten
in cm absolut h; ‘ relativ f;

1 [151, 157) | ||| 3 0,1

2 (157, 163) | ||| 5 0,167

3 (163, 169) | |||l || 11 0,367

4 (169, 175) | [||[]]] 7 0,233

5 (175, 181) | |||] 4 0,133

‘ Summe ‘ ‘ ‘ 30 ‘ 1 ‘

Histogramm:

150 155 160 165 170 175 180 185

1.3 Mittelwerte

Gegeben seien n Zahlen z1, ..., z,, die Merkmalsauspriagungen eines quantitativen Merkmals
X (der Grundgesamtheit oder einer Stichprobe davon) sind. Gesucht ist eine einzige Zahl,
welche die “Mitte” der n Zahlen angibt, um die herum sich die gegebenen Zahlen h&ufen.
In den meisten Féllen wird das arithmetische Mittel verwendet. In manchen Situationen ist
jedoch die Angabe des sogenannten Medians besser geeignet.

Das arithmetische Mittel

Definition Das arithmetische Mittel T der Zahlen x1, ..., x, ist definiert durch
_ 1 1<
i

Oft nennt man das arithmetische Mittel auch Durchschnitt oder einfach Mittelwert.



Beispiel

1 11213415
z; | 91413163

Wir berechnen den Durchschnitt (d.h. das arithmetische Mittel):

Eigenschaften

1. Die Summe der Quadrate der Abstdnde vom arithmetischen Mittel T zu den einzelnen
Messwerten x1, ..., 2, ist minimal; das heisst, die Funktion

ist minimal fiir x = 7.
Im obigen Beispiel konnten wir also auch einfach das Minimum der Funktion

f(x):Z(mi—x)zz(9—x)2+(4—x)2+(3—x)2+(6—x)2+(3—x)2

bestimmen. Dies ist schnell gemacht. Durch Ausmultiplizieren erhalten wir
f(z) = 52% — 50z + 151 .

Das Minimum von f finden wir durch Nullsetzen der Ableitung:

n
Dass allgemein die Funktion f(z) = Z(xl — 2)? ein Minimum in z = T hat, zeigt man
i=1
ebenso durch Nullsetzen der Ableitung.
2. Das arithmetische Mittel hat weiter die Eigenschaft, dass die Summe aller Abweichungen
“links” von T gleich der Summe aller Abweichungen “rechts” davon ist:

Y @E-zi)=) (2, -7)

z;<T T;>T

Physikalisch interpretiert ist das gerade die Gleichgewichtsbedingung: Denkt man sich die
x-Achse als langen masselosen Stab und darauf an den Positionen x; jeweils eine konstante
punktformige Masse angebracht, so befindet sich der Stab genau dann im Gleichgewicht,
wenn er im Punkt = gehalten wird.

Hier der Nachweis dieser Eigenschaft:

n

Z(%‘—T)— Z(f—wi)ZZ(%‘—E):in—ZE:in—nE:O.

T;>T z; <T =1



3. Das arithmetische Mittel ist empfindlich gegeniiber Ausreissern. Eine Zahl in einer Da-
tenreihe nennt man Ausreisser, wenn sie von den anderen Daten weit weg liegt (im néchsten
Abschnitt wird dies noch prézisiert). In vielen Féllen ensteht ein Ausreisser aufgrund eines
Schreib- oder Messfehlers.

Beispiel
In einem kleinen Dorf wohnen 20 Handwerker und ein Manager. Nehmen wir an, die Handwer-

ker verdienen etwa 3000 CHF pro Monat und der Manager 40000 CHF'. Ist der Durchschnitt
ein guter Repréasentant fiir die Einkommen in diesem Dorf?

Nein, der Durchschnitt * wird durch das Einkommen des Managers dermassen in die Hohe
gezogen, dass die Einkommen der Handwerker nicht erkennbar sind.

Fiir Situationen wie im Beispiel brauchen wir eine andere Zahl als den Durchschnitt, um
die “Mitte” einer Datenreihe angeben zu kénnen.

Der Median oder Zentralwert

Definition Der Median oder Zentralwert T der Zahlen z1,...,x, ist der mittlere Wert der
nach der Grosse geordneten Zahlen x4, ..., x,.
Dies bedeutet: Die Zahlen z1, ..., x, werden zuerst der Grosse nach geordnet. Ist die Anzahl

n der Werte ungerade, so gibt es einen mittleren Wert x. Ist n gerade, so sind zwei Zahlen
in der Mitte und # kann zwischen diesen Zahlen gewihlt werden. Ublich ist in diesem Fall, Z
als arithmetisches Mittel der beiden Zahlen zu wéihlen, was auch wir hier tun werden. Dies
ist jedoch nicht einheitlich festgelegt.

Beispiele

1. Im obigen Beispiel schreiben wir die Einkommen der Grosse nach geordnet hin. Das Ein-
kommen des Managers ist (mit Abstand) der grosste Wert. Der mittlere Wert ist eines der
20 Einkommen der Handwerker. Also ist der Median in diesem Beispiel ein sinnvoller Re-
prasentant der Einkommen.

2.

;| 91413163

Wir berechnen den Median:

Nehmen wir in diesem Beispiel eine weitere Zahl x¢ = 10 hinzu:

1 | 1]2(3]4|5]| 6
z; |91413|16(3]10

Median:



Eigenschaften

1. Die Summe der Abstinde vom Median zu den einzelnen Zahlen x4, ..., z, ist minimal; das

heisst, die Funktion
n

fl@)=) |~

i=1
ist minimal fiir x = Z.
Im 2. Beispiel oben kénnten wir also auch einfach die Minima der Funktionen

5
H@) = > |mi—al=19—a|+4—z|+[3—2|+]6—z|+[3 -z
i=1
6
fa(@) = D Jwi—al =9 —az[+|4—z|+]3—z|+[6 — x|+ |3 — 2| + |10 — |
i=1

bestimmen. Nullsetzen der Ableitungen funktioniert nun aber nicht, da weder f; noch fo
differenzierbar ist. Schauen wir uns stattdessen die Graphen von f; und fs an:

Die Funktion fi(x) hat wie erwartet ein Minimum in = = & = 4. Die Funktion f3(z) hat ein
Minimum in # = = 5 (aber auch jedes andere x zwischen 4 und 6 ist eine Minimalstelle).

2. Eine wichtige Eigenschaft des Medians ist, dass er unempfindlich gegeniiber Ausreissern
ist.

3. Der Median wird auch mit & = o 5 bezeichnet. Dies, weil hochstens die Hélfte aller Zahlen
kleiner als £ und hochstens die Hélfte aller Zahlen grosser als & ist.

Der Median ist also die Schnittstelle, wenn man die der Grosse nach geordneten Zahlen in
zwei gleich grosse Haufen teilt.

1.4 Quantile und Boxplot

Es ist niitzlich, die dritte Eigenschaft des Medians wie folgt zu verallgemeinern. Die der
Grosse nach geordneten Zahlen x4, ..., x, werden in zwei Haufen geteilt, doch soll der erste
Haufen (mit den kleineren Zahlen) zum Beispiel nur 1—10 = 0,1 aller Zahlen umfassen. An der
Schnittstelle ist dann das sogenannte Quantil Zg ;.



Definition Sei a eine Zahl mit 0 < o < 1. Dann ist das Quantil T, durch die folgende
Bedingung definiert: Der Anteil der x; < Z, ist < «, der Anteil der x; > Z, ist < 1 — a.

Speziell nennt man das Quantil Zg o5 das erste Quartil, das Quantil Zg 75 das dritte Quartil
und entsprechend ist der Median g 5 auch das zweite Quartil.

Wird « in Zehnteln angegeben, spricht man von Dezilen, bei Hundertsteln von Perzentilen.
Der Median ist also auch das fiinfte Dezil oder das fiinfzigste Perzentil.

Beispiele

1. Gesucht ist das erste Quartil Zg 25 der Zahlen

1| 11234156718
z; | 2137|1313 18|21 |24

Ein Viertel von 8 Messwerten sind 2 Messwerte, also liegt das Quartil Zg 25 zwischen der
zweiten und der dritten Zahl, das heisst zwischen 3 und 7. Wie beim Median ist es iiblich,
fiir Zo,25 den Mittelwert der beiden Zahlen zu nehmen:

2. Gesucht ist das erste Quartil Zg 25 der Zahlen

v (112|134 |5 |6
i |23 71311318

Nun ist Vierteln der Messwerte nicht mehr moglich. Wir miissen also die Definition fiir das
Quantil (fiir o = 0,25) anwenden: Der Anteil der x; < Zgg25 ist < 0,25, der Anteil der
x; > @0725 ist <1-0,25=0,75.

Ein Anteil von 0,25 von 6 Messwerten ist gleich 0,25 -6 = 1,5 Messwerte. Die Aussage
“der Anteil der x; < Zg 25 ist < 0,25” bedeutet also, dass es hochstens 1,5 Messwerte x; mit
x; < Zo,25 gibt; das heisst, es gibt hochstens einen solchen Messwert ;.

Die Aussage “der Anteil der x; > T 25 ist < 1—0,25 = 0,75” bedeutet dementsprechend,
dass es hochstens 0,75 -6 = 4,5 Messwerte mit x; > g 25 gibt; das heisst es gibt hochstens 4
solche Messwerte.

Wir sehen nun, dass nur Zg 25 = 2 = 3 diese Bedingungen erfiillt.

Satz 1.1 Gegeben seien der Grisse nach geordnete Zahlen x1,...,x, und 0 < o < 1.

e Ist na eine ganze Zahl (wie im 1. Beispiel), dann liegt T, zwischen zwei der gegebenen
Zahlen. FEs gilt

Lo = §($na + xnaJrl) .

o Ist na keine ganze Zahl (wie im 2. Beispiel), dann ist T, eine der gegebenen Zahlen. Es
gilt

Ta = Tna

wobei [na| bedeutet, dass na auf eine ganze Zahl aufgerundet wird, also zum Beispiel ist
[3,271] = 4.
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Beispiele

1. Wir untersuchen die Messwerte der Lymphozytenanzahl X pro Blutvolumeneinheit von 84
Ratten:

968, 1090, 1489, 1208, 828, 1030, 1727, 2019, 944, 1296, 1734, 1089, 686, 949,
1031, 1699, 692, 719, 750, 924, 715, 1383, 718, 894, 921, 1249, 1334, 806, 1304,
1537, 1878, 605, 778, 1510, 723, 872, 1336, 1855, 928, 1447, 1505, 787, 1539, 934,
1650, 727, 899, 930, 1629, 878, 1140, 1952, 2211, 1165, 1368, 676, 813, 849, 1081,
1342, 1425, 1597, 727, 1859, 1197, 761, 1019, 1978, 647, 795, 1050, 1573, 2188,
650, 1523, 1461, 1691, 2013, 1030, 850, 945, 736, 915, 1521.

Gesucht sind der Median, die beiden Quartile sowie das Dezil Zg;. Also miissen wir die
Messwerte zuerst der Grosse nach ordnen. Das erledigt zum Beispiel Excel fiir uns.

7 T; ) T; ) T; ) T;
1 | 605 22 | 849 43 | 1081 64 | 1521
2 | 647 23 | 850 44 | 1089 65 | 1523
3 | 650 24 | 872 45 | 1090 66 | 1537
4 | 676 25 | 878 46 | 1140 67 | 1539
5 | 686 26 | 894 47 | 1165 68 | 1573
6 | 692 27 | 899 48 | 1197 69 | 1597
7 | 715 28 | 915 49 | 1208 70 | 1629
8 | 718 29 | 921 50 | 1249 71 | 1650
9 | 719 30 | 924 51 | 1296 72 | 1691
10 | 723 31 | 928 52 | 1304 73 | 1699
11 | 727 32 | 930 53 | 1334 74 | 1727
12 | 727 33 | 934 54 | 1336 75 | 1734
13 | 736 34 | 944 55 | 1342 76 | 1855
14 | 750 35 | 945 56 | 1368 77 | 1859
15 | 761 36 | 949 57 | 1383 78 | 1878
16 | 778 37 | 968 58 | 1425 79 | 1952
17 | 787 38 | 1019 59 | 1447 80 | 1978
18 | 795 39 | 1030 60 | 1461 81 | 2013
19 | 806 40 | 1030 61 | 1489 82 | 2019
20 | 813 41 | 1031 62 | 1505 83 | 2188
21 | 828 42 | 1050 63 | 1510 84 | 2211

Die Quartile kbnnen wir nun ablesen.

erstes Quartil:

Median:

drittes Quartil:
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Nun berechnen wir noch das Dezil 2o 1 mit Hilfe von Satz 1.1.

2. Wir betrachten die erzielten Punkte an der Priifung Mathematik I vom 24.01.20. Es gab
217 Priifungsteilnehmer, wir haben also 217 ungeordnete Zahlen x1, ..., z217, wobei jede Zahl
x; die Anzahl der erzielten Punkte des Teilnehmers ¢ angibt. Um die Quartile zu berechnen,
ordnen wir zuerst diese 217 Zahlen der Grosse nach.

Fiir den Median & = Zo 5 rechnen wir 217 - 0,5 = 108, 5. Der zweite Punkt von Satz 1.1
sagt nun, dass der Median gleich der 109. geordneten Zahl ist (da [108,5] = 109). Diese Zahl
ist gleich 27,5. Es gilt also £ = 27,5 (Punkte).

Fiir das erste Quartil rechnen wir 217-0, 25 = 54, 25. Wieder der zweite Punkt von Satz 1.1
sagt, dass g5 gleich der 55. geordneten Zahl ist (da [54,25] = 55). Diese Zahl ist gleich
18,5, das heisst, Z 25 = 18,5 (Punkte).

Fiir das dritte Quartil rechnen wir 217 - 0,75 = 162,75. Analog zum ersten Quartil ist
Zo,75 gleich der 163. geordneten Zahl. Diese Zahl ist gleich 36,5, also Zo 75 = 36,5 (Punkte).

Wir sehen in diesem Beispiel, dass das erste und das dritte Quartil etwas iiber die Streuung
der Daten aussagt. Namlich die Hélfte der Zahlen (die “mittlere Hailfte”) liegt zwischen
Zo25 = 18,5 und g 75 = 36, 5. Zufilligerweise liegt der Median & = 27,5 genau in der Mitte
der beiden Quartile. Wire er niher bei Zg 75, wiirde dies bedeuten, dass die Streuung “gegen
unten” grosser ist. Fiir ein aussagekréftiges Gesamtbild interessiert allenfalls noch die kleinste
Zahl xpi, = 0 und die grosste Zahl xy, = 48.

Fiir eine bessere Ubersicht werden die Quartile durch einen Boxplot graphisch dargestellt.

Boxplot

Der Boxplot eines Datensatzes stellt die Lage des Medians, des ersten und dritten Quartils,
der Extremwerte und der Ausreisser graphisch dar.

e innerhalb der Box
untere Boxgrenze Ig.o5
obere Boxgrenze  Zg.75
Linie in der Box  Zg5

Die Hohe der Box wird als Interquartilsabstand bezeichnet. Dieser Teil umfasst also die
Halfte aller Daten.

e ausserhalb der Box
— FExtremwerte: mehr als 3 Boxldngen vom unteren bzw. oberen Boxrand entfernt, wieder-

gegeben durch ,,*“

— Ausreisser: zwischen 1% und 3 Boxlédngen vom oberen bzw. unteren Boxrand entfernt,
wiedergegeben durch ,,0¢

— Der kleinste und der grosste Wert, der jeweils nicht als Ausreisser eingestuft wird, ist
durch eine horizontale Strecke darzustellen.
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Extremwerte

XXX

Ausreisser

[e)e]

drittes Quartil
Median

erstes Quartil

Ausreisser

Eay Extremwerte

Beispiele

1. Im ersten Beispiel der Seite 10 haben wir die folgenden Quartile berechnet: Z 25 = 838, 5,
Zo,5 = 1065,5, Zo,75 = 1515,5. Es gibt weder Ausreisser noch Extremwerte. Der kleinste Wert
ist 605 und der grosste Wert 2211. Der Boxplot sieht wie folgt aus, wobei hier der schwarze
Punkt in der Box die Lage des Mittelwerts * = 1189, 18 beschreibt.

2400
2200
2000
1800
1600
1400
1200

1000
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2. Im zweiten Beispiel auf Seite 11 haben wir die folgenden Quartile erhalten: Zg 25 = 18,5,
Zo,5 = 27,5, To,75 = 36,5. Auch hier gibt es weder Ausreisser noch Extremwerte. Die grosste
Zahl ist 48 und 0 ist die kleinste Zahl.

1.5 Empirische Varianz und Standardabweichung

Mittelwerte und Quantile alleine geniigen nicht fiir die Beschreibung eines Datensatzes.
Beispiel

Zwei Studenten der Geowissenschaften, nennen wir sie A und B, haben bei acht Examen die
folgenden Noten erzielt. Student A: 4, 4, 4, 3, 5, 4, 4, 4. Student B: 2, 6, 2, 6, 2, 6, 2, 6. Beide
Studenten haben einen Notendurchschnitt von einer 4 und auch der Median ist bei beiden
4 (bei B ist £ = g5 das arithmetische Mittel von 2 und 6, also 4). Dabei unterscheiden
sich A und B voéllig in der Konstanz ihrer Leistungen. Die Quartile geben einen Hinweis
auf die grossere Streuung der Noten von B, doch sie sagen nichts aus iiber die einzelnen
Abweichungen vom arithmetischen Mittel.

Zusétzlich zu den Mittelwerten und Quantilen benétigen wir deshalb Masszahlen, die
etwas iiber die Abweichung der Einzeldaten vom arithmetischen Mittel aussagen: die Varianz
und die Standardabweichung.

Definition Die (empirische) Varianz der Daten x1,...,x, ist definiert durch
1 n
=y D
=

Die Standardabweichung ist die positive Quadratwurzel aus der Varianz,
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Die empirische Varianz ist also fast die mittlere quadratische Abweichung vom Mittel-

wert. Warum wir nicht den Faktor %, sondern den Faktor ﬁ nehmen, werden wir erst

spéter einsehen. Tatséchlich wird die Varianz oft auch mit dem Faktor % definiert.

Beispiel
Fiir den Studenten A mit den Noten 4, 4, 4, 3, 5, 4, 4, 4 und dem Mittelwert T = 4 gilt:

Fiir den Studenten B mit den Noten 2, 6, 2, 6, 2, 6, 2, 6 und dem Mittelwert T = 4 gilt:

Die Formel fiir die empirische Varianz kann umgeformt werden:
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Satz 1.2 FEs gilt

1 n
2 _ 2 _ =2
s —n_1<i§_1mi nm)

Fiir konkrete Berechnungen ist diese Formel oft praktischer als die Definition.

Wann welche Masszahlen?

Um fiir eine Datenreihe die Lage auf der Zahlengeraden und die Streuung der Daten zu
beschreiben, haben wir also das arithmetische Mittel und die Standardabweichung sowie den
Median und die Quartile zur Verfiigung.

Sind die Daten Merkmalsausprigungen eines Merkmals, das auf einer ordinalen Skala
gemessen wird, dann kénnen wir nur den Median und die Quartile gebrauchen (das arithme-
tische Mittel und die Standardabweichung sind sinnlos).

Wird das Merkmal hingegen auf einer Intervall- oder Verhéltnisskala gemessen, haben wir
die Wahl zwischen arithmetischem Mittel mit der Standardabweichung und dem Median mit
den Quartilen. In den meisten Fillen wird das arithmetische Mittel mit der Standardabwei-
chung verwendet. Weist die Datenreihe jedoch Ausreisser auf, ist im Allgemeinen der Median
mit den Quartilen die bessere Wahl. Allerdings konnen diese Masszahlen auch missbraucht
werden, um unerwiinschte Ausreisser unter den Teppich zu kehren.

1.6 Prozentrechnen

Prozentrechnen ist lediglich Bruchrechnen, denn

1
1% = — = 1.
% 100 0,0

Beispiele

1. Wieviel ist 4 % von 200 ?

2. In der Priifung Mathematik I vom HS19 haben 68 von den 217 Teilnehmern die Note 5,
5.5 oder 6 erzielt. Wieviel Prozent sind das?
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3. Eine Eisenbahngesellschaft hat die Billet-Preise seit 2007 zweimal erhcht, ndmlich um 8, 2
und um 11,8 Prozent. Das macht zusammen 20 Prozent. Stimmt diese Rechnung?

Absolut und relativ

Bei Statistiken konnen absolute Zahlenangaben andere Resultate liefern als Angaben in Pro-
zenten.
Beispiele

1. Wir vergleichen die Altersverteilung in der Schweiz in den Jahren 1900 und 2000 (Quelle:
Bundesamt fiir Statistik).

Schweiz 1900 2000
absolut | relativ absolut | relativ
65 und mehr Jahre 193 266 6% | 1109416 23 %

20 — 64 Jahre 1778227 54 % | 4430460 62 %
0 — 19 Jahre 1343950 40% | 1664124 15%
Total 3315443 | 100% | 7204000 | 100 %

Betrachten wir den Anteil der Jugendlichen. In absoluten Zahlen wuchs der Anteil der Ju-
gendlichen zwischen 1900 und 2000 (ndmlich um 320174 Jugendliche). Der relative Anteil
nahm jedoch ab, und zwar um 25 Prozentpunkte (von 40 % auf 15 %).

2. Aus dem Erfundenland stammt die folgende Statistik:

Altersstufe Landesbiirger Auslénder

total pro | davon kriminell total pro | davon kriminell

Altersstufe | absolut | relativ | Altersstufe | absolut | relativ

0-19 4 Mio. | 40000 1% 1 Mio. 2000 | 0,2%
20 — 39 4 Mio. | 400000 10 % 6 Mio. | 560000 | 9,33 %
40 — 59 6 Mio. | 60000 1% 1 Mio. 2000 | 0,2%
60 — 79 4 Mio. | 40000 1% 0,2 Mio. 1000 | 0,5%
80 — 99 1 Mio. 1000 | 0,1% - - -
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Die Partei A fasst dies so zusammen: Obwohl es viel mehr Landesbiirger als Auslénder gibt
(ndmlich 19 Mio. Landesbiirger und 8,2 Mio. Auslénder) gibt es mehr kriminelle Auslénder als
kriminelle Landesbiirger; ndmlich 565000 Ausldnder sind kriminell im Gegensatz zu 541 000
kriminellen Landesbiirgern.

Die Partei B kontert: In jeder Altersstufe stellen die Ausléinder prozentual weniger Kri-
minelle als die Landesbiirger.

3. Sie sind krank und der Arzt empfiehlt Thnen, entweder Medikament A oder Medikament B
einzunehmen.

Der Arzt sagt, dass Sie mit Medikament A schneller gesund werden als mit Medikament B,
aber das Risiko einer gravierenden Nebenwirkung sei bei Medikament A um 100 Prozent
grosser als bei Medikament B.

In absoluten Zahlen sieht es so aus: Bei Medikament A treten bei durchschnittlich 2 von
10000 Patienten gravierende Nebenwirkungen auf, bei Medikament B lediglich bei 1 von
10000 Patienten.
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2 Korrelation und Regressionsgerade

Oft untersucht man nicht nur eine, sondern zwei Datenreihen und fragt sich, ob ein Zusam-
menhang zwischen den beiden Datenreihen besteht. Auskunft iiber einen linearen Zusam-
menhang gibt der sogenannte Korrelationskoeffizient.

2.1 Der Korrelationskoeffizient

Von einer Menge von Merkmalstrigern (Grundgesamtheit) betrachten wir zwei quantitative
Merkmale X und Y, gemessen auf einer Intervall- oder Verhéltnisskala. Hat ein Merkmalstré-
ger ¢ die Merkmalsauspriagungen x; von X und y; von Y, dann notieren wir dies als Wertepaar
(x4, v;). Wir nehmen eine Stichprobe vom Umfang n und erhalten demnach n Wertepaare
(1,91),- -+, (Tn,yn). Zum Beispiel untersuchen wir die Merkmale X = Korpergrosse und
Y = Gewicht von allen Studierenden der Universitdt Basel.

In diesem Beispiel vermutet man einen Zusammenhang zwischen den Merkmalen: Je
grosser ein(e) Studierende(r), desto grosser sein/ihr Gewicht. Um allgemein bei gegebenen
Wertepaaren einen allfilligen Zusammenhang abschétzen zu kénnen, zeichnet man die Wer-
tepaare (x1,¥1),.-.,(Zn,yn) als Punkte im Koordinatensystem ein. Dies ergibt eine Punkt-
wolke, die man Streudiagramm nennt. Hier drei Beispiele:

Im ersten Streudiagramm erkennt man einen Zusammenhang: Je grosser z;, desto grosser y;.
Im zweiten Streudiagramm ist der Zusammenhang umgekehrt: Je grosser x;, desto kleiner y;.
Und im dritten Streudiagramm ist kein Zusammenhang zwischen den x; und den y; erkennbar.

Wir sind hier auf der Suche nach einem linearen Zusammenhang, das heisst, wir fragen
uns, ob die Wertepaare (ungeféhr) auf einer Geraden liegen. Eine Antwort darauf liefert der
Korrelationskoeffizient r,,, der ein Mass sowohl fiir die Stérke des linearen Zusammenhangs
als auch die Richtung im Falle eines Zusammenhangs ist. Im Korrelationskoeffizienten r,
steckt die sogenannte Kovarianz c,,, welche die Richtung eines allfilligen Zusammenhangs

anzeigt.
Definition Die (empirische) Kovarianz der Wertepaare (z1,y1),. .., (Zn,yy) ist definiert
durch
1 n
oy = = (T~ 7).

i=1

Mit denselben Rechenumformungen wie auf Seite 14 fiir die empirische Varianz finden wir
die fiir Berechnungen praktischere Formel

1 " L
cxy:n_1<§ xiyi—nxy>.
=1
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Ist ¢zy > 0 (bzw. ¢y < 0), dann liegen die Wertepaare (x1,y1),...,(Zn,yn), im Falle
eines linearen Zusammenhangs, auf einer Geraden mit positiver (bzw. negativer) Steigung.
Die Kovarianz kann jedoch beliebig grosse und beliebig kleine Werte annehmen und sie héngt
von den Einheiten ab, mit denen die Merkmalsauspriagungen x; und y; gemessen werden. Um
eine Masszahl fiir die Stérke eines linearen Zusammenhangs zu erhalten, wird die Kovarianz
deshalb durch die Standardabweichungen

Sy = 1 Z(xi—E)Q und sy = ! Z(y¢—§)2

n—1

i=1 i=1
der Zahlen x1,...,x,, bzw. y1, ..., yn, dividiert.

Definition Gegeben seien die n Wertepaare (z1,91), ..., (Zn,Yn), wobei nicht alle z; gleich
sind und nicht alle y; gleich sind. Der (empirische) Korrelationskoeffizient ist definiert durch

n

S (@~ 7y - )

r _ Cey _ =1

Y SxSy n n
PRCEEIND IRk
=1 =1

Der Korrelationskoeffizient 7., wurde vom britischen Mathematiker KARL PEARSON
(1857 — 1936) eingefiihrt. Die Interpretation von ry, zeigt der folgende Satz.

Satz 2.1 Der Korrelationskoeffizient nimmt nur Werte zwischen —1 und +1 an. Insbeson-
dere gilt:

Tey =+l <= yi=ax;+b mita>0
rey =—1 <= yi=ax;+b mita<O.

Die Wertepaare (z;,y;) liegen also exakt auf einer Geraden genau dann, wenn 74, = +1.

Woher kommen diese Eigenschaften von ., und wie sind die Werte von 7, zwischen —1
und 1 zu interpretieren? Zur Beantwortung dieser Fragen definieren wir die beiden Vektoren
in R™

r1—x Y1 —y
T = und ¥ =
Tn —T Yn — Y
Dann gilt o
_ Ty
" g

und die sogenannte Ungleichung von Cauchy-Schwarz sagt aus, dass die rechte Seite eine
reelle Zahl zwischen —1 und 1 ist. Also gilt —1 < r,, <1.
In R? und R? gilt

8]
<y

=cos

8

<y
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fiir den Winkel ¢ zwischen den Vektoren & und ¢. In R" fiir n > 3 definiert man den Winkel
@ zwischen # und ¥/ durch diese Gleichung. Es gilt also allgemein

Ty = COS

fiir den Zwischenwinkel ¢ der Vektoren Z und .

Nehmen wir nun an, dass r;, ~ 1 oder 74, =~ —1. Dies bedeutet, dass der Zwischenwinkel
¢ von & und ¥ nahe bei 0°, bzw. 180° ist. Die beiden Vektoren # und ¥ sind also (beinahe)
parallel, das heisst, §f ~ aZ fiir eine reelle Zahl a > 0, bzw. a < 0:

Fiir die Komponenten gilt in diesem Fall

Wir kénnen demnach folgern:

e Ist ry, nahe bei 1, so gilt y; ~ ax; + b fiir ein a > 0, das heisst, es besteht (beinahe)
ein linearer Zusammenhang zwischen den Wertepaaren. Man spricht in diesem Fall von
einer starken positiven Korrelation.

o Ist r,, nahe bei —1, so gilt y; ~ ax; + b fiir ein a < 0, das heisst, es besteht (beinahe)
ein linearer Zusammenhang zwischen den Wertepaaren. Man spricht in diesem Fall von
einer starken mnegativen Korrelation.

e Ist r;, nahe bei 0, so bedeutet dies, dass ¢ nahe bei 90° ist. Die beiden Vektoren  und
i sind also fast orthogonal. Die Wertepaare korrelieren in diesem Fall nicht.

Beispiele
1. Gegeben sind die folgenden Wertepaare:

i | 5[3[4]6]2
v | 1[4al21]7

Streudiagramm:
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Berechnungen:
1 5 1
2 3 4
3 4 2
4 6 1
5 2 7
Summe
Mittelwerte:

Empirische Kovarianz (mit Hilfe der Formel nach der Definition):

Empirische Varianzen (mit Hilfe von Satz 1.2):

Korrelationskoeflizient:

Wir haben also eine starke negative Korrelation.

2. Gibt es einen linearen Zusammenhang zwischen der Korpergrosse und dem Gewicht eines
Menschen? Gemessen wurden die Korpergrosse x; (in m) und das Gewicht y; (in kg) von
11 Personen (der Startelf des FC Basel beim Super League Spiel FC Ziirich gegen FC Basel
vom 08.02.2020):

;| 1,86 | 1,79 11,80 | 1,80 | 1,83 | 1,72 | 1,83 | 1,83 | 1,88 | 1,78 | 1,89
yi | 86 73 75 76 80 72 79 80 7 68 80

Streudiagramm:

85

75

70

65

17 172 174 1.76 178 18 1.82 1.84 1.86 1.88 1.9 1.92
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Wir finden (z.B. mit Excel, GeoGebra oder R)
rzy = 0,710
Wir haben eine positive Korrelation.

Bemerkungen zur Interpretation von rg,

o Ist 7,y ~ 0, dann sagt dies nur, dass die beiden Datensétze keinen linearen Zusammenhang
haben. Eventuell héngen sie jedoch quadratisch, exponentiell oder durch eine trigonome-
trische Funktion voneinander ab (vgl. Abschnitt 2.4).

e Falls r,, nahe bei 1 oder —1 liegt, folgt lediglich, dass die Datensétze stark korrelieren.
Man darf jedoch nicht daraus schliessen, dass zwischen den Datenséitzen ein kausaler Zu-
sammenhang besteht (d.h. dass der eine Datensatz Ursache fiir den anderen Datensatz ist).
Es konnte so sein, es konnte aber auch eine gemeinsame Ursache im Hintergrund geben
oder die Korrelation zuféllig sein. Weiter muss ein Datensatz allenfalls in Teildatensétze
unterteilt werden, um nicht eine der Erwartungen entgegengesetzte Korrelation zu erhalten
(dieses Phéanomen ist bekannt als Simpson-Paradozon).

Beispiel

Wir betrachten die Jahresanfangsgehilter y; (in 1000 CHF) von acht Universititsabgénger(innen)
in Abhéngigkeit von deren Studiendauer x; (in Anzahl Semestern):

z; | 6| 7| 8|8 |11 1212 |11
yi | 70| 60 | 50 | 60 | 80 | 70 | 80 | 90

Der Korrelationskoeffizient r;, = 0,640 weist auf eine positive Korrelation hin, also je langer
die Studiendauer, desto hoher das Anfangsgehalt. Doch das ist fiir Studierende zu schon,
um wahr zu sein. Tatséchlich haben die ersten vier Studienabgénger(innen) das gleiche Fach
studiert und die restlichen vier ein anderes gemeinsames Fach (das mehr Zeit in Anspruch
nimmt als das erste Fach). Im folgenden Streudiagramm sind die ersten vier Wertepaare blau
und die restlichen vier rot eingezeichnet.

110
Jahresanfangsgehalt in CHF
100
90 o
80 (] ()
70 [} [
60 (<] (<]
50 (<]
40
4 5 6 7 8 9 10 1 12 13 14 15
30 Studiendauer in Semestern

Betrachtet man die Fécher separat, so findet man fiir das erste Fach den Korrelationskoeffi-
zienten r, = —0, 853 und fiir das zweite Fach r,, = —0, 707. Studiendauer und Anfangsgehalt
sind also doch negativ korreliert!
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2.2 Rangkorrelation

Der Korrelationskoeffizient 7., ist nicht sinnvoll, wenn eines der beiden Merkmale X und Y’
nicht auf einer Intervall- oder Verhiltnisskala gemessen wird. Werden beide Merkmale zumin-
dest auf einer Ordinalskala gemessen, dann kann der sogenannte Rangkorrelationskoeffizient
gebildet werden.

Gegeben seien also die Merkmalsauspragungen x1,...,x, und yi,...,y, von zwei ordi-
nalskalierten Merkmalen X, bzw. Y. Das heisst, den Daten kénnen Rénge zugeordnet werden.
Haben zwei oder mehr Daten denselben Rang (man nennt dies eine Bindung), so wird als
Rang dieser Daten das arithmetische Mittel der zu vergebenden Rénge gewéhlt. Anschlies-
send bildet man von diesen Réngen r,, und ry, die Differenzen d; = r,, — ry,. Das heisst,
jedem Wertepaar (x;,y;) ordnet man die Rangdifferenz d; zu.

Definition Gegeben seien die n Wertepaare (z1,y1),- .., (n, yn) mit den Rangdifferenzen
di,...,dy. Der Rangkorrelationskoeffizient ist definiert durch

6 n
b e
"s n(nQ—l); E

Der Rangkorrelationskoeffizient geht auf den britischen Psychologen CHARLES SPEARMAN
(1863 - 1945) zuriick.

Der Rangkorrelationskoeffizient g nimmt Werte zwischen —1 und 1 an und er wird analog
zu Ty interpretiert. Stimmen die Rangreihenfolgen fiir die beiden Datensétze iiberein, dann
sind alle Rangdifferenzen d; Null und rg = 1. Bei genau umgekehrten Rangreihenfolgen fiir
die beiden Datensétze fiihrt der Faktor n(ngil) zurg = —1.

Beispiel
In einem erdbebengefihrdeten Gebiet fanden im vergangenen Jahr 7 Erdbeben statt. In der

Tabelle sind die Stérke (geméss Richterskala) sowie die Schadensumme (in Mio. CHF) von
jedem Erdbeben aufgelistet.

Stérke | Schaden Rénge Rangdifferenz
Li Yi Tz Ty; di =1e; =Ty, dz2
3.8 42
2,6 33
24 20
3,7 40
5,4 49
6,2 45
3.8 33

Summe

Wir erhalten

Wir haben also eine starke positive Rangkorrelation.
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2.3 Die Regressionsgerade

Wie im ersten Abschnitt dieses Kapitels betrachten wir von einer Grundgesamtheit zwei
quantitative Merkmale X und Y. Anders als zuvor gehen wir jedoch davon aus, dass Y von
X abhéngt und wir fragen uns, wie Y von X abhingt. Wir nehmen eine Stichprobe von
Wertepaaren (z1,y1), ..., (Zn,yn) und suchen also eine Funktion f, so dass y; ~ f(x;).

Beispiel

Der Umsatz einer Apotheke gibt einen wichtigen Hinweis auf ihre Wirtschaftlichkeit. Kann
dieser Umsatz beispielsweise durch die Anzahl Kunden pro Tag abgeschétzt werden?

Bei drei Apotheken, fiir welche der Jahresumsatz bekannt ist, werden die Anzahl Kunden
pro Tag gezihlt. Man erhilt die folgenden drei Messwertpaare (z;,y;), i = 1,2,3,

v |12 3

wobei x; - 100 die Anzahl Kunden pro Tag in der Apotheke i sind und y; der Jahresumsatz
der Apotheke i in Millionen CHF ist. Wenn es eine Funktion f gibt, so dass y; ~ f(z;),
fiir ¢ = 1,2, 3, dann konnte fiir jede weitere Apotheke die Anzahl Kunden x gezéhlt werden
und mit Hilfe der Funktionsgleichung y = f(x) der Jahresumsatz y der Apotheke geschitzt
werden.

Um eine passende Funktion f zu finden, zeichnen wir das Streudiagramm der Messwert-
paare:

Die drei Punkte liegen fast auf einer Geraden. Es kénnte also sein, dass ein linearer Zu-
sammenhang zwischen den Messwerten x1,xo,x3 und yi,yo,ys besteht, der jedoch durch
verschiedene Einfliisse verfilscht wurde.

Wir machen deshalb den Ansatz

y=f(x) =ax+b

und versuchen, a und b so zu bestimmen, dass der Graph von f (eine Gerade) die drei
Messwertpaare am besten approximiert. Setzen wir im Ansatz fiir x die Messwerte 1, T2, 3
ein, dann sollen die Abweichungen f(x1) von yi, f(x2) von ya, f(z3) von ys moglichst klein
sein. Im Beispiel sind dies die Abweichungen

e1 = y1—f(r) = 2—(a+b) = 2—a—b
e2 = yo—flwa) = 3—(2a+b) = 3—-2a-b
es = ys—f(r3) = 4,5—(3a+b) = 4,5-3a—b
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y
[ ]
e3 L
/ y=ax+b
axp + b 82“
€1

Y1

X1 X2 X3 X

Wie beim arithmetischen Mittel soll die Summe der Quadrate der Abweichungen minimal
sein, das heisst, wir suchen das Minimum der Funktion

3

3 3
Yol => (i f@:))” = (i — (ax; +1))* = F(a,b).

=1 =1 =1
Dies ist eine Funktion in zwei Variablen, ndmlich in den Variablen a und b:

F(a,b) = (2—a—b)?*+(3—2a—0b)?+ (4,5 3a —b)?
14a” + 3b% + 12ab — 43a — 19b + 33,25

Wir werden im dritten Teil dieses Semesters lernen, dass eine notwendige Bedingung fiir ein
Minimum das Verschwinden der Ableitungen von F'(a,b) nach den Variablen a und b ist:

(Ableitung von F'(a,b) nach a) = agF(a, b) =0
a

(Ableitung von F'(a,b) nach b) = %F(a, b) =0

Fiir unser Beispiel ergibt sich

h

wino

Dies ist ein lineares Gleichungssystem in ¢ und b mit der eindeutigen Losung a = % und b =
Die gesuchte Gerade ist also y = %x + % Die Graphik zeigt, dass (a,b) = (%, %) tatséchli
ein Minimum und nicht ein Maximum von F'(a, b) ist.

Q

Zahlen wir also in einer weiteren Apotheke beispielsweise 270 Kunden pro Tag, dann
konnen wir den Jahresumsatz dieser Apotheke auf y = f(2,7) ~ 4,04 Millionen CHF
schétzen.
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Wir koénnten das vorherige Problem auch mit einer anderen Methode 16sen. Wir tun so,
wie wenn die drei Messwertpaare auf einer Geraden y = mx + ¢ liegen wiirden. Wir setzen
die drei Messwertpaare ein und erhalten also

2 m+q
3 = 2m+gq
,D

4 = dIm+gq.

Dies ist nun ein lineares Gleichungssystem in m und q. Da die drei Messwertpaare nicht auf
einer Geraden liegen, hat dieses Gleichungssystem natiirlich keine Losung. Wir kénnen aber
eine Ndherungslosung bestimmen, und zwar nach der Methode von Abschnitt 9.5 vom letzten
Semester. Das lineare System kann man schreiben als

11 p
A<m>:b mit A=(2 1|,56=13
9 31 4,5

Satz 9.14 sagt, dass eine Naherungslosung <ZL> gegeben ist durch

(T(D — (AT A) "1 (ATD) = é (—36 Iﬁf) (29?55) B <

5

4

3
Wir erhalten also dieselbe Gerade wie mit der vorherigen Methode!

Dies iiberrascht eigentlich nicht, denn wir haben in Abschnitt 9.5 ja eine Summe von
Quadraten minimiert (die Linge des “Fehlervektors”), genau wie bei der Minimierung von
F(a,b). Wie im Abschnitt 9.5 nennt man das Minimieren von F'(a,b) Methode der kleinsten
Quadrate. Sie geht auf den Mathematiker CARL FRIEDRICH GAUSS (1777 — 1855) zuriick.

Allgemeine Methode

Allgemein sind nun n Messwertpaare (z;,y;), fiir i = 1,...,n, gegeben. Wir vermuten einen
linearen Zusammenhang
y=f(z)=ar+b mita#0

und bestimmen a und b so, dass die Summe der Quadrate der Abweichungen e; = y; — (axz; +b)
minimal ist, das heisst, wir suchen die Minimalstelle (a,b) (es gibt tatséichlich genau eine)
der Funktion

n n n
doei=> (yi— f(:)* =) (v — axi —b)* = F(a,b).
i=1 i=1 i=1
Die Gerade y = ax + b mit dieser Minimalitdtseigenschaft heisst Regressionsgerade.
Wie im Beispiel miissen wir zur Bestimmung der Minimalstelle die Ableitungen von F'(a, b)
nach a und nach b Null setzen. Da F'(a,b) quadratisch in a und b ist, sind diese Ableitungen
linear in a und b. Wir erhalten (wie im Beispiel) das folgende lineare Gleichungssystem in a

und b:

n n
g Ty = a g w?—i—bnf
i=1 i=1

Yy = ar+b
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Die zweite Gleichung zeigt, dass der Punkt (Z,y) auf der Geraden liegt. Durch Auflésen der
zweiten Gleichung nach b und Einsetzen in die erste Gleichung erhalten wir

n
> miyi —nTy
_ = B (n—1)cgy _c

b=vy—ax und a = = = 2
4 n (n—1)s2 s2
2 =2
Z xT; —nT
i=1
fiir die Standardabweichung s, der Messwerte z1,...,x, und die Kovarianz der Messwert-
paare (1,91),. .., (Tn,yn). Fir die Umformung von a haben wir Satz 1.2 und die Formel fiir

die Kovarianz auf Seite 18 benutzt.

Satz 2.2 Die Regressionsgerade zu den Wertepaaren (x1,y1),. .., (Zn,yn) hat die Gleichung
y =ax+ b mit
c
a:% und b =7y—ax.
SZ‘
Der Koeffizient a wird auch als erster Regressionskoeffizient oder Regressionskoeffizient
beziiglich x bezeichnet. Man beachte, dass er nicht symmetrisch in z und y ist.

Beispiele

1. Betrachten wir nochmals das 1. Beispiel von Seite 20 mit dem folgenden Streudiagramm:

Die fiinf Punkte liegen fast auf einer Geraden, bzw. der Korrelationskoeffizient 7, = —0,93
deutet auf einen linearen Zusammenhang der Wertepaare hin. Welche Gleichung hat die
Regressionsgerade? Auf Seite 21 haben wir schon berechnet:
—15 10
§:47 y:?)a CJJy: ) Sizz

Damit erhalten wir die Steigung a und den y-Achsenabschnitt b der Regressionsgeraden

und die Gleichung der Regressionsgeraden lautet:



28

2. Im 2. Beispiel von Seite 21 deutet das Streudiagramm und der Korrelationskoeffizient
rzy = 0,710 darauf hin, dass das Gewicht von einer Person von dessen Korpergrésse linear
abhéngt. Es ist also sinnvoll, die Regressionsgerade zu berechnen:

85
80

75

y="71,297x — 52,787

70

65

17 172 174 1.76 178 18 1.82 1.84 1.86 1.88 1.9 1.92

2.4 Nichtlineare Regression

In vielen Fillen legt das Streudiagramm von zwei Datensétzen einen nichtlinearen Ansatz
nahe, zum Beispiel eine Polynomfunktion oder eine Exponentialfunktion f. Auch in diesen
Féllen kann die Methode der kleinsten Quadrate verwendet werden; man minimiert die Sum-
me iiber die Abweichungen im Quadrat (y; — f(x;))?.

Im Fall einer Exponentialfunktion kann dieses Minimierungsproblem auf eine lineare Re-
gression zuriickgefithrt werden.

Beispiel
Gegeben sind die folgenden Wertepaare

z; |0 1] 2 3 4
yi |311]05]0,2]0,05

Streudiagramm:

3@

Das Streudiagramm zeigt, dass die Daten y; exponentiell von den Daten x; abhéngen kénnten.

Wir machen also den Ansatz
axr

y= fla) = ce
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Anstatt nun die Summe iiber die Abweichungen im Quadrat (y; — f(7;))? zu minimieren,
logarithmieren wir diesen Ansatz:

Das heisst, wenn zwischen den Wertepaaren (x;,y;) ein exponentieller Zusammenhang be-
steht, dann besteht zwischen den Wertepaaren (x;,In(y;)) ein linearer Zusammenhang. Wir
konnen also die Regressionsgerade bestimmen fiir die Wertepaare

T 0 1 2 3 4
In(y;) | 1,099 | 0 | —0,693 | —1,609 | —2,996

Wir erhalten die Regressionsgerade
In(y) = —0,9798 z + 1,1197 .
Es ist also a = —0, 9798 und fiir ¢ finden wir

In(c) =1,1197 = c¢=¢"197=30639.

y = 3,0639 - ¢ 09795
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3 Wahrscheinlichkeitsrechnung

Das Hauptziel der Stochastik ist, Modelle zur mathematischen Beschreibung von sogenannten
Zufallsexperimenten zu entwickeln.

3.1 Zufallsexperimente und Ereignisse

Wenn wir eine Miinze werfen, so bestimmt der Zufall, ob das Ergebnis “Kopf” oder “Zahl”
sein wird. Wenn aus einer Warenlieferung 100 Gléser zufillig entnommen werden, so ist nicht
vorhersagbar, wieviele von diesen 100 Glésern zerbrochen sind. In beiden Féllen handelt es
sich um ein Zufallsexperiment.

Definition FEin Zufallsexperiment ist ein Vorgang, der

e beliebig oft unter den gleichen Bedingungen wiederholt werden kann und
e dessen Ergebnis nicht mit Sicherheit vorhergesagt werden kann.

Die Menge aller moglichen (sich gegenseitig ausschliessenden) Ergebnisse des Zufallsexperi-
ments wird Ergebnisraum genannt und mit €2 bezeichnet.

Eine Teilmenge A C  heisst Ereignis. Es ist eingetreten, wenn das Ergebnis des Experi-
ments ein Element von A ist. Ein Ergebnis w € Q) heisst auch Elementarereignis.
Beispiele

1. Werfen einer Miinze:

Q= {Kopf,Zahl } ={ K,Z }

2. Werfen eines Wiirfels:
Q :{ 1,2,3,4,5,6 }

Ereignis A = Wurf einer geraden Zahl
Ereignis B = Wurf einer Zahl < 3

3. Werfen von zwei Miinzen:
ON={KK KZ,ZK,ZZ }
Ereignis A = Wurf von genau einer Zahl

Ereignis B = Wurf von mindestens einem Kopf

4. Messung der Korpergrosse eines zufillig ausgewédhlten Chemiestudenten:
Q= (0,00)

Ereignis A = die Korpergrosse ist grosser als 160 cm und kleiner als 180 cm

Definition Seien A, B C ) Ereignisse.
e Das Ereignis A und B entspricht dem Durchschnitt A N B.
e Das Ereignis A oder B entspricht der Vereinigung A U B.
e Das Gegenereignis von A ist jenes Ereignis, das eintritt, wenn A nicht eintritt. Es wird
mit A bezeichnet und entspricht dem Komplement A = Q\ A.
Zwei Ereignisse A und B heissen unvereinbar, wenn AN B = () (die leere Menge), das heisst,
A und B konnen nicht gleichzeitig eintreten.
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Beispiel
Wir bestimmen AN B, AU B und A fiir das 2. Beispiel oben.

3.2 Wahrscheinlichkeit

Nun ordnen wir den Ereignissen Wahrscheinlichkeiten zu. Das heisst, wir suchen eine Funktion
P, die jedem Element (bzw. jeder Teilmenge) des Ereignisraums € eine reelle Zahl zuordnet.
Diese Zahl soll der Wahrscheinlichkeit entsprechen, mit der das Ergebnis (bzw. das Ereignis)
eintritt. Die Funktion P muss dabei gewissen Mindestanforderungen geniigen.

Definition (Axiome von Kolgomorow) Eine Funktion P, die jedem Ereignis A von €
eine reelle Zahl P(A) zuordnet, heisst Wahrscheinlichkeitsverteilung, wenn sie die folgenden
drei Eigenschaften erfiillt:

1. Fiir jedes A C Q gilt 0 < P(A) < 1.

2. Fiir das sichere Ereignis Q gilt P(Q2) = 1.

3. Fiir zwei unvereinbare Ereignisse A und B (d.h. falls AN B = () gilt
P(AUB)=P(A)+ P(B).

Setzen wir im dritten Punkt A = Q und B = (), so folgt fiir das unmdogliche Ereignis ), dass
P(0)=0.

Weiter folgt aus der dritten Eigenschaft, dass zur Bestimmung der Wahrscheinlichkeit P(A)
eines Ereignisses A iiber die Wahrscheinlichkeiten P(w) der einzelnen Ergebnisse w von A
summiert werden kann. Dabei gehen wir davon aus, dass €2 eine nicht-leere endliche oder
abzihlbar unendliche Menge ist. Man nennt in diesem Fall das Paar (€, P) einen diskreten
Wahrscheinlichkeitsraum.

Aber wie bestimmen wir nun P(A) fiir ein Ereignis A7 Nun, der Ausgang eines einzelnen
Zufallsexperiments ist vollig offen. Wiederholt man jedoch ein Zufallsexperiment oft (n Mal)
und z&hlt dabei, wie oft ein bestimmtes Ereignis A eintritt (k Mal), so scheint sich die relative
Héufigkeit % um einen festen Wert p zu “stabilisieren”. Dieser Wert p kann als Néherung fiir
die Wahrscheinlichkeit P(A) verwendet werden.

Beispiel
Nehmen wir einen Wiirfel, von dem wir nicht wissen, ob er gezinkt ist. Wir wollen heraus-

finden, wie gross die Wahrscheinlichkeit ist, die Augenzahl 6 zu wiirfeln. Dazu wiirfeln wir n
Mal und zéhlen die Anzahl k der Augenzahl 6. Hier ist also 2 = {1,2,3,4,5,6} und A = {6}.
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n | k | relative Haufigkeit %
100 | 16 | 0,16

200 | 34 | 0,17

300 | 49 | 0,163

400 | 62 | 0,155

Unser Experiment zeigt, dass P(A) ~ 0, 155.

Wiire der Wiirfel nicht gezinkt, dann kénnten wir davon ausgehen, dass alle Augenzahlen
gleich wahrscheinlich sind. Man nennt einen solchen Wiirfel fair oder ideal. Die Bestimmung
von P(A) ist in diesem Fall viel einfacher. Aus der Bedingung P(2) = 1 folgt direkt P(A) = %,
da 6 verschiedene Augenzahlen gewiirfelt werden kénnen und jede Augenzahl gleich wahr-
scheinlich ist.

Definition FEin Laplace- Experiment ist ein Zufallsexperiment mit den folgenden Eigenschaf-
ten:

1. Das Zufallsexperiment hat nur endlich viele mogliche Ergebnisse.

2. Jedes dieser Ergebnisse ist gleich wahrscheinlich.

Zum Beispiel sind (wie oben erwihnt) beim Wurf eines fairen Wiirfels alle Augenzahlen
gleich wahrscheinlich. Oder bei der zufilligen Entnahme einer Stichprobe einer Warenlieferung

haben alle Artikel dieselbe Wahrscheinlichkeit, gezogen zu werden.
Fiir eine Menge M bezeichnen wir mit |M| die Anzahl Elemente dieser Menge.

Satz 3.1 Bei einem Laplace-Experiment hat jedes Ergebnis w € Q die Wahrscheinlichkeit

Fiir jedes Ereignis A C Q folgt

19 19|~ Anzahl der moglichen Fille

1 |A|  Anzahl der fiir A giinstigen Fille
P(A)=) Pw) =) = =15 =

weA w€eA

Beispiele

1. Es wird ein fairer Wiirfel geworfen. Wie gross sind die Wahrscheinlichkeiten P(A) und
P(B) fir A = (gerade Augenzahl) und B = (Augenzahl durch 3 teilbar) ?
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2. Aline (A) und Beat (B) spielen wiederholt ein faires Spiel, bei dem beide die gleiche
Gewinnchance haben. Sie setzen je 50 CHF ein und wer zuerst sechs Runden gewonnen hat,
erhilt den gesamten Einsatz von 100 CHF'. Leider muss das Spiel beim Stand von 5:3 fiir Aline
abgebrochen werden. Wie soll nun der Einsatz gerecht aufgeteilt werden? Eine Moglichkeit
wére, im Verhéltnis 5:3, also Aline erhilt 62,50 CHF und Beat 37,50 CHF. Dies entspricht
jedoch nicht den einzelnen Gewinnwahrscheinlichkeiten, die wir wie folgt berechnen kénnen.
Wiirde das Spiel weitergefiihrt, gibe es vier verschiedene mogliche Spielausgénge:

Spielausgang

Gewinnreihenfolge

Wahrscheinlichkeit

Nur in einem der vier Spielausginge gewinnt Beat, doch die vier Spielausgénge sind nicht
gleich wahrscheinlich, also ist auch die Aufteilung 75 CHF fiir Aline und 25 CHF fiir Beat
nicht sinnvoll. Die Berechnung in der Tabelle zeigt, dass 87,50 CHF fiir Aline und 12,50 CHF
fiir Beat wohl am gerechtesten wéren.

Die folgenden Eigenschaften, die direkt aus den drei Bedingungen an eine Wahrschein-
lichkeitsverteilung folgen, sind sehr niitzlich zur Bestimmung von Wahrscheinlichkeiten.

Satz 3.2 Fir A, B C Q gilt:

ACB = P(A)<P(B)

g

)
)
(c) P(AUB) =P(A)+ P(B) - P(AN B)
)
)

(A)=P(ANB)+ P(ANB)

Beispiel

In einem Restaurant essen gewohnlich 20% der Géste Vorspeise (V) und Nachtisch (),
45 % nehmen Vorspeise oder Nachtisch und 65% nehmen keine Vorspeise. Man bestimme den
Prozentsatz der Giste, die wie folgt wahlen:

(a) Vorspeise und keinen Nachtisch (b) einen Nachtisch
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3.3 Bedingte Wahrscheinlichkeit

Oft ist die Wahrscheinlichkeit eines Ereignisses B unter der Bedingung (bzw. dem Wissen),
dass ein Ereignis A bereits eingetreten ist, gesucht. Man bezeichnet diese Wahrscheinlichkeit
mit P(B|A).

Beispiel

Zwei faire Wiirfel werden geworfen. Wie gross ist die Wahrscheinlichkeit, die Augensumme 5
zu werfen unter der Bedingung, dass wenigstens einmal die Augenzahl 1 geworfen wird?

Bei Laplace-Experimenten kann man stets so wie im Beispiel vorgehen. Fiir beliebige
Zufallsexperimente definieren wir die Wahrscheinlichkeit P(B|A) durch die eben gefundene
Formel.

Definition Die Wahrscheinlichkeit des Ereignisses B unter der Bedingung, dass Ereignis A
eingetreten ist, ist definiert als

P(ANB)

P(BIA) = =55

Man spricht von der bedingten Wahrscheinlichkeit P(B|A).

Der urspriingliche Ergebnisraum 2 reduziert sich also auf A, und von B sind nur jene Ergeb-
nisse zu zahlen, die auch in A liegen.

Formt man die Gleichung in der Definition um, erhélt man eine niitzliche Formel fiir die
Wabhrscheinlichkeit P(A N B).

Satz 3.3 (Multiplikationssatz) Gegeben sind Ereignisse A und B mit Wahrscheinlichkei-
ten ungleich Null. Dann gilt

P(AN B) = P(A)P(B|A) = P(B)P(A|B).

Die zweite Gleichheit im Satz folgt, indem wir die Rollen von A und B in der Definition
vertauschen.
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Beispiel
In einer Urne befinden sich 5 rote und 10 blaue Kugeln. Wir entnehmen nun hintereinander
zufillig zwei Kugeln ohne Zuriicklegen. Wie gross ist die Wahrscheinlichkeit,

(a) zuerst eine rote und dann eine blaue Kugel und

(b) zwei rote oder zwei blaue Kugeln zu ziehen?

Oft ist es hilfreich, die Wahrscheinlichkeiten mit Hilfe eines Wahrscheinlichkeitsbaums zu
veranschaulichen:

P(B|A) P(AN B) = P(A) - P(B|A)

P(BA)

Dabei sind A und B zwei beliebige Ereignisse.

Beispiele

1. Die Studentin Maja wohnt im Studentenheim Basilea. Dieses besitzt eine Brandmeldean-
lage, welche bei Feuerausbruch mit einer Wahrscheinlichkeit von 99 % Alarm gibt. Manchmal
gibt die Anlage einen Fehlalarm, und zwar in etwa 2 % aller Néchte. Schliesslich ist die Wahr-
scheinlichkeit, dass in einer bestimmten Nacht Feuer ausbricht, gleich 0,05 %.

(a) Mit welcher Wahrscheinlichkeit kann Maja diese Nacht ruhig schlafen?
(b) Mit welcher Wahrscheinlichkeit geht diese Nacht die Alarmanlage los?

(c) Maja hort den Feueralarm. Mit welcher Wahrscheinlichkeit brennt es wirklich?
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Wir zeichnen dazu einen Wahrscheinlichkeitsbaum:

Wir finden damit die folgenden Antworten zu den Fragen im Beispiel:

(a) P(weder Feuer noch Alarm) =

(b) P(Alarm) =

(¢) P(Feuer|Alarm) =

Die Wahrscheinlichkeit, dass es bei Alarm auch wirklich brennt, ist also sehr klein, nur 2,4 %.
Dies im Gegensatz zur Wahrscheinlichkeit von 99 %, dass bei Feuer der Alarm auch losgeht.
Man darf Ereignis und Bedingung also nicht verwechseln.

2. In einem Land seien 0,01 % der Bevolkerung HIV positiv. Ein HIV-Test reagiert bei HIV
positiven Personen mit 99,9 % Wahrscheinlichkeit positiv. Bei HIV negativen Personen gibt
er mit 0,01 % Wahrscheinlichkeit irrtiimlicherweise auch ein positives Resultat.

Fine Person wird getestet und es ergibt sich ein positives Resultat. Mit welcher Wahr-
scheinlichkeit ist die Person wirklich HIV positiv?
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3. Alle Personen eines Landes werden auf Tuberkulose getestet. Dabei erhalten 32 % ein po-
sitives Testresultat. Welcher Anteil der Bevolkerung ist tatséchlich mit Tuberkulose infiziert,
wenn der Test bei infizierten Personen mit 90 % Wahrscheinlichkeit und bei nicht infizierten
Personen mit 30 % Wahrscheinlichkeit ein positives Resultat gibt?

Der Trick hier ist, fiir die gesuchte Wahrscheinlichkeit p zu setzen, und dann wie vorher
den Wahrscheinlichkeitsbaum zu zeichnen:

Damit erhalten wir die folgende Gleichung fiir p:

3.4 Unabhingige Ereignisse

In vielen Féllen ist die Wahrscheinlichkeit, dass ein Ereignis B eintritt, vollig unabhéngig
davon, ob ein anderes Ereignis A eintritt, das heisst P(B|A) = P(B). Der Multiplikationssatz
vereinfacht sich dadurch.

Definition Zwei Ereignisse A und B heissen (stochastisch) unabhdngig, wenn gilt
P(ANB)=P(A)-P(B).
Aquivalent dazu heissen zwei Ereignisse A und B unabhiingig, wenn
P(B|A) = P(B) mit P(A) >0 bzw.
P(A|lB) = P(A) mit P(B)>0.

Es ist nicht immer intuitiv erkennbar, ob zwei Ereignisse A und B unabhéngig sind oder
nicht. Die stochastische Unabhéngigkeit von zwei Ereignissen A und B besagt, dass A und B
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im wahrscheinlichkeitstheoretischen Sinn keinen Einfluss aufeinander haben. Es kann vorkom-
men, dass zwei Ereignisse A und B stochastisch unabhingig sind, obwohl real das Eintreten
von B davon abhéngt, ob A eintritt.

Beispiele

1. Ein Wiirfel wird zweimal geworfen. Wie gross ist die Wahrscheinlichkeit, beim ersten Wurf
die Augenzahl 1 und beim zweiten Wurf die Augenzahl 2 zu wiirfeln?

2. Wieder werfen wir einen Wiirfel zweimal. Dabei sei A das Ereignis, dass die Augenzahl
des ersten Wurfes gerade ist und B sei das Ereignis, dass die Summe der beiden geworfenen
Augenzahlen gerade ist. Sicher entscheidet hier das Ereignis A mit, ob B eintritt. Sind A und
B stochastisch unabhéingig?
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4 Erwartungswert und Varianz von Zufallsgrossen

Bei vielen Zufallsexperimenten (wie beispielsweise dem Wiirfeln) geht es um die Wahrschein-
lichkeit, dass eine bestimmte Zahl auftritt. Bei anderen Zufallsexperimenten kann jedem
Ergebnis eine Zahl zugeordnet werden (zum Beispiel ein Geldbetrag bei einem Gliicksspiel).
In beiden Féllen interessiert uns, welche Zahl durchschnittlich auftritt, wenn das Zufallsex-
periment oft wiederholt wird. Diese Zahl nennt man Erwartungswert.

4.1 Zufallsgrosse und Erwartungswert
Wir beginnen mit einem Beispiel.

Beispiel
Der Héndler A verkauft ein Laptop ohne Garantie fiir 500 CHF. Der Héndler B verkauft
dasselbe Modell mit einer Garantie von einem Jahr fiir 550 CHF. Bei einem Schaden des
Laptops wird dieses kostenlos repariert oder durch ein neues ersetzt. Die Wahrscheinlichkeit,
dass ein Laptop dieses Modells innerhalb des ersten Jahres aussteigt, betriagt 5 %.

Die Situation beim Héndler A sieht so aus:

w gutes Laptop | schlechtes Laptop
P(w) 0,95 0,05
Kosten 500 1000

Welche (durchschnittlichen) Kosten sind bei Héndler A zu erwarten?

Die Kosten sind eine sogenannte Zufallsgrosse. Die zu erwartenden Kosten nennt man den
Erwartungswert der Zufallsgrosse.

Definition Sei Q2 ein Ereignisraum. Eine Zufallsgrisse (oder Zufallsvariable) ist eine Funk-
tion, die jedem Ergebnis w aus 2 eine reelle Zahl zuordnet, X : Q@ — R, w — X (w).

Eine Zufallsgrosse heisst diskret, wenn sie nur endlich viele oder abzihlbar unendlich viele
verschiedene Werte 1,9, x3,... annehmen kann.

Wir gehen in diesem Kapitel stets davon aus, dass die Zufallsgrosse diskret ist.

Sei xp der Wert der Zufallsgrosse fiir das Ergebnis wy, also xp = X (wg). Dann bezeich-
nen wir mit pp die Wahrscheinlichkeit, dass die Zufallsgrosse X den Wert z; annimmt, also
pr = P(X(w) = x).
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Definition Der Erwartungswert einer diskreten Zufallsgrosse X ist definiert durch
n
p=E(X) = pias + pata + - + Do = D P -
k=1

Beispiele

1. Wir werfen einen Wiirfel. Beim Werfen der Augenzahl 5 gewinnt man 5 CHF, in allen
anderen Fiallen muss man 1 CHF bezahlen. Mit welchem durchschnittlichen Gewinn oder
Verlust muss man rechnen?

w = Augenzahl | 1 2 3 4 |5 6
P(w) s | 515 | 5|5l s
Gewinn X(w) | -1|—-1|—-1]—-1]5|-1
Die Zufallsgrosse X nimmt also nur zwei Werte an, z; = —1 und x5 = 5. Mit welchen

Wahrscheinlichkeiten werden diese Werte angenommen? Erwartungswert?

2. Nun gewinnt man bei jeder Augenzahl 1 CHF.

w = Augenzahl
P(w)
Gewinn X (w)

= [el=] =
=] DN
— =] QO
[l 21N
= o= Ot
— = O

Das ist natiirlich ein langweiliges Spiel. Ohne Rechnung erkennen wir, dass der erwartete
Gewinn, (d.h. p = F(X)) 1 CHF betrigt.

3. Nun gewinnt man 6 CHF bei der Augenzahl 5 und sonst 0 CHF.

w = Augenzahl
P(w)
Gewinn X (w)

O ol =
Ol DN
S| W
O el
D jel=| Ot
S| O

Wie gross ist der Erwartungswert?

Die letzten beiden Beispiele haben also denselben Erwartungswert, doch das 3. Beispiel ver-
spricht deutlich mehr Spannung als das 2. Beispiel. Dies wird durch die sogenannte Varianz
der Zufallsgrosse beschrieben.

4.2 Varianz und Standardabweichung

Die Varianz 02 = Var(X) einer Zufallsgrosse X misst die mittlere quadratische Abweichung
vom Erwartungswert u = E(X).
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Definition Die Varianz einer Zufallsgrosse X ist definiert durch
n
o> =Var(X) = E((X —p)?) = > prlex — p)* .
k=1

Die Standardabweichung oder Streuung o ist definiert als die positive Quadratwurzel der
Varianz, das heisst

o = VVar(X) = \JE(X —w)?) = | S piles — )
k=1

Betrachten wir nun nochmals das 2. und das 3. Beispiel von vorher. Im 2. Beispiel gibt
es keine Streuung. Wir haben nur einen Wert z; = 1 und somit ist z; — u = 0, das heisst
02 = Var(X) = 0. Im 3. Beispiel sicht es anders aus:

Wie fiir die Varianz der beschreibenden Statistik konnen wir die Formel fiir die Varianz
umformen:

n n
Var(X) = Y prlax —p)? = > pr(ai — 2opp+ %)
k=1 k=1
n n n
= Y mri—2u ) prre+p Y pr = B(X?) —p’ = B(X?) - (B(X))?.
k= — =
1 k=1 k=1
=E(X?) =p =1

Satz 4.1 FEs gilt

Beispiel

4. Wieder werfen wir einen Wiirfel. Der Gewinn X (w) entspricht nun genau der gewiirfelten
Augenzahl. Wie oft miissen wir wiirfeln, um (durchschnittlich) einen Gewinn von 1000 CHF
einstreichen zu kénnen?

3

£
— o=
N [@l=| DO
W el Lo
IS S TN
o= Ot
D el=| O
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Wir berechnen zunéchst den Erwartungswert und die Streuung;:

Bei jedem Wurf kénnen wir also mit einem Gewinn von 3.50 CHF rechnen. Fiir einen Gewinn
von 1000 CHF miissen wir demnach (durchschnittlich)

wiirfeln.

In all den bisherigen Beispielen waren die Wahrscheinlichkeiten der Ergebnisse w jeweils
gleich gross. Das muss nicht so sein.
Beispiel

5. Wir werfen zwei Wiirfel gleichzeitig. Als Zufallsgrosse wihlen wir die halbe Augensumme
(d.h. der Durchschnitt der beiden geworfenen Augenzahlen).

w 2 3 4 ) 6 7 8 9 10 11 12
Pw=pmr| 3 | 5 | 3 | 56 | 6 | % | % | s | 3 | 3 |
X(w) =z 1 1,5 2 2.5 3 3,5 4 4,5 5 5,5 6

Fiir den Erwartungswert erhalten wir
1 2 3 4 1 126
=FX)=—-14+—-1,5+—-24—-254+---+—-6=—=3,5
n=BX) =g Lt g 1ot gg 245525+t g 36

genau wie im 4. Beispiel. Die Varianz und die Streuung sind nun allerdings kleiner als im

4. Beispiel. Es gilt

o? =Var(X) = BE(X?) — (E(X))* = i.12+3.1 52+3.22+...+i.62_3 52 ~ 1.46
36 36 36 36 ' '

und damit ist o ~ 1, 21.
Fine diskrete Zufallsgrosse kann man auch graphisch darstellen. In einem Stabdiagramm

errichtet man iiber jedem Wert zj einen Stab der Linge py.
Fiir das letzte Beispiel sieht das so aus:

0.15




43

Definition Sei X eine diskrete Zufallsgrosse. Man nennt die Menge

{ (@1,p1), (z2,p2), (x3,p3),... }

die Wahrscheinlichkeitsverteilung oder Verteilung von X.

4.3 Kombination von Zufallsgréssen

Zwei Zufallsgrossen X und Y konnen addiert und multipliziert werden. Wie héngen der
Erwartungswert und die Varianz der neuen Zufallsgrosse von X und Y ab?

Beispiel

Wieder wiirfeln wir. Es gilt also P(w) = # fiir jedes Ergebnis w.

w 1 2 3 4 5 6
Zufallsgrosse X 1
Zufallsgrosse Y 0 1 1 0 0 10

X+Y
XY

w
ot
ot

Nun vergleichen wir die Erwartungswerte der verschiedenen Zufallsgrossen. Zunéchst gilt
E(X)=3und E(Y) = 2. Weiter finden wir

Bei der Addition der zwei Zufallsgrossen haben sich also deren Erwartungswerte ebenfalls
addiert. Dies gilt allgemein, und zwar gilt noch ein wenig mehr.

Satz 4.2 Fiir zwei Zufallsgriossen X, Y und reelle Zahlen a, b, c gilt
E(aX +bY +¢)=aE(X)+bE(Y)+c.
Der Beweis erfolgt durch Nachrechnen:

E(aX +bY +¢) = pilazs +byr +¢)+ -+ palazn + byn + ¢)
= a(prx1+ -+ puxn) +b(Pry1 + -+ Puyn) P14+ -+ pn)
_/_/

=1
= aB(X)+bE(Y)+c.

Mit der Multiplikation von zwei Zufallsgrossen scheint es nicht so einfach zu gehen. Schau-
en wir uns nochmals ein Beispiel an.
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Beispiel
w 1 2 3 4 5 6
Zufallsgrosse X | 3 3 5 5 5 3
Zufallsgrosse Y 1 3 2 3 1 2
XY 3 9 10 15 5 6

Es gilt E(X) =4 und E(Y) = 2. Fiir E(X -Y) erhalten wir

In diesem Beispiel sind die Werte von Y gleichmissig iiber die Werte von X verteilt und um-
gekehrt, das heisst, die Werte von Y sind unabhéngig von den Werten von X. Man nennt die
Zufallsgrossen stochastisch unabhéngig. Die prézise Definition hat mit unabhéngigen Ereig-
nissen zu tun.

Definition Zwei Zufallsgrossen X und Y heissen stochastisch unabhdngig, falls fiir alle xj
und y, die Ereignisse (X = xj) und (Y = y,) unabhéngig sind, also falls

P((X =) und (Y =y)) = P(X =) - P(Y =y).

Wollen wir iiberpriifen, dass im zweiten Beispiel die Zufallsgrossen X und Y stochastisch
unabhéngig sind, dann miissen wir sechs Gleichungen nachweisen:

P(X=3)und (Y =1)) = P(X=3)-P(Y =1)
P((X=3)und (Y =2)) = P(X=3)-P(Y =2)
P((X=3)und (Y =3)) = P(X=3)-P(Y =3)

und dann nochmals die drei Gleichungen, wobei wir X = 3 durch X = 5 ersetzen. Wir
iiberpriifen hier nur die erste Gleichung;:

Im Gegensatz dazu sind X und Y vom ersten Beispiel nicht stochastisch unabhéngig. Um
dies nachzuweisen, geniigt es, ein Péarchen (zy,y,) zu finden, welches die Gleichung in der
Definition nicht erfiillt.
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Satz 4.3 Sind die Zufallsgrossen X und Y stochastisch unabhdngig, dann gilt
EX-Y)=EX)-EY).

Wegen der Formel Var(X) = E(X?) — (E(X))? konnen auch Aussagen iiber die Varianz
von Kombinationen von Zufallsgrossen gemacht werden. Im folgenden Satz sind nun alle
Regeln zu Erwartungswert und Varianz zusammengestellt.

Satz 4.4 Seien X,Y Zufallsgrissen und a,b, c reelle Zahlen. Dann gilt:
(1) E(aX +bY +¢) =aE(X)+bE(Y) +c
(2) Var(aX +c) = a®*Var(X)
Falls X und Y stochastisch unabhdingig sind, gilt weiter:
(3) BE(X-Y)=E(X)-E(Y)
(4) Var(X+Y) =Var(X) 4+ Var(Y)

4.4 Schitzen von Erwartungswert und Varianz

Ein quantitatives Merkmal X einer Grundgesamtheit kann als Zufallsvariable aufgefasst wer-
den. Interessiert man sich fiir den Erwartungswert und die Varianz von X, dann kénnen diese
beiden Grossen nur dann berechnet werden, wenn die Anzahl Elemente N der Grundgesamt-
heit nicht zu gross ist. Andernfalls, wenn N sehr gross oder unendlich ist, muss man sich mit
einer Schitzung von Erwartungswert und Varianz begniigen. Wie dies zu verstehen ist, wird
hier anhand eines Beispiels gezeigt.

Betrachten wir als Grundgesamtheit zum Beispiel die Menge aller Studierenden der Vor-
lesung Mathematik II fiir Naturwissenschaften. Das Merkmal, fiir das wir uns interessieren,
sei das Alter. Es geht hier also um die Zufallsgrosse X = ( Alter eines zufillig ausgewéhlten
Studierenden der Grundgesamtheit). Interessieren wir uns fiir das durchschnittliche Alter der
Studierenden, dann entspricht dies dem Erwartungswert

1
p=B(X) = (o1 o+ aw).

wobei x; das Alter des i-ten Studierenden ist.

Das Uberpriifen des Alters von jedem Studierenden ist nun allerdings zu aufwendig.
Deshalb entnehmen wir eine zufillige Stichprobe vom Umfang n (n klein gegeniiber der
Anzahl N der Studierenden) und versuchen damit, das unbekannte Durchschnittsalter der
Grundgesamtheit zu schitzen. Eine solche Zufallsstichprobe vom Umfang n ist eine Folge
von unabhéingigen, identisch verteilten Zufallsgrossen (X1, Xo, ..., X,,), wobei X; die Merk-
malsausprigung (hier also die vorkommenden Alter) des i-ten Elementes in der Stichprobe
bezeichnet. Identisch verteilt bedeutet insbesondere, dass die Erwartungswerte und die Vari-
anzen der X; iibereinstimmen, das heisst, E(X;) = p und Var(X;) = o2 fiir alle . Wird eine
Stichprobe gezogen, so nehmen X, ..., X, die konkreten Werte x1,...,x, an.

Als Schitzfunktion fu fiir das unbekannte Durchschnittsalter p wahlen wir das arithmeti-
sche Mittel X der Stichprobe,

p=X==—(X1+ -+ X,).

1
n
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Erhalten wir beispielsweise die konkrete Stichprobe (20, 22,19, 20,24), dann ist das arith-
metische Mittel davon T = 21. Dieser Wert héngt jedoch von der gewéhlten Stichprobe ab.
Daher diirfen wir nicht davon ausgehen, dass er die gesuchte Zahl p genau trifft. Wir erwar-
ten jedoch von einer guten Schéitzfunktion, dass die Schétzwerte wenigstens im Mittel richtig
sind. Und tatséchlich gilt (mit Satz 4.4)

Fiir die Varianz erhalten wir

Mit wachsender Stichprobengrosse n wird die Streuung also immer kleiner.
Fiir die Varianz 02 = Var(X) der Grundgesamtheit wihlen wir als Schiitzfunktion die
empirische Varianz s? der Stichprobe,

n

1 1 &
52 2 ZX‘ )2 sz_ -2
7= n—1 (Xi = 1) n_1<@'—1 ' nu).

i=1

Auch hier erwarten wir, dass wenigstens der Erwartungswert von 62 mit der Varianz o?

iibereinstimmt. Wir rechnen dies nach. Wegen Satz 4.1 gilt

E(X?) = Var(X,) + (B(X)? = 0> + 12

N N . o
E(j*) = Var(i)+ (B(p)* = — +pu*.
Damit folgt
B = : Zn:E(X'Q)_nE(ﬂQ) _— Zn:(02+u2)—n<a—2+,u2)
n—1 P ’ n—1 g n
_ 1 2 2 _ 2 2
= —qmo+nut—o nu®)
2

= 0 .

Genau aus diesem Grund haben wir in Kapitel 1 in der Definition der empirischen Varianz
durch n — 1 dividiert und nicht durch die naheliegendere Zahl n!
Wiirden wir die empirische Varianz mit dem Faktor % definieren, nédmlich als

- 1 . n—1
32:—Z(Xi—u)2: 5%,

; n
=1

dann wiirden wir damit die Varianz o2 systematisch unterschitzen, denn

0.2

E(s®>) =02 - —.
n (S) g n

n—1

E(5%) =
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5 Binomial- und Poissonverteilung

In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen (d.h. Verteilungen von
diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung.

5.1 Die Binomialverteilung

Fiir die Binomialverteilung brauchen wir die Binomialkoeffizienten, die aus der Schule bekannt
sein sollten. Wir frischen hier das Wichtigste dariiber kurz auf.

Binomialkoeffizienten

Sein>0in Z.

Satz 5.1 FEs gibt n! verschiedene Mdglichkeiten, n Elemente anzuordnen.

Jede Anordnung heisst Permutation der n Elemente. Es gibt also n! Permutationen von n
Elementen. Dabei gilt

nl=n-(n—-1)-----2-1 firn>1 und O0'=1.

Satz 5.2 FEs gibt
n!
(n—k)!

Moéglichkeiten, aus n Elementen k auszuwdhlen und diese anzuordnen.

n-m—=1)- - -(n—k+1)=

Beispiel
Wie gross ist die Wahrscheinlichkeit, dass unter 23 Personen (mindestens) zwei am gleichen
Tag Geburtstag haben? Diese Frage ist als Geburtstagsparadozon bekannt.

Wieviele verschiedene Moglichkeiten gibt es, aus n Elementen k auszuwéhlen? Wir wihlen
also wieder aus n Elementen k aus, aber die Anordnung dieser k ausgewiahlten Elemente spielt
keine Rolle. Offensichtlich gibt es nun weniger Moglichkeiten. Wir miissen durch die Anzahl
der Anordnungsmoglichkeiten, ndmlich k!, dividieren.

Satz 5.3 FEs gibt

n-(n—-1)----(n—k+1) n! (n
ko(k—1) - -1 _k!(n—k)!_<k>

Méglichkeiten, aus n Elementen k auszuwdhlen.
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Der Ausdruck
n\ n! B n
k) KEn—-k)! \n-k
heisst Binomialkoeffizient.

Wenn Sie auf Ihrem Taschenrechner keine Taste zur Berechnung von Binomialkoeffizienten
haben, sollten Sie den linken Ausdruck von Satz 5.3 zur Berechnung benutzen.

Beispiele

Bernoulli-Experimente

Definition FEin Zufallsexperiment mit genau zwei moglichen Ausgingen heisst Bernoulli-
FExperiment.

Die beiden Ausgéinge konnen oft als “Erfolg” (E) und “Misserfolg” (M) interpretiert werden.
Beispiel

Beim Wurf eines Wiirfels wollen wir nur wissen, ob die Augenzahl 2 geworfen wird oder nicht.
Es gilt also P(Erfolg) = £.

Definition Eine Bernoulli-Kette ist eine Folge von gleichen Bernoulli-Experimenten. Wird
ein Bernoulli-Experiment n-mal hintereinander ausgefiihrt, so spricht man von einer Bernoulli-
Kette der Linge n.

Beispiel
Wir werfen einen Wiirfel viermal hintereinander. “Erfolg” sei wieder der Wurf der Augen-
zahl 2. Bei jedem einzelnen Wurf gilt also P(Erfolg) = %. Bei vier Wiirfen kénnen zwischen
0 und 4 Erfolge eintreten. Wie gross sind die Wahrscheinlichkeiten dafiir?

Schauen wir uns die Wahrscheinlichkeit fiir genau 2 Erfolge genauer an.
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Analog finden wir fiir genau k Erfolge die Wahrscheinlichkeiten

Py(k) = P(k-mal Erfolg) — (2) <é>k (g)H .

Binomialverteilung

Definiert man im vorhergehenden Beispiel die Zufallsgrosse
X = (Anzahl der Erfolge) ,

so nimmt X die Werte xx = k = 0,1,2,3 oder 4 an und fiir die zugehorigen Wahrscheinlich-
keiten gilt

pr=P(X =k) = Py(k).
Diese Wahrscheinlichkeitsverteilung ist ein Beispiel einer Binomialverteilung. Graphisch sieht
sie so aus:

0.4

0.2

Definition Gegeben sei eine Bernoulli-Kette der Lange n, wobei Erfolg im einzelnen Expe-
riment mit der Wahrscheinlichkeit p eintritt. Sei X die Anzahl Erfolge in den n Experimenten.
Dann ist die Wahrscheinlichkeit von k Erfolgen gleich

P =) = k) = () -

Man nennt die Zufallsgrosse X binomialverteilt und ihre Wahrscheinlichkeitsverteilung Bi-
nomialverteilung mit den Parametern n, p.

Weiter ist die Wahrscheinlichkeit, in n gleichen Bernoulli-Experimenten hdchstens £ Er-
folge zu haben, gleich

)4
Pu(k < 0) = Po(0) + Po(1) 4+ + Pu(6) = > Pu(k) .
k=0

Fiir die Berechnung der Wahrscheinlichkeiten P, (k) und P, (k < ¢) kénnen die Tabellen
in den Formelsammlungen oder die Tabellen von Hans Walser benutzt werden.
Wegen P, (0) + P,(1) 4+ -+ -+ P,(n) = 1 (eine bestimmte Anzahl von Erfolgen tritt ja mit
Sicherheit ein), gilt
P(k>0)=1-Pk<t(-1).

In den Tabellen sind die Binomialverteilungen nur fiir Wahrscheinlichkeiten p < 0,5
aufgefiihrt. Ist die Wahrscheinlichkeit eines Erfolgs gleich p > 0,5, so muss mit der Wahr-
scheinlichkeit des Misserfolgs ¢ = 1 — p < 0,5 gerechnet werden.
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Beispiele

1. Ein Wiirfel wird 10-mal geworfen. Erfolg sei das Werfen der Augenzahl 2.

e P(2-mal Erfolg) =

e P(hochstens 2-mal Erfolg) =

e P(mindestens 3-mal Erfolg) =

e PA<k<8) =

e P(7-mal Misserfolg) =

2. Eine Miinze wird 15-mal geworfen, also ist n =15 und p=1—p = %
e P(9-mal Kopf) =

Wegen p = 1 — p ist bei diesem Beispiel die Binomialverteilung symmetrisch um die Werte
k=7und 8:

0.2 1 - —

0.15 ] ]

0.1

0.05 4

AN 111 Py
—1 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
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Erwartungswert und Varianz

Mit welcher Anzahl von Erfolgen kénnen wir durchschnittlich in unserer Bernoulli-Kette
rechnen? Wie gross ist die Varianz?

Um diese Fragen zu beantworten, schreiben wir die (binomialverteilte) Zufallsgrosse X
als Summe X = X; + --- + X, von unabhéngigen (und identisch verteilten) Zufallsgrossen
X;, wobei X; gleich 1 ist, falls der Erfolg im i-ten Experiment eingetreten ist, und 0 sonst.
Fiir den Erwartungswert und die Varianz von X; gilt damit

E(X;) = p-1+(1-p)-0=p
Var(X;) = BE(X?) —(B(X:)? =p—p* = p(1-p).

Mit Satz 4.4 folgt

E(X) = EXi+-+X,) = E(Xq)+--+EX,) =np
Var(X) = Var(Xi+---4+X,) = Var(Xy)+ -+ Var(X,) = np(1 —p).

Satz 5.4 Fir eine binomialverteilte Zufallsgrosse X gilt

EX) = np
Var(X) = np(l—p).

Beispiele

1. Im ersten Beispiel von vorher (10-maliger Wurf eines Wiirfels) erhalten wir

Durchschnittlich kénnen wir also mit 1,67 Erfolgen bei 10 Wiirfen rechnen.

2. Im zweiten Beispiel von vorher (15-maliger Wurf einer Miinze) erhalten wir
EX) = 15--=17,5

1
-5:3,75 = o=+/Var(X)~1,94.

In diesem Beispiel ist die Binomialverteilung also symmetrisch um den Erwartungswert.

N =N =

Var(X) = 15-

5.2 Die Poissonverteilung

In den Jahren 2014 — 2017 gab es im Kanton Basel-Stadt durchschnittlich 10 Verkehrsunfélle
pro Jahr wegen Bedienung des Telefons wihrend der Fahrt. Mit welcher Wahrscheinlichkeit
wird es im Jahr 2020 genau 6 Verkehrsunfille mit derselben Ursache geben?

Pro Monat erhilt eine Person durchschnittlich 10 Werbeanrufe. Mit welcher Wahrschein-
lichkeit erhélt diese Person im néichsten Monat 6 Werbeanrufe?
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Die gesuchte Wahrscheinlichkeit ist fiir beide Fragen dieselbe. In beiden Situationen ken-
nen wir die durchschnittliche Anzahl von “Erfolgen” pro Zeiteinheit. Wir haben jedoch keine
Kenntnis iiber die Anzahl der Experimente (Anzahl Autofahrten, bzw. Anzahl Telefonanrufe).
Wir kénnen aber davon ausgehen, dass n gross ist. Wir kennen auch die Wahrscheinlichkeit p
des Erfolgs im einzelnen Experiment nicht. Doch wir nehmen an, dass p klein ist. Man nennt
solche Situationen “seltene Ereignisse”.

Die bekannte durchschnittliche Anzahl von Erfolgen bezeichnet man mit A. Die Wahr-
scheinlichkeit P(k), dass in einer bestimmten Zeiteinheit (oder Léngeneinheit, Fldcheneinheit,
usw.) genau k Erfolge eintreten, ist gegeben durch

PUIEN

P(k) = ¢

Fiir die beiden Beispiele finden wir also die Wahrscheinlichkeit

Definition FEine Zufallsgrosse X, die jeden der Werte £ = 0,1,2,... mit den Wahrschein-

lichkeiten X

A
P(X =k)=P(k) = ge*A
annehmen kann, heisst poissonverteilt mit dem Parameter A. Die zugehorige Verteilung heisst
Poissonverteilung.

Fiir die beiden Beispiele sieht die Verteilung so aus:

il l1s....

- 0 1 4 5 6 7 8 9 10 1" 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Nicht tiberraschend ist hier P(k) am grossten fiir kK = A = 10, die durchschnittliche An-
zahl von Erfolgen (es gilt P(10) = 0,12511). Wir werden unten gleich nachweisen, dass A der
Erwartungswert ist.

Es fillt weiter auf, dass P(9) genau so gross wie P(10) ist. Allgemein gilt P(A—1) = P(\),
falls A eine ganze Zahl ist, denn
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Erwartungswert und Varianz
Fiir den Erwartungswert berechnen wir
p=B(X) =3 P k=Y e k=e? Y
k=0 k=0 k=0

Da der erste Summand (k = 0) null ist, folgt

o= 67)\ 3 —k)\k = 67>\ N 7>\k = )\ €7>\ 3 7)\19_1
DT Z(k—l)! Z(k—l)!'
k=1 k=1 k=1

Die letzte Summe ist nichts anderes als 1 + X + /\2—? + &
p=Xxe red=\.
Die Varianz kann dhnlich berechnet werden.

Satz 5.5 Fiir ecine poissonverteilte Zufallsgrosse X gilt

EX) = X
Var(X) = X.

Niherung fiir die Binomialverteilung

Ist bei einer Binomialverteilung die Anzahl n der Bernoulli-Experimente gross und gleich-
zeitig die Wahrscheinlichkeit p des Erfolgs im Einzelexperiment sehr klein, dann kann die
Poissonverteilung mit dem Parameter A\ = np als Ndherung fiir die Binomialverteilung be-
nutzt werden. Tatséchlich ist diese Ndherung normalerweise bereits fiir n > 10 und p < 0,05
ausreichend genau.

Beispiel
Eine Maschine stellt Artikel her. Aus Erfahrung weiss man, dass darunter 4 % defekte Artikel

sind. Die Artikel werden in Kisten zu je 100 Stiick verpackt. Wie gross ist die Wahrschein-
lichkeit, dass in einer zufillig ausgewéhlten Kiste genau 5 defekte Artikel sind?

1. Exakte Berechnung mit der Binomialverteilung:

2. Ndherung mit der Poissonverteilung:
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6 Die Normalverteilung

Im letzten Kapitel haben wir die Binomial- und die Poissonverteilung untersucht. Dies sind
Wahrscheinlichkeitsverteilungen von diskreten Zufallsgrossen. Nehmen wir nun an, die Zu-
fallsgrosse X ordne jeder Tablette einer Packung Aspirin ihr Gewicht zu. Dann kann X kon-
tinuierlich Werte annehmen, zum Beispiel jeden reellen Wert zwischen 20 mg und 30 mg. Eine
solche Zufallsgrosse heisst stetig. Die wichtigste Wahrscheinlichkeitsverteilung einer stetigen
Zufallsgrosse ist die Normalverteilung.

Weiter kénnen wir die Normalverteilung als Naherung fiir die Binomialverteilung benutzen
(wenn n gross genug ist). Werfen wir zum Beispiel eine Miinze 50-mal und Erfolg sei der Wurf
von Zahl. Dann ist die Zufallsgrosse X = (Anzahl Erfolge) binomialverteilt mit n = 50 und

p=1—p= % Die Binomialverteilung (blau) sieht so aus:

40 45 50

Eingezeichnet in rot ist der Graph der Funktion

fla) = ——e 35

oV 2T

wobei = np und 0 = /npqg mit ¢ = 1—p. Der Graph von f heisst (Gaufische) Glockenkurve.
Sind die Wahrscheinlichkeiten P(X < k) einer (stetigen) Zufallsgrosse X gegeben durch

k
P(ng)z/_ f(z)dx,

dann nennt man X normalverteilt.
Wie gross ist nun die Wahrscheinlichkeit, mit 50 Wiirfen zwischen 26 und 30 Erfolge zu
erzielen? Die Binomialverteilung liefert

30 30 -
P5o(26 < k < 30) = Z Pso(k) = Z <5£> (%)k(%)m k |
k=26 k=26

doch die Wahrscheinlichkeiten Psq(k) sind in der Tabelle nicht zu finden. Eine exakte Be-
rechnung wire mit einem CAS moglich, aber tatséchlich reicht eine Niherung mit Hilfe der
Funktion f von oben. Die folgende Abbildung zeigt den passenden Ausschnitt aus dem Bal-
kendiagramm.
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40 45 50

Die blauen Rechtecke haben die Breite 1 und die Hohe Pso(k). Die gesuchte Wahrscheinlichkeit
ist also gleich dem Flédcheninhalt der fiinf blauen Rechtecke. Diesen Flécheninhalt kénnen wir
nun mit Hilfe des Integrals {iber f(x) approximieren.

Allerdings haben wir nun ein neues Problem, denn die Funktion f ist nicht elementar in-
tegrierbar (d.h. ihre Stammfunktion ist nicht aus elementaren Funktionen zusammengesetzt).
Wir kénnten ein CAS zu Hilfe nehmen, welches Integrale {iber f ndherungsweise berechnet.
Praktischer (und in den meisten Féllen auch ausreichend genau) ist jedoch die Verwendung
von Tabellen. Wie das funktioniert, untersuchen wir im néchsten Abschnitt. Danach wer-
den wir bereit sein, Wahrscheinlichkeiten von Binomialverteilungen zu approximieren und
Wahrscheinlichkeiten von Normalverteilungen zu berechnen.

6.1 Eigenschaften der Glockenkurve

Wie im Beispiel oben ersichtlich, hat die Glockenkurve ein globales Maximum und zwei
Wendepunkte.

Satz 6.1 Die Funktion f(x) hat eine (lokale und globale) Maximalstelle in x = p und zwei
Wendestellen in x = p+ o.

Im speziellen Fall 1 =0 und ¢ =1 wird f(z) zur Funktion

—_
M

deren Graphen man Standardglockenkurve nennt. Die Funktion ¢(z) hat die folgenden Ei-
genschaften:

e In (0, V%?) hat ¢(z) ein Maximum.
e In z = +1 hat p(z) zwei Wendestellen.
e Die Standardglockenkurve ist symmetrisch zur y-Achse, denn ¢(—x) = p(z).

e Esgilt lim ¢(z)=0.

r—+oo
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041
e(x) 7 s

02

In der Tabelle (Seite 11 der Tabellen von H. Walser oder in jeder Formelsammlung) sind
die Werte der Stammfunktion

u
1.2

1 u
(I)u: CCd.’E:— eiﬁmd,l?
W = [ elayas = = |
zu finden. Graphisch gesehen gilt:

®(u) = Flacheninhalt links von u zwischen x-Achse und Graph von ¢

Beispiel

044
o(u) 7 os
0.2

AN
01 AN

Die Werte aller Integrale iiber der Funktion ¢(z) geniigen, da wir jedes Integral iiber f(z)
(durch Substitution) in ein Integral iiber ¢(z) umformen koénnen.

Satz 6.2 FEs gilt

b—p

—

olz)de = @(b;“>—q><“;’“‘> .

Beweis durch Substitution:

(oA
—K
o
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FEine weitere wichtige Eigenschaft der Standardglockenkurve ist, dass der Flicheninhalt

der gesamten Fldche unter der Kurve gleich 1 ist.

Satz 6.3
o0

/cp(w)dx =1.

—00

Es folgen sofort zwei weitere Eigenschaften:

p(u) oot

0.3
0.2

0.1

Wegen Satz 6.2 ist der Flicheninhalt nicht nur unter der Standardglockenkurve sondern
unter jeder beliebigen Glockenkurve gleich 1,

e’} —+00
1 _1l(z=p)?
_/f(x)dx:am_/e s(5H) de = 1.

Abhéngig von der Grosse von o ist die Glockenkurve hoch und schmal oder tief und breit.
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6.2 Approximation der Binomialverteilung

Im Beispiel auf den Seiten 54-55 haben wir gesehen, dass die Wahrscheinlichkeiten Pso(k) der
dort betrachteten Binomialverteilung durch die Werte der Funktion f approximiert werden
konnen. Allgemein gilt der folgende Satz.

Satz 6.4 (Lokaler Grenzwertsatz von de Moivre und Laplace)
Die Wahrscheinlichkeit P, (k) einer Binomialverteilung (mit der Erfolgswahrscheinlichkeit p
im Einzelexperiment) kann approximiert werden durch

wobei pp =np und o = /npg mit g=1—1p

Diese Niherung ist (in den meisten Fillen) ausreichend genau, falls 02 = npg > 9.

In demselben Beispiel haben wir gesehen, dass die Wahrscheinlichkeit P5p(26 < k& < 30)
durch ein Integral iiber f approximiert werden kann. Schauen wir die blauen Rechtecke auf
Seite 55 genau an, dann sehen wir, dass wir als Integrationsgrenzen nicht 26 und 30 wihlen
miissen, sondern 25,5 und 30,5. Die Breite des ersten blauen Rechtecks liegt auf der xz-Achse
zwischen 25,5 und 26,5. Addieren wir zu 25,5 die fiinf Rechtecksbreiten (je der Lénge 1), dann
endet die Breite des letzten blauen Rechtecks bei 25,5+ 5 = 30,5 (iibereinstimmend mit der
Zeichnung). Wir erhalten damit die Ndherung

30,5

25,5

Mit Hilfe von Satz 6.2 kénnen wir nun das Integral auf der rechten Seite problemlos berechnen.
Satz 6.5 Mit denselben Bezeichnungen wie in Satz 6.4 gilt die Niherung

b+2

1
Pola<k<b) ~ /f (bJri_M)_‘I)(y)

Beispiel
Wie gross ist die Wahrscheinlichkeit Psp(26 < k < 30) vom Beispiel vorher?
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Die Néherung von Satz 6.5 ist auch dann gut, wenn die Binomialverteilung nicht symme-
trisch um den Erwartungswert ist.

Beispiel

Sei n = 50 und p = 0,2. Dann ist 4 = 10 und o = 2v/2 ~ 2, 83. Mit Hilfe von Geogebra erhilt
man Ps5o(7 < k < 11) = 0,6073. Die Nidherung von Satz 6.5 liefert Pso(7 < k < 11) =~ 0, 5945.

6.3 Normalverteilte Zufallsgrossen

Zu Beginn dieses Kapitels haben wir ein Beispiel einer sogenannten stetigen Zufallsgrosse
gesehen. Im Gegensatz zu einer diskreten Zufallsgrosse nimmt eine stetige Zufallsgrosse (nicht
abzihlbar) unendlich viele reelle Werte an, das heisst, die Werte eines ganzen Intervalles.

Genauer heisst eine Zufallsgrosse X stetig, wenn es eine integrierbare Funktion 6(z) gibt,
so dass fiir die Wahrscheinlichkeit P(X < x) gilt

P(X <z)= / S(t)dt .

Die Wahrscheinlichkeit P(X < z) entspricht also dem Flécheninhalt der Fliche unterhalb
des Graphen von ¢ zwischen —oo und z. Die Funktion d(x) heisst Dichtefunktion von X und
erfiillt die Eigenschaften

/ O(z)dx =1 und 0(z) >0 firallexeR.

Aufgrund der Beschreibung der Wahrscheinlichkeit P(X < x) als Flicheninhalt gilt fiir
eine stetige Zufallsgrosse X, dass

P(X<z)=P(X <z) und P(X >z)=P(X >x).

Insbesondere folgt
P(X=2x)=0,

denn P(X =2)=P(X <z)— P(X <x).
Die Funktion é(z) = f(z) von den Abschnitten vorher ist die wichtigste Dichtefunktion.
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Definition FEine Zufallsgrosse X heisst normalverteilt mit den Parametern g und o, wenn
sie die Dichtefunktion . ,
f(x) = 67%(%)

oV

besitzt. Die zugehorige Wahrscheinlichkeitsverteilung heisst Normalverteilung oder auch Gaufs-
Verteilung. Die Parameter p und o sind der Erwartungswert, bzw. die Standardabweichung
der Verteilung.

Wir haben in Abschnitt 6.1 gesehen, dass der Spezialfall p = 0 und o = 1 eine wichtige
Rolle spielt.

Definition Eine Zufallsgrosse Z heisst standardnormalverteilt, wenn sie normalverteilt ist
mit den Parametern y = 0 und o = 1. Ihre Dichtefunktion ist damit

und
P(Z<z)=®(z).

Mit Hilfe von Satz 6.2 kénnen auch die Wahrscheinlichkeiten einer beliebigen normalver-
teilten Zufallsgrosse (d.h. mit beliebigen Parametern p und o) berechnet werden.

Satz 6.6 Sei X eine normalverteilte Zufallsgrosse mit den Parametern p und o. Dann gilt

P(X <z) = @(”“’“‘) .

g

Pla< X <b) = q><b_">—q><“_“> .

o g

Damit folgt

Man kann eine Zufallsgrosse X wie in Satz 6.6 auch direkt standardisieren; standardnor-
malverteilt ist die Zufallsgrosse

Beispiele

1. Gegeben sind normalverteilte Messwerte (d.h. die Zufallsgrosse X = (Messwert) ist nor-
malverteilt) mit dem Erwartungswert ;1 = 4 und der Standardabweichung o = 2. Wie gross
ist die Wahrscheinlichkeit, dass ein Messwert (a) hochstens 6 ist (b) mindestens 2 ist und (c)
zwischen 3,8 und 7 liegt?

(a)
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PB,8<X<T) = @(%) - @(3’82_ 4) = ®(1,5) — B(~0,1)
= ®(1,5) — (1—®(0,1)) = 0,473

2. Das Gewicht von gewissen automatisch gepressten Tabletten ist erfahrungsgeméss normal-
verteilt mit g = 25mg und o = 0,7 mg.

(a) Mit welcher Wahrscheinlichkeit ist das Gewicht einer einzelnen Tablette zwischen 23,8 mg
und 26,2mg ?

(b) Mit welcher Wahrscheinlichkeit ist das Gewicht von allen 30 Tabletten einer Packung
zwischen 23,8 mg und 26,2 mg ?
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3. Schokoladentafeln werden abgefiillt. Das Abfiillgewicht ist erfahrungsgemaiss normalverteilt
mit g = 100 Gramm und ¢ = 5 Gramm. Man bestimme den Toleranzbereich p & co so, dass
90 % aller Abfiillgewichte in diesen Bereich fallen.

Zwischen 91,8 und 108,2 Gramm liegen also 90 % aller Abfiillgewichte.

Wahrscheinlichkeiten unabhéingig von den Werten von p und o

Im vorhergehenden Beispiel haben wir festgestellt, dass ¢ = 1,645 unabhéngig von p und o
ist. Man kann nun analog fiir beliebige © und o zu einer vorgegebenen Wahrscheinlichkeit
den zugehdrigen, um p symmetrischen Bereich angeben:

Wahrscheinlichkeit in % 50 % 90 % 95 % 99 %
Bereich wE0,670 | p£1,6450 | p£1,960 | p£2,5760

Diese Tabelle liest sich so: Der um g symmetrische Bereich, in den eine normalverteilte Zu-
fallsgrosse mit Erwartungswert p und Varianz o? beispielsweise mit einer Wahrscheinlichkeit
von 95 % fallt, ist p £+ 1,96 0.

Wir kénnen auch umgekehrt fragen: Mit welcher Wahrscheinlichkeit liegt eine normalver-
teilte Zufallsgrosse beispielsweise im Bereich p £ o ?
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Analog finden wir die folgenden Werte.

Bereich uto | pxt20 | pt3c | ptdo
Wahrscheinlichkeit in % | 68,26 % | 95,45% | 99,73 % | ~ 100 %

Diese Tabelle liest sich nun so: Die Wahrscheinlichkeit, dass eine normalverteilte Zufallsgrosse
mit Erwartungswert ;¢ und Varianz o2 beispielsweise im Bereich p+20 liegt, betrigt 95,45 %.

6.4 Der zentrale Grenzwertsatz

Sind X und Y zwei unabhéngige und normalverteilte Zufallsgrossen, dann ist auch die Summe
X + Y eine normalverteilte Zufallsgrosse. Der zentrale Grenzwertsatz verallgemeinert diese
Aussage.

Satz 6.7 (Zentraler Grenzwertsatz) Seien Xi,...,X, unabhdngige und identisch ver-
teilte Zufallsgrossen (sie brauchen nicht normalverteilt zu sein). Ihr Erwartungswert sei je-
weils p und die Varianz 0. Dann hat die Summe S, = X1 + --- + X,, den Erwartungswert
np und die Varianz no?.

Fiir die zugehdrige standardisierte Zufallsgrisse

gilt
lim P(Z, <z)=®(x).

n—oo

In Worten bedeutet dies (grob): Ist ein Merkmal (d.h. Zufallsgrésse) eine Summe von
vielen (kleinen) zufélligen, unabhéngigen Einfliissen, so kénnen die Wahrscheinlichkeiten die-
ses Merkmals ndherungsweise durch eine Normalverteilung beschrieben werden. Ein solches
Merkmal ist zum Beispiel der Messfehler bei einer Messung, die Fiillmenge von automatisch
abgefiillten Flaschen oder der Intelligenzquotient eines Menschen. Es gibt zahlreiche weitere
Beispiele. Die Normalverteilung ist deshalb eine dusserst wichtige Verteilung der Statistik.

Der zentrale Grenzwertsatz erklért schliesslich auch die gute Nidherung der Normalvertei-
lung an eine Binomialverteilung fiir grosse n (Satz 6.4).

Beispiel

Wir werfen eine Miinze n-mal. Wir definieren die Zufallsgrossen X; durch X; = 1, falls beim
i-ten Wurf Zahl eintritt und X; = 0 sonst (d.h. bei Kopf). Die X; sind damit unabhéngig
und identisch verteilt mit p = E(X;) = 1 und 02 = Var(X;) = 1. Dann ist

die Anzahl Zahl bei n Wiirfen und entspricht fiir n = 50 genau der Zufallsgrosse X des
Beispiels auf Seite 54. Wir haben dort schon bemerkt, dass die Verteilung von X = S5q durch

eine Normalverteilung angendhert werden kann. Geméss zentralem Grenzwertsatz kénnen die
Wahrscheinlichkeiten P(Z,, < z) der zugehorigen standardisierten Zufallsgrosse

Sp—np  Sp— B
vno g

fiir sehr grosse n naherungsweise durch ®(x) berechnet werden.

Ly =
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7 Statistische Testverfahren

In diesem Kapitel geht es darum, eine Annahme (Hypothese) iiber eine Grundgesamtheit
aufgrund einer Stichprobe entweder beizubehalten oder zu verwerfen.

7.1 Testen von Hypothesen

Wie kann man beispielsweise testen, ob ein neues Medikament wirklich wirkt oder ob die
kranken Personen nicht einfach von selbst wieder gesund werden? Oder eine Lady behauptet,
sie konne am Geschmack des Tees erkennen, ob zuerst die Milch oder zuerst der Tee in die
Tasse gegossen wurde. Kann sie das wirklich oder blufft (bzw. rét) sie nur?

Beispiel eines einseitigen Tests

Betrachten wir das Beispiel mit dem Medikament genauer. Wir gehen von einer Krankheit
aus, bei welcher 70 % der kranken Personen ohne Medikament von selbst wieder gesund
werden. Ein neues Medikament gegen diese Krankheit wurde hergestellt und wird nun an
n = 10 Personen getestet.

Wir gehen von einer sogenannten Nullhypothese Hy aus.

Nullhypothese Hy: Das Medikament niitzt nichts.

Wir nehmen weiter an, dass das Medikament nicht schadet, also im besten Fall niitzt oder
sonst keine Wirkung hat. Dies bedeutet, dass der Test einseitig ist.

Die 10 Testpersonen sind also krank und nehmen das Medikament ein. Wieviele dieser
Testpersonen miissen gesund werden, damit wir mit gewisser Sicherheit sagen konnen, dass
das Medikament wirklich niitzt und wir Hy verwerfen kénnen?

Vor der Durchfithrung des Experiments wéhlen wir eine kritische Zahl m von Genesenden
und studieren das Ereignis A = (m oder mehr Testpersonen werden von selbst gesund). Wie
gross ist die Wahrscheinlichkeit P(A)? Hier haben wir eine Binomialverteilung mit n = 10
und p = P(eine Testperson wird von selbst gesund) =0, 7.

Fiir m = 9 zum Beispiel erhalten wir P(A) = Pjo(k > 9) = 0,1493, was etwa 14,9%
entspricht. Wenn also 9 oder 10 Testpersonen gesund werden und wir deshalb die Nullhypo-
these Hy verwerfen, ist die Irrtumswahrscheinlichkeit (also die Wahrscheinlichkeit, dass wir
falschlicherweise die Nullhypothese verwerfen) gleich 14,9 %. Das ist zuviel.

Wir erh6hen also die kritische Zahl auf m = 10. Damit betrégt die Irrtumswahrschein-
lichkeit nur noch P(A) = P1(10) = 0,7 = 0,0285 = 2,85 %.

Nun erhthen wir die Anzahl der Testpersonen auf n = 20. Die Wahrscheinlichkeit des
Ereignisses A ist nun gegeben durch

20
2
P(A) = Py(k=m)=>" <1€0> 0,7%0,3%0°"

k=m

Fiir m = 18 zum Beispiel erhalten wir P(A4) = 0,0355 = 3,55 %. Wir kénnen die Nullhypo-
these Hy also mit einer Irrtumswahrscheinlichkeit von etwa 3,6% verwerfen.
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Fehlerarten

Bei einem Testverfahren kann man sich auf zwei verschiedene Arten irren.

Fehler erster Art. Die Nullhypothese H ist richtig, das heisst, das Medikament ist tatsédchlich
wirkungslos. Doch wegen eines zufillig guten Ergebnisses verwerfen wir die Nullhypothese.
Dies wird als Fehler erster Art bezeichnet.

Im Beispiel vorher mit n = 20 Testpersonen und m = 18 tritt ein Fehler erster Art mit
einer Wahrscheinlichkeit von a = 3,6 % auf.

Fehler zweiter Art. Die Nullhypothese Hj ist falsch, das heisst, das Medikament wirkt.
Doch wegen eines zufillig schlechten Ergebnisses behalten wir die Nullhypothese bei. Die
Wahrscheinlichkeit eines Fehlers zweiter Art bezeichnet man mit 5.

Es gibt also vier Moglichkeiten, wie die Realitdt und die Testentscheidung zusammentref-
fen konnen:

Realitit

H) ist richtig Hj ist falsch

Hy Fehler 2. Art,
beibehalten ok [B-Fehler
Testent-
scheidung
Hy Fehler 1. Art,
verwerfen a-Fehler ok

Die Wahrscheinlichkeit fiir einen Fehler erster Art wird zu Beginn des Tests durch Vorgabe
von « nach oben beschriankt. In den Naturwissenschaften iiblich ist eine Toleranz von bis
zu o = 5%. Man spricht vom Signifikanzniveau «. Dieser Fehler ist also kontrollierbar.
Gleichzeitig sollte jedoch die Wahrscheinlichkeit eines Fehlers zweiter Art nicht zu gross sein.
Dieser Fehler kann allerdings nicht vorgegeben werden.

Beim Testen wihlt man also den Fehler mit dem grosseren Risiko zum Fehler erster Art.
Man wéhlt dementsprechend die Nullhypothese Hy so, dass das irrtiimliche Festhalten an
Hy nicht so schlimm ist, bzw. weniger schlimm als das irrtiimliche Verwerfen von Hgy und
Annehmen der Alternativhypothese Hy ist.

Beim Testen eines neuen Medikaments ist es also besser, dieses als unwirksam anzunehmen
(obwohl es wirkt) und weiterhin das bisher {ibliche Medikament zu verwenden, anstatt das
neue Medikament gegen die Krankheit einzusetzen, obwohl es nichts niitzt.

Beispiel eines zweiseitigen Tests

Wir wollen testen, ob eine Miinze gefilscht ist. Wir gehen von der Nullhypothese Hy aus,
dass dem nicht so ist.

Hy: p(Kopf) =1
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Die Alternativhypothese Hj ist in diesem Fall, dass p(Kopf) #
Hi: p(Kopf) > £ oder p(Kopf) <

NI= o~

Wir miissen daher zweiseitig testen.

Wir werfen die Miinze zum Beispiel n = 10 Mal. Als Verwerfungsbereich der Anzahl Kopfe
fiir Hy wihlen wir die Menge {0, 1,2} U {8,9,10} = {0, 1,2,8,9,10}. Ist also die Anzahl der
Kopfe bei 10 Wiirfen sehr klein (ndmlich 0, 1 oder 2) oder sehr gross (nédmlich 8, 9 oder 10),
dann verwerfen wir die Nullhypothese H.

Wie gross ist damit der Fehler erster Art?

Wir erhalten also o = 10,9 %. Dieser Fehler ist zu gross.
Wir werfen nochmals n = 20 Mal. Als Verwerfungsbereich fiir Hy wihlen wir nun die
Menge {0,1,2,3,4,16,17,18,19,20}. Fiir den Fehler erster Art erhalten wir nun

Das heisst, a = 1,2 %. Tritt also bei den 20 Wiirfen eine Anzahl Kopfe des Verwerfungsbe-
reichs auf, dann verwerfen wir die Nullhypothese und nehmen an, dass die Miinze gefilscht
ist. Dabel irren wir uns mit einer Wahrscheinlichkeit von o = 1,2 %.

Nun geben wir das Signifikanzniveau « vor. Wir werfen die Miinze wieder 20-mal. Wie
miissen wir den Verwerfungsbereich wihlen, damit o < 5% ? Dabei soll der Verwerfungsbe-
reich so gross wie mdoglich sein.

Wir suchen also z so, dass

Hier lohnt es sich, in der Tabelle der summierten Binomialverteilung nachzusehen. Fiir alle
x <5 gilt Pyy(k < x) <0,025. Mit = 5 erhalten wir den grossten Verwerfungsbereich,

{0,1,2,3,4,5,15,16,17,18,19,20 } .
Wie gross ist nun « tatséchlich? Wir finden
a=2Py(k<5)=2-0,021 =0,042,
also a = 4,2 %.
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Werfen wir die Miinze 100-mal, dann verwenden wir die Normalverteilung als Ndherung
fiir die Binomialverteilung. Wir wollen auch hier den grosstmoglichen Verwerfungsbereich
bestimmen, so dass o < 5%. Wir haben also n = 100 und p = 1 (die Nullhypothese) wie
bisher. Die Parameter fiir die Normalverteilung sind damit

Wegen 02 = 25 > 9 kénnen wir die Normalverteilung als Niherung fiir die Binomialverteilung
nutzen.
Es muss nun gelten:

Né&herung mit Normalverteilung X :

Mit der Tabelle von Seite 62 folgt

Damit a < 0,05, miissen wir x auf 39 abrunden (den Verwerfungsbereich verkleinern bedeu-
tet a verkleinern). Der grosstmogliche Verwerfungsbereich mit ov < 5% ist also

Wie gross ist nun « tatséchlich?
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Weiteres Beispiel

Ein Hersteller von Uberraschungseier behauptet, dass in mindestens 14 % der Eier Figuren
von Disney-Filmen stecken. Wir wollen dies testen und nehmen eine Stichprobe von n = 1000
Eiern, in welchen wir 130 Disney-Figuren finden. Geniigt dieses Ergebnis, um die Behauptung
des Herstellers mit geniigend hoher Wahrscheinlichkeit zu widerlegen?

Sei p der wahre aber unbekannte Anteil der Eier mit Disney-Figuren. Der Hersteller
behauptet, dass p > 0, 14. Dies ist unsere Nullhypothese Hy.

Hy: p>0,14
Die Alternativhypothese H; ist, dass es in weniger als 14 % der Eier Disney-Figuren gibt.
Hi: p<0,14

Wir haben also einen einseitigen Test. Der Fehler erster Art a soll hochstens 5 % betragen.
Die Zufallsgrosse X sei die Anzahl der Disney-Figuren in der Stichprobe. Da der Umfang

n = 1000 der Stichprobe sehr gross ist, diirfen wir von einer Binomialverteilung ausgehen (die

1000 Ziehungen sind praktisch unabhéngig), die wir durch eine Normalverteilung annéhern.
Fiir den Verwerfungsbereich {0, 1,2,...,z} suchen wir also die grosste Zahl z, so dass

Die approximierende Normalverteilung X hat die Parameter

Es gilt also

und wir miissen z bestimmen, so dass

Mit der Tabelle von Seite 62 folgt

Als Verwerfungsbereich erhalten wir also
{0,1,...,121}

und da wir 130 Disney-Figuren gefunden haben, kénnen wir die Behauptung des Herstellers
nicht mit der gewiinschten Sicherheit verwerfen.
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7.2 Der t-Test fiir Mittelwerte

In diesem Abschnitt interessieren wir uns fiir den Mittelwert p eines Merkmals (d.h. den Er-
wartungswert p einer Zufallsgrosse) einer (oder zweier) Grundgesamtheit(en). Anhand einer
Stichprobe wollen wir Aussagen iiber den unbekannten Mittelwert p machen.

Vertrauensintervall

Gegeben ist also ein Merkmal einer Grundgesamtheit, wobei wir annehmen, dass dieses Merk-
mal normalverteilt ist. Sowohl der Mittelwert p als auch die Varianz o? dieses Merkmals
sind unbekannt. Wir entnehmen dieser Grundgesamtheit eine Stichprobe und berechnen in
Abhingigkeit dieser Stichprobe ein sogenanntes 95 %-Vertrauensintervall fiir . Dies bedeutet,
dass der unbekannte Mittelwert p mit einer Wahrscheinlichkeit von 95 % in diesem Vertrau-
ensintervall liegt.

Wir benétigen dazu den sogenannten Standardfehler. In Kapitel 1 hatten wir die Stan-
dardabweichung

s = nilz(xi—E)Z

i=1

fiir eine Messreihe z1,...,z, definiert. Wir bezeichnen diese nun mit s = SD (fiir standard
deviation). Weiter haben wir in Abschnitt 4.4 gesehen, dass die Varianz des Mittelwerts X
einer Stichprobe gegeben ist durch o2/n, wobei o2 die Varianz des Merkmals der Grundge-
samtheit ist. Da diese jedoch unbekannt ist, schiitzen wir sie durch s? (wie in Abschnitt 4.4).
Dies fiithrt zum Standardfehler (standard error) der Stichprobe

SD s 1 n _
SRR\ Tren P

Der Standardfehler ist also umso kleiner, je grosser der Umfang der Stichprobe ist.

Beispiel
Wie in Abschnitt 4.4 seien alle Studierenden der Vorlesung Mathematik II die Grundgesamt-
heit und das Merkmal sei das Alter (d.h. die Zufallsgrosse X ordnet jedem Studierenden
sein Alter zu). Wir konnen davon ausgehen, dass dieses Merkmal normalverteilt ist. Das
Durchschnittsalter der Studierenden, das heisst der Mittelwert u, ist unbekannt, ebenso die
Varianz o?. Das Ziel ist, ein Intervall anzugeben, in welchem der Mittelwert p mit 95 %-iger
Wahrscheinlichkeit liegt.

Dazu nehmen wir eine Stichprobe. Wir notieren also das Alter von beispielsweise 8 zufillig
ausgewéhlten Studierenden. Wir erhalten (zum Beispiel) die Zahlen

12022 [19[20[21[23]21|24]

Wir berechnen <

T=21,25,s=5D=1,669, SE=—= =0,590.
V8
Wir wissen (von Abschnitt 4.4), dass der Erwartungswert des Stichprobenmittelwerts X
gleich dem Mittelwert yu ist. Wére nun der Stichprobenumfang sehr gross (etwa n > 30) und
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die Varianz 02 bekannt, dann wire (nach dem zentralen Grenzwertsatz) die standardisierte
Zufallsgrosse

_X-u

~o/vn

standardnormalverteilt. Die Zufallsgrosse Z wiirde geméss der Tabelle auf Seite 62 mit einer
Wahrscheinlichkeit von 95 % einen Wert zwischen —1,96 und 1,96 annehmen.

Nun haben wir jedoch einen kleinen Stichprobenumfang und die Varianz o2 ist unbekannt,
so dass wir die obige Bemerkung in zwei Punkten korrigieren miissen. Erstens ersetzen wir
(wie schon weiter oben bemerkt) o/y/n durch den Standardfehler SE = s/\/n. Zweitens ist
nun die “standardisierte” Zufallsgrosse

Z

X —p
Z:
SE

nicht standardnormalverteilt, sondern sie folgt der sogenannten Studentschen t-Verteilung.
Diese hingt vom Stichprobenumfang n, bzw. vom Freiheitsgrad

v=n-—1

ab. Ist n gross, dann sieht die ¢-Verteilung wie die Normalverteilung aus; fiir kleine n ist
die Kurve jedoch flacher und breiter. Die Studentsche t-Verteilung wurde von William Sea-
ly Gosset eingefiihrt; der Name stammt von seinem Pseudonym “Student”, unter dem er
publizierte.

Die Rolle der Zahl 1,96 oben iibernimmt nun der kritische Schrankenwert ty,i, den wir
aus der Tabelle (Seite 13) ablesen konnen. In unserem Beispiel ist v = 8 — 1 = 7 und da
wir eine Wahrscheinlichkeit von 95 % suchen, ist das Signifikanzniveau o = 5% = 0,05. Wir
finden den Tabellenwert

tirit = 2,365 .

Damit gilt
0,95 = P(—2,365 < Z < 2,365) = P(—2,365- SE < X — < 2,365 - SE) ,

also liegt p mit 95 %-iger Wahrscheinlichkeit im Intervall [X — 2,365 - SE, X + 2,365 - SE].
Setzen wir unseren konkreten Stichprobenmittelwert T = 21,25 sowie den Standardfehler
SE = 0,590 ein, erhalten wir das Vertrauensintervall

[21,25 — 2,365 - 0,590 ; 21,25 + 2,365 - 0,590 ] = [19,854 ; 22, 646] .

Allgemein ist das 95 %- Vertrauensintervall, das den unbekannten Mittelwert p mit einer
Wahrscheinlichkeit von 95 % iiberdeckt, gegeben durch

[E_tkrit -SE, T+ Tirit SE] .
Das Vertrauensintervall ist vom Mittelwert T der Stichprobe, und damit von der Stichprobe

abhéngig. Eine andere Stichprobe ergibt moglicherweise ein anderes Vertrauensintervall. Ins-
besondere verkleinert ein grosserer Stichprobenumfang die Lange des Intervalles wesentlich.
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Anstelle der Berechnung eines Vertrauensintervalles kénnte man auch testen, ob eine
bestimmte Zahl pg als Mittelwert p wahrscheinlich ist. Zum Beispiel testen wir wie folgt:

Nullhypothese: W= po =23
Alternativhypothese: p # pg = 23
Signifikanzniveau: a=5%

Dies ist also ein zweiseitiger Test.
Als Testgrosse verwenden wir
t:\f—ﬂd
SE

Damit liegt pg im Vertrauensintervall, genau dann wenn ¢ < tj.;. Es gilt also:
t > tiy = Nullhypothese verwerfen

Mit unseren Messwerten erhalten wir

Die Nullhypothese muss also verworfen werden. Mit einer Irrtumswahrscheinlichkeit von o =
5% ist po = 23 nicht der Mittelwert p.

Allgemeines Vorgehen

Gesucht: Mittelwert p eines normalverteilten Merkmals einer Grundgesamtheit.
Gegeben: Stichprobe vom Umfang n mit Mittelwert T und Standardfehler SE.

Vertrauensintervall zum Niveau 1 — «:
[T —tay - SE,T+1ty, SE],

wobei tq,, = tiyit der kritische Schrankenwert (geméss Tabelle der Studentschen ¢-Verteilung)
fiir das Signifikanzniveau o und den Freiheitsgrad v =n — 1 ist.
Oder mit Testgrosse:
t:|f—ﬂd
SE

Entscheid: t > t,, = pu# o

Vergleich der Mittelwerte zweier Normalverteilungen

Gegeben sind zwei Grundgesamtheiten mit je einem normalverteilten Merkmal, dessen Mit-
telwert pi,, bzw. p, ist. Wir wollen testen, ob die beiden Mittelwerte p, und pu, gleich sind.
Die Varianzen brauchen nicht bekannt zu sein, sie werden aber als gleich vorausgesetzt.

Fiir den Test brauchen wir je eine Stichprobe aus den beiden Grundgesamtheiten. Die
beiden folgenden Fille sind praktisch besonders wichtig:

1. Die beiden Stichproben sind gleich gross. Je ein Wert der einen und ein Wert der anderen
Stichprobe gehéren zusammen, da sie von demselben Merkmalstréger stammen (zum Bei-
spiel das Korpergewicht vor und nach einer Didt oder Messwerte von demselben Objekt,
gemessen mit zwei verschiedenen Messgeriten). Man spricht von gepaarten Stichproben.

2. Die beiden Stichproben sind unabhéngig und nicht notwendigerweise gleich gross.
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1. Gepaarte Stichproben

12 Manner machen eine Diét. Verringert diese Diét das Korpergewicht auch wirklich? Bei
den Probanden wird deshalb das Kérpergewicht (in kg) vor und nach der Didt gemessen:

Proband | Gewicht vorher | Gewicht nachher Differenz
i T Yi di =i — Yy
1 84,5 83 1,5
2 72,5 72,5 0
3 79 74,5 4,5
4 88,5 89,5 -1
5 104,5 94 10,5
6 83 77,5 5,5
7 93,5 95.5 -2
8 77 70 7
9 76,5 75 1.5
10 98,5 94,5 4
11 79,5 73,5 6
12 92 83,5 8,5

T = 85,750 y = 81,917 d = 3,833
sy = 9,781 sy = 9,409 sq = 3,898

Wir wollen nun testen, ob p; = p,. Dabei kénnen wir auf den vorhergehenden Test fiir
einen einzelnen Mittelwert zuriickgreifen, indem wir wie folgt testen (zweiseitig):

Nullhypothese: fq = flz — py =0
Alternativhypothese: pug # 0
Signifikanzniveau: a=5%

Wir berechnen also die Testgrosse

Da dieses ¢ grosser als der kritische Schrankenwert ti,iy = to,, = 2,201 (geméss Tabelle der
t-Verteilung, Freiheitsgrad v = 11) ist, kann die Nullhypothese mit einer Irrtumswahrschein-
lichkeit von 5 % verworfen werden. Die Diét wirkt also tatséichlich, Ménner nehmen allgemein
mit dieser Didt ab.

2. Unabhéngige Stichproben

In der Geburtsabteilung eines Spitals wurde bei n, = 288 Knaben das Durchschnittsgewicht
T = 3300 g mit einer Standardabweichung von s, = 470 g gemessen. Bei n, = 269 Midchen
ergab sich das Durchschnittsgewicht 7 = 3050 g mit einer Standardabweichung von s, = 460 g.

Da wir nun keine Stichprobenpaare (x;,y;) mehr haben, miissen wir die vorhergehende
Testmethode leicht anpassen. Wir testen wie folgt:

Nullhypothese: Knaben und Médchen sind bei der Geburt gleich schwer (u; = f1y).
Alternativhypothese: Knaben sind bei der Geburt schwerer als Médchen (p, > fiy).
Signifikanzniveau: a=1%
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Dies ist also ein einseitiger Test. (Man kénnte auch zweiseitig testen, die Alternativhypothese
wiire in diesem Fall i, # f1y.)

Wir verwenden die Testgrosse
7 -7

t pu—
SEE—@ ’

wobei

SEf,y =

NgTy

ng +ny, [52(ng —1)+s2(n, — 1)
Ng +ny — 2

der Standardfehler der Differenz = — 7 ist. Fiir die Testgrosse erhalten wir also

o NN Nge + Ny — 2
_ 77 \/ AR

»— 1) +s5(ny —1)

In unserem Beispiel erhalten wir

Nun benutzen wir wieder die Tabelle der ¢t-Verteilung. Der Freiheitsgrad ist hier
V="ng+ny—2.

Fiir unser Beispiel erhalten wir v = 288 + 269 — 2 = 555. Die Tabelle geht aber nur bis
v = 500. Da sich die Werte zwischen v = 500 und v = oo nicht stark verdndern, nehmen wir
fiir den kritischen Schrankenwert ¢, den Wert fiir v = 500, das heisst ), = 2, 334. Dieser ist
aber viel kleiner als unser berechneter Wert ¢t = 6,3379. Wir kénnen also die Nullhypothese
mit einer Irrtumswahrscheinlichkeit von o = 1% verwerfen, das heisst, Médchen sind bei der
Geburt leichter als Knaben, zumindest in dem betreffenden Spital.

Allgemeines Vorgehen

Test: Gilt p, = p, fiir die Mittelwerte fiz, g, von zwei normalverteilten Merkmalen?

Gegeben: Je eine Stichprobe vom Umfang n,, n, mit Mittelwerten 7, ¥ und Standardabwei-
chungen s, sy
«a Signifikanzniveau, v = ng + n, — 2 Freiheitsgrad, t,, (geméss Tabelle der t-Verteilung)

t:’f—y‘ Ng Ty nx—i-ny—Q
ng +ny \| s2(ng — 1) + s2(ny, — 1)

Testgrosse:

Entscheid: ¢ > to, = fa # by

Nicht normalverteilte Merkmale

Sind die Merkmale der Grundgesamtheiten nicht normalverteilt, so kann der ¢-Test als Na-
herung trotzdem verwendet werden (der N#herungsfehler ist umso kleiner, je grosser die
Stichproben sind). Ansonsten kann der sogenannte Wilcozon-Mann- Whitney-Test, der keine
Annahmen iiber die Verteilungen der Merkmale der Grundgesamtheiten macht, verwendet
werden. Auf diesen Test gehen wir hier aber nicht ein.
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7.3 Der Varianzenquotiententest

Wenn wir den t-Test fiir zwei Stichproben anwenden wollen, miissen wir in den beiden Grund-
gesamtheiten dieselbe Varianz der Merkmale voraussetzen, das heisst o2 = 05. Wie kénnen
wir diese Bedingung iiberpriifen?
Beispiel
Wir vergleichen zwei verschiedene Pipettier-Methoden, um 50 ml abzumessen.

Die beiden Stichproben ergeben die folgenden Messwerte:

automatische Pipette
1 48,82 manuelle Pipette
2 50,88 1 50,11
3 51,22 2 50,11
4 49,75 3 49,92
5 50,19 4 50,63
6 50,01 5 49,91
7 49,98 6 50,26
8 48,29 7 50,05
9 49,82 8 50,09
10 51,02 Mittelwert: 50,135
Mittelwert: 49,998 Varianz: 0,0526
Varianz: 0,8612

Die Varianz bei der Stichprobe der automatischen Pipette ist grosser. Konnen wir daraus
schliessen, dass allgemein die Varianz der Messwerte bei der automatischen Pipette grosser
ist oder dass die Varianzen allgemein unterschiedlich sind bei den beiden Pipettier-Methoden?
Wir testen (zweiseitig) wie folgt:
Nullhypothese: o2 5
Alternativhypothese: o2 # 05
Signifikanzniveau: a=5%

= 0,

Wir verwenden hier die Testgrosse

52 G2 2
F= 2 mit sy > s .
y
Sind die Varianzen gleich, dann ist F' nahe bei 1.
Damit in unserem Beispiel die Bedingung s2 > 3?3 erfiillt ist, miissen wir x fiir die au-
tomatische und y fiir die manuelle Pipettierung wéahlen. Fiir unsere Testgrosse erhalten wir

also

Die Testgrosse F' folgt der sogenannten F'-Verteilung (nach Ronald Aylmer Fisher). Wir be-
nutzen also die Tabelle der F-Verteilung. Dazu brauchen wir noch den Freiheitsgrad vom
Zdhler v, = 10 — 1 = 9 und vom Nenner v, = 8 — 1 = 7. Die Tabelle gibt den kritischen
Schrankenwert

Fii, = 3,68
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Wie beim ¢-Test gilt nun allgemein
F > Foi = Nullhypothese verwerfen

Da unsere berechnete Testgrosse F' = 16, 37 grosser als Figi ist, konnen wir unsere Nullhy-
pothese verwerfen (Irrtumswahrscheinlichkeit: 5%). Die Varianzen bei den beiden Pipettier-
Methoden sind also nicht gleich.

Allgemeines Vorgehen

2, O'Z von zwei normalverteilten Merkmalen?
2 2

Gegeben: Je eine Stichprobe mit den Varianzen sz, sy.

a Signifikanzniveau, v,, v, Freiheitsgrade, F,,, ., (geméss Tabelle der F-Verteilung)

Test: Gilt 02 = O'; fiir die Varianzen o

Testgrosse:
52 2o .2
_ °z i
F = 2 mit s3 > sy
Y
Entscheid: F > Fo.,., = 0%#05

7.4 Korrelationsanalyse

In Kapitel 2 haben wir die Korrelationskoeffizienten von Pearson und von Spearman ken-
nengelernt. Hier wollen wir nun aus dem Korrelationskoeffizienten der Messwertpaare einer
Stichprobe Aussagen iiber den Korrelationskoeffizienten der Messwertpaare der Grundge-
samtheit machen.

Beispiel
Blatter von Bdumen, aus denen ein bestimmter Wirkstoff gewonnen werden kann, sollen ge-
erntet werden. Wir iiberlegen uns, ob der Wirkstoffgehalt in einem Blatt davon abhéngt, wie
hoch das Blatt am Baum héngt. Wenn nicht, kénnte man einfach die leicht zugénglichen
Blétter in niedriger Hohe ernten, ohne Leitern verwenden zu miissen.

Wir pfliicken daher als Stichprobe 24 Bléitter in unterschiedlicher Hohe und notieren ihren
Wirkstoffgehalt. Wir erhalten die folgenden Messwertpaare (in m, bzw. mg/100 g):

Nr. ¢ | Hohe = | Wirkstoffgehalt y Nr. ¢ | Hohe x | Wirkstoffgehalt y
1 1,70 1,66 13 3,23 1,27
2 2,31 1,34 14 3,29 0,85
3 2,89 1,27 15 3,46 1,16
4 1,30 1,61 16 3,95 1,14
) 3,21 1,17 17 1,70 1,25
6 1,84 1,73 18 2,92 1,49
7 3,27 1,17 19 2,67 1,17
8 4,21 1,19 20 3,02 1,16
9 1,32 1,93 21 2,37 1,75
10 3,67 1,10 22 2,64 1,36
11 2,78 1,37 23 4,25 1,00
12 3,71 1,19 24 1,90 1,48
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Streudiagramm:

0.5

Der Korrelationskoeffizient von Pearson betragt

n

> (@i -3y —7)
Tay = = ~ —0,7767

n n

S (@i—7)2 | (i 1)

i=1 i=1

Das Streudiagramm und der Korrelationskoeffizient weisen auf eine Korrelation der Werte-
paare der Stichprobe hin. Aber gibt es auch eine Korrelation der Wertepaare der Grund-
gesamtheit (d.h. zwischen der Wuchshohe und dem Wirkstoffgehalt von beliebigen Bldttern
an den Baumen)? Wir bezeichnen mit ¢ den Korrelationskoeffizienten der Wertepaare der
Grundgesamtheit.

Um den folgenden Test anwenden zu kénnen, miissen beide Merkmale (d.h. die Zufalls-
grossen x und y) der Grundgesamtheit normalverteilt sein. Man nennt eine solche Verteilung
bivariate Normalverteilung. Im Gegensatz zum t-Test reagiert dieser Test empfindlich auf
Abweichungen von der Normalverteilung.

Nun testen wir (zweiseitig) wie folgt:

Nullhypothese: 0=10
Alternativhypothese: ¢ # 0
Signifikanzniveau: a=5%

Die Testgrosse ist der Betrag des Korrelationskoeffizienten der Messwertpaare der Stichprobe,
das heisst |ryy| ~ 0,7767. Den kritischen Schrankenwert ri entnehmen wir der Tabelle
(Seite 20). Wir finden

Terit = 0,404 .

Es gilt allgemein
|Tey| > Tkt ==  Nullhypothese verwerfen

Wir kénnen in unserem Beispiel also die Nullhypothese mit einer Irrtumswahrscheinlichkeit
von 5 % verwerfen. Es gibt eine Korrelation zwischen der Wuchshohe und dem Wirkstoffgehalt



77

eines Blattes. Allerdings ist die Korrelation entgegengesetzt (da r;, < 0), das heisst, je hoher
das Blatt sich befindet, desto geringer ist der Wirkstoffgehalt. Bei der Ernte bleiben wir also
schén am Boden und pfliicken die unteren Blétter.

Wenn wir nicht davon ausgehen konnen, dass die Merkmale (Zufallsgrossen) x und y der
Grundgesamtheit bivariat normalverteilt sind, kénnen wir fiir die Testgrosse den Rangkorre-
lationskoeffizienten von Spearman benutzen.

Zum Beispiel wollen wir testen, ob die an die Spieler des FC Basel vergebenen Noten nach
einem Fussballspiel in den beiden Zeitungen bz Basel (bz) und Basler Zeitung (BaZ) korre-
lieren. Als Stichprobe untersuchen wir die Noten des Champions League Spiels Manchester
City gegen den FCB vom 7. Mérz 2018:

Spieler Note bz | Note BaZ | Rang r, | Rang rgaz | d = 1, — TBaz d?
T. Vaclik 5,5 5,4 2,5 2,5 0 0
M. Suchy 5 4,7 7,5 8 -0,5 0,25
F. Frei 5 5 7,5 4 3,5 12,25
L. Lacroix 5 4,4 7,5 10 -2,5 6,25
M. Lang 5 5,4 7,5 2,5 5 25
G. Serey Dié 5,5 4,9 2,5 5,5 -3 9
L. Zuffi 5 4,9 7,5 5,5 2 4
B. Riveros 5 4,7 7,5 8 —0,5 0,25
K. Bua 5 4,7 7,5 8 -0,5 0,25
D. Oberlin 4,5 3,6 12 11,5 0,5 0,25
M. Elyounoussi 6 5,6 1 1 0 0
V. Stocker 5 3,6 7,5 11,5 —4 16
Summe 73,5

Fiir den Rangkorrelationskoeffizienten von Spearman erhalten wir also

6 n
=1 - — d? = 0,743 .
'S n(nQ—l); ‘ ’

Der kritische Schrankenwert rg yiy der Tabelle (Seite 21) betrégt
78 krit = 0,991 .

Wir kénnen also bei diesem Test die Nullhypothese, dass keine Korrelation besteht, verwerfen.
Die Benotungen der FCB-Spieler in den beiden Zeitungen korrelieren.

Allgemeines Vorgehen

Test: Gilt o = 0 fiir den Korrelationskoeffizienten ¢ der Wertepaare der Grundgesamtheit?
Gegeben: Eine Stichprobe von Wertepaaren.
Testgrossen:

|72y falls Wertepaare der Grundgesamtheit bivariat normalverteilt
|rg|  sonst

Entscheid: |ryy| > riie  bzw. |rg| > rgit = 0#0
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7.5 Der y3-Test

Es gibt verschiedene Varianten und Anwendungsmoglichkeiten des x2-Tests. Wir behandeln
hier die Variante, mit der man testen kann, ob zwei Zufallsgrossen stochastisch unabhéngig
sind.

Beispiel
Zwei Behandlungen fiir eine bestimmte Krankheit wurden klinisch untersucht. Die Behand-

lung 1 erhielten 124 Patienten, die Behandlung 2 erhielten 109 Patienten. Die Resultate
konnen in einer Vierfelder-Tafel iibersichtlich dargestellt werden:

Behandlung 1 | Behandlung 2 | Total
wirksam 102 78 180
unwirksam 22 31 53
Total 124 109 233

Wir testen wie folgt:

Nullhypothese:

Signifikanzniveau:

Nun nehmen wir unsere Vierfelder-Tafel, wobei nur die Randhéufigkeiten gegeben sind:

Die Behandlungen haben dieselbe Wirkungswahrscheinlichkeit
a=5%

Behandlung 1 | Behandlung 2 | Total
wirksam T z 180
unwirksam Y w 53
Total 124 109 233

Wie gross sind die Haufigkeiten z,y, z, w, wenn wir von der Nullhypothese ausgehen?
Wir haben die folgenden Wahrscheinlichkeiten:

Die Nullhypothese besagt, dass die Ereignisse A = (Behandlung 1) und B = (wirksam)
stochastisch unabhéngig sind. Unter dieser Bedingung erhalten wir die folgenden Werte fiir
x,y,z,w (wir runden diese Zahlen auf ganze Zahlen, was im Allgemeinen jedoch nicht nétig
ist):
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Wir sehen, dass wir nur eine der vier Zahlen z,y, z,w mit Hilfe von Wahrscheinlichkeiten
berechnen miissen. Die anderen Zahlen ergeben sich direkt mit den vorgegebenen Randhéu-
figkeiten. Dies bedeutet, dass wir nur einen Freiheitsgrad haben.

Wenn wir die Werte fiir x,y, z,w mit den tatséchlich gemessenen Héufigkeiten in der
ersten Tabelle vergleichen, stellen wir Abweichungen fest. Diese Abweichungen stellen wir
wieder in einer Tabelle dar, und zwar berechnen wir in jedem Feld die folgende Grosse:

(gemessene Hiufigkeit — erwartete Haufigkeit)?

erwartete Haufigkeit
Damit erhalten wir die folgende Tabelle:

Behandlung 1 | Behandlung 2

(102—96)2 36 | (78—84)2 36

wirksam 95 =5 =1 =7

(22—28)2 _ 36 (31-25)2 36

unwirksam 33 = 53 5E = 52

Es ist kein Zufall, dass alle Zahler gleich sind. Wegen den gegebenen Randhéufigkeiten (bzw.
wegen des Freiheitsgrads 1) bewirkt eine Verdnderung in einem Feld eine gleich grosse Ver-
dnderung in den drei anderen Feldern (in der gleichen Zeile und in der gleichen Spalte mit
umgekehrtem Vorzeichen). Quadriert ergibt dies in allen vier Feldern dieselbe Zahl.

Die Testgrosse x? ist nun die Summe der berechneten Zahlen in dieser Tabelle:
36 36 36 36
2
= — —_ —_ _— = 2
X =96 TR Tag To5 — %

Je grosser x? ist, desto unwahrscheinlicher ist die Nullhypothese. Die Testgrosse x? folgt
der sogenannten x2- Verteilung mit einem Freiheitsgrad. Den kritischen Schrankenwert Xl2<rit
entnehmen wir der entsprechenden y2-Tabelle (fiir den Freiheitsgrad 1). Wir finden

Xiit = 3,84 .
Wie bei allen anderen Tests gilt allgemein
2 > X12<rit —> Nullhypothese verwerfen

Fiir das Signifikanzniveau o = 5% miissen wir in unserem Beispiel also die Nullhypothese
beibehalten. Wir miissen davon ausgehen, dass die Wirkungswahrscheinlichkeit der beiden
Behandlungen gleich gross ist.

Allgemeines Vorgehen

Test: Sind zwei Ereignisse (bzw. Merkmale) A und B stochastisch unabh#ngig?
Gegeben: Vierfelder-Tafel mit den beobachteten Haufigkeiten:

A A Total
B a b a+b
B c d c+d
Total |a+c|b+d|n=a+b+c+d
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Die Wahrscheinlichkeiten P(A) und P(B) berechnet man mit Hilfe der Haufigkeiten,

CFrC nd P(B)= atb
n n

P(A) =
Geht man nun vor wie im Beispiel, erhélt man die Testgrosse

2 _ n(ad — be)?
X T aTroa+ob+dlctd

Vergleich mit Xl2<rit aus der Tabelle fiir den Freiheitsgrad 1.
Entscheid: x? > x%,, == A und B sind nicht stochastisch unabhéngig

Dieser Test kann nur fiir “grosse” Stichproben verwendet werden, das heisst unter den
Bedingungen
n=a+b+c+d>30, a+b>10, a+c>10, b+d>10, c+d>10.

Fiir kleinere Stichproben kann der sogenannte exakte Fisher-Test fiir Vierfelder-Tafeln ver-
wendet werden.

Mehr als vier Felder
Eine Verallgemeinerung des y?-Tests betrachten wir an einem Beispiel.

Beispiel
Wir fragen uns, ob es einen Zusammenhang zwischen Geschlecht und Studienrichtung gibt.

In der Tabelle sind die Belegzahlen des Herbstsemesters 2019 an der Uni Basel aufgelistet
(wobei nur die ausserfakultéren Bio-Studierenden erfasst sind):

Chemie | Bio | Geo | Pharma | Total
Frau 17 17 | 20 106 160

Mann 22 6 20 44 92
Total 39 23 40 150 252

Wir testen wie folgt:

Nullhypothese: Geschlecht und Studienrichtung sind voneinander unabhéingig
Signifikanzniveau: o =1%

Wie bei der Vierfelder-Tafel berechnen wir die Haufigkeiten unter Annahme der Nullhypo-
these. Wir erhalten die folgenden Héufigkeiten:

Chemie | Bio Geo | Pharma | Total
Frau 24,76 | 14,60 | 25,40 | 95,24 160
Mann | 14,24 8,40 | 14,60 | 54,76 92
Total 39 23 40 150 252

Die folgende Tabelle zeigt die Differenzen zwischen den tatséichlichen und den unter der
Annahme der Nullhypothese erwarteten Haufigkeiten:
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Chemie Bio Geo | Pharma
Frau | —7,76 2,40 | —5,40 | 10,76
Mann 7,76 —2,40 | 5,40 —10,76

Diese Differenzen miissen wir nun quadrieren und durch die erwarteten Hiufigkeiten dividie-
ren. Die Summe dieser Zahlen ergibt

2 =14,22.
Der Freiheitsgrad ist hier 3. Der kritische Schrankenwert aus der Tabelle (fiir o« = 1%) ist
b = 11,34 .

Da dieser kleiner ist als unsere berechnete Testgrosse x? = 14,22, kénnen wir die Nullhypo-
these verwerfen. Es gibt also eine Abhéingigkeit von Geschlecht und Studienrichtung.

7.6 Vertrauensintervall fiir eine Wahrscheinlichkeit

Den Begriff des Vertrauensintervalles haben wir schon beim ¢-Test angetroffen. Dort ging es
um ein Vertrauensintervall fiir den Mittelwert eines normalverteilten Merkmals einer Grund-
gesamtheit. Dieses Vertrauensintervall hing von der konkreten Stichprobe ab.

Hier geht es nun um ein Vertrauensintervall fiir eine Wahrscheinlichkeit. Auch hier ist das
Vertrauensintervall abhéngig von der konkreten Stichprobe.

Beispiel
Von 60 zufillig in einer Plantage ausgewéhlten Strduchern sind 18 krank, das heisst, die
relative Haufigkeit fiir einen kranken Strauch in der Stichprobe betrigt

18

hyrank = @ =0,3.

Wie gross ist nun der Anteil der kranken Striucher in der Grundgesamtheit? Das heisst, wie
gross ist die Wahrscheinlichkeit piy,ank, dass ein zufillig ausgewahlter Strauch der Grundge-
samtheit krank ist?

Gesucht ist ein zweiseitiges Vertrauensintervall fiir pyragk zum Niveau 1 — a = 95 %.

Wir fassen die Anzahl 18 der kranken Straucher in der Stichprobe als Realisation einer
binomial verteilten Zufallsgrosse auf. Dabei ist n = 60 und wir suchen die (unbekannte)
Einzelwahrscheinlichkeit p. Fiir die praktische Rechnung verwenden wir die Néherung mit
der Normalverteilung.

Wir kénnen verschiedene Werte fiir p ausprobieren, um eine Idee zu bekommen.

+ 0.15
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+ 0.15 + 0.15

nne

Wir sehen, dass die untere Grenze des Vertrauensintervalles ungefihr bei 0,2 liegt und die
obere Grenze ungefihr bei 0,4.
Aus der Graphik fiir p = 0,2 erkennen wir, dass fiir die untere Grenze

1+ 1,960 = 18

gelten muss. Der Faktor 1,96 kommt aus der Tabelle von Seite 62 im Skript (wir suchen
ein 95 %-Vertrauensintervall). Fiir den Erwartungswert p und die Varianz o2 der Binomial-
verteilung gilt

Wir erhalten damit die Gleichung

Dies ist eine quadratische Gleichung fiir p. Die Losungen sind 0,199 und 0,425. Die untere
Grenze ist also 0,199 (die Zahl 0,425 ist keine Losung der ersten, unquadrierten Gleichung).
Fiir die obere Grenze des Vertrauensintervalles muss

1 —1,960 = 18

gelten. Auch diese Gleichung fiihrt zu einer quadratischen Gleichung fiir p, und zwar zu
derselben Gleichung wie oben. Fiir die obere Grenze erhalten wir daher 0,425.
Das Vertrauensintervall fiir pi ank zum Niveau 1 — o = 95 % ist also gegeben durch

0,199 ; 0,425] .

Allgemeines Vorgehen

Gegeben ist die Anzahl Elemente einer Stichprobe (vom Umfang n) mit einer bestimmten
Eigenschaft. Diese Anzahl (im Beispiel die Zahl 18) ist gleich nh fiir die relative Héufigkeit h.
Der Anteil der Elemente der Grundgesamtheit mit dieser Eigenschaft sei p. Die Grenzen fiir
ein 95 %-Vertrauensintervall fiir p erhalten wir als Losungen der quadratischen Gleichung

1,96%np(1 — p) = (nh —np)?.
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Kiirzen mit n ergibt die Gleichung
1,96°p(1 - p) = n(h —p)*.

Fiir Vertrauensintervalle mit anderen Prozentzahlen miissen wir die Zahl 1,96 entsprechend
dandern. Zum Beispiel miissen wir sie fiir ein 99 %-Vertrauensintervall durch 2,576 ersetzen

(wie der Tabelle auf Seite 62 zu entnehmen ist).
Fiir grosse Stichproben kénnen die Grenzen des 95 %-Vertrauensintervalles mit der Formel

h(1—h)

h=+1,96
n

berechnet werden.
In unserem Beispiel erhalten wir mit dieser Formel 0,184 fiir die untere und 0,416 fiir die

obere Grenze.
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8 Lineare Abbildungen

In diesem Kapitel untersuchen wir lineare Abbildungen von R™ nach R™ wie zum Beispiel
Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R? und R3. Man nennt
eine Abbildung linear, wenn man sie durch eine Matrix beschreiben kann. Die Komposition
(d.h. Verkniipfung) von zwei linearen Abbildungen kann dadurch einfach berechnet werden.
Weiter kénnen an der Matrix einer linearen Abbildung die wichtigsten Eigenschaften der
Abbildung abgelesen werden.

8.1 Definition und Beispiele

Im letzten Semester haben wir reelle Funktionen (d.h. Funktionen von R nach R) betrachtet.
Nun kann man nicht nur Zahlen aus R, sondern auch Punkten in R?, R3 oder allgemein R"
eine reelle Zahl zuordnen. Zum Beispiel

Eine Funktion f : R” — R nennt man reellwertige Funktion von n reellen Variablen.

Seien nun fi,..., fm, reellwertige Funktionen von n reellen Variablen, das heisst
wp = fl(xl,...,xn)
Wy = fg(.%'l,...,xn)
Wy, = fm(x1,...,2p) .
Durch diese Gleichungen wird jedem Punkt (z1,...,2,) in R” genau ein Punkt (w1, ..., wy)

in R™ zugeordnet. Wir erhalten damit eine Abbildung
T:R" —R™
durch
T(x1,...,xn) = (Wi,...,0pn) .

Der Buchstabe T steht fiir Transformation, denn Abbildungen von R™ nach R™ werden auch
Transformationen genannt.

Beispiel
Die Gleichungen

wp = 1+ 22
wo = 3.%'11‘2
wsy = m% — m%

definieren eine Abbildung 7' : R? — R3 durch

T(x1,22) = (x1 + T2, 3122, T — 23) .
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.
Fasst man n-Tupel nicht als Punkte P in R™ sondern als Ortsvektoren £ =OP in R"

auf, dann erhalten wir eine Abbildung, welche Vektoren in R™ auf Vektoren in R™ abbil-
det. Tatsdchlich werden wir Elemente aus R” und R™ stets als Vektoren betrachten, da
wir ja mit der Struktur dieser Rdume als Vektorrdume vertraut sind und insbesondere li-
neare Abbildungen den R"™ auf einen Vektorraum in R™ abbilden. Die Funktionsvorschrift
T(x1,...,2y) = (wi,...,wy) bedeutet in diesem Fall also, dass der Vektor # in R™ mit
den Komponenten z1,...,x, auf den Vektor «w in R™ mit den Komponenten wy,...,wpn,
abgebildet wird. Oft beschreiben wir die Abbildung direkt mit Vektoren: T'(%) = .

Definition Eine Abbildung 7" : R — R™ definiert durch T'(z1,...,z,) = (w1,...,Wn)
heisst linear, wenn

w] = a1121 +a12T2 + -+ + A1pTy
Wy = G211 + a22T2 + -+ + A2pTy
Wy = Am1%1 + amaX2 + -+ QGmnTn

fir reelle Zahlen a;; (1 <i<m,1<j<n).

Das heisst, alle Variablen x1,...,x, kommen in den Komponentenfunktionen wi,...,wy,
linear (d.h. zur ersten Potenz oder gar nicht) vor. Dieses Gleichungssystem kann man als
Matrixmultiplikation schreiben

ail ai2 e ain X1
w1
‘ azs azg - Az
. = . )
Wiy, ’
aml  Am2 Amn In

das heisst
T(#) =w=[T)%,

wobei [T] = (a;j) die sogenannte Darstellungsmatriz der linearen Abbildung T ist. Die Ein-
trage der Darstellungsmatrix hingen von der Wahl der Basen von R™ und R" ab. Wir wéihlen
vorerst stets die Standardbasen; die Darstellungsmatrix nennt man in diesem Fall auch Stan-
dardmatriz von T.

Beispiele

1. T:R3 — R?’, T(m‘l,xg,.%'g) = (.%'1 + x9 — 3,221 — 3.%'3,51‘2)
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2. T:R?2 — R3 T(x1,72) = (21 + 2w2,21,0)

3. T:R? — R2, T(x1,22) = (23 + 2, 371)

4. T:R3 — R2, T(m‘l,xg,.%'g) = (.%'1 + x9 + 43, 1)

5. T': R — R ist linear genau dann, wenn 7'(z) = ax fiir eine reelle Zahl a.
In diesem Fall ist [T] = (a).

Eine Abbildung 7" : R™ — R™ ist also linear, wenn es eine m x n-Matrix A gibt (n&mlich
A = [T]), so dass T(Z) = AZ. Insbesondere gilt

T(0)=A0=0

in R™. Bei einer linearen Abbildung gilt stets, dass 0 in R” auf 0 in R” abgebildet wird.
Lineare Abbildungen werden also durch Matrizen beschrieben. Umgekehrt beschreibt je-

de Matrix eine lineare Abbildung. Ist A eine m x n-Matrix, so definiert diese eine lineare
Abbildung T : R™ — R™ durch T'(Z) = AZ.

()

definiert eine lineare Abbildung T : R? — R? durch

r@=a7= (5 5) () = (M)

Was ist also zum Beispiel das Bild des Vektors & = () unter T'?

Beispiel
Die Matrix
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Beispiele von linearen Abbildungen von R? nach R?

Die wichtigsten linearen Abbildungen von R? nach R? kennen Sie aus der Schule: Spiege-
lungen, Projektionen, Drehungen und Streckungen.

1. Spiegelung an der y-Achse

Es gilt (Herleitung spéter)
T(z,y) = (xcosp — ysiny, xsin g + y cos p) .
Fiir den Drehwinkel ¢ = 90°, bzw. ¢ = 45° erhalten wir damit die Darstellungsmatrizen

] = (g ‘01> , baw. [T] = (ﬁ _§> .

2 2

—
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5. Streckung um den Faktor k£ mit dem Ursprung als Streckzentrum

Spezialfille:

o k=1: T =1d Identitit, T(x,y) = (x,y), [T] = ((1) g)

o k=0: T=0 Nullabbildung, T'(x,y) = (0,0), [T] = <8 8)

Komposition von linearen Abbildungen

Seien T} : R — R¥ und 75 : R¥ — R™ zwei lineare Abbildungen. Wir verkniipfen die
beiden Abbildungen wie folgt:

T T
R* =L R =2 R™

Die Verkniipfung von T} und 75 ist demnach eine Abbildung von R™ nach R™, die Komposition
von Th mit 7} genannt und mit 75 o7} bezeichnet wird (vgl. letztes Semester, Kapitel 1); das
heisst

(Th o Th)(Z) = To(T1 () fiir alle # in R™.

Satz 8.1 Sind 11 und 15 linear, dann ist auch die Komposition To o 11 linear. Fiir die
Darstellungsmatriz [Ty o Th] der Komposition gilt

[TQ (¢} Tl] = [TQ] [Tl] .

Die Reihenfolge der beiden Matrizen auf der rechten Seite der Gleichung ist dabei wichtig,
denn im Allgemeinen gilt ja [To][T1] # [T1][T2].
Die folgende Zeile beweist den Satz 8.1. Fiir & in R" gilt

(T> o T1)(Z) = T2(T1(7)) = T2([T1]7) = [T2][Th]Z .

Beispiel
Sei T} : R? — R? die Spiegelung an der Geraden y = x und T : R?> — R? die Orthogo-
nalprojektion auf die y-Achse. Man bestimme die Komposition 75 o T7.
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Gilt im Beispiel T7 0 To = Ty o T7 7 Wir berechnen

moml=mlm= (] o) (5 1) = (g o) #mm = e
Es folgt, dass 17 0o Ty £ T5 o T7.

8.2 Eigenschaften

Eine lineare Abbildung von R™ nach R™ hat die Eigenschaft, dass sie mit den Vektorraum-
operationen in R™ und R™ vertréglich ist; das heisst, es spielt keine Rolle, ob zwei Vektoren
in R™ zuerst addiert und danach abgebildet werden oder ob sie zuerst abgebildet und danach
ihre Bilder in R™ addiert werden (entsprechend fiir die skalare Multiplikation).

Satz 8.2 FEine Abbildung T von R™ nach R™ ist genau dann linear, wenn fir alle Z,y in R™
und k in R die folgenden zwei Linearititsbedingungen gelten:

(1) T(Z+9) =T(Z) +T(Y)
2) T(kT) = kT(Z)

Insbesondere ist das Bild des Vektorraums R™ unter einer linearen Abbildung stets wieder
ein Vektorraum in R™.

Warum gilt Satz 8.2 7 Nun, ist T eine lineare Abbildung, dann gilt T'(Z) = AZ fiir die Dar-
stellungsmatrix A = [T'] von T, und die Linearititsbedingungen (1) und (2) folgen aufgrund
der Distributivgesetze fiir Matrizen.

Umgekehrt, ist T eine Abbildung von R™ nach R™, welche die Linearitétsbedingungen (1)
und (2) aus Satz 8.2 erfiillt, dann gilt T'(¥) = AZ fiir diejenige Matrix A, deren Spalten die
Bilder (unter T') der Basisvektoren €7, ..., €, von R” sind, das heisst fiir

Die Abbildung T ldsst sich also als Matrixmultiplikation schreiben und ist deshalb linear.
Damit gilt insbesondere die folgende wichtige Tatsache.

Satz 8.3 Sei T eine lineare Abbildung von R™ nach R™. Dann stehen in den Spalten der
Darstellungsmatriz [T| die Bilder der Basisvektoren é,...,&, von R™.

Beispiel
Sei T': R? — R? die Spiegelung an der y-Achse.
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Der Satz 8.3 ist vor allem dann praktisch, wenn eine lineare Abbildung geometrisch be-
schrieben ist und die Abbildungsvorschrift 7'(Z) = & nicht bekannt ist. Bestimmt man die
Bilder der Basisvektoren, dann ist die Abbildung eindeutig beschrieben.

Beispiele

1. Sei T : R?> — R? die Drehung um den Winkel ¢ um den Ursprung.

2. Sei T : R3 — R3 die Drehung um den Winkel ¢ um die x-Achse. Dies bedeutet, dass
der Basisvektor €; bei der Drehung unverindert bleibt und die Basisvektoren €5 und €3 eine
Drehung in der yz-Ebene beschreiben, analog zur Drehung in der Ebene im Beispiel vorher.
Damit erhalten wir

1 0 0 1 0 0
TE)=10],T()=|cosp]|,T(e3)=|—sing| = [T]=|0 cose —sinp
0 sin COSs 0 sing cosyp
8.3 Basiswechsel
Tatséchlich gilt Satz 8.3 nicht nur fiir die Standardbasis €1, ..., €, von R", sondern fiir jede

beliebige Basis B = {iy,...,4,} von R™. Ist T : R — R" eine lineare Abbildung, dann
erhdlt man die Darstellungsmatrix [Tz von T beziiglich der Basis B, indem man die Koor-
dinaten der Bilder der Basisvektoren 7, ..., 4, in die Spalten der Matrix schreibt.

Beispiel
Sei T': R? — R? die Spiegelung an der Geraden g mit dem Richtungsvektor @, = (\/5)
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Beziiglich der Standardbasis wére die Darstellungsmatrix [T] von T" gegeben durch

1 V3
n-(. %)

Damit haben wir zwei verschiedene Moglichkeiten, das Bild eines Vektors, zum Beispiel
i1, zu berechnen. In der Standardbasis rechnen wir

oo -m(9)-(4 ) (5)-(9)-

und in der Basis B = {u,ds2} erhalten wir

T(@) = [Ts (é)g - (; _°1>B (3)8 - (é)g .

Im Gegensatz zur Matrix [T] ist die Darstellungsmatrix [T'|g sofort erkennbar als Ma-
trix einer Spiegelung. Zudem ist das Rechnen mit Diagonalmatrizen einfacher. Aus diesen
Griinden ist ein Basiswechsel manchmal sinnvoll.

Tatséchlich gibt es eine (algebraische) Beziehung zwischen den Matrizen [Tz und [T1].
Wir schreiben die Basisvektoren der Basis B als Spalten in eine 2 x 2-Matrix. Eine iibliche
Bezeichnung dieser Matrix ist P~! (tatsichlich ist diese Matrix invertierbar, da die Spalten
linear unabhéngig sind). Wir setzen also

P = (i i) = (*{3 \‘é) .

Damit ist

und es gilt
[T)s = P[T) P~}

Die Matrix P! beschreibt dabei den Basiswechsel von der Basis B zur Standardbasis und

die Matrix P beschreibt den Basiswechsel von der Standardbasis zur Basis B. Das heisst,

1 (0),m (0 B) ), = (3 o () =5 ) (%)= )
0/ 4 1 Vv3)\0), 1 1 4\-1 v3)\ 1 0)s"
Satz 8.4 Sei T : R™ — R” eine lineare Abbildung und B eine beliebige Basis von R™. Dann
gilt
[T)s = P[T] P!

wobei in den Spalten von P~' die Basisvektoren von B stehen.

Die Kunst ist nun, eine Basis B zu finden, so dass die Matrix [T]g diagonal ist. Dies ist
tatséichlich “nur” ein Handwerk, welches wir im néchsten Kapitel erlernen. Man muss die
sogenannten Eigenwerte und Eigenvektoren der Matrix [T'] berechnen.
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Lineare Abbildungen zwischen allgemeinen Vektorrdumen (fir Interessierte)

In der Literatur werden lineare Abbildungen oft direkt durch die Linearitétsbedingungen von
Satz 8.2 definiert. Dies hat den Vorteil, dass man sich nicht auf Abbildungen von R™ nach
R™ beschrianken muss. Man geht von zwei (reellen) Vektorrdumen V und W aus und nennt
eine Abbildung T : V — W linear, wenn gilt

(1) T(u+v)=T(a)+T(v)
(2) T(kv)=kT(v)
fir alle u, ve V und k£ € R.

Beispiele
1. Sei V = {ax? + bx + ¢ | a,b,c € R} die Menge aller Polynome vom Grad < 2. Wir

haben im letzten Semester (Kapitel 9, Seite 148) gesehen, dass V' ein Vektorraum ist. Sei nun
T :V — V definiert durch die Ableitung

das heisst, T'(ax?+bz+c) = 2ax+b (man leitet das Polynom p = p(z) nach z ab). Dies ist eine
lineare Abbildung, denn fiir Polynome p1,p2 € V und k € R gilt mit den Ableitungsregeln

T(p1+p2) = (p1+p2) =p1+p5=T/p1)+T(p2)
T(kpy) = (kp1)' = kpy = kT(p1)

2. Sei V' die Menge aller 2 x 2-Matrizen und W = R. Wir betrachten 7' : V. — W definiert
durch
T(A) = det(A)

fiir A € V. Dies ist keine lineare Abbildung, da im Allgemeinen gilt

T(A+ B) = det(A + B) # det(A) + det(B) = T(A) + T(B) .

Wihlt man je eine Basis fiir V und W, dann kann man die lineare Abbildung T : V — W
durch eine (reelle) m x n-Matrix beschreiben, wobei m = dim(W') und n = dim(V).

Betrachten wir den Spezialfall W = V. Wir wihlen also eine Basis B von V. Nach Satz 8.3
(leicht angepasst), stehen dann in den Spalten der Darstellungsmatrix [T']p die Koordinaten
der Bilder der Basisvektoren.

Beispiel
Betrachten wir das 1. Beispiel oben mit V = {ax? +bx + ¢ | a,b,c € R} und T(p) = p'.

Eine Basis fiir V ist B = {22, 2,1}. Nun bestimmen wir die (Koordinaten der) Bilder der
Basisvektoren:

T(?) = 2z = 0-2°4+2-24+0-1 00 0
T(x) = 1 = 0-2240-2+1-1 = [Tlz=1(2 0 0
T1) = 0 = 0-2240-2+0-1 010

Die Matrix [T'|p beschreibt nun die Abbildung 7" im folgenden Sinn.
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Sei beispielsweise p(x) = 322 — 22 4 5. Der Koordinatenvektor von p bzgl. der Basis B ist
U= <E2)' Dann ist der Koordinatenvektor von T'(p) gegeben durch

000
Tgo=(2 0 o] [-2| =16
010

Wir erhalten also

T(p)=0-224+6-2+(-2)-1=62—-2 (=p'(z))

8.4 Bedeutung der Determinante einer Darstellungsmatrix

An der Determinante der Darstellungsmatrix einer linearen Abbildung 7" : R” — R™ (bzw.
T :V — V) konnen gewisse Eigenschaften von T" abgelesen werden.

Umkehrbare lineare Abbildungen

Eine lineare Abbildung T : R® — R" ist umkehrbar, wenn es eine lineare Abbildung 7! :
R™ — R" gibt, so dass

ToT'=T"'oT=1d
die Identitét ist (vgl. letztes Semester, Kapitel 1). Fiir die Darstellungsmatrizen (bzgl. der
Standardbasis oder einer anderen Basis) folgt [T][T~!] = [T~ !][T] = E (wobei E die Ein-
heitsmatrix bezeichnet). Das heisst, [T ist invertierbar und

In Worten: Die Darstellungsmatrix der Umkehrabbildung 7! ist die Inverse [T]~! der Dar-
stellungsmatrix [T'] von 7.
Ist umgekehrt 7' : R™ — R"™ eine lineare Abbildung und [T] invertierbar, dann ist T’
umkehrbar und 77! ist definiert durch 7-1(%) = [T]~17 fiir alle ¥ in R".
Es gilt also
T umkehrbar <= [T invertierbar .

Mit Satz 8.5 (b), Seite 144, vom letzten Semester erhalten wir den folgenden Satz.
Satz 8.5 Sei T : R®™ — R” linear. Dann gilt
T umkehrbar <= det([T]) #0.

Wegen Satz 8.4 ist die Standardmatrix [T] invertierbar, genau dann wenn die Darstellungs-
matrix [T]p zu jeder anderen Basis B invertierbar ist. Der Satz 8.5 gilt also auch fiir [T]g
anstelle von [T].

Beispiele
1. Sei T : R? — R? die Orthogonalprojektion auf die 2-Achse.
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2. Sei T : R? — R? die Drehung um den Ursprung um den Winkel ¢.

Volumenénderung

Sei A eine n x n-Matrix und T : R" — R” die lineare Abbildung 7'(¥) = AZ. Eine “geome-
trische Figur” mit Volumen V wird durch T" abgebildet auf eine Figur mit Volumen V’.
Satz 8.6 Es gilt V' =|det(A)|-V.

Fiir n = 2 muss Volumen V durch Flécheninhalt F' ersetzt werden.

Betrachten wir einen Spezialfall in R?, nimlich das von €; und &, aufgespannte Quadrat
mit Flacheninhalt F' = 1. Durch T wird dieses Quadrat auf das Parallelogramm, aufgespannt
von T'(€1) und T'(€2), abgebildet. Mit Satz 8.6, Seite 145, vom letzten Semester folgt

F' = |det(T (&) T(&))| = | det(A)| = | det(A)| - F,

wie in Satz 8.6 behauptet.
Beispiel
Gegeben seien das Parallelogramm aufgespannt von 9y = (3), ¥2 = (7) und 7 : R? — R?,

T(Z) = AZ mit
2 4
A:< )
3
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Spiegelungen und Drehungen im R? und R?

Mit einer Spiegelung im R? ist hier eine Spiegelung an einer Geraden durch den Ursprung
gemeint und mit einer Spiegelung im R? eine Spiegelung an einer Ebene durch den Ursprung.
Mit einer Drehung im R? ist eine Drehung um den Ursprung gemeint und mit einer Dre-
hung im R? eine Drehung um eine Drehachse durch den Ursprung. Solche Spiegelungen und
Drehungen sind lineare Abbildungen.

Diese Spiegelungen und Drehungen sind ldngen- und winkeltreu, das heisst, Strecken
werden auf Strecken gleicher Linge abgebildet und die Winkel bleiben erhalten. Ist also A
die Standardmatrix einer solchen Spiegelung oder Drehung, dann gilt

| AD]| = ]

fiir einen beliebigen Vektor ¢ in R? oder R3.
Die Lange eines Vektors kann man mit dem Skalarprodukt ausdriicken:

Es gilt also
ATA=F.

Satz 8.7 Die Darstellungsmatriz einer Drehung oder Spiegelung im R? oder R3 bzgl. einer
Orthonormalbasis ist orthogonal.

Ist A die Darstellungsmatrix einer Drehung oder Spiegelung T bzgl. einer beliebigen Basis
von R? oder R3, dann gilt
|det(A)] =1

denn der Fliacheninhalt (bzw. das Volumen) einer geometrischen Figur bleibt durch eine
Spiegelung oder Drehung unverédndert.
Genauer gilt das Folgende:

T Drehung = det(4) =1
T Spiegelung == det(4) = -1
Dies folgt aus der Tatsache, dass eine Drehung orientierungserhaltend und eine Spiegelung

orientierungsumkehrend ist.
Es gilt nidmlich allgemein fiir eine lineare Abbildung 7" in R? oder R3, dass

det([T]) >0 <= die Orientierung einer geometrischen Figur bleibt erhalten
det([T]) <0 <= die Orientierung einer geometrischen Figur wird umgekehrt
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9 Eigenwerte und Eigenvektoren

Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R™ nach R"
durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl der Basis
fiir R™). Im Idealfall kann die Matrix diagonal gew#hlt werden. Dazu muss eine Basis aus
sogenannten Eigenvektoren existieren.

9.1 Bestimmung von Eigenwerten und Eigenvektoren

Definition Sei A eine (reelle) n x n-Matrix. Ist A eine reelle Zahl und @ # 0 in R™ mit
At = i,
dann heisst A Figenwert von A und @ ein zu A dazugehériger Figenvektor von A.

Wir beschrianken uns im Moment auf reelle Eigenwerte und Eigenvektoren, werden aber in
einem spéteren Abschnitt auf komplexe Matrizen, Eigenwerte und Eigenvektoren eingehen.

Beispiel

Der Vektor @ = (}) ist ein Eigenvektor zum Eigenwert A = 2 der Matrix

().

Um die Eigenwerte und Eigenvektoren einer Matrix A zu bestimmen, schreibt man die
Gleichung A@ = M als Mi — A@ = 0 oder

(AE —A)i=0. (EV)

Dies ist ein homogenes lineares Gleichungssystem. Fiir welche A hat dieses System Losungen
@ # 07 Ist die Matrix A\E — A invertierbar, dann ist @ = (A\E — A)~'0 = 0 die einzige Losung.
Es gibt also Losungen @ # 0 genau dann, wenn AE — A nicht invertierbar ist, das heisst genau
dann wenn

det(AE — A) =0. (EW)

Diese Gleichung heisst charakteristische Gleichung von A. Ihre Losungen sind die Eigenwerte
von A. Der Ausdruck
p(A) = det(AE — A)

ist ein Polynom in A, das sogenannte charakteristische Polynom. Es hat den Grad n und da
ein Polynom vom Grad n hochstens n verschiedene Nullstellen hat, hat eine n x n-Matrix
hochstens n verschiedene Eigenwerte.

Um zu jedem gefundenen Eigenwert A\ die zugehorigen Eigenvektoren zu bestimmen, muss
anschliessend das homogene lineare System (EV) gelost werden.
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Beispiel

Gesucht sind die Eigenwerte und Eigenvektoren der Matrix

().

Wir sehen im Beispiel und auch allgemein anhand der Gleichung (EV), dass die Eigen-
vektoren zu einem festen Eigenwert zusammen mit dem Nullvektor einen reellen Vektorraum,
den sogenannten Figenraum, bilden. Das heisst, fiir einen fixen Eigenwert sind Vielfache # 0
von einem Eigenvektor und Linearkombinationen # 0 von Eigenvektoren auch Eigenvektoren
zum selben Eigenwert. Es geniigt also, eine Basis von jedem Eigenraum anzugeben.
Vorgehen zur Bestimmung von Eigenwerten und Eigenvektoren einer Matrix A
(1) Bestimme alle Losungen A der charakteristischen Gleichung

det(AE — A)=0. (EW)

Dies sind die Eigenwerte von A.

(2) Bestimme fiir jeden Eigenwert A\ die Losungen @ # 0 des linearen Gleichungssystems
(AE—A)i=0. (EV)

Diese sind die Eigenvektoren von A zum Eigenwert A und bilden, zusammen mit 0, den
Eigenraum von A, so dass die Angabe einer Basis dieses Eigenraums geniigt.
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Beispiel
Gesucht sind die Eigenwerte und Eigenvektoren der Matrix
0 0 -2
A=11 2 1
10 3
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Geometrische Interpretation

Eine n x n-Matrix A kann aufgefasst werden als Standardmatrix A = [T] einer linearen
Abbildung T : R™ — R"™. Die Gleichung A# = A« fiir ein A in R und # in R"™ ist dadurch

gleichbedeutend mit
T(d) = M\ .

Das heisst, die Eigenvektoren von A sind genau diejenigen Vektoren, welche durch T lediglich
gestreckt oder gestaucht (mit einer Richtungsumkehrung, falls A < 0) werden.

Beispiele

1 V3

R 2
1.Se1A—<\/§ _l>'

2 2

Wir haben im letzten Kapitel (Seite 91) gesehen, dass A = [T] die Standardmatrix der Spie-
gelung T : R? — R? an der Geraden g mit dem Richtungsvektor i, = (?) ist.

1 0
2.SeiA:< )
0 O

Wir wissen (vgl. Seite 87), dass diese Matrix die Standardmatrix A = [T] der Orthogonal-
projektion T : R? — R? auf die 2-Achse ist.

Ist also A die Darstellungsmatrix einer bekannten linearen Abbildung, so kénnen die
Eigenwerte und Eigenvektoren ohne Rechnung angegeben werden.

Umgekehrt, ist die Darstellungsmatrix einer linearen Abbildung gegeben, so kann der Typ
dieser Abbildung durch Berechnen der Eigenwerte und -vektoren bestimmt werden.

Eine lineare Abbildung 7" : R® — R" hat durch die Gleichung T'(@) = Au eindeutig
bestimmte Eigenwerte und -vektoren. Es gibt jedoch verschiedene Darstellungsmatrizen, die
T beschreiben (abhingig von der Wahl der Basis von R™). Alle diese Darstellungsmatrizen
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haben identische Eigenwerte und -vektoren, ndmlich genau diejenigen , die durch T'(@) = A&
definiert sind. Wir sehen im folgenden Abschnitt, dass die Darstellungsmatrix von T' diagonal
gewihlt werden kann, falls es eine Basis von R" gibt, die aus Eigenvektoren von T' besteht.

9.2 Diagonalisierung von Matrizen

Definition Eine n x n-Matrix A heisst diagonalisierbar, wenn es eine invertierbare Matrix
P gibt, so dass
PAP'=D

eine Diagonalmatrix ist.

Uberraschenderweise hingt die Diagonalisierbarkeit einer Matrix mit der Existenz von
Eigenvektoren ab.

Satz 9.1 Fine n X n-Matriz ist genau dann diagonalisierbar, wenn sie n linear unabhdngige
Figenvektoren hat.

Hat némlich eine n x n-Matrix A n linear unabhingige Eigenvektoren 1, ..., i, und ist P~
die (invertierbare) Matrix mit den Vektoren iy, ..., , als Spalten, dann gilt

A1 0
PAP ' = ,
0 An
wobei \; der Eigenwert zum Eigenvektor ; ist fiir ¢ = 1,...,n. Die Diagonalelemente der
Diagonalmatrix D sind also gerade die Eigenwerte der Matrix A!

= (%)

diagonalisierbar? Wenn ja, bestimme D und P~1.

Auf Seite 97 haben wir gesehen, dass @3 = (1) ein Eigenvektor zum Eigenwert \; = 2

und @y = (}) ein Eigenvektor zum Eigenwert Ao = 3 ist.

Beispiel
Ist
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Mochte man nur feststellen, ob eine Matrix diagonalisierbar ist, ohne die diagonalisierende
Matrix P auszurechnen, so ist der folgende Satz oft anwendbar.

Satz 9.2 Hat eine n X n-Matriz n verschiedene Figenwerte, so ist sie diagonalisierbar.

Es gilt namlich, dass Eigenvektoren zu verschiedenen Eigenwerten linear unabhéngig sind.
Insbesondere bilden die Basen der verschiedenen Eigenriume eine maximale Menge linear
unabhéngiger Eigenvektoren der Matrix.

Vorgehen zur Diagonalisierung einer n x n- Matrix A

(1) Bestimme alle Eigenwerte von A.
Hat A n paarweise verschiedene Eigenwerte, dann ist A diagonalisierbar.
Wenn nicht, dann erkennt man erst in Schritt (2), ob A diagonalisierbar ist oder nicht.

(2) Bestimme zu jedem Eigenwert eine Basis des Eigenraums (bzw. eine maximale Anzahl
linear unabhéngiger Eigenvektoren).

Hat A insgesamt n linear unabhéingige Eigenvektoren iy, ..., 4,, dann ist A diagonali-
sierbar.
(3) Schreibe die Eigenvektoren iy, ..., i, als Spalten in eine Matrix P~!.

(4) Das Matrixprodukt D = PAP~! ist eine Diagonalmatrix mit den Diagonalelementen
AL, .-+ An, Wobei A; der Eigenwert zum Eigenvektor w; ist.

In Schritt (4) kann man die Diagonalmatrix D direkt hinschreiben, ohne Berechnung von
PAP~!. Dass PAP~! = D diagonal ist, begriinden wir allgemein auf Seite 103.

Beispiele
1. Ist die Matrix
0 0 -2
A=11 2 1
10 3
diagonalisierbar? Wenn ja, bestimme D und P~!.
Wir haben auf Seite 98 gesehen, dass A die folgenden drei Eigenvektoren hat:

-2 1 0
ﬁl - 1 5 _)2 — O 3 ﬁg — 1
1 -1 0

iy ist ein Eigenvektor zum Eigenwert A; = 1 und s, @3 sind Eigenvektoren zu Ay = 2.
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2. Ist die Matrix

-1 0 0
A=1-3 2 0
0 1 2

diagonalisierbar?

Die Eigenwerte sind also
)\1 =2 und )\2 =-—1.

o N\ =2:

Zu A1 = 2 gibt es genau 1 linear unabhéingigen Eigenvektor (oder direkt: der Rang von
ME — Aist 2, also ist dim(Eigenraum) =3 —2 = 1).

0 O 0
e \y = —1: Die Matrix MqE—-A=|3 -3 0 hat den Rang 2.
0o -1 -3

Die Dimension des Eigenraumes ist daher 3 —2 = 1. Eine Basis dieses Eigenraumes besteht
also aus einem Eigenvektor.

Insgesamt hat die Matrix A also nur 2 linear unabhéngige Eigenvektoren. Nach Satz 9.1 ist
A deshalb nicht diagonalisierbar.

Das Untersuchen des Figenwerts A\s = —1 im letzten Beispiel kann man sich dank des
folgenden Satzes sparen.

Satz 9.3 Ist der Eigenwert \ eine k-fache Nullstelle des charakteristischen Polynoms, dann
gibt es zu X hochstens k linear unabhdngige Figenvektoren.

Beispiel
Das charakteristische Polynom der Matrix

A:

S = O
= o O
S O =

ist

detOAE—A) =X —1=A-1)A\+X+1).
Der einzige reelle Eigenwert ist A = 1 und dazu gibt es nur einen linear unabhéngigen Eigen-
vektor. Diese Matrix ist also nicht diagonalisierbar.
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Geometrische Interpretation

Wenn wir die gegebene n x n-Matrix A als Standardmatrix A = [T einer linearen Abbildung
T : R — R™ auffassen, sind Satz 9.1 und die anschliessende Bemerkung einfach einzusehen.

Die n linear unabhéngigen Eigenvektoren iy, ...,u, bilden eine Basis B von R". Die
Matrix P~! bedeutet der Basiswechsel von B zur Standardbasis und Satz 8.4 sagt nun, dass
D = [T|p die Darstellungsmatrix von T beziiglich der Basis B ist. In den Spalten von D

stehen also die Koordinaten der Bilder von 1, ..., unter 1"
A1 0 0
0 A2 0
T(ﬁl) = \u; = 0 , T(ﬁg) = Aylly = 0 R R T(ﬁn) = A\ Uy, =
0
0 B 0 B An B
Wir erhalten genau die Diagonalmatrix D mit den Eintragen Aq, ..., A, auf der Diagonalen.
Beispiel

Wir betrachten nochmals die Matrix

1 V3
A:m:<23 )
2 T2

welche die Standardmatrix der Spiegelung T an der Geraden g mit dem Richtungsvektor
U = (\{5) ist. Auf Seite 99 haben wir festgestellt, dass A die Eigenvektoren #; = <\{§>

zum Eigenwert A1 = 1 und iy = (\7%) zum Eigenwert Ao = —1 hat. Die beiden Eigenvektoren

sind linear unabhéngig, die Matrix A ist also diagonalisierbar. Geméss der Bemerkung nach
Satz 9.1 gilt

Tatséchlich erkennen wir (vgl. unsere direkte Rechnung auf Seite 89) die Diagonalmatrix

D= (é _01> = [Tls

als Darstellungsmatrix von 7' beziiglich der Basis B = {ii1,i2} und P! beschreibt den
Basiswechsel von der Basis B zur Standardbasis.
Sind allgemein A und B zwei (verschiedene) n x n-Matrizen, so dass
B=PAP!

fiir eine invertierbare Matrix P, dann beschreiben A und B dieselbe lineare Abbildung von R”
nach R™, aber beziiglich verschiedenen Basen von R”. Man nennt in diesem Fall die Matrizen

A und B dhnlich.
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Matrixpotenzen

In Anwendungen miissen oft hohe Potenzen einer quadratischen Matrix berechnet werden.
Ist die Matrix diagonalisierbar, dann kann diese Berechnung wie folgt vereinfacht werden.
Sei A eine diagonalisierbare Matrix und P invertierbar mit

PAP'=D

diagonal. Dann ist A = P~'DP und

Damit gilt
A =A%. A=P'D?’PP 'DP =P D3P

und so weiter. Fiir jede ganze Zahl k > 1 folgt
Ak = p~1Dkp.

Die rechte Seite ist fiir grosse k viel einfacher zu berechnen als die linke Seite, denn fiir das
Potenzieren von Diagonalmatrizen gilt:

dq 0 d¥ 0
0 dy, 0 dr
Beispiel
Wir berechnen A2 fiir A = (_12 i)

Wir haben schon gesehen, dass PAP~! = <(2) g) mit P71 = (1 ;) und P = < 2 _1>.

Es folgt

und wir erhalten

20 _ (2230 220430 | (-3484687249 3485735825
T \221 —92.320 9204 9.320 ) 7 \ _6971471650 6972520226 )

Anwendungsbeispiele

Wir haben im letzten Semester Markov-Ketten betrachtet und sind dabei auf Matrixpotenzen
gestossen, die wir fiir grosse Exponenten noch nicht berechnen konnten. Jetzt kénnen wir dies
mit Hilfe einer Diagonalisierung tun.

Zur Erinnerung: Bei einer Markov-Kette ist ein System mit n verschiedenen Zusténden
gegeben. Fiir unsere Beispiele hier beschrinken wir uns gleich auf n = 2. Es gibt also zwei
verschiedene Zustinde. Sei p;; die Wahrscheinlichkeit, dass das System vom Zustand 4 in den
Zustand j wechselt und sei A = (p;;) die entsprechende 2 x 2-Matrix. Weiter sei @, = (2, yx)?
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der Zustandsvektor nach k Zeitetappen, das heisst, x, bzw. y; ist die Wahrscheinlichkeit,
dass das System nach k Zeitetappen im Zustand 1, bzw. 2 ist. Dann gilt

. = A*G, .

1. Beispiel. Wir betrachten nochmals den Wolf vom letzten Semester, der sich abwechselnd
in der Ndhe von Basel und in der Néhe von Liestal aufhélt. Wir wissen, dass wenn der Wolf
an einem Tag in Basel ist, er am folgenden Tag stets in Liestal herumstreicht und wenn er

in Liestal ist, er am folgenden Tag mit einer Wahrscheinlichkeit von % in Basel ist. Hier gilt

also )

Wenn wir den Wolf heute in Basel sehen und wissen wollen, mit welcher Wahrscheinlichkeit
er heute in einem Jahr wieder in Basel ist, dann miissen wir 4360 berechnen. Dafiir und
insbesondere auch fiir allgemeinere Aussagen zu den Aufenthaltswahrscheinlichkeiten nach
sehr vielen Tagen (also fiir sehr grosse k) lohnt es sich, die Matrix A zu diagonalisieren.
Tatséchlich ist die Matrix A diagonalisierbar, da sie zwei verschiedene Eigenwerte, Ay = 1
und Ay = —i, hat. Mit den zugehérigen Eigenvektoren @1 = (}) und up = (_11) erhalten wir
die Diagonalisierung

_ 1 _ (1 0 . 1 (1 —1 (11
D = PAP _<O _% mit P~ = 41 undP—5 4 1)

0

7. = AF, fiir die Matrix A = (1

EN[SCENIE

Fiir eine iibersichtlichere Schreibweise setzen wir ¢ = —i. Wir berechnen
_ (1 0 144d* 1-a*
k _ 1nkp 1 _ 1
AT=PDP =P <0 ak>P_5<4—4ak 4+ak>
und erhalten aus (§¥) = 0} = A*%p = A* (§2) die Aufenthaltswahrscheinlichkeiten des Wolfes

=3 <(1 +4a")ao + (1 - ak)yo> Yk =% ((4 — 4a")wo + (4 + ak)yo)

nach k& Tagen in Basel, bzw. Liestal zu sein. Fiir sehr grosse k stabilisieren sich die Wahr-
scheinlichkeiten z, y. Da lim ¢ = lim (—%)k =0 und zg +yo = 1, gilt
k—oo k—o0
: _1 _1 : _1 _ 4
kh_{go:ﬂk = ¢(xo+w0) = %, kh_)H;Oyk = =(4z0 +4yo) = = .

Nach sehr vielen Tagen hilt sich also der Wolf mit einer Wahrscheinlichkeit von % =0,2in

Basel und mit einer Wahrscheinlichkeit von % = 0,8 in Liestal auf (und zwar unabhéngig
davon, wo wir ihn heute sehen).

2. Beispiel. Wir betrachten einen Organismus, der sich durch Zellteilung verdoppelt. Es gibt
zwei verschiedene Typen des Organismus, sagen wir X und Y. Im Reagenzglas beobachten
wir, dass aus 100 Individuen vom Typ X nach einem Tag 180 Individuen vom Typ X und
20 Individuen vom Typ Y entstehen, wihrend aus 100 Individuen vom Typ Y nach einem
Tag 120 Individuen vom Typ Y und 80 Individuen vom Typ X entstehen. Wie entwickelt
sich das Verhéltnis der Individuenzahlen vom Typ X bzw. Y 7 Die Antwort auf diese Frage
kann analog zum vorherigen Beispiel herausgefunden werden. Es stellt sich heraus, dass es
nach gentigend langer Zucht viermal so viele Individuen vom Typ X wie vom Typ Y gibt
(unabhéngig von der Anfangspopulation).
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Systeme von linearen Differentialgleichungen

Im letzten Semester in Kapitel 6 haben wir nur ein spezielles System von zwei linearen
Differentialgleichungen betrachtet. Hier soll nun nachgeholt werden, wie man ein beliebiges
System von zwei oder mehr linearen Differentialgleichungen (mit konstanten Koeffizienten )
mit Hilfe von Eigenwerten und Eigenvektoren 16sen kann. Wir zeigen hier die Losungsmethode
an einem Beispiel eines Systems von zwei linearen Differentialgleichungen. Analog kénnen
damit Systeme von mehr als zwei Differentialgleichungen gel6st werden.
Beispiel
Gesucht sind zwei relle Funktionen y; = y1(x) und yo = ya2(z), so dass

Y= 3y -2y

Yo = 2y1—2y2.

Wir schreiben dieses System mit Matrizen als

, fe—
(?@) 4 (?ﬂ) it A = <3 2> |
Ys Y2 2 =2
Die Differentialgleichung 3’ = ay hat die Losung y(x) = ce®. Wir versuchen deshalb den

Ansatz
yi(x) = c1e™, ya(z) = e das heisst <y1> — M <Cl> )
Y2 Co

(yé> — e <01> A <y1> — Ay <C1> ‘
Yo C2 Y2 Co

Das System der zwei Differentialgleichungen ist demnach erfiillt, wenn

Damit gilt

Gesucht sind also die Eigenwerte und Eigenvektoren der Matrix A!
Die charakteristische Gleichung von A ist
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Zu den Eigenwerten Ay = —1 und Ao = 2 brauchen wir je einen Eigenvektor:

Wir erhalten die Losungen

Die allgemeine Losung besteht nun aus allen moglichen Linearkombinationen dieser beiden
Losungen (man kann zeigen, dass der Losungsraum ein Vektorraum der Dimension 2 ist):

(1) = () = ()

yi(r) = ae™® +2Be*
ya(z) = 20e7% 4 B>,

fiir a, 8 € R, das heisst,

9.3 Symmetrische Matrizen

Wir haben gesehen, dass das Diagonalisieren einer Matrix einem Basiswechsel der zugehorigen
linearen Abbildung entspricht. Speziell praktisch sind natiirlich Orthonormalbasen, das heisst
Basisvektoren, die zueinander orthogonal sind und alle die Lidnge 1 haben. Schreibt man
die Basisvektoren einer Orthonormalbasis in eine Matrix, dann erhélt man eine orthogonale
Matrix (vgl. Kapitel 9, Seite 162 vom letzten Semester). Es stellt sich also die Frage, ob und
wann die diagonalisierende Matrix P orthogonal gewihlt werden kann.

Nehmen wir an, dass P orthogonal ist, das heisst, P~' = PT. Aus D = PAP~! erhalten
wir fiir die Matrix A die Gleichung

A=P'DP=P'DP.
Daraus folgt, dass die Matrix A symmetrisch ist, denn
AT = (PTDP)T = PTDT(PT)T = PTDP=A.

Die Matrix P kann also nur dann orthogonal sein, wenn A symmetrisch ist. Tatséchlich ist
diese Bedingung an A nicht nur notwendig, sondern auch hinreichend: Jede symmetrische
Matrix kann durch eine orthogonale Matrix diagonalisiert werden.
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Satz 9.4 Jede symmetrische Matriz ist diagonalisierbar, und zwar kann die diagonalisierende
Matriz P stets orthogonal gewdhlt werden.

Wihlt man die diagonalisierende Matrix P orthogonal, dann erhilt man wegen P~! = PT
die Diagonalisierung

PAPT = D.

Beispiel
Gegeben ist die (symmetrische) Matrix

Die charakteristische Gleichung ist

det(AE—A)zdet(A;5 ﬁs) A2 130436 = (A—4)(A—9) = 0.

Wir finden die folgenden Eigenvektoren:

Die beiden Eigenvektoren ¢ und v5 sind orthogonal. Um eine orthogonale Matrix P zu
erhalten, miissen wir ¥; und ¥y auf die Lénge 1 normieren. Eine Orthonormalbasis von Ei-

genvektoren bilden also die Vektoren
2 i 1 /-1
1 9 2 — \/5 2 .

U =

Sl

Wir erhalten die Diagonalisierung

Satz 9.5 Bei einer symmetrischen Matriz sind die Eigenvektoren zu verschiedenen FEigen-
werten orthogonal.

Innerhalb eines Eigenraumes muss man eine Orthonormalbasis von Eigenvektoren wiéhlen,
damit die Matrix P orthogonal ist.



109

Hauptachsentransformation

Die Diagonalisierung einer symmetrischen Matrix mit einer orthogonalen Matrix nennt man
Hauptachsentransformation. Dieser Name wird anhand des folgenden Beispiels klar.

Beispiel
Wie sieht die Kurve C in R? mit der Gleichung
522 — day + 8y? — 36 = 0

aus? Wir kénnen diese Gleichung schreiben als

e 5 =2 AN o4 (5 =2 N
" AZ 36—(ﬂz,y)<_2 8><y> 36 =0 mltA—<_2 8>,x—<y>.

Dies ist die Matrix A vom vorhergehenden Beispiel.
Wir transformieren nun die Koordinaten, das heisst, wir setzen

. . . 1 2 1 . x!
y = Px mit P—%<_1 2>,y—<y,>.

Dabei ist P der Basiswechsel von der Standardbasis zur Basis B = {1, @2} und demnach ist
¢ der Koordinatenvektor beziiglich der Basis B. Da P die Matrix einer Drehung ist (denn P
ist orthogonal und det(P) = 1), drehen wir also das Koordinatensystem.

Mit & = P~y = PTy folgt

Das heisst, in den neuen Koordinaten (bzgl. der Basis B) hat die Kurve C' die Gleichung

T = r (40 ! 2 2
g Dy —36=(z,y") 09 —36=42"“+9“ -36=0,

y/

das heisst,
2 2
9 4

Die Kurve C' ist also eine Ellipse, deren Hauptachsen in die Richtung der Eigenvektoren von
A zeigen.
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Quadratische Formen

Der im letzten Beispiel aufgetretene Ausdruck
ZL AT = 52? — dzy + 8y?
ist ein Beispiel einer sogenannten quadratischen Form.
Definition Sei A eine symmetrische n X n-Matrix und & € R™. Dann heisst
Il AZ = - (AZ)
quadratische Form von A.

Da A symmetrisch ist, kann die quadratische Form auch geschrieben werden als
AT = (AZ) - I,

denn 2T A% = 3T AT% = (AZ)T% = (A%) - 7.

Bei der Untersuchung von lokalen Extrema von Funktionen in mehreren Variablen im
nichsten Kapitel miissen wir wissen, wann eine quadratische Form nur positive (bzw. nega-
tive) Werte annimmt.

Definition Sei A eine symmetrische n x n-Matrix.
e A heisst positiv definit, wenn
FTAZ >0 fiiralle ## 0 in R™.
e A heisst negativ definit, wenn
FTAZ <0 fiir alle  # 0 in R™.
e A heisst indefinit, wenn es T # 0 mit ZZ A7 > 0 und § # 0 mit 7 A7 < 0 gibt.

Wir geben im Folgenden zwei Kriterien an, wann eine Matrix positiv (bzw. negativ) definit
ist. Wir formulieren diese nur fiir 2 x 2-Matrizen, da wir sie fiir solche Matrizen im néchsten
Kapitel brauchen werden. Beide Kriterien kénnen jedoch auf n x n-Matrizen verallgemeinert
werden.

Beispiel
Sei
#T AZ = 5x? — dxy + 8y mit A = <_52 _82>
die quadratische Form vom letzten Beispiel. In den neuen Koordinaten <Z:> =y = P%

(beziiglich der Basis von Eigenvektoren) lautet die quadratische Form
TLAZ = 42" + 9y .

In dieser Darstellung ist klar ersichtlich, dass A positiv definit ist.
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Eine solche Koordinatentransformation kann fiir jede symmetrische 2 x 2-Matrix (bzw.
n x n-Matrix) durchgefiihrt werden. Sei

A:(Z g).

fT AT = (z,9)A(2) = ax® + 2bzy + cy” .

Dann gilt fiir # = () € R?, dass

Da A symmetrisch ist, ist A diagonalisierbar mit den Eigenwerten A1, Ao. Es folgt (wie im
Beispiel), dass
fTACE — g»T A1 0 g»: )\156/2 + )\le2
0 X

beziiglich der neuen Koordinaten ¢ = (Z: > Die Definitheit von A héngt also von den Eigen-

werten von A ab.

Satz 9.6 Scien A\, Ao die Figenwerte der symmetrischen 2 x 2-Matrix A. Dann gilt:
e A positiv definit <= A1 >0, Ay >0
o A negativ definit <= A\ <0, Ay <0
o A indefinit < A >0, Ao <0 oder A\ <0, Ag >0
Insbesondere ist A indefinit <= det(A) < 0. Weiter gilt:
o A positiv definit <= det(A) >0, a >0
o A negativ definit <= det(A) >0, a <0
Beispiel
Gegeben sind
B = <_1 —26> mit 77 BZ = —a? + 4y — 6y?,

C:<1 2> mit 7 OF = x? + dxy — 6y,

D:<6 0> mit ' DZ = 622 — 2.
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9.4 Komplexe Matrizen

Anstelle von reellen n x n-Matrizen konnen wir auch komplexe n x n-Matrizen betrachten,
das heisst, Matrizen mit Eintragen in C. Eine komplexe n x n-Matrix beschreibt dann eine
lineare Abbildung von C™ nach C™.
In R™ haben wir das Skalarprodukt - ¢ = Z7¢. Fiir Z,% in C" definieren wir das Skalar-
produkt
7o = 21W1 + -+ 2,Wh

wobei Wy, . ..,w, die zu wy,...,w, konjugiert komplexen Zahlen sind.
Damit ist Z'- Z eine nichtnegative reelle Zahl und die Ldnge eines Vektors z € C™ kann
definiert werden durch

12 = VZ- 2= ]z + -+ [l

Die Begriffe orthogonale Vektoren und Orthonormalbasis lassen sich ohne Anderung auf den
(komplexen) Vektorraum C" iibertragen.

) ()

Beispiel
Sind die Vektoren

orthogonal?

Weiter ist ||Z]| = /]i]? + |1]? = V2.

Beim Diagonalisieren von reellen Matrizen spielen symmetrische und orthogonale Matri-
zen eine wichtige Rolle. Analog zur Transponierten definiert man fiir eine komplexe Matrix A
die konjugiert Transponierte

A =A"

)

.= . . —T .. .
wobei A durch Konjugieren der einzelnen Elemente von A entsteht und A” die Transponierte
von A ist.

Beispiel

A= (41@ ?3) — A=
Definition Sei A eine komplexe n X n-Matrix.
e A heisst hermitesch, falls A = A*.
o A heisst unitar, falls A=1 = A*.

Hermitesche Matrizen sind also das komplexe Analogon der symmetrischen Matrizen. Unitére
Matrizen iibernehmen die Rolle der orthogonalen Matrizen. Dabei ist (wie im Reellen) eine
komplexe Matrix unitidr genau dann, wenn die Spaltenvektoren eine Orthonormalbasis von

C™ bilden.
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Satz 9.7 Jede hermitesche Matriz ist diagonalisierbar, und zwar kann die diagonalisierende
Matriz stets unitir gewdhlt werden.

Bei hermiteschen Matrizen sind die Eigenvektoren zu verschiedenen Eigenwerten orthogonal,
genau wie bei symmetrischen Matrizen.

Im Reellen sind die symmetrischen Matrizen die einzigen, welche orthogonal diagonalisiert
werden konnen. Im Komplexen gibt es neben den hermiteschen Matrizen noch andere, welche
unitédr diagonalisiert werden kénnen.

Satz 9.8 Die Figenwerte einer hermiteschen Matriz sind reell.

Beispiel
Wir betrachten die hermitesche Matrix

(2 14
A_<1—¢ 3>'

Die charakteristische Gleichung lautet:

Die Eigenwerte sind also A1 =1 und Ay = 4.
Die zugehorigen Eigenvektoren finden wir wie im Reellen (lineares Gleichungssystem
16sen). Zu A; und Ag finden wir zum Beispiel die Eigenvektoren

ﬁ 144 R 141
01:<_1> und v2:<2>.

Da sie zu verschiedenen Eigenwerten gehoren, sind sie orthogonal. Um eine unitére diagona-
lisierende Matrix P~! zu bekommen, miissen wir die beiden Vektoren noch auf die Linge 1
normieren.

Damit erhalten wir

0 4

) bzw.p:<

PAP™ ! = PAP* = (1 0)

mit der unitaren Matrix

P—1:P*:<

—
4
~
—_
+
~
—
|
-

ShelE
N

T
S Sl
N——

sl
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10 Differentialrechnung fiir Funktionen in mehreren Variablen

Viele Funktionen in den Naturwissenschaften hdngen von mehreren Variablen ab. In diesem
Kapitel behandeln wir deshalb Methoden zur Untersuchung von Funktionen in mehreren
Variablen.

Im letzten Semester haben wir Funktionen f : R — R betrachtet, in den Kapiteln 8 und
9 in diesem Semester (lineare) Abbildungen T : R™ — R™. In diesem Kapitel geht es nun
hauptséchlich um Funktionen f:R"™ — R.

Sei D C R? eine Teilmenge. Wir wissen schon von Kapitel 8 (Seite 86), dass eine (reell-
wertige) Funktion f : D — R von zwei reellen Variablen eine Vorschrift ist, die jedem Punkt
(x,y) € D eine reelle Zahl z = f(z,y) zuordnet,

f+:D — R
(z,y) — z=f(zy).
Ist D eine Teilmenge von R? oder allgemeiner R”, dann definiert die Zuordnung
f:D — R
(r1,22,...,2n) — flx1,29,...,20)

eine (reellwertige) Funktion in n Variablen. Beispiele haben wir schon in Kapitel 8 gesehen.

Wir werden in diesem Kapitel vor allem (reellwertige) Funktionen mit Definitionsbereich
in R? untersuchen. Die meisten Begriffe und Resultate lassen sich problemlos auf den Fall
von drei und mehr Variablen iibertragen. Im Gegensatz zum allgemeinen Fall hilft uns bei
zwei Variablen jedoch die geometrische Anschauung.

10.1 Graphische Darstellung

Sei D € R? und f : D — R. Analog zu reellen Funktionen kénnen wir die Funktion f mit
Hilfe ihres Graphen veranschaulichen. Der Graph von f ist definiert durch

Graph(f) = { (z,y, f(z,y)) | (z,y) € D } .

Wir errichten eine Strecke der Linge z = f(z,y) iiber jedem Punkt (x,y) € D (bzw. unter
(x,y) € D falls z < 0). Die Endpunkte aller dieser Strecken bilden eine Fldche im Raum,
welche der Graph von f ist.

xy.2)

z=f(xy)

y x.y)
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Beispiele

e=flay)=8-2—y

coa gl b e a g e r s lar sl

z=f(z,y) =y*—2° 2= fla,y) = e @)

Wir kénnen die Funktion f : D — R in zwei Variablen auch durch Niveaulinien (wie
die Hohenkurven auf Landkarten) veranschaulichen. Wir schneiden den Graphen von f mit
horizontalen Ebenen, das heisst, parallel zur xy-Ebene in einer bestimmten Hohe z = ¢. Die
Schnittkurve projizieren wir senkrecht in die xy-Ebene. Die Niveaulinie fiir z = ¢ ist also
gegeben durch

NCZ{ (Q?,y)ED | f(.’L‘,y)ZC}CRz.
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Beispiele
L z=f(z,y) =8—a>—y°

Als Niveaulinien erhalten wir eine Familie konzentrischer Kreise:

z>8 keine Losung
8=z=8—-22—y? = 22+ =0
4=z=8-22—y? = 22+y2=4
0=z=8—-22—y> — 224+¢4*=38

RN RN

[TTTTTTTP
2 -1

I

2. z=f(z,y) =y*>—2?

Als Niveaulinien erhalten wir eine Familie von Hyperbeln:

0=z=y’—2?> = y?—2>=0odery ==z
2

d=z=y? -2 = y?-—2%2=—-4

2

hd=z=9y*-2> = ¢y*—-2?=14

A NN AR |
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10.2 Partielle Ableitungen und Tangentialebenen

Eines unserer Ziele ist, Extremalstellen von Funktionen in mehreren Variablen zu finden und
zu untersuchen. Wie fiir reelle Funktionen brauchen wir dazu Ableitungen.

Partielle Ableitungen

Sei D Cc R? und f: D — R eine Funktion.

Definition Die partiellen Ableitungen von f im Punkt (z¢,yo) sind wie folgt definiert.

Fo(x0,50) = %(ﬂfo,yo) _ }Lli% flzo + h7y0})L — f(@o,y0) _ xli—>na}0 f(x,yo; : igxo,yo)

ist die partielle Ableitung nach x und

h) — _
N

ist die partielle Ableitung nach y.

Beispiele

1. f(x,y) = 2%+ bzy + 3y> + 13

2. f(x,y) = 2% €% + In(x)

Fiir die partielle Ableitung f, fixiert man also die Variable y (man behandelt y wie eine fixe
reelle Zahl) und leitet wie gewohnt nach 2 ab. Analog fiir f,.
Wie fiir reelle Funktionen brauchen wir zusétzlich héhere Ableitungen.

Definition Die partiellen Ableitungen zweiter Ordnung sind definiert durch

_Of 9 (of _9f 9 (oFf
e=g5=a(5) =5 =5 (o)

_O*f 9 (of _O*f 0 [(of
fw_axay_a_y(%) fym‘awx%(a—y)'

und
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Beispiel
f(z,y) = 2%+ 5zy + 3y* + 13 mit fy(v,y) =22 + 5y und f,(z,y) = 5z + 6y

Satz 10.1 Sind die partiellen Ableitungen fr, und f,, stetige Funktionen, dann gilt
fmy = fym .

Die partiellen Ableitungen haben die folgende geometrische Bedeutung. Sei z = f(z,y)
eine Funktion mit Definitionsbereich D und P = (z, y0, 20) mit z9 = f(zo, y0) ein Punkt auf
dem Graphen von f. Durch diesen Punkt gibt es drei spezielle Kurven auf dem Graphen:

e xz-Kurve durch P: { (x,y0,2) | 2= f(z,y0) und (z,y0) € D }
e yz-Kurve durch P: { (z0,y,2) | z = f(xo,y) und (z9,y) € D }
e xy-Kurve durch P: { (x,y,20) | 20 = f(z,y) und (z,y) € D }

Beispiel
Sei z = f(z,y) = 22% + 3y*> mit D = R? und P = (1,0,2).

e rz-Kurve durch P :
e yz-Kurve durch P :

o zy-Kurve durch P: { (z,,2) | 2= f(z,y) = 22 + 3y und (z,y) € R? }
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Bedeutung der partiellen Ableitungen im Punkt P = (xg,yo, 20) :

e f.(xo,y0): Steigung der xz-Kurve in P
fa(zo,90) =0 = die zz-Kurve hat in P eine horizontale Tangente
faz(xo,y0) <0 = die zz-Kurve beschreibt eine Rechtskurve in der N#éhe von P
faez(xo,y0) >0 = die zz-Kurve beschreibt eine Linkskurve in der Nihe von P

o fy(xo,%0): Steigung der yz-Kurve in P
fy(z0,90) =0 = die yz-Kurve hat in P eine horizontale Tangente
Jyy(z0,90) <0 == die yz-Kurve beschreibt eine Rechtskurve in der Néhe von P
Jyy(z0,90) >0 == die yz-Kurve beschreibt eine Linkskurve in der Néhe von P

Beispiel
Sei z = f(z,y) = 22% + 3y* und P = (1,0,2).

Tangentialebenen

Wir haben im letzten Semester (Kapitel 4, Abschnitt 4) gesehen, dass eine differenzierbare
Funktion f : R — R in der N&he eines Punktes (xo, f(z¢)) durch eine Gerade, namlich
durch die Tangente an den Graphen von f, approximiert werden kann:

f(x) = f(xo) + f'(z0)(x — x0)

Wir wollen nun analog eine Funktion f : D — R in zwei Variablen in der Nidhe des
Punktes P = (z, Yo, 20), mit zo = f(x0,y0), linear approximieren. Da der Graph von f eine
Flache ist, suchen wir eine Ebene

z="T(v,y) =c+a(r —z0) + by — yo) ,
welche

1. den Graphen in P beriihrt,

2. in P die gleiche Steigung wie f in x-Richtung hat,

3. in P die gleiche Steigung wie f in y-Richtung hat.
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Es gibt also genau eine solche Ebene. Wir nennen sie Tangentialebene.

Satz 10.2 Die Tangentialebene an den Graphen der Funktion z = f(x,y) an der Stelle
(o, yo) ist gegeben durch

z=T(z,y) = f(xo,y0) + fz(w0,y0)(x — z0) + fy(0,v0)(¥ — %0) -

Beispiel

Gesucht ist die Tangentialebene an den Graphen der Funktion
x
z = f(x, y) = -
Yy

an der Stelle (zg,y0) = (1,1).

=
(6] o

o
AT A A A A A A A A A

Wie fiir reelle Funktionen kann nun eine (ev. komplizierte) Funktion in zwei Variablen in
der Nahe eines Punktes durch ihre Tangentialebene in diesem Punkt approximiert werden,

flz,y) = T(z,y) = f(z0,y0) + fz(20,y0)(x — 0) + fy(T0,%0)(y — Yo)

fiir (z,y) in der N#he von (zg, yo).
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Beispiel

Fir f wie im vorhergehenden Beispiel bestimme man eine N#herung fiir f(1,02; 0,94).

Das Differential

In Analogie zu Satz 4.10 vom letzten Semester fiir reelle Funktionen heisst eine Funktion
f: D — R in zwei Variablen (total) differenzierbar in (xg,yo) € D, wenn

f(z,y) = f(xo,y0) + fe(z0,90)(x — z0) + fy(z0,%0) (¥ — vo) + (2, y)

r(z,y)
V(@ —20)? + (y — yo)?
Eine in (2, yo) differenzierbare Funktion ist also in (zg, yo) sehr gut durch die Tangentialebene
approximierbar. Zu beachten ist, dass alleine aus der Existenz der partiellen Ableitungen nicht
folgt, dass f differenzierbar ist. Hingegen ist f differenzierbar, wenn die partiellen Ableitungen
fz und f, stetige Funktionen sind.
Benutzen wir die Tangentialebene in (xg, yo) als Ndherung von f in der N#he von (xg, yo),
dann erhalten wir eine Niherung fiir die Anderung Af von f, wenn sich 2o um den kleinen
Wert Az = dx und yo um den kleinen Wert Ay = dy #ndert,

—0 fiir (Cﬂ,y) - (anyO) .

Af = f(zo+dz,yo + dy) — f(x0,v0) = fu(z0,y0) dx + fy(x0,y0)dy .

Definition Man nennt

df(x07 yO) = f$(x07 yO) dz + fy(x07 yO) dy
oder kurz
df = fydx + f,dy
das (totale) Differential von f.

Im Fall einer Variablen gilt f(x) = f(zo)+f'(zo)(z—z0)+r(z) und damit ist df = f'(x)dz.
Das Differential ist also die Verallgemeinerung der Ableitung auf mehrere Variablen.

Anwendung auf Fehlerabschidtzungen

Sei f(x,y) eine Funktion von zwei Messgrossen und dx, dy die Messfehler. Wie gross ist die
Abweichung Af = f(x + dz,y + dy) — f(x,y)? Ist f differenzierbar, dann kénnen wir die
Naherung

Af = df = fodx + fydy

verwenden.
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Beispiel
Sei f(x,y) = xy.

Messen wir also beispielsweise die Seitenlingen z, y eines Rechtecks mit je einem relativen
Fehler von 1%, dann ist der relative Fehler des aus x und y berechneten Flicheninhalts des
Rechtecks gegeben durch

Kettenregel

Ist x = z(t) und y = f(x) = f(x(t)) eine Funktion in einer Variablen, dann gilt die Ketten-
regel ; ;

V0 =T = )20 = rew)
Diese Regel kann auf zwei (und mehr) Variablen verallgemeinert werden.

Sei z = f(z,y) eine Funktion und = = z(t), y = y(t) eine sogenannte Parametrisierung
von x und y; dies bedeutet, dass x und y Funktionen einer gemeinsamen Variablen (hier ¢,
man nennt ¢ den Parameter) sind. Dann ist z = z(t) = f(z(t),y(t)) eine Funktion von ¢ und
kann wie folgt abgeleitet werden.

Satz 10.3 (Kettenregel)

d dz d
20 =L = RS04 1, = e, 0(0) (0 D), 9(0) 5 1)
Beispiel
Sei f(z,y) = zy? mit x = z(t) = 3 und y = y(t) = sin(¢t).
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10.3 Richtungsableitung, Gradient und Hesse-Matrix

Wir haben gesehen, dass f, die Steigung in z-Richtung (d.h. der zz-Kurve) und f, die
Steigung in y-Richtung (d.h. der yz-Kurve) angibt. Wie sieht aber die Steigung entlang einer
beliebigen Richtung aus?
Sei also f : D — R eine Funktion in zwei Variablen und P = (zg, %) ein Punkt in D,
in welchem f differenzierbar ist. Wir untersuchen f(z,y), wobei wir (x,y) einschrinken auf
x

Punkte auf einer (beliebigen aber festen) Geraden g durch P. Sei ¢ = (%, ) ein Richtungsvektor
der Geraden g der Lange 1.

Die Punkte auf der Geraden g kénnen also parametrisiert werden durch

(z(t),y(t)) = (zo +txy,yo + ty1) .

Damit ist f eingeschriinkt auf g eine Funktion f(z(t),y(t)) von ¢ und wir kénnen sie mit der
Kettenregel (Satz 10.3) ableiten. Wir erhalten

Definition Sei 7= (3} ) ein Vektor der Linge 1. Man nennt
of
55 %0 %0) = fe(z0,90) - w1+ fy(z0,%0) - 11
die Richtungsableitung von f an der Stelle (xq,yo) in Richtung des Vektors 4.
Die Richtungsableitung gibt die Steigung von f an der Stelle (xg, yo) in Richtung ¥ an. Damit

diese Steigung nur von der Richtung und nicht von der Lénge von ¢ abhéngt, muss der Vektor
¥ die Lange 1 haben.

Fiir die Spezialfiille 7 = (}) und ¢ = ({) erhalten wir:
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Beispiel
Wie gross ist die Steigung der Funktion f(z,y) = 3xy — 2y? an der Stelle (5,4) in Richtung

()7

Nun wollen wir die Richtung bestimmen, in welche die Steigung (oder das Wachstum)
von f am grossten ist. Dazu ist es praktisch, den Gradienten von f zu definieren.

Definition Sei f: D — R und (zo,y0) € D. Der Gradient von f in (x,yp) ist definiert

durch i ) ;
— (/=\%0, %0 zw. kurz: gr =(’F.
gradf(xo,yo) = <fy(x0,y0)> , b kurz: gradf <fy>

Analog definiert man den Gradienten fiir D € R und f = f(z,v, 2).

Speziell in der Physik nutzt man fiir eine kiirzere Schreibweise den Nabla-Operator V :

90 0 af
dy dy dy

Analog fiir eine Funktion f = f(z,y,2) in drei Variablen.
Die Richtungsableitung kénnen wir nun mit Hilfe des Skalarproduktes schreiben. Sei v
der Zwischenwinkel der Vektoren V f und . Dann gilt

0 - -
oL~ fow+ fan = VI -5 = |95 cos = 9] cos .

da v die Léange 1 hat. Es folgt:

Eigenschaften des Gradienten
e Der Gradient V f zeigt in die Richtung der grossten Steigung von f.

e Der Gradient V f steht senkrecht auf den Niveaulinien.
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Beispiel
Sei f(x,y) = xy. Wir betrachten die Punkte P, = (1,1) und P, = (—1,1).

Hier sind die Niveaulinien und die Gradienten (die Gradienten sind verkiirzt eingezeichnet):
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Quadratische Approximation

Als Vorbereitung fiir das Bestimmen von Extremalstellen einer Funktion f in zwei Variablen
wollen wir f durch eine quadratische Funktion annéhern.

Wir erinnern uns (letztes Semester, Abschnitt 4.5), dass eine in z¢ zweimal differenzierbare
reelle Funktion f : R — R in der N&he von xg durch das Taylorpolynom

f/l(xo)

5 (x — uvo)2

pa(z) = f(z0) + f'(z0)(z — o) +

approximiert werden kann. Dieses Taylorpolynom hat die Eigenschaft, dass ps(xg) = f(z0),
Pa(x0) = f'(z0) und ph(zo) = f"(z0).

Seinun f : D — R eine Funktion in zwei Variablen, welche an der Stelle (zg, yo) zweimal
stetig differenzierbar ist. Wir suchen ein quadratisches Polynom p(x,y) = pa(z,y), so dass
p(zo,v0) = f(z0,y0) und alle partiellen Ableitungen erster und zweiter Ordnung von p(zx,y)
und f(z,y) in (zg,yp) iibereinstimmen. Mit diesen Bedingungen erhalten wir das Polynom

p(z,y) = f(xo,v0) + fu(zo,y0)(® — 20) + fy(Z0,%0)(¥ — yo)
+% (fm(%, Yo)(z — 0)* + 2fay (0, y0)(x — 20)(y — y0) + Fyy (w0, yo)(y — y0)2> :

Der lineare Teil davon ist die Tangentialebene in (zg,yo) an f.
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Wir kénnen dieses Polynom kompakter schreiben mit Hilfe der Bezeichnungen
T = <x> und a= <x0> .
Y Yo

<x—x0> —fF—ad und (z—xz0,y—yo)=(&—-a)Tl.

Es folgt

Wir fassen also f als Funktion von Vektoren auf (der Ortsvektoren der Punkte in D).
Die Tangentialebene lésst sich damit schreiben als

T(%) = f(@) + V@' (7 -a).
Der quadratische Teil von p(z,y) ist eine quadratische Form und lésst sich schreiben als

3(@ — @) Hy(@)(7 - @)

o (Feal@®) (@)
H; (@) (fymw) fyyw))

die Hesse-Matriz von f an der Stelle @ ist. Unter der Voraussetzung, dass f in @ = (g, y0)”
zweimal stetig differenzierbar ist, gilt f,,(@) = fy(d@). Die Hesse-Matrix ist in diesem Fall
also symmetrisch.

wobei

Satz 10.4 Die quadratische Approximation der Funktion f an der Stelle @ ist gegeben durch

p(@) = f(@) + V(@) (&~ a) + %(f — @) Hy(@)(T - a).

Der Vergleich mit dem Taylorpolynom ps(x) einer reellen Funktion zeigt, dass die Hesse-
Matrix die Verallgemeinerung der zweiten Ableitung ist.

Beispiel
Gesucht ist die quadratische Approximation der Funktion f(x,y) = e**¥ + sin(zy) an der
Stelle (xo,y0) = (0,0).

Weiter ist
foz = €TV —y?sin(ay) = [22(0,0) =1
foy = e” Y — 22 sin(wy) = fyy(0,0) =1

foy = €TV —uaysin(zy) + cos(xy) = fyz = [foy(0,0) =2
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Damit erhalten wir

Graphen von f(z,y) und p(z,y)

10.4 Lokale und globale Extrema

In diesem Abschnitt wollen wir lokale und globale Extremalstellen von Funktionen in zwei Va-
riablen finden und untersuchen. Auch diese Methoden lassen sich problemlos auf Funktionen
von mehr als zwei Variablen iibertragen.

Lokale Extrema

Definition Die Funktion f: D — R besitzt in (z,y0) € D ein lokales Minimum bzw. ein
lokales Mazximum, falls

f(x,y) = f(xo,y0) bzw.  f(z,y) < f(x0,0)

gilt fiir alle (z,y) in der Ndhe von (xg,yp). Ein lokales Minimum bzw. Maximum (xg,yo)
heisst isoliert, falls f(z,y) # f(zo,yo) gilt fir alle (x,y) # (x0,y0) in der Néhe von (zg, yo)-

Von differenzierbaren Funktionen in einer Variablen wissen wir, dass deren Ableitung an
einer lokalen Extremalstelle verschwindet. Ist nun (xg,yp) eine lokale Extremalstelle einer
(in (xo,yo) differenzierbaren) Funktion f(z,y), so haben die zz- und die yz-Kurven auf dem
Graphen von f ebenfalls ein lokales Extremum in xo bzw. yg, also gilt (vgl. Seite 119)

fo(@o,90) = fy(x0,90) = 0.
Satz 10.5 Hat f in (zg,y0) eine lokale Extremalstelle, dann gilt
V f(zo,y0) =0 d-h. fo(z0,y0) =0 und fy(xo,y0) =0.
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Geometrisch bedeutet dies, dass die Tangentialebene in (zg,yp) an den Graphen von f hori-
zontal ist,

z=T(z,y) = f(zo0,0) -
Die Umkehrung von Satz 10.5 ist im Allgemeinen falsch.

Beispiele

1. Sei f(x,y) =8 — 22 — y2. An der Stelle (z9,y0) = (0,0) hat f ein isoliertes Maximum und
tatséchlich gilt

2. Sei f(z,y) = y*> — 22, An der Stelle (0,0) gilt V£(0,0) = 0, aber f hat dort kein lokales
Extremum. Es ist f(0,0) = 0, und in der Nidhe von (0,0) nimmt f sowohl positive als auch
negative Werte an,

f(0,y) >0 fiiralley 20 und  f(z,0) <O fiir alle z # 0.

Die Funktion hat in (0,0) einen Sattelpunkt.
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Definition Eine Funktion f(z,y) hat in (xg,yo) einen Sattelpunkt, wenn V f(xg,yo) = 0,
aber (xg,yo) keine Extremalstelle ist.

Um entscheiden zu kénnen, ob ein lokales Minimum, Maximum oder ein Sattelpunkt
vorliegt, miissen wir die zweiten partiellen Ableitungen von f betrachten, das heisst die Hesse-
Matrix von f. Wie vorher gehen wir davon aus, dass f, = fy» und daher die Hesse-Matrix
symmetrisch ist.

Sei f eine Funktion mit V f(zo,y0) = Vf(@) = 0. Dies bedeutet also, dass f in (zo, o)
ein lokales Minimum, ein lokales Maximum oder einen Sattelpunkt hat.

Mit der quadratischen Approximation von Satz 10.4 gilt dann

F(@) ~ (@) + 5 (7~ @) Hy (@)@~ @

—

falls ¥ — @ “klein” ist, das heisst, falls #7 = (x,y) nahe bei @’ = (g, yo) ist. Das lokale Ver-
halten der Funktion f héngt also in der Ndhe von (xg,yp) hauptsichlich ab von den Werten
der quadratischen Form

(& - @) Hy(@)(@ - a).

Nehmen wir nun an, dass die Hesse-Matrix H (@) = H¢(xo,yo) positiv definit ist. Dann
gilt
(7 —-a)'Hy @)z —-a) >0

fiir alle (z,y) # (xo,yo) in der Ndhe von (xg,yp). Dies bedeutet, dass f(zg,yo) = f(a@) ein
isoliertes lokales Minimum ist.

Analog bedeutet eine negativ definite Hesse-Matrix H (@) ein isoliertes lokales Maximum
von f in (xg,yo). Die dritte Moglichkeit, ndmlich dass Hy(@) indefinit ist, bedeutet geome-
trisch einen Sattelpunkt in (zq, yo).

Fiir die Zusammenfassung dieser drei Moglichkeiten nutzen wir Satz 9.6 zur Bestimmung
der Definitheit der Hesse-Matrix, wobei wir die folgende Abkiirzung verwenden:

A = det(H (20, 90)) = fra(0, Y0) Fyy(T0,Y0) — fay (0, y0)?

Satz 10.6 Sei f(x,y) in (xo,yo) zweimal stetig differenzierbar und

V f(x0,0) = 0.
Dann gilt:
o A>0, fou(x0,90) >0 (d.h. die Hesse-Matriz H(d@) ist positiv definit )
= f(xo,y0) ist ein isoliertes lokales Minimum
o A>0, feu(xo,y0) <0 (d.h. die Hesse-Matriz H(a@) ist negativ definit)
= f(xo,y0) ist ein isoliertes lokales Maximum

e A<O (d.h. die Hesse-Matriz H¢(a@) ist indefinit )

= f hat in (xo,y0) einen Sattelpunkt

Gilt Vf(z0,10) = 0 und A = 0, dann ist keine allgemeine Aussage moglich.
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Beispiele

1. Sei f(z,y) = 8 — 22 — y*. Wir haben schon berechnet, dass f, = —2z, f, = —2y und dass
V£(0,0) = 0. Die Hesse-Matrix ist nun

Also ist f(0,0) = 8 tatséichlich ein isoliertes lokales Maximum.

2. Sei f(x,y) = xy.

3. Sei f(z,y) = 2° — 3wy
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4. Sei f(x,y) = (22 —1)2 + 9% - 1.

Wir miissen also die Stellen (0,0), (1,0) und (—1,0) untersuchen.

Globale Extrema

Wie bei Funktionen in einer Variablen kénnen lokale Extremalstellen auch globale Extremal-
stellen sein, miissen aber nicht. Um neben den lokalen auch die globalen Extremalstellen zu
finden, nehmen wir an, dass f auf einer “ansténdigen” Menge D definiert ist, zum Beispiel
auf einem Kreis, einem Vieleck, einem Streifen oder auf ganz R?.

In diesem Fall kénnen wir wie folgt vorgehen:

(1) Untersuche die Stellen im Inneren von D, wo V f = 0 gilt;
(2) Untersuche f an denjenigen Stellen, wo f nicht stetig differenzierbar ist;
(3) Untersuche f auf dem Rand von D (falls dieser zu D gehért).

Beispiel

Sei D C R? das Dreieck mit den Ecken (1,0), (0,0), (0,1), also gegeben durch z > 0, y > 0
und z +y < 1 und sei f(z,y) = xy.

(1) Wir haben schon gesehen, dass Vf # 0 im Inneren von D:;

(2) f ist auf ganz R? stetig differenzierbar.
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Die Funktion f hat also ein globales Maximum in (%, %) mit f (%, %) = i und ein globales
Minimum fiir x = 0 oder y = 0 mit f(0,y) = f(z,0) = 0.

10.5 Extrema mit Nebenbedingung

In vielen Anwendungsbeispielen sucht man nach Extremalstellen einer Funktion f: D — R,
D C R?, entlang einer Kurve in D.

Darstellung von Kurven

Eine Kurve in der zy-Ebene kann durch eine Gleichung der Form

¢(z,y) =0
beschrieben werden. Diese Darstellung einer Kurve nennt man implizit.
Beispiele
1. ¢(z,y) = 22 — y = 0 beschreibt eine Parabel.
2. ¢(x,y) = 22 + 3% — 1 = 0 beschreibt den Einheitskreis.

3. ¢(x,y) = bx? —4ay +8y? — 36 = 0 beschreibt eine Ellipse (vgl. das Beispiel auf Seite 109).

Die Kurve des ersten Beispiels kénnte auch in einer anderen Form beschrieben werden.
Die Gleichung 2> — y = 0 kann nach y aufgelost werden: y = x2. Die Parabel ist also der
Graph einer Funktion y = f(x), nimlich f(z) = z%. Die Darstellung einer Kurve in der Form
y = f(z) oder x = f(y) nennt man explizit.

Eine explizite Darstellung ist jedoch nicht immer moglich (eher die Ausnahme). Die Glei-
chung ¢(z,y) = 0 des Einheitskreises (oder auch der Ellipse) kann nicht nach y oder z
aufgelost werden. Der Einheitskreis ist demnach nicht der Graph einer Funktion y = f(z)
oder z = f(y). Zum Beispiel erhilt man durch y = f(z) = v/1 — 22 nur den oberen Halbkreis
oder z = f(y) = —y/1 — y? ergibt nur den linken Halbkreis.

Die implizite Kurvengleichung ¢(z,y) = 0 kann jedoch als Niveaulinie

(z,y) =c=0

der Funktion ¢(z,y) aufgefasst werden.
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Extrema entlang einer Kurve

Wir suchen nun nach (lokalen oder globalen) Extremalstellen (xq, o) einer Funktion f(x,y)
unter der Nebenbedingung

¢(x,y) =0.

Das heisst, wir untersuchen f eingeschréinkt auf die Kurve definiert durch ¢(z,y) = 0.

Beispiel
Die Funktion f(z,y) = = + y + 2 hat auf D = R? weder lokale noch globale Extrema.
Eingeschrinkt auf die Kurve ¢(z,y) = 22 — y = 0 (eine Parabel) hat f jedoch ein globales

Minimum, némlich f(—3,%) = %,

1. Fall: Die Gleichung der Kurve kann in expliziter Form gegeben werden.

Das heisst, die Gleichung ¢(x,y) = 0 kann nach y oder nach = aufgeldst werden zu y = g(z),
bzw. x = h(y). Die Funktion f(z,y) wird damit zu einer Funktion in nur einer Variablen:

f@y) = flz,g(@) = f(z), bzw. f(z.y)=f(h(y).y) = fly).

Nun kénnen wir mit den gewohnten Methoden fiir Funktionen in einer Variablen die Extre-
malstellen von f bestimmen.

Beispiel
Sei f(x,y) = 22 + y? und die Nebenbedingung

$w,y) =2 —y—-1=0.

Gesucht sind also die Extrema von f eingeschriinkt auf die Parabel y = g(z) = 22 — 1.

Die Extremalstellen z von f erfiillen die Bedingung f'(z) = 42® —2x = 22(22z2—1) = 0. Damit
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finden wir sofort die Extremalstellen z; =0, z23 = :l:% von f, bzw. (0,—1) und (:l:%, —%)

von f. Der Funktionswert f(0,—1) = 1 ist ein lokales Maximum und f(i%, —1) = 2 sind

lokale (und globale) Minima von f unter der Nebenbedingung ¢(z,y) = 0.

2. Fall: Die Gleichung der Kurve ist in impliziter Form gegeben.

Nehmen wir an, wir hitten eine lokale Maximalstelle (z¢,yo) von f(z,y) unter der Nebenbe-
dingung ¢(z,y) = 0 gefunden. Wir betrachten die Niveaulinie N, zum Niveau ¢ = f(xg,yo)-
Diese Linie N, trennt die beiden Gebiete f(x,y) > ¢ und f(x,y) < c. Die Kurve C definiert
durch ¢(x,y) = 0 geht ebenfalls durch den Punkt (29, yo). Da (zo,y0) eine (lokale) Maximal-
stelle von f unter der Nebenbedingung ¢ = 0 ist, liegt diese Kurve (in der Néhe von (xq, o))
ganz auf der Seite f(z,y) < ¢ der Niveaulinie N..

Die Niveaulinie N, und die Kurve C sind daher im Punkt (xg,y0) tangential (bzw. die
Tangenten an die Niveaulinie N, und an die Kurve C sind identisch). Die Kurve C fassen wir
nun auf als Niveaulinie ¢(z,y) = ¢ = 0 der Funktion ¢(z,y). Da der Gradient einer Funktion
senkrecht auf den Niveaulinien steht, sind die Gradienten von f und ¢ in (xg,yo) folglich
parallel.

Satz 10.7 Sei (zg,yo) eine lokale Extremalstelle von f unter der Nebenbedingung ¢(x,y) = 0.
Ist Vo(xo,y0) # 0, dann gilt

V f(zo,90) = A- Vé(zo,0)
fir ein A € R.
Zur Bestimmung von (xg,yp) bilden wir die Hilfsfunktion
F(z,y,\) = f(z,y) — A(z,y)

und suchen (z,y, \) mit VF(z,y,\) = 0.
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Es gilt ndmlich

Fx fx_)\(ﬁx
VF = Fy = fy_)‘(ﬁy
Fy —¢

Also ist VF = 0 dquivalent zu den beiden Bedingungen

Vi=XA-V¢ und ¢=0.

Beispiel
Sei f(x,y) = 22 + y? und die Nebenbedingung

2

xT
dley) =T +y —1=0.

Wir suchen also die Extremalstellen auf der Ellipse ¢(x,y) = 0 mit den Halbachsen 2 und 1.

7 \
\ D .

2 2 a2 2
F(z,y,\) = f(z,y) — A\p(x,y) = 2" +y —A(Zﬂ/ —1)-

Wir setzen
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11 Vektorfelder und Wegintegrale

Das Ziel dieses Kapitels ist die Integration entlang einer Kurve in der Ebene oder im Raum,
wobei der Integrand eine reellwertige Funktion oder ein sogenanntes Vektorfeld ist.

11.1 Vektorfelder

Der Gradient Vf einer Funktion f(z,y) : D — R ordnet jedem Punkt (z¢,yo) € D einen
Vektor, niamlich V f(xg,y0) € R?, zu. Eine solche Zuordnung nennt man Vektorfeld. Das
Vektorfeld definiert durch einen Gradienten nennt man auch Gradientenfeld.

Definition Sei D C R2. Ein Vektorfeld auf D ist eine Abbildung F : D — R?, welche
jedem Punkt (x,y) € D einen Vektor F(x,y) € R? zuordnet.

Analog ist ein Vektorfeld auf einer Menge D C R3 als eine Abbildung F : D — R?
definiert.

In den Naturwissenschaften treffen wir beispielsweise auf Vektorfelder definiert durch
elektrische, magnetische oder Gravitationskrifte oder durch Windgeschwindigkeiten.

Bei graphischen Darstellungen von Vektorfeldern wird oft nur die Richtung der Vektoren
richtig wiedergegeben, deren Betrag jedoch skaliert.

Beispiele

1. Sei F(x,y) = <_xy> definiert auf D = R2.

VDD NN
VP PP NN
VPP ERSE NN NN NN AN
[/ /77 s e e ==~ ~ NN NNAAN N
VAV A A S NENENENE NN
R E EE NN NN
NN
I A . NN
[ A Y ] - ity
[ . o
I ol T T3
[ R W - St 111 ]
VUV vy vy s 1
VANNNNASNSN S~V
NNNNNSNSSs~ql-cc v 777
NANNNNNSN S~y
NANNNNNSN~~lmee sy
NANNNSNSN S~~~ s sy
NANNNSNSN~—a|er o r s s s
NNNNN SN~ o o e s
. 2 ) )
2. Sei F(x,y) = 9 definiert auf D = R~.
Y

P A

//////////

/////////

//////////
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Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld.

Definition Ein Vektorfeld F(z,y) : D — R?, das ein Gradientenfeld ist, heisst konservativ.
Das heisst, F'(z,y) ist konservativ, falls es eine Funktion f(z,y): D — R gibt mit

F=Vf.
Eine solche Funktion f heisst Potentialfunktion des Vektorfeldes F'.

Nach Satz 10.1 erfiillt eine “anstdndige” Funktion f(z,y) die Beziehung fy, = fy,. Fur
das Gradientenfeld V f = <§z) einer solchen Funktion gilt daher

Ofe _ 0fy ofy  Ofx
— === bzw. —— - ==0.
oy Ox o or oy
Fiir ein Vektorfeld F(z,y) = <ZE;’5))) = (%) konnen wir deshalb folgern:
F konservativ == ov - Ou =0
or Oy

Diese fiir ein Gradientenfeld notwendige Bedingung nennt man Integrabilititsbedingung.

Diese Bedingung ist auch hinreichend, wenn das Vektorfeld F' auf D = R? definiert und
stetig differenzierbar ist. Letzteres bedeutet, dass u(z,y) und v(z,y) differenzierbar und die
partiellen Ableitungen stetig sind.

Satz 11.1 Sei F(z,y) = (%) ein stetig differenzierbares Vektorfeld auf D = R%. Dann gilt:

0 0
F' konservativ <— a 0
dr Oy

Beispiele

Ag39? U
b = <2x4y+2y> - <v>
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Analog ist der Gradient einer Funktion f(z,y,2): D — R mit D C R? gegeben durch
fo
Vf= <fy> und fiir f “anstédndig” gilt nun
[

fyz = ny7 fza: = fx27 fxy = fya:-

u(w,y,2) u
Fiir ein Vektorfeld F(x,y,z) = < v(z,y,2) > = (5}) konnen wir deshalb folgern:

w(z,y,2)
F konservativ — 8_11}_@_ @_8_7”_ @_@_
oy 0z 0z 9dx  Ox Oy

Wir haben hier also drei Integrabilititsbedingungen.

Definition Sei F(z,y,2) = (}}:) ein Vektorfeld auf D C R3. Die Rotation von F ist das
Vektorfeld auf D definiert durch

ow _ v

dy 0z

_ ou ow

rot F' = o — o
ov _ ou

ox oy

Symbolisch kann die Rotation mit Hilfe des Nabla-Operators V und des Vektorprodukts
geschrieben werden:

ox u
_ _ | 2
rot F =V x F = ay | X | v
il
52 w

Die Integrabilititsbedingungen fiir ein Vektorfeld F' : D — R3? sind also gleichbedeutend
mit rot F = 0. Analog zu Satz 11.1 gilt nun die folgende Aquivalenz.

Satz 11.2 Sei F ein stetig differenzierbares Vektorfeld auf D = R3. Dann gilt:
F konservativ — rot F =0

Mit Hilfe der Sétze 11.1 und 11.2 kénnen wir also feststellen, ob ein auf R? oder R3
definiertes Vektorfeld konservativ ist. Ist dies der Fall, wie finden wir eine zugehérige Poten-
tialfunktion? Schauen wir dazu zwei typische Beispiele an.

Beispiele
1. Gegeben sei das Vektorfeld

_ 123:y3 _(u 2
F(x,y) = (18x2y2 + 7y6> = <U> auf D =R~".

Die Stetigkeitsbedingungen von Satz 11.1 sind erfiillt. Also iiberpriifen wir die Integrabi-
litdtsbedingung:
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Nach Satz 11.1 ist F' konservativ.
Nun wollen wir eine Funktion f(z,y) mit Vf = F finden.

(1) Integration von u nach x:

(2) Ableiten von f nach y und Gleichsetzen mit v:

(3) Integration von g, (y) nach y:

(4) Einsetzen von g(y) in f:

Mit dieser Methode kann zu jedem konservativen Vektorfeld F auf R? eine Potential-
funktion f gefunden werden. Zwei verschiedene Potentialfunktionen zum gleichen Vektorfeld

unterscheiden sich dabei nur um eine Konstante.
Diese Methode kann auf Vektorfelder auf R? angepasst werden.

2. Gegeben sei das Vektorfeld

ey +1 U
Flz,y,z)=| e*+2z | =[v auf D =R3.
y w

Die Stetigkeitsbedingungen von Satz 11.2 sind erfiillt. Also berechnen wir rot F':

Nach Satz 11.2 ist F' konservativ.
Auch hier bestimmen wir eine Funktion f(z,y,z) mit Vf = F.

(1) Integration von u nach x:

(2) Ableiten von f nach y und Gleichsetzen mit v:
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(3) Integration von g,(y,z) nach y und Einsetzen von g¢(y, z) in f:

(4) Ableiten von f nach z und Gleichsetzen mit w:

(5) Integration von h,(z) nach z und Einsetzen von h(z) in f aus (3):

Allgemeiner gelten die Sitze 11.1 und 11.2 fiir Vektorfelder F auf D C R?, bzw. D C R?,
falls D offen (d.h. ohne Rand) und einfach zusammenhdingend (d.h. je zwei Punkte in D
konnen mit einer “reguléren” Kurve verbunden werden und jede geschlossene Kurve in D ist
auf einen Punkt stetig zusammenziehbar, ohne D zu verlassen) ist. Zum Beispiel ist jeder
Kreis oder jede Halbebene in R? einfach zusammenhiingend, aber nicht R*\{(0,0)}.

Ist also der Definitionsbereich D eines Vektorfeldes F' nicht einfach zusammenhéngend,
dann sind die Sétze 11.1 und 11.2 im Allgemeinen falsch, das heisst genauer, die Pfeile <
sind falsch.

Beispiel
Wir betrachten auf D = R2?\{(0,0)} (damit ist D nicht einfach zusammenhingend) das

Vektorfeld )
_ Yy _ (U
ren=tn (V)= ()

Die Integrabilitdtsbedingung ist erfiillt, denn
v y? — 22 ou

0r ~ (@2+y?)? oy
Fiir « # 0 finden wir
_ Y
flx,y) = arctan(—)

x

mit Vf = F. Diese Funktion f lisst sich jedoch nicht stetig auf ganz R?\{(0,0)} fortsetzen.
Das Vektorfeld F' hat auf ganz R2\{(0,0)} keine Potentialfunktion und ist deshalb nicht
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konservativ auf D.

Auf der einfach zusammenhingenden Menge D = { (x,y) € R? | z > 0} hingegen ist F
konservativ und die obige Funktion f ist eine Potentialfunktion.

Wir werden im Abschnitt 11.3 iiber Wegintegrale noch auf eine andere Weise sehen, dass
das obige Vektorfeld auf D kein Gradientenfeld ist.

11.2 Wege und Kurven

Um im néchsten Abschnitt iiber Kurven integrieren zu kénnen, miissen wir diese zunéchst
genau definieren und ihre Eigenschaften untersuchen.

Definition Ein Weg in R" ist eine Abbildung

561(75)
Z: I —R" t— Z(t)= :
Zn(t)

eines Intervalls I = [a,b] C R in den R", wobei die Funktionen x; : I — R stetig sind.

Der Weg heisst (stetig) differenzierbar, wenn die Funktionen x; (stetig) differenzierbar
sind (stetig differenzierbar bedeutet, dass die Ableitungen /(t) wieder stetig sind).

Das Bild C' = #Z(I) nennt man eine Kurve in R" und & eine Parametrisierung von C.

Eine Parametrisierung einer Kurve ist nicht eindeutig. Von ihr héngt ab, mit welcher Ge-
schwindigkeit die Kurve durchlaufen wird. Ist & differenzierbar, dann nennt man den Vektor
der Ableitungen

den Geschwindigkeitsvektor von & an der Stelle t. Gilt Z(t) # 0 dann ist 2(to) tangential an
die Kurve im Punkt Z(tp).

Beispiele
o [cos(t) L. _
1. Sei Z(t) = (sin(t)) fir t € I =10, 27].

/ Z(t)

Fiir Z(t) wie oben und I = [—m, 7] erhalten wir ebenfalls den Einheitskreis, der Weg beginnt
und endet nun aber im Punkt (—1,0).
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. . o )Y
Eine andere Parametrisierung des Einheitskreises wire zum Beispiel Z(t) = (2?5(( t2)) > fiir

t € I =10,v/2x]. Damit wird der Einheitskreis schneller durchlaufen.

Nun ist Z(¢) = (9) schon fiir ¢ = \/F und der Geschwindigkeitsvektor ist

t
2. Sei Z(t) = [ ¢ | fiir t € I = [~1,1]. Fiir t = 0 ist £(0) = 0.
t3

Die Kurve C' = Z(I) geht also durch den Ursprung und in diesem Punkt ist die z-Achse die
Tangente an C.

Definition Eine Kurve heisst einfach, wenn sie sich nicht tiberkreuzt und nicht beriihrt,
ausser eventuell am Anfangs- und Endpunkt.

Eine einfache Kurve heisst geschlossen, wenn Anfangs- und Endpunkt einer Parametri-
sierung iibereinstimmen.

Eine Kurve heisst reguldr, falls es eine Parametrisierung #(¢t) der Kurve gibt, die stetig
differenzierbar ist mit Z/(t) # 0 fiir alle ¢.

Beispiel

2

Die Kurve C parametrisiert durch Z(t) = ( ) fiir t € [—2,2] ist nicht regulir, da Z(0) = 0.
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11.3 Wegintegrale

Das Wegintegral (oder Kurvenintegral) ist eine Verallgemeinerung des bestimmten Integrals

b
[ r@s.

wobel nun nicht iiber ein Intervall I = [a,b] auf der x-Achse sondern tiber einen Weg, bzw.
eine Kurve in der Ebene oder im Raum integriert wird.

Wegintegral von reellwertigen Funktionen

Definition Sei C' in R eine einfache, regulidre Kurve parametrisiert durch & : [a,b] — C
und sei f: C' — R eine stetige Funktion. Dann ist das Wegintegral von f iiber C definiert
durch

b
/ fds = / FEE®) IF )] dt
C a

Hier bezeichnet .
s=s(t) = [ )| du

die Bogenlénge von C' zwischen den Punkten #(a) und Z(¢). Damit ist
b
/ds = /||f(t)||dt = Ldnge der Kurve C'.
C a

Das Wegintegral ist unabhingig von der Wahl der Parametrisierung der Kurve C'. Ahnlich
b
wie das bestimmte Integral [ f(z)dz kann [ fds als Flicheninhalt “zwischen” f(z,y) und
a C
C' interpretiert werden, falls f(x,y) > 0 fiir alle (z,y).
Beispiele

1. Wir berechnen die Lénge des Einheitskreises C' in R?. Wir haben schon gesehen, dass C
parametrisiert werden kann durch

w0 = (Go)) om0 = (") e ol

Damit folgt
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Zum Vergleich wéhlen wir eine andere Parametrisierung von C. Der Weg

- () w0 (D) e

durchlduft den Einheitskreis doppelt so schnell wie vorher und der Anfangs- und Endpunkt
ist nun (—1,0) und nicht (1,0). Wir erhalten damit

2. Gegeben sei ein Draht der Form C. Die Massendichte sei gegeben durch die Funktion

f(z,y). Dann ist [ fds die Gesamtmasse des Drahtes.
C

1
3. Sei f(z,y) = Zi g
Diese Funktion kann als Intensitéit einer Strahlung mit Strahlenquelle im Ursprung interpre-
tiert werden. Die Strahlung nimmt mit dem Quadrat der Entfernung von der Strahlenquelle
ab. Wir wollen die Strahlenbelastung auf zwei verschiedenen Wegen von A = (—1,1) nach
B = (1,1) berechnen, wobei die Durchlaufgeschwindigkeit konstant und gleich ist.

Cs

e (U : Strecke von A nach B. Es gilt

Es folgt ||#(t)|| = 1 fiir alle ¢ und wir erhalten

e (y: Oberer Halbkreis von A nach B. Es gilt

#(t) = (S;§;S$)1> mit  #(t) = (ZEZE?)) fiir t € [0, 7] .
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Es folgt ||Z(¢)|| = 1 fiir alle ¢ und wir erhalten

NIE]

™

C[fdsz/COSQ(t)+(iin(t)+1)2dt:/ﬁdt:/ﬁdt'

0 0 0

Da cos(t) + 1 = 2 cos?(3%), finden wir

s

/fds:%j@dt:tan(g)‘g:tan<%) =1.

0
Co

Auf dem zweiten Weg ist die Strahlenbelastung also kleiner als auf dem ersten Weg, obwohl
der zweite Weg lianger ist als der erste Weg. Allgemein kann man zeigen, dass die Strahlen-
belastung minimal ist auf dem die Strahlenquelle nicht enthaltenden Bogen AB des Kreises
durch A, B und die Strahlenquelle.

Wegintegral von Vektorfeldern

Wir kénnen auch iiber ein Vektorfeld entlang einer Kurve integrieren.

Definition Sei C in R” eine einfache, reguldre Kurve parametrisiert durch # : [a,b] — C
und sei F': C —> R" ein stetiges Vektorfeld. Dann ist das Wegintegral von F iiber C definiert
durch

/F-d§ _ /bF(f(t)) CE)dt
C a

Der Punkt im Integranden auf der rechten Seite bedeutet dabei das Skalarprodukt. Er
sollte deshalb auch auf der linken Seite in der Bezeichnung geschrieben werden. Auch dieses
Wegintegral ist unabhéngig von der Wahl der Parametrisierung von C.

Das vektorielle Wegintegral hat die folgende physikalische Bedeutung. Sei F(Z(t)) die
Kraft, die auf ein Teilchen an der Stelle () wirkt (zum Beispiel in einem Gravitationsfeld
oder elektrischen Kraftfeld). Dann liefert das Wegintegral von F' iiber C' die Arbeit, die auf-
gewendet wird, um das Teilchen ldngs C zu bewegen.

Beispiele
Ty t

1. Sei F(x,y,2) = | # — 2 | und C die Kurve parametrisiert durch #(t) = [ #3 |, fiir ¢ € [0, 2].
Tz 3
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2. Sei F(x,y) = <3§> und C der Einheitskreis.

In diesem Beispiel ist das Wegintegral iiber jede geschlossene Kurve gleich Null. Dies héngt
mit dem folgenden Satz zusammen.

Satz 11.3 Sei F' ein konservatives Vektorfeld auf D C R™ mit zugehoriger Potentialfunktion
f und sei C C D eine einfache, requlire Kurve parametrisiert durch ¥ : [a,b] — C. Dann
gilt

/ Fods = f(20)) - [(#a)).
C

Insbesondere hingt das Wegintegral nicht vom gewdhlten Weg ab, sondern nur vom Anfangs-

und Endpunkt. Es gilt also
/ F.-ds =20

C

falls die Kurve C geschlossen ist.

Wir iiberpriifen den Satz in R?. Wegen F = V f gilt

/ Frds = /b (2,2535335) ' @83) dt = /b (fx@(t))x’(t)+fy(f<t))y’<t)) dt
C a o

Beispiele
1. Wir betrachten nochmals das 2. Beispiel von vorher mit F\(z,y) = <3(T ) Dieses Vektorfeld
ist konservativ, denn zum Beispiel ist f(z,y) = %xQ eine Potentialfunktion von F. Nach

Satz 11.3 ist also das Wegintegral iiber jede geschlossene Kurve gleich Null.
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ey +1 t
2. Sei F(z,y,z) = | €+ 2z | und C die Kurve parametrisiert durch Z(¢t) = | vt +1 |, fiir
Y 0
t € 0,3].

3. Wir betrachten nochmals das 1. Beispiel von vorher mit F(x,y,z) = xx—yz . Die dort
gegebene Kurve C hat den Anfangspunkt (0,0,3) und den Endpunkt (2,8,:?3;. Wir wéhlen
nun eine andere Kurve, némlich C' parametrisiert durch Z(t) = 4tt , fir t € ]0,2], die
denselben Anfangs- und Endpunkt hat. ’

4. Sei F(z,y) = @ <_xy> wie auf Seite 140 und sei C' der Einheitskreis. Damit gilt

F(E(1)) - #(t) = <‘CZISI(1S)> - <‘CZISI(1§§)> — sin?(f) + cos?(t) = 1

und wir erhalten
2T

/F.dgz/dt:27r7éo.
C

0
Mit Satz 11.3 kénnen wir also folgern, dass F' nicht konservativ auf D = R?\{(0,0)} ist.
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Nun verschieben wir den Kreis so, dass er den Urpsrung nicht umliuft. Zum Beispiel
betrachten wir den Kreis C' parametrisiert durch

)= (*hem))  faree 2.

Damit liegt der Kreis und die vom Kreis umschlossene Fliche in der einfach zusammenhén-
genden Menge D = { (z,y) € R? | x > 0 }. Auf D ist F konservativ und es gilt

/F-d§:0.

c

‘-
NN/

Dies bestitigt unsere Uberlegungen auf den Seiten 140-141.
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12 Integration in mehreren Variablen

b
Das bestimmte Integral [ f(z)dx liefert den Inhalt der Fliche, die zwischen dem Intervall

[a,b] und dem Graphen von f eingeschlossen ist. Bei einem Bereichsintegral

[[ st sy
D

wird das Volumen des Koérpers bestimmt, der zwischen dem Bereich D C R? und dem Gra-
phen von f eingeschlossen ist.

12.1 Bereichsintegrale
Wir betrachten zunsichst Rechtecke als Bereiche D in R?, das heisst
D=la,b] x [e,d] ={ (z,y) |a<z<bc<y<d}CR%.

Sei f: D — R eine stetige Funktion. Der Graph von f schliesst mit dem Rechteck D einen
Korper ein, dessen Volumen wir nun berechnen werden.
Betrachten wir eine feste Zahl yg € [c, d], so ist das Integral

b
F(yo) = /f(l“,yo)dﬁﬂ

der Fliacheninhalt des Querschnitts { (z,yo, f(z,y0)) | © € [a,b] } des eingeschlossenen
Korpers. Durch Integration von F(y) iiber das Intervall [c,d] erhalten wir das Volumen V
dieses Korpers,

d d b
V:/F@@:/ Fa,y)de | dy.
y=c y=c \z=a

Dabei spielt es keine Rolle, ob man zuerst nach  und dann nach y oder umgekehrt integriert,
solange f stetig auf D ist.

Analog kann man das Bereichsintegral fiir Quader [a, b] x [c, d] x [k, £] C R3 fiir Funktionen
f(z,y,2) in drei Variablen erkléren.
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Beispiele

1. Sei D = [a,b] X [¢,d] und f: D — R mit f(z,y) = 1.

Allgemein erhélt man durch Integration von f = 1 {iber den Bereich D den Flicheninhalt
von D. Man ermittelt ndmlich das Volumen V des Koérpers der Hohe 1 iiber dem Bereich D,
was mit dem Flidcheninhalt von D iibereinstimmt, da “Volumen = Grundfliche - Hohe” gilt.
Dies wird demnéchst von Nutzen sein, wenn wir iiber kompliziertere Bereiche integrieren.

2.Sei D =10,1] x [1,2] x [2,4] und f: D — R mit f(z,y,2) =2x + z+ 1.

Manchmal kiirzt man die Schreibweise der Integrale ab und schreibt

/f:/de://fdxdy bzw. /f:/de:///fd:cdydz
D D D D D D

fiir einen Bereich D in R?, bzw. R3.

Integration iiber Normalbereiche

Allgemeiner als Rechtecke in R? sind Bereiche des R? der Form

D = {(zy)|a<z<bulx)

<y<o(xz)} baw.

() },

wobei u und o reelle Funktionen sind (u steht fiir untere Grenze und o fiir obere Grenze).
Man nennt einen solchen Bereich D einen Normalbereich.
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Normalbereiche in R? sehen wie folgt aus:

Analog ist ein Bereich D in R3 ein Normalbereich, wenn er von der Form
D={(z,9,2) | a <2 <bu(r) <y <o(r)u(z,y) <z<oxy) }

ist, wobei die Rollen der Koordinaten x,y, z vertauscht sein kénnen.

b ofx)

/ / fz,y)dydz  bzw.

Definition Ist D ein Normalbereich in R?, bzw. R?, dann nennt man
r=0a y=u(z)

// f(z,y) dydx
D
b o(z) o(x,y)

///f(x,y,z)dzdydx - / / / f(x,y, z) dzdydx
D

r=ay=u(z) z=u(z,y)

das Doppelintegral, bzw. Dreifachintegral iiber D.

Wie schon nach dem 1. Beispiel auf Seite 150 bemerkt, erhélt man durch Integration von
f(z,y) =1, bzw. f(z,y,z) =1 den Flidcheninhalt, bzw. das Volumen von D.

Satz 12.1 Fliir einen Normalbereich D gilt

/ 1 = Fldcheninhalt, bzw. Volumen von D
D

Beispiel
Sei D={(z,y) |0<ax< 1,22 <y<ux}.

14
0.8
0.6
0.44

024
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(a) Wir berechnen den Flidcheninhalt von D. Nach Satz 12.1 ist er gleich

Die rechte Seite ist nun genau das, was wir aus der Schule kennen. Wir finden den
Flacheninhalt % — % = %.

(b) Wir berechnen das Doppelintegral von f(z,y) = 2xy iiber D.

12.2 Koordinatentransformationen

Oft sind Integrale {iber Normalbereiche schwierig zu berechnen, da die unteren und oberen
Grenzen u(z) und o(z) nach dem Einsetzen in die Stammfunktionen zu komplizierten In-
tegranden fithren. In diesen Fillen kann der Wechsel zu einem anderen Koordinatensystem
hilfreich sein. Das heisst, man wechselt zu Polar-, Zylinder oder Kugelkoordinaten.

e Polarkoordinaten (r, )

Die Polarkoordinaten bilden ein Koordinatensystem von R?. Die Umrechnung lautet

T = TCcosp

= rsingp

fiir 7 > 0 und ¢ € [0, 27).

e Zylinderkoordinaten (r,p, z)

Die Zylinderkoordinaten ergédnzen die Polarkoordinaten um die z-Koordinate zu einem
Koordinatensystem von R3. Die Umrechnung ist dementsprechend

T = TcCosp
= rsing
z = z

fir r >0, ¢ € [0,27) und z € R.
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e Kugelkoordinaten (r, @, 1)

Die Kugelkoordinaten sind ein Koordinatensystem von R3. Die Umrechnung lautet

r = 71 cospsind
= rsinpsind

z = 71 cosV

fir r > 0, ¢ € [0,27) und 9 € [0, 7.

Ebenfalls iiblich ist es, anstatt des Winkels ¢ den Winkel J = 5 —1 zu benutzen, wobei dann
¥ €[5, 5] ist und sin® (bzw. cos?)) in den Umrechnungsformeln durch cos® (bzw. sin 1))
zu ersetzen sind. Bei der Erdkugel entspricht ¢ dem Léngengrad und ¥ dem Breitengrad.

Integriert man nun iiber eine Funktion und wechselt das Koordinatensystem, dann braucht
es im Integral beziiglich der neuen Koordinaten einen Korrekturfaktor.

Satz 12.2 Sei D C R?, bzw. D C R? ein Bereich im kartesischen Koordinatensystem. Fiir
eine Funktion f: D — R gelten die folgenden Transformationsformeln.

e Integration in Polarkoordinaten:

é/f(ﬁﬂ,y)dxdy - T/!f(TCOSSD,TSinSD)TdSDdT

o Integration in Zylinderkoordinaten:

/D//f(x,y,z)dmdydz = ///f(rcosgo,rsinap,z)rdzdapdr

oY z

e Integration in Kugelkoordinaten:

///f(x,y,z)dwdydz = ///f(rcosgosinﬁ,rsinapsinvﬂ,rcosvﬂ)TQSinﬂdﬁdgodr
D r o 9

Woher kommt beispielsweise der Korrekturfaktor r bei der Integration in Polarkoordi-
naten? Bei der Integration in kartesischen Koordinaten unterteilt man den Integrationsbe-
reich D in kleine Rechtecke mit Seitenlingen Az und Ay. Das heisst, man summiert iiber
Rechtecke mit Flicheninhalt AzAy, bzw. integriert iiber infinitesimal kleine Rechtecke mit
Flacheninhalt dxdy. Bei der Integration in Polarkoordinaten wird der Bereich D in kleine
Ringteilflichen unterteilt, deren Flicheninhalt ungefihr »ArAep ist. Dies fiihrt zu r drdy im
Integral.
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Ay

-1
kartesische Koordinaten Polarkoordinaten

Die Korrekturfaktoren in den anderen beiden Fillen sind analog erkldrbar. Allgemeiner
kann eine beliebige Koordinatentransformation durchgefithrt werden (&hnlich der Substituti-
on bei einem Integral einer reellen Funktion). Der Korrekturfaktor berechnet sich dann durch
die sogenannte Jacobideterminante.

Beispiele

1. Sei D C R? der Kreisring mit Aussenkreisradius 2 und Innenkreisradius 1 und sei
f(a,y) = x(2* +y?).

2. Das Volumen V des Zylinders vom Radius R und der Hoéhe h ist gegeben durch

R 27 h R
V:/ /1-rdzd<pdr:27rh/rdr:7rR2h.
r=0 =0 z=0 r=0

12.3 Flachenintegrale

Das bestimmte Integral iiber einem Intervall in R haben wir verallgemeinert zu einem Wegin-
tegral iiber einer Kurve in R?. Ahnlich kénnen wir das Bereichsintegral iiber einem Rechteck
in R? verallgemeinern zu einem Flichenintegral iiber einer Fliche in R3.
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Eine Kurve ist das Bild einer Abbildung (Parametrisierung) in einer Variablen t. Eine
Fléche ist das Bild einer Abbildung (Parametrisierung) in zwei Variablen u und wv.

Beispiele von Flidchen sind die Kugeloberfliche (Sphére), die Oberfliche eines Zylinders,
die Oberfléche eines Kegels oder der Graph einer Funktion f(x,y): D — R.

Definition Eine Teilmenge F C R3 heisst Fldche, wenn es eine (stiickweise) stetig differen-
zierbare Abbildung

z(u,v)
Z:BCcR? —R3, (u,v) = Z(u,v) = [ y(u,v)
z(u,v)
mit Z(B) = F gibt. Die Fliche heisst reguldr, wenn
xy (U, v) Ty (u,v)
Ty (u,v) X Zy(u,v) # 6, wobei @y (u,v) = | yu(u,v) | , Zp(u,v) = | yo(u,v) |,
zu(u, v) 2y (u, v)

fiir alle (u,v) € B (bis auf endlich viele Ausnahmen).

Die Vektoren #,(u,v) und #,(u,v) sind Tangentialvektoren an die Fliche F im Punkt
Z(u, v). Die Bedingung 7, X &, = &y (u,v) X Z,(u,v) # 0 bedeutet, dass diese beiden Vektoren
linear unabhéngig sind. Der Vektor &, X Z, steht senkrecht zu Z, und Z,, das heisst senkrecht
auf der Fliche F. Man nennt &, x £, Normalenvektor von F.

Dank den Zusétzen “stiickweise” und “bis auf endlich viele Ausnahmen” in der Definition
koénnen auch zusammengesetzte Flichenstiicke (wie zum Beispiel die Oberflache des Zylinders,
zusammengesetzt aus Mantel, Boden und Deckel) als regulire Fliche betrachtet werden.
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Beispiele
1. Die Kugeloberfliche F vom Radius 2 ist eine regulére Fliche parametrisiert durch
2 cos psin v
Z:00,27] x [0,71] — F, Z(p,¥) = | 2sinpsind
2cos

2. Der Graph der Funktion f(z,y) = 8 — 2% —y? ist eine regulire Fliche parametrisiert durch
#:R* — Graph(f), #(u,v) = v

Es gilt

Wir definieren nun Fléchenintegrale fiir Funktionen f und Vektorfelder F' analog zu den
Wegintegralen. Die Rolle des Geschwindigkeitsvektors Z(t) bei den Wegintegralen iibernimmt
nun der Vektor T, X &, bei den Fliachenintegralen.

Definition Sei F C R? eine regulire Fliche parametrisiert durch #(u,v) fiir (u,v) € B.

e Sei f(x,y,z) : F — R eine stetige Funktion. Das Fldchenintegral von f iiber F ist definiert

durch
//fds = //f<f<u7v>)\\fu x Ty dudv
B

F

e Sei F(x,y,2) : F — R3 ein stetiges Vektorfeld. Das Flichenintegral von F iiber F ist

definiert durch
//F-d§ = //F(:E(u,v)) A&y X Ty) dudv
B

F

Beim Wegintegral haben wir durch fC ds die Lénge der Kurve C' erhalten. Analog ist nun

/ / dS = Fliacheninhalt der Fliche F
F

Ist F' das Geschwindigkeitsfeld einer stromenden Fliissigkeit, dann ist [[ s dS die
Fliissigkeitsmenge, die pro Zeiteinheit die Flache F durchstromt. Man nennt dieses Integral
deshalb auch Fluss von F durch F in Richtung T, X Z,.
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Beispiel
Sei f(z,y,2) =22 +9*>+2z und F = {(z,y,2) | 22 +y*> = 1,0 < 2z < 1} die Mantelfliche

des Zylinders vom Radius 1 und der Hohe 1. Diese Flidche kann parametrisiert werden durch

Cos
Z(p,z) = | sing fiir (p,2) € 10,2m) x [0,1] .
z

Fiir das Fliachenintegral erhalten wir

12.4 Integralsitze

In diesem letzten Abschnitt werden die Integralséitze von Green, Gaufl und Stokes kurz vor-
gestellt. Fiir konkrete Berechnungen sind diese Sétze sehr niitzlich.

Der Divergenzsatz von Gauf

Der Divergenzsatz von GauB fiihrt das Flichenintegral [ 7 dS eines Vektorfeldes F auf
ein Dreifachintegral zuriick.

Definition Sei F(z,y,2) = (Z%) ein Vektorfeld auf D C R3. Die Divergenz von F ist
definiert durch
div F ou n ov n ow
ivF=—+4+—+4+—.
or Oy 0z

Analog ist die Divergenz eines Vektorfeldes F'(x,y) = () definiert durch

ou  Ov
divF = —+ —.
v ox * oy
Symbolisch kann man die Divergenz mit Hilfe des Skalarprodukts
divF=V-F

schreiben. Die Divergenz ist also eine reellwertige Funktion, div F': D — R.
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Sei F' das Geschwindigkeitsfeld einer strémenden Fliissigkeit. Die Divergenz gibt an, ob
an einer Stelle (x,y,z) € D Fliissigkeit ensteht oder verloren geht oder ob Gleichgewicht
besteht. Es gilt

e divF(z,y,z) >0 = Quelle: Es fliesst mehr ab als zu.
e divF(z,y,z) <0 = Senke: Es fliesst mehr zu als ab.
e divF(x,y,2) =0 = Quellenfrei: Es fliesst genauso viel zu wie ab.

Wir nennen einen Bereich D C R3 reguldr, falls D eine geschlossene, regulire Oberfléiche
Fp hat. Typische Beispiele sind Kugel, Zylinder, Kegel oder ein Quader.

Satz 12.3 (Divergenzsatz von Gauf3) Sei D C R? regulir und seine Oberfliche Fp so
parametrisiert, dass der Normalenvektor I, X Z, nach aussen zeigt. Sei F' ein stetig differen-
zierbares Vektorfeld auf D. Dann gilt

/D//dideV = J[D/F-dg.

Ist also beispielsweise das Fliachenintegral auf der rechten Seite schwierig zu berechnen,
so kann stattdessen das eventuell einfachere Bereichsintegral auf der linken Seite berechnet
werden.

Beispiele

1. Sei D die Kugel vom Radius 1 und F(z,y,z) = (§1>.

Mit dem Satz von GauB folgt, dass der Fluss durch die gesamte Kugeloberfliche nach aussen
gleich Null ist.

2. Sei D wieder die Kugel vom Radius 1 und F(z,y,z) = (

Volumen der Kugel gleich %77 ist.

). Wir benutzen, dass das

ey

Der Fluss durch die gesamte Kugeloberfliche betriagt also 4.
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Der Satz von Stokes

Beim Satz von Stokes gehen wir von einer reguliren Fliche F C R? aus, die zwei Seiten hat
und deren Rand eine (einfache, regulire) geschlossene Kurve ist. Ist Z(u, v) eine Parametri-
sierung von F, dann muss die Randkurve Cr so parametrisiert werden , dass die Fliache F zu
unserer Linken ist, wenn wir C'z durchlaufen und unser Kopf in Richtung von z, X Z, zeigt.

Satz 12.4 (Satz von Stokes) Sei F ein stetig differenzierbares Vektorfeld auf der Fliche F.

Dann gilt
//rotF-d§ = /F-d§.
F

Cr

Anstelle des Fldchenintegrals von rot F' kénnen wir also das Wegintegral von F' iiber den
Rand von F berechnen. Insbesondere ist das Fliachenintegral von rot F' fiir alle Flichen mit
derselben Randkurve gleich.

Der Satz von Green

Der Satz von Green entspricht dem Satz von Stokes in der Ebene.

Wir betrachten einen Bereich D C R?, der von einer (einfachen, reguliren) geschlossenen
Kurve Cp berandet ist. Wir parametrisieren die Randkurve C'p so, dass der Bereich zu unserer
Linken ist, wenn wir Cp durchlaufen.

Satz 12.5 (Satz von Green) Sei F(x,y) = (4) ein stetig differenzierbares Vektorfeld auf

D. Dann gilt
ov  Ou
-z _ == — F-ds.
[[ (5 - 5) aotn = [ 7
D Cp

Wir kénnen also ein Doppelintegral mit Hilfe eines eventuell einfacheren Wegintegrals
berechnen.

Ist der Bereich D einfach zusammenhéingend, dann ist F' konservativ auf D, genau dann
wenn die Integrabilitdtsbedingung erfiillt ist (vgl. Satz 11.1). Dies ist genau dann der Fall,
wenn das Doppelintegral auf der linken Seite geich Null ist. Mit dem Satz von Green folgt
also, dass F' konservativ auf D ist, genau dann wenn das Wegintegral {iber den Rand von D
(eine geschlossene Kurve!) Null ist, in Ubereinstimmung mit Satz 11.3.
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Betrachten wir nun das spezielle Vektorfeld F(z,y) = (3Y) = (%) auf D. Das Doppelin-

x v
tegral auf der linken Seite der Gleichung im Satz von Green wird damit zu

ov  Ou N .
// <6_x — 8_y> dxdy = //(1 + 1) dady = 2// dzxdy = 2 Flicheninhalt(D) .
D D D

Der Satz von Green fithrt damit zum folgenden praktischen Satz.

Flicheninhalt (D) = % / (-;,) - d5 = / (2) - d5 = / <_oy> - dg
C

D D Cp

Satz 12.6

Um also den Fliacheninhalt eines Bereiches D zu berechnen, geniigt es, entlang des Randes
von D zu integrieren!



