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1 Beschreibende Statistik

In der beschreibenden Statistik geht es darum, grosse und unübersichtliche Datenmengen so
aufzubereiten, dass wenige aussagekräftige Kenngrössen und Graphiken entstehen.

1.1 Grundbegriffe

In der Statistik nennt man Objekte, auf die sich eine statistische Untersuchung beziehen,
statistische Elemente oder Merkmalsträger. Die Menge aller dieser Merkmalsträger heisst
Grundgesamtheit. Wie der Name sagt, interessieren uns an den Merkmalsträgern gewisse
Eigenschaften oderMerkmale. Die möglichen Werte, die ein Merkmal annehmen kann, heissen
Merkmalsausprägungen.

Beispiele

Grundgesamtheit Merkmal Merkmalsausprägungen

Alle Studierenden der Alter (in Jahren) . . . , 19, 20, 21, . . .
Vorlesung Mathematik II

Bäume in der Schweiz Baumart Ahorn, Birke, Arve, . . .

Arbeitslose in Basel-Stadt Schulabschluss Gymnasium, Sekundarschule,
keiner, . . .

Eingesammelte Bebbi-Säcke (35 l) Gewicht (in kg) . . . , 28, 35.5, 49.7, . . .

Tage des Januars 2021 Durchschnitts- . . . ,−2, 4.5, 6, 11 . . .
temperatur (in ◦C)

Bei Merkmalen unterscheidet man zwischen qualitativen und quantitativen Merkmalen.

Qualitative Merkmale

Dies sind Merkmale, die artmässig erfassbar sind und keine physikalische Masseinheit benö-
tigen. Weiter wird hier unterschieden zwischen

• nominalen Merkmalen

Die Merkmalsausprägungen werden nur dem Namen nach unterschieden, ohne Wertung.

Beispiele: Baumart, Vorname, Studienfach, Nationalität

• ordinalen Merkmalen

Die Merkmalsausprägungen weisen eine natürliche Rangordnung auf.

Beispiele: Schulabschluss, Hausnummern, Lawinengefahrenskala

Quantitative Merkmale

Dies sind Merkmale, die durch Zahlen erfassbar sind und eine physikalische Masseinheit
haben. Weiter wird hier unterschieden zwischen

• diskreten Merkmalen

Die Merkmalsausprägungen sind isolierte Zahlenwerte. Werte dazwischen können nicht
angenommen werden.

Beispiele: Alter in Jahren, Anzahl Studierende pro Studienfach, Anzahl Einwohner
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• stetigen Merkmalen

Diese Merkmale können (theoretisch) jeden Wert innerhalb eines Intervalls annehmen.

Beispiele: Gewicht, Durchschnittstemperatur, Grösse, Geschwindigkeit

Skalierung von Merkmalen

Man kann Merkmale auch hinsichtlich der Skala, auf der sie gemessen werden, unterscheiden.
Von der Skala hängt ab, ob mit den Merkmalsausprägungen sinnvoll gerechnet werden kann.

• Nominale Skala

In einer nominalen Skala werden Zahlen als Namen ohne mathematische Bedeutung ver-
wendet. Rechnen mit solchen Zahlen ist sinnlos.

Beispiele: Postleitzahlen, Codes

Zum Beispiel haben wir die Postleitzahlen

4051 Basel
8102 Oberengstringen (ZH)

Es ist 8102 = 2 · 4051, aber Oberengstringen ist nicht doppelt so gross wie Basel.

• Ordinale Skala

Die natürliche Ordnung der Zahlen ordnet die Objekte nach einem bestimmten Kriterium.
Vergleiche sind sinnvoll, Differenzen und Verhältnisse jedoch nicht.

Beispiele: Prüfungsnoten, Hausnummern, Lawinengefahrenskala

Es gilt |18 − 16| = |18 − 20| = 2, doch die Distanz des Hauses mit der Nummer 18 zu den
Häusern mit den Nummern 16 und 20 ist im Allgemeinen nicht gleich gross.

• Intervallskala

Der Nullpunkt ist willkürlich. Differenzen sind sinnvoll, Verhältnisse jedoch nicht.

Beispiele: Temperatur in ◦C und in ◦F, Höhe in m über Meer

Zum Beispiel hat die Aussage “Heute ist es doppelt so warm wie gestern” in ◦F eine andere
Bedeutung als in ◦C.

• Verhältnisskala

Der Nullpunkt ist natürlich fixiert. Differenzen und Verhältnisse sind sinnvoll.

Beispiele: Geschwindigkeit, Gewicht, Masse, Volumen

Im Folgenden werden wir es meistens mit (quantitativen) Merkmalen auf einer Intervall- oder
Verhältnisskala zu tun haben. Solche Merkmalsausprägungen entstehen durch Messungen.

Stichprobe

Eine Stichprobe ist eine zufällig ausgewählte endliche Teilmenge aus einer Grundgesamtheit.
Hat diese Teilmenge n Elemente, so spricht man von einer Stichprobe vom Umfang n. Zum
Beispiel werden 10 Studierende der Vorlesung Mathematik II zufällig ausgewählt. Dann sind
diese 10 Studierenden eine Stichprobe vom Umfang 10 der Grundgesamtheit aller Studieren-
den der Vorlesung Mathematik II.
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1.2 Häufigkeitsverteilung

Messdaten, das heisst Merkmalsausprägungen eines Merkmals, fallen zunächst ungeordnet in
einer sogenannten Urliste an. Um einen Überblick über die Daten zu gewinnen, bestimmt
man die Häufigkeitsverteilung des Merkmals (in der Stichprobe).

Das Merkmal X habe die k verschiedenen Merkmalsausprägungen a1, . . . , ak. Wir ent-
nehmen eine Stichprobe vom Umfang n und notieren die Werte x1, . . . , xn der Stichprobe
(Urliste). Nun zählen wir, wie oft jede Merkmalsausprägung aj in der Stichprobe auftritt.
Diese Anzahl hj nennt man absolute Häufigkeit von aj, für j = 1, . . . , k :

hj = Anzahl der xi mit der Ausprägung aj

Die relative Häufigkeit fj von aj, für j = 1, . . . , k, ist gegeben durch

fj =
hj
n

.

Es gilt
0 ≤ hj ≤ n und h1 + · · · + hk = n ,

und Division durch n ergibt

0 ≤ fj ≤ 1 und f1 + · · · + fk = 1 .

Die Menge der Paare

{ (aj , hj) | j = 1, . . . , k } bzw. { (aj , fj) | j = 1, . . . , k }

nennt man Häufigkeitsverteilung des Merkmals X in der Stichprobe. Sie kann mit Hilfe einer
Häufigkeitstabelle bestimmt und graphisch durch ein Stab- oder Balkendiagramm dargestellt
werden. Auf der waagrechten Achse werden die Merkmalsausprägungen a1, . . . , ak abgetragen
und darüber je ein Stab oder Balken, dessen Höhe der absoluten, bzw. relativen Häufigkeit
entspricht.

Beispiel

Bei einer Befragung gaben 20 Personen Auskunft über die Anzahl Zimmer in ihrer Wohnung.
Dies ergab die folgende Urliste:

2, 4, 3, 4, 2, 3, 4, 5, 2, 1, 3, 2, 5, 3, 3, 4, 1, 2, 3, 3

Es ist also n = 20 und das Merkmal X =(Anzahl Zimmer) hat die Ausprägungen a1 = 1,
a2 = 2, a3 = 3, a4 = 4, a5 = 5.

Die Häufigkeitstabelle sieht so aus:

Anzahl Zimmer Strichliste Häufigkeiten
aj absolut hj relativ fj

1

2

3

4

5

Summe



4

Stabdiagramm mit absoluten Häufigkeiten:

Werden im Stabdiagramm die relativen anstatt die absoluten Häufigkeiten abgetragen, ändert
sich nur die Beschriftung der senkrechten Achse. Allerdings ist dann der Umfang der Stich-
probe nicht mehr ersichtlich.

Stetige Merkmale

Ist das (quantitative) Merkmal X stetig oder die Anzahl k der Merkmalsausprägungen von
X viel grösser als der Stichprobenumfang n, dann ist das vorher beschriebene Vorgehen nicht
sinnvoll, da die Häufigkeiten hj sehr klein sind, bzw. viele hj gleich Null sind. In diesem Fall
fassen wir die Merkmalsausprägungen zu Klassen zusammen.

Seien wieder x1, . . . , xn die Werte der Stichprobe und nehmen wir an, sie liegen im Intervall
[a, b). Dann unterteilen wir das Intervall [a, b) in m (halboffene) Teilintervalle

[a1, a2), [a2, a3), [a3, a4), . . . , [am, am+1)

mit a = a1 < a2 < a3 < · · · < am < am+1 = b. Das Intervall [aj , aj+1) nennt man j-te Klasse.
Nun zählt man, wie viele der Stichprobenwerte x1, . . . , xn in die einzelnen Klassen fallen.

Die absolute Häufigkeit hj der j-ten Klasse ist gegeben durch

hj = Anzahl der xi mit xi ∈ [aj , aj+1)

und die relative Häufigkeit fj der j-ten Klasse ist

fj =
hj
n

.

Die Menge der Klassen mit ihren Häufigkeiten heisst klassierte Häufigkeitsverteilung.
Bei der Klassenbildung geht natürlich Information verloren. Die Verteilung der Werte

innerhalb einer Klasse ist nicht mehr erkennbar. Viele Klassen bedeuten einen geringen In-
formationsverlust, aber wenige Klassen eine bessere Übersicht. Bei der Suche nach einem
Kompromiss helfen die folgenden Faustregeln:

• m ≤ √
n und 5 ≤ m ≤ 20 für die Anzahl Klassen m und den Stichprobenumfang n

• Die Klassenbreiten (d.h. Intervalllängen) sollten alle gleich sein.

Graphisch stellt man eine klassierte Häufigkeitsverteilung mit Hilfe eines Histogramms
dar. Die Intervallgrenzen a1, . . . , am+1 werden auf der waagrechten Achse abgetragen und
über jeder Klasse ein Rechteck gezeichnet, dessen Fläche proportional zur Häufigkeit der
jeweiligen Klasse ist.
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Beispiel

Von 30 (fiktiven) Studentinnen der Pharmazie wurden die Körperlängen (in cm) gemessen:

166, 168, 178, 177, 173, 163, 164, 167, 165, 162, 156, 163, 174, 165, 171, 169, 169,
159, 151, 163, 180, 170, 157, 170, 163, 160, 154, 178, 167, 161

Es ist also n = 30 und das Merkmal X = Körperlänge nimmt in der Stichprobe Aus-
prägungen im Intervall [151, 181) an. Wir wählen m = 5 Klassen. Dies ergibt die folgende
Häufigkeitstabelle:

j Klasse j Strichliste Häufigkeiten
in cm absolut hj relativ fj

1 [151, 157) ||| 3 0,1

2 [157, 163) ||||| 5 0,167

3 [163, 169) ||||| ||||| | 11 0,367

4 [169, 175) ||||| || 7 0,233

5 [175, 181) |||| 4 0,133

Summe 30 1

Histogramm:

1.3 Mittelwerte

Gegeben seien n Zahlen x1, . . . , xn, die Merkmalsausprägungen eines quantitativen Merkmals
X (der Grundgesamtheit oder einer Stichprobe davon) sind. Gesucht ist eine einzige Zahl,
welche die “Mitte” der n Zahlen angibt, um die herum sich die gegebenen Zahlen häufen.
In den meisten Fällen wird das arithmetische Mittel verwendet. In manchen Situationen ist
jedoch die Angabe des sogenannten Medians besser geeignet.

Das arithmetische Mittel

Definition Das arithmetische Mittel x der Zahlen x1, . . . , xn ist definiert durch

x =
1

n
(x1 + · · ·+ xn) =

1

n

n∑

i=1

xi .

Oft nennt man das arithmetische Mittel auch Durchschnitt oder einfach Mittelwert.
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Beispiel

i 1 2 3 4 5

xi 9 4 3 6 3

Wir berechnen den Durchschnitt (d.h. das arithmetische Mittel):

Eigenschaften

1. Die Summe der Quadrate der Abstände vom arithmetischen Mittel x zu den einzelnen
Messwerten x1, . . . , xn ist minimal; das heisst, die Funktion

f(x) =
n∑

i=1

(xi − x)2

ist minimal für x = x.
Im obigen Beispiel könnten wir also auch einfach das Minimum der Funktion

f(x) =
5∑

i=1

(xi − x)2 = (9− x)2 + (4− x)2 + (3− x)2 + (6− x)2 + (3− x)2

bestimmen. Dies ist schnell gemacht. Durch Ausmultiplizieren erhalten wir

f(x) = 5x2 − 50x+ 151 .

Das Minimum von f finden wir durch Nullsetzen der Ableitung:

Dass allgemein die Funktion f(x) =

n∑

i=1

(xi − x)2 ein Minimum in x = x hat, zeigt man

ebenso durch Nullsetzen der Ableitung.

2. Das arithmetische Mittel hat weiter die Eigenschaft, dass die Summe aller Abweichungen
“links” von x gleich der Summe aller Abweichungen “rechts” davon ist:

∑

xi<x

(x− xi) =
∑

xi>x

(xi − x)

Physikalisch interpretiert ist das gerade die Gleichgewichtsbedingung: Denkt man sich die
x-Achse als langen masselosen Stab und darauf an den Positionen xi jeweils eine konstante
punktförmige Masse angebracht, so befindet sich der Stab genau dann im Gleichgewicht,
wenn er im Punkt x gehalten wird.

Hier der Nachweis dieser Eigenschaft:

∑

xi>x

(xi − x)−
∑

xi<x

(x− xi) =

n∑

i=1

(xi − x) =

n∑

i=1

xi −
n∑

i=1

x =

n∑

i=1

xi − nx = 0 .
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3. Das arithmetische Mittel ist empfindlich gegenüber Ausreissern. Eine Zahl in einer Da-
tenreihe nennt man Ausreisser, wenn sie von den anderen Daten weit weg liegt (im nächsten
Abschnitt wird dies noch präzisiert). In vielen Fällen ensteht ein Ausreisser aufgrund eines
Schreib- oder Messfehlers.

Beispiel

In einem kleinen Dorf wohnen 20 Handwerker und ein Manager. Nehmen wir an, die Handwer-
ker verdienen etwa 3000CHF pro Monat und der Manager 40000CHF. Ist der Durchschnitt
ein guter Repräsentant für die Einkommen in diesem Dorf?

Nein, der Durchschnitt x wird durch das Einkommen des Managers dermassen in die Höhe
gezogen, dass die Einkommen der Handwerker nicht erkennbar sind.

Für Situationen wie im Beispiel brauchen wir eine andere Zahl als den Durchschnitt, um
die “Mitte” einer Datenreihe angeben zu können.

Der Median oder Zentralwert

Definition Der Median oder Zentralwert x̃ der Zahlen x1, . . . , xn ist der mittlere Wert der
nach der Grösse geordneten Zahlen x1, . . . , xn.

Dies bedeutet: Die Zahlen x1, . . . , xn werden zuerst der Grösse nach geordnet. Ist die Anzahl
n der Werte ungerade, so gibt es einen mittleren Wert x̃. Ist n gerade, so sind zwei Zahlen
in der Mitte und x̃ kann zwischen diesen Zahlen gewählt werden. Üblich ist in diesem Fall, x̃
als arithmetisches Mittel der beiden Zahlen zu wählen, was auch wir hier tun werden. Dies
ist jedoch nicht einheitlich festgelegt.

Beispiele

1. Im obigen Beispiel schreiben wir die Einkommen der Grösse nach geordnet hin. Das Ein-
kommen des Managers ist (mit Abstand) der grösste Wert. Der mittlere Wert ist eines der
20 Einkommen der Handwerker. Also ist der Median in diesem Beispiel ein sinnvoller Re-
präsentant der Einkommen.

2.

i 1 2 3 4 5

xi 9 4 3 6 3

Wir berechnen den Median:

Nehmen wir in diesem Beispiel eine weitere Zahl x6 = 10 hinzu:

i 1 2 3 4 5 6

xi 9 4 3 6 3 10

Median:
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Eigenschaften

1. Die Summe der Abstände vom Median zu den einzelnen Zahlen x1, . . . , xn ist minimal; das
heisst, die Funktion

f(x) =

n∑

i=1

|xi − x|

ist minimal für x = x̃.

Im 2. Beispiel oben könnten wir also auch einfach die Minima der Funktionen

f1(x) =
5∑

i=1

|xi − x| = |9− x|+ |4− x|+ |3− x|+ |6− x|+ |3− x|

f2(x) =
6∑

i=1

|xi − x| = |9− x|+ |4− x|+ |3− x|+ |6− x|+ |3− x|+ |10 − x|

bestimmen. Nullsetzen der Ableitungen funktioniert nun aber nicht, da weder f1 noch f2
differenzierbar ist. Schauen wir uns stattdessen die Graphen von f1 und f2 an:

Die Funktion f1(x) hat wie erwartet ein Minimum in x = x̃ = 4. Die Funktion f2(x) hat ein
Minimum in x = x̃ = 5 (aber auch jedes andere x zwischen 4 und 6 ist eine Minimalstelle).

2. Eine wichtige Eigenschaft des Medians ist, dass er unempfindlich gegenüber Ausreissern
ist.

3. Der Median wird auch mit x̃ = x̃0,5 bezeichnet. Dies, weil höchstens die Hälfte aller Zahlen
kleiner als x̃ und höchstens die Hälfte aller Zahlen grösser als x̃ ist.

Der Median ist also die Schnittstelle, wenn man die der Grösse nach geordneten Zahlen in
zwei gleich grosse Haufen teilt.

1.4 Quantile und Boxplot

Es ist nützlich, die dritte Eigenschaft des Medians wie folgt zu verallgemeinern. Die der
Grösse nach geordneten Zahlen x1, . . . , xn werden in zwei Haufen geteilt, doch soll der erste
Haufen (mit den kleineren Zahlen) zum Beispiel nur 1

10 = 0, 1 aller Zahlen umfassen. An der
Schnittstelle ist dann das sogenannte Quantil x̃0,1.
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Definition Sei α eine Zahl mit 0 ≤ α ≤ 1. Dann ist das Quantil x̃α durch die folgende
Bedingung definiert: Der Anteil der xi < x̃α ist ≤ α, der Anteil der xi > x̃α ist ≤ 1− α.

Speziell nennt man das Quantil x̃0,25 das erste Quartil, das Quantil x̃0,75 das dritte Quartil
und entsprechend ist der Median x̃0,5 auch das zweite Quartil.

Wird α in Zehnteln angegeben, spricht man von Dezilen, bei Hundertsteln von Perzentilen.
Der Median ist also auch das fünfte Dezil oder das fünfzigste Perzentil.

Beispiele

1. Gesucht ist das erste Quartil x̃0,25 der Zahlen

i 1 2 3 4 5 6 7 8

xi 2 3 7 13 13 18 21 24

Ein Viertel von 8 Messwerten sind 2 Messwerte, also liegt das Quartil x̃0,25 zwischen der
zweiten und der dritten Zahl, das heisst zwischen 3 und 7. Wie beim Median ist es üblich,
für x̃0,25 den Mittelwert der beiden Zahlen zu nehmen:

2. Gesucht ist das erste Quartil x̃0,25 der Zahlen

i 1 2 3 4 5 6

xi 2 3 7 13 13 18

Nun ist Vierteln der Messwerte nicht mehr möglich. Wir müssen also die Definition für das
Quantil (für α = 0, 25) anwenden: Der Anteil der xi < x̃0,25 ist ≤ 0, 25, der Anteil der
xi > x̃0,25 ist ≤ 1− 0, 25 = 0, 75.

Ein Anteil von 0, 25 von 6 Messwerten ist gleich 0, 25 · 6 = 1, 5 Messwerte. Die Aussage
“der Anteil der xi < x̃0,25 ist ≤ 0, 25” bedeutet also, dass es höchstens 1, 5 Messwerte xi mit
xi < x̃0,25 gibt; das heisst, es gibt höchstens einen solchen Messwert xi.

Die Aussage “der Anteil der xi > x̃0,25 ist ≤ 1−0, 25 = 0, 75” bedeutet dementsprechend,
dass es höchstens 0, 75 · 6 = 4, 5 Messwerte mit xi > x̃0,25 gibt; das heisst es gibt höchstens 4
solche Messwerte.

Wir sehen nun, dass nur x̃0,25 = x2 = 3 diese Bedingungen erfüllt.

Satz 1.1 Gegeben seien der Grösse nach geordnete Zahlen x1, . . . , xn und 0 ≤ α ≤ 1.

• Ist nα eine ganze Zahl (wie im 1. Beispiel), dann liegt x̃α zwischen zwei der gegebenen
Zahlen. Es gilt

x̃α =
1

2
(xnα + xnα+1) .

• Ist nα keine ganze Zahl (wie im 2. Beispiel), dann ist x̃α eine der gegebenen Zahlen. Es
gilt

x̃α = x⌈nα⌉

wobei ⌈nα⌉ bedeutet, dass nα auf eine ganze Zahl aufgerundet wird, also zum Beispiel ist
⌈3, 271⌉ = 4.
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Beispiele

1. Wir untersuchen die Messwerte der Lymphozytenanzahl X pro Blutvolumeneinheit von 84
Ratten:

968, 1090, 1489, 1208, 828, 1030, 1727, 2019, 944, 1296, 1734, 1089, 686, 949,
1031, 1699, 692, 719, 750, 924, 715, 1383, 718, 894, 921, 1249, 1334, 806, 1304,
1537, 1878, 605, 778, 1510, 723, 872, 1336, 1855, 928, 1447, 1505, 787, 1539, 934,
1650, 727, 899, 930, 1629, 878, 1140, 1952, 2211, 1165, 1368, 676, 813, 849, 1081,
1342, 1425, 1597, 727, 1859, 1197, 761, 1019, 1978, 647, 795, 1050, 1573, 2188,
650, 1523, 1461, 1691, 2013, 1030, 850, 945, 736, 915, 1521.

Gesucht sind der Median, die beiden Quartile sowie das Dezil x̃0,1. Also müssen wir die
Messwerte zuerst der Grösse nach ordnen. Das erledigt zum Beispiel Excel für uns.

i xi
1 605

2 647

3 650

4 676

5 686

6 692

7 715

8 718

9 719

10 723

11 727

12 727

13 736

14 750

15 761

16 778

17 787

18 795

19 806

20 813

21 828

i xi
22 849

23 850

24 872

25 878

26 894

27 899

28 915

29 921

30 924

31 928

32 930

33 934

34 944

35 945

36 949

37 968

38 1019

39 1030

40 1030

41 1031

42 1050

i xi
43 1081

44 1089

45 1090

46 1140

47 1165

48 1197

49 1208

50 1249

51 1296

52 1304

53 1334

54 1336

55 1342

56 1368

57 1383

58 1425

59 1447

60 1461

61 1489

62 1505

63 1510

i xi
64 1521

65 1523

66 1537

67 1539

68 1573

69 1597

70 1629

71 1650

72 1691

73 1699

74 1727

75 1734

76 1855

77 1859

78 1878

79 1952

80 1978

81 2013

82 2019

83 2188

84 2211

Die Quartile können wir nun ablesen.

erstes Quartil:

Median:

drittes Quartil:
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Nun berechnen wir noch das Dezil x̃0,1 mit Hilfe von Satz 1.1.

2. Wir betrachten die erzielten Punkte an der Prüfung Mathematik I vom 22.01.21. Es gab 212
Prüfungsteilnehmer*innen, wir haben also 212 ungeordnete Zahlen x1, . . . , x212, wobei jede
Zahl xi die Anzahl der erzielten Punkte der Person i angibt. Um die Quartile zu berechnen,
ordnen wir zuerst diese 212 Zahlen der Grösse nach.

Für den Median x̃ = x̃0,5 rechnen wir 212 · 0, 5 = 106. Der erste Punkt von Satz 1.1 sagt
nun, dass der Median gleich dem arithmetischen Mittel der 106. und der 107. geordneten Zahl
ist. Diese geordneten Zahlen sind beide gleich 31. Es gilt also x̃ = 31 (Punkte).

Für das erste Quartil rechnen wir 212 · 0, 25 = 53. Wieder der erste Punkt von Satz 1.1
sagt, dass x̃0,25 gleich dem Durchschnitt der 53. und der 54. geordneten Zahl ist. Wieder sind
diese beiden geordneten Zahlen gleich, nämlich 24,5. Es gilt also x̃0,25 = 24, 5 (Punkte).

Für das dritte Quartil rechnen wir 212 · 0, 75 = 159. Analog zum ersten Quartil ist x̃0,75
gleich dem Durchschnitt der 159. und der 160. geordneten Zahl. Die erste dieser beiden Zahlen
ist 37, die zweite ist 37,5. Wir erhalten also x̃0,75 = 37, 25 (Punkte).

Wir sehen in diesem Beispiel, dass das erste und das dritte Quartil etwas über die Streuung
der Daten aussagt. Nämlich die Hälfte der Zahlen (die “mittlere Hälfte”) liegt zwischen x̃0,25 =
24, 5 und x̃0,75 = 37, 25. Und da der Median x̃ = 31 (ein wenig) näher bei x̃0,75 als bei x̃0,25
liegt, ist die Streuung “gegen unten” (ein wenig) grösser. Für ein aussagekräftiges Gesamtbild
interessiert allenfalls noch die kleinste Zahl xmin = 1 und die grösste Zahl xmax = 48, 5.

Für eine bessere Übersicht werden die Quartile durch einen Boxplot graphisch dargestellt.

Boxplot

Der Boxplot eines Datensatzes stellt die Lage des Medians, des ersten und dritten Quartils,
der Extremwerte und der Ausreisser graphisch dar.

• innerhalb der Box

untere Boxgrenze x̃0.25
obere Boxgrenze x̃0.75
Linie in der Box x̃0.5

Die Höhe der Box wird als Interquartilsabstand bezeichnet. Dieser Teil umfasst also die
Hälfte aller Daten.

• ausserhalb der Box

− Extremwerte: mehr als 3 Boxlängen vom unteren bzw. oberen Boxrand entfernt, wieder-
gegeben durch ,,∗“

− Ausreisser: zwischen 11
2 und 3 Boxlängen vom oberen bzw. unteren Boxrand entfernt,

wiedergegeben durch ,,◦“
− Der kleinste und der grösste Wert, der jeweils nicht als Ausreisser eingestuft wird, ist

durch eine horizontale Strecke darzustellen.
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Ausreisser

Extremwerte

Ausreisser

Extremwerte

drittes Quartil

erstes Quartil

Median

Beispiele

1. Im ersten Beispiel der Seite 10 haben wir die folgenden Quartile berechnet: x̃0,25 = 838, 5,
x̃0,5 = 1065, 5, x̃0,75 = 1515, 5. Es gibt weder Ausreisser noch Extremwerte. Der kleinste Wert
ist 605 und der grösste Wert 2211. Der Boxplot sieht wie folgt aus, wobei hier der schwarze
Punkt in der Box die Lage des Mittelwerts x = 1189, 18 beschreibt.
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2. Im zweiten Beispiel auf Seite 11 haben wir die folgenden Quartile erhalten: x̃0,25 = 24, 5,
x̃0,5 = 31, x̃0,75 = 37, 25. Es gibt keine Extremwerte, aber drei Ausreisser, nämlich die Zahlen
1, 4 und 5. Die grösste Zahl ist 48,5 und 8,5 ist die kleinste Zahl, die kein Ausreisser ist.

1.5 Empirische Varianz und Standardabweichung

Mittelwerte und Quantile alleine genügen nicht für die Beschreibung eines Datensatzes.

Beispiel

Zwei Studenten der Geowissenschaften, nennen wir sie A und B, haben bei acht Examen die
folgenden Noten erzielt. Student A: 4, 4, 4, 3, 5, 4, 4, 4. Student B: 2, 6, 2, 6, 2, 6, 2, 6. Beide
Studenten haben einen Notendurchschnitt von einer 4 und auch der Median ist bei beiden
4 (bei B ist x̃ = x̃0,5 das arithmetische Mittel von 2 und 6, also 4). Dabei unterscheiden
sich A und B völlig in der Konstanz ihrer Leistungen. Die Quartile geben einen Hinweis
auf die grössere Streuung der Noten von B, doch sie sagen nichts aus über die einzelnen
Abweichungen vom arithmetischen Mittel.

Zusätzlich zu den Mittelwerten und Quantilen benötigen wir deshalb Masszahlen, die
etwas über die Abweichung der Einzeldaten vom arithmetischen Mittel aussagen: die Varianz
und die Standardabweichung.

Definition Die (empirische) Varianz der Daten x1, . . . , xn ist definiert durch

s2 =
1

n− 1

n∑

i=1

(xi − x)2 .

Die Standardabweichung ist die positive Quadratwurzel aus der Varianz,

s =

√
√
√
√

1

n− 1

n∑

i=1

(xi − x)2 .
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Die empirische Varianz ist also fast die mittlere quadratische Abweichung vom Mittel-
wert. Warum wir nicht den Faktor 1

n
, sondern den Faktor 1

n−1 nehmen, werden wir erst

später einsehen. Tatsächlich wird die Varianz oft auch mit dem Faktor 1
n
definiert.

Beispiel

Für den Studenten A mit den Noten 4, 4, 4, 3, 5, 4, 4, 4 und dem Mittelwert x = 4 gilt:

Für den Studenten B mit den Noten 2, 6, 2, 6, 2, 6, 2, 6 und dem Mittelwert x = 4 gilt:

Die Formel für die empirische Varianz kann umgeformt werden:
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Satz 1.2 Es gilt

s2 =
1

n− 1

(
n∑

i=1

x2i − nx2

)

.

Für konkrete Berechnungen ist diese Formel oft praktischer als die Definition.

Wann welche Masszahlen?

Um für eine Datenreihe die Lage auf der Zahlengeraden und die Streuung der Daten zu
beschreiben, haben wir also das arithmetische Mittel und die Standardabweichung sowie den
Median und die Quartile zur Verfügung.

Sind die Daten Merkmalsausprägungen eines Merkmals, das auf einer ordinalen Skala
gemessen wird, dann können wir nur den Median und die Quartile gebrauchen (das arithme-
tische Mittel und die Standardabweichung sind sinnlos).

Wird das Merkmal hingegen auf einer Intervall- oder Verhältnisskala gemessen, haben wir
die Wahl zwischen arithmetischem Mittel mit der Standardabweichung und dem Median mit
den Quartilen. In den meisten Fällen wird das arithmetische Mittel mit der Standardabwei-
chung verwendet. Weist die Datenreihe jedoch Ausreisser auf, ist im Allgemeinen der Median
mit den Quartilen die bessere Wahl. Allerdings können diese Masszahlen auch missbraucht
werden, um unerwünschte Ausreisser unter den Teppich zu kehren.

1.6 Prozentrechnen

Prozentrechnen ist lediglich Bruchrechnen, denn

1% =
1

100
= 0, 01 .

Beispiele

1. Wieviel ist 4% von 200 ?

2. In der Prüfung Mathematik I vom HS20 haben 64 von den 212 Teilnehmern die Note 5,
5.5 oder 6 erzielt. Wieviel Prozent sind das?
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3. Eine Eisenbahngesellschaft hat die Billet-Preise seit 2007 zweimal erhöht, nämlich um 8, 2
und um 11, 8 Prozent. Das macht zusammen 20 Prozent. Stimmt diese Rechnung?

Absolut und relativ

Bei Statistiken können absolute Zahlenangaben andere Resultate liefern als Angaben in Pro-
zenten.

Beispiele

1. Wir vergleichen die Altersverteilung in der Schweiz in den Jahren 1900 und 2000 (Quelle:
Bundesamt für Statistik).

Schweiz 1900 2000
absolut relativ absolut relativ

65 und mehr Jahre 193 266 6% 1109 416 23%

20 – 64 Jahre 1 778 227 54% 4430 460 62%

0 – 19 Jahre 1 343 950 40% 1664 124 15%

Total 3 315 443 100% 7204 000 100%

Betrachten wir den Anteil der Jugendlichen. In absoluten Zahlen wuchs der Anteil der Ju-
gendlichen zwischen 1900 und 2000 (nämlich um 320 174 Jugendliche). Der relative Anteil
nahm jedoch ab, und zwar um 25 Prozentpunkte (von 40% auf 15%).

2. Aus dem Erfundenland stammt die folgende Statistik:

Altersstufe Landesbürger Ausländer
total pro davon kriminell total pro davon kriminell

Altersstufe absolut relativ Altersstufe absolut relativ

0 – 19 4 Mio. 40 000 1% 1 Mio. 2000 0,2%

20 – 39 4 Mio. 400 000 10% 6 Mio. 560 000 9,33%

40 – 59 6 Mio. 60 000 1% 1 Mio. 2000 0,2%

60 – 79 4 Mio. 40 000 1% 0,2 Mio. 1000 0,5%

80 – 99 1 Mio. 1000 0,1% - - -
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Die Partei A fasst dies so zusammen: Obwohl es viel mehr Landesbürger als Ausländer gibt
(nämlich 19 Mio. Landesbürger und 8,2 Mio. Ausländer) gibt es mehr kriminelle Ausländer als
kriminelle Landesbürger; nämlich 565 000 Ausländer sind kriminell im Gegensatz zu 541 000
kriminellen Landesbürgern.

Die Partei B kontert: In jeder Altersstufe stellen die Ausländer prozentual weniger Kri-
minelle als die Landesbürger.

3. Sie sind krank und der Arzt empfiehlt Ihnen, entweder Medikament A oder Medikament B
einzunehmen.

Der Arzt sagt, dass Sie mit Medikament A schneller gesund werden als mit Medikament B,
aber das Risiko einer gravierenden Nebenwirkung sei bei Medikament A um 100 Prozent
grösser als bei Medikament B.

In absoluten Zahlen sieht es so aus: Bei Medikament A treten bei durchschnittlich 2 von
10 000 Patienten gravierende Nebenwirkungen auf, bei Medikament B lediglich bei 1 von
10 000 Patienten.



18

2 Korrelation und Regressionsgerade

Oft untersucht man nicht nur eine, sondern zwei Datenreihen und fragt sich, ob ein Zusam-
menhang zwischen den beiden Datenreihen besteht. Auskunft über einen linearen Zusam-
menhang gibt der sogenannte Korrelationskoeffizient.

2.1 Der Korrelationskoeffizient

Von einer Menge von Merkmalsträgern (Grundgesamtheit) betrachten wir zwei quantitative
Merkmale X und Y , gemessen auf einer Intervall- oder Verhältnisskala. Hat ein Merkmalsträ-
ger i die Merkmalsausprägungen xi von X und yi von Y , dann notieren wir dies als Wertepaar
(xi, yi). Wir nehmen eine Stichprobe vom Umfang n und erhalten demnach n Wertepaare
(x1, y1), . . . , (xn, yn). Zum Beispiel untersuchen wir die Merkmale X = Körpergrösse und
Y = Gewicht von allen Studierenden der Universität Basel.

In diesem Beispiel vermutet man einen Zusammenhang zwischen den Merkmalen: Je
grösser ein(e) Studierende(r), desto grösser sein/ihr Gewicht. Um allgemein bei gegebenen
Wertepaaren einen allfälligen Zusammenhang abschätzen zu können, zeichnet man die Wer-
tepaare (x1, y1), . . . , (xn, yn) als Punkte im Koordinatensystem ein. Dies ergibt eine Punkt-
wolke, die man Streudiagramm nennt. Hier drei Beispiele:

Im ersten Streudiagramm erkennt man einen Zusammenhang: Je grösser xi, desto grösser yi.
Im zweiten Streudiagramm ist der Zusammenhang umgekehrt: Je grösser xi, desto kleiner yi.
Und im dritten Streudiagramm ist kein Zusammenhang zwischen den xi und den yi erkennbar.

Wir sind hier auf der Suche nach einem linearen Zusammenhang, das heisst, wir fragen
uns, ob die Wertepaare (ungefähr) auf einer Geraden liegen. Eine Antwort darauf liefert der
Korrelationskoeffizient rxy, der ein Mass sowohl für die Stärke des linearen Zusammenhangs
als auch die Richtung im Falle eines Zusammenhangs ist. Im Korrelationskoeffizienten rxy
steckt die sogenannte Kovarianz cxy, welche die Richtung eines allfälligen Zusammenhangs
anzeigt.

Definition Die (empirische) Kovarianz der Wertepaare (x1, y1), . . . , (xn, yn) ist definiert
durch

cxy =
1

n− 1

n∑

i=1

(xi − x)(yi − y) .

Mit denselben Rechenumformungen wie auf Seite 14 für die empirische Varianz finden wir
die für Berechnungen praktischere Formel

cxy =
1

n− 1

(
n∑

i=1

xiyi − nx y

)

.
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Ist cxy > 0 (bzw. cxy < 0), dann liegen die Wertepaare (x1, y1), . . . , (xn, yn), im Falle
eines linearen Zusammenhangs, auf einer Geraden mit positiver (bzw. negativer) Steigung.
Die Kovarianz kann jedoch beliebig grosse und beliebig kleine Werte annehmen und sie hängt
von den Einheiten ab, mit denen die Merkmalsausprägungen xi und yi gemessen werden. Um
eine Masszahl für die Stärke eines linearen Zusammenhangs zu erhalten, wird die Kovarianz
deshalb durch die Standardabweichungen

sx =

√
√
√
√

1

n− 1

n∑

i=1

(xi − x)2 und sy =

√
√
√
√

1

n− 1

n∑

i=1

(yi − y)2

der Zahlen x1, . . . , xn, bzw. y1, . . . , yn, dividiert.

Definition Gegeben seien die n Wertepaare (x1, y1), . . . , (xn, yn), wobei nicht alle xi gleich
sind und nicht alle yi gleich sind. Der (empirische) Korrelationskoeffizient ist definiert durch

rxy =
cxy
sxsy

=

n∑

i=1

(xi − x)(yi − y)

√
√
√
√

n∑

i=1

(xi − x)2

√
√
√
√

n∑

i=1

(yi − y)2

.

Der Korrelationskoeffizient rxy wurde vom britischen Mathematiker Karl Pearson

(1857 – 1936) eingeführt. Die Interpretation von rxy zeigt der folgende Satz.

Satz 2.1 Der Korrelationskoeffizient nimmt nur Werte zwischen −1 und +1 an. Insbeson-
dere gilt:

rxy = +1 ⇐⇒ yi = axi + b mit a > 0

rxy = −1 ⇐⇒ yi = axi + b mit a < 0.

Die Wertepaare (xi, yi) liegen also exakt auf einer Geraden genau dann, wenn rxy = ±1.

Woher kommen diese Eigenschaften von rxy und wie sind die Werte von rxy zwischen −1
und 1 zu interpretieren? Zur Beantwortung dieser Fragen definieren wir die beiden Vektoren
in R

n

~x =






x1 − x
...

xn − x




 und ~y =






y1 − y
...

yn − y




 .

Dann gilt

rxy =
~x · ~y

‖~x‖‖~y‖
und die sogenannte Ungleichung von Cauchy-Schwarz sagt aus, dass die rechte Seite eine
reelle Zahl zwischen −1 und 1 ist. Also gilt −1 ≤ rxy ≤ 1.

In R
2 und R

3 gilt
~x · ~y

‖~x‖‖~y‖ = cosϕ
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für den Winkel ϕ zwischen den Vektoren ~x und ~y. In R
n für n > 3 definiert man den Winkel

ϕ zwischen ~x und ~y durch diese Gleichung. Es gilt also allgemein

rxy = cosϕ

für den Zwischenwinkel ϕ der Vektoren ~x und ~y.
Nehmen wir nun an, dass rxy ≈ 1 oder rxy ≈ −1. Dies bedeutet, dass der Zwischenwinkel

ϕ von ~x und ~y nahe bei 0◦, bzw. 180◦ ist. Die beiden Vektoren ~x und ~y sind also (beinahe)
parallel, das heisst, ~y ≈ a~x für eine reelle Zahl a > 0, bzw. a < 0 :

Für die Komponenten gilt in diesem Fall

Wir können demnach folgern:

• Ist rxy nahe bei 1, so gilt yi ≈ axi + b für ein a > 0, das heisst, es besteht (beinahe)
ein linearer Zusammenhang zwischen den Wertepaaren. Man spricht in diesem Fall von
einer starken positiven Korrelation.

• Ist rxy nahe bei −1, so gilt yi ≈ axi + b für ein a < 0, das heisst, es besteht (beinahe)
ein linearer Zusammenhang zwischen den Wertepaaren. Man spricht in diesem Fall von
einer starken negativen Korrelation.

• Ist rxy nahe bei 0, so bedeutet dies, dass ϕ nahe bei 90◦ ist. Die beiden Vektoren ~x und
~y sind also fast orthogonal. Die Wertepaare korrelieren in diesem Fall nicht.

Beispiele

1. Gegeben sind die folgenden Wertepaare:

xi 5 3 4 6 2

yi 1 4 2 1 7

Streudiagramm:
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Berechnungen:

i xi yi xiyi x2i y2i
1 5 1

2 3 4

3 4 2

4 6 1

5 2 7

Summe

Mittelwerte:

Empirische Kovarianz (mit Hilfe der Formel nach der Definition):

Empirische Varianzen (mit Hilfe von Satz 1.2):

Korrelationskoeffizient:

Wir haben also eine starke negative Korrelation.

2. Gibt es einen linearen Zusammenhang zwischen der Körpergrösse und dem Gewicht eines
Menschen? Gemessen wurden die Körpergrösse xi (in cm) und das Gewicht yi (in kg) von
15 Personen (der Schweizer Handballnationalmannschaft an der WM im Januar 2021):

xi 190 194 190 187 196 181 204 181 186 179 190 185 198 197 191
yi 90 91 90 80 98 74 103 73 80 75 88 75 106 97 117

Streudiagramm:
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Wir finden (z.B. mit Excel, GeoGebra oder R)

rxy = 0, 799 .

Wir haben eine positive Korrelation.

Bemerkungen zur Interpretation von rxy

• Ist rxy ≈ 0, dann sagt dies nur, dass die beiden Datensätze keinen linearen Zusammenhang
haben. Eventuell hängen sie jedoch quadratisch, exponentiell oder durch eine trigonome-
trische Funktion voneinander ab (vgl. Abschnitt 2.4).

• Falls rxy nahe bei 1 oder −1 liegt, folgt lediglich, dass die Datensätze stark korrelieren.
Man darf jedoch nicht daraus schliessen, dass zwischen den Datensätzen ein kausaler Zu-
sammenhang besteht (d.h. dass der eine Datensatz Ursache für den anderen Datensatz ist).
Es könnte so sein, es könnte aber auch eine gemeinsame Ursache im Hintergrund geben
oder die Korrelation zufällig sein. Weiter muss ein Datensatz allenfalls in Teildatensätze
unterteilt werden, um nicht eine der Erwartungen entgegengesetzte Korrelation zu erhalten
(dieses Phänomen ist bekannt als Simpson-Paradoxon).

Beispiel

Wir betrachten die Jahresanfangsgehälter yi (in 1000 CHF) von acht Universitätsabgänger*in-
nen in Abhängigkeit von deren Studiendauer xi (in Anzahl Semestern):

xi 6 7 8 8 11 12 12 11

yi 70 60 50 60 80 70 80 90

Der Korrelationskoeffizient rxy = 0, 640 weist auf eine positive Korrelation hin, also je länger
die Studiendauer, desto höher das Anfangsgehalt. Doch das ist für Studierende zu schön,
um wahr zu sein. Tatsächlich haben die ersten vier Studienabgänger*innen das gleiche Fach
studiert und die restlichen vier ein anderes gemeinsames Fach (das mehr Zeit in Anspruch
nimmt als das erste Fach). Im folgenden Streudiagramm sind die ersten vier Wertepaare blau
und die restlichen vier rot eingezeichnet.

Betrachtet man die Fächer separat, so findet man für das erste Fach den Korrelationskoeffi-
zienten rxy = −0, 853 und für das zweite Fach rxy = −0, 707. Studiendauer und Anfangsgehalt
sind also doch negativ korreliert!
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2.2 Rangkorrelation

Der Korrelationskoeffizient rxy ist nicht sinnvoll, wenn eines der beiden Merkmale X und Y
nicht auf einer Intervall- oder Verhältnisskala gemessen wird. Werden beide Merkmale zumin-
dest auf einer Ordinalskala gemessen, dann kann der sogenannte Rangkorrelationskoeffizient
gebildet werden.

Gegeben seien also die Merkmalsausprägungen x1, . . . , xn und y1, . . . , yn von zwei ordi-
nalskalierten Merkmalen X, bzw. Y . Das heisst, den Daten können Ränge zugeordnet werden.
Haben zwei oder mehr Daten denselben Rang (man nennt dies eine Bindung), so wird als
Rang dieser Daten das arithmetische Mittel der zu vergebenden Ränge gewählt. Anschlies-
send bildet man von diesen Rängen rxi

und ryi die Differenzen di = rxi
− ryi . Das heisst,

jedem Wertepaar (xi, yi) ordnet man die Rangdifferenz di zu.

Definition Gegeben seien die n Wertepaare (x1, y1), . . . , (xn, yn) mit den Rangdifferenzen
d1, . . . , dn. Der Rangkorrelationskoeffizient ist definiert durch

rS = 1 − 6

n(n2 − 1)

n∑

i=1

d2i .

Der Rangkorrelationskoeffizient geht auf den britischen Psychologen Charles Spearman

(1863 - 1945) zurück.
Der Rangkorrelationskoeffizient rS nimmt Werte zwischen −1 und 1 an und er wird analog

zu rxy interpretiert. Stimmen die Rangreihenfolgen für die beiden Datensätze überein, dann
sind alle Rangdifferenzen di Null und rS = 1. Bei genau umgekehrten Rangreihenfolgen für
die beiden Datensätze führt der Faktor 6

n(n2−1)
zu rS = −1.

Beispiel

In einem erdbebengefährdeten Gebiet fanden im vergangenen Jahr 7 Erdbeben statt. In der
Tabelle sind die Stärke (gemäss Richterskala) sowie die Schadensumme (in Mio. CHF) von
jedem Erdbeben aufgelistet.

Stärke Schaden Ränge Rangdifferenz

xi yi rxi
ryi di = rxi

− ryi d2i
3,8 42

2,6 33

2,4 20

3,7 40

5,4 49

6,2 45

3,8 33

Summe

Wir erhalten

Wir haben also eine starke positive Rangkorrelation.
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2.3 Die Regressionsgerade

Wie im ersten Abschnitt dieses Kapitels betrachten wir von einer Grundgesamtheit zwei
quantitative Merkmale X und Y . Anders als zuvor gehen wir jedoch davon aus, dass Y von
X abhängt und wir fragen uns, wie Y von X abhängt. Wir nehmen eine Stichprobe von
Wertepaaren (x1, y1), . . . , (xn, yn) und suchen also eine Funktion f , so dass yi ≈ f(xi).

Beispiel

Der Umsatz einer Apotheke gibt einen wichtigen Hinweis auf ihre Wirtschaftlichkeit. Kann
dieser Umsatz beispielsweise durch die Anzahl Kunden pro Tag abgeschätzt werden?

Bei drei Apotheken, für welche der Jahresumsatz bekannt ist, werden die Anzahl Kunden
pro Tag gezählt. Man erhält die folgenden drei Messwertpaare (xi, yi), i = 1, 2, 3,

i 1 2 3

xi 1 2 3

yi 2 3 4,5

wobei xi · 100 die Anzahl Kunden pro Tag in der Apotheke i sind und yi der Jahresumsatz
der Apotheke i in Millionen CHF ist. Wenn es eine Funktion f gibt, so dass yi ≈ f(xi),
für i = 1, 2, 3, dann könnte für jede weitere Apotheke die Anzahl Kunden x gezählt werden
und mit Hilfe der Funktionsgleichung y = f(x) der Jahresumsatz y der Apotheke geschätzt
werden.

Um eine passende Funktion f zu finden, zeichnen wir das Streudiagramm der Messwert-
paare:

Die drei Punkte liegen fast auf einer Geraden. Es könnte also sein, dass ein linearer Zu-
sammenhang zwischen den Messwerten x1, x2, x3 und y1, y2, y3 besteht, der jedoch durch
verschiedene Einflüsse verfälscht wurde.

Wir machen deshalb den Ansatz

y = f(x) = ax+ b

und versuchen, a und b so zu bestimmen, dass der Graph von f (eine Gerade) die drei
Messwertpaare am besten approximiert. Setzen wir im Ansatz für x die Messwerte x1, x2, x3
ein, dann sollen die Abweichungen f(x1) von y1, f(x2) von y2, f(x3) von y3 möglichst klein
sein. Im Beispiel sind dies die Abweichungen

e1 = y1 − f(x1) = 2− (a+ b) = 2− a− b

e2 = y2 − f(x2) = 3− (2a+ b) = 3− 2a− b

e3 = y3 − f(x3) = 4, 5− (3a+ b) = 4, 5 − 3a− b



25

x1 x2 x3

y1

e1

e2

e3

x1a    + b 

x

y

y = ax + b

Wie beim arithmetischen Mittel soll die Summe der Quadrate der Abweichungen minimal
sein, das heisst, wir suchen das Minimum der Funktion

3∑

i=1

e2i =

3∑

i=1

(yi − f(xi))
2 =

3∑

i=1

(yi − (axi + b))2 = F (a, b) .

Dies ist eine Funktion in zwei Variablen, nämlich in den Variablen a und b :

F (a, b) = (2− a− b)2 + (3− 2a− b)2 + (4, 5− 3a− b)2

= 14a2 + 3b2 + 12ab− 43a− 19b+ 33, 25

Wir werden im dritten Teil dieses Semesters lernen, dass eine notwendige Bedingung für ein
Minimum das Verschwinden der Ableitungen von F (a, b) nach den Variablen a und b ist:

(Ableitung von F (a, b) nach a) =
∂

∂a
F (a, b) = 0

(Ableitung von F (a, b) nach b) =
∂

∂b
F (a, b) = 0

Für unser Beispiel ergibt sich

Dies ist ein lineares Gleichungssystem in a und b mit der eindeutigen Lösung a = 5
4 und b = 2

3 .
Die gesuchte Gerade ist also y = 5

4x + 2
3 . Die Graphik zeigt, dass (a, b) = (54 ,

2
3 ) tatsächlich

ein Minimum und nicht ein Maximum von F (a, b) ist.

Zählen wir also in einer weiteren Apotheke beispielsweise 270 Kunden pro Tag, dann
können wir den Jahresumsatz dieser Apotheke auf y = f(2, 7) ≈ 4, 04 Millionen CHF
schätzen.
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Wir könnten das vorherige Problem auch mit einer anderen Methode lösen. Wir tun so,
wie wenn die drei Messwertpaare auf einer Geraden y = mx + q liegen würden. Wir setzen
die drei Messwertpaare ein und erhalten also

2 = m+ q

3 = 2m+ q

4, 5 = 3m+ q .

Dies ist nun ein lineares Gleichungssystem in m und q. Da die drei Messwertpaare nicht auf
einer Geraden liegen, hat dieses Gleichungssystem natürlich keine Lösung. Wir können aber
eine Näherungslösung bestimmen, und zwar nach der Methode von Abschnitt 9.5 vom letzten
Semester. Das lineare System kann man schreiben als

A

(
m
q

)

= ~b mit A =





1 1
2 1
3 1



 , ~b =





2
3
4, 5



 .

Satz 9.14 sagt, dass eine Näherungslösung

(
m
q

)

gegeben ist durch

(
m
q

)

= (ATA)−1(AT~b) =
1

6

(
3 −6
−6 14

)(
21, 5
9, 5

)

=

(
5
4
2
3

)

.

Wir erhalten also dieselbe Gerade wie mit der vorherigen Methode!
Dies überrascht eigentlich nicht, denn wir haben in Abschnitt 9.5 ja eine Summe von

Quadraten minimiert (die Länge des “Fehlervektors”), genau wie bei der Minimierung von
F (a, b). Wie im Abschnitt 9.5 nennt man das Minimieren von F (a, b) Methode der kleinsten
Quadrate. Sie geht auf den Mathematiker Carl Friedrich Gauß (1777 – 1855) zurück.

Allgemeine Methode

Allgemein sind nun n Messwertpaare (xi, yi), für i = 1, . . . , n, gegeben. Wir vermuten einen
linearen Zusammenhang

y = f(x) = ax+ b mit a 6= 0

und bestimmen a und b so, dass die Summe der Quadrate der Abweichungen ei = yi−(axi+b)
minimal ist, das heisst, wir suchen die Minimalstelle (a, b) (es gibt tatsächlich genau eine)
der Funktion

n∑

i=1

e2i =

n∑

i=1

(yi − f(xi))
2 =

n∑

i=1

(yi − axi − b)2 = F (a, b) .

Die Gerade y = ax+ b mit dieser Minimalitätseigenschaft heisst Regressionsgerade.
Wie im Beispiel müssen wir zur Bestimmung der Minimalstelle die Ableitungen von F (a, b)

nach a und nach b Null setzen. Da F (a, b) quadratisch in a und b ist, sind diese Ableitungen
linear in a und b. Wir erhalten (wie im Beispiel) das folgende lineare Gleichungssystem in a
und b:

n∑

i=1

xiyi = a

n∑

i=1

x2i + bnx

y = ax+ b
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Die zweite Gleichung zeigt, dass der Punkt (x, y) auf der Geraden liegt. Durch Auflösen der
zweiten Gleichung nach b und Einsetzen in die erste Gleichung erhalten wir

b = y − ax und a =

n∑

i=1

xiyi − nx y

n∑

i=1

x2i − nx2
=

(n − 1)cxy
(n − 1)s2x

=
cxy
s2x

für die Standardabweichung sx der Messwerte x1, . . . , xn und die Kovarianz der Messwert-
paare (x1, y1), . . . , (xn, yn). Für die Umformung von a haben wir Satz 1.2 und die Formel für
die Kovarianz auf Seite 18 benutzt.

Satz 2.2 Die Regressionsgerade zu den Wertepaaren (x1, y1), . . . , (xn, yn) hat die Gleichung
y = ax+ b mit

a =
cxy
s2x

und b = y − ax .

Der Koeffizient a wird auch als erster Regressionskoeffizient oder Regressionskoeffizient
bezüglich x bezeichnet. Man beachte, dass er nicht symmetrisch in x und y ist.

Beispiele

1. Betrachten wir nochmals das 1. Beispiel von Seite 20 mit dem folgenden Streudiagramm:

Die fünf Punkte liegen fast auf einer Geraden, bzw. der Korrelationskoeffizient rxy = −0, 93
deutet auf einen linearen Zusammenhang der Wertepaare hin. Welche Gleichung hat die
Regressionsgerade? Auf Seite 21 haben wir schon berechnet:

x = 4 , y = 3 , cxy =
−15

4
, s2x =

10

4

Damit erhalten wir die Steigung a und den y-Achsenabschnitt b der Regressionsgeraden

und die Gleichung der Regressionsgeraden lautet:
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2. Im 2. Beispiel von Seite 21 deutet das Streudiagramm und der Korrelationskoeffizient
rxy = 0, 799 darauf hin, dass das Gewicht von einer Person (zumindest eines Schweizer
Handballnationalspielers) von dessen Körpergrösse linear abhängt. Es ist also sinnvoll, die
Regressionsgerade zu berechnen:

y = 1, 5025x − 196, 2404

2.4 Nichtlineare Regression

In vielen Fällen legt das Streudiagramm von zwei Datensätzen einen nichtlinearen Ansatz
nahe, zum Beispiel eine Polynomfunktion oder eine Exponentialfunktion f . Auch in diesen
Fällen kann die Methode der kleinsten Quadrate verwendet werden; man minimiert die Sum-
me über die Abweichungen im Quadrat (yi − f(xi))

2.
Im Fall einer Exponentialfunktion kann dieses Minimierungsproblem auf eine lineare Re-

gression zurückgeführt werden.

Beispiel

Gegeben sind die folgenden Wertepaare

xi 0 1 2 3 4

yi 3 1 0,5 0,2 0,05

Streudiagramm:

Das Streudiagramm zeigt, dass die Daten yi exponentiell von den Daten xi abhängen könnten.
Wir machen also den Ansatz

y = f(x) = c eax .
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Anstatt nun die Summe über die Abweichungen im Quadrat (yi − f(xi))
2 zu minimieren,

logarithmieren wir diesen Ansatz:

Das heisst, wenn zwischen den Wertepaaren (xi, yi) ein exponentieller Zusammenhang be-
steht, dann besteht zwischen den Wertepaaren (xi, ln(yi)) ein linearer Zusammenhang. Wir
können also die Regressionsgerade bestimmen für die Wertepaare

xi 0 1 2 3 4

ln(yi) 1, 099 0 −0, 693 −1, 609 −2, 996

Wir erhalten die Regressionsgerade

ln(y) = −0, 9798x + 1, 1197 .

Es ist also a = −0, 9798 und für c finden wir

ln(c) = 1, 1197 =⇒ c = e1,1197 = 3, 0639 .

Der exponentielle Zusammenhang zwischen den Wertepaaren kann also näherungsweise durch
die Funktion

y = f(x) = 3, 0639 · e−0,9798 x

beschrieben werden.
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3 Wahrscheinlichkeitsrechnung

Das Hauptziel der Stochastik ist, Modelle zur mathematischen Beschreibung von sogenannten
Zufallsexperimenten (wie zum Beispiel das Würfeln, die Grösse von Messfehlern, die Qua-
lität eines Laptops, langfristige Wettervorhersage oder die Ausbreitung einer Krnakheit) zu
entwickeln.

3.1 Zufallsexperimente und Ereignisse

Wenn wir eine Münze werfen, so bestimmt der Zufall, ob das Ergebnis “Kopf” oder “Zahl”
sein wird. Es ist nicht vorhersagbar, wie oft in den kommenden 100 Jahren im Februar in
Basel Schnee liegen wird. In beiden Fällen handelt es sich um ein Zufallsexperiment.

Definition Ein Zufallsexperiment ist ein Vorgang, der

• beliebig oft unter den gleichen Bedingungen wiederholt werden kann und
• dessen Ergebnis nicht mit Sicherheit vorhergesagt werden kann.

Die Menge aller möglichen (sich gegenseitig ausschliessenden) Ergebnisse des Zufallsexperi-
ments wird Ergebnisraum genannt und mit Ω bezeichnet.

Eine Teilmenge A ⊆ Ω heisst Ereignis. Es ist eingetreten, wenn das Ergebnis des Experi-
ments ein Element von A ist. Ein Ergebnis ω ∈ Ω heisst auch Elementarereignis.

Beispiele

1. Werfen einer Münze:
Ω = { Kopf,Zahl } = { K,Z }

2. Werfen eines Würfels:
Ω = { 1, 2, 3, 4, 5, 6 }

Ereignis A = Wurf einer geraden Zahl

Ereignis B = Wurf einer Zahl < 3

3. Werfen von zwei Münzen:

Ω = { KK,KZ,ZK,ZZ }

Ereignis A = Wurf von genau einer Zahl

Ereignis B = Wurf von mindestens einem Kopf

4. Messung der Körpergrösse eines zufällig ausgewählten Chemiestudenten:

Ω = (0,∞)

Ereignis A = die Körpergrösse ist grösser als 160 cm und kleiner als 180 cm
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Definition Seien A,B ⊆ Ω Ereignisse.

• Das Ereignis A und B entspricht dem Durchschnitt A ∩B.

• Das Ereignis A oder B entspricht der Vereinigung A ∪B.

• Das Gegenereignis von A ist jenes Ereignis, das eintritt, wenn A nicht eintritt. Es wird
mit A bezeichnet und entspricht dem Komplement A = Ω\A.

• Zwei Ereignisse A und B heissen unvereinbar, wenn A ∩B = ∅ (die leere Menge), das
heisst, A und B können nicht gleichzeitig eintreten.

Beispiel

Wir bestimmen A ∩B, A ∪B und A für das 2. Beispiel oben.

3.2 Wahrscheinlichkeit

Nun ordnen wir den Ereignissen Wahrscheinlichkeiten zu. Das heisst, wir suchen eine Funktion
P , die jedem Element (bzw. jeder Teilmenge) des Ereignisraums Ω eine reelle Zahl zuordnet.
Diese Zahl soll der Wahrscheinlichkeit entsprechen, mit der das Ergebnis (bzw. das Ereignis)
eintritt. Die Funktion P muss dabei gewissen Mindestanforderungen genügen.

Definition (Axiome von Kolgomorow) Eine Funktion P , die jedem Ereignis A von Ω
eine reelle Zahl P (A) zuordnet, heisst Wahrscheinlichkeitsverteilung, wenn sie die folgenden
drei Eigenschaften erfüllt:

1. Für jedes A ⊆ Ω gilt 0 ≤ P (A) ≤ 1.

2. Für das sichere Ereignis Ω gilt P (Ω) = 1.

3. Für zwei unvereinbare Ereignisse A und B (d.h. falls A ∩B = ∅) gilt
P (A ∪B) = P (A) + P (B) .

Setzen wir im dritten Punkt A = Ω und B = ∅, so folgt für das unmögliche Ereignis ∅, dass
P (∅) = 0 .

Weiter folgt aus der dritten Eigenschaft, dass zur Bestimmung der Wahrscheinlichkeit P (A)
eines Ereignisses A über die Wahrscheinlichkeiten P (ω) der einzelnen Ergebnisse ω von A
summiert werden kann. Dabei gehen wir davon aus, dass Ω eine nicht-leere endliche oder
abzählbar unendliche Menge ist (das heisst, die Elemente können durchnummeriert werden).
Man nennt in diesem Fall das Paar (Ω, P ) einen diskreten Wahrscheinlichkeitsraum.

Aber wie bestimmen wir nun P (A) für ein Ereignis A ? Nun, der Ausgang eines einzelnen
Zufallsexperiments ist völlig offen. Wiederholt man jedoch ein Zufallsexperiment oft (n Mal)
und zählt dabei, wie oft ein bestimmtes Ereignis A eintritt (k Mal), so scheint sich die relative
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Häufigkeit k
n
um einen festen Wert p zu “stabilisieren”. Dieser Wert p kann als Näherung für

die Wahrscheinlichkeit P (A) verwendet werden.

Beispiel

Nehmen wir einen Würfel, von dem wir nicht wissen, ob er gezinkt ist. Wir wollen heraus-
finden, wie gross die Wahrscheinlichkeit ist, die Augenzahl 6 zu würfeln. Dazu würfeln wir n
Mal und zählen die Anzahl k der Augenzahl 6. Hier ist also Ω = {1, 2, 3, 4, 5, 6} und A = {6}.

n k relative Häufigkeit k
n

100 16 0,16

200 34 0,17

300 49 0,163

400 62 0,155

Unser Experiment zeigt, dass P (A) ≈ 0, 155.

Wäre der Würfel nicht gezinkt, dann könnten wir davon ausgehen, dass alle Augenzahlen
gleich wahrscheinlich sind. Man nennt einen solchen Würfel fair oder ideal. Die Bestimmung
von P (A) ist in diesem Fall viel einfacher. Aus der Bedingung P (Ω) = 1 folgt direkt P (A) = 1

6 ,
da 6 verschiedene Augenzahlen gewürfelt werden können und jede Augenzahl gleich wahr-
scheinlich ist.

Definition Ein Laplace-Experiment ist ein Zufallsexperiment mit den folgenden Eigenschaf-
ten:

1. Das Zufallsexperiment hat nur endlich viele mögliche Ergebnisse.

2. Jedes dieser Ergebnisse ist gleich wahrscheinlich.

Zum Beispiel sind (wie oben erwähnt) beim Wurf eines fairen Würfels alle Augenzahlen
gleich wahrscheinlich. Oder bei der zufälligen Entnahme einer Stichprobe einer Warenlieferung
haben alle Artikel dieselbe Wahrscheinlichkeit, gezogen zu werden.

Für eine Menge M bezeichnen wir mit |M | die Anzahl Elemente dieser Menge.

Satz 3.1 Bei einem Laplace-Experiment hat jedes Ergebnis ω ∈ Ω die Wahrscheinlichkeit

P (ω) =
1

|Ω| .

Für jedes Ereignis A ⊂ Ω folgt

P (A) =
∑

ω∈A
P (ω) =

∑

ω∈A

1

|Ω| =
|A|
|Ω| =

Anzahl der für A günstigen Fälle

Anzahl der möglichen Fälle
.

Beispiele

1. Es wird ein fairer Würfel geworfen. Wie gross sind die Wahrscheinlichkeiten P (A) und
P (B) für A = (gerade Augenzahl) und B = (Augenzahl durch 3 teilbar) ?
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2. Aline (A) und Beat (B) spielen wiederholt ein faires Spiel, bei dem beide die gleiche
Gewinnchance haben. Sie setzen je 50 CHF ein und wer zuerst sechs Runden gewonnen hat,
erhält den gesamten Einsatz von 100 CHF. Leider muss das Spiel beim Stand von 5:3 für Aline
abgebrochen werden. Wie soll nun der Einsatz gerecht aufgeteilt werden? Eine Möglichkeit
wäre, im Verhältnis 5:3, also Aline erhält 62,50 CHF und Beat 37,50 CHF. Dies entspricht
jedoch nicht den einzelnen Gewinnwahrscheinlichkeiten, die wir wie folgt berechnen können.
Würde das Spiel weitergeführt, gäbe es vier verschiedene mögliche Spielausgänge:

Spielausgang

Gewinnreihenfolge

Wahrscheinlichkeit

Nur in einem der vier Spielausgänge gewinnt Beat, doch die vier Spielausgänge sind nicht
gleich wahrscheinlich, also ist auch die Aufteilung 75 CHF für Aline und 25 CHF für Beat
nicht sinnvoll. Die Berechnung in der Tabelle zeigt, dass 87,50 CHF für Aline und 12,50 CHF
für Beat wohl am gerechtesten wären.

Die folgenden Eigenschaften, die direkt aus den drei Bedingungen an eine Wahrschein-
lichkeitsverteilung folgen, sind sehr nützlich zur Bestimmung von Wahrscheinlichkeiten.

Satz 3.2 Für A,B ⊆ Ω gilt:

(a) P (A) = 1− P (A)

(b) P (A\B) = P (A)− P (A ∩B)

(c) P (A ∪B) = P (A) + P (B)− P (A ∩B)

(d) A ⊆ B =⇒ P (A) ≤ P (B)

(e) P (A) = P (A ∩B) + P (A ∩B)

Beispiel

In einem Restaurant essen gewöhnlich 20% der Gäste Vorspeise (V ) und Nachtisch (N),
45% nehmen Vorspeise oder Nachtisch und 65% nehmen keine Vorspeise. Man bestimme den
Prozentsatz der Gäste, die wie folgt wählen:

(a) Vorspeise und keinen Nachtisch (b) einen Nachtisch
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3.3 Bedingte Wahrscheinlichkeit

Oft ist die Wahrscheinlichkeit eines Ereignisses B unter der Bedingung (bzw. dem Wissen),
dass ein Ereignis A bereits eingetreten ist, gesucht. Man bezeichnet diese Wahrscheinlichkeit
mit P (B|A).
Beispiel

Zwei faire Würfel werden geworfen. Wie gross ist die Wahrscheinlichkeit, die Augensumme 5
zu werfen unter der Bedingung, dass wenigstens einmal die Augenzahl 1 geworfen wird?

Bei Laplace-Experimenten kann man stets so wie im Beispiel vorgehen. Für beliebige
Zufallsexperimente definieren wir die Wahrscheinlichkeit P (B|A) durch die eben gefundene
Formel.

Definition Die Wahrscheinlichkeit des Ereignisses B unter der Bedingung, dass Ereignis A
eingetreten ist, ist definiert als

P (B|A) = P (A ∩B)

P (A)
.

Man spricht von der bedingten Wahrscheinlichkeit P (B|A).

Der ursprüngliche Ergebnisraum Ω reduziert sich also auf A, und von B sind nur jene Ergeb-
nisse zu zählen, die auch in A liegen.

Formt man die Gleichung in der Definition um, erhält man eine nützliche Formel für die
Wahrscheinlichkeit P (A ∩B).

Satz 3.3 (Multiplikationssatz) Gegeben sind Ereignisse A und B mit Wahrscheinlichkei-
ten ungleich Null. Dann gilt

P (A ∩B) = P (A)P (B|A) = P (B)P (A|B) .

Die zweite Gleichheit im Satz folgt, indem wir die Rollen von A und B in der Definition
vertauschen.
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Beispiel

In einer Urne befinden sich 5 rote und 10 blaue Kugeln. Wir entnehmen nun hintereinander
zufällig zwei Kugeln ohne Zurücklegen. Wie gross ist die Wahrscheinlichkeit,

(a) zuerst eine rote und dann eine blaue Kugel und

(b) zwei rote oder zwei blaue Kugeln zu ziehen?

Oft ist es hilfreich, die Wahrscheinlichkeiten mit Hilfe eines Wahrscheinlichkeitsbaums zu
veranschaulichen:

Dabei sind A und B zwei beliebige Ereignisse.

Beispiele

1. Die Studentin Maja wohnt im Studentenheim Basilea. Dieses besitzt eine Brandmeldean-
lage, welche bei Feuerausbruch mit einer Wahrscheinlichkeit von 99% Alarm gibt. Manchmal
gibt die Anlage einen Fehlalarm, und zwar in etwa 2% aller Nächte. Schliesslich ist die Wahr-
scheinlichkeit, dass in einer bestimmten Nacht Feuer ausbricht, gleich 0, 05%.

(a) Mit welcher Wahrscheinlichkeit kann Maja diese Nacht ruhig schlafen?

(b) Mit welcher Wahrscheinlichkeit geht diese Nacht die Alarmanlage los?

(c) Maja hört den Feueralarm. Mit welcher Wahrscheinlichkeit brennt es wirklich?
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Wir zeichnen dazu einen Wahrscheinlichkeitsbaum:

Wir finden damit die folgenden Antworten zu den Fragen im Beispiel:

(a) P (weder Feuer noch Alarm) =

(b) P (Alarm) =

(c) P (Feuer|Alarm) =

Die Wahrscheinlichkeit, dass es bei Alarm auch wirklich brennt, ist also sehr klein, nur 2, 4%.
Dies im Gegensatz zur Wahrscheinlichkeit von 99%, dass bei Feuer der Alarm auch losgeht.
Man darf Ereignis und Bedingung also nicht verwechseln.

2. In einem Land seien 0, 01% der Bevölkerung HIV positiv. Ein HIV-Test reagiert bei HIV
positiven Personen mit 99, 9% Wahrscheinlichkeit positiv. Bei HIV negativen Personen gibt
er mit 0, 01% Wahrscheinlichkeit irrtümlicherweise auch ein positives Resultat.

Eine Person wird getestet und es ergibt sich ein positives Resultat. Mit welcher Wahr-
scheinlichkeit ist die Person wirklich HIV positiv?
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3. Alle Personen eines Landes werden auf Tuberkulose getestet. Dabei erhalten 32% ein po-
sitives Testresultat. Welcher Anteil der Bevölkerung ist tatsächlich mit Tuberkulose infiziert,
wenn der Test bei infizierten Personen mit 90% Wahrscheinlichkeit und bei nicht infizierten
Personen mit 30% Wahrscheinlichkeit ein positives Resultat gibt?

Der Trick hier ist, für die gesuchte Wahrscheinlichkeit p zu setzen, und dann wie vorher
den Wahrscheinlichkeitsbaum zu zeichnen:

Damit erhalten wir die folgende Gleichung für p:

3.4 Unabhängige Ereignisse

In vielen Fällen ist die Wahrscheinlichkeit, dass ein Ereignis B eintritt, völlig unabhängig
davon, ob ein anderes Ereignis A eintritt, das heisst P (B|A) = P (B). Der Multiplikationssatz
vereinfacht sich dadurch.

Definition Zwei Ereignisse A und B heissen (stochastisch) unabhängig, wenn gilt

P (A ∩B) = P (A) · P (B) .

Äquivalent dazu heissen zwei Ereignisse A und B unabhängig, wenn

P (B|A) = P (B) mit P (A) > 0 bzw.

P (A|B) = P (A) mit P (B) > 0 .

Es ist nicht immer intuitiv erkennbar, ob zwei Ereignisse A und B unabhängig sind oder
nicht. Die stochastische Unabhängigkeit von zwei Ereignissen A und B besagt, dass A und B
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im wahrscheinlichkeitstheoretischen Sinn keinen Einfluss aufeinander haben. Es kann vorkom-
men, dass zwei Ereignisse A und B stochastisch unabhängig sind, obwohl real das Eintreten
von B davon abhängt, ob A eintritt.

Beispiele

1. Ein Würfel wird zweimal geworfen. Wie gross ist die Wahrscheinlichkeit, beim ersten Wurf
die Augenzahl 1 und beim zweiten Wurf die Augenzahl 2 zu würfeln?

2. Wieder werfen wir einen Würfel zweimal. Dabei sei A das Ereignis, dass die Augenzahl
des ersten Wurfes gerade ist und B sei das Ereignis, dass die Summe der beiden geworfenen
Augenzahlen gerade ist. Sicher entscheidet hier das Ereignis A mit, ob B eintritt. Sind A und
B stochastisch unabhängig?
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4 Erwartungswert und Varianz von Zufallsgrössen

Bei vielen Zufallsexperimenten (wie beispielsweise beim Würfeln oder bei Messfehlern) geht
es um die Wahrscheinlichkeit, dass eine bestimmte Zahl auftritt. Bei anderen Zufallsexpe-
rimenten kann jedem Ergebnis eine Zahl zugeordnet werden (zum Beispiel ein Geldbetrag
bei einem Glücksspiel oder das Gewicht einer zufällig aus einer Packung entnommenen Ta-
blette). In beiden Fällen interessiert uns, welche Zahl durchschnittlich auftritt, wenn das
Zufallsexperiment oft wiederholt wird. Diese Zahl nennt man Erwartungswert.

4.1 Zufallsgrösse und Erwartungswert

Wir beginnen mit einem Beispiel.

Der Händler A verkauft ein Laptop ohne Garantie für 500CHF. Der Händler B verkauft
dasselbe Modell mit einer Garantie von einem Jahr für 550CHF. Bei einem Schaden des
Laptops wird dieses kostenlos repariert oder durch ein neues ersetzt. Die Wahrscheinlichkeit,
dass ein Laptop dieses Modells innerhalb des ersten Jahres aussteigt, beträgt 5%.

Die Situation beim Händler A sieht so aus:

ω gutes Laptop schlechtes Laptop

P (ω) 0,95 0,05

Kosten 500 1000

Welche (durchschnittlichen) Kosten sind bei Händler A zu erwarten?

Die Kosten sind eine sogenannte Zufallsgrösse. Die zu erwartenden Kosten nennt man den
Erwartungswert der Zufallsgrösse.

Definition Sei Ω ein Ereignisraum. Eine Zufallsgrösse (oder Zufallsvariable) ist eine Funk-
tion, die jedem Ergebnis ω aus Ω eine reelle Zahl zuordnet, X : Ω −→ R, ω 7→ X(ω).

Eine Zufallsgrösse heisst diskret, wenn sie nur endlich viele oder abzählbar unendlich viele
verschiedene Werte x1, x2, x3, . . . annehmen kann.

Wir gehen in diesem Kapitel stets davon aus, dass die Zufallsgrösse diskret ist.
Sei xk der Wert der Zufallsgrösse für das Ergebnis ωk, also xk = X(ωk). Dann bezeich-

nen wir mit pk die Wahrscheinlichkeit, dass die Zufallsgrösse X den Wert xk annimmt, also
pk = P (X(ω) = xk).
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Definition Der Erwartungswert einer diskreten Zufallsgrösse X ist definiert durch

µ = E(X) = p1x1 + p2x2 + · · ·+ pnxn =

n∑

k=1

pkxk .

Beispiele

1. Wir werfen einen Würfel. Beim Werfen der Augenzahl 5 gewinnt man 5CHF, in allen
anderen Fällen muss man 1CHF bezahlen. Mit welchem durchschnittlichen Gewinn oder
Verlust muss man rechnen?

ω = Augenzahl 1 2 3 4 5 6

P (ω) 1

6

1

6

1

6

1

6

1

6

1

6

Gewinn X(ω) −1 −1 −1 −1 5 −1

Die Zufallsgrösse X nimmt also nur zwei Werte an, x1 = −1 und x2 = 5. Mit welchen
Wahrscheinlichkeiten werden diese Werte angenommen? Erwartungswert?

2. Nun gewinnt man bei jeder Augenzahl 1CHF.

ω = Augenzahl 1 2 3 4 5 6

P (ω) 1

6

1

6

1

6

1

6

1

6

1

6

Gewinn X(ω) 1 1 1 1 1 1

Das ist natürlich ein langweiliges Spiel. Ohne Rechnung erkennen wir, dass der erwartete
Gewinn, (d.h. µ = E(X)) 1CHF beträgt.

3. Nun gewinnt man 6CHF bei der Augenzahl 5 und sonst 0CHF.

ω = Augenzahl 1 2 3 4 5 6

P (ω) 1

6

1

6

1

6

1

6

1

6

1

6

Gewinn X(ω) 0 0 0 0 6 0

Wie gross ist der Erwartungswert?

Die letzten beiden Beispiele haben also denselben Erwartungswert, doch das 3. Beispiel ver-
spricht deutlich mehr Spannung als das 2. Beispiel. Dies wird durch die sogenannte Varianz
der Zufallsgrösse beschrieben.

4.2 Varianz und Standardabweichung

Die Varianz σ2 = V ar(X) einer Zufallsgrösse X misst die mittlere quadratische Abweichung
vom Erwartungswert µ = E(X).
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Definition Die Varianz einer Zufallsgrösse X ist definiert durch

σ2 = V ar(X) = E
(
(X − µ)2

)
=

n∑

k=1

pk(xk − µ)2 .

Die Standardabweichung oder Streuung σ ist definiert als die positive Quadratwurzel der
Varianz, das heisst

σ =
√

V ar(X) =
√

E
(
(X − µ)2

)
=

√
√
√
√

n∑

k=1

pk(xk − µ)2 .

Betrachten wir nun nochmals das 2. und das 3. Beispiel von vorher. Im 2. Beispiel gibt
es keine Streuung. Wir haben nur einen Wert x1 = 1 und somit ist x1 − µ = 0, das heisst
σ2 = V ar(X) = 0. Im 3. Beispiel sieht es anders aus:

Wie für die Varianz der beschreibenden Statistik können wir die Formel für die Varianz
umformen:

V ar(X) =

n∑

k=1

pk(xk − µ)2 =

n∑

k=1

pk(x
2
k − 2xkµ+ µ2)

=

n∑

k=1

pkx
2
k

︸ ︷︷ ︸

=E(X2)

−2µ

n∑

k=1

pkxk

︸ ︷︷ ︸

=µ

+µ2
n∑

k=1

pk

︸ ︷︷ ︸

=1

= E(X2)− µ2 = E(X2)− (E(X))2 .

Satz 4.1 Es gilt
σ2 = V ar(X) = E(X2)− (E(X))2 .

Beispiel

4. Wieder werfen wir einen Würfel. Der Gewinn X(ω) entspricht nun genau der gewürfelten
Augenzahl. Wie oft müssen wir würfeln, um (durchschnittlich) einen Gewinn von 1000 CHF
einstreichen zu können?

ω 1 2 3 4 5 6

P (ω) 1

6

1

6

1

6

1

6

1

6

1

6

X(ω) = xk 1 2 3 4 5 6
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Wir berechnen zunächst den Erwartungswert und die Streuung:

Bei jedem Wurf können wir also mit einem Gewinn von 3.50 CHF rechnen. Für einen Gewinn
von 1000 CHF müssen wir demnach (durchschnittlich)

würfeln.

In all den bisherigen Beispielen waren die Wahrscheinlichkeiten der Ergebnisse ω jeweils
gleich gross. Das muss nicht so sein.

Beispiel

5. Wir werfen zwei Würfel gleichzeitig. Als Zufallsgrösse wählen wir die halbe Augensumme
(d.h. der Durchschnitt der beiden geworfenen Augenzahlen).

ω 2 3 4 5 6 7 8 9 10 11 12

P (ω) = pk
1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

X(ω) = xk 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6

Für den Erwartungswert erhalten wir

µ = E(X) =
1

36
· 1 + 2

36
· 1, 5 + 3

36
· 2 + 4

36
· 2, 5 + · · ·+ 1

36
· 6 =

126

36
= 3, 5

genau wie im 4. Beispiel. Die Varianz und die Streuung sind nun allerdings kleiner als im
4. Beispiel. Es gilt

σ2 = V ar(X) = E(X2)− (E(X))2 =
1

36
· 12 + 2

36
· 1, 52 + 3

36
· 22 + · · ·+ 1

36
· 62 − 3, 52 ≈ 1, 46

und damit ist σ ≈ 1, 21.

Eine diskrete Zufallsgrösse kann man auch graphisch darstellen. In einem Stabdiagramm
errichtet man über jedem Wert xk einen Stab der Länge pk.

Für das letzte Beispiel sieht das so aus:
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Definition Sei X eine diskrete Zufallsgrösse. Man nennt die Menge

{ (x1, p1), (x2, p2), (x3, p3), . . . }

die Wahrscheinlichkeitsverteilung oder Verteilung von X.

4.3 Kombination von Zufallsgrössen

Zwei Zufallsgrössen X und Y können addiert und multipliziert werden. Wie hängen der
Erwartungswert und die Varianz der neuen Zufallsgrösse von X und Y ab?

Beispiel

Wieder würfeln wir. Es gilt also P (ω) = 1
6 für jedes Ergebnis ω.

ω 1 2 3 4 5 6

Zufallsgrösse X 1 2 2 3 5 5

Zufallsgrösse Y 0 1 1 0 0 10

X + Y

X · Y

Nun vergleichen wir die Erwartungswerte der verschiedenen Zufallsgrössen. Zunächst gilt
E(X) = 3 und E(Y ) = 2. Weiter finden wir

Bei der Addition der zwei Zufallsgrössen haben sich also deren Erwartungswerte ebenfalls
addiert. Dies gilt allgemein, und zwar gilt noch ein wenig mehr.

Satz 4.2 Für zwei Zufallsgrössen X, Y und reelle Zahlen a, b, c gilt

E(aX + bY + c) = aE(X) + bE(Y ) + c .

Der Beweis erfolgt durch Nachrechnen:

E(aX + bY + c) = p1(ax1 + by1 + c) + · · ·+ pn(axn + byn + c)

= a(p1x1 + · · · + pnxn) + b(p1y1 + · · ·+ pnyn) + c (p1 + · · ·+ pn)
︸ ︷︷ ︸

=1

= aE(X) + bE(Y ) + c .

Mit der Multiplikation von zwei Zufallsgrössen scheint es nicht so einfach zu gehen. Schau-
en wir uns nochmals ein Beispiel an.
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Beispiel

ω 1 2 3 4 5 6

Zufallsgrösse X 3 3 5 5 5 3

Zufallsgrösse Y 1 3 2 3 1 2

X · Y 3 9 10 15 5 6

Es gilt E(X) = 4 und E(Y ) = 2. Für E(X · Y ) erhalten wir

In diesem Beispiel sind die Werte von Y gleichmässig über die Werte von X verteilt und um-
gekehrt, das heisst, die Werte von Y sind unabhängig von den Werten von X. Man nennt die
Zufallsgrössen stochastisch unabhängig. Die präzise Definition hat mit unabhängigen Ereig-
nissen zu tun.

Definition Zwei Zufallsgrössen X und Y heissen stochastisch unabhängig, falls für alle xk
und yℓ die Ereignisse (X = xk) und (Y = yℓ) unabhängig sind, also falls

P ((X = xk) und (Y = yℓ)) = P (X = xk) · P (Y = yℓ) .

Wollen wir überprüfen, dass im zweiten Beispiel die Zufallsgrössen X und Y stochastisch
unabhängig sind, dann müssen wir sechs Gleichungen nachweisen:

P ((X = 3) und (Y = 1)) = P (X = 3) · P (Y = 1)

P ((X = 3) und (Y = 2)) = P (X = 3) · P (Y = 2)

P ((X = 3) und (Y = 3)) = P (X = 3) · P (Y = 3)

und dann nochmals die drei Gleichungen, wobei wir X = 3 durch X = 5 ersetzen. Wir
überprüfen hier nur die erste Gleichung:

Im Gegensatz dazu sind X und Y vom ersten Beispiel nicht stochastisch unabhängig. Um
dies nachzuweisen, genügt es, ein Pärchen (xk, yℓ) zu finden, welches die Gleichung in der
Definition nicht erfüllt.
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Satz 4.3 Sind die Zufallsgrössen X und Y stochastisch unabhängig, dann gilt

E(X · Y ) = E(X) ·E(Y ) .

Wegen der Formel V ar(X) = E(X2)− (E(X))2 können auch Aussagen über die Varianz
von Kombinationen von Zufallsgrössen gemacht werden. Im folgenden Satz sind nun alle
Regeln zu Erwartungswert und Varianz zusammengestellt.

Satz 4.4 Seien X,Y Zufallsgrössen und a, b, c reelle Zahlen. Dann gilt:

(1) E(aX + bY + c) = aE(X) + bE(Y ) + c

(2) V ar(aX + c) = a2V ar(X)

Falls X und Y stochastisch unabhängig sind, gilt weiter:

(3) E(X · Y ) = E(X) ·E(Y )

(4) V ar(X + Y ) = V ar(X) + V ar(Y )

4.4 Schätzen von Erwartungswert und Varianz

Ein quantitatives Merkmal X einer Grundgesamtheit kann als Zufallsgrösse aufgefasst wer-
den. Interessiert man sich für den Erwartungswert und die Varianz von X, dann können diese
beiden Grössen nur dann berechnet werden, wenn die Anzahl Elemente N der Grundgesamt-
heit nicht zu gross ist. Andernfalls, wenn N sehr gross oder unendlich ist, muss man sich mit
einer Schätzung von Erwartungswert und Varianz begnügen. Wie dies zu verstehen ist, wird
hier anhand eines Beispiels gezeigt.

Betrachten wir als Grundgesamtheit zum Beispiel die Menge aller Studierenden der Vor-
lesung Mathematik II für Naturwissenschaften. Das Merkmal, für das wir uns interessieren,
sei das Alter. Es geht hier also um die Zufallsgrösse X = ( Alter eines*r zufällig ausgewählten
Studierenden der Grundgesamtheit). Interessieren wir uns für das durchschnittliche Alter der
Studierenden, dann entspricht dies dem Erwartungswert

µ = E(X) =
1

N
(x1 + · · ·+ xN ) ,

wobei xi das Alter des*r i-ten Studierenden ist.
Das Überprüfen des Alters von jedem Studierenden ist nun allerdings zu aufwendig.

Deshalb entnehmen wir eine zufällige Stichprobe vom Umfang n (n klein gegenüber der
Anzahl N der Studierenden) und versuchen damit, das unbekannte Durchschnittsalter der
Grundgesamtheit zu schätzen. Eine solche Zufallsstichprobe vom Umfang n ist eine Folge
von unabhängigen, identisch verteilten Zufallsgrössen (X1,X2, . . . ,Xn), wobei Xi die Merk-
malsausprägung (hier also die vorkommenden Alter) des i-ten Elementes in der Stichprobe
bezeichnet. Identisch verteilt bedeutet insbesondere, dass die Erwartungswerte und die Va-
rianzen der Xi übereinstimmen, das heisst, E(Xi) = µ und V ar(Xi) = σ2 für alle i. Wenn
N klein ist, sind die X1,X2, . . . ,Xn nur dann unabhängig und identisch verteilt, wenn die
Studierenden mit Zurücklegen ausgewählt werden. Wir gehen hier jedoch von einem sehr
grossen N aus, so dass wir von fast unabhängigen und identisch verteilten Zufallsgrössen
X1,X2, . . . ,Xn ausgehen können, auch wenn wir Studierende ohne Zurücklegen auswählen.
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Wird eine Stichprobe gezogen, so nehmen X1, . . . ,Xn die konkreten Werte x1, . . . , xn an.
Als Schätzfunktion µ̂ für das unbekannte Durchschnittsalter µ wählen wir das arithmeti-

sche Mittel X der Stichprobe,

µ̂ = X =
1

n
(X1 + · · · +Xn) .

Erhalten wir beispielsweise die konkrete Stichprobe (20, 22, 19, 20, 24), dann ist das arith-
metische Mittel davon x = 21. Dieser Wert hängt jedoch von der gewählten Stichprobe ab.
Daher dürfen wir nicht davon ausgehen, dass er die gesuchte Zahl µ genau trifft. Wir erwar-
ten jedoch von einer guten Schätzfunktion, dass die Schätzwerte wenigstens im Mittel richtig
sind. Und tatsächlich gilt (mit Satz 4.4)

Für die Varianz erhalten wir

Mit wachsender Stichprobengrösse n wird die Streuung also immer kleiner.
Für die Varianz σ2 = V ar(X) der Grundgesamtheit wählen wir als Schätzfunktion die

empirische Varianz s2 der Stichprobe,

σ̂2 = s2 =
1

n− 1

n∑

i=1

(Xi − µ̂)2 =
1

n− 1

(
n∑

i=1

X2
i − nµ̂2

)

.

Auch hier erwarten wir, dass wenigstens der Erwartungswert von σ̂2 mit der Varianz σ2

übereinstimmt. Wir rechnen dies nach. Wegen Satz 4.1 gilt

E(X2
i ) = V ar(Xi) + (E(Xi))

2 = σ2 + µ2

E(µ̂2) = V ar(µ̂) + (E(µ̂))2 =
σ2

n
+ µ2 .

Damit folgt

E(σ̂2) =
1

n− 1

(
n∑

i=1

E(X2
i )− nE(µ̂2)

)

=
1

n− 1

(
n∑

i=1

(σ2 + µ2)− n
(σ2

n
+ µ2

)
)

=
1

n− 1
(nσ2 + nµ2 − σ2 − nµ2)

= σ2 .

Genau aus diesem Grund haben wir in Kapitel 1 in der Definition der empirischen Varianz
durch n− 1 dividiert und nicht durch die naheliegendere Zahl n !

Würden wir die empirische Varianz mit dem Faktor 1
n
definieren, nämlich als

s̃2 =
1

n

n∑

i=1

(Xi − µ̂)2 =
n− 1

n
s2 ,

dann würden wir damit die Varianz σ2 systematisch unterschätzen, denn

E(s̃2) =
n− 1

n
E(s2) = σ2 − σ2

n
.
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5 Binomial- und Poissonverteilung

In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen (d.h. Verteilungen von
diskreten Zufallsgrössen): die Binomial- und die Poissonverteilung.

5.1 Die Binomialverteilung

Für die Binomialverteilung brauchen wir die Binomialkoeffizienten, die aus der Schule bekannt
sein sollten. Wir frischen hier das Wichtigste darüber kurz auf.

Binomialkoeffizienten

Sei n ≥ 0 in Z.

Satz 5.1 Es gibt n! verschiedene Möglichkeiten, n Elemente anzuordnen.

Jede Anordnung heisst Permutation der n Elemente. Es gibt also n! Permutationen von n
Elementen. Dabei gilt

n! = n · (n− 1) · · · · · 2 · 1 für n ≥ 1 und 0! = 1 .

Satz 5.2 Es gibt

n · (n− 1) · · · · · (n− k + 1) =
n!

(n− k)!

Möglichkeiten, aus n Elementen k auszuwählen und diese anzuordnen.

Beispiel

Wie gross ist die Wahrscheinlichkeit, dass unter 23 Personen (mindestens) zwei am gleichen
Tag Geburtstag haben? Diese Frage ist als Geburtstagsparadoxon bekannt.

Wieviele verschiedene Möglichkeiten gibt es, aus n Elementen k auszuwählen? Wir wählen
also wieder aus n Elementen k aus, aber die Anordnung dieser k ausgewählten Elemente spielt
keine Rolle. Offensichtlich gibt es nun weniger Möglichkeiten. Wir müssen durch die Anzahl
der Anordnungsmöglichkeiten, nämlich k!, dividieren.

Satz 5.3 Es gibt

n · (n− 1) · · · · · (n− k + 1)

k · (k − 1) · · · · · 1 =
n!

k!(n− k)!
=

(
n

k

)

Möglichkeiten, aus n Elementen k auszuwählen.
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Der Ausdruck (
n

k

)

=
n!

k!(n− k)!
=

(
n

n− k

)

heisst Binomialkoeffizient.
Wenn Sie auf Ihrem Taschenrechner keine Taste zur Berechnung von Binomialkoeffizienten

haben, sollten Sie den linken Ausdruck von Satz 5.3 zur Berechnung benutzen.

Beispiele

Bernoulli-Experimente

Definition Ein Zufallsexperiment mit genau zwei möglichen Ausgängen heisst Bernoulli-
Experiment.

Die beiden Ausgänge können oft als “Erfolg” (E) und “Misserfolg” (M) interpretiert werden.

Beispiel

Beim Wurf eines Würfels wollen wir nur wissen, ob die Augenzahl 2 geworfen wird oder nicht.
Es gilt also P (Erfolg) = 1

6 .

Definition Eine Bernoulli-Kette ist eine Folge von gleichen Bernoulli-Experimenten. Wird
ein Bernoulli-Experiment n-mal hintereinander ausgeführt, so spricht man von einer Bernoulli-
Kette der Länge n.

Beispiel

Wir werfen einen Würfel viermal hintereinander. “Erfolg” sei wieder der Wurf der Augen-
zahl 2. Bei jedem einzelnen Wurf gilt also P (Erfolg) = 1

6 . Bei vier Würfen können zwischen
0 und 4 Erfolge eintreten. Wie gross sind die Wahrscheinlichkeiten dafür?

Schauen wir uns die Wahrscheinlichkeit für genau 2 Erfolge genauer an.
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Analog finden wir für genau k Erfolge die Wahrscheinlichkeiten

P4(k) = P (k-mal Erfolg) =

(
4

k

)(
1

6

)k (5

6

)4−k

.

Binomialverteilung

Definiert man im vorhergehenden Beispiel die Zufallsgrösse

X = (Anzahl der Erfolge) ,

so nimmt X die Werte xk = k = 0, 1, 2, 3 oder 4 an und für die zugehörigen Wahrscheinlich-
keiten gilt

pk = P (X = k) = P4(k) .

Diese Wahrscheinlichkeitsverteilung ist ein Beispiel einer Binomialverteilung. Graphisch sieht
sie so aus:

Definition Gegeben sei eine Bernoulli-Kette der Länge n, wobei Erfolg im einzelnen Expe-
riment mit der Wahrscheinlichkeit p eintritt. Sei X die Anzahl Erfolge in den n Experimenten.
Dann ist die Wahrscheinlichkeit von k Erfolgen gleich

P (X = k) = Pn(k) =

(
n

k

)

pk(1− p)n−k .

Man nennt die Zufallsgrösse X binomialverteilt und ihre Wahrscheinlichkeitsverteilung Bi-
nomialverteilung mit den Parametern n, p.

Weiter ist die Wahrscheinlichkeit, in n gleichen Bernoulli-Experimenten höchstens ℓ Er-
folge zu haben, gleich

Pn(k ≤ ℓ) = Pn(0) + Pn(1) + · · ·+ Pn(ℓ) =
ℓ∑

k=0

Pn(k) .

Für die Berechnung der Wahrscheinlichkeiten Pn(k) und Pn(k ≤ ℓ) können die Tabellen
in den Formelsammlungen oder die Tabellen von Hans Walser benutzt werden.

Wegen Pn(0) +Pn(1) + · · ·+Pn(n) = 1 (eine bestimmte Anzahl von Erfolgen tritt ja mit
Sicherheit ein), gilt

Pn(k ≥ ℓ) = 1− P (k ≤ ℓ− 1) .

In den Tabellen sind die Binomialverteilungen nur für Wahrscheinlichkeiten p ≤ 0, 5
aufgeführt. Ist die Wahrscheinlichkeit eines Erfolgs gleich p > 0, 5, so muss mit der Wahr-
scheinlichkeit des Misserfolgs q = 1− p < 0, 5 gerechnet werden.
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Beispiele

1. Ein Würfel wird 10-mal geworfen. Erfolg sei das Werfen der Augenzahl 2.

• P (2-mal Erfolg) =

• P (höchstens 2-mal Erfolg) =

• P (mindestens 3-mal Erfolg) =

• P (4 ≤ k ≤ 8) =

• P (7-mal Misserfolg) =

2. Eine Münze wird 15-mal geworfen, also ist n = 15 und p = 1− p = 1
2 .

• P (9-mal Kopf) =

Wegen p = 1 − p ist bei diesem Beispiel die Binomialverteilung symmetrisch um die Werte
k = 7 und 8 :
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Erwartungswert und Varianz

Mit welcher Anzahl von Erfolgen können wir durchschnittlich in unserer Bernoulli-Kette
rechnen? Wie gross ist die Varianz?

Um diese Fragen zu beantworten, schreiben wir die (binomialverteilte) Zufallsgrösse X
als Summe X = X1 + · · · + Xn von unabhängigen (und identisch verteilten) Zufallsgrössen
Xi, wobei Xi gleich 1 ist, falls der Erfolg im i-ten Experiment eingetreten ist, und 0 sonst.
Für den Erwartungswert und die Varianz von Xi gilt damit

E(Xi) = p · 1 + (1− p) · 0 = p

V ar(Xi) = E(X2
i )− (E(Xi))

2 = p− p2 = p(1− p) .

Mit Satz 4.4 folgt

E(X) = E(X1 + · · · +Xn) = E(X1) + · · ·+ E(Xn) = np

V ar(X) = V ar(X1 + · · ·+Xn) = V ar(X1) + · · ·+ V ar(Xn) = np(1− p) .

Satz 5.4 Für eine binomialverteilte Zufallsgrösse X gilt

E(X) = np

V ar(X) = np(1− p) .

Beispiele

1. Im ersten Beispiel von vorher (10-maliger Wurf eines Würfels) erhalten wir

Durchschnittlich können wir also mit 1,67 Erfolgen bei 10 Würfen rechnen.

2. Im zweiten Beispiel von vorher (15-maliger Wurf einer Münze) erhalten wir

E(X) = 15 · 1
2
= 7, 5

V ar(X) = 15 · 1
2
· 1
2
= 3, 75 =⇒ σ =

√

V ar(X) ≈ 1, 94 .

In diesem Beispiel ist die Binomialverteilung also symmetrisch um den Erwartungswert.

5.2 Die Poissonverteilung

In den Jahren 2014 – 2017 gab es im Kanton Basel-Stadt durchschnittlich 10 Verkehrsunfälle
pro Jahr wegen Bedienung des Telefons während der Fahrt. Mit welcher Wahrscheinlichkeit
wird es im Jahr 2021 genau 6 Verkehrsunfälle mit derselben Ursache geben?

Pro Monat erhält eine Person durchschnittlich 10 Werbeanrufe. Mit welcher Wahrschein-
lichkeit erhält diese Person im nächsten Monat 6 Werbeanrufe?
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Die gesuchte Wahrscheinlichkeit ist für beide Fragen dieselbe. In beiden Situationen ken-
nen wir die durchschnittliche Anzahl von “Erfolgen” pro Zeiteinheit. Wir haben jedoch keine
Kenntnis über die Anzahl der Experimente (Anzahl Autofahrten, bzw. Anzahl Telefonanrufe).
Wir können aber davon ausgehen, dass n gross ist. Wir kennen auch die Wahrscheinlichkeit p
des Erfolgs im einzelnen Experiment nicht. Doch wir nehmen an, dass p klein ist. Man nennt
solche Situationen “seltene Ereignisse”.

Die bekannte durchschnittliche Anzahl von Erfolgen bezeichnet man mit λ. Die Wahr-
scheinlichkeit P (k), dass in einer bestimmten Zeiteinheit (oder Längeneinheit, Flächeneinheit,
usw.) genau k Erfolge eintreten, ist gegeben durch

P (k) =
λk

k!
e−λ .

Für die beiden Beispiele finden wir also die Wahrscheinlichkeit

Definition Eine Zufallsgrösse X, die jeden der Werte k = 0, 1, 2, . . . mit den Wahrschein-
lichkeiten

P (X = k) = P (k) =
λk

k!
e−λ

annehmen kann, heisst poissonverteilt mit dem Parameter λ. Die zugehörige Verteilung heisst
Poissonverteilung.

Für die beiden Beispiele sieht die Verteilung so aus:

Nicht überraschend ist hier P (k) am grössten für k = λ = 10, die durchschnittliche An-
zahl von Erfolgen (es gilt P (10) = 0, 12511). Wir werden unten gleich nachweisen, dass λ der
Erwartungswert ist.

Es fällt weiter auf, dass P (9) genau so gross wie P (10) ist. Allgemein gilt P (λ−1) = P (λ),
falls λ eine ganze Zahl ist, denn
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Erwartungswert und Varianz

Für den Erwartungswert berechnen wir

µ = E(X) =

∞∑

k=0

P (k) · k =

∞∑

k=0

λk

k!
e−λ · k = e−λ

∞∑

k=0

kλk

k!
.

Da der erste Summand (k = 0) null ist, folgt

µ = e−λ
∞∑

k=1

kλk

k!
= e−λ

∞∑

k=1

λk

(k − 1)!
= λ e−λ

∞∑

k=1

λk−1

(k − 1)!
.

Die letzte Summe ist nichts anderes als 1 + λ+ λ2

2! +
λ3

3! + · · · = eλ, also erhalten wir

µ = λ e−λ eλ = λ .

Die Varianz kann ähnlich berechnet werden (vgl. Übungsblatt 4).

Satz 5.5 Für eine poissonverteilte Zufallsgrösse X gilt

E(X) = λ

V ar(X) = λ .

Näherung für die Binomialverteilung

Ist bei einer Binomialverteilung die Anzahl n der Bernoulli-Experimente gross und gleich-
zeitig die Wahrscheinlichkeit p des Erfolgs im Einzelexperiment sehr klein, dann kann die
Poissonverteilung mit dem Parameter λ = np als Näherung für die Binomialverteilung be-
nutzt werden. Tatsächlich ist diese Näherung normalerweise bereits für n > 10 und p < 0, 05
ausreichend genau.

Beispiel

Eine Maschine stellt Artikel her. Aus Erfahrung weiss man, dass darunter 4% defekte Artikel
sind. Die Artikel werden in Kisten zu je 100 Stück verpackt. Wie gross ist die Wahrschein-
lichkeit, dass in einer zufällig ausgewählten Kiste genau 5 defekte Artikel sind?

1. Exakte Berechnung mit der Binomialverteilung:

2. Näherung mit der Poissonverteilung:
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6 Die Normalverteilung

Im letzten Kapitel haben wir die Binomial- und die Poissonverteilung untersucht. Dies sind
Wahrscheinlichkeitsverteilungen von diskreten Zufallsgrössen. Nehmen wir nun an, die Zu-
fallsgrösse X ordne jeder Tablette einer Packung Aspirin ihr Gewicht zu. Dann kann X kon-
tinuierlich Werte annehmen, zum Beispiel jeden reellen Wert zwischen 20mg und 30mg. Eine
solche Zufallsgrösse heisst stetig. Die wichtigste Wahrscheinlichkeitsverteilung einer stetigen
Zufallsgrösse ist die Normalverteilung.

Weiter können wir die Normalverteilung als Näherung für die Binomialverteilung benutzen
(wenn n gross genug ist). Werfen wir zum Beispiel eine Münze 50-mal und Erfolg sei der Wurf
von Zahl. Dann ist die Zufallsgrösse X = (Anzahl Erfolge) binomialverteilt mit n = 50 und
p = 1− p = 1

2 . Die Binomialverteilung (blau) sieht so aus:

Eingezeichnet in rot ist der Graph der Funktion

f(x) =
1

σ
√
2π

e−
1

2
(x−µ

σ )
2

,

wobei µ = np und σ =
√
npq mit q = 1−p. Der Graph von f heisst (Gaußsche) Glockenkurve.

Sind die Wahrscheinlichkeiten P (X ≤ k) einer (stetigen) Zufallsgrösse X gegeben durch

P (X ≤ k) =

∫ k

−∞
f(x) dx ,

dann nennt man X normalverteilt.

Wie gross ist nun die Wahrscheinlichkeit, mit 50 Würfen zwischen 26 und 30 Erfolge zu
erzielen? Die Binomialverteilung liefert

P50(26 ≤ k ≤ 30) =
30∑

k=26

P50(k) =
30∑

k=26

(
50

k

)(1

2

)k(1

2

)50−k

,

doch die Wahrscheinlichkeiten P50(k) sind in der Tabelle nicht zu finden. Eine exakte Be-
rechnung wäre mit einem CAS möglich, aber tatsächlich reicht eine Näherung mit Hilfe der
Funktion f von oben. Die folgende Abbildung zeigt den passenden Ausschnitt aus dem Bal-
kendiagramm.
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Die blauen Rechtecke haben die Breite 1 und die Höhe P50(k). Die gesuchte Wahrscheinlichkeit
ist also gleich dem Flächeninhalt der fünf blauen Rechtecke. Diesen Flächeninhalt können wir
nun mit Hilfe des Integrals über f(x) approximieren.

Allerdings haben wir nun ein neues Problem, denn die Funktion f ist nicht elementar in-
tegrierbar (d.h. ihre Stammfunktion ist nicht aus elementaren Funktionen zusammengesetzt).
Wir könnten ein CAS zu Hilfe nehmen, welches Integrale über f näherungsweise berechnet.
Praktischer (und in den meisten Fällen auch ausreichend genau) ist jedoch die Verwendung
von Tabellen. Wie das funktioniert, untersuchen wir im nächsten Abschnitt. Danach wer-
den wir bereit sein, Wahrscheinlichkeiten von Binomialverteilungen zu approximieren und
Wahrscheinlichkeiten von Normalverteilungen zu berechnen.

6.1 Eigenschaften der Glockenkurve

Wie im Beispiel oben ersichtlich, hat die Glockenkurve ein globales Maximum und zwei
Wendepunkte.

Satz 6.1 Die Funktion f(x) hat eine (lokale und globale) Maximalstelle in x = µ und zwei
Wendestellen in x = µ± σ.

Im speziellen Fall µ = 0 und σ = 1 wird f(x) zur Funktion

ϕ(x) =
1√
2π

e−
1

2
x2

,

deren Graphen man Standardglockenkurve nennt. Die Funktion ϕ(x) hat die folgenden Ei-
genschaften:

• In (0, 1√
2π
) hat ϕ(x) ein Maximum.

• In x = ±1 hat ϕ(x) zwei Wendestellen.

• Die Standardglockenkurve ist symmetrisch zur y-Achse, denn ϕ(−x) = ϕ(x).

• Es gilt lim
x→±∞

ϕ(x) = 0 .
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In der Tabelle (Seite 11 der Tabellen von H. Walser oder in jeder Formelsammlung) sind
die Werte der Stammfunktion

Φ(u) =

u∫

−∞

ϕ(x) dx =
1√
2π

u∫

−∞

e−
1

2
x2

dx

zu finden. Graphisch gesehen gilt:

Φ(u) = Flächeninhalt links von u zwischen x-Achse und Graph von ϕ

Beispiel

Die Werte aller Integrale über der Funktion ϕ(x) genügen, da wir jedes Integral über f(x)
(durch Substitution) in ein Integral über ϕ(x) umformen können.

Satz 6.2 Es gilt

b∫

a

f(t) dt =

b−µ

σ∫

a−µ

σ

ϕ(x) dx = Φ

(
b− µ

σ

)

− Φ

(
a− µ

σ

)

.

Beweis durch Substitution:
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Eine weitere wichtige Eigenschaft der Standardglockenkurve ist, dass der Flächeninhalt
der gesamten Fläche unter der Kurve gleich 1 ist.

Satz 6.3 ∞∫

−∞

ϕ(x) dx = 1 .

Es folgen sofort zwei weitere Eigenschaften:

Φ(0) = 1
2

Φ(−u) = 1− Φ(u)

Wegen Satz 6.2 ist der Flächeninhalt nicht nur unter der Standardglockenkurve sondern
unter jeder beliebigen Glockenkurve gleich 1,

∞∫

−∞

f(x) dx =
1

σ
√
2π

+∞∫

−∞

e−
1

2
(x−µ

σ )
2

dx = 1 .

Abhängig von der Grösse von σ ist die Glockenkurve hoch und schmal oder tief und breit.

6.2 Approximation der Binomialverteilung

Im Beispiel auf den Seiten 54–55 haben wir gesehen, dass die Wahrscheinlichkeiten P50(k) der
dort betrachteten Binomialverteilung durch die Werte der Funktion f approximiert werden
können. Allgemein gilt der folgende Satz.
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Satz 6.4 (Lokaler Grenzwertsatz von de Moivre und Laplace)
Die Wahrscheinlichkeit Pn(k) einer Binomialverteilung (mit der Erfolgswahrscheinlichkeit p
im Einzelexperiment) kann approximiert werden durch

Pn(k) ≈ f(k) =
1

σ
√
2π

e−
1

2
(k−µ

σ )
2

,

wobei µ = np und σ =
√
npq mit q = 1− p.

Diese Näherung ist (in den meisten Fällen) ausreichend genau, falls σ2 = npq > 9.
In demselben Beispiel haben wir gesehen, dass die Wahrscheinlichkeit P50(26 ≤ k ≤ 30)

durch ein Integral über f approximiert werden kann. Schauen wir die blauen Rechtecke auf
Seite 55 genau an, dann sehen wir, dass wir als Integrationsgrenzen nicht 26 und 30 wählen
müssen, sondern 25,5 und 30,5. Die Breite des ersten blauen Rechtecks liegt auf der x-Achse
zwischen 25,5 und 26,5. Addieren wir zu 25,5 die fünf Rechtecksbreiten (je der Länge 1), dann
endet die Breite des letzten blauen Rechtecks bei 25, 5 + 5 = 30, 5. Wir erhalten damit die
Näherung

P50(26 ≤ k ≤ 30) ≈
30,5∫

25,5

f(t) dt .

Mit Hilfe von Satz 6.2 können wir nun das Integral auf der rechten Seite problemlos berechnen.

Satz 6.5 Mit denselben Bezeichnungen wie in Satz 6.4 gilt die Näherung

Pn(a ≤ k ≤ b) ≈
b+ 1

2∫

a− 1

2

f(t) dt = Φ

(

b+ 1
2 − µ

σ

)

− Φ

(

a− 1
2 − µ

σ

)

.

Weiter gilt

Pn(k ≤ b) ≈ Φ

(

b+ 1
2 − µ

σ

)

.

Beispiel

Wie gross ist die Wahrscheinlichkeit P50(26 ≤ k ≤ 30) vom Beispiel vorher?
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Die Näherung von Satz 6.5 ist auch dann gut, wenn die Binomialverteilung nicht symme-
trisch um den Erwartungswert ist.

Beispiele

1. Sei n = 50, p = 0, 2. Dann ist µ = 10 und σ = 2
√
2 ≈ 2, 83. Mit Hilfe von Geogebra erhält

man P50(7 ≤ k ≤ 11) = 0, 6073. Die Näherung von Satz 6.5 liefert P50(7 ≤ k ≤ 11) ≈ 0, 5945.

2. In Mitteleuropa besitzen 45% der Menschen die Blutgruppe A. Wie gross ist die Wahr-
scheinlichkeit, unter 100 zufälligen Blutspendern höchstens 40% mit dieser Blutgruppe vor-
zufinden?

6.3 Normalverteilte Zufallsgrössen

Zu Beginn dieses Kapitels haben wir ein Beispiel einer sogenannten stetigen Zufallsgrösse
gesehen. Im Gegensatz zu einer diskreten Zufallsgrösse nimmt eine stetige Zufallsgrösse (nicht
abzählbar) unendlich viele reelle Werte an, das heisst, die Werte eines ganzen Intervalles.

Genauer heisst eine Zufallsgrösse X stetig, wenn es eine integrierbare Funktion δ(x) gibt,
so dass die Wahrscheinlichkeit P (X ≤ x) gegeben ist durch

P (X ≤ x) =

x∫

−∞

δ(t) dt .

Die Funktion δ(x) heisst Dichtefunktion von X und erfüllt die Eigenschaften
∫ ∞

−∞
δ(x) dx = 1 und δ(x) ≥ 0 für alle x ∈ R .
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Die Wahrscheinlichkeit P (X ≤ x) einer stetigen Zufallsgrösse X entspricht also dem Flächen-
inhalt der Fläche zwischen dem Graphen von δ und der x-Achse zwischen −∞ und x. Für
die Wahrscheinlichkeit P (X ≤ x) gilt deshalb

P (X ≤ x) = P (X < x) und P (X ≥ x) = P (X > x) .

Insbesondere folgt (da P (X = x) = P (X ≤ x)− P (X < x) )

P (X = x) = 0 .

Die Funktion δ(x) = f(x) von den Abschnitten vorher ist die wichtigste Dichtefunktion.

Definition Eine Zufallsgrösse X heisst normalverteilt mit den Parametern µ und σ, wenn
sie die Dichtefunktion

f(x) =
1

σ
√
2π

e−
1

2
( x−µ

σ )
2

besitzt. Die zugehörige Wahrscheinlichkeitsverteilung heisstNormalverteilung oder auch Gauß-
Verteilung. Die Parameter µ und σ sind der Erwartungswert, bzw. die Standardabweichung
der Verteilung.

Wir haben in Abschnitt 6.1 gesehen, dass der Spezialfall µ = 0 und σ = 1 eine wichtige
Rolle spielt.

Definition Eine Zufallsgrösse Z heisst standardnormalverteilt, wenn sie normalverteilt mit
den Parametern µ = 0 und σ = 1 ist. Ihre Dichtefunktion ist damit

ϕ(x) =
1√
2π

e−
1

2
x2

.

Insbesondere gilt

P (Z ≤ x) =

x∫

−∞

ϕ(t) dt = Φ(x) .

Mit Hilfe von Satz 6.2 können auch die Wahrscheinlichkeiten einer beliebigen normalver-
teilten Zufallsgrösse (d.h. mit beliebigen Parametern µ und σ) berechnet werden.

Satz 6.6 Sei X eine normalverteilte Zufallsgrösse mit den Parametern µ und σ. Dann gilt

P (X ≤ x) =

x∫

−∞

f(t) dt = Φ

(
x− µ

σ

)

.

Damit folgt

P (a ≤ X ≤ b) = Φ

(
b− µ

σ

)

− Φ

(
a− µ

σ

)

.

Man kann eine Zufallsgrösse X wie in Satz 6.6 auch direkt standardisieren; standardnor-
malverteilt ist die Zufallsgrösse

Z =
X − µ

σ
.
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Beispiele

1. Gegeben sind normalverteilte Messwerte (d.h. die Zufallsgrösse X = (Messwert) ist nor-
malverteilt) mit dem Erwartungswert µ = 4 und der Standardabweichung σ = 2. Wie gross
ist die Wahrscheinlichkeit, dass ein Messwert (a) höchstens 6 ist (b) mindestens 2 ist und (c)
zwischen 3,8 und 7 liegt?

(a)

(b)

(c)

P (3, 8 ≤ X ≤ 7) = Φ
(7− 4

2

)

−Φ
(3, 8 − 4

2

)

= Φ(1, 5) −Φ(−0, 1)

= Φ(1, 5) − (1− Φ(0, 1)) = 0, 473

2. Das Gewicht von gewissen automatisch gepressten Tabletten ist erfahrungsgemäss normal-
verteilt mit µ = 25mg und σ = 0, 7mg.

(a) Mit welcher Wahrscheinlichkeit ist das Gewicht einer einzelnen Tablette zwischen 23,8mg
und 26,2mg (d.h. im Bereich µ± 1, 2mg)?

(b) Mit welcher Wahrscheinlichkeit ist das Gewicht von allen 30 Tabletten einer Packung
zwischen 23,8mg und 26,2mg ?
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3. Schokoladentafeln werden abgefüllt. Das Abfüllgewicht ist erfahrungsgemäss normalverteilt
mit µ = 100 Gramm und σ = 5 Gramm. Man bestimme den Toleranzbereich µ± cσ so, dass
90% aller Abfüllgewichte in diesen Bereich fallen.

Zwischen 91,8 und 108,2 Gramm liegen also 90% aller Abfüllgewichte.

Wahrscheinlichkeiten unabhängig von den Werten von µ und σ

Im vorhergehenden Beispiel haben wir festgestellt, dass c = 1, 645 unabhängig von µ und σ
ist. Man kann nun analog für beliebige µ und σ zu einer vorgegebenen Wahrscheinlichkeit
den zugehörigen, um µ symmetrischen Bereich angeben:

Wahrscheinlichkeit in % 50% 90% 95% 99%

Bereich µ± 0, 675σ µ± 1, 645σ µ± 1, 96σ µ± 2, 576σ

Diese Tabelle liest sich so: Der um µ symmetrische Bereich, in den eine normalverteilte Zu-
fallsgrösse mit Erwartungswert µ und Varianz σ2 beispielsweise mit einer Wahrscheinlichkeit
von 95% fällt, ist µ± 1, 96σ.

Wir können auch umgekehrt fragen: Mit welcher Wahrscheinlichkeit liegt eine normalver-
teilte Zufallsgrösse beispielsweise im Bereich µ± σ ?
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Analog finden wir die folgenden Werte.

Bereich µ± σ µ± 2σ µ± 3σ µ± 4σ

Wahrscheinlichkeit in % 68,26% 95,45% 99,73% ≈ 100%

Diese Tabelle liest sich nun so: Die Wahrscheinlichkeit, dass eine normalverteilte Zufallsgrösse
mit Erwartungswert µ und Varianz σ2 beispielsweise im Bereich µ±2σ liegt, beträgt 95,45%.

6.4 Der zentrale Grenzwertsatz

SindX und Y zwei unabhängige und normalverteilte Zufallsgrössen, dann ist auch die Summe
X + Y eine normalverteilte Zufallsgrösse. Der zentrale Grenzwertsatz verallgemeinert diese
Aussage.

Satz 6.7 (Zentraler Grenzwertsatz) Seien X1, . . . ,Xn unabhängige und identisch ver-
teilte Zufallsgrössen (sie brauchen nicht normalverteilt zu sein). Ihr Erwartungswert sei je-
weils µ und die Varianz σ2. Dann hat die Summe Sn = X1 + · · · +Xn den Erwartungswert
nµ und die Varianz nσ2.

Für die zugehörige standardisierte Zufallsgrösse

Zn =
Sn − nµ√

nσ
=

X − µ

σ/
√
n

gilt
lim
n→∞

P (Zn ≤ x) = Φ(x) .

In Worten bedeutet dies (grob): Ist ein Merkmal (d.h. Zufallsgrösse) eine Summe von
vielen (kleinen) zufälligen, unabhängigen Einflüssen, so können die Wahrscheinlichkeiten die-
ses Merkmals näherungsweise durch eine Normalverteilung beschrieben werden. Ein solches
Merkmal ist zum Beispiel der Messfehler bei einer Messung, die Füllmenge von automatisch
abgefüllten Flaschen oder der Intelligenzquotient eines Menschen. Es gibt zahlreiche weitere
Beispiele. Die Normalverteilung ist deshalb eine äusserst wichtige Verteilung der Statistik.

Der zentrale Grenzwertsatz erklärt schliesslich auch die gute Näherung der Normalvertei-
lung an eine Binomialverteilung für grosse n (Satz 6.4).

Beispiel

Wir werfen eine Münze n-mal. Wir definieren die Zufallsgrössen Xi durch Xi = 1, falls beim
i-ten Wurf Zahl eintritt und Xi = 0 sonst (d.h. bei Kopf). Die Xi sind damit unabhängig
und identisch verteilt mit µ = E(Xi) =

1
2 und σ2 = V ar(Xi) =

1
4 . Dann ist

Sn = X1 + · · ·+Xn

die Anzahl Zahl bei n Würfen und entspricht für n = 50 genau der Zufallsgrösse X des
Beispiels auf Seite 54. Wir haben dort schon bemerkt, dass die Verteilung von X = S50 durch
eine Normalverteilung angenähert werden kann. Gemäss zentralem Grenzwertsatz können die
Wahrscheinlichkeiten P (Zn ≤ x) der zugehörigen standardisierten Zufallsgrösse

Zn =
Sn − nµ√

nσ
=

Sn − n
2√

n 1
2

für sehr grosse n näherungsweise durch Φ(x) berechnet werden.
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7 Statistische Testverfahren

In diesem Kapitel geht es darum, eine Annahme (Hypothese) über eine Grundgesamtheit
aufgrund einer Stichprobe entweder beizubehalten oder zu verwerfen.

7.1 Testen von Hypothesen

Wie kann man beispielsweise testen, ob ein neues Medikament wirklich wirkt oder ob die
kranken Personen nicht einfach von selbst wieder gesund werden? Oder eine Lady behauptet,
sie könne am Geschmack des Tees erkennen, ob zuerst die Milch oder zuerst der Tee in die
Tasse gegossen wurde. Kann sie das wirklich oder blufft (bzw. rät) sie nur?

Beispiel eines einseitigen Tests

Betrachten wir das Beispiel mit dem Medikament genauer. Wir gehen von einer Krankheit
aus, bei welcher 70% der kranken Personen ohne Medikament von selbst wieder gesund
werden. Ein neues Medikament gegen diese Krankheit wurde hergestellt und wird nun an
n = 10 Personen getestet.

Wir gehen von einer sogenannten Nullhypothese H0 aus.

Nullhypothese H0 : Das Medikament nützt nichts.

Wir nehmen weiter an, dass das Medikament nicht schadet, also im besten Fall nützt oder
sonst keine Wirkung hat. Dies bedeutet, dass der Test einseitig ist.

Die 10 Testpersonen sind also krank und nehmen das Medikament ein. Wieviele dieser
Testpersonen müssen gesund werden, damit wir mit gewisser Sicherheit sagen können, dass
das Medikament wirklich nützt und wir H0 verwerfen können?

Vor der Durchführung des Experiments wählen wir eine kritische Zahl m von Genesenden
und studieren das Ereignis A = (m oder mehr Testpersonen werden von selbst gesund). Wie
gross ist die Wahrscheinlichkeit P (A) ? Hier haben wir eine Binomialverteilung mit n = 10
und p = P (eine Testperson wird von selbst gesund) = 0, 7.

Für m = 9 zum Beispiel erhalten wir P (A) = P10(k ≥ 9) = 0, 1493, was etwa 14, 9%
entspricht. Wenn also 9 oder 10 Testpersonen gesund werden und wir deshalb die Nullhypo-
these H0 verwerfen, ist die Irrtumswahrscheinlichkeit (also die Wahrscheinlichkeit, dass wir
fälschlicherweise die Nullhypothese verwerfen) gleich 14, 9%. Das ist zuviel.

Wir erhöhen deshalb die kritische Zahl auf m = 10. Wenn alle 10 Testpersonen gesund
werden, beträgt nun die Irrtumswahrscheinlichkeit beim Verwerfen von H0 nur noch P (A) =
P10(10) = 0, 710 = 0, 0285 = 2, 85%. In allen anderen Fällen (d.h. wenn 9 oder weniger
Personen gesund werden), müssen wir allerdings H0 beibehalten.

Um mehr “Spielraum” zu haben, erhöhen wir die Anzahl der Testpersonen auf n = 20.
Die Wahrscheinlichkeit des Ereignisses A ist nun gegeben durch

P (A) = P20(k ≥ m) =
20∑

k=m

(
20

k

)

0, 7k0, 320−k .
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Für m = 18 zum Beispiel erhalten wir P (A) = 0, 0355 = 3, 55%. Wir können also die
Nullhypothese H0 mit einer Irrtumswahrscheinlichkeit von etwa 3,6% verwerfen, falls 18 oder
mehr Personen gesund werden. In allen anderen Fällen müssen wir H0 beibehalten, wobei
auch das ein Fehler sein kann.

Fehlerarten

Bei einem Testverfahren kann man sich auf zwei verschiedene Arten irren.

Fehler erster Art. Die NullhypotheseH0 ist richtig, das heisst, das Medikament ist tatsächlich
wirkungslos. Doch wegen eines zufällig guten Ergebnisses verwerfen wir die Nullhypothese.
Dies wird als Fehler erster Art bezeichnet.

Im Beispiel vorher mit n = 20 Testpersonen und m = 18 tritt ein Fehler erster Art mit
einer Wahrscheinlichkeit von α = 3, 6% auf.

Fehler zweiter Art. Die Nullhypothese H0 ist falsch, das heisst, das Medikament wirkt.
Doch wegen eines zufällig schlechten Ergebnisses behalten wir die Nullhypothese bei. Die
Wahrscheinlichkeit eines Fehlers zweiter Art bezeichnet man mit β.

Es gibt also vier Möglichkeiten, wie die Realität und die Testentscheidung zusammentref-
fen können:

Realität

H0 ist richtig H0 ist falsch

H0 Fehler 2. Art,
beibehalten ok β-Fehler

Testent-
scheidung

H0 Fehler 1. Art,
verwerfen α-Fehler ok

Die Wahrscheinlichkeit für einen Fehler erster Art wird zu Beginn des Tests durch Vorgabe
von α nach oben beschränkt. In den Naturwissenschaften üblich ist eine Toleranz von bis
zu α = 5%. Man spricht vom Signifikanzniveau α. Dieser Fehler ist also kontrollierbar.
Gleichzeitig sollte jedoch die Wahrscheinlichkeit eines Fehlers zweiter Art nicht zu gross sein.
Dieser Fehler kann allerdings nicht vorgegeben werden.

Beim Testen wählt man also den Fehler mit dem grösseren Risiko zum Fehler erster Art.
Man wählt dementsprechend die Nullhypothese H0 so, dass das irrtümliche Festhalten an
H0 nicht so schlimm ist, bzw. weniger schlimm als das irrtümliche Verwerfen von H0 und
Annehmen der Alternativhypothese H1 ist.

Beim Testen eines neuen Medikaments ist es also besser, dieses als unwirksam anzunehmen
(obwohl es wirkt) und weiterhin das bisher übliche Medikament zu verwenden, anstatt das
neue Medikament gegen die Krankheit einzusetzen, obwohl es nichts nützt.
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Beispiel eines zweiseitigen Tests

Wir wollen testen, ob eine Münze gefälscht ist. Wir gehen von der Nullhypothese H0 aus,
dass dem nicht so ist.

H0 : p(Kopf) = 1
2

Die Alternativhypothese H1 ist in diesem Fall, dass p(Kopf) 6= 1
2 .

H1 : p(Kopf) > 1
2 oder p(Kopf) < 1

2

Wir müssen daher zweiseitig testen.
Wir werfen die Münze zum Beispiel n = 10 Mal. Als Verwerfungsbereich der Anzahl Köpfe

für H0 wählen wir die Menge {0, 1, 2} ∪ {8, 9, 10} = {0, 1, 2, 8, 9, 10}. Ist also die Anzahl der
Köpfe bei 10 Würfen sehr klein (nämlich 0, 1 oder 2) oder sehr gross (nämlich 8, 9 oder 10),
dann verwerfen wir die Nullhypothese H0.

Wie gross ist damit der Fehler erster Art?

Wir erhalten also α = 10, 9%. Dieser Fehler ist zu gross.
Wir werfen nochmals n = 20 Mal. Als Verwerfungsbereich für H0 wählen wir nun die

Menge {0, 1, 2, 3, 4, 16, 17, 18, 19, 20}. Für den Fehler erster Art erhalten wir nun

Das heisst, α = 1, 2%. Tritt also bei den 20 Würfen eine Anzahl Köpfe des Verwerfungsbe-
reichs auf, dann verwerfen wir die Nullhypothese und nehmen an, dass die Münze gefälscht
ist. Dabei irren wir uns mit einer Wahrscheinlichkeit von α = 1, 2%.

Nun geben wir das Signifikanzniveau α vor. Wir werfen die Münze wieder 20-mal. Wie
müssen wir den Verwerfungsbereich wählen, damit α ≤ 5% ? Dabei soll der Verwerfungsbe-
reich so gross wie möglich sein. Wir suchen also das grösste x, so dass

Hier lohnt es sich, in der Tabelle der summierten Binomialverteilung nachzusehen. Für alle
x ≤ 5 gilt P20(k ≤ x) ≤ 0, 025. Mit x = 5 erhalten wir den grössten Verwerfungsbereich,

{ 0, 1, 2, 3, 4, 5, 15, 16, 17, 18, 19, 20 } .

Wie gross ist nun α tatsächlich? Wir finden

α = 2P20(k ≤ 5) = 2 · 0, 021 = 0, 042 =⇒ α = 4, 2%
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Werfen wir die Münze 100-mal, dann verwenden wir die Normalverteilung als Näherung
für die Binomialverteilung. Wir wollen auch hier den grösstmöglichen Verwerfungsbereich
bestimmen, so dass α ≤ 5%. Wir haben also n = 100 und p = 1

2 (die Nullhypothese) wie
bisher. Die Parameter für die Normalverteilung sind damit

Wegen σ2 = 25 > 9 können wir die Normalverteilung als Näherung für die Binomialverteilung
nutzen.

Es muss nun gelten:

Näherung mit Normalverteilung X :

Mit der Tabelle von Seite 62 folgt

Damit α ≤ 0, 05, müssen wir x auf 39 abrunden (den Verwerfungsbereich verkleinern bedeu-
tet α verkleinern). Der grösstmögliche Verwerfungsbereich mit α ≤ 5% ist also

Wie gross ist nun α tatsächlich?
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Weiteres Beispiel

Ein Hersteller von Überraschungseier behauptet, dass in mindestens 14% der Eier Figuren
von Disney-Filmen stecken. Wir wollen dies testen und nehmen eine Stichprobe von n = 1000
Eiern, in welchen wir 130 Disney-Figuren finden. Genügt dieses Ergebnis, um die Behauptung
des Herstellers mit genügend hoher Wahrscheinlichkeit zu widerlegen?

Sei p der wahre aber unbekannte Anteil der Eier mit Disney-Figuren. Der Hersteller
behauptet, dass p ≥ 0, 14. Dies ist unsere Nullhypothese H0.

H0 : p ≥ 0, 14

Die Alternativhypothese H1 ist, dass es in weniger als 14% der Eier Disney-Figuren gibt.

H1 : p < 0, 14

Wir haben also einen einseitigen Test. Der Fehler erster Art α soll höchstens 5% betragen.
Die Zufallsgrösse X sei die Anzahl der Disney-Figuren in der Stichprobe. Da der Umfang

n = 1000 der Stichprobe sehr gross ist, dürfen wir von einer Binomialverteilung ausgehen (die
1000 Ziehungen sind praktisch unabhängig), die wir durch eine Normalverteilung annähern.

Für den Verwerfungsbereich {0, 1, 2, . . . , x} suchen wir also die grösste Zahl x, so dass

Die approximierende Normalverteilung X hat die Parameter

Es gilt also

und wir müssen x bestimmen, so dass

Mit der Tabelle von Seite 62 folgt

Als Verwerfungsbereich erhalten wir also

{ 0, 1, . . . , 121 }

und da wir 130 Disney-Figuren gefunden haben, können wir die Behauptung des Herstellers
nicht mit der gewünschten Sicherheit verwerfen.
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7.2 Der t-Test für Mittelwerte

In diesem Abschnitt interessieren wir uns für den Mittelwert µ eines Merkmals (d.h. den Er-
wartungswert µ einer Zufallsgrösse) einer (oder zweier) Grundgesamtheit(en). Anhand einer
Stichprobe wollen wir Aussagen über den unbekannten Mittelwert µ machen.

Vertrauensintervall

Gegeben ist also ein Merkmal einer Grundgesamtheit, wobei wir annehmen, dass dieses Merk-
mal normalverteilt ist. Sowohl der Mittelwert µ als auch die Varianz σ2 dieses Merkmals
sind unbekannt. Wir entnehmen dieser Grundgesamtheit eine Stichprobe und berechnen in
Abhängigkeit dieser Stichprobe ein sogenanntes 95%-Vertrauensintervall für µ. Dies bedeutet,
dass der unbekannte Mittelwert µ mit einer Wahrscheinlichkeit von 95% in diesem Vertrau-
ensintervall liegt.

Wir benötigen dazu den sogenannten Standardfehler. In Kapitel 1 hatten wir die Stan-
dardabweichung

s =

√
√
√
√

1

n− 1

n∑

i=1

(xi − x)2

für eine Messreihe x1, . . . , xn definiert. Wir bezeichnen diese nun mit s = SD (für standard
deviation). Weiter haben wir in Abschnitt 4.4 gesehen, dass die Varianz des Mittelwerts X
einer Stichprobe gegeben ist durch σ2/n, wobei σ2 die Varianz des Merkmals der Grundge-
samtheit ist. Da diese jedoch unbekannt ist, schätzen wir sie durch s2 (wie in Abschnitt 4.4).
Dies führt zum Standardfehler (standard error) der Stichprobe

SE =
SD√
n

=
s√
n
=

√
√
√
√

1

n(n− 1)

n∑

i=1

(xi − x)2 .

Der Standardfehler ist also umso kleiner, je grösser der Umfang der Stichprobe ist.

Beispiel

Wie in Abschnitt 4.4 seien alle Studierenden der Vorlesung Mathematik II die Grundgesamt-
heit und das Merkmal sei das Alter (d.h. die Zufallsgrösse X ordnet jedem Studierenden
sein Alter zu). Wir können davon ausgehen, dass dieses Merkmal normalverteilt ist. Das
Durchschnittsalter der Studierenden, das heisst der Mittelwert µ, ist unbekannt, ebenso die
Varianz σ2. Das Ziel ist, ein Intervall anzugeben, in welchem der Mittelwert µ mit 95%-iger
Wahrscheinlichkeit liegt.

Dazu nehmen wir eine Stichprobe. Wir notieren also das Alter von beispielsweise 8 zufällig
ausgewählten Studierenden. Wir erhalten (zum Beispiel) die Zahlen

20 22 19 20 21 23 21 24

Wir berechnen
x = 21, 25 , s = SD = 1, 669 , SE =

s√
8
= 0, 590 .

Wir wissen (von Abschnitt 4.4), dass der Erwartungswert des Stichprobenmittelwerts X
gleich dem Mittelwert µ ist. Wäre nun der Stichprobenumfang sehr gross (etwa n ≥ 30) und
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die Varianz σ2 bekannt, dann wäre (nach dem zentralen Grenzwertsatz) die standardisierte
Zufallsgrösse

Z =
X − µ

σ/
√
n

standardnormalverteilt. Die Zufallsgrösse Z würde gemäss der Tabelle auf Seite 62 mit einer
Wahrscheinlichkeit von 95% einen Wert zwischen −1, 96 und 1, 96 annehmen.

Nun haben wir jedoch einen kleinen Stichprobenumfang und die Varianz σ2 ist unbekannt,
so dass wir die obige Bemerkung in zwei Punkten korrigieren müssen. Erstens ersetzen wir
(wie schon weiter oben bemerkt) σ/

√
n durch den Standardfehler SE = s/

√
n. Zweitens ist

nun die “standardisierte” Zufallsgrösse

Z =
X − µ

SE

nicht standardnormalverteilt, sondern sie folgt der sogenannten Studentschen t-Verteilung.
Diese hängt vom Stichprobenumfang n, bzw. vom Freiheitsgrad

ν = n− 1

ab. Ist n gross, dann sieht die t-Verteilung wie die Normalverteilung aus; für kleine n ist
die Kurve jedoch flacher und breiter. Die Studentsche t-Verteilung wurde von William Sea-
ly Gosset eingeführt; der Name stammt von seinem Pseudonym “Student”, unter dem er
publizierte.

Die Rolle der Zahl 1,96 oben übernimmt nun der kritische Schrankenwert tkrit, den wir
aus der Tabelle (Seite 13) ablesen können. In unserem Beispiel ist ν = 8 − 1 = 7 und da
wir eine Wahrscheinlichkeit von 95% suchen, ist das Signifikanzniveau α = 5% = 0, 05. Wir
finden den Tabellenwert

tkrit = 2, 365 .

Damit gilt

0, 95 = P (−2, 365 ≤ Z ≤ 2, 365) = P (−2, 365 · SE ≤ X − µ ≤ 2, 365 · SE) ,

also liegt µ mit 95%-iger Wahrscheinlichkeit im Intervall [X − 2, 365 · SE , X + 2, 365 · SE].
Setzen wir unseren konkreten Stichprobenmittelwert x = 21, 25 sowie den Standardfehler
SE = 0, 590 ein, erhalten wir das Vertrauensintervall

[ 21, 25 − 2, 365 · 0, 590 ; 21, 25 + 2, 365 · 0, 590 ] = [19, 854 ; 22, 646] .

Allgemein ist das 95%-Vertrauensintervall, das den unbekannten Mittelwert µ mit einer
Wahrscheinlichkeit von 95% überdeckt, gegeben durch

[ x− tkrit · SE , x+ tkrit · SE ] .

Das Vertrauensintervall ist vom Mittelwert x der Stichprobe, und damit von der Stichprobe
abhängig. Eine andere Stichprobe ergibt möglicherweise ein anderes Vertrauensintervall. Ins-
besondere verkleinert ein grösserer Stichprobenumfang die Länge des Intervalles wesentlich.
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Anstelle der Berechnung eines Vertrauensintervalles könnte man auch testen, ob eine
bestimmte Zahl µ0 als Mittelwert µ wahrscheinlich ist. Zum Beispiel testen wir wie folgt:

Nullhypothese: µ = µ0 = 23
Alternativhypothese: µ 6= µ0 = 23
Signifikanzniveau: α = 5%

Dies ist also ein zweiseitiger Test.
Als Testgrösse verwenden wir

t =
|x− µ0|
SE

.

Damit liegt µ0 im Vertrauensintervall, genau dann wenn t ≤ tkrit. Es gilt also:

t > tkrit =⇒ Nullhypothese verwerfen

Mit unseren Messwerten erhalten wir

Die Nullhypothese muss also verworfen werden. Mit einer Irrtumswahrscheinlichkeit von
höchstens 5% ist µ0 = 23 nicht der Mittelwert µ.

Allgemeines Vorgehen

Gesucht: Mittelwert µ eines normalverteilten Merkmals einer Grundgesamtheit.

Gegeben: Stichprobe vom Umfang n mit Mittelwert x und Standardfehler SE.

Vertrauensintervall zum Niveau 1− α :

[ x− tα,ν · SE , x+ tα,ν · SE ] ,

wobei tα,ν = tkrit der kritische Schrankenwert (gemäss Tabelle der Studentschen t-Verteilung)
für das Signifikanzniveau α und den Freiheitsgrad ν = n− 1 ist.

Oder mit Testgrösse:

t =
|x− µ0|
SE

Entscheid: t > tα,ν =⇒ µ 6= µ0

Vergleich der Mittelwerte zweier Normalverteilungen

Gegeben sind zwei Grundgesamtheiten mit je einem normalverteilten Merkmal, dessen Mit-
telwert µx, bzw. µy ist. Wir wollen testen, ob die beiden Mittelwerte µx und µy gleich sind.
Die Varianzen brauchen nicht bekannt zu sein, sie werden aber als gleich vorausgesetzt.

Für den Test brauchen wir je eine Stichprobe aus den beiden Grundgesamtheiten. Die
beiden folgenden Fälle sind praktisch besonders wichtig:

1. Die beiden Stichproben sind gleich gross. Je ein Wert der einen und ein Wert der anderen
Stichprobe gehören zusammen, da sie von demselben Merkmalsträger stammen (zum Bei-
spiel das Körpergewicht vor und nach einer Diät oder Messwerte von demselben Objekt,
gemessen mit zwei verschiedenen Messgeräten). Man spricht von gepaarten Stichproben.

2. Die beiden Stichproben sind unabhängig und nicht notwendigerweise gleich gross.
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1. Gepaarte Stichproben

12 Männer machen eine Diät. Verringert diese Diät das Körpergewicht auch wirklich? Bei
den Probanden wird deshalb das Körpergewicht (in kg) vor und nach der Diät gemessen:

Proband Gewicht vorher Gewicht nachher Differenz
i xi yi di = xi − yi
1 84,5 83 1,5

2 72,5 72,5 0

3 79 74,5 4,5

4 88,5 89,5 −1

5 104,5 94 10,5

6 83 77,5 5,5

7 93,5 95,5 −2

8 77 70 7

9 76,5 75 1,5

10 98,5 94,5 4

11 79,5 73,5 6

12 92 83,5 8,5

x = 85, 750 y = 81, 917 d = 3, 833

sx = 9, 781 sy = 9, 409 sd = 3, 898

Wir wollen nun testen, ob µx = µy. Dabei können wir auf den vorhergehenden Test für
einen einzelnen Mittelwert zurückgreifen, indem wir wie folgt testen (zweiseitig):

Nullhypothese: µd = µx − µy = 0
Alternativhypothese: µd 6= 0
Signifikanzniveau: α = 5%

Wir berechnen also die Testgrösse

Da dieses t grösser als der kritische Schrankenwert tkrit = tα,ν = 2, 201 (gemäss Tabelle der
t-Verteilung, Freiheitsgrad ν = 11) ist, kann die Nullhypothese mit einer Irrtumswahrschein-
lichkeit von höchstens 5% verworfen werden. Die Diät wirkt also tatsächlich, Männer nehmen
allgemein mit dieser Diät ab.

2. Unabhängige Stichproben

Ein neues Düngemittel (N) für Sojabohnen wurde entwickelt und nun soll getestet werden,
ob dieses das Wachstum der Sojabohnen besser als das bisher verwendete Düngemittel (B)
fördert. Dabei wird davon ausgegangen, dass das neue Düngemittel N nicht schlechter als das
Düngemittel B wirkt. Es werden 20 gleichartige Sojapflanzen zufällig ausgewählt, 12 davon
mit dem Düngemittel N und die restlichen 8 mit dem Düngemittel B gedüngt. Nach einer be-
stimmten Zeit wird die Höhe der Pflanzen gemessen. Die durchschnittliche Höhe der nx = 12
Pflanzen, die mit Mittel N gedüngt wurden, beträgt x = 35, 6 mit einer Standardabweichung
von sx = 1, 8 und die durchschnittliche Höhe der ny = 8 Pflanzen, die mit Mittel B gedüngt
wurden, beträgt y = 33, 2 mit sy = 1, 9.
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Da wir nun keine Stichprobenpaare (xi, yi) mehr haben, müssen wir die vorhergehende
Testmethode leicht anpassen. Wir testen wie folgt:

Nullhypothese: Die Düngemittel N und B wirken gleich gut (µx = µy).
Alternativhypothese: Düngemittel N wirkt besser als Düngemittel B (µx > µy).
Signifikanzniveau: α = 1%

Dies ist also ein einseitiger Test. (Man könnte auch zweiseitig testen, die Alternativhypothese
wäre in diesem Fall µx 6= µy.)

Wir verwenden die Testgrösse

t =
|x− y|
SEx−y

, wobei SEx−y =

√

nx + ny

nxny

√

s2x(nx − 1) + s2y(ny − 1)

nx + ny − 2

der Standardfehler der Differenz x− y ist. Für die Testgrösse erhalten wir also

t = |x− y|
√

nxny

nx + ny

√

nx + ny − 2

s2x(nx − 1) + s2y(ny − 1)
.

In unserem Beispiel erhalten wir

Nun benutzen wir wieder die Tabelle der t-Verteilung. Der Freiheitsgrad ist hier

ν = nx + ny − 2 ,

also ν = 18. Die Tabelle (für α = 0, 01, einseitiger Test) gibt uns den kritischen Schrankenwert
tkrit = 2, 552. Dieser ist kleiner als unser berechneter Wert t = 2, 858. Wir können also die
Nullhypothese mit einer Irrtumswahrscheinlichkeit von höchstens 1% verwerfen, das heisst,
das neue Düngemittel N wirkt besser als das bisher verwendete Düngemittel B.

Allgemeines Vorgehen

Test: Gilt µx = µy für die Mittelwerte µx, µy von zwei normalverteilten Merkmalen?

Gegeben: Je eine Stichprobe vom Umfang nx, ny mit Mittelwerten x, y und Standardabwei-
chungen sx, sy

α Signifikanzniveau, ν = nx + ny − 2 Freiheitsgrad, tα,ν (gemäss Tabelle der t-Verteilung)

Testgrösse:

t = |x− y|
√

nxny

nx + ny

√

nx + ny − 2

s2x(nx − 1) + s2y(ny − 1)

Entscheid: t > tα,ν =⇒ µx 6= µy

Nicht normalverteilte Merkmale

Sind die Merkmale der Grundgesamtheiten nicht normalverteilt, so kann der t-Test als Nä-
herung trotzdem verwendet werden (der Näherungsfehler ist umso kleiner, je grösser die
Stichproben sind). Ansonsten kann der sogenannte Wilcoxon-Mann-Whitney-Test , der keine
Annahmen über die Verteilungen der Merkmale der Grundgesamtheiten macht, verwendet
werden. Auf diesen Test gehen wir hier aber nicht ein.
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7.3 Der Varianzenquotiententest

Wenn wir den t-Test für zwei Stichproben anwenden wollen, müssen wir in den beiden Grund-
gesamtheiten dieselbe Varianz der Merkmale voraussetzen, das heisst σ2

x = σ2
y . Wie können

wir diese Bedingung überprüfen?

Beispiel

Wir vergleichen zwei verschiedene Pipettier-Methoden, um 50ml abzumessen.
Die beiden Stichproben ergeben die folgenden Messwerte:

automatische Pipette

1 48,82

2 50,88

3 51,22

4 49,75

5 50,19

6 50,01

7 49,98

8 48,29

9 49,82

10 51,02

Mittelwert: 49,998

Varianz: 0,8612

manuelle Pipette

1 50,11

2 50,11

3 49,92

4 50,63

5 49,91

6 50,26

7 50,05

8 50,09

Mittelwert: 50,135

Varianz: 0,0526

Die Varianz bei der Stichprobe der automatischen Pipette ist grösser. Können wir daraus
schliessen, dass allgemein die Varianz der Messwerte bei der automatischen Pipette grösser
ist oder dass die Varianzen allgemein unterschiedlich sind bei den beiden Pipettier-Methoden?

Wir testen (zweiseitig) wie folgt:

Nullhypothese: σ2
x = σ2

y

Alternativhypothese: σ2
x 6= σ2

y

Signifikanzniveau: α = 5%

Wir verwenden hier die Testgrösse

F =
s2x
s2y

mit s2x ≥ s2y .

Sind die Varianzen gleich, dann ist F nahe bei 1.
Damit in unserem Beispiel die Bedingung s2x ≥ s2y erfüllt ist, müssen wir x für die au-

tomatische und y für die manuelle Pipettierung wählen. Für unsere Testgrösse erhalten wir
also

Die Testgrösse F folgt der sogenannten F -Verteilung (nach Ronald Aylmer Fisher). Wir be-
nutzen also die Tabelle der F -Verteilung. Dazu brauchen wir noch den Freiheitsgrad vom
Zähler νx = 10 − 1 = 9 und vom Nenner νy = 8 − 1 = 7. Die Tabelle gibt den kritischen
Schrankenwert

Fkrit = 3, 68 .
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Wie beim t-Test gilt nun allgemein

F > Fkrit =⇒ Nullhypothese verwerfen

Da unsere berechnete Testgrösse F = 16, 37 grösser als Fkrit ist, können wir unsere Nullhy-
pothese verwerfen (Irrtumswahrscheinlichkeit ≤ 5%). Die Varianzen bei den beiden Pipettier-
Methoden sind also nicht gleich.

Allgemeines Vorgehen

Test: Gilt σ2
x = σ2

y für die Varianzen σ2
x, σ

2
y von zwei normalverteilten Merkmalen?

Gegeben: Je eine Stichprobe mit den Varianzen s2x, s
2
y.

α Signifikanzniveau, νx, νy Freiheitsgrade, Fα,νx,νy (gemäss Tabelle der F -Verteilung)

Testgrösse:

F =
s2x
s2y

mit s2x ≥ s2y

Entscheid: F > Fα,νx,νy =⇒ σ2
x 6= σ2

y

7.4 Korrelationsanalyse

In Kapitel 2 haben wir die Korrelationskoeffizienten von Pearson und von Spearman ken-
nengelernt. Hier wollen wir nun aus dem Korrelationskoeffizienten der Messwertpaare einer
Stichprobe Aussagen über den Korrelationskoeffizienten der Messwertpaare der Grundge-
samtheit machen.

Beispiel

Blätter von Bäumen, aus denen ein bestimmter Wirkstoff gewonnen werden kann, sollen ge-
erntet werden. Wir überlegen uns, ob der Wirkstoffgehalt in einem Blatt davon abhängt, wie
hoch das Blatt am Baum hängt. Wenn nicht, könnte man einfach die leicht zugänglichen
Blätter in niedriger Höhe ernten, ohne Leitern verwenden zu müssen.

Wir pflücken daher als Stichprobe 24 Blätter in unterschiedlicher Höhe und notieren ihren
Wirkstoffgehalt. Wir erhalten die folgenden Messwertpaare (in m, bzw. mg/100 g):

Nr. i Höhe x Wirkstoffgehalt y

1 1,70 1,66

2 2,31 1,34

3 2,89 1,27

4 1,30 1,61

5 3,21 1,17

6 1,84 1,73

7 3,27 1,17

8 4,21 1,19

9 1,32 1,93

10 3,67 1,10

11 2,78 1,37

12 3,71 1,19

Nr. i Höhe x Wirkstoffgehalt y

13 3,23 1,27

14 3,29 0,85

15 3,46 1,16

16 3,95 1,14

17 1,70 1,25

18 2,92 1,49

19 2,67 1,17

20 3,02 1,16

21 2,37 1,75

22 2,64 1,36

23 4,25 1,00

24 1,90 1,48
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Streudiagramm:

Der Korrelationskoeffizient von Pearson beträgt

rxy =

n∑

i=1

(xi − x)(yi − y)

√
√
√
√

n∑

i=1

(xi − x)2

√
√
√
√

n∑

i=1

(yi − y)2

≈ −0, 7767

Das Streudiagramm und der Korrelationskoeffizient weisen auf eine Korrelation der Werte-
paare der Stichprobe hin. Aber gibt es auch eine Korrelation der Wertepaare der Grund-
gesamtheit (d.h. zwischen der Wuchshöhe und dem Wirkstoffgehalt von beliebigen Blättern
an den Bäumen)? Wir bezeichnen mit ̺ den Korrelationskoeffizienten der Wertepaare der
Grundgesamtheit.

Um den folgenden Test anwenden zu können, müssen beide Merkmale (d.h. die Zufalls-
grössen x und y) der Grundgesamtheit normalverteilt sein. Man nennt eine solche Verteilung
bivariate Normalverteilung. Im Gegensatz zum t-Test reagiert dieser Test empfindlich auf
Abweichungen von der Normalverteilung.

Nun testen wir (zweiseitig) wie folgt:

Nullhypothese: ̺ = 0
Alternativhypothese: ̺ 6= 0
Signifikanzniveau: α = 5%

Die Testgrösse ist der Betrag des Korrelationskoeffizienten der Messwertpaare der Stichprobe,
das heisst |rxy| ≈ 0, 7767. Den kritischen Schrankenwert rkrit entnehmen wir der Tabelle
(Seite 20). Wir finden

rkrit = 0, 404 .

Es gilt allgemein

|rxy| > rkrit =⇒ Nullhypothese verwerfen

Wir können in unserem Beispiel also die Nullhypothese mit einer Irrtumswahrscheinlichkeit
von höchstens 5% verwerfen. Es gibt eine Korrelation zwischen der Wuchshöhe und dem
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Wirkstoffgehalt eines Blattes. Allerdings ist die Korrelation entgegengesetzt (da rxy < 0),
das heisst, je höher das Blatt sich befindet, desto geringer ist der Wirkstoffgehalt. Bei der
Ernte bleiben wir also schön am Boden und pflücken die unteren Blätter.

Wenn wir nicht davon ausgehen können, dass die Merkmale (Zufallsgrössen) x und y der
Grundgesamtheit bivariat normalverteilt sind, können wir für die Testgrösse den Rangkorre-
lationskoeffizienten von Spearman benutzen.

Zum Beispiel wollen wir testen, ob die an die Spieler des FC Basel vergebenen Noten nach
einem Fussballspiel in den beiden Zeitungen bz Basel (bz) und Basler Zeitung (BaZ) korre-
lieren. Als Stichprobe untersuchen wir die Noten des Champions League Spiels Manchester
City gegen den FCB vom 7. März 2018:

Spieler Note bz Note BaZ Rang rbz Rang rBaZ d = rbz − rBaZ d2

T. Vacĺık 5, 5 5, 4 2, 5 2, 5 0 0

M. Suchy 5 4, 7 7, 5 8 −0, 5 0, 25

F. Frei 5 5 7, 5 4 3, 5 12, 25

L. Lacroix 5 4, 4 7, 5 10 −2, 5 6, 25

M. Lang 5 5, 4 7, 5 2, 5 5 25

G. Serey Dié 5, 5 4, 9 2, 5 5, 5 −3 9

L. Zuffi 5 4, 9 7, 5 5, 5 2 4

B. Riveros 5 4, 7 7, 5 8 −0, 5 0, 25

K. Bua 5 4, 7 7, 5 8 −0, 5 0, 25

D. Oberlin 4, 5 3, 6 12 11, 5 0, 5 0, 25

M. Elyounoussi 6 5, 6 1 1 0 0

V. Stocker 5 3, 6 7, 5 11, 5 −4 16

Summe 73, 5

Für den Rangkorrelationskoeffizienten von Spearman erhalten wir also

rS = 1 − 6

n(n2 − 1)

n∑

i=1

d2i = 0, 743 .

Der kritische Schrankenwert rS,krit der Tabelle (Seite 21) beträgt

rS,krit = 0, 591 .

Wir können also bei diesem Test die Nullhypothese, dass keine Korrelation besteht, verwerfen.
Die Benotungen der FCB-Spieler in den beiden Zeitungen korrelieren.

Allgemeines Vorgehen

Test: Gilt ̺ = 0 für den Korrelationskoeffizienten ̺ der Wertepaare der Grundgesamtheit?

Gegeben: Eine Stichprobe von Wertepaaren.

Testgrössen:

|rxy| falls Wertepaare der Grundgesamtheit bivariat normalverteilt
|rS| sonst

Entscheid: |rxy| > rkrit bzw. |rS| > rS,krit =⇒ ̺ 6= 0
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7.5 Der χ2-Test

Es gibt verschiedene Varianten und Anwendungsmöglichkeiten des χ2-Tests. Wir behandeln
hier die Variante, mit der man testen kann, ob zwei Zufallsgrössen stochastisch unabhängig
sind.

Beispiel

Zwei Behandlungen für eine bestimmte Krankheit wurden klinisch untersucht. Die Behand-
lung 1 erhielten 124 Patienten, die Behandlung 2 erhielten 109 Patienten. Die Resultate
können in einer Vierfelder-Tafel übersichtlich dargestellt werden:

Behandlung 1 Behandlung 2 Total

wirksam 102 78 180

unwirksam 22 31 53

Total 124 109 233

Wir testen wie folgt:

Nullhypothese: Die Behandlungen haben dieselbe Wirkungswahrscheinlichkeit
Signifikanzniveau: α = 5%

Nun nehmen wir unsere Vierfelder-Tafel, wobei nur die Randhäufigkeiten gegeben sind:

Behandlung 1 Behandlung 2 Total

wirksam x z 180

unwirksam y w 53

Total 124 109 233

Wie gross sind die Häufigkeiten x, y, z, w, wenn wir von der Nullhypothese ausgehen?
Wir haben die folgenden Wahrscheinlichkeiten:

Die Nullhypothese besagt, dass die Ereignisse A = (Behandlung 1) und B = (wirksam)
stochastisch unabhängig sind. Unter dieser Bedingung erhalten wir die folgenden Werte für
x, y, z, w (wir runden diese Zahlen auf ganze Zahlen, was im Allgemeinen jedoch nicht nötig
ist):
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Wir sehen, dass wir nur eine der vier Zahlen x, y, z, w mit Hilfe von Wahrscheinlichkeiten
berechnen müssen. Die anderen Zahlen ergeben sich direkt mit den vorgegebenen Randhäu-
figkeiten. Dies bedeutet, dass wir nur einen Freiheitsgrad haben.

Wenn wir die Werte für x, y, z, w mit den tatsächlich gemessenen Häufigkeiten in der
ersten Tabelle vergleichen, stellen wir Abweichungen fest. Diese Abweichungen stellen wir
wieder in einer Tabelle dar, und zwar berechnen wir in jedem Feld die folgende Grösse:

(gemessene Häufigkeit − erwartete Häufigkeit)2

erwartete Häufigkeit

Damit erhalten wir die folgende Tabelle:

Behandlung 1 Behandlung 2

wirksam (102−96)2

96 = 36
96

(78−84)2

84 = 36
84

unwirksam (22−28)2

28 = 36
28

(31−25)2

25 = 36
25

Es ist kein Zufall, dass alle Zähler gleich sind. Wegen den gegebenen Randhäufigkeiten (bzw.
wegen des Freiheitsgrads 1) bewirkt eine Veränderung in einem Feld eine gleich grosse Ver-
änderung in den drei anderen Feldern (in der gleichen Zeile und in der gleichen Spalte mit
umgekehrtem Vorzeichen). Quadriert ergibt dies in allen vier Feldern dieselbe Zahl.

Die Testgrösse χ2 ist nun die Summe der berechneten Zahlen in dieser Tabelle:

χ2 =
36

96
+

36

84
+

36

28
+

36

25
= 3, 529

Je grösser χ2 ist, desto unwahrscheinlicher ist die Nullhypothese. Die Testgrösse χ2 folgt
der sogenannten χ2-Verteilung mit einem Freiheitsgrad. Den kritischen Schrankenwert χ2

krit

entnehmen wir der entsprechenden χ2-Tabelle (für den Freiheitsgrad 1). Wir finden

χ2
krit = 3, 84 .

Wie bei allen anderen Tests gilt allgemein

χ2 > χ2
krit =⇒ Nullhypothese verwerfen

Für das Signifikanzniveau α = 5% müssen wir in unserem Beispiel also die Nullhypothese
beibehalten. Wir müssen davon ausgehen, dass die Wirkungswahrscheinlichkeit der beiden
Behandlungen gleich gross ist.

Allgemeines Vorgehen

Test: Sind zwei Ereignisse (bzw. Merkmale) A und B stochastisch unabhängig?

Gegeben: Vierfelder-Tafel mit den beobachteten Häufigkeiten:

A A Total

B a b a+ b

B c d c+ d

Total a+ c b+ d n = a+ b+ c+ d
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Die Wahrscheinlichkeiten P (A) und P (B) berechnet man mit Hilfe der Häufigkeiten,

P (A) =
a+ c

n
und P (B) =

a+ b

n
.

Geht man nun vor wie im Beispiel, erhält man die Testgrösse

χ2 =
n(ad− bc)2

(a+ b)(a+ c)(b+ d)(c + d)
.

Vergleich mit χ2
krit aus der Tabelle für den Freiheitsgrad 1.

Entscheid: χ2 > χ2
krit =⇒ A und B sind nicht stochastisch unabhängig

Dieser Test kann nur für “grosse” Stichproben verwendet werden, das heisst unter den
Bedingungen

n = a+ b+ c+ d ≥ 30, a+ b ≥ 10, a+ c ≥ 10, b+ d ≥ 10, c+ d ≥ 10 .

Für kleinere Stichproben kann der sogenannte exakte Fisher-Test für Vierfelder-Tafeln ver-
wendet werden.

Mehr als vier Felder

Eine Verallgemeinerung des χ2-Tests betrachten wir an einem Beispiel.

Beispiel

Sind Frauen in den Studiengängen, an die sich die Vorlesung Mathematik II richtet, über-,
bzw. untervertreten? In der Tabelle sind die Belegzahlen des Herbstsemesters 2020 an der
Uni Basel aufgelistet (wobei nur die ausserfakultären Biologie-Studierenden erfasst sind):

Chemie Bio Geo Pharma Total

Frauen 14 21 22 129 186

Andere 20 26 22 46 114

Total 34 47 44 175 300

Wir testen wie folgt:

Nullhypothese: Frauen und Studiengänge sind voneinander unabhängig
Signifikanzniveau: α = 1%

Wie bei der Vierfelder-Tafel berechnen wir die Häufigkeiten unter Annahme der Nullhypo-
these. Wir erhalten die folgenden Häufigkeiten:

Chemie Bio Geo Pharma Total

Frauen 21,08 29,14 27,28 108,50 186

Andere 12,92 17,86 16,72 66,50 114

Total 34 47 44 175 300

Die folgende Tabelle zeigt die Differenzen zwischen den tatsächlichen und den unter der
Annahme der Nullhypothese erwarteten Häufigkeiten:
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Chemie Bio Geo Pharma

Frauen −7, 08 −8, 14 −5, 28 20, 5

Andere 7, 08 8, 14 5, 28 −20, 5

Diese Differenzen müssen wir nun quadrieren und durch die erwarteten Häufigkeiten dividie-
ren. Die Summe dieser Zahlen ergibt

χ2 = 14, 07 .

Der Freiheitsgrad ist hier 3. Der kritische Schrankenwert aus der Tabelle (für α = 1%) ist

χ2
krit = 11, 34 .

Da dieser kleiner ist als unsere berechnete Testgrösse χ2 = 14, 07, können wir die Nullhy-
pothese verwerfen. Frauen sind also nicht gleichmässig über die Studiengänge verteilt. Wenn
wir die Studierenden der Pharmazie weglassen, sieht es allerdings ganz anders aus...

7.6 Vertrauensintervall für eine Wahrscheinlichkeit

Den Begriff des Vertrauensintervalles haben wir schon beim t-Test angetroffen. Dort ging es
um ein Vertrauensintervall für den Mittelwert eines normalverteilten Merkmals einer Grund-
gesamtheit. Dieses Vertrauensintervall hing von der konkreten Stichprobe ab.

Hier geht es nun um ein Vertrauensintervall für eine Wahrscheinlichkeit. Auch hier ist das
Vertrauensintervall abhängig von der konkreten Stichprobe.

Beispiel

Von 60 zufällig in einer Plantage ausgewählten Sträuchern sind 18 krank, das heisst, die
relative Häufigkeit für einen kranken Strauch in der Stichprobe beträgt

hkrank =
18

60
= 0, 3 .

Wie gross ist nun der Anteil der kranken Sträucher in der Grundgesamtheit? Das heisst, wie
gross ist die Wahrscheinlichkeit pkrank, dass ein zufällig ausgewählter Strauch der Grundge-
samtheit krank ist?

Gesucht ist ein zweiseitiges Vertrauensintervall für pkrank zum Niveau 1− α = 95%.

Wir fassen die Anzahl 18 der kranken Sträucher in der Stichprobe als Realisation einer
binomial verteilten Zufallsgrösse auf. Dabei ist n = 60 und wir suchen die (unbekannte)
Einzelwahrscheinlichkeit p. Für die praktische Rechnung verwenden wir die Näherung mit
der Normalverteilung.

Wir können verschiedene Werte für p ausprobieren, um eine Idee zu bekommen.

p = 0, 1 p = 0, 2
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p = 0, 4 p = 0, 5

Wir sehen, dass die untere Grenze des Vertrauensintervalles ungefähr bei 0,2 liegt und die
obere Grenze ungefähr bei 0,4.

Aus der Graphik für p = 0, 2 erkennen wir, dass für die untere Grenze

µ+ 1, 96σ = 18

gelten muss. Der Faktor 1,96 kommt aus der Tabelle von Seite 62 im Skript (wir suchen
ein 95%-Vertrauensintervall). Für den Erwartungswert µ und die Varianz σ2 der Binomial-
verteilung gilt

Wir erhalten damit die Gleichung

Dies ist eine quadratische Gleichung für p. Die Lösungen sind 0,199 und 0,425. Die untere
Grenze ist also 0,199 (die Zahl 0,425 ist keine Lösung der ersten, unquadrierten Gleichung).

Für die obere Grenze des Vertrauensintervalles muss

µ− 1, 96σ = 18

gelten. Auch diese Gleichung führt zu einer quadratischen Gleichung für p, und zwar zu
derselben Gleichung wie oben. Für die obere Grenze erhalten wir daher 0,425.

Das Vertrauensintervall für pkrank zum Niveau 1− α = 95% ist also gegeben durch

[0, 199 ; 0, 425] .

Allgemeines Vorgehen

Gegeben ist die Anzahl Elemente einer Stichprobe (vom Umfang n) mit einer bestimmten
Eigenschaft. Diese Anzahl (im Beispiel die Zahl 18) ist gleich nh für die relative Häufigkeit h.
Der Anteil der Elemente der Grundgesamtheit mit dieser Eigenschaft sei p. Die Grenzen für
ein 95%-Vertrauensintervall für p erhalten wir als Lösungen der quadratischen Gleichung

1, 962np(1− p) = (nh− np)2 .
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Kürzen mit n ergibt die Gleichung

1, 962p(1− p) = n(h− p)2 .

Für Vertrauensintervalle mit anderen Prozentzahlen müssen wir die Zahl 1,96 entsprechend
ändern. Zum Beispiel müssen wir sie für ein 99%-Vertrauensintervall durch 2,576 ersetzen
(wie der Tabelle auf Seite 62 zu entnehmen ist).

Für grosse Stichproben können die Grenzen des 95%-Vertrauensintervalles mit der Formel

h± 1, 96

√

h(1− h)

n

berechnet werden.
In unserem Beispiel erhalten wir mit dieser Formel 0,184 für die untere und 0,416 für die

obere Grenze.
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8 Lineare Abbildungen

In diesem Kapitel untersuchen wir lineare Abbildungen von R
n nach R

m wie zum Beispiel
Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R

2 und R
3. Man nennt

eine Abbildung linear, wenn man sie durch eine Matrix beschreiben kann. Die Komposition
(d.h. Verknüpfung) von zwei linearen Abbildungen kann dadurch einfach berechnet werden.
Weiter können an der Matrix einer linearen Abbildung die wichtigsten Eigenschaften der
Abbildung abgelesen werden.

8.1 Definition und Beispiele

Im letzten Semester haben wir reelle Funktionen (d.h. Funktionen von R nach R) betrachtet.
Nun kann man nicht nur Zahlen aus R, sondern auch Punkten in R

2, R3 oder allgemein R
n

eine reelle Zahl zuordnen. Zum Beispiel

Eine Funktion f : Rn −→ R nennt man reellwertige Funktion von n reellen Variablen.
Seien nun f1, . . . , fm reellwertige Funktionen von n reellen Variablen, das heisst

w1 = f1(x1, . . . , xn)

w2 = f2(x1, . . . , xn)

...

wm = fm(x1, . . . , xn) .

Durch diese Gleichungen wird jedem Punkt (x1, . . . , xn) in R
n genau ein Punkt (w1, . . . , wm)

in R
m zugeordnet. Wir erhalten damit eine Abbildung

T : Rn −→ R
m

durch
T (x1, . . . , xn) = (w1, . . . , wm) .

Der Buchstabe T steht für Transformation, denn Abbildungen von R
n nach R

m werden auch
Transformationen genannt.

Beispiel

Die Gleichungen

w1 = x1 + x2

w2 = 3x1x2

w3 = x21 − x22

definieren eine Abbildung T : R2 −→ R
3 durch

T (x1, x2) = (x1 + x2, 3x1x2, x
2
1 − x22) .
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Fasst man n-Tupel nicht als Punkte P in R
n sondern als Ortsvektoren ~x =

−→
OP in R

n

auf, dann erhalten wir eine Abbildung, welche Vektoren in R
n auf Vektoren in R

m abbil-
det. Tatsächlich werden wir Elemente aus R

n und R
m stets als Vektoren betrachten, da

wir ja mit der Struktur dieser Räume als Vektorräume vertraut sind und insbesondere li-
neare Abbildungen den R

n auf einen Vektorraum in R
m abbilden. Die Funktionsvorschrift

T (x1, . . . , xn) = (w1, . . . , wm) bedeutet in diesem Fall also, dass der Vektor ~x in R
n mit

den Komponenten x1, . . . , xn auf den Vektor ~w in R
m mit den Komponenten w1, . . . , wm

abgebildet wird. Oft beschreiben wir die Abbildung direkt mit Vektoren: T (~x) = ~w.

Definition Eine Abbildung T : Rn −→ R
m definiert durch T (x1, . . . , xn) = (w1, . . . , wm)

heisst linear, wenn

w1 = a11x1 + a12x2 + · · ·+ a1nxn

w2 = a21x1 + a22x2 + · · ·+ a2nxn
...

...

wm = am1x1 + am2x2 + · · ·+ amnxn

für reelle Zahlen aij (1 ≤ i ≤ m, 1 ≤ j ≤ n).

Das heisst, alle Variablen x1, . . . , xn kommen in den Komponentenfunktionen w1, . . . , wm

linear (d.h. zur ersten Potenz oder gar nicht) vor. Dieses Gleichungssystem kann man als
Matrixmultiplikation schreiben






w1
...

wm




 =








a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn















x1

...

xn








,

das heisst
T (~x) = ~w = [T ]~x ,

wobei [T ] = (aij) die sogenannte Darstellungsmatrix der linearen Abbildung T ist. Die Ein-
träge der Darstellungsmatrix hängen von der Wahl der Basen von R

n und R
m ab. Wir wählen

vorerst stets die Standardbasen; die Darstellungsmatrix nennt man in diesem Fall auch Stan-
dardmatrix von T .

Beispiele

1. T : R3 −→ R
3, T (x1, x2, x3) = (x1 + x2 − x3, 2x1 − 3x3, 5x2)
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2. T : R2 −→ R
3, T (x1, x2) = (x1 + 2x2, x1, 0)

3. T : R2 −→ R
2, T (x1, x2) = (x21 + x2, 3x1)

4. T : R3 −→ R
2, T (x1, x2, x3) = (x1 + x2 + 4x3, 1)

5. T : R −→ R ist linear genau dann, wenn T (x) = ax für eine reelle Zahl a.
In diesem Fall ist [T ] = (a).

Eine Abbildung T : Rn −→ R
m ist also linear, wenn es eine m×n-Matrix A gibt (nämlich

A = [T ]), so dass T (~x) = A~x. Insbesondere gilt

T (~0) = A~0 = ~0

in R
m. Bei einer linearen Abbildung gilt stets, dass ~0 in R

n auf ~0 in R
m abgebildet wird.

Lineare Abbildungen werden also durch Matrizen beschrieben. Umgekehrt beschreibt je-
de Matrix eine lineare Abbildung. Ist A eine m × n-Matrix, so definiert diese eine lineare
Abbildung T : Rn −→ R

m durch T (~x) = A~x.

Beispiel

Die Matrix

A =

(
1 2
3 0

)

definiert eine lineare Abbildung T : R2 −→ R
2 durch

T (~x) = A~x =

(
1 2
3 0

)(
x1
x2

)

=

(
x1 + 2x2

3x1

)

.

Was ist also zum Beispiel das Bild des Vektors ~x = ( 75 ) unter T ?
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Beispiele von linearen Abbildungen von R
2 nach R

2

Die wichtigsten linearen Abbildungen von R
2 nach R

2 kennen Sie aus der Schule: Spiege-
lungen, Projektionen, Drehungen und Streckungen.

1. Spiegelung an der y-Achse

T−→

2. Spiegelung an der Geraden y = x

T−→

3. Orthogonalprojektion auf die x-Achse

T−→

4. Drehung um den Winkel ϕ um den Ursprung

T−→
Es gilt (Herleitung später)

T (x, y) = (x cosϕ− y sinϕ, x sinϕ+ y cosϕ) .

Für den Drehwinkel ϕ = 90◦, bzw. ϕ = 45◦ erhalten wir damit die Darstellungsmatrizen

[T ] =

(
0 −1
1 0

)

, bzw. [T ] =

(√
2
2 −

√
2
2√

2
2

√
2
2

)

.
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5. Streckung um den Faktor k mit dem Ursprung als Streckzentrum

T−→
Spezialfälle:

• k = 1: T = Id Identität , T (x, y) = (x, y), [T ] =

(
1 0
0 1

)

• k = 0: T = 0 Nullabbildung , T (x, y) = (0, 0), [T ] =

(
0 0
0 0

)

Komposition von linearen Abbildungen

Seien T1 : R
n −→ R

k und T2 : R
k −→ R

m zwei lineare Abbildungen. Wir verknüpfen die
beiden Abbildungen wie folgt:

R
n T1−→ R

k T2−→ R
m

~x 7→ T1(~x) 7→ T2(T1(~x))

Die Verknüpfung von T1 und T2 ist demnach eine Abbildung von R
n nach R

m, dieKomposition
von T2 mit T1 genannt und mit T2 ◦T1 bezeichnet wird (vgl. letztes Semester, Kapitel 1); das
heisst

(T2 ◦ T1)(~x) = T2(T1(~x)) für alle ~x in R
n .

Satz 8.1 Sind T1 und T2 linear, dann ist auch die Komposition T2 ◦ T1 linear. Für die
Darstellungsmatrix [T2 ◦ T1] der Komposition gilt

[T2 ◦ T1] = [T2][T1] .

Die Reihenfolge der beiden Matrizen auf der rechten Seite der Gleichung ist dabei wichtig,
denn im Allgemeinen gilt ja [T2][T1] 6= [T1][T2].

Die folgende Zeile beweist den Satz 8.1. Für ~x in R
n gilt

(T2 ◦ T1)(~x) = T2(T1(~x)) = T2([T1]~x) = [T2][T1]~x .

Beispiel

Sei T1 : R
2 −→ R

2 die Spiegelung an der Geraden y = x und T2 : R
2 −→ R

2 die Orthogo-
nalprojektion auf die y-Achse. Man bestimme die Komposition T2 ◦ T1.
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Gilt im Beispiel T1 ◦ T2 = T2 ◦ T1 ? Wir berechnen

[T1 ◦ T2] = [T1][T2] =

(
0 1
1 0

)(
0 0
0 1

)

=

(
0 1
0 0

)

6= [T2][T1] = [T2 ◦ T1]

Es folgt, dass T1 ◦ T2 6= T2 ◦ T1.

8.2 Eigenschaften

Eine lineare Abbildung von R
n nach R

m hat die Eigenschaft, dass sie mit den Vektorraum-
operationen in R

n und R
m verträglich ist; das heisst, es spielt keine Rolle, ob zwei Vektoren

in R
n zuerst addiert und danach abgebildet werden oder ob sie zuerst abgebildet und danach

ihre Bilder in R
m addiert werden (entsprechend für die skalare Multiplikation).

Satz 8.2 Eine Abbildung T von R
n nach R

m ist genau dann linear, wenn für alle ~x, ~y in R
n

und k in R die folgenden zwei Linearitätsbedingungen gelten:

(1) T (~x+ ~y) = T (~x) + T (~y)

(2) T (k ~x) = k T (~x)

Insbesondere ist das Bild des Vektorraums R
n unter einer linearen Abbildung stets wieder

ein Vektorraum in R
m.

Warum gilt Satz 8.2 ? Nun, ist T eine lineare Abbildung, dann gilt T (~x) = A~x für die Dar-
stellungsmatrix A = [T ] von T , und die Linearitätsbedingungen (1) und (2) folgen aufgrund
der Distributivgesetze für Matrizen.

Umgekehrt, ist T eine Abbildung von R
n nach R

m, welche die Linearitätsbedingungen (1)
und (2) aus Satz 8.2 erfüllt, dann gilt T (~x) = A~x für diejenige Matrix A, deren Spalten die
Bilder (unter T ) der Basisvektoren ~e1, . . . , ~en von R

n sind, das heisst für

A = (T (~e1) · · · T (~en) ) .

Die Abbildung T lässt sich also als Matrixmultiplikation schreiben und ist deshalb linear.
Damit gilt insbesondere die folgende wichtige Tatsache.

Satz 8.3 Sei T eine lineare Abbildung von R
n nach R

m. Dann stehen in den Spalten der
Darstellungsmatrix [T ] die Bilder der Basisvektoren ~e1, . . . , ~en von R

n.

Beispiel

Sei T : R2 −→ R
2 die Spiegelung an der y-Achse.
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Der Satz 8.3 ist vor allem dann praktisch, wenn eine lineare Abbildung geometrisch be-
schrieben ist und die Abbildungsvorschrift T (~x) = ~w nicht bekannt ist. Bestimmt man die
Bilder der Basisvektoren, dann ist die Abbildung eindeutig beschrieben.

Beispiele

1. Sei T : R2 −→ R
2 die Drehung um den Winkel ϕ um den Ursprung.

2. Sei T : R3 −→ R
3 die Drehung um den Winkel ϕ um die x-Achse. Dies bedeutet, dass

der Basisvektor ~e1 bei der Drehung unverändert bleibt und die Basisvektoren ~e2 und ~e3 eine
Drehung in der yz-Ebene beschreiben, analog zur Drehung in der Ebene im Beispiel vorher.
Damit erhalten wir

T (~e1) =





1
0
0



 , T (~e2) =





0
cosϕ
sinϕ



 , T (~e3) =





0
− sinϕ
cosϕ



 =⇒ [T ] =





1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ





8.3 Basiswechsel

Tatsächlich gilt Satz 8.3 nicht nur für die Standardbasis ~e1, . . . , ~en von R
n, sondern für jede

beliebige Basis B = {~u1, . . . , ~un} von R
n. Ist T : Rn −→ R

n eine lineare Abbildung (wir
beschränken uns auf den Fall m = n), dann erhält man die Darstellungsmatrix [T ]B von T
bezüglich der Basis B, indem man die Koordinaten der Bilder der Basisvektoren ~u1, . . . , ~un
in die Spalten der Matrix schreibt.

Beispiel

Sei T : R2 −→ R
2 die Spiegelung an der Geraden g mit dem Richtungsvektor ~u1 =

(√
3
1

)

.
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Bezüglich der Standardbasis wäre die Darstellungsmatrix [T ] von T gegeben durch

[T ] =

(
1
2

√
3
2√

3
2 −1

2

)

.

Damit haben wir zwei verschiedene Möglichkeiten, das Bild eines Vektors, zum Beispiel
~u1, zu berechnen. In der Standardbasis rechnen wir

T (~u1) = [T ]

(√
3
1

)

=

(
1
2

√
3
2√

3
2 −1

2

)(√
3
1

)

=

(√
3
1

)

= ~u1

und in der Basis B = {~u1, ~u2} erhalten wir

T (~u1) = [T ]B

(
1
0

)

B
=

(

1 0

0 −1

)

B

(
1
0

)

B
=

(
1
0

)

B
= ~u1 .

Im Gegensatz zur Matrix [T ] ist die Darstellungsmatrix [T ]B sofort erkennbar als Ma-
trix einer Spiegelung. Zudem ist das Rechnen mit Diagonalmatrizen einfacher. Aus diesen
Gründen ist ein Basiswechsel manchmal sinnvoll.

Tatsächlich gibt es eine (algebraische) Beziehung zwischen den Matrizen [T ]B und [T ].
Wir schreiben die Basisvektoren der Basis B als Spalten in eine 2 × 2-Matrix. Eine übliche
Bezeichnung dieser Matrix ist P−1 (tatsächlich ist diese Matrix invertierbar, da die Spalten
linear unabhängig sind). Wir setzen also

P−1 = ( ~u1 ~u2 ) =

(√
3 −1

1
√
3

)

.

Damit ist

P = (P−1)−1 =
1

4

(√
3 1

−1
√
3

)

und es gilt
[T ]B = P [T ]P−1 .

Die Matrix P−1 beschreibt dabei den Basiswechsel von der Basis B zur Standardbasis und
die Matrix P beschreibt den Basiswechsel von der Standardbasis zur Basis B. Das heisst,

P−1

(
1
0

)

B
=

(√
3 −1

1
√
3

)(
1
0

)

B
=

(√
3
1

)

und P

(√
3
1

)

=
1

4

(√
3 1

−1
√
3

)(√
3
1

)

=

(
1
0

)

B
.

Satz 8.4 Sei T : Rn −→ R
n eine lineare Abbildung und B eine beliebige Basis von R

n. Dann
gilt

[T ]B = P [T ]P−1

wobei in den Spalten von P−1 die Basisvektoren von B stehen.

Die Kunst ist nun, eine Basis B zu finden, so dass die Matrix [T ]B diagonal ist. Dies ist
tatsächlich “nur” ein Handwerk, welches wir im nächsten Kapitel erlernen. Man muss die
sogenannten Eigenwerte und Eigenvektoren der Matrix [T ] berechnen.
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Lineare Abbildungen zwischen allgemeinen Vektorräumen (für Interessierte)

In der Literatur werden lineare Abbildungen oft direkt durch die Linearitätsbedingungen von
Satz 8.2 definiert. Dies hat den Vorteil, dass man sich nicht auf Abbildungen von R

n nach
R
m beschränken muss. Man geht von zwei (reellen) Vektorräumen V und W aus und nennt

eine Abbildung T : V −→ W linear, wenn gilt

(1) T (u+ v) = T (u) + T (v)

(2) T (k v) = k T (v)

für alle u, v ∈ V und k ∈ R.

Beispiele

1. Sei V = {ax2 + bx + c | a, b, c ∈ R} die Menge aller Polynome vom Grad ≤ 2. Wir
haben im letzten Semester (Kapitel 9, Seite 148) gesehen, dass V ein Vektorraum ist. Sei nun
T : V −→ V definiert durch die Ableitung

T (p) = p′ ,

das heisst, T (ax2+bx+c) = 2ax+b (man leitet das Polynom p = p(x) nach x ab). Dies ist eine
lineare Abbildung, denn für Polynome p1, p2 ∈ V und k ∈ R gilt mit den Ableitungsregeln

T (p1 + p2) = (p1 + p2)
′ = p′1 + p′2 = T (p1) + T (p2)

T (kp1) = (kp1)
′ = kp′1 = kT (p1)

2. Sei V die Menge aller 2 × 2-Matrizen und W = R. Wir betrachten T : V −→ W definiert
durch

T (A) = det(A)

für A ∈ V . Dies ist keine lineare Abbildung, da im Allgemeinen gilt

T (A+B) = det(A+B) 6= det(A) + det(B) = T (A) + T (B) .

Wählt man je eine Basis für V undW , dann kann man die lineare Abbildung T : V −→ W
durch eine (reelle) m× n-Matrix beschreiben, wobei m = dim(W ) und n = dim(V ).

Betrachten wir den Spezialfall W = V . Wir wählen also eine Basis B von V . Nach Satz 8.3
(leicht angepasst), stehen dann in den Spalten der Darstellungsmatrix [T ]B die Koordinaten
der Bilder der Basisvektoren.

Beispiel

Betrachten wir das 1. Beispiel oben mit V = {ax2 + bx + c | a, b, c ∈ R} und T (p) = p′.
Eine Basis für V ist B = {x2, x, 1}. Nun bestimmen wir die (Koordinaten der) Bilder der
Basisvektoren:

T (x2) = 2x = 0 · x2 + 2 · x+ 0 · 1
T (x) = 1 = 0 · x2 + 0 · x+ 1 · 1
T (1) = 0 = 0 · x2 + 0 · x+ 0 · 1






=⇒ [T ]B =





0 0 0
2 0 0
0 1 0





Die Matrix [T ]B beschreibt nun die Abbildung T im folgenden Sinn.
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Sei beispielsweise p(x) = 3x2 − 2x+ 5. Der Koordinatenvektor von p bzgl. der Basis B ist

~v =
(

3
−2
5

)

. Dann ist der Koordinatenvektor von T (p) gegeben durch

[T ]B ~v =





0 0 0
2 0 0
0 1 0









3
−2
5



 =





0
6
−2



 .

Wir erhalten also

T (p) = 0 · x2 + 6 · x+ (−2) · 1 = 6x− 2 (= p′(x) ) .

8.4 Bedeutung der Determinante einer Darstellungsmatrix

An der Determinante der Darstellungsmatrix einer linearen Abbildung T : Rn −→ R
n (bzw.

T : V −→ V ) können gewisse Eigenschaften von T abgelesen werden.

Umkehrbare lineare Abbildungen

Eine lineare Abbildung T : Rn −→ R
n ist umkehrbar, wenn es eine lineare Abbildung T−1 :

R
n −→ R

n gibt, so dass
T ◦ T−1 = T−1 ◦ T = Id

die Identität ist (vgl. letztes Semester, Kapitel 1). Für die Darstellungsmatrizen (bzgl. der
Standardbasis oder einer anderen Basis) folgt [T ][T−1] = [T−1][T ] = E (wobei E die Ein-
heitsmatrix bezeichnet). Das heisst, [T ] ist invertierbar und

[T−1] = [T ]−1 .

In Worten: Die Darstellungsmatrix der Umkehrabbildung T−1 ist die Inverse [T ]−1 der Dar-
stellungsmatrix [T ] von T .

Ist umgekehrt T : Rn −→ R
n eine lineare Abbildung und [T ] invertierbar, dann ist T

umkehrbar und T−1 ist definiert durch T−1(~x) = [T ]−1~x für alle ~x in R
n.

Es gilt also
T umkehrbar ⇐⇒ [T ] invertierbar .

Mit Satz 8.5 (b), Seite 144, vom letzten Semester erhalten wir den folgenden Satz.

Satz 8.5 Sei T : Rn −→ R
n linear. Dann gilt

T umkehrbar ⇐⇒ det([T ]) 6= 0 .

Wegen Satz 8.4 ist die Standardmatrix [T ] invertierbar, genau dann wenn die Darstellungs-
matrix [T ]B zu jeder anderen Basis B invertierbar ist. Der Satz 8.5 gilt also auch für [T ]B
anstelle von [T ].

Beispiele

1. Sei T : R2 −→ R
2 die Orthogonalprojektion auf die x-Achse.
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2. Sei T : R2 −→ R
2 die Drehung um den Ursprung um den Winkel ϕ.

Volumenänderung

Sei A eine n× n-Matrix und T : Rn −→ R
n die lineare Abbildung T (~x) = A~x. Eine “geome-

trische Figur” mit Volumen V wird durch T abgebildet auf eine Figur mit Volumen V ′.

Satz 8.6 Es gilt V ′ = |det(A)| · V .

Für n = 2 muss Volumen V durch Flächeninhalt F ersetzt werden.
Betrachten wir einen Spezialfall in R

2, nämlich das von ~e1 und ~e2 aufgespannte Quadrat
mit Flächeninhalt F = 1. Durch T wird dieses Quadrat auf das Parallelogramm, aufgespannt
von T (~e1) und T (~e2), abgebildet. Mit Satz 8.6, Seite 145, vom letzten Semester folgt

F ′ = |det(T (~e1) T (~e2) )| = |det(A)| = |det(A)| · F ,

wie in Satz 8.6 behauptet.

Beispiel

Gegeben seien das Parallelogramm aufgespannt von ~v1 = ( 20 ), ~v2 = ( 21 ) und T : R2 −→ R
2,

T (~x) = A~x mit

A =

(
2 4
1
2 3

)

.

T−→
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Spiegelungen und Drehungen im R
2 und R

3

Mit einer Spiegelung im R
2 ist hier eine Spiegelung an einer Geraden durch den Ursprung

gemeint und mit einer Spiegelung im R
3 eine Spiegelung an einer Ebene durch den Ursprung.

Mit einer Drehung im R
2 ist eine Drehung um den Ursprung gemeint und mit einer Dre-

hung im R
3 eine Drehung um eine Drehachse durch den Ursprung. Solche Spiegelungen und

Drehungen sind lineare Abbildungen.
Diese Spiegelungen und Drehungen sind längen- und winkeltreu, das heisst, Strecken

werden auf Strecken gleicher Länge abgebildet und die Winkel bleiben erhalten. Ist also A
die Standardmatrix einer solchen Spiegelung oder Drehung, dann gilt

‖A~v‖ = ‖~v‖

für einen beliebigen Vektor ~v in R
2 oder R3.

Die Länge eines Vektors kann man mit dem Skalarprodukt ausdrücken:

Es gilt also
ATA = E .

Satz 8.7 Die Darstellungsmatrix einer Drehung oder Spiegelung im R
2 oder R

3 bzgl. einer
Orthonormalbasis ist orthogonal.

Ist A die Darstellungsmatrix einer Drehung oder Spiegelung T bzgl. einer beliebigen Basis
von R

2 oder R3, dann gilt
|det(A)| = 1

denn der Flächeninhalt (bzw. das Volumen) einer geometrischen Figur bleibt durch eine
Spiegelung oder Drehung unverändert.

Genauer gilt das Folgende:

T Drehung =⇒ det(A) = 1

T Spiegelung =⇒ det(A) = −1

Dies folgt aus der Tatsache, dass eine Drehung orientierungserhaltend und eine Spiegelung
orientierungsumkehrend ist.

Es gilt nämlich allgemein für eine lineare Abbildung T in R
2 oder R3, dass

det([T ]) > 0 ⇐⇒ die Orientierung einer geometrischen Figur bleibt erhalten

det([T ]) < 0 ⇐⇒ die Orientierung einer geometrischen Figur wird umgekehrt
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9 Eigenwerte und Eigenvektoren

Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R
n nach R

n

durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl der Basis
für R

n). Im Idealfall kann die Matrix diagonal gewählt werden. Dazu muss eine Basis aus
sogenannten Eigenvektoren existieren.

9.1 Bestimmung von Eigenwerten und Eigenvektoren

Definition Sei A eine (reelle) n× n-Matrix. Ist λ eine reelle Zahl und ~u 6= ~0 in R
n mit

A~u = λ~u ,

dann heisst λ Eigenwert von A und ~u ein zu λ dazugehöriger Eigenvektor von A.

Wir beschränken uns im Moment auf reelle Eigenwerte und Eigenvektoren, werden aber in
einem späteren Abschnitt auf komplexe Matrizen, Eigenwerte und Eigenvektoren eingehen.

Beispiel

Der Vektor ~u = ( 11 ) ist ein Eigenvektor zum Eigenwert λ = 2 der Matrix

A =

(
1 1
−2 4

)

.

Um die Eigenwerte und Eigenvektoren einer Matrix A zu bestimmen, schreibt man die
Gleichung A~u = λ~u als λ~u−A~u = ~0 oder

(λE −A)~u = ~0 . (EV)

Dies ist ein homogenes lineares Gleichungssystem. Für welche λ hat dieses System Lösungen
~u 6= ~0 ? Ist die Matrix λE−A invertierbar, dann ist ~u = (λE−A)−1~0 = ~0 die einzige Lösung.
Es gibt also Lösungen ~u 6= ~0 genau dann, wenn λE−A nicht invertierbar ist, das heisst genau
dann wenn

det(λE −A) = 0 . (EW)

Diese Gleichung heisst charakteristische Gleichung von A. Ihre Lösungen sind die Eigenwerte
von A. Der Ausdruck

p(λ) = det(λE −A)

ist ein Polynom in λ, das sogenannte charakteristische Polynom. Es hat den Grad n und da
ein Polynom vom Grad n höchstens n verschiedene Nullstellen hat, hat eine n × n-Matrix
höchstens n verschiedene Eigenwerte.

Um zu jedem gefundenen Eigenwert λ die zugehörigen Eigenvektoren zu bestimmen, muss
anschliessend das homogene lineare System (EV) gelöst werden.
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Beispiel

Gesucht sind die Eigenwerte und Eigenvektoren der Matrix

A =

(
1 1
−2 4

)

.

Wir sehen im Beispiel und auch allgemein anhand der Gleichung (EV), dass die Eigen-
vektoren zu einem festen Eigenwert zusammen mit dem Nullvektor einen reellen Vektorraum,
den sogenannten Eigenraum, bilden. Das heisst, für einen fixen Eigenwert sind Vielfache 6= ~0
von einem Eigenvektor und Linearkombinationen 6= ~0 von Eigenvektoren auch Eigenvektoren
zum selben Eigenwert. Es genügt also, eine Basis von jedem Eigenraum anzugeben.

Vorgehen zur Bestimmung von Eigenwerten und Eigenvektoren einer Matrix A

(1) Bestimme alle Lösungen λ der charakteristischen Gleichung

det(λE −A) = 0 . (EW)

Dies sind die Eigenwerte von A.

(2) Bestimme für jeden Eigenwert λ die Lösungen ~u 6= ~0 des linearen Gleichungssystems

(λE −A)~u = ~0 . (EV)

Diese sind die Eigenvektoren von A zum Eigenwert λ und bilden, zusammen mit ~0, den
Eigenraum von λ, so dass die Angabe einer Basis dieses Eigenraums genügt.
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Beispiel

Gesucht sind die Eigenwerte und Eigenvektoren der Matrix

A =





0 0 −2
1 2 1
1 0 3



 .
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Geometrische Interpretation

Eine n × n-Matrix A kann aufgefasst werden als Standardmatrix A = [T ] einer linearen
Abbildung T : Rn −→ R

n. Die Gleichung A~u = λ~u für ein λ in R und ~u in R
n ist dadurch

gleichbedeutend mit
T (~u) = λ~u .

Das heisst, die Eigenvektoren von A sind genau diejenigen Vektoren, welche durch T lediglich
gestreckt oder gestaucht (mit einer Richtungsumkehrung, falls λ < 0) werden.

Beispiele

1. Sei A =

(
1
2

√
3
2√

3
2 −1

2

)

.

Wir haben im letzten Kapitel (Seite 91) gesehen, dass A = [T ] die Standardmatrix der Spie-

gelung T : R2 −→ R
2 an der Geraden g mit dem Richtungsvektor ~u1 =

(√
3
1

)

ist.

2. Sei A =

(

1 0

0 0

)

.

Wir wissen (vgl. Seite 87), dass diese Matrix die Standardmatrix A = [T ] der Orthogonal-
projektion T : R2 −→ R

2 auf die x-Achse ist.

Ist also A die Darstellungsmatrix einer bekannten linearen Abbildung, so können die
Eigenwerte und Eigenvektoren ohne Rechnung angegeben werden.

Umgekehrt, ist die Darstellungsmatrix einer linearen Abbildung gegeben, so kann der Typ
dieser Abbildung durch Berechnen der Eigenwerte und -vektoren bestimmt werden.

Eine lineare Abbildung T : Rn −→ R
n hat durch die Gleichung T (~u) = λ~u eindeutig

bestimmte Eigenwerte und -vektoren. Es gibt jedoch verschiedene Darstellungsmatrizen, die
T beschreiben (abhängig von der Wahl der Basis von R

n). Alle diese Darstellungsmatrizen
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haben identische Eigenwerte und -vektoren, nämlich genau diejenigen , die durch T (~u) = λ~u
definiert sind. Wir sehen im folgenden Abschnitt, dass die Darstellungsmatrix von T diagonal
gewählt werden kann, falls es eine Basis von R

n gibt, die aus Eigenvektoren von T besteht.

9.2 Diagonalisierung von Matrizen

Definition Eine n× n-Matrix A heisst diagonalisierbar, wenn es eine invertierbare Matrix
P gibt, so dass

P AP−1 = D

eine Diagonalmatrix ist.

Überraschenderweise hängt die Diagonalisierbarkeit einer Matrix mit der Existenz von
Eigenvektoren ab.

Satz 9.1 Eine n×n-Matrix ist genau dann diagonalisierbar, wenn sie n linear unabhängige
Eigenvektoren hat.

Hat nämlich eine n×n-Matrix A n linear unabhängige Eigenvektoren ~u1, . . . , ~un und ist P−1

die (invertierbare) Matrix mit den Vektoren ~u1, . . . , ~un als Spalten, dann gilt

P AP−1 =






λ1 0
. . .

0 λn




 ,

wobei λi der Eigenwert zum Eigenvektor ~ui ist für i = 1, . . . , n. Die Diagonalelemente der
Diagonalmatrix D sind also gerade die Eigenwerte der Matrix A !

Beispiel

Ist

A =

(
1 1
−2 4

)

diagonalisierbar? Wenn ja, bestimme D und P−1.
Auf Seite 97 haben wir gesehen, dass ~u1 = ( 11 ) ein Eigenvektor zum Eigenwert λ1 = 2

und ~u2 = ( 12 ) ein Eigenvektor zum Eigenwert λ2 = 3 ist.
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Möchte man nur feststellen, ob eine Matrix diagonalisierbar ist, ohne die diagonalisierende
Matrix P auszurechnen, so ist der folgende Satz oft anwendbar.

Satz 9.2 Hat eine n× n-Matrix n verschiedene Eigenwerte, so ist sie diagonalisierbar.

Es gilt nämlich, dass Eigenvektoren zu verschiedenen Eigenwerten linear unabhängig sind.
Insbesondere bilden die Basen der verschiedenen Eigenräume eine maximale Menge linear
unabhängiger Eigenvektoren der Matrix.

Vorgehen zur Diagonalisierung einer n× n -Matrix A

(1) Bestimme alle Eigenwerte von A.
Hat A n paarweise verschiedene Eigenwerte, dann ist A diagonalisierbar.
Wenn nicht, dann erkennt man erst in Schritt (2), ob A diagonalisierbar ist oder nicht.

(2) Bestimme zu jedem Eigenwert eine Basis des Eigenraums (bzw. eine maximale Anzahl
linear unabhängiger Eigenvektoren).
Hat A insgesamt n linear unabhängige Eigenvektoren ~u1, . . . , ~un, dann ist A diagonali-
sierbar.

(3) Schreibe die Eigenvektoren ~u1, . . . , ~un als Spalten in eine Matrix P−1.

(4) Das Matrixprodukt D = PAP−1 ist eine Diagonalmatrix mit den Diagonalelementen
λ1, . . . , λn, wobei λi der Eigenwert zum Eigenvektor ~ui ist.

In Schritt (4) kann man die Diagonalmatrix D direkt hinschreiben, ohne Berechnung von
PAP−1. Dass PAP−1 = D diagonal ist, begründen wir allgemein auf Seite 103.

Beispiele

1. Ist die Matrix

A =





0 0 −2
1 2 1
1 0 3





diagonalisierbar? Wenn ja, bestimme D und P−1.
Wir haben auf Seite 98 gesehen, dass A die zwei Eigenwerte λ1 = 1 und λ2 = 2 mit den

folgenden drei Eigenvektoren hat:

~u1 =





2
−1
−1



 , ~u2 =





1
0
−1



 , ~u3 =





0
1
0





Genauer ist ~u1 eine Basis des Eigenraums zum Eigenwert 1 und ~u2, ~u3 bilden eine Basis des
Eigenraums zum Eigenwert 2. Wegen der Bemerkung nach Satz 9.2 folgt nun direkt, dass die
drei Vektoren ~u1, ~u2, ~u3 linear unabhängig sind. Also ist die 3 × 3-Matrix A nach Satz 9.1
diagonalisierbar. Es gilt
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2. Ist die Matrix

A =





−1 0 0
−3 2 0
0 1 2





diagonalisierbar?

Die Eigenwerte sind also
λ1 = 2 und λ2 = −1 .

• λ1 = 2 :

Zu λ1 = 2 gibt es genau 1 linear unabhängigen Eigenvektor (oder direkt: der Rang von
λ1E −A ist 2, also ist dim(Eigenraum)= 3− 2 = 1).

• λ2 = −1 : Die Matrix λ2E −A =





0 0 0
3 −3 0
0 −1 −3



 hat den Rang 2.

Die Dimension des Eigenraumes ist daher 3−2 = 1. Eine Basis dieses Eigenraumes besteht
also aus einem Eigenvektor.

Insgesamt hat die Matrix A also nur 2 linear unabhängige Eigenvektoren. Nach Satz 9.1 ist
A deshalb nicht diagonalisierbar.

Das Untersuchen des Eigenwerts λ2 = −1 im letzten Beispiel kann man sich dank des
folgenden Satzes sparen.

Satz 9.3 Ist der Eigenwert λ eine k-fache Nullstelle des charakteristischen Polynoms, dann
gibt es zu λ höchstens k linear unabhängige Eigenvektoren.

Beispiel

Das charakteristische Polynom der Matrix

A =





0 0 1
1 0 0
0 1 0





ist
det(λE −A) = λ3 − 1 = (λ− 1)(λ2 + λ+ 1) .

Der einzige reelle Eigenwert ist λ = 1 und dazu gibt es nur einen linear unabhängigen Eigen-
vektor. Diese Matrix ist also nicht diagonalisierbar.
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Geometrische Interpretation

Wenn wir die gegebene n×n-Matrix A als Standardmatrix A = [T ] einer linearen Abbildung
T : Rn −→ R

n auffassen, sind Satz 9.1 und die anschliessende Bemerkung einfach einzusehen.
Die n linear unabhängigen Eigenvektoren ~u1, . . . , ~un bilden eine Basis B von R

n. Die
Matrix P−1 bedeutet der Basiswechsel von B zur Standardbasis und Satz 8.4 sagt nun, dass
D = [T ]B die Darstellungsmatrix von T bezüglich der Basis B ist. In den Spalten von D
stehen also die Koordinaten der Bilder von ~u1, . . . , ~un unter T :

T (~u1) = λ1~u1 =










λ1

0
0
...
0










B

, T (~u2) = λ2~u2 =










0
λ2

0
...
0










B

, . . . , T (~un) = λn~un =










0
0
...
0
λn










B

Wir erhalten genau die Diagonalmatrix D mit den Einträgen λ1, . . . , λn auf der Diagonalen.

Beispiel

Wir betrachten nochmals die Matrix

A = [T ] =

(
1
2

√
3
2√

3
2 −1

2

)

,

welche die Standardmatrix der Spiegelung T an der Geraden g mit dem Richtungsvektor

~u1 =
(√

3
1

)

ist. Auf Seite 99 haben wir festgestellt, dass A die Eigenvektoren ~u1 =
(√

3
1

)

zum Eigenwert λ1 = 1 und ~u2 =
(

−1√
3

)

zum Eigenwert λ2 = −1 hat. Die beiden Eigenvektoren

sind linear unabhängig, die Matrix A ist also diagonalisierbar. Gemäss der Bemerkung nach
Satz 9.1 gilt

Tatsächlich erkennen wir (vgl. unsere direkte Rechnung auf Seite 89) die Diagonalmatrix

D =

(
1 0
0 −1

)

= [T ]B

als Darstellungsmatrix von T bezüglich der Basis B = {~u1, ~u2} und P−1 beschreibt den
Basiswechsel von der Basis B zur Standardbasis.

Sind allgemein A und B zwei (verschiedene) n× n-Matrizen, so dass

B = P AP−1

für eine invertierbare Matrix P , dann beschreiben A und B dieselbe lineare Abbildung von R
n

nach R
n, aber bezüglich verschiedenen Basen von R

n. Man nennt in diesem Fall die Matrizen
A und B ähnlich.
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Matrixpotenzen

In Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden.
Ist die Matrix diagonalisierbar, dann kann diese Berechnung wie folgt vereinfacht werden.

Sei A eine diagonalisierbare Matrix und P invertierbar mit

P AP−1 = D

diagonal. Dann ist A = P−1DP und

Damit gilt
A3 = A2 ·A = P−1D2PP−1DP = P−1D3P

und so weiter. Für jede ganze Zahl k ≥ 1 folgt

Ak = P−1DkP .

Die rechte Seite ist für grosse k viel einfacher zu berechnen als die linke Seite, denn für das
Potenzieren von Diagonalmatrizen gilt:

D =






d1 0
. . .

0 dn




 =⇒ Dk =






dk1 0
. . .

0 dkn




 .

Beispiel

Wir berechnen A20 für A =

(
1 1
−2 4

)

.

Wir haben schon gesehen, dass PAP−1 =

(
2 0
0 3

)

mit P−1 =

(
1 1
1 2

)

und P =

(
2 −1
−1 1

)

.

Es folgt

und wir erhalten

A20 =

(
221 − 320 −220 + 320

221 − 2 · 320 −220 + 2 · 320
)

=

(
−3484687249 3485735825
−6971471650 6972520226

)

.

Anwendungsbeispiele

Wir haben im letzten Semester Markov-Ketten betrachtet und sind dabei auf Matrixpotenzen
gestossen, die wir für grosse Exponenten noch nicht berechnen konnten. Jetzt können wir dies
mit Hilfe einer Diagonalisierung tun.

Zur Erinnerung: Bei einer Markov-Kette ist ein System mit n verschiedenen Zuständen
gegeben. Für unsere Beispiele hier beschränken wir uns gleich auf n = 2. Es gibt also zwei
verschiedene Zustände. Sei pji die Wahrscheinlichkeit, dass das System vom Zustand i in den
Zustand j wechselt und sei A = (pij) die entsprechende 2×2-Matrix. Weiter sei ~vk = (xk, yk)

T
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der Zustandsvektor nach k Zeitetappen, das heisst, xk, bzw. yk ist die Wahrscheinlichkeit,
dass das System nach k Zeitetappen im Zustand 1, bzw. 2 ist. Dann gilt

~vk = Ak~v0 .

1. Beispiel. Wir betrachten nochmals den Wolf vom letzten Semester, der sich abwechselnd
in der Nähe von Basel und in der Nähe von Liestal aufhält. Wir wissen, dass wenn der Wolf
an einem Tag in Basel ist, er am folgenden Tag stets in Liestal herumstreicht und wenn er
in Liestal ist, er am folgenden Tag mit einer Wahrscheinlichkeit von 1

4 in Basel ist. Hier gilt
also

~vk = Ak~v0 für die Matrix A =

(

0 1
4

1 3
4

)

.

Wenn wir den Wolf heute in Basel sehen und wissen wollen, mit welcher Wahrscheinlichkeit
er heute in einem Jahr wieder in Basel ist, dann müssen wir A365 berechnen. Dafür und
insbesondere auch für allgemeinere Aussagen zu den Aufenthaltswahrscheinlichkeiten nach
sehr vielen Tagen (also für sehr grosse k) lohnt es sich, die Matrix A zu diagonalisieren.
Tatsächlich ist die Matrix A diagonalisierbar, da sie zwei verschiedene Eigenwerte, λ1 = 1
und λ2 = −1

4 , hat. Mit den zugehörigen Eigenvektoren ~u1 = ( 14 ) und ~u2 =
(−1

1

)
erhalten wir

die Diagonalisierung

D = PAP−1 =

(
1 0
0 −1

4

)

mit P−1 =

(
1 −1
4 1

)

und P = 1
5

(
1 1
−4 1

)

.

Für eine übersichtlichere Schreibweise setzen wir a = −1
4 . Wir berechnen

Ak = P−1DkP = P−1

(
1 0
0 ak

)

P = 1
5

(
1 + 4ak 1− ak

4− 4ak 4 + ak

)

und erhalten aus ( xk
yk ) = ~vk = Ak~v0 = Ak ( x0

y0 ) die Aufenthaltswahrscheinlichkeiten des Wolfes

xk = 1
5

(

(1 + 4ak)x0 + (1− ak)y0

)

, yk = 1
5

(

(4− 4ak)x0 + (4 + ak)y0

)

nach k Tagen in Basel, bzw. Liestal zu sein. Für sehr grosse k stabilisieren sich die Wahr-
scheinlichkeiten xk, yk. Da lim

k→∞
ak = lim

k→∞
(−1

4)
k = 0 und x0 + y0 = 1, gilt

lim
k→∞

xk = 1
5 (x0 + y0) =

1
5 , lim

k→∞
yk = 1

5(4x0 + 4y0) =
4
5 .

Nach sehr vielen Tagen hält sich also der Wolf mit einer Wahrscheinlichkeit von 1
5 = 0, 2 in

Basel und mit einer Wahrscheinlichkeit von 4
5 = 0, 8 in Liestal auf (und zwar unabhängig

davon, wo wir ihn heute sehen).

2. Beispiel. Wir betrachten einen Organismus, der sich durch Zellteilung verdoppelt. Es gibt
zwei verschiedene Typen des Organismus, sagen wir X und Y . Im Reagenzglas beobachten
wir, dass aus 100 Individuen vom Typ X nach einem Tag 180 Individuen vom Typ X und
20 Individuen vom Typ Y entstehen, während aus 100 Individuen vom Typ Y nach einem
Tag 120 Individuen vom Typ Y und 80 Individuen vom Typ X entstehen. Wie entwickelt
sich das Verhältnis der Individuenzahlen vom Typ X bzw. Y ? Die Antwort auf diese Frage
kann analog zum vorherigen Beispiel herausgefunden werden. Es stellt sich heraus, dass es
nach genügend langer Zucht viermal so viele Individuen vom Typ X wie vom Typ Y gibt
(unabhängig von der Anfangspopulation).
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Systeme von linearen Differentialgleichungen

Wir sind nun endlich bereit, die Lücke im Kapitel 6 vom letzten Semester zu schliessen.
Wir wollen nun sehen, wie man ein beliebiges System von zwei oder mehr linearen Differen-
tialgleichungen (mit konstanten Koeffizienten) mit Hilfe von Eigenwerten und Eigenvektoren
lösen kann. Wir zeigen hier die Lösungsmethode an einem Beispiel eines Systems von zwei
linearen Differentialgleichungen. Analog können damit Systeme von mehr als zwei Differen-
tialgleichungen gelöst werden.

Beispiel

Gesucht sind zwei relle Funktionen y1 = y1(x) und y2 = y2(x), so dass

y′1 = 3y1 − 2y2

y′2 = 2y1 − 2y2 .

Wir schreiben dieses System mit Matrizen als

(
y′1
y′2

)

= A

(
y1
y2

)

mit A =

(
3 −2
2 −2

)

.

Die Differentialgleichung y′ = ay hat die Lösung y(x) = c eax. Wir versuchen deshalb den
Ansatz

y1(x) = c1e
λx , y2(x) = c2e

λx , das heisst

(
y1
y2

)

= eλx
(
c1
c2

)

.

Damit gilt
(
y′1
y′2

)

= λeλx
(
c1
c2

)

, A

(
y1
y2

)

= eλxA

(
c1
c2

)

.

Das System der zwei Differentialgleichungen ist demnach erfüllt, wenn

Gesucht sind also die Eigenwerte und Eigenvektoren der Matrix A !
Die charakteristische Gleichung von A ist
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Zu den Eigenwerten λ1 = −1 und λ2 = 2 brauchen wir je einen Eigenvektor:

Wir erhalten die Lösungen

Die allgemeine Lösung besteht nun aus allen möglichen Linearkombinationen dieser beiden
Lösungen (man kann zeigen, dass der Lösungsraum ein Vektorraum der Dimension 2 ist):

(
y1
y2

)

= αe−x

(
1
2

)

+ βe2x
(
2
1

)

für α, β ∈ R, das heisst,

y1(x) = αe−x + 2βe2x

y2(x) = 2αe−x + βe2x .

9.3 Symmetrische Matrizen

Wir haben gesehen, dass das Diagonalisieren einer Matrix einem Basiswechsel der zugehörigen
linearen Abbildung entspricht. Speziell praktisch sind natürlich Orthonormalbasen, das heisst
Basisvektoren, die zueinander orthogonal sind und alle die Länge 1 haben. Schreibt man
die Basisvektoren einer Orthonormalbasis in eine Matrix, dann erhält man eine orthogonale
Matrix (vgl. Kapitel 9, Seite 162 vom letzten Semester). Es stellt sich also die Frage, ob und
wann die diagonalisierende Matrix P orthogonal gewählt werden kann.

Nehmen wir an, dass P orthogonal ist, das heisst, P−1 = P T . Aus D = PAP−1 erhalten
wir für die Matrix A die Gleichung

A = P−1DP = P TDP .

Daraus folgt, dass die Matrix A symmetrisch ist, denn

AT = (P TDP )T = P TDT (P T )T = P TDP = A .

Die Matrix P kann also nur dann orthogonal sein, wenn A symmetrisch ist. Tatsächlich ist
diese Bedingung an A nicht nur notwendig, sondern auch hinreichend: Jede symmetrische
Matrix kann durch eine orthogonale Matrix diagonalisiert werden.
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Satz 9.4 Jede symmetrische Matrix ist diagonalisierbar, und zwar kann die diagonalisierende
Matrix P stets orthogonal gewählt werden.

Wählt man die diagonalisierende Matrix P orthogonal, dann erhält man wegen P−1 = P T

die Diagonalisierung

PAP T = D .

Beispiel

Gegeben ist die (symmetrische) Matrix

A =

(
5 −2
−2 8

)

.

Die charakteristische Gleichung ist

det(λE −A) = det

(
λ− 5 2
2 λ− 8

)

= λ2 − 13λ+ 36 = (λ− 4)(λ − 9) = 0 .

Wir finden die folgenden Eigenvektoren:

Die beiden Eigenvektoren ~v1 und ~v2 sind orthogonal. Um eine orthogonale Matrix P zu
erhalten, müssen wir ~v1 und ~v2 auf die Länge 1 normieren. Eine Orthonormalbasis von Ei-
genvektoren bilden also die Vektoren

~u1 =
1√
5

(
2
1

)

, ~u2 =
1√
5

(
−1
2

)

.

Wir erhalten die Diagonalisierung

Satz 9.5 Bei einer symmetrischen Matrix sind die Eigenvektoren zu verschiedenen Eigen-
werten orthogonal.

Innerhalb eines Eigenraumes muss man eine Orthonormalbasis von Eigenvektoren wählen,
damit die Matrix P orthogonal ist.



109

Hauptachsentransformation

Die Diagonalisierung einer symmetrischen Matrix mit einer orthogonalen Matrix nennt man
Hauptachsentransformation. Dieser Name wird anhand des folgenden Beispiels klar.

Beispiel

Wie sieht die Kurve C in R
2 mit der Gleichung

5x2 − 4xy + 8y2 − 36 = 0

aus? Wir können diese Gleichung schreiben als

~xTA~x− 36 = (x, y)

(
5 −2
−2 8

)(
x
y

)

− 36 = 0 mit A =

(
5 −2
−2 8

)

, ~x =

(
x
y

)

.

Dies ist die Matrix A vom vorhergehenden Beispiel.
Wir transformieren nun die Koordinaten, das heisst, wir setzen

~y = P~x mit P =
1√
5

(
2 1
−1 2

)

, ~y =

(
x′

y′

)

.

Dabei ist P der Basiswechsel von der Standardbasis zur Basis B = {~u1, ~u2} und demnach ist
~y der Koordinatenvektor bezüglich der Basis B. Da P die Matrix einer Drehung ist (denn P
ist orthogonal und det(P ) = 1), drehen wir also das Koordinatensystem.

Mit ~x = P−1~y = P T~y folgt

Das heisst, in den neuen Koordinaten (bzgl. der Basis B) hat die Kurve C die Gleichung

~yTD~y − 36 = (x′, y′)

(
4 0
0 9

)(
x′

y′

)

− 36 = 4x′2 + 9y′2 − 36 = 0 ,

das heisst,
x′2

9
+

y′2

4
= 1 .

Die Kurve C ist also eine Ellipse, deren Hauptachsen in die Richtung der Eigenvektoren von
A zeigen.
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Quadratische Formen

Der im letzten Beispiel aufgetretene Ausdruck

~xTA~x = 5x2 − 4xy + 8y2

ist ein Beispiel einer sogenannten quadratischen Form.

Definition Sei A eine symmetrische n× n-Matrix und ~x ∈ R
n. Dann heisst

~xTA~x = ~x · (A~x)

quadratische Form von A.

Da A symmetrisch ist, kann die quadratische Form auch geschrieben werden als

~xTA~x = (A~x) · ~x ,

denn ~xTA~x = ~xTAT~x = (A~x)T~x = (A~x) · ~x.
Bei der Untersuchung von lokalen Extrema von Funktionen in mehreren Variablen im

nächsten Kapitel müssen wir wissen, wann eine quadratische Form nur positive (bzw. nega-
tive) Werte annimmt.

Definition Sei A eine symmetrische n× n-Matrix.

• A heisst positiv definit, wenn

~xTA~x > 0 für alle ~x 6= ~0 in R
n .

• A heisst negativ definit, wenn

~xTA~x < 0 für alle ~x 6= ~0 in R
n .

• A heisst indefinit, wenn es ~x 6= ~0 mit ~xTA~x > 0 und ~y 6= ~0 mit ~yTA~y < 0 gibt.

Wir geben im Folgenden zwei Kriterien an, wann eine Matrix positiv (bzw. negativ) definit
ist. Wir formulieren diese nur für 2× 2-Matrizen, da wir sie für solche Matrizen im nächsten
Kapitel brauchen werden. Beide Kriterien können jedoch auf n×n-Matrizen verallgemeinert
werden.

Beispiel

Sei

~xTA~x = 5x2 − 4xy + 8y2 mit A =

(
5 −2
−2 8

)

die quadratische Form vom letzten Beispiel. In den neuen Koordinaten
(

x′

y′

)

= ~y = P~x

(bezüglich der Basis von Eigenvektoren) lautet die quadratische Form

~xTA~x = 4x′2 + 9y′2 .

In dieser Darstellung ist klar ersichtlich, dass A positiv definit ist.
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Eine solche Koordinatentransformation kann für jede symmetrische 2 × 2-Matrix (bzw.
n× n-Matrix) durchgeführt werden. Sei

A =

(
a b
b c

)

.

Dann gilt für ~x = ( xy ) ∈ R
2, dass

~xTA~x = (x, y)A ( xy ) = ax2 + 2bxy + cy2 .

Da A symmetrisch ist, ist A diagonalisierbar mit den Eigenwerten λ1, λ2. Es folgt (wie im
Beispiel), dass

~xTA~x = ~yT
(
λ1 0
0 λ2

)

~y = λ1x
′2 + λ2y

′2

bezüglich der neuen Koordinaten ~y =
(

x′

y′

)

. Die Definitheit von A hängt also von den Eigen-

werten von A ab.

Satz 9.6 Seien λ1, λ2 die Eigenwerte der symmetrischen 2× 2-Matrix A. Dann gilt:

• A positiv definit ⇐⇒ λ1 > 0, λ2 > 0

• A negativ definit ⇐⇒ λ1 < 0, λ2 < 0

• A indefinit ⇐⇒ λ1 > 0, λ2 < 0 oder λ1 < 0, λ2 > 0

Insbesondere ist A indefinit ⇐⇒ det(A) < 0. Weiter gilt:

• A positiv definit ⇐⇒ det(A) > 0, a > 0

• A negativ definit ⇐⇒ det(A) > 0, a < 0

Beispiel

Gegeben sind

B =

(
−1 2
2 −6

)

mit ~xTB~x = −x2 + 4xy − 6y2 ,

C =

(
1 2
2 −6

)

mit ~xTC~x = x2 + 4xy − 6y2 ,

D =

(
6 0
0 −1

)

mit ~xTD~x = 6x2 − y2 .
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9.4 Komplexe Matrizen

Anstelle von reellen n × n-Matrizen können wir auch komplexe n × n-Matrizen betrachten,
das heisst, Matrizen mit Einträgen in C. Eine komplexe n × n-Matrix beschreibt dann eine
lineare Abbildung von C

n nach C
n.

In R
n haben wir das Skalarprodukt ~x · ~y = ~xT~y. Für ~z, ~w in C

n definieren wir das Skalar-
produkt

~z · ~w = z1w1 + · · ·+ znwn

wobei w1, . . . , wn die zu w1, . . . , wn konjugiert komplexen Zahlen sind.
Damit ist ~z · ~z eine nichtnegative reelle Zahl und die Länge eines Vektors ~z ∈ C

n kann
definiert werden durch

‖~z‖ =
√
~z · ~z =

√

|z1|2 + · · ·+ |zn|2 .
Die Begriffe orthogonale Vektoren und Orthonormalbasis lassen sich ohne Änderung auf den
(komplexen) Vektorraum C

n übertragen.

Beispiel

Sind die Vektoren

~z =

(
i
1

)

und ~w =

(
1
i

)

orthogonal?

Weiter ist ‖~z‖ =
√

|i|2 + |1|2 =
√
2.

Beim Diagonalisieren von reellen Matrizen spielen symmetrische und orthogonale Matri-
zen eine wichtige Rolle. Analog zur Transponierten definiert man für eine komplexe Matrix A
die konjugiert Transponierte

A∗ = A
T
,

wobei A durch Konjugieren der einzelnen Elemente von A entsteht und A
T
die Transponierte

von A ist.

Beispiel

A =

(
1 2 + i
4i 1− i

)

=⇒ A∗ =

Definition Sei A eine komplexe n× n-Matrix.

• A heisst hermitesch, falls A = A∗.

• A heisst unitär, falls A−1 = A∗.

Hermitesche Matrizen sind also das komplexe Analogon der symmetrischen Matrizen. Unitäre
Matrizen übernehmen die Rolle der orthogonalen Matrizen. Dabei ist (wie im Reellen) eine
komplexe Matrix unitär genau dann, wenn die Spaltenvektoren eine Orthonormalbasis von
C
n bilden.



113

Satz 9.7 Jede hermitesche Matrix ist diagonalisierbar, und zwar kann die diagonalisierende
Matrix stets unitär gewählt werden.

Bei hermiteschen Matrizen sind die Eigenvektoren zu verschiedenen Eigenwerten orthogonal,
genau wie bei symmetrischen Matrizen.

Im Reellen sind die symmetrischen Matrizen die einzigen, welche orthogonal diagonalisiert
werden können. Im Komplexen gibt es neben den hermiteschen Matrizen noch andere, welche
unitär diagonalisiert werden können.

Satz 9.8 Die Eigenwerte einer hermiteschen Matrix sind reell.

Beispiel

Wir betrachten die hermitesche Matrix

A =

(
2 1 + i

1− i 3

)

.

Die charakteristische Gleichung lautet:

Die Eigenwerte sind also λ1 = 1 und λ2 = 4.
Die zugehörigen Eigenvektoren finden wir wie im Reellen (lineares Gleichungssystem

lösen). Zu λ1 und λ2 finden wir zum Beispiel die Eigenvektoren

~v1 =

(
1 + i
−1

)

und ~v2 =

(
1 + i
2

)

.

Da sie zu verschiedenen Eigenwerten gehören, sind sie orthogonal. Um eine unitäre diagona-
lisierende Matrix P−1 zu bekommen, müssen wir die beiden Vektoren noch auf die Länge 1
normieren.

Damit erhalten wir

PAP−1 = PAP ∗ =

(
1 0
0 4

)

mit der unitären Matrix

P−1 = P ∗ =

(1+i√
3

1+i√
6

−1√
3

2√
6

)

, bzw. P =

(1−i√
3

−1√
3

1−i√
6

2√
6

)

.
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10 Differentialrechnung für Funktionen inmehrerenVariablen

Viele Funktionen in den Naturwissenschaften hängen von mehreren Variablen ab. In diesem
Kapitel behandeln wir deshalb Methoden zur Untersuchung von Funktionen in mehreren
Variablen.

Im letzten Semester haben wir Funktionen f : R −→ R betrachtet, in den Kapiteln 8 und
9 in diesem Semester (lineare) Abbildungen T : Rn −→ R

m. In diesem Kapitel geht es nun
hauptsächlich um Funktionen f : Rn −→ R.

Sei D ⊂ R
2 eine Teilmenge. Wir wissen schon von Kapitel 8 (Seite 86), dass eine (reell-

wertige) Funktion f : D −→ R von zwei reellen Variablen eine Vorschrift ist, die jedem Punkt
(x, y) ∈ D eine reelle Zahl z = f(x, y) zuordnet,

f : D −→ R

(x, y) 7−→ z = f(x, y) .

Ist D eine Teilmenge von R
3 oder allgemeiner Rn, dann definiert die Zuordnung

f : D −→ R

(x1, x2, . . . , xn) 7−→ f(x1, x2, . . . , xn)

eine (reellwertige) Funktion in n Variablen. Beispiele haben wir schon in Kapitel 8 gesehen.
Wir werden in diesem Kapitel vor allem (reellwertige) Funktionen mit Definitionsbereich

in R
2 untersuchen. Die meisten Begriffe und Resultate lassen sich problemlos auf den Fall

von drei und mehr Variablen übertragen. Im Gegensatz zum allgemeinen Fall hilft uns bei
zwei Variablen jedoch die geometrische Anschauung.

10.1 Graphische Darstellung

Sei D ⊂ R
2 und f : D −→ R. Analog zu reellen Funktionen können wir die Funktion f mit

Hilfe ihres Graphen veranschaulichen. Der Graph von f ist definiert durch

Graph(f) = { (x, y, f(x, y)) | (x, y) ∈ D } .

Wir errichten eine Strecke der Länge z = f(x, y) über jedem Punkt (x, y) ∈ D (bzw. unter
(x, y) ∈ D falls z < 0). Die Endpunkte aller dieser Strecken bilden eine Fläche im Raum,
welche der Graph von f ist.

z = f(x,y)

(x,y,z)

(x,y)

x

y
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Beispiele

z = f(x, y) = 8− 2x− y z = f(x, y) = 8− x2 − y2

−2

−1

0 x

−2
10

y

−1 0 1

5

2
2

10

15

−4
−2

x

0−4

−20

−15

−10

−5

−2

0

5

2

y

0 2 44

z = f(x, y) = y2 − x2 z = f(x, y) = e−(x2+y2)

−4
−4 −2

−2

x

0

y

0 22
44

−2

−1
0,0

2 0

0,25

y1

0,5

10
x −1

0,75

2−2

1,0

Wir können die Funktion f : D −→ R in zwei Variablen auch durch Niveaulinien (wie
die Höhenkurven auf Landkarten) veranschaulichen. Wir schneiden den Graphen von f mit
horizontalen Ebenen, das heisst, parallel zur xy-Ebene in einer bestimmten Höhe z = c. Die
Schnittkurve projizieren wir senkrecht in die xy-Ebene. Die Niveaulinie für z = c ist also
gegeben durch

Nc = { (x, y) ∈ D | f(x, y) = c } ⊂ R
2 .
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Beispiele

1. z = f(x, y) = 8− x2 − y2

Als Niveaulinien erhalten wir eine Familie konzentrischer Kreise:

z > 8 : keine Lösung

8 = z = 8− x2 − y2 =⇒ x2 + y2 = 0

4 = z = 8− x2 − y2 =⇒ x2 + y2 = 4

0 = z = 8− x2 − y2 =⇒ x2 + y2 = 8

. . . . . .

x

2

−2

1

−1

−3

y

1

2

3−3 −1−2 0

0

3

2. z = f(x, y) = y2 − x2

Als Niveaulinien erhalten wir eine Familie von Hyperbeln:

0 = z = y2 − x2 =⇒ y2 − x2 = 0 oder y = ±x

−4 = z = y2 − x2 =⇒ y2 − x2 = −4

4 = z = y2 − x2 =⇒ y2 − x2 = 4

. . . . . .

x

2

−2

1

−1

−3

y

1

2

3−3 −1−2 0

0

3
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10.2 Partielle Ableitungen und Tangentialebenen

Eines unserer Ziele ist, Extremalstellen von Funktionen in mehreren Variablen zu finden und
zu untersuchen. Wie für reelle Funktionen brauchen wir dazu Ableitungen.

Partielle Ableitungen

Sei D ⊂ R
2 und f : D −→ R eine Funktion.

Definition Die partiellen Ableitungen von f im Punkt (x0, y0) sind wie folgt definiert.

fx(x0, y0) =
∂f

∂x
(x0, y0) = lim

h→0

f(x0 + h, y0)− f(x0, y0)

h
= lim

x→x0

f(x, y0)− f(x0, y0)

x− x0

ist die partielle Ableitung nach x und

fy(x0, y0) =
∂f

∂y
(x0, y0) = lim

h→0

f(x0, y0 + h)− f(x0, y0)

h
= lim

y→y0

f(x0, y)− f(x0, y0)

y − y0

ist die partielle Ableitung nach y.

Beispiele

1. f(x, y) = x2 + 5xy + 3y2 + 13

2. f(x, y) = x2 e2y + ln(x)

Für die partielle Ableitung fx fixiert man also die Variable y (man behandelt y wie eine fixe
reelle Zahl) und leitet wie gewohnt nach x ab. Analog für fy.

Wie für reelle Funktionen brauchen wir zusätzlich höhere Ableitungen.

Definition Die partiellen Ableitungen zweiter Ordnung sind definiert durch

fxx =
∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)

fyy =
∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)

und

fxy =
∂2f

∂x∂y
=

∂

∂y

(
∂f

∂x

)

fyx =
∂2f

∂y∂x
=

∂

∂x

(
∂f

∂y

)

.
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Beispiel

f(x, y) = x2 + 5xy + 3y2 + 13 mit fx(x, y) = 2x+ 5y und fy(x, y) = 5x+ 6y

Satz 10.1 Sind die partiellen Ableitungen fxy und fyx stetige Funktionen, dann gilt

fxy = fyx .

Die partiellen Ableitungen haben die folgende geometrische Bedeutung. Sei z = f(x, y)
eine Funktion mit Definitionsbereich D und P = (x0, y0, z0) mit z0 = f(x0, y0) ein Punkt auf
dem Graphen von f . Durch diesen Punkt gibt es drei spezielle Kurven auf dem Graphen:

• xz-Kurve durch P : { (x, y0, z) | z = f(x, y0) und (x, y0) ∈ D }

• yz-Kurve durch P : { (x0, y, z) | z = f(x0, y) und (x0, y) ∈ D }

• xy-Kurve durch P : { (x, y, z0) | z0 = f(x, y) und (x, y) ∈ D }

Beispiel

Sei z = f(x, y) = 2x2 + 3y2 mit D = R
2 und P = (1, 0, 2).

• xz-Kurve durch P :

• yz-Kurve durch P :

• xy-Kurve durch P : { (x, y, 2) | 2 = f(x, y) = 2x2 + 3y2 und (x, y) ∈ R
2 }
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Bedeutung der partiellen Ableitungen im Punkt P = (x0, y0, z0) :

• fx(x0, y0) : Steigung der xz-Kurve in P

fx(x0, y0) = 0 =⇒ die xz-Kurve hat in P eine horizontale Tangente

fxx(x0, y0) < 0 =⇒ die xz-Kurve beschreibt eine Rechtskurve ∗ in der Nähe von P

fxx(x0, y0) > 0 =⇒ die xz-Kurve beschreibt eine Linkskurve ∗ in der Nähe von P

• fy(x0, y0) : Steigung der yz-Kurve in P

fy(x0, y0) = 0 =⇒ die yz-Kurve hat in P eine horizontale Tangente

fyy(x0, y0) < 0 =⇒ die yz-Kurve beschreibt eine Rechtskurve ∗ in der Nähe von P

fyy(x0, y0) > 0 =⇒ die yz-Kurve beschreibt eine Linkskurve ∗ in der Nähe von P

∗ betrachtet als Funktion in einer Variablen z = f̃(x), bzw. z = f̄(y).

Beispiel

Sei z = f(x, y) = 2x2 + 3y2 und P = (1, 0, 2).

Tangentialebenen

Wir haben im letzten Semester (Kapitel 4, Abschnitt 4) gesehen, dass eine differenzierbare
Funktion f : R −→ R in der Nähe eines Punktes (x0, f(x0)) durch eine Gerade, nämlich
durch die Tangente an den Graphen von f , approximiert werden kann:

f(x) ≈ f(x0) + f ′(x0)(x− x0)

Wir wollen nun analog eine Funktion f : D −→ R in zwei Variablen in der Nähe des
Punktes P = (x0, y0, z0), mit z0 = f(x0, y0), linear approximieren. Da der Graph von f eine
Fläche ist, suchen wir eine Ebene

z = T (x, y) = c+ a(x− x0) + b(y − y0) ,

welche

1. den Graphen in P berührt,

2. in P die gleiche Steigung wie f in x-Richtung hat,

3. in P die gleiche Steigung wie f in y-Richtung hat.
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Es gibt also genau eine solche Ebene. Wir nennen sie Tangentialebene.

Satz 10.2 Die Tangentialebene an den Graphen der Funktion z = f(x, y) an der Stelle
(x0, y0) ist gegeben durch

z = T (x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) .

Beispiel

Gesucht ist die Tangentialebene an den Graphen der Funktion

z = f(x, y) =
x

y

an der Stelle (x0, y0) = (1, 1).

−10

2
2

−5

0

y

0

5

0

10

x

−2
−2

−2

−3

−10

0

−2
x

−5

−1

y

0

0

5

1
2

10

2 3

Wie für reelle Funktionen kann nun eine (ev. komplizierte) Funktion in zwei Variablen in
der Nähe eines Punktes durch ihre Tangentialebene in diesem Punkt approximiert werden,

f(x, y) ≈ T (x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

für (x, y) in der Nähe von (x0, y0).
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Beispiel

Für f wie im vorhergehenden Beispiel bestimme man eine Näherung für f(1, 02 ; 0, 94).

Das Differential

In Analogie zu Satz 4.10 vom letzten Semester für reelle Funktionen heisst eine Funktion
f : D −→ R in zwei Variablen (total) differenzierbar in (x0, y0) ∈ D, wenn

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) + r(x, y)

mit
r(x, y)

√

(x− x0)2 + (y − y0)2
−→ 0 für (x, y) → (x0, y0) .

Eine in (x0, y0) differenzierbare Funktion ist also in (x0, y0) sehr gut durch die Tangentialebene
approximierbar (für (x, y) gegen (x0, y0) geht der Restterm r(x, y) schneller gegen 0 als der
Abstand zwischen (x, y) und (x0, y0) ). Zu beachten ist, dass alleine aus der Existenz der
partiellen Ableitungen nicht folgt, dass f differenzierbar ist. Hingegen ist f differenzierbar,
wenn die partiellen Ableitungen fx und fy stetige Funktionen sind.

Benutzen wir die Tangentialebene in (x0, y0) als Näherung von f in der Nähe von (x0, y0),
dann erhalten wir eine Näherung für die Änderung ∆f von f , wenn sich x0 um den kleinen
Wert ∆x = dx und y0 um den kleinen Wert ∆y = dy ändert,

∆f = f(x0 + dx, y0 + dy)− f(x0, y0) ≈ fx(x0, y0) dx+ fy(x0, y0) dy .

Definition Man nennt

df(x0, y0) = fx(x0, y0) dx+ fy(x0, y0) dy

oder kurz
df = fx dx+ fy dy

das (totale) Differential von f .

Im Fall einer Variablen gilt f(x) = f(x0)+f ′(x0)(x−x0)+r(x) und damit ist df = f ′(x)dx.
Das Differential ist also die Verallgemeinerung der Ableitung auf mehrere Variablen.

Anwendung auf Fehlerabschätzungen

Sei f(x, y) eine Funktion von zwei Messgrössen und dx, dy die Messfehler. Wie gross ist die
Abweichung ∆f = f(x + dx, y + dy) − f(x, y) ? Ist f differenzierbar, dann können wir die
Näherung

∆f ≈ df = fx dx+ fy dy

verwenden.
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Beispiel

Sei f(x, y) = xy.

Messen wir also beispielsweise die Seitenlängen x, y eines Rechtecks mit je einem relativen
Fehler von 1%, dann ist der relative Fehler des aus x und y berechneten Flächeninhalts des
Rechtecks gegeben durch

Kettenregel

Ist x = x(t) und y = f(x) = f(x(t)) eine Funktion in einer Variablen, dann gilt die Ketten-
regel

y′(t) =
df

dt
= f ′(x(t)) · x′(t) = f ′(x(t))

dx

dt
.

Diese Regel kann auf zwei (und mehr) Variablen verallgemeinert werden.
Sei z = f(x, y) eine Funktion und x = x(t), y = y(t) eine sogenannte Parametrisierung

von x und y; dies bedeutet, dass x und y Funktionen einer gemeinsamen Variablen (hier t,
man nennt t den Parameter) sind. Dann ist z = z(t) = f(x(t), y(t)) eine Funktion von t und
kann wie folgt abgeleitet werden.

Satz 10.3 (Kettenregel)

z′(t) =
df

dt
= fx

dx

dt
+ fy

dy

dt
= fx(x(t), y(t)) · x′(t) + fy(x(t), y(t)) · y′(t)

Beispiel

Sei z = f(x, y) = xy2 mit x = x(t) = e3t und y = y(t) = sin(t).
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10.3 Richtungsableitung, Gradient und Hesse-Matrix

Wir haben gesehen, dass fx die Steigung in x-Richtung (d.h. der xz-Kurve) und fy die
Steigung in y-Richtung (d.h. der yz-Kurve) angibt. Wie sieht aber die Steigung entlang einer
beliebigen Richtung aus?

Sei also f : D −→ R eine Funktion in zwei Variablen und P = (x0, y0) ein Punkt in D,
in welchem f differenzierbar ist. Wir untersuchen f(x, y), wobei wir (x, y) einschränken auf
Punkte auf einer (beliebigen aber festen) Geraden g durch P . Sei ~v = ( x1

y1 ) ein Richtungsvektor
der Geraden g der Länge 1.

Die Punkte auf der Geraden g können also parametrisiert werden durch

(x(t), y(t)) = (x0 + tx1, y0 + ty1) .

Damit ist f eingeschränkt auf g eine Funktion f(x(t), y(t)) von t und wir können sie mit der
Kettenregel (Satz 10.3) ableiten. Wir erhalten

Definition Sei ~v = ( x1

y1 ) ein Vektor der Länge 1. Man nennt

∂f

∂~v
(x0, y0) = fx(x0, y0) · x1 + fy(x0, y0) · y1

die Richtungsableitung von f an der Stelle (x0, y0) in Richtung des Vektors ~v.

Die Richtungsableitung gibt die Steigung von f an der Stelle (x0, y0) in Richtung ~v an. Damit
diese Steigung nur von der Richtung und nicht von der Länge von ~v abhängt, muss der Vektor
~v die Länge 1 haben.

Für die Spezialfälle ~v = ( 10 ) und ~v = ( 01 ) erhalten wir:
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Beispiel

Wie gross ist die Steigung der Funktion f(x, y) = 3xy − 2y2 an der Stelle (5, 4) in Richtung
(

1
−2

)
?

Nun wollen wir die Richtung bestimmen, in welche die Steigung (oder das Wachstum)
von f am grössten ist. Dazu ist es praktisch, den Gradienten von f zu definieren.

Definition Sei f : D −→ R und (x0, y0) ∈ D. Der Gradient von f in (x0, y0) ist definiert
durch

gradf(x0, y0) =

(
fx(x0, y0)
fy(x0, y0)

)

, bzw. kurz: gradf =

(
fx
fy

)

.

Analog definiert man den Gradienten für D ⊂ R
3 und f = f(x, y, z).

Speziell in der Physik nutzt man für eine kürzere Schreibweise den Nabla-Operator ∇ :

∇ =

(
∂
∂x
∂
∂y

)

=⇒ ∇f =

(
∂
∂x
∂
∂y

)

f =

(
∂f
∂x
∂f
∂y

)

= gradf

Analog für eine Funktion f = f(x, y, z) in drei Variablen.
Die Richtungsableitung können wir nun mit Hilfe des Skalarproduktes schreiben. Sei γ

der Zwischenwinkel der Vektoren ∇f und ~v. Dann gilt

∂f

∂~v
= fxx1 + fyy1 = ∇f · ~v = ‖∇f‖‖~v‖ cos γ = ‖∇f‖ cos γ ,

da ~v die Länge 1 hat. Es folgt:

Eigenschaften des Gradienten

• Der Gradient ∇f zeigt in die Richtung der grössten Steigung von f .

• Der Gradient ∇f steht senkrecht auf den Niveaulinien.
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Beispiel

Sei f(x, y) = xy. Wir betrachten die Punkte P1 = (1, 1) und P2 = (−1, 1).

Hier sind die Niveaulinien und die Gradienten (die Gradienten sind verkürzt eingezeichnet):

Quadratische Approximation

Als Vorbereitung für das Bestimmen von Extremalstellen einer Funktion f in zwei Variablen
wollen wir f durch eine quadratische Funktion annähern.

Wir erinnern uns (letztes Semester, Abschnitt 4.5), dass eine in x0 zweimal differenzierbare
reelle Funktion f : R −→ R in der Nähe von x0 durch das Taylorpolynom

p2(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2

approximiert werden kann. Dieses Taylorpolynom hat die Eigenschaft, dass p2(x0) = f(x0),
p′2(x0) = f ′(x0) und p′′2(x0) = f ′′(x0).

Sei nun f : D −→ R eine Funktion in zwei Variablen, welche an der Stelle (x0, y0) zweimal
stetig differenzierbar ist. Wir suchen ein quadratisches Polynom p(x, y) = p2(x, y), so dass
p(x0, y0) = f(x0, y0) und alle partiellen Ableitungen erster und zweiter Ordnung von p(x, y)
und f(x, y) in (x0, y0) übereinstimmen. Mit diesen Bedingungen erhalten wir das Polynom

p(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+
1

2

(

fxx(x0, y0)(x− x0)
2 + 2fxy(x0, y0)(x− x0)(y − y0) + fyy(x0, y0)(y − y0)

2
)

.

Der lineare Teil davon ist die Tangentialebene in (x0, y0) an f .
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Wir können dieses Polynom kompakter schreiben mit Hilfe der Bezeichnungen

~x =

(
x
y

)

und ~a =

(
x0
y0

)

.

Es folgt
(
x− x0
y − y0

)

= ~x− ~a und (x− x0, y − y0) = (~x− ~a)T .

Wir fassen also f als Funktion von Vektoren auf (der Ortsvektoren der Punkte in D).
Die Tangentialebene lässt sich damit schreiben als

T (~x) = f(~a) +∇f(~a)T (~x− ~a) .

Der quadratische Teil von p(x, y) ist eine quadratische Form und lässt sich schreiben als

1
2(~x− ~a)THf (~a)(~x− ~a)

wobei

Hf (~a) =

(
fxx(~a) fxy(~a)
fyx(~a) fyy(~a)

)

die Hesse-Matrix von f an der Stelle ~a ist. Unter der Voraussetzung, dass f in ~a = (x0, y0)
T

zweimal stetig differenzierbar ist, gilt fxy(~a) = fyx(~a). Die Hesse-Matrix ist in diesem Fall
also symmetrisch.

Satz 10.4 Die quadratische Approximation der Funktion f an der Stelle ~a ist gegeben durch

p(~x) = f(~a) +∇f(~a)T (~x− ~a) +
1

2
(~x− ~a)THf (~a)(~x− ~a) .

Der Vergleich mit dem Taylorpolynom p2(x) einer reellen Funktion zeigt, dass die Hesse-
Matrix die Verallgemeinerung der zweiten Ableitung ist.

Beispiel

Gesucht ist die quadratische Approximation der Funktion f(x, y) = ex+y + sin(xy) an der
Stelle (x0, y0) = (0, 0).

Weiter ist

fxx = ex+y − y2 sin(xy) =⇒ fxx(0, 0) = 1

fyy = ex+y − x2 sin(xy) =⇒ fyy(0, 0) = 1

fxy = ex+y − xy sin(xy) + cos(xy) = fyx =⇒ fxy(0, 0) = 2
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Damit erhalten wir

Graphen von f(x, y) und p(x, y)

10.4 Lokale und globale Extrema

In diesem Abschnitt wollen wir lokale und globale Extremalstellen von Funktionen in zwei Va-
riablen finden und untersuchen. Auch diese Methoden lassen sich problemlos auf Funktionen
von mehr als zwei Variablen übertragen.

Lokale Extrema

Definition Die Funktion f : D −→ R besitzt in (x0, y0) ∈ D ein lokales Minimum bzw. ein
lokales Maximum, falls

f(x, y) ≥ f(x0, y0) bzw. f(x, y) ≤ f(x0, y0)

für alle (x, y) in der Nähe von (x0, y0). Ein lokales Minimum bzw. Maximum (x0, y0) heisst
isoliert , falls f(x, y) 6= f(x0, y0) für alle (x, y) 6= (x0, y0) in der Nähe von (x0, y0).

Von differenzierbaren Funktionen in einer Variablen wissen wir, dass deren Ableitung an
einer lokalen Extremalstelle verschwindet. Ist nun (x0, y0) eine lokale Extremalstelle einer
(in (x0, y0) differenzierbaren) Funktion f(x, y), so haben die xz- und die yz-Kurven auf dem
Graphen von f ebenfalls ein lokales Extremum in x0 bzw. y0, also gilt (vgl. Seite 119)

fx(x0, y0) = fy(x0, y0) = 0 .

Satz 10.5 Hat f in (x0, y0) eine lokale Extremalstelle, dann gilt

∇f(x0, y0) = ~0 d.h. fx(x0, y0) = 0 und fy(x0, y0) = 0 .
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Geometrisch bedeutet dies, dass die Tangentialebene in (x0, y0) an den Graphen von f hori-
zontal ist,

z = T (x, y) = f(x0, y0) .

Die Umkehrung von Satz 10.5 ist im Allgemeinen falsch.

Beispiele

1. Sei f(x, y) = 8− x2 − y2. An der Stelle (x0, y0) = (0, 0) hat f ein isoliertes Maximum und
tatsächlich gilt
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2. Sei f(x, y) = y2 − x2. An der Stelle (0, 0) gilt ∇f(0, 0) = ~0, aber f hat dort kein lokales
Extremum. Es ist f(0, 0) = 0, und in der Nähe von (0, 0) nimmt f sowohl positive als auch
negative Werte an,

f(0, y) > 0 für alle y 6= 0 und f(x, 0) < 0 für alle x 6= 0 .

Die Funktion hat in (0, 0) einen Sattelpunkt.
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Definition Eine Funktion f(x, y) hat in (x0, y0) einen Sattelpunkt, wenn ∇f(x0, y0) = ~0,
aber (x0, y0) keine Extremalstelle ist.

Um entscheiden zu können, ob ein lokales Minimum, Maximum oder ein Sattelpunkt
vorliegt, müssen wir die zweiten partiellen Ableitungen von f betrachten, das heisst die Hesse-
Matrix von f . Wie vorher gehen wir davon aus, dass fxy = fyx und daher die Hesse-Matrix
symmetrisch ist.

Sei f eine Funktion mit ∇f(x0, y0) = ∇f(~a) = ~0. Dies bedeutet also, dass f in (x0, y0)
ein lokales Minimum, ein lokales Maximum oder einen Sattelpunkt hat.

Mit der quadratischen Approximation von Satz 10.4 gilt dann

f(~x) ≈ f(~a) +
1

2
(~x− ~a)THf (~a)(~x− ~a)

falls ~x− ~a “klein” ist, das heisst, falls ~xT = (x, y) nahe bei ~aT = (x0, y0) ist. Das lokale Ver-
halten der Funktion f hängt also in der Nähe von (x0, y0) hauptsächlich ab von den Werten
der quadratischen Form

(~x− ~a)THf (~a)(~x− ~a) .

Nehmen wir nun an, dass die Hesse-Matrix Hf (~a) = Hf (x0, y0) positiv definit ist. Dann
gilt

(~x− ~a)THf (~a)(~x− ~a) > 0

für alle (x, y) 6= (x0, y0) in der Nähe von (x0, y0). Dies bedeutet, dass f(x0, y0) = f(~a) ein
isoliertes lokales Minimum ist.

Analog bedeutet eine negativ definite Hesse-Matrix Hf (~a) ein isoliertes lokales Maximum
von f in (x0, y0). Die dritte Möglichkeit, nämlich dass Hf (~a) indefinit ist, bedeutet geome-
trisch einen Sattelpunkt in (x0, y0).

Für die Zusammenfassung dieser drei Möglichkeiten nutzen wir Satz 9.6 zur Bestimmung
der Definitheit der Hesse-Matrix, wobei wir die folgende Abkürzung verwenden:

∆ = det(Hf (x0, y0)) = fxx(x0, y0)fyy(x0, y0)− fxy(x0, y0)
2

Satz 10.6 Sei f(x, y) in (x0, y0) zweimal stetig differenzierbar und

∇f(x0, y0) = ~0 .

Dann gilt:

• ∆ > 0, fxx(x0, y0) > 0 (d.h. die Hesse-Matrix Hf (~a) ist positiv definit )

=⇒ f(x0, y0) ist ein isoliertes lokales Minimum

• ∆ > 0, fxx(x0, y0) < 0 (d.h. die Hesse-Matrix Hf (~a) ist negativ definit )

=⇒ f(x0, y0) ist ein isoliertes lokales Maximum

• ∆ < 0 (d.h. die Hesse-Matrix Hf (~a) ist indefinit )

=⇒ f hat in (x0, y0) einen Sattelpunkt

Gilt ∇f(x0, y0) = ~0 und ∆ = 0, dann ist keine allgemeine Aussage möglich.
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Beispiele

1. Sei f(x, y) = 8− x2 − y2. Wir haben schon berechnet, dass fx = −2x, fy = −2y und dass
∇f(0, 0) = ~0. Die Hesse-Matrix ist nun

Also ist f(0, 0) = 8 tatsächlich ein isoliertes lokales Maximum.

2. Sei f(x, y) = xy.

3. Sei f(x, y) = x3 − 3xy2.
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4. Sei f(x, y) = (x2 − 1)2 + y2 − 1.

Wir müssen also die Stellen (0, 0), (1, 0) und (−1, 0) untersuchen.

Globale Extrema

Wie bei Funktionen in einer Variablen können lokale Extremalstellen auch globale Extremal-
stellen sein, müssen aber nicht. Um neben den lokalen auch die globalen Extremalstellen zu
finden, nehmen wir an, dass f auf einer “anständigen” Menge D definiert ist, zum Beispiel
auf einem Kreis, einem Vieleck, einem Streifen oder auf ganz R

2.

In diesem Fall können wir wie folgt vorgehen:

(1) Untersuche die Stellen im Inneren von D, wo ∇f = ~0 gilt;

(2) Untersuche f an denjenigen Stellen, wo f nicht stetig differenzierbar ist;

(3) Untersuche f auf dem Rand von D (falls dieser zu D gehört).

Beispiel

Sei D ⊂ R
2 das Dreieck mit den Ecken (1, 0), (0, 0), (0, 1), also gegeben durch x ≥ 0, y ≥ 0

und x+ y ≤ 1 und sei f(x, y) = xy.

(1) Wir haben schon gesehen, dass ∇f 6= ~0 im Inneren von D;

(2) f ist auf ganz R
2 stetig differenzierbar.
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(3)

Die Funktion f hat also ein globales Maximum in (12 ,
1
2 ) mit f(12 ,

1
2) = 1

4 und ein globales
Minimum für x = 0 oder y = 0 mit f(0, y) = f(x, 0) = 0.

10.5 Extrema mit Nebenbedingung

In vielen Anwendungsbeispielen sucht man nach Extremalstellen einer Funktion f : D −→ R,
D ⊂ R

2, entlang einer Kurve in D.

Darstellung von Kurven

Eine Kurve in der xy-Ebene kann durch eine Gleichung der Form

φ(x, y) = 0

beschrieben werden. Diese Darstellung einer Kurve nennt man implizit.

Beispiele

1. φ(x, y) = x2 − y = 0 beschreibt eine Parabel.

2. φ(x, y) = x2 + y2 − 1 = 0 beschreibt den Einheitskreis.

3. φ(x, y) = 5x2−4xy+8y2−36 = 0 beschreibt eine Ellipse (vgl. das Beispiel auf Seite 109).

Die Kurve des ersten Beispiels könnte auch in einer anderen Form beschrieben werden.
Die Gleichung x2 − y = 0 kann nach y aufgelöst werden: y = x2. Die Parabel ist also der
Graph einer Funktion y = f(x), nämlich f(x) = x2. Die Darstellung einer Kurve in der Form
y = f(x) oder x = f(y) nennt man explizit.

Eine explizite Darstellung ist jedoch nicht immer möglich (eher die Ausnahme). Die Glei-
chung φ(x, y) = 0 des Einheitskreises (oder auch der Ellipse) kann nicht nach y oder x
aufgelöst werden. Der Einheitskreis ist demnach nicht der Graph einer Funktion y = f(x)
oder x = f(y). Zum Beispiel erhält man durch y = f(x) =

√
1− x2 nur den oberen Halbkreis

oder x = f(y) = −
√

1− y2 ergibt nur den linken Halbkreis.
Die implizite Kurvengleichung φ(x, y) = 0 kann jedoch als Niveaulinie

φ(x, y) = c = 0

der Funktion φ(x, y) aufgefasst werden.
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Extrema entlang einer Kurve

Wir suchen nun nach (lokalen oder globalen) Extremalstellen (x0, y0) einer Funktion f(x, y)
unter der Nebenbedingung

φ(x, y) = 0 .

Das heisst, wir untersuchen f eingeschränkt auf die Kurve definiert durch φ(x, y) = 0.

Beispiel

Die Funktion f(x, y) = x + y + 2 hat auf D = R
2 weder lokale noch globale Extrema.

Eingeschränkt auf die Kurve φ(x, y) = x2 − y = 0 (eine Parabel) hat f jedoch ein globales
Minimum, nämlich f(−1

2 ,
1
4 ) =

7
4 .

1. Fall: Die Gleichung der Kurve kann in expliziter Form gegeben werden.

Das heisst, die Gleichung φ(x, y) = 0 kann nach y oder nach x aufgelöst werden zu y = g(x),
bzw. x = h(y). Die Funktion f(x, y) wird damit zu einer Funktion in nur einer Variablen:

f(x, y) = f(x, g(x)) = f̃(x) , bzw. f(x, y) = f(h(y), y) = f̄(y) .

Nun können wir mit den gewohnten Methoden für Funktionen in einer Variablen die Extre-
malstellen von f̃ , bzw. f̄ bestimmen.

Beispiel

Sei f(x, y) = x2 + y2 und die Nebenbedingung

φ(x, y) = x2 − y − 1 = 0 .

Gesucht sind also die Extrema von f eingeschränkt auf die Parabel y = g(x) = x2 − 1.

Die Extremalstellen x von f̃ erfüllen die Bedingung f̃ ′(x) = 4x3−2x = 2x(2x2−1) = 0. Damit
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finden wir sofort die Extremalstellen x1 = 0, x2,3 = ± 1√
2
von f̃ , bzw. (0,−1) und (± 1√

2
,−1

2)

von f . Der Funktionswert f(0,−1) = 1 ist ein lokales Maximum und f(± 1√
2
,−1

2) =
3
4 sind

lokale (und globale) Minima von f unter der Nebenbedingung φ(x, y) = 0.

2. Fall: Die Gleichung der Kurve ist in impliziter Form gegeben.

Nehmen wir an, wir hätten eine lokale Maximalstelle (x0, y0) von f(x, y) unter der Nebenbe-
dingung φ(x, y) = 0 gefunden. Wir betrachten die Niveaulinie Nc zum Niveau c = f(x0, y0).
Diese Linie Nc trennt die beiden Gebiete f(x, y) > c und f(x, y) < c. Die Kurve C definiert
durch φ(x, y) = 0 geht ebenfalls durch den Punkt (x0, y0). Da (x0, y0) eine (lokale) Maximal-
stelle von f unter der Nebenbedingung φ = 0 ist, liegt diese Kurve (in der Nähe von (x0, y0))
ganz auf der Seite f(x, y) ≤ c der Niveaulinie Nc.

Die Niveaulinie Nc und die Kurve C sind daher im Punkt (x0, y0) tangential (bzw. die
Tangenten an die Niveaulinie Nc und an die Kurve C sind identisch). Die Kurve C fassen wir
nun auf als Niveaulinie φ(x, y) = c = 0 der Funktion φ(x, y). Da der Gradient einer Funktion
senkrecht auf den Niveaulinien steht, sind die Gradienten von f und φ in (x0, y0) folglich
parallel.

Satz 10.7 Sei (x0, y0) eine lokale Extremalstelle von f unter der Nebenbedingung φ(x, y) = 0.
Ist ∇φ(x0, y0) 6= 0, dann gilt

∇f(x0, y0) = λ · ∇φ(x0, y0)

für ein λ ∈ R.

Zur Bestimmung von (x0, y0) bilden wir die Hilfsfunktion

F (x, y, λ) = f(x, y)− λφ(x, y)

und suchen (x, y, λ) mit ∇F (x, y, λ) = ~0.



135

Es gilt nämlich

∇F =





Fx

Fy

Fλ



 =





fx − λφx

fy − λφy

−φ



 .

Also ist ∇F = ~0 äquivalent zu den beiden Bedingungen

∇f = λ · ∇φ und φ = 0 .

Beispiel

Sei f(x, y) = x2 + y2 und die Nebenbedingung

φ(x, y) =
x2

4
+ y2 − 1 = 0 .

Wir suchen also die Extremalstellen auf der Ellipse φ(x, y) = 0 mit den Halbachsen 2 und 1.

f(x, y) = c

Wir setzen

F (x, y, λ) = f(x, y)− λφ(x, y) = x2 + y2 − λ
(x2

4
+ y2 − 1

)

.
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11 Vektorfelder und Wegintegrale

Das Ziel dieses Kapitels ist die Integration entlang einer Kurve in der Ebene oder im Raum,
wobei der Integrand eine reellwertige Funktion oder ein sogenanntes Vektorfeld ist.

11.1 Vektorfelder

Der Gradient ∇f einer Funktion f(x, y) : D −→ R ordnet jedem Punkt (x0, y0) ∈ D einen
Vektor, nämlich ∇f(x0, y0) ∈ R

2, zu. Eine solche Zuordnung nennt man Vektorfeld. Das
Vektorfeld definiert durch einen Gradienten nennt man auch Gradientenfeld.

Definition Sei D ⊂ R
2. Ein Vektorfeld auf D ist eine Abbildung F : D −→ R

2, welche
jedem Punkt (x, y) ∈ D einen Vektor F (x, y) ∈ R

2 zuordnet.
Analog ist ein Vektorfeld auf einer Menge D ⊂ R

3 als eine Abbildung F : D −→ R
3

definiert.

In den Naturwissenschaften treffen wir beispielsweise auf Vektorfelder definiert durch
elektrische, magnetische oder Gravitationskräfte oder durch Windgeschwindigkeiten.

Bei graphischen Darstellungen von Vektorfeldern wird oft nur die Richtung der Vektoren
richtig wiedergegeben, deren Betrag jedoch skaliert.

Beispiele

1. Sei F (x, y) =

(
−y
x

)

definiert auf D = R
2.

2. Sei F (x, y) =

(

2

y2

)

definiert auf D = R
2.
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Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld.

Definition Ein Vektorfeld F (x, y) : D −→ R
2, das ein Gradientenfeld ist, heisst konservativ.

Das heisst, F (x, y) ist konservativ, falls es eine Funktion f(x, y) : D −→ R gibt mit

F = ∇f .

Eine solche Funktion f heisst Potentialfunktion des Vektorfeldes F .

Nach Satz 10.1 erfüllt eine “anständige” Funktion f(x, y) die Beziehung fxy = fyx. Für

das Gradientenfeld ∇f =
(

fx
fy

)

einer solchen Funktion gilt daher

∂fx
∂y

=
∂fy
∂x

bzw.
∂fy
∂x

− ∂fx
∂y

= 0 .

Für ein Vektorfeld F (x, y) =
(

u(x,y)
v(x,y)

)

= ( uv ) können wir deshalb folgern:

F konservativ =⇒ ∂v

∂x
− ∂u

∂y
= 0

Diese für ein Gradientenfeld notwendige Bedingung nennt man Integrabilitätsbedingung.
Diese Bedingung ist auch hinreichend, wenn das Vektorfeld F auf D = R

2 definiert und
stetig differenzierbar ist. Letzteres bedeutet, dass u(x, y) und v(x, y) differenzierbar und die
partiellen Ableitungen stetig sind.

Satz 11.1 Sei F (x, y) = ( uv ) ein stetig differenzierbares Vektorfeld auf D = R
2. Dann gilt:

F konservativ ⇐⇒ ∂v

∂x
− ∂u

∂y
= 0

Beispiele

1. F (x, y) =

(
4x3y2

2x4y + 2y

)

=

(
u
v

)

2. F (x, y) =

(
−y
x

)

=

(
u
v

)
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Analog ist der Gradient einer Funktion f(x, y, z) : D −→ R mit D ⊂ R
3 gegeben durch

∇f =

(
fx
fy
fz

)

und für f “anständig” gilt nun

fyz = fzy , fzx = fxz , fxy = fyx .

Für ein Vektorfeld F (x, y, z) =

(
u(x,y,z)
v(x,y,z)
w(x,y,z)

)

=
(

u
v
w

)

können wir deshalb folgern:

F konservativ =⇒ ∂w

∂y
− ∂v

∂z
= 0 ,

∂u

∂z
− ∂w

∂x
= 0 ,

∂v

∂x
− ∂u

∂y
= 0

Wir haben hier also drei Integrabilitätsbedingungen.

Definition Sei F (x, y, z) =
(

u
v
w

)

ein Vektorfeld auf D ⊂ R
3. Die Rotation von F ist das

Vektorfeld auf D definiert durch

rotF =







∂w
∂y

− ∂v
∂z

∂u
∂z

− ∂w
∂x

∂v
∂x

− ∂u
∂y







.

Symbolisch kann die Rotation mit Hilfe des Nabla-Operators ∇ und des Vektorprodukts
geschrieben werden:

rotF = ∇× F =







∂
∂x

∂
∂y

∂
∂z







×







u

v

w







Die Integrabilitätsbedingungen für ein Vektorfeld F : D −→ R
3 sind also gleichbedeutend

mit rotF = ~0. Analog zu Satz 11.1 gilt nun die folgende Äquivalenz.

Satz 11.2 Sei F ein stetig differenzierbares Vektorfeld auf D = R
3. Dann gilt:

F konservativ ⇐⇒ rotF = ~0

Mit Hilfe der Sätze 11.1 und 11.2 können wir also feststellen, ob ein auf R
2 oder R

3

definiertes Vektorfeld konservativ ist. Ist dies der Fall, wie finden wir eine zugehörige Poten-
tialfunktion? Schauen wir dazu zwei typische Beispiele an.

Beispiele

1. Gegeben sei das Vektorfeld

F (x, y) =

(
12xy3

18x2y2 + 7y6

)

=

(
u
v

)

auf D = R
2 .

Die Stetigkeitsbedingungen von Satz 11.1 sind erfüllt. Also überprüfen wir die Integrabi-
litätsbedingung:
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Nach Satz 11.1 ist F konservativ.
Nun wollen wir eine Funktion f(x, y) mit ∇f = F finden.

(1) Integration von u nach x :

(2) Ableiten von f nach y und Gleichsetzen mit v :

(3) Integration von gy(y) nach y :

(4) Einsetzen von g(y) in f :

Mit dieser Methode kann zu jedem konservativen Vektorfeld F auf R2 eine Potential-
funktion f gefunden werden. Zwei verschiedene Potentialfunktionen zum gleichen Vektorfeld
unterscheiden sich dabei nur um eine Konstante.

Diese Methode kann auf Vektorfelder auf R3 angepasst werden.

2. Gegeben sei das Vektorfeld

F (x, y, z) =





exy + 1
ex + z

y



 =





u
v
w



 auf D = R
3 .

Die Stetigkeitsbedingungen von Satz 11.2 sind erfüllt. Also berechnen wir rotF :

Nach Satz 11.2 ist F konservativ.
Auch hier bestimmen wir eine Funktion f(x, y, z) mit ∇f = F .

(1) Integration von u nach x :

(2) Ableiten von f nach y und Gleichsetzen mit v :
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(3) Integration von gy(y, z) nach y und Einsetzen von g(y, z) in f :

(4) Ableiten von f nach z und Gleichsetzen mit w :

(5) Integration von hz(z) nach z und Einsetzen von h(z) in f aus (3) :

Allgemeiner gelten die Sätze 11.1 und 11.2 für Vektorfelder F auf D ⊂ R
2, bzw. D ⊂ R

3,
falls D offen (d.h. ohne Rand) und einfach zusammenhängend (d.h. je zwei Punkte in D
können mit einer “regulären” Kurve verbunden werden und jede geschlossene Kurve in D ist
auf einen Punkt stetig zusammenziehbar, ohne D zu verlassen) ist. Zum Beispiel ist jeder
Kreis oder jede Halbebene in R

2 einfach zusammenhängend, aber nicht R2\{(0, 0)}.

Ist also der Definitionsbereich D eines Vektorfeldes F nicht einfach zusammenhängend,
dann sind die Sätze 11.1 und 11.2 im Allgemeinen falsch, das heisst genauer, die Pfeile ⇐=
sind falsch.

Beispiel

Wir betrachten auf D = R
2\{(0, 0)} (damit ist D nicht einfach zusammenhängend) das

Vektorfeld

F (x, y) =
1

x2 + y2

(
−y
x

)

=

(
u
v

)

.

Die Integrabilitätsbedingung ist erfüllt, denn

∂v

∂x
=

y2 − x2

(x2 + y2)2
=

∂u

∂y
.

Für x 6= 0 finden wir

f(x, y) = arctan
(y

x

)

mit ∇f = F . Diese Funktion f lässt sich jedoch nicht stetig auf ganz R
2\{(0, 0)} fortsetzen.

Das Vektorfeld F hat auf ganz R
2\{(0, 0)} keine Potentialfunktion und ist deshalb nicht
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konservativ auf D.

Auf der einfach zusammenhängenden Menge D̃ = { (x, y) ∈ R
2 | x > 0 } hingegen ist F

konservativ und die obige Funktion f ist eine Potentialfunktion.

Wir werden im Abschnitt 11.3 über Wegintegrale noch auf eine andere Weise sehen, dass
das obige Vektorfeld auf D kein Gradientenfeld ist.

11.2 Wege und Kurven

Um im nächsten Abschnitt über Kurven integrieren zu können, müssen wir diese zunächst
genau definieren und ihre Eigenschaften untersuchen.

Definition Ein Weg in R
n ist eine Abbildung

~x : I −→ R
n t 7→ ~x(t) =






x1(t)
...

xn(t)






eines Intervalls I = [a, b] ⊂ R in den R
n, wobei die Funktionen xi : I −→ R stetig sind.

Der Weg heisst (stetig) differenzierbar, wenn die Funktionen xi (stetig) differenzierbar
sind (stetig differenzierbar bedeutet, dass die Ableitungen x′i(t) wieder stetig sind).

Das Bild C = ~x(I) nennt man eine Kurve in R
n und ~x eine Parametrisierung von C.

Eine Parametrisierung einer Kurve ist nicht eindeutig. Von ihr hängt ab, mit welcher Ge-
schwindigkeit die Kurve durchlaufen wird. Ist ~x differenzierbar, dann nennt man den Vektor
der Ableitungen

~̇x(t) =






x′1(t)
...

x′n(t)






den Geschwindigkeitsvektor von ~x an der Stelle t. Gilt ~̇x(t0) 6= ~0 dann ist ~̇x(t0) tangential an
die Kurve im Punkt ~x(t0).

Beispiele

1. Sei ~x(t) =

(
cos(t)
sin(t)

)

für t ∈ I = [0, 2π].

Für ~x(t) wie oben und I = [−π, π] erhalten wir ebenfalls den Einheitskreis, der Weg beginnt
und endet nun aber im Punkt (−1, 0).
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Eine andere Parametrisierung des Einheitskreises wäre zum Beispiel ~x(t) =

(
cos(t2)
sin(t2)

)

für

t ∈ I = [0,
√
2π]. Damit wird der Einheitskreis schneller durchlaufen.

Nun ist ~x(t) = ( 01 ) schon für t =
√

π
2 und der Geschwindigkeitsvektor ist

2. Sei ~x(t) =





t
t2

t3



 für t ∈ I = [−1, 1]. Für t = 0 ist ~x(0) = ~0.

Die Kurve C = ~x(I) geht also durch den Ursprung und in diesem Punkt ist die x-Achse die
Tangente an C.

Definition Eine Kurve heisst einfach, wenn sie sich nicht überkreuzt und nicht berührt,
ausser eventuell am Anfangs- und Endpunkt.

Eine einfache Kurve heisst geschlossen, wenn Anfangs- und Endpunkt einer Parametri-
sierung übereinstimmen.

Eine Kurve heisst regulär, falls es eine Parametrisierung ~x(t) der Kurve gibt, die stetig
differenzierbar ist mit ~̇x(t) 6= ~0 für alle t.

Beispiel

Die Kurve C parametrisiert durch ~x(t) =

(
t2

t3

)

für t ∈ [−2, 2] ist nicht regulär, da ~̇x(0) = ~0.
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11.3 Wegintegrale

Das Wegintegral (oder Kurvenintegral) ist eine Verallgemeinerung des bestimmten Integrals

b∫

a

f(x) dx ,

wobei nun nicht über ein Intervall I = [a, b] auf der x-Achse sondern über einen Weg, bzw.
eine Kurve in der Ebene oder im Raum integriert wird.

Wegintegral von reellwertigen Funktionen

Definition Sei C in R
n eine einfache, reguläre Kurve parametrisiert durch ~x : [a, b] −→ C

und sei f : C −→ R eine stetige Funktion. Dann ist das Wegintegral von f über C definiert
durch

∫

C

f ds =

b∫

a

f(~x(t)) ‖~̇x(t)‖ dt .

Hier bezeichnet

s = s(t) =

t∫

a

‖~̇x(u)‖ du

die Bogenlänge von C zwischen den Punkten ~x(a) und ~x(t). Damit ist

∫

C

ds =

b∫

a

‖~̇x(t)‖ dt = Länge der Kurve C .

Das Wegintegral ist unabhängig von der Wahl der Parametrisierung der Kurve C. Ähnlich

wie das bestimmte Integral
b∫

a

f(x) dx kann
∫

C

f ds als Flächeninhalt “zwischen” f(x, y) und

C interpretiert werden, falls f(x, y) ≥ 0 für alle (x, y).

Beispiele

1. Wir berechnen die Länge des Einheitskreises C in R
2. Wir haben schon gesehen, dass C

parametrisiert werden kann durch

~x(t) =

(
cos(t)
sin(t)

)

mit ~̇x(t) =

(
− sin(t)
cos(t)

)

für t ∈ [0, 2π] .

Damit folgt
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Zum Vergleich wählen wir eine andere Parametrisierung von C. Der Weg

~x(t) =

(
cos(2t+ π)
sin(2t+ π)

)

mit ~̇x(t) =

(
−2 sin(2t+ π)
2 cos(2t+ π)

)

für t ∈ [0, π]

durchläuft den Einheitskreis doppelt so schnell wie vorher und der Anfangs- und Endpunkt
ist nun (−1, 0) und nicht (1, 0). Wir erhalten damit

2. Gegeben sei ein Draht der Form C. Die Massendichte sei gegeben durch die Funktion
f(x, y). Dann ist

∫

C

f ds die Gesamtmasse des Drahtes.

3. Sei f(x, y) =
1

x2 + y2
.

Diese Funktion kann als Intensität einer Strahlung mit Strahlenquelle im Ursprung interpre-
tiert werden. Die Strahlung nimmt mit dem Quadrat der Entfernung von der Strahlenquelle
ab. Wir wollen die Strahlenbelastung auf zwei verschiedenen Wegen von A = (−1, 1) nach
B = (1, 1) berechnen, wobei die Durchlaufgeschwindigkeit konstant und gleich ist.

• C1 : Strecke von A nach B. Es gilt

Es folgt ‖~̇x(t)‖ = 1 für alle t und wir erhalten

• C2 : Oberer Halbkreis von A nach B. Es gilt

~x(t) =

(
− cos(t)
sin(t) + 1

)

mit ~̇x(t) =

(
sin(t)
cos(t)

)

für t ∈ [0, π] .
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Es folgt ‖~̇x(t)‖ = 1 für alle t und wir erhalten

∫

C2

f ds =

π∫

0

1

cos2(t) + (sin(t) + 1)2
dt =

π
2∫

0

1

sin(t) + 1
dt =

π
2∫

0

1

cos(t) + 1
dt .

Da cos(t) + 1 = 2 cos2( t2), finden wir

∫

C2

f ds =
1

2

π
2∫

0

1

cos2( t2)
dt = tan

( t

2

)∣∣
∣
∣

π
2

0

= tan
(π

4

)

= 1 .

Auf dem zweiten Weg ist die Strahlenbelastung also kleiner als auf dem ersten Weg, obwohl
der zweite Weg länger ist als der erste Weg. Allgemein kann man zeigen, dass die Strahlen-
belastung minimal ist auf dem die Strahlenquelle nicht enthaltenden Bogen AB des Kreises
durch A, B und die Strahlenquelle.

Wegintegral von Vektorfeldern

Wir können auch über ein Vektorfeld entlang einer Kurve integrieren.

Definition Sei C in R
n eine einfache, reguläre Kurve parametrisiert durch ~x : [a, b] −→ C

und sei F : C −→ R
n ein stetiges Vektorfeld. Dann ist das Wegintegral von F über C definiert

durch
∫

C

F · d~s =

b∫

a

F (~x(t)) · ~̇x(t) dt .

Der Punkt im Integranden auf der rechten Seite bedeutet dabei das Skalarprodukt. Er
sollte deshalb auch auf der linken Seite in der Bezeichnung geschrieben werden. Dieses Weg-
integral ist bis aufs Vorzeichen unabhängig von der Wahl der Parametrisierung von C.

Das vektorielle Wegintegral hat die folgende physikalische Bedeutung. Sei F (~x(t)) die
Kraft, die auf ein Teilchen an der Stelle ~x(t) wirkt (zum Beispiel in einem Gravitationsfeld
oder elektrischen Kraftfeld). Dann liefert das Wegintegral von F über C die Arbeit, die auf-
gewendet wird, um das Teilchen längs C zu bewegen.

Beispiele

1. Sei F (x, y, z) =





xy
x− z
xz



 und C die Kurve parametrisiert durch ~x(t) =





t
t3

3



, für t ∈ [0, 2].
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2. Sei F (x, y) =

(
3x
0

)

und C der Einheitskreis.

In diesem Beispiel ist das Wegintegral über jede geschlossene Kurve gleich Null. Dies hängt
mit dem folgenden Satz zusammen.

Satz 11.3 Sei F ein konservatives Vektorfeld auf D ⊂ R
n mit zugehöriger Potentialfunktion

f und sei C ⊂ D eine einfache, reguläre Kurve parametrisiert durch ~x : [a, b] −→ C. Dann
gilt

∫

C

F · d~s = f(~x(b)) − f(~x(a)) .

Insbesondere hängt das Wegintegral nicht vom gewählten Weg ab, sondern nur vom Anfangs-
und Endpunkt. Es gilt also

∫

C

F · d~s = 0

falls die Kurve C geschlossen ist.

Wir überprüfen den Satz in R
2. Wegen F = ∇f gilt

∫

C

F · d~s =

b∫

a

(
fx(~x(t))
fy(~x(t))

)

·
(
x′(t)
y′(t)

)

dt =

b∫

a

(

fx(~x(t))x
′(t) + fy(~x(t)) y

′(t)
)

dt

=

b∫

a

d

dt
f(~x(t)) dt = f(~x(t))

∣
∣
∣

b

a
= f(~x(b)) − f(~x(a)) .

Beispiele

1. Wir betrachten nochmals das 2. Beispiel von vorher mit F (x, y) =

(
3x
0

)

. Dieses Vektorfeld

ist konservativ, denn zum Beispiel ist f(x, y) = 3
2x

2 eine Potentialfunktion von F . Nach
Satz 11.3 ist also das Wegintegral über jede geschlossene Kurve gleich Null.
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2. Sei F (x, y, z) =





exy + 1
ex + z

y



 und C die Kurve parametrisiert durch ~x(t) =





t√
t+ 1
0



, für

t ∈ [0, 3].

3. Wir betrachten nochmals das 1. Beispiel von vorher mit F (x, y, z) =





xy
x− z
xz



. Die dort

gegebene Kurve C hat den Anfangspunkt (0, 0, 3) und den Endpunkt (2, 8, 3). Wir wählen

nun eine andere Kurve, nämlich C̃ parametrisiert durch ~x(t) =





t
4t
3



, für t ∈ [0, 2], die

denselben Anfangs- und Endpunkt hat.

4. Sei F (x, y) = 1
x2+y2

(
−y
x

)

wie auf Seite 140 und sei C der Einheitskreis. Damit gilt

F (~x(t)) · ~̇x(t) =
(
− sin(t)
cos(t)

)

·
(
− sin(t)
cos(t)

)

= sin2(t) + cos2(t) = 1

und wir erhalten
∫

C

F · d~s =
2π∫

0

dt = 2π 6= 0 .

Mit Satz 11.3 können wir also folgern, dass F nicht konservativ auf D = R
2\{(0, 0)} ist.
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Nun verschieben wir den Kreis so, dass er den Urpsrung nicht umläuft. Zum Beispiel
betrachten wir den Kreis C̃ parametrisiert durch

~x(t) =

(
3 + cos(t)
sin(t)

)

für t ∈ [0, 2π] .

Damit liegt der Kreis und die vom Kreis umschlossene Fläche in der einfach zusammenhän-
genden Menge D̃ = { (x, y) ∈ R

2 | x > 0 }. Auf D̃ ist F konservativ und es gilt

∫

C̃

F · d~s = 0 .

Dies bestätigt unsere Überlegungen auf den Seiten 140–141.
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12 Integration in mehreren Variablen

Das bestimmte Integral
b∫

a

f(x) dx liefert den Inhalt der Fläche, die zwischen dem Intervall

[a, b] und dem Graphen von f eingeschlossen ist. Bei einem Bereichsintegral
∫∫

D

f(x, y) dxdy

wird das Volumen des Körpers bestimmt, der zwischen dem Bereich D ⊂ R
2 und dem Gra-

phen von f eingeschlossen ist.

12.1 Bereichsintegrale

Wir betrachten zunächst Rechtecke als Bereiche D in R
2, das heisst

D = [a, b]× [c, d] = { (x, y) | a ≤ x ≤ b, c ≤ y ≤ d } ⊂ R
2 .

Sei f : D −→ R eine stetige Funktion. Der Graph von f schliesst mit dem Rechteck D einen
Körper ein, dessen Volumen wir nun berechnen werden.

Betrachten wir eine feste Zahl y0 ∈ [c, d], so ist das Integral

F (y0) =

b∫

x=a

f(x, y0) dx

der Flächeninhalt des Querschnitts { (x, y0, f(x, y0)) | x ∈ [a, b] } des eingeschlossenen
Körpers. Durch Integration von F (y) über das Intervall [c, d] erhalten wir das Volumen V
dieses Körpers,

V =

d∫

y=c

F (y) dy =

d∫

y=c





b∫

x=a

f(x, y) dx



 dy .

Dabei spielt es keine Rolle, ob man zuerst nach x und dann nach y oder umgekehrt integriert,
solange f stetig auf D ist.

Analog kann man das Bereichsintegral für Quader [a, b]×[c, d]×[k, ℓ] ⊂ R
3 für Funktionen

f(x, y, z) in drei Variablen erklären.
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Beispiele

1. Sei D = [a, b]× [c, d] und f : D −→ R mit f(x, y) = 1.

Allgemein erhält man durch Integration von f = 1 über den Bereich D den Flächeninhalt
von D. Man ermittelt nämlich das Volumen V des Körpers der Höhe 1 über dem Bereich D,
was mit dem Flächeninhalt von D übereinstimmt, da “Volumen = Grundfläche · Höhe” gilt.
Dies wird demnächst von Nutzen sein, wenn wir über kompliziertere Bereiche integrieren.

2. Sei D = [0, 1] × [1, 2] × [2, 4] und f : D −→ R mit f(x, y, z) = 2x+ z + 1.

Manchmal kürzt man die Schreibweise der Integrale ab und schreibt
∫

D

f =

∫

D

f dF =

∫∫

D

f dxdy bzw.

∫

D

f =

∫

D

f dV =

∫∫∫

D

f dxdydz

für einen Bereich D in R
2, bzw. R3.

Integration über Normalbereiche

Allgemeiner als Rechtecke in R
2 sind Bereiche des R2 der Form

D = { (x, y) | a ≤ x ≤ b, u(x) ≤ y ≤ o(x) } bzw.

D = { (x, y) | c ≤ y ≤ d, u(y) ≤ x ≤ o(y) } ,

wobei u und o reelle Funktionen sind (u steht für untere Grenze und o für obere Grenze).
Man nennt einen solchen Bereich D einen Normalbereich.
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Normalbereiche in R
2 sehen wie folgt aus:

Analog ist ein Bereich D in R
3 ein Normalbereich, wenn er von der Form

D = { (x, y, z) | a ≤ x ≤ b, u(x) ≤ y ≤ o(x), ũ(x, y) ≤ z ≤ õ(x, y) }
ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können.

Definition Ist D ein Normalbereich in R
2, bzw. R3, dann nennt man

∫∫

D

f(x, y) dydx =

b∫

x=a

o(x)∫

y=u(x)

f(x, y) dydx bzw.

∫∫∫

D

f(x, y, z) dzdydx =

b∫

x=a

o(x)∫

y=u(x)

õ(x,y)∫

z=ũ(x,y)

f(x, y, z) dzdydx

das Doppelintegral, bzw. Dreifachintegral über D.

Wie schon nach dem 1. Beispiel auf Seite 150 bemerkt, erhält man durch Integration von
f(x, y) = 1, bzw. f(x, y, z) = 1 den Flächeninhalt, bzw. das Volumen von D.

Satz 12.1 Für einen Normalbereich D gilt
∫

D

1 = Flächeninhalt, bzw. Volumen von D

Beispiel

Sei D = { (x, y) | 0 ≤ x ≤ 1, x2 ≤ y ≤ x }.
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(a) Wir berechnen den Flächeninhalt von D. Nach Satz 12.1 ist er gleich

Die rechte Seite ist nun genau das, was wir aus der Schule kennen. Wir finden den
Flächeninhalt 1

2 − 1
3 = 1

6 .

(b) Wir berechnen das Doppelintegral von f(x, y) = 2xy über D.

12.2 Koordinatentransformationen

Oft sind Integrale über Normalbereiche schwierig zu berechnen, da die unteren und oberen
Grenzen u(x) und o(x) nach dem Einsetzen in die Stammfunktionen zu komplizierten In-
tegranden führen. In diesen Fällen kann der Wechsel zu einem anderen Koordinatensystem
hilfreich sein. Das heisst, man wechselt zu Polar-, Zylinder oder Kugelkoordinaten.

• Polarkoordinaten (r, ϕ)

Die Polarkoordinaten bilden ein Koordinatensystem von R
2. Die Umrechnung lautet

x = r cosϕ

y = r sinϕ

für r ≥ 0 und ϕ ∈ [0, 2π).

• Zylinderkoordinaten (r, ϕ, z)

Die Zylinderkoordinaten ergänzen die Polarkoordinaten um die z-Koordinate zu einem
Koordinatensystem von R

3. Die Umrechnung ist dementsprechend

x = r cosϕ

y = r sinϕ

z = z

für r ≥ 0, ϕ ∈ [0, 2π) und z ∈ R.
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• Kugelkoordinaten (r, ϕ, ϑ)

Die Kugelkoordinaten sind ein Koordinatensystem von R
3. Die Umrechnung lautet

x = r cosϕ sinϑ

y = r sinϕ sin ϑ

z = r cos ϑ

für r ≥ 0, ϕ ∈ [0, 2π) und ϑ ∈ [0, π].

Ebenfalls üblich ist es, anstatt des Winkels ϑ denWinkel ϑ̃ = π
2−ϑ zu benutzen, wobei dann

ϑ̃ ∈ [−π
2 ,

π
2 ] ist und sinϑ (bzw. cos ϑ) in den Umrechnungsformeln durch cos ϑ̃ (bzw. sin ϑ̃)

zu ersetzen ist. Bei der Erdkugel entspricht ϕ dem Längengrad und ϑ̃ dem Breitengrad.

Integriert man nun über eine Funktion und wechselt das Koordinatensystem, dann braucht
es im Integral bezüglich der neuen Koordinaten einen Korrekturfaktor.

Satz 12.2 Sei D ⊂ R
2, bzw. D ⊂ R

3 ein Bereich im kartesischen Koordinatensystem. Für
eine Funktion f : D −→ R gelten die folgenden Transformationsformeln.

• Integration in Polarkoordinaten:

∫∫

D

f(x, y) dxdy =

∫

r

∫

ϕ

f(r cosϕ, r sinϕ) r dϕdr

• Integration in Zylinderkoordinaten:

∫∫∫

D

f(x, y, z) dxdydz =

∫

r

∫

ϕ

∫

z

f(r cosϕ, r sinϕ, z) r dzdϕdr

• Integration in Kugelkoordinaten:

∫∫∫

D

f(x, y, z) dxdydz =

∫

r

∫

ϕ

∫

ϑ

f(r cosϕ sinϑ, r sinϕ sinϑ, r cos ϑ) r2 sinϑ dϑdϕdr

Woher kommt beispielsweise der Korrekturfaktor r bei der Integration in Polarkoordi-
naten? Bei der Integration in kartesischen Koordinaten unterteilt man den Integrationsbe-
reich D in kleine Rechtecke mit Seitenlängen ∆x und ∆y. Das heisst, man summiert über
Rechtecke mit Flächeninhalt ∆x∆y, bzw. integriert über infinitesimal kleine Rechtecke mit
Flächeninhalt dxdy. Bei der Integration in Polarkoordinaten wird der Bereich D in kleine
Ringteilflächen unterteilt, deren Flächeninhalt ungefähr r∆r∆ϕ ist. Dies führt zu r drdϕ im
Integral.
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kartesische Koordinaten Polarkoordinaten

Die Korrekturfaktoren in den anderen beiden Fällen sind analog erklärbar. Allgemeiner
kann eine beliebige Koordinatentransformation durchgeführt werden (ähnlich der Substituti-
on bei einem Integral einer reellen Funktion). Der Korrekturfaktor berechnet sich dann durch
die sogenannte Jacobideterminante.

Beispiele

1. Sei D ⊂ R
2 der Kreisring mit Aussenkreisradius 2 und Innenkreisradius 1 und sei

f(x, y) = x(x2 + y2).

2. Das Volumen V des Zylinders vom Radius R und der Höhe h ist gegeben durch

V =

R∫

r=0

2π∫

ϕ=0

h∫

z=0

1 · r dzdϕdr = 2πh

R∫

r=0

r dr = πR2h .

12.3 Flächenintegrale

Das bestimmte Integral über einem Intervall in R haben wir verallgemeinert zu einem Wegin-
tegral über einer Kurve in R

2. Ähnlich können wir das Bereichsintegral über einem Rechteck
in R

2 verallgemeinern zu einem Flächenintegral über einer Fläche in R
3.
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Eine Kurve ist das Bild einer Abbildung (Parametrisierung) in einer Variablen t. Eine
Fläche ist das Bild einer Abbildung (Parametrisierung) in zwei Variablen u und v.

Beispiele von Flächen sind die Kugeloberfläche (Sphäre), die Oberfläche eines Zylinders,
die Oberfläche eines Kegels oder der Graph einer Funktion f(x, y) : D −→ R.

Definition Eine Teilmenge F ⊂ R
3 heisst Fläche, wenn es eine (stückweise) stetig differen-

zierbare Abbildung

~x : B ⊂ R
2 −→ R

3 , (u, v) 7→ ~x(u, v) =





x(u, v)
y(u, v)
z(u, v)





mit ~x(B) = F gibt. Die Fläche heisst regulär, wenn

~xu(u, v) × ~xv(u, v) 6= ~0 , wobei ~xu(u, v) =





xu(u, v)
yu(u, v)
zu(u, v)



 , ~xv(u, v) =





xv(u, v)
yv(u, v)
zv(u, v)



 ,

für alle (u, v) ∈ B (bis auf endlich viele Ausnahmen).

Die Vektoren ~xu(u, v) und ~xv(u, v) sind Tangentialvektoren an die Fläche F im Punkt
~x(u, v). Die Bedingung ~xu×~xv = ~xu(u, v)×~xv(u, v) 6= ~0 bedeutet, dass diese beiden Vektoren
linear unabhängig sind. Der Vektor ~xu×~xv steht senkrecht zu ~xu und ~xv, das heisst senkrecht
auf der Fläche F . Man nennt ~xu × ~xv Normalenvektor von F .

Dank den Zusätzen “stückweise” und “bis auf endlich viele Ausnahmen” in der Definition
können auch zusammengesetzte Flächenstücke (wie zum Beispiel die Oberfläche des Zylinders,
zusammengesetzt aus Mantel, Boden und Deckel) als reguläre Fläche betrachtet werden.
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Beispiele

1. Die Kugeloberfläche F vom Radius 2 ist eine reguläre Fläche parametrisiert durch

~x : [0, 2π] × [0, π] −→ F , ~x(ϕ, ϑ) =





2 cosϕ sin ϑ
2 sinϕ sin ϑ

2 cos ϑ





2. Der Graph der Funktion f(x, y) = 8−x2−y2 ist eine reguläre Fläche parametrisiert durch

~x : R2 −→ Graph(f) , ~x(u, v) =





u
v

8− u2 − v2



 .

Es gilt

Wir definieren nun Flächenintegrale für Funktionen f und Vektorfelder F analog zu den
Wegintegralen. Die Rolle des Geschwindigkeitsvektors ~̇x(t) bei den Wegintegralen übernimmt
nun der Vektor ~xu × ~xv bei den Flächenintegralen.

Definition Sei F ⊂ R
3 eine reguläre Fläche parametrisiert durch ~x(u, v) für (u, v) ∈ B.

• Sei f(x, y, z) : F −→ R eine stetige Funktion. Das Flächenintegral von f über F ist definiert
durch ∫∫

F

f dS =

∫∫

B

f(~x(u, v)) ‖~xu × ~xv‖ dudv

• Sei F (x, y, z) : F −→ R
3 ein stetiges Vektorfeld. Das Flächenintegral von F über F ist

definiert durch ∫∫

F

F · d~S =

∫∫

B

F (~x(u, v)) · (~xu × ~xv) dudv

Beim Wegintegral haben wir durch
∫

C
ds die Länge der Kurve C erhalten. Analog ist nun

∫∫

F

dS = Flächeninhalt der Fläche F

Ist F das Geschwindigkeitsfeld einer strömenden Flüssigkeit, dann ist
∫∫

F F · d~S die
Flüssigkeitsmenge, die pro Zeiteinheit die Fläche F durchströmt. Man nennt dieses Integral
deshalb auch Fluss von F durch F in Richtung ~xu × ~xv.
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Beispiel

Sei f(x, y, z) = x2 + y2 + 2z und F = { (x, y, z) | x2 + y2 = 1, 0 ≤ z ≤ 1 } die Mantelfläche
des Zylinders vom Radius 1 und der Höhe 1. Diese Fläche kann parametrisiert werden durch

~x(ϕ, z) =





cosϕ
sinϕ
z



 für (ϕ, z) ∈ [0, 2π) × [0, 1] .

Für das Flächenintegral erhalten wir

12.4 Integralsätze

In diesem letzten Abschnitt werden die Integralsätze von Green, Gauß und Stokes kurz vor-
gestellt. Für konkrete Berechnungen sind diese Sätze sehr nützlich.

Der Divergenzsatz von Gauß

Der Divergenzsatz von Gauß führt das Flächenintegral
∫∫

F F · d~S eines Vektorfeldes F auf
ein Dreifachintegral zurück.

Definition Sei F (x, y, z) =
(

u
v
w

)

ein Vektorfeld auf D ⊂ R
3. Die Divergenz von F ist

definiert durch

divF =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
.

Analog ist die Divergenz eines Vektorfeldes F (x, y) = ( uv ) definiert durch

divF =
∂u

∂x
+

∂v

∂y
.

Symbolisch kann man die Divergenz mit Hilfe des Skalarprodukts

divF = ∇ · F

schreiben. Die Divergenz ist also eine reellwertige Funktion, divF : D −→ R.
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Sei F das Geschwindigkeitsfeld einer strömenden Flüssigkeit. Die Divergenz gibt an, ob
an einer Stelle (x, y, z) ∈ D Flüssigkeit ensteht oder verloren geht oder ob Gleichgewicht
besteht. Es gilt

• divF (x, y, z) > 0 =⇒ Quelle: Es fliesst mehr ab als zu.

• divF (x, y, z) < 0 =⇒ Senke: Es fliesst mehr zu als ab.

• divF (x, y, z) = 0 =⇒ Quellenfrei: Es fliesst genauso viel zu wie ab.

Wir nennen einen Bereich D ⊂ R
3 regulär, falls D eine geschlossene, reguläre Oberfläche

FD hat. Typische Beispiele sind Kugel, Zylinder, Kegel oder ein Quader.

Satz 12.3 (Divergenzsatz von Gauß) Sei D ⊂ R
3 regulär und seine Oberfläche FD so

parametrisiert, dass der Normalenvektor ~xu×~xv nach aussen zeigt. Sei F ein stetig differen-
zierbares Vektorfeld auf D. Dann gilt

∫∫∫

D

divF dV =

∫∫

FD

F · d~S .

Ist also beispielsweise das Flächenintegral auf der rechten Seite schwierig zu berechnen,
so kann stattdessen das eventuell einfachere Bereichsintegral auf der linken Seite berechnet
werden.

Beispiele

1. Sei D die Kugel vom Radius 1 und F (x, y, z) =
(

0
0
−1

)

.

Mit dem Satz von Gauß folgt, dass der Fluss durch die gesamte Kugeloberfläche nach aussen
gleich Null ist.

2. Sei D wieder die Kugel vom Radius 1 und F (x, y, z) =
(

x
y
z

)

. Wir benutzen, dass das

Volumen der Kugel gleich 4
3π ist.

Der Fluss durch die gesamte Kugeloberfläche beträgt also 4π.
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Der Satz von Stokes

Beim Satz von Stokes gehen wir von einer regulären Fläche F ⊂ R
3 aus, die zwei Seiten hat

und deren Rand eine (einfache, reguläre) geschlossene Kurve ist. Ist ~x(u, v) eine Parametri-
sierung von F , dann muss die Randkurve CF so parametrisiert werden , dass die Fläche F zu
unserer Linken ist, wenn wir CF durchlaufen und unser Kopf in Richtung von ~xu× ~xv zeigt.

Satz 12.4 (Satz von Stokes) Sei F ein stetig differenzierbares Vektorfeld auf der Fläche F .
Dann gilt

∫∫

F

rotF · d~S =

∫

CF

F · d~s .

Anstelle des Flächenintegrals von rotF können wir also das Wegintegral von F über den
Rand von F berechnen. Insbesondere ist das Flächenintegral von rotF für alle Flächen mit
derselben Randkurve gleich.

Der Satz von Green

Der Satz von Green entspricht dem Satz von Stokes in der Ebene.

Wir betrachten einen Bereich D ⊂ R
2, der von einer (einfachen, regulären) geschlossenen

Kurve CD berandet ist. Wir parametrisieren die Randkurve CD so, dass der Bereich zu unserer
Linken ist, wenn wir CD durchlaufen.

Satz 12.5 (Satz von Green) Sei F (x, y) = ( uv ) ein stetig differenzierbares Vektorfeld auf
D. Dann gilt

∫∫

D

(
∂v

∂x
− ∂u

∂y

)

dxdy =

∫

CD

F · d~s .

Wir können also ein Doppelintegral mit Hilfe eines eventuell einfacheren Wegintegrals
berechnen.

Ist der Bereich D einfach zusammenhängend, dann ist F konservativ auf D, genau dann
wenn die Integrabilitätsbedingung erfüllt ist (vgl. Satz 11.1). Dies ist genau dann der Fall,
wenn das Doppelintegral auf der linken Seite geich Null ist. Mit dem Satz von Green folgt
also, dass F konservativ auf D ist, genau dann wenn das Wegintegral über den Rand von D
(eine geschlossene Kurve!) Null ist, in Übereinstimmung mit Satz 11.3.
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Betrachten wir nun das spezielle Vektorfeld F (x, y) = (−y
x ) = ( uv ) auf D. Das Doppelin-

tegral auf der linken Seite der Gleichung im Satz von Green wird damit zu

∫∫

D

(
∂v

∂x
− ∂u

∂y

)

dxdy =

∫∫

D

(1 + 1) dxdy = 2

∫∫

D

dxdy = 2Flächeninhalt(D) .

Der Satz von Green führt damit zum folgenden praktischen Satz.

Satz 12.6

Flächeninhalt (D) =
1

2

∫

CD

(
−y
x

)

· d~s =
∫

CD

(
0
x

)

· d~s =
∫

CD

(
−y
0

)

· d~s

Um also den Flächeninhalt eines Bereiches D zu berechnen, genügt es, entlang des Randes
von D zu integrieren!
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