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4.6 Näherungsverfahren zur Lösung von Gleichungen . . . . . . . . . . . . . . . . 70

5 Integration 78

5.1 Das unbestimmte Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Das bestimmte Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Integrationstechniken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Uneigentliche Integrale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Differentialgleichungen 94

6.1 Separierbare Differentialgleichungen . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Lineare Differentialgleichungen erster Ordnung . . . . . . . . . . . . . . . . . 102

6.3 Lineare Differentialgleichungen zweiter Ordnung . . . . . . . . . . . . . . . . 106

6.4 Systeme von linearen Differentialgleichungen . . . . . . . . . . . . . . . . . . . 111

7 Lineare Gleichungssysteme 113

7.1 Vektoren in der Ebene und im Raum . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Der n-dimensionale Raum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Lineare Gleichungssysteme und Matrizen . . . . . . . . . . . . . . . . . . . . 118

7.4 Der Gauß-Algorithmus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.5 Lösbarkeitskriterien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.6 Struktur der Lösungsmenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



8 Rechnen mit Matrizen 131
8.1 Matrixoperationen und ihre Eigenschaften . . . . . . . . . . . . . . . . . . . . 131
8.2 Invertierbare Matrizen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.3 Potenzen einer Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.4 Determinanten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.5 Zwei weitere Lösungsmethoden für lineare Gleichungssysteme . . . . . . . . . 146

9 Vektorräume 148
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1 Grundlagen

1.1 Zahlen, Mengen und Symbole

In diesem ersten Abschnitt werden die gebräuchlichsten Bezeichnungen und Symbole definiert.

Zahlenmengen

Die Menge N der natürlichen Zahlen ist gegeben durch

N = {1, 2, 3, . . . } ,

die Menge Z der ganzen Zahlen ist gegeben durch

Z = {. . . ,−2,−1, 0, 1, 2, 3, . . . } ,

und die Menge Q der rationalen Zahlen (Brüche) ist gegeben durch

Q = {p
q
| p in Z, q in N} .

In Q sind alle Operationen (Addition, Subtraktion, Multiplikation, Division) in eindeutiger
Weise durchführbar, ausser der Division durch 0. Jede rationale Zahl lässt sich als (endlicher
oder periodisch unendlicher) Dezimalbruch darstellen, zum Beispiel

1
4 = 1 : 4 = 0, 25 als endlicher Dezimalbruch und
1
3 = 1 : 3 = 0, 3 ≈ 0, 33333333 als periodischer Dezimalbruch.

Die Darstellung einer rationalen Zahl als Bruch ist nicht eindeutig, zum Beispiel ist

0, 5 =
1

2
=

2

4
=

3

6
= · · · ,

die Darstellung als Dezimalbruch ist hingegen eindeutig, wenn man “Neunerenden” nicht
zulässt, wie zum Beispiel 0, 49 = 0, 4999 . . . = 0, 5. Es gilt 0, 9 = 1, wie wir später noch in
den Übungen zeigen werden.

Die rationalen Zahlen kann man als Punkte auf der Zahlengeraden veranschaulichen:

Es bleiben jedoch Lücken auf der Zahlengeraden. Durch Hinzunahme aller Zahlen in diesen
Lücken erhält man die Menge R der reellen Zahlen. Das heisst, die Menge der reellen Zahlen
ist die Gesamtheit aller Zahlen auf der Zahlengeraden. Man sagt, dass die reellen Zahlen die
rationalen Zahlen vervollständigen (mathematisch kann dies durch Grenzwertbetrachtungen
exakt beschrieben werden). Eine reelle Zahl, die nicht rational ist, nennt man irrational. Zum
Beispiel sind die Zahlen

√
2,

√
2022, 13

√
1893, log(99), π, e, usw. irrational.

Wir werden später noch eine weitere Zahlenmenge kennenlernen, nämlich die Menge C

der komplexen Zahlen.
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Runden von Dezimalzahlen

Rechenmaschinen rechnen aufgrund ihres endlichen Speichers mit gerundeten Zahlen und
auch bei Messungen entstehen Ungenauigkeiten.

Je nach Situation runden wir eine Zahl auf k Stellen nach dem Komma (d.h. auf k
Nachkommastellen). Dabei werden Ziffern ≥ 5 aufgerundet und Ziffern < 5 abgerundet.

Beispiel

Die Zahl π = 3, 1415926 . . . soll auf k = 2, k = 3 und auf k = 4 Nachkommastellen gerundet
werden.

Ist umgekehrt eine Dezimalzahl gegeben, so muss man davon ausgehen, dass sie gerundet
wurde. Ist eine Zahl a mit k Nachkommastellen gegeben, so weicht der exakte Wert von a
höchstens um 0, 5 · 10−k vom angegebenen Wert ab (gemäss den Rundungsregeln).

Beispiele

1. Die Angabe a = 7, 24 bedeutet, dass 7, 235 ≤ a < 7, 245.

2. Die Angabe a = 7, 240 bedeutet, dass 7, 2395 ≤ a < 7, 2405.

Bei Rechenoperationen muss man sich überlegen, wieviele Nachkommastellen bei der An-
gabe des Endergebnisses sinnvoll sind.

Beispiele

Der Rundungsfehler kann sich bei Rechenoperationen vergrössern. Bei mehreren Rechen-
schritten ist es daher wichtig, dass erst das Endergebnis gerundet wird, und nicht schon jedes
Zwischenergebnis!

Beispiel

Wir berechnen die Zahl

a =
9

7
·
[
2 + 10 000 ·

(
1

9
− 0, 111

)]

• exakt:

• durch Runden auf jeweils drei Nachkommastellen nach jedem Zwischenschritt:
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• durch Ausmultiplizieren aller Klammern und dann Runden wie vorher:

a =
18

7
+

90 000

7
· 1
9
− 9

7
· 1110

≈ 2, 571 + 90 000 · 0, 016 − 1, 286 · 1110 ≈ 2, 571 + 1440 − 1427, 46 ≈ 15, 11

Dieses Beispiel zeigt, dass auch die Reihenfolge der Rechenschritte eine Rolle spielt. Bei einer
Summe mit sehr kleinen und sehr grossen Summanden sollte man die Summanden nach
aufsteigender Grösse aufsummieren.

Beispiel

Die Summe S = 10 + 0, 4 + 0, 4 soll berechnet werden, indem nach jedem Rechenschritt auf
eine ganze Zahl gerundet wird.

Absoluter Betrag

Der (absolute) Betrag einer reellen Zahl x ist definiert durch

|x| =
{

x falls x ≥ 0
−x falls x < 0

.

Anschaulich ist |x| der Abstand der Zahl x vom Nullpunkt auf der Zahlengeraden.
Der Ausdruck |x− a| beschreibt den Abstand von zwei Zahlen x und a (auf der Zahlen-

geraden).

Beispiel

Welche Zahlen x erfüllen die Bedingung |x+ 3| = 1 ?

Nun, 1 = |x+3| = |x− (−3)|. Der Abstand von x zu −3 ist also 1. Wir erhalten x = −2 und
x = −4 als Lösungen.

Später in diesem Kapitel (Seite 12) kommen wir nochmals aufs Rechnen mit Beträgen zurück.

Mengentheoretische und logische Symbole

Die wichtigsten mengentheoretischen Symbole sind die Folgenden:

x ∈ R Dies bedeutet, dass x eine reelle Zahl ist, d.h. x gehört zur Menge R (bzw. x ist
Element der Menge R).

1
2 6∈ N Dies heisst, dass 1

2 keine natürliche Zahl ist, d.h. dass 1
2 nicht zur Menge N der

natürlichen Zahlen gehört.

M ⊂ R Die Menge M ist eine Teilmenge der reellen Zahlen (eventuell auch ganz R),
zum Beispiel gilt Q ⊂ R.

R\M = Menge der reellen Zahlen, die nicht in M liegen = {x ∈ R | x 6∈ M} ,
zum Beispiel ist R\Q die Menge der irrationalen Zahlen.

R2 = Menge der geordneten Zahlenpaare = {(x, y) | x, y ∈ R} .
N× Z = Menge der geordneten Zahlenpaare = {(x, y) | x ∈ N, y ∈ Z} .
[a, b] = abgeschlossenes Intervall zwischen a und b = {x ∈ R | a ≤ x ≤ b} .
(a, b) = offenes Intervall zwischen a und b = {x ∈ R | a < x < b} .
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Eine logische Folgerung beschreibt man mit einem Pfeil. Man unterscheidet:

A =⇒ B Aus der Aussage A folgt Aussage B, d.h. wenn A wahr ist, so ist auch B wahr.
(Dies ist gleichbedeutend mit: Wenn B falsch ist, dann ist auch A falsch.)

A ⇐⇒ B Aus A folgt B und aus B folgt A, d.h. A ist genau dann wahr, wenn B wahr
ist. (Die Aussagen A und B sind gleichbedeutend, man sagt auch äquivalent.)

Beispiele

1. n ist teilbar durch 6 =⇒ n ist teilbar durch 2.
Die Umkehrung “⇐=” gilt hier nicht. Die Aussage ist gleichbedeutend mit:
n ist nicht teilbar durch 2 =⇒ n ist nicht teilbar durch 6.

2. |x| ≤ 1 ⇐⇒ −1 ≤ x ≤ 1 ⇐⇒ x ∈ [−1, 1]

Summen- und Produktzeichen

Für Summen mit mehreren Summanden und Produkte mit mehreren Faktoren ist es prak-
tisch, das folgende Summen- bzw. Produktzeichen zu benutzen. Man schreibt

a1 + a2 + · · ·+ aN =
N∑

n=1

an und a1 · a2 · · · aN =
N∏

n=1

an .

Die Summe, bzw. das Produkt muss dabei nicht mit dem Index 1 beginnen. Es gilt zum
Beispiel

a3 + a4 + · · ·+ aN =

N∑

n=3

an und a5 · a6 · a7 · a8 =
8∏

n=5

an .

Für k > N gilt die Vereinbarung

N∑

n=k

an = 0 und

N∏

n=k

an = 1 .

Beispiele

1.
10∑

n=1

1

n
=

2.

7∏

n=3

n2 =

3.

2∑

n=−1

(3n + 5) =
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4. −1 +
1

4
− 1

9
+

1

16
− · · ·+ · · · − 1

81
+

1

100
=

5. 5 · 7 · 9 · 11 · 13 · 15 · 17 =

Wir werden vor allem das Summenzeichen gebrauchen (im nächsten Kapitel und dann in
der Statistik im nächsten Semester). Wir notieren hier deshalb nur die Rechenregeln für das
Summenzeichen:

1.

N∑

n=1

(an + bn) =

N∑

n=1

an +

N∑

n=1

bn

2.

N∑

n=1

(c · an) = c

N∑

n=1

an

3.
N∑

n=1

an =
k∑

n=1

an +
N∑

n=k+1

an für k ∈ {1, . . . , N}

1.2 Funktionen und Abbildungen

Der Funktionsbegriff ist einer der zentralsten Begriffe in der Mathematik. Er spielt auch bei
allen Anwendungen in den Naturwissenschaften eine fundamentale Rolle. Funktionen treten
überall da auf, wo Zusammenhänge zwischen zwei (oder mehreren) Grössen bestehen.

Beispiel

Zustandsgleichung des idealen Gases. Der Druck eines Gases in einem geschlossenen Gefäss
hängt von der Temperatur und dem Volumen ab. Mit Hilfe geeigneter Skalen wird der Druck
durch eine Grösse p ∈ R, die (absolute) Temperatur durch T ∈ R und das Volumen durch
V ∈ R angegeben, und jedem bestimmten Wert von V und T entspricht ein Wert von p. Für
1 mol (1 mol = 6, 022 · 1023 Moleküle bzw. Atome (Avogadrosche Zahl)) eines idealen Gases
gilt die Beziehung

p =
RT

V
, wobei R eine (absolute) Konstante ist.

Halten wir das Volumen fest, so gilt p(T ) = aT mit a = R
V . Halten wir jedoch die Temperatur

fest, so gilt p(V ) = b 1
V mit b = RT .

Wie im Beispiel betrachten wir zunächst vor allem Zuordnungen zwischen Grössen, wel-
che Werte in den reellen Zahlen annehmen. Im nächsten Semester werden wir jedoch auch
allgemeinere Zuordnungen (sogenannte Abbildungen) studieren.

Definition Seien X und Y zwei Mengen. Eine Vorschrift f , die jedem Element x aus X
(x ∈ X) genau ein Element y aus Y (y ∈ Y ) zuordnet, heisst Abbildung. Wir schreiben

f : X −→ Y

x 7→ f(x)

Die Menge X heisst Definitionsbereich und die Menge Y Zielbereich von f .



6

Eine Abbildung ordnet also jedem x ∈ X eindeutig ein y ∈ Y zu. Es können jedoch zwei
verschiedene x, x′ ∈ X demselben y ∈ Y zugeordnet werden. Ausserdem muss nicht zu jedem
y ∈ Y ein x ∈ X existieren, dem es zugeordnet wird. Man nennt deshalb die Teilmenge

f(X) = { f(x) | x ∈ X} = { y ∈ Y | es gibt ein x ∈ X mit y = f(x) }

von Y die Bildmenge (oder den Wertebereich) von f . Entsprechend ist f(x) das Bild von f
an der Stelle x.

Ist der Zielbereich Y eine Zahlenmenge, dann nennen wir die Abbildung eine Funktion (in
vielen Büchern werden Abbildungen und Funktionen synonym verwendet). Funktionen mit
Y = R und X ⊂ R heissen reelle Funktionen. Für X schreiben wir in diesem Fall D und
meinen damit jeweils die grösstmögliche Teilmenge von R, auf der die Funktionsvorschrift f
definiert ist.

Beispiele

1. f : D −→ R, f(x) = x2 definiert eine reelle Funktion.

2. Sei X die Menge aller Studierenden der Pharmazie im ersten Semester und Y die Men-
ge {blau, grün, braun}. Dann ist die Zuordnung f : X −→ Y , die jedem*r Studierenden
seine*ihre Augenfarbe zuordnet, eine Abbildung. Die Bildmenge ist ganz Y , falls es je min-
destens eine*n Studierende*n mit der Augenfarbe blau, grün, bzw. braun gibt.

3. Sei X = R2. Dann definiert f : X −→ R mit f(x, y) =
√

x2 + y2 eine Funktion in
zwei Variablen. Für einen Punkt P = (x, y) in R2 gibt f(x, y) den Abstand von P zum
Ursprung an. Der Definitionsbereich ist also (D =) X = R2 und die Bildmenge ist gleich
f(X) = { z ∈ R | z ≥ 0 }. Funktionen in zwei und mehr Variablen werden wir im nächsten
Semester untersuchen.

4. Funktionen können auch abschnittsweise definiert werden. Zum Beispiel ist f : D −→ R

definiert durch

f(x) =

{
x− 3 falls x ≥ 0
1

1−x
falls x < 0

auch eine (reelle) Funktion.
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Reelle Funktionen können mit Hilfe ihres Graphen dargestellt werden. Der Graph einer
reellen Funktion f : D −→ R ist definiert als die Menge aller Punkte der Ebene mit den
Koordinaten (x, f(x)) für x ∈ D:

Graph(f) = { (x, f(x)) | x ∈ D } ⊆ D × R

Der Graph ist also eine Kurve in R2 mit der Eigenschaft, dass über jedem x ∈ D auf der
x-Achse genau ein Punkt des Graphen von f liegt, nämlich der Punkt (x, f(x)). Umgekehrt
können jedoch mehreren x1, x2, · · · ∈ D der gleiche Wert y zugeordnet sein, das heisst, die
Parallele zur x-Achse in der Höhe y kann den Graphen in mehreren Punkten schneiden.

Beispiel

Die reellen Funktionen können in verschiedene Typen eingeteilt werden. Wir betrachten
hier zunächst die sogenannten algebraischen Funktionen; das sind Funktionen, deren Funkti-
onsvorschrift f(x) sich mittels der Grundoperationen +, −, · , / und n

√
aus der Variablen x

und reellen Konstanten bilden lässt. Die sogenannten transzendenten Funktionen (das sind
alle anderen, wie zum Beispiel die trigonometrischen Funktionen und die Exponential- und
Logarithmusfunktionen) betrachten wir später.

Polynomfunktionen

Eine Funktion f : R −→ R mit der Gleichung

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ,

wobei a0, . . . , an ∈ R, an 6= 0 und n ∈ N∪{0}, heisst Polynomfunktion (oder kurz Polynom).
Man nennt an den Leitkoeffizienten von f und n den Grad von f .

Einige spezielle Polynomfunktionen kennen Sie aus der Schule:

Konstante Funktionen f(x) = c mit c ∈ R (Polynom vom Grad 0)

Lineare Funktionen f(x) = ax+ b mit a, b ∈ R, a 6= 0 (Grad 1)

Quadratische Funktionen f(x) = ax2 + bx+ c mit a, b, c ∈ R, a 6= 0 (Grad 2)

Potenzfunktionen f(x) = xn (Grad n)
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Hier sind die Graphen einiger Beispiele:

f1(x) = 1 f2(x) = −3x+ 2 f3(x) = 2x2 − x− 2

f4(x) = −x3 + x2 + 2 f5(x) = −x6 + 3x3 − 3x+ 2 f6(x) = xn (n = 2, 3, 4, 5)

Offensichtlich verhalten sich die verschiedenen Polynomfunktionen sehr unterschiedlich, so
dass kaum allgemeine Aussagen über diese Funktionen gemacht werden können. Was wir
hingegen leicht von der Funktionsvorschrift ablesen können, ist das Verhalten der Funktion
(oder des Graphen) für grosse |x|, das heisst für x gegen ±∞.

Sei f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 die Funktionsvorschrift. Klammern wir den
Ausdruck anx

n aus, so erhalten wir

f(x) = anx
n

(
1 +

an−1

anx
+ · · ·+ a1

anxn−1
+

a0
anxn

)
.

Für x gegen ±∞ geht der Ausdruck in der Klammer gegen 1, das heisst für wachsendes |x|
nähert sich der Graph von f immer mehr dem Graphen der Funktion g(x) = anx

n.

Beispiele

f(x) = −x5 + x3 + x2 + 2 mit g(x) = −x5 und f(x) = 1
2x

6 + 3x3 − 3x+ 2 mit g(x) = 1
2x

6
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Rationale Funktionen

Eine Funktion f : D −→ R mit der Vorschrift

f(x) =
p(x)

q(x)
,

wobei p(x) und q(x) Polynome sind, heisst rationale Funktion.

Für den maximalen Definitionsbereich D einer rationalen Funktion f gilt

D = R\{x1, . . . , xk} ,

wobei x1, . . . , xk die verschiedenen Nullstellen des Nennerpolynoms q(x) sind. Ist gleichzeitig
p(xi) 6= 0, dann bildet diese Nullstelle eine sogenannte Polstelle von f . Dies bedeutet, dass
die Gerade x = xi eine senkrechte Asymptote für den Graphen von f ist. Anschaulich ist eine
Asymptote eine Gerade, an die sich der Funktionsgraph anschmiegt.

f(x) = 1
x3+x2−2x

= 1
x(x−1)(x+2) f(x) = x+1

x2−x−2
= x+1

(x+1)(x−2)

Ist n ≤ m für den Grad n von p(x) und m von q(x), dann gibt es eine waagrechte
Asymptote für den Graphen von f (der Funktionsgraph schmiegt sich für x gegen ±∞ an
diese waagrechte Gerade).

f(x) = x+1
x3+4x2−18

, Asymptote: y = 0 f(x) = −2x4+x2

4x4−x
, Asymptote: y = −1

2
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Im Fall n > m muss die Asymptote nicht notwendigerweise eine Gerade sein.

f(x) = 3x3−4x2+13
x2−2 =3x− 4+6x+5

x2−2 f(x) = x3−x2−8x+5
4x−4 = 1

4x
2 − 2− 3

4x−4

Die Asymptoten g(x) = 3x − 4, bzw. g(x) = 1
4x

2 − 2 in den beiden Beispielen findet man
durch Polynomdivision. Wir führen sie für das erste Beispiel durch:

Allgemein für f(x) = p(x)
q(x) mit n = Grad(p) > Grad(q) = m gibt es Polynome g(x) und r(x)

mit Grad(g) = n−m > 0 und Grad(r) < Grad(q), so dass

p(x) = g(x) · q(x) + r(x)

(analog zur Division mit Rest bei den natürlichen Zahlen). Division durch q(x) ergibt

f(x) =
p(x)

q(x)
= g(x) +

r(x)

q(x)
.

Für x gegen ±∞ geht der zweite Term gegen 0 (da Grad(r) < Grad(q)), so dass das Polynom
g(x) eine Asymptote für den Graphen von f bildet.

Allgemeine Potenzen

Für n in N ist die Potenzfunktion xn = x · x · · · x (n Faktoren) für alle x in R definiert.
Für x 6= 0 definieren wir weiter

x0 = 1 und x−n =
1

xn
für n ∈ N .
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Damit ist xn für alle n in Z und (x 6= 0) definiert und es gelten die üblichen Regeln:

xm+n = xm · xn , xm−n = xm+(−n) = xm · x−n =
xm

xn
, (xn)m = (xm)n = xm·n .

Achtung : Die Klammern bei der dritten Regel sind notwendig, denn xn
m

wird als x(n
m)

interpretiert, was im Allgemeinen ungleich (xn)m = xn·m ist. Zum Beispiel ist

(23)4 = 84 = 4096

2(3
4) = 281 ≈ 2, 42 · 1024 .

Wie können wir weiter x
1
q (für q ∈ N) sinnvoll definieren? Stellen wir die Bedingung, dass

die vorhergehenden Regeln auch für rationale Exponenten gelten sollen, dann folgt

(x
1
q )q = x

1
q · x

1
q · · · x

1
q = x

1
q
+ 1

q
+···+ 1

q = xq·
1
q = x1 = x ,

wobei im Produkt q Faktoren und in der Summe q Summanden vorkommen. Dies führt zur
folgenden Definition.

Definition Sei x > 0 und q in N. Die q-te Wurzel von x ist definiert durch

x
1
q = q

√
x = diejenige positive reelle Zahl, deren q-te Potenz gleich x ist.

Zusätzlich gilt q
√
0 = 0.

Insbesondere ist also x
1
2 =

√
x für x > 0 mit der üblichen Konvention, dass

√
x stets die

positive Quadratwurzel bezeichnet.
Die Graphen von f(x) = q

√
x für q = 2, 3, 4, 5, 6 sehen so aus:

Allgemein definieren wir nun für p
q in Q (mit q in N) und x > 0

x
p

q =
(
x

1
q

)p
= ( q

√
x)p = q

√
xp = (xp)

1
q

wobei dies alles verschiedene Schreibweisen für dasselbe sind.
Auf die Frage, wie wir zum Beispiel x

√
2 oder xπ sinnvoll definieren können, kommen wir

im nächsten Kapitel zurück.
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Die Betragsfunktion

Die Betragsfunktion ist definiert durch

f(x) = |x| =
{

x falls x ≥ 0
−x falls x < 0

.

Hier ist der Graph von f :

Beträge kommen auch in Gleichungen und Ungleichungen vor. Oft tritt dann nicht |x|
auf, sondern eine ganze Seite der (Un-)Gleichung steht im Betrag, das heisst, eine Seite der
(Un-)Gleichung ist von der Form |f(x)| für irgendeine reelle Funktion f . Um eine solche
(Un-)Gleichungen umformen oder lösen zu können, muss zuerst der Betrag aufgelöst werden.
Dies geschieht mit Hilfe einer Fallunterscheidung, denn gemäss der Definition des Betrags
(s.o.) gilt

|f(x)| =

{
f(x) falls f(x) ≥ 0

−f(x) falls f(x) < 0

für jede reelle Funktion f .

Beispiele

1. Gesucht sind alle x ∈ R mit |x+ 3| = 1. (Dies ist das Beispiel von Seite 3.)

Graphisch:
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2. Gesucht sind alle x ∈ R mit |x− 1| = 2x.

• x ≥ 1 : Dann gilt x− 1 = 2x =⇒ −1 = x Widerspruch zu x ≥ 1 !

• x < 1 : Dann gilt −(x− 1) = 2x =⇒ 1 = 3x =⇒ x = 1
3

Die Gleichung |x− 1| = 2x hat also nur eine Lösung: x = 1
3

Graphisch:

3. Gesucht sind alle x ∈ R mit |x2 − 1| > 3.

Graphisch:

Gleichwertige Schreibweisen für die Lösungsmenge sind:
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Umkehrbarkeit

Sei f : D −→ R eine (reelle) Funktion. Dann ist die Umkehrfunktion von f (falls es sie
überhaupt gibt) diejenige Vorschrift, die einer Zahl y ∈ R diejenige Zahl x ∈ D zuordnet,
für die f(x) = y gilt. Die Klammerbemerkung “falls es sie überhaupt gibt” kommt daher, da
zwei Probleme auftreten können:

(1) Eventuell gibt es nicht zu jedem y ∈ R ein x ∈ D mit f(x) = y.

(2) Eventuell gibt es zu einem y ∈ R nicht nur ein x ∈ D mit f(x) = y, sondern ein weiteres
x̃ 6= x in D mit f(x̃) = y.

Beispiel

Sei f : R −→ R mit f(x) = x2. Dann gibt es zum Beispiel zu y = −1 ∈ R kein x ∈ R = D
mit f(x) = x2 = −1. Und zu y = 4 gibt es x = 2, x̃ = −2 mit f(x) = 4 = f(x̃) und x 6= x̃.

Wir müssen also zuerst definieren, welche Funktionen eine Umkehrfunktion haben. Das
machen wir gleich allgemein für Abbildungen und nicht nur für Funktionen.

Definition Eine Abbildung f : X −→ Y heisst umkehrbar, wenn es zu jedem y ∈ Y genau
ein x ∈ X gibt mit y = f(x).

Die Abbildung f−1 : Y −→ X, die jedem y ∈ Y das x ∈ X mit y = f(x) zuordnet, heisst
Umkehrabbildung von f (bzw. Umkehrfunktion, falls f eine Funktion ist).

Anschaulich gesprochen gilt:

f umkehrbar ⇐⇒ auf jedes Element in Y zeigt genau ein Pfeil

Achtung :

f−1(x) 6= 1

f(x)
= (f(x))−1 ! ! !

Beispiele

1. Die Funktion f : R −→ R, f(x) = 3x ist umkehrbar mit Umkehrfunktion f−1 : R −→ R,
f−1(x) = 1

3x.
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2. f : R −→ R, f(x) = x2 ist (gemäss den Bemerkungen auf Seite 14) nicht umkehrbar, da
für f beide Probleme (1) und (2) auftreten.

3. f : R\{0} −→ R, f(x) = 5
x .

Es folgt, dass f : R\{0} −→ R\{0} (mit verkleinertem Zielbereich) umkehrbar ist.

4. Seien X = {Studierende der Pharmazie im 1. Semester}, Y = {blau, grün, braun } und
f : X −→ Y ordnet jedem*r Studierenden seine*ihre Augenfarbe zu. Nun ist f keine reelle
Funktion. Wird hier jedem y ∈ Y genau ein x ∈ X zugeordnet?

Dass f in diesem Beispiel nicht umkehrbar ist, erkennt man auch daran, dass die Menge X
aus (viel) mehr Elementen besteht als die Menge Y .

Zur Untersuchung von speziell reellen Funktionen f : D −→ R gibt es weitere Methoden.
Das Problem (1) hängt mit der Bildmenge f(D) von f zusammen. Denn zu y ∈ R gibt
es genau dann ein x ∈ D mit y = f(x), wenn y ∈ f(D). Wir können also (wie vorher
im 3. Beispiel) den Zielbereich R auf f(D) verkleinern, dann tritt Problem (1) nicht auf. Ob
Problem (2) auf f : D −→ f(D) zutrifft oder nicht, kann einfach am Graphen von f abgelesen
werden. Wenn jede Parallele zur x-Achse den Graphen in höchstens einem Punkt schneidet,
ist f umkehrbar.

−1

−2

y

3

1

x

2−2

4

0

2

0

4−4

−1

−2

y

3

1

x

2−2

4

0

2

0

4−4 2

y

x

3

1

−1

−2

4

0

2

0

−2

4−4

f(x) = x2 f(x) = x3 − 3x f(x) = x3

nicht umkehrbar nicht umkehrbar umkehrbar

Dies hängt mit der Monotonie der Funktion zusammen. Eine Funktion f : D −→ R heisst

monoton wachsend falls f(x1) ≤ f(x2)

streng monoton wachsend falls f(x1) < f(x2)

monoton fallend falls f(x1) ≥ f(x2)

streng monoton fallend falls f(x1) > f(x2)

für alle x1, x2 ∈ D mit x1 < x2 gilt.
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Satz 1.1 Ist eine reelle Funktion f : D −→ f(D) streng monoton wachsend oder streng
monoton fallend, dann ist sie umkehrbar.

Ist eine Funktion f : D −→ f(D) nicht streng monoton wachsend oder fallend, so kann
man meistens eine Teilmenge von D finden, auf welcher f streng monoton wachsend oder
fallend ist. Eingeschränkt auf diese Teilmenge ist dann f eine umkehrbare Funktion (sofern
der Zielbereich gleich der Bildmenge ist).

Beispiel

Sei R≥0 = {x ∈ R | x ≥ 0} und f : R −→ R≥0 mit f(x) = x2. Dann gilt R≥0 = f(R).
Auf dem ganzen Definitionsbereich D = R ist f allerdings nicht umkehrbar, wie man dem
Graphen ansieht.

Verkleinert man hingegen den Definitionsbereich D = R auf die Teilmenge R≥0, dann ist
f : R≥0 −→ R≥0 streng monoton wachsend, also umkehrbar. Die Umkehrfunktion ist gegeben
durch f−1 : R≥0 −→ R≥0, f

−1(x) =
√
x.

Auf der Teilmenge R≤0 = {x ∈ R | x ≤ 0} ist f ebenfalls umkehrbar, weil f auf R≤0

streng monoton fallend ist. Die Umkehrfunktion ist f−1 : R≥0 −→ R≤0, f
−1(x) = −√

x.
In den folgenden Abbildungen sind die Graphen von f(x) = x2, links auf R≥0, rechts

auf R≤0, mit zugehöriger Umkehrfunktion f−1(x) = ±√
x zu sehen. Man erkennt, dass die

Graphen von f und f−1 spiegelbildlich zur Geraden y = x liegen.

Um die Funktionsgleichung einer Umkehrfunktion zu bestimmen, geht man vor wie im
1. und 3. Beispiel auf den Seiten 14/15. Man setzt y = f(x), löst die Gleichung nach x auf
und vertauscht anschliessend die Variablen x und y. Dann ist f−1 gegeben durch f−1(x) = y.
Dieses Vertauschen der Variablen x und y entspricht genau dem Spiegeln des Graphen von
f an der Geraden y = x.

Wie der Name Umkehrfunktion oder allgemeiner Umkehrabbildung andeutet, ist f−1 die
“Umkehrung” der Abbildung f . Dies ist im folgenden Sinn gemeint.

Satz 1.2 Für eine umkehrbare Abbildung f : X −→ Y und ihre Umkehrabbildung f−1 gilt

f−1(f(x)) = x und f(f−1(y)) = y

für alle x ∈ X und y ∈ Y .

Die Schreibweise f−1(f(x)) bedeutet, dass zuerst f auf x angewendet wird und danach f−1

auf f(x).
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Beispiel

Sei f(x) = 5
x mit f−1(y) = 5

y (vgl. 3. Beispiel auf Seite 15).

Für f−1(f(x)) schreibt man auch (f−1 ◦ f)(x) und meint damit also die Komposition (d.h.
Verkettung) von f und f−1.

Definition Seien f : X −→ Y und g : Y −→ Z zwei Abbildungen. Dann ist die Komposition
von f und g definiert als die Funktion g ◦ f : X −→ Z mit

(g ◦ f)(x) = g(f(x)) für alle x ∈ X .

Achtung : Die Komposition g ◦ f liest man von rechts nach links, das heisst zuerst f , dann g.

1.3 Trigonometrische Funktionen

Der Winkel ist das Mass einer Rotation, und zwar einer Drehung im positiven Drehsinn (d.h.
Gegenuhrzeigersinn). Wir zählen die Drehungen: ganze Drehungen plus Teile von ganzen
Drehungen. Die üblichen Skalen für Winkel sind das Gradmass und das Bogenmass:

Gradmass: Mass für die Drehung = 360◦

Bogenmass: Mass für die Drehung = 2π = Umfang des Kreises vom Radius 1

Das Bogenmass entspricht der Länge eines Bogens auf dem Kreis vom Radius 1 mit dem
entsprechenden Zentriwinkel.

Für den Radius r = 1 folgt b = ϕ.

Drehungen −1
4 0 1

4
1
2

3
4 1 11

2 2

Gradmass −90◦ 0◦ 90◦ 180◦ 270◦ 360◦ 540◦ 720◦

Bogenmass −π
2 0 π

2 π 3π
2 2π 3π 4π

Das Verhältnis α : 360◦ = ϕ : 2π führt zu den Umrechnungen:

α Winkel im Gradmass =⇒ ϕ =
α

360◦
2π Winkel im Bogenmass

ϕ Winkel im Bogenmass =⇒ α =
ϕ

2π
360◦ Winkel im Gradmass
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Beispiel

Wir betrachten die Drehung als Prozess, und daher ist 540◦ 6= 180◦, 360◦ 6= 0◦ und auch
−180◦ 6= 180◦. Nimmt man jedoch das Resultat der Drehung, das heisst die Endlage, dann
gilt 540◦ = 180◦, 360◦ = 0◦ und auch −180◦ = 180◦.

Nun starten wir mit dem Punkt P0 = (1, 0) auf dem Einheitskreis (das ist der Kreis mit
Radius 1 und Mittelpunkt (0, 0) ) und drehen ihn um den Winkel ϕ. Dies liefert den Punkt
Pϕ auf der Kreislinie. Wie oben bemerkt, gilt dann Pϕ+2π = Pϕ.

Definition Die trigonometrischen Funktionen cos : R −→ R (Cosinus) und sin : R −→ R

(Sinus) werden wie folgt definiert:

cosϕ = x-Koordinate des Punktes Pϕ

sinϕ = y-Koordinate des Punktes Pϕ

Der Winkel ϕ wird dabei üblicherweise im Bogenmass angegeben.

Es gilt cosϕ ∈ [−1, 1] und sinϕ ∈ [−1, 1] für alle ϕ in R, und jeder Wert zwischen −1
und 1 wird von beiden Funktionen angenommen, das heisst, die Bildmenge der Funktionen
cos und sin ist jeweils das ganze Intervall [−1, 1].

Eigenschaften

Die folgenden Eigenschaften können direkt am Einheitskreis abgelesen werden. Sie sollten aus
der Schule bekannt sein.

(1) Periodizität : Es gilt Pϕ+2π = Pϕ und daher

cos(ϕ+ 2πk) = cosϕ und sin(ϕ+ 2πk) = sinϕ für alle k ∈ Z ,

das heisst, cos und sin sind periodische Funktionen mit der Periode 2π.

(2) Pythagoras: cos2 ϕ+ sin2 ϕ = 1 für alle ϕ in R.

(Hier ist cos2 ϕ die übliche Kurzschreibweise für (cosϕ)2.)
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(3) Nullstellen:

cosϕ = 0 ⇐⇒ Pϕ auf y-Achse ⇐⇒ ϕ = π
2 + kπ für k ∈ Z

sinϕ = 0 ⇐⇒ Pϕ auf x-Achse ⇐⇒ ϕ = kπ für k ∈ Z

(4) Symmetrien:

cos(ϕ+ π) = − cosϕ cos(ϕ+ π
2 ) = − sinϕ

sin(ϕ+ π) = − sinϕ sin(ϕ+ π
2 ) = cosϕ

und
cos(−ϕ) = cosϕ

sin(−ϕ) = − sinϕ

Die letzten zwei Zeilen besagen, dass cos eine gerade und sin eine ungerade Funktion ist.

Dabei heisst eine reelle Funktion gerade, wenn f(−x) = f(x) für alle x in D und sie heisst
ungerade, wenn f(−x) = −f(x) für alle x in D. Der Graph einer geraden Funktion ist
achsensymmetrisch zur y-Achse, der Graph einer ungeraden Funktion ist punktsymme-
trisch zum Ursprung.

(5) Additionstheoreme:

cos(α+ β) = cosα cos β − sinα sin β

sin(α+ β) = sinα cosβ + cosα sin β

Die Graphen von cos und sin:

Wegen der Gleichung cosϕ = sin(ϕ+ π
2 ) ist der Graph von cos gegenüber dem Graphen von

sin um π
2 nach links verschoben.
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Umkehrfunktionen

Die Cosinusfunktion ist als Funktion von R nach R nicht umkehrbar. Doch auf gewissen
Intervallen ist sie streng monoton fallend, zum Beispiel auf dem Intervall [0, π]. Verkleinern wir
noch den Zielbereich auf die Bildmenge [−1, 1], dann erhalten wir die umkehrbare Funktion
cos : [0, π] −→ [−1, 1]. Die Umkehrfunktion heisst Arcuscosinusfunktion

arccos : [−1, 1] −→ [0, π]

Achtung: Beim Lösen der Gleichung cos(x) = a ist x1 = arccos(a) nur eine von unendlich
vielen Lösungen, nämlich diejenige im Intervall [0, π]. Da die Cosinusfunktion 2π-periodisch
ist, gibt man jeweils die Lösungen in einem Intervall der Länge 2π an. Bei cos bietet sich das
Intervall [−π, π] an, denn wegen cos(−x) = cos(x) ist x2 = −x1 = − arccos(a) ∈ [−π, 0] eine
weitere Lösung von cos(x) = a.

=⇒ Lösungen von cos(x) = a im Intervall [−π, π] sind x1,2 = ± arccos(a) !

Analog ist die Sinusfunktion streng monoton wachsend auf dem Intervall [−π
2 ,

π
2 ], das heisst

sin : [−π
2 ,

π
2 ] −→ [−1, 1] ist umkehrbar. Die Umkehrfunktion nennt man Arcussinusfunktion

arcsin : [−1, 1] −→ [−π
2 ,

π
2 ]
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Achtung: Beim Lösen der Gleichung sin(x) = b ist x1 = arcsin(b) nur eine Lösung, nämlich
diejenige im Intervall [−π

2 ,
π
2 ]. Bei der Sinusfunktion bietet sich [−π

2 ,
3π
2 ] als Intervall der Länge

2π an, denn wegen sin(π − x) = − sin(−x) = sin(x) ist x2 = π − x1 = π − arcsin(b) ∈ [π2 ,
3π
2 ]

eine weitere Lösung von sin(x) = b.

=⇒ Lösungen von sin(x) = b im Intervall [−π
2 ,

3π
2 ] sind x1 = arcsin(b) und x2 = π−arcsin(b) !

Definition Die Tangensfunktion ist definiert durch

tanϕ =
sinϕ

cosϕ
.

Der Definitionsbereich ist {ϕ ∈ R | cosϕ 6= 0} = R\{π
2 + kπ | k ∈ Z}.

Eigenschaften der Tangensfunktion:

(1) Es gilt tan(−ϕ) = − tanϕ, d.h. tan ist eine ungerade Funktion.

(2) Es gilt tan(ϕ+ kπ) = tanϕ für alle k in Z, d.h. tan ist periodisch mit der Periode π.

(3) Auf dem offenen Intervall (−π
2 ,

π
2 ) ist tan streng monoton wachsend und die Bildmenge

ist R.

Wegen der dritten Eigenschaft ist tan : (−π
2 ,

π
2 ) −→ R umkehrbar. Die Umkehrfunktion

heisst Arcustangensfunktion
arctan : R −→ (−π

2 ,
π
2 )
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Modifizierte trigonometrische Funktionen

Die Graphen der Funktionen f(x) = sin(x−u), g(x) = sin(αx) und h(x) = A sin(x) für u, α,A
in R sind gegenüber der Sinuskurve um u nach rechts verschoben, bzw. in der x-Richtung
gestaucht (für |α| > 1) oder gestreckt (für |α| < 1), bzw. in der y-Richtung gestreckt (für
|A| > 1) oder gestaucht (für |A| < 1).

Hier die Graphen von sin(x), sin(x− 2), sin(2x), 2 sin(x):

Kombinationen von diesen Modifikationen tauchen bei Schwingungsproblemen in der Phy-
sik auf und haben meistens die Form

y(t) = A sin(ωt+ ϕ) .

Dabei ist t ∈ R die Zeit, ω die Kreisfrequenz, A (> 0) die Amplitude und ϕ die Phase. Diese
Funktion ist periodisch mit der Periode (= Schwingungsdauer) T = 2π

ω . Ihre Werte liegen
zwischen −A und A und ihr Graph ist um ϕ nach links verschoben.

Hier der Graph von y(t) = A sin(ωt+ ϕ) mit A = 6, T = 2π
ω = 8, ϕ = 3π

4 :

Die blaue Kurve auf der rechten Seite ist der Graph der Funktion f(x) = sin(x) + cos(x).
Er sieht aus wie eine verschobene und in Richtung der y-Achse gestreckte Sinuskurve.

Satz 1.3 Jede Linearkombination A sin(x)+B cos(x) ist eine (modifizierte) trigonometrische
Funktion und lässt sich in der Form

A sin(x) +B cos(x) = C sin(x+ u)

darstellen. Dabei ist C =
√
A2 +B2, und u ist bestimmt durch die Gleichungen A = C cos(u),

B = C sin(u). Umgekehrt lässt sich jede modifizierte trigonometrische Funktion C sin(x+ u)
(oder C cos(x+ v)) als Linearkombination A sin(x) +B cos(x) darstellen.
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Die Gleichungen für u folgen direkt aus dem Additionstheorem für die Sinusfunktion,

C sin(x+ u) = C cos(u)︸ ︷︷ ︸
=A

sin(x) + C sin(u)︸ ︷︷ ︸
=B

cos(x) = A sin(x) +B cos(x) ,

und die Gleichung für C gilt, da

A2 +B2 = C2 cos2(u) + C2 sin2(u) = C2
(
cos2(u) + sin2(u)︸ ︷︷ ︸

=1

)
= C2 .

Beispiel

sin(x) + cos(x) = ?

Graphisch sieht die Situation im Beispiel so aus:

Zur eindeutigen Bestimmung des Winkels u in Satz 1.3 sind also tatsächlich beide Gleichungen
A = C cos u und B = C sinu notwendig!
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2 Grenzwerte und stetige Funktionen

In den Naturwissenschaften interessiert man sich oft für das Verhalten einer reellen Funktion
f(x) in der Nähe einer bestimmten Stelle x oder für sehr grosse x. Um dieses Verhalten von f
exakt beschreiben zu können, müssen wir zunächst die Begriffe beliebig nahe bei . . . , beliebig
gross und beliebig klein mathematisch beschreiben.

2.1 Folgen

Als erstes Beispiel betrachten wir die Folge der Zahlen

1

2
,
2

3
,
3

4
, . . . ,

999 999

1 000 000
, . . .

Wir erkennen, dass die n-te Zahl dieser Folge von der Form

an =
n

n+ 1

ist.

Definition Eine Folge von reellen Zahlen (oder Zahlenfolge) ist eine Funktion N −→ R, die
jedem n in N ein an = a(n) in R zuordnet (man nennt an das n-te Glied der Folge). Wir
schreiben (an)n∈N oder (an)n≥1 für die Folge.

In vielen Beispielen beginnt die Folge mit einem nullten Glied a0. Es sind also auch Folgen
(an)n≥0 zulässig.

Beispiele

1. 1, 2, 3, . . . , n, . . .

2. 1, 12 ,
1
3 , . . . ,

1
n , . . .

3. an = n2 − 1 für n ≥ 1

4. an = 1√
n+1

für n ≥ 0

5. an = (−1)n für n ≥ 0

Wir betrachten nun nochmals das Beispiel ganz oben mit an = n
n+1 , d.h. die Folge

1
2 ,

2
3 ,

3
4 , . . . .

Die Folgenglieder an kommen der Zahl 1 mit wachsendem n immer näher. Das heisst, der
Abstand |an− 1| wird beliebig klein. Dieses “beliebig klein” kann wie folgt präzisiert werden.

Wir geben uns ein beliebiges Intervall um die Zahl 1 herum vor und überprüfen, ob ab
einem bestimmten Index N alle Folgenglieder an (n ≥ N) in diesem Intervall liegen. Ist dies
für jedes noch so kleine Intervall der Fall, dann heisst die Folge konvergent gegen 1.
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Betrachten wir die folgenden Intervalle:

• (1− 1
4 , 1 +

1
4) = (34 ,

5
4 ) (offenes Intervall, ohne die Grenzen 3

4 und 5
4)

• (1− 1
8 , 1 +

1
8) = (78 ,

9
8 )

• (1− ε, 1 + ε) für ein beliebiges ε > 0

Wir werden im 3. Beispiel unten sehen, dass wir jedes N mit N ≥ 1
ε wählen können.

Es gilt dann, dass an für alle n ≥ N im Intervall (1− ε, 1 + ε) liegen.

Eine allgemeine Folge (an)n∈N heisst nun konvergent gegen a in R, wenn es zu jedem ε > 0
ein N in N gibt, so dass an für alle n ≥ N im Intervall (a− ε, a+ ε) liegen.

Dies kann man auch mit Hilfe des Betrages oder Abstands beschreiben, denn

an ∈ (a− ε, a+ ε) ⇐⇒ a− ε < an < a+ ε ⇐⇒ |an − a| < ε

Definition Eine Folge (an)n∈N heisst konvergent gegen a in R, wenn gilt:
Zu jedem ε > 0 gibt es ein N in N, so dass

|an − a| < ε für alle n ≥ N .

Wie im Beispiel oben hängt die Zahl N von ε ab (je kleiner ε, desto grösser muss N im
Allgemeinen gewählt werden).

Die Zahl a heisst Grenzwert der Folge. Man schreibt

lim
n→∞

an = a oder an → a für n → ∞ .

Ist die Folge nicht konvergent, dann nennt man sie divergent.

Beispiele

1. Sei a in R und an = a für alle n. Dann gilt lim
n→∞

an = a.

Denn |an − a| = 0 < ε für jedes ε > 0 und alle n in N.

2. lim
n→∞

1
n = 0.

Sei ε > 0. Gibt es ein N (abhängig von ε), so dass | 1
n
− 0| < ε für alle n ≥ N ?
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3. lim
n→∞

n
n+1 = 1.

Denn sei ε > 0. Wähle N ≥ 1
ε . Dann folgt für alle n ≥ N , dass

∣∣∣∣
n

n+ 1
− 1

∣∣∣∣ =
∣∣∣∣
n− (n+ 1)

n+ 1

∣∣∣∣ =
∣∣∣∣
−1

n+ 1

∣∣∣∣ =
1

n+ 1
<

1

n
≤ 1

N
≤ ε .

4. an = (−1)n ist divergent.

Denn unendlich viele Folgenglieder sind gleich 1, aber auch unendlich viele Folgenglieder
sind gleich −1. Für ε = 1

2 zum Beispiel gibt es also kein N , so dass die an für alle n ≥ N
im Intervall (1− 1

2 , 1+
1
2 ) = (12 ,

3
2) liegen. Die Folge konvergiert daher nicht gegen 1. Analog

konvergiert sie auch nicht gegen −1. Ein anderer Grenzwert kommt nicht in Frage.

Unter den divergenten Folgen gibt es speziell die bestimmt divergenten Folgen, welche nach
+∞ oder nach −∞ streben.

Definition Die Folge (an)n∈N hat den Grenzwert ∞, wenn gilt:
Zu jedem K in R gibt es ein N in N mit

an ≥ K für alle n ≥ N .

Man schreibt dafür lim
n→∞

an = ∞. Analog definiert man lim
n→∞

an = −∞ (d.h. in diesem Fall

lautet die Bedingung an ≤ K für alle n ≥ N).

Beispiele

1. Die Folge (n)n∈N ist bestimmt divergent gegen ∞.

2. Die Folge ((−1)n)n∈N ist divergent, aber nicht bestimmt divergent.

Ein weiteres wichtiges Beispiel ist die geometrische Folge (qn)n∈N. Es gilt

lim
n→∞

qn =





0 für |q| < 1 (konvergent)
1 für q = 1 (konvergent)
∞ für q > 1 (bestimmt divergent)

Für q ≤ −1 ist die Folge unbestimmt divergent.

Satz 2.1 (Rechenregeln) Seien (an)n∈N und (bn)n∈N konvergente Folgen und c in R.

(1) lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

(2) lim
n→∞

(c · an) = c · lim
n→∞

an

(3) lim
n→∞

(anbn) = ( lim
n→∞

an) · ( lim
n→∞

bn)

(4) lim
n→∞

(an
bn

)
=

lim
n→∞

an

lim
n→∞

bn
, falls bn 6= 0 und lim

n→∞
bn 6= 0

Diese Rechenregeln kann man teilweise auf Folgen mit dem Grenzwert ∞ oder −∞ erweitern.
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(5) Ist lim
n→∞

an = ∞ und lim
n→∞

bn = b, so gilt

lim
n→∞

(an ± bn) = ∞ , lim
n→∞

(anbn) =

{
∞ für b > 0

−∞ für b < 0
, lim

n→∞

( bn
an

)
= 0 .

(6) Ist lim
n→∞

an = lim
n→∞

bn = ∞, so gilt

lim
n→∞

(an + bn) = ∞ und lim
n→∞

(anbn) = ∞ .

Diese Rechenregeln sind sehr wichtig und nützlich. Ausgehend vom Wissen, dass

lim
n→∞

1

n
= 0 bzw. lim

n→∞
1

nk
= 0 für k ≥ 1 ,

kann mit Hilfe dieser Rechenregeln der Grenzwert von vielen Zahlenfolgen bestimmt werden.
Dabei hat man gleichzeitig auch bewiesen, dass die Zahlenfolgen konvergent sind, und zwar
ohne Anwendung des (eher umständlichen) Kriteriums in der Definition einer konvergenten
Folge.

Beispiele

Typische Beispiele sind Folgen mit rationalen Ausdrücken. Man dividiert zuerst Zähler und
Nenner durch die höchste im Nenner vorkommende Potenz von n und wendet anschliessend
die Rechenregeln an.

1. an =
n

n+ 1

2. an =
n+ 2

5n2 − 2n+ 1

3. an =
n2 − 2n

5n2 + 1
=

1− 2
n

5 + 1
n2

=⇒ lim
n→∞

an =
1− 0

5 + 0
=

1

5

4. an =
n4 − 2n3 + 1

5n2 + 1
=

n2(1− 2
n
+ 1

n4 )

5 + 1
n2

= n2 · bn mit lim
n→∞

bn = lim
n→∞

1− 2
n
+ 1

n4

5 + 1
n2

=
1

5

Mit Rechenregel (5) folgt lim
n→∞

an = ∞.
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Weiter kann man Aussagen über die Konvergenz einer Folge machen, wenn man die Folge
auf Monotonie und Beschränktheit untersucht.

Definition Eine Folge (an)n∈N heisst

• monoton wachsend bzw. fallend, wenn gilt

an+1 ≥ an bzw. an+1 ≤ an für alle n in N

• beschränkt , wenn es eine reelle Zahl K gibt mit

|an| ≤ K für alle n in N .

Die Zahl K nennt man eine Schranke für die Folge.

Beispiele

1. Die Folge an = 1
n
ist (streng) monoton fallend.

2. Die Folge an =
√
n− 10 ist (streng) monoton wachsend.

3. Die Folge an = 1
n
ist beschränkt.

4. Die Folge an = (−1)n ist beschränkt.

5. Die Folge an =
√
n− 10 ist nicht beschränkt.

Satz 2.2 Ist eine Zahlenfolge konvergent, dann ist sie beschränkt.

Gleichbedeutend mit Satz 2.2 ist die Aussage, dass jede nicht beschränkte Folge nicht kon-
vergent (d.h. divergent) ist, wie das zum Beispiel bei der Folge an =

√
n−10 der Fall ist. Die

Umkehrung ist allerdings falsch. Es gibt Folgen, welche beschränkt, jedoch nicht konvergent
sind. Die Folge an = (−1)n ist eine solche Folge.

Satz 2.3 Ist eine Zahlenfolge beschränkt und monoton wachsend oder fallend, dann ist sie
konvergent.

Satz 2.3 ist vor allem dann nützlich, wenn der Grenzwert einer Folge unbekannt ist oder wenn
die Folge rekursiv definiert ist (s. unten).

Schliesslich gibt es noch eine wichtige Regel zum Merken:

Exponentiell ist stärker als polynomial.

Es gilt also beispielsweise

lim
n→∞

(n2 + 2n

2n

)
= 0 und lim

n→∞

( 3n

n2022

)
= ∞ .

Dies kann man mit Hilfe der Regeln von Bernoulli-de l’Hôpital herleiten (vgl. Kapitel 4).

Rekursiv definierte Folgen

Bis jetzt haben wir Zahlenfolgen betrachtet, deren Folgenglieder explizit durch eine Formel,
abhängig von n, gegeben waren. Man kann Folgen jedoch auch rekursiv definieren, das heisst,
man definiert das n-te Folgenglied mit Hilfe von vorangehenden Folgengliedern. Dabei darf
nicht vergessen werden, das erste Glied explizit anzugeben.
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Beispiele

1. Sei an+1 =
1

2

(
an +

2

an

)
für n ≥ 1 und a1 = 1. Durch Einsetzen erhält man

a2 = 1, 5 , a3 = 1, 416666 . . . , a4 = 1, 414215 . . . , a5 = 1, 414213 . . . .

Diese Folge ist monoton fallend für n ≥ 2 und beschränkt (es gilt |an| = an ≤ 1, 5). Nach
Satz 2.3 ist die Folge also konvergent. Sei a der Grenzwert der Folge. Lassen wir nun n
gegen ∞ gehen auf beiden Seiten der Gleichung für an+1, dann erhalten wir mit Hilfe der
Rechenregeln (Satz 2.1) und wegen lim

n→∞
an+1 = lim

n→∞
an = a, dass

a =
1

2

(
a+

2

a

)
=⇒

2. Wir wollen die durchschnittliche Population einer Bakterienkultur in einem Experiment
durch eine Folge (an)n≥0 beschreiben, und zwar so, dass an die (ungefähre) Anzahl von
Bakterien nach n Tagen darstellt. Wir nehmen an, dass am Anfang 5000 Bakterien vorhanden
sind, die sich mit einer täglichen Rate von 4% vermehren, das heisst, jeden Tag kommen
4% der Population vom Vortag hinzu. Ausserdem sterben durch äussere Einflüsse täglich
100 Bakterien. Damit ergibt sich für die Anzahl an+1 von Bakterien nach n + 1 Tagen der
folgende Zusammenhang zu der Anzahl an von Bakterien am Vortag:

an+1 = 1, 04 · an − 100

Berechnen wir die ersten Folgenglieder:

Und weiter

a3 = 1, 04 · (1, 042 · 5000 − 100 · (1 + 1, 04)) − 100

= 1, 043 · 5000 − 100 · (1 + 1, 04 + 1, 042)

Allgemein gilt also

an = 1, 04n · 5000 − 100 · (1 + 1, 04 + · · ·+ 1, 04n−1) .

Dies ist nun immerhin eine explizite Formel für an, mit der wir uns im Moment begnügen
müssen. Doch im nächsten Abschnitt (Seite 31) werden wir sehen (oder Sie wissen es aus der
Schule), dass die Summe 1 + 1, 04 + · · ·+ 1, 04n−1 eine geometrische Reihe ist, die wir noch
einmal vereinfachen können.
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2.2 Reihen

Sei a0, a1, a2, . . . eine beliebige Folge. Wir bilden daraus eine neue Folge durch sukzessives
“Aufsummieren”:

s0 = a0

s1 = a0 + a1 = s0 + a1

s2 = a0 + a1 + a2 = s1 + a2
...

...

sn = a0 + a1 + · · ·+ an = sn−1 + an

Diese Folge s0, s1, s2, . . . der Partialsummen kann also explizit oder rekursiv definiert werden.
Explizit kann sie elegant mit Hilfe des Summenzeichens geschrieben werden:

sn = a0 + a1 + a2 + · · ·+ an =

n∑

k=0

ak

Definition Die unendliche Reihe ∞∑

k=0

ak

ist konvergent, falls die Folge (sn)n∈N der Partialsummen konvergiert. Man schreibt kurz

∞∑

k=0

ak = s , falls s = lim
n→∞

sn = lim
n→∞

n∑

k=0

ak .

Andernfalls heisst die unendliche Reihe
∞∑

k=0

ak divergent.

Beispiele

1. Die harmonische Reihe
∞∑

k=1

1

k
ist divergent.

In der Partialsumme sn fassen wir die Summanden wie folgt zusammen:

sn = 1 +
1

2
+
(1
3
+

1

4

)
+
(1
5
+

1

6
+

1

7
+

1

8

)
+
(1
9
+

1

10
+ · · ·+ 1

16

)
+ · · ·

Die einzelnen Klammerausdrücke sind jeweils > 1
2 . Also ist die Folge der Partialsummen nicht

beschränkt und daher (gemäss Satz 2.2) nicht konvergent.

Man sieht an diesem Beispiel, dass eine Reihe
∞∑

k=0

ak divergent sein kann, auch wenn die

Folge der Glieder ak gegen Null strebt.
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2. Die unendliche Reihe

∞∑

k=1

1

k2
ist konvergent.

Leonhard Euler zeigte 1735, dass
∞∑

k=1

1

k2
=

π2

6
≈ 1, 644934068 (“Basler Problem”).

Geometrische Reihen

Sei q eine reelle Zahl. Dann ist (qk)k≥0 eine geometrische Folge und die zugehörige unendliche

Reihe
∞∑

k=0

qk nennt man geometrische Reihe. Wie gross ist die Partialsumme sn ?

Für q 6= 1 erhalten wir

sn =
1− qn+1

1− q
.

Ist |q| < 1, dann gilt lim
n→∞

qn = 0 (vgl. Seite 26). Damit gilt der folgende Satz.

Satz 2.4 Die geometrische Reihe
∞∑

k=0

qk konvergiert für |q| < 1 und es gilt

s =

∞∑

k=0

qk =
1

1− q
.

Damit können wir endlich das Resultat von unseremBeispiel am Ende des Abschnitts 2.1
schöner darstellen. Für die Anzahl an von Bakterien nach n Tagen gilt

an = 1, 04n · 5000 − 100 · (1 + 1, 04 + · · ·+ 1, 04n−1) .

Mit obiger Formel gilt

1 + 1, 04 + · · ·+ 1, 04n−1 =

und wir finden

an = 1, 04n · 5000 − 100 · 1, 04
n − 1

0, 04
= 1, 04n · 5000 − 2500 · (1, 04n − 1)

= 2500 · (1, 04n + 1) .

Wegen lim
n→∞

1, 04n = ∞ folgt lim
n→∞

an = ∞, die Bakterienpopulation wächst also unbegrenzt.
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Eine geometrische Reihe muss nicht mit dem nullten Glied q0 = 1 beginnen. Manchmal
beginnt sie mit q1 = q, manchmal mit q2, oder allgemein mit qm für ein m ≥ 0. Nehmen wir
an, dass |q| < 1. Dann gilt

Es folgt
∞∑

k=m

qk =
qm

1− q
,

wobei qm das erste Glied der Reihe ist.

Beispiel

Welche rationale Zahl stellt der periodische Dezimalbruch 0, 01 = 0, 0111 . . . dar?

Analog kann man zeigen, dass 0, 9 = 1 (vgl. Übungszusatzaufgabe).

Potenzreihen

Wir haben vorher gesehen, dass die Reihe

∞∑

k=0

xk für alle x mit |x| < 1, das heisst für x im

offenen Intervall I = (−1, 1), konvergent mit Summe 1
1−x ist. Betrachten wir die Funktion

f(x) = 1
1−x : I −→ R, dann können wir also die Polynome

sn(x) =

n∑

k=0

xk = 1 + x+ x2 + x3 + · · · + xn

als Näherungen von f(x) auffassen. Für kleine |x| gilt in “erster” Näherung 1
1−x ≈ 1 + x, in

“zweiter” Näherung 1
1−x ≈ 1 + x+ x2, usw.

Allgemein ist eine Potenzreihe eine Reihe der Gestalt

∞∑

k=0

akx
k ,

wobei (ak)k≥0 eine beliebige Folge ist.
Das zentrale Problem bei Potenzreihen besteht darin, alle x in R anzugeben, für welche

die Reihe konvergiert. Es stellt sich heraus, dass die Menge dieser x stets ein offenes Intervall

ist, das heisst, auf diesem Intervall definiert f(x) =
∞∑

k=0

akx
k eine reelle Funktion. Auf diese

Weise erhalten wir wichtige Funktionen. Das wohl wichtigste Beispiel ist die (natürliche)
Exponentialfunktion.
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2.3 Exponential- und Logarithmusfunktionen

Die natürliche Exponentialfunktion f(x) = ex = exp(x) ist definiert durch die Potenzreihe

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · · =

∞∑

k=0

xk

k!

für alle x in R. Insbesondere ist die Eulersche Zahl e gegeben durch die unendliche Reihe

e = 1 +
1

1!
+

12

2!
+

13

3!
+ · · · =

∞∑

k=0

1

k!
≈ 2, 7182818284590452354 .

Die Zahl e kann auch als Grenzwert einer Folge definiert werden (vgl. Abschnitt 4.3),

e = lim
n→∞

(
1 +

1

n

)n

.

Die natürliche Exponentialfunktion ist auf ganz R streng monoton wachsend und ihre
Bildmenge ist R>0. Die Funktion ex : R −→ R>0 ist also umkehrbar. Die Umkehrfunktion
wird natürliche Logarithmusfunktion genannt:

ln : R>0 −→ R

x 7→ ln(x)

Die Graphen von ex und ln(x) :

Es gibt noch weitere Exponentialfunktionen. Sei a > 0 in R, a 6= 1. Eine Funktion
f : R −→ R mit der Gleichung

f(x) = ax

heisst Exponentialfunktion zur Basis a. Wie ax für x in Q definiert ist, haben wir in Kapitel 1
gesehen. Aber was bedeutet nun ax für beispielsweise a = 3 und x =

√
5 ? Nun, da ex und

ln(x) Umkehrfunktionen voneinander sind, gilt (mit Hilfe der Rechenregel für den natürlichen
Logarithmus)

ax = eln(a
x) = ex ln(a)

für alle x in Q. Für irrationale x definieren wir nun ax durch diese Gleichung. Also ist
3
√
5 = e

√
5 ln(3), wofür man mit der Potenzreihe von ex problemlos eine gute Näherung erhält.
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Hier die Graphen einiger Exponentialfunktionen:

f(x) = 2x, f(x) = 3x, f(x) = 5x f(x) =
(
1
2

)x
, f(x) =

(
1
3

)x
, f(x) =

(
1
5

)x

Exponentialfunktionen sind sehr wichtige Funktionen, beispielsweise um Wachstumsprozesse
mathematisch beschreiben zu können (wie im Beispiel am Ende des Abschnitts 2.1, Seite 29).

Die Funktion f(x) = ax ist streng monoton wachsend für a > 1 und streng monoton
fallend für 0 < a < 1. Die Bildmenge ist gleich R>0 für jedes a. Es folgt wie für ex, dass die
Funktion f : R −→ R>0 umkehrbar ist. Die Umkehrfunktion wird Logarithmusfunktion zur
Basis a genannt:

loga : R>0 −→ R

x 7→ loga(x)

Zur Erinnerung seien die Logarithmusgesetze erwähnt. Sei a > 0, a 6= 1 reell. Dann gilt
für alle x, y in R>0:

(1) loga(x · y) = loga(x) + loga(y)

(2) loga

(
x
y

)
= loga(x)− loga(y)

(3) loga(x
y) = y · loga(x)

(4) loga(x) = ln(x)
ln(a)

Beispiel

Im Beispiel am Ende von Abschnitt 2.1 (Seiten 29 und 31) haben wir gesehen, dass für die
Anzahl an von Bakterien nach n Tagen gilt

an = 2500 · (1, 04n + 1) .

Nach wieviel Tagen sind es eine Million Bakterien?
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2.4 Grenzwerte bei Funktionen

Betrachten wir die beiden reellen Funktionen:

f(x) = sin( 1x) g(x) = x sin( 1x)

Beide Funktionen sind für x0 = 0 nicht definiert. Doch während f in der Nähe von 0 zwischen
den Werten −1 und 1 oszilliert, nähern sich die Funktionswerte von g dem Wert 0 für x gegen
0. Man sagt, dass g an der Stelle x0 = 0 den Grenzwert a = 0 hat. Präzise kann die Näherung
von x gegen 0 durch Folgen beschrieben werden.

Definition Sei f : D −→ R eine Funktion und x0 eine reelle Zahl, die Grenzwert einer
Zahlenfolge (xn)n∈N mit xn ∈ D ist. Dann ist a der Grenzwert von f an der Stelle x0, falls
für jede Folge (xn) mit xn ∈ D, xn 6= x0 für alle n, und lim

n→∞
xn = x0 gilt, dass

a = lim
n→∞

f(xn) .

Wir schreiben dann
a = lim

x→x0

f(x) .

Die reelle Zahl x0 kann dabei in D liegen, muss aber nicht.
Der Grenzwert einer Funktion ist also definiert durch den Grenzwert von Zahlenfolgen.

Wir können deshalb die Rechenregeln für Folgen (Satz 2.1) anwenden.

Beispiel

Wir betrachten die rationale Funktion

f(x) =
x2 − 1

x2 + 3x+ 2
=

(x+ 1)(x− 1)

(x+ 1)(x+ 2)

definiert auf D = R\{−2,−1}.
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• x0 = −1: Sei (xn) eine Folge mit lim
n→∞

xn = −1, xn ∈ D und xn 6= −1 für alle n.

• x0 = −2: Da für x → −2 insbesondere x 6= −1 ist, gilt

lim
x→−2

f(x) = lim
x→−2

(x+ 1)(x− 1)

(x+ 1)(x+ 2)
= lim

x→−2

x− 1

x+ 2
.

Ist nun (xn) eine Folge mit Grenzwert −2 und alle Folgenglieder xn sind kleiner als −2,
dann strebt f(xn) gegen +∞ (denn Zähler < 0, Nenner < 0). Gilt jedoch xn > −2 für
alle n, dann strebt f(xn) gegen −∞ (denn Zähler < 0, Nenner > 0). Der Grenzwert
lim

x→−2
f(x) existiert also nicht.

Eine Stelle x0, in deren unmittelbarer Nähe die Funktionswerte über alle Grenzen hinaus
wachsen oder fallen, nennt man eine Polstelle. Im Beispiel oben ist x0 = −2 eine Polstelle.

Wie in diesem Beispiel verhält sich eine Funktion manchmal unterschiedlich, je nachdem
ob sich x der Stelle x0 “von links” oder “von rechts” nähert.

Definition Für den linksseitigen Grenzwert betrachtet man nur Folgen xn mit xn < x0,
man schreibt

lim
x↑x0

f(x) .

Für den rechtsseitigen Grenzwert betrachtet man nur Folgen xn mit xn > x0, man schreibt

lim
x↓x0

f(x) .

Satz 2.5 Sei f : D −→ R eine Funktion und a in R. Dann ist a = lim
x→x0

f(x) genau dann,

wenn gilt
lim
x↑x0

f(x) = lim
x↓x0

f(x) = a .

Beispiele

1. Sei f : R −→ R definiert durch

f(x) =

{
−1 falls x ≥ 0
2 falls x < 0

Der Grenzwert lim
x→0

f(x) existiert also nicht. Der Graph macht in x0 = 0 einen Sprung.



37

2. Sei f : R\{1} −→ R, f(x) =
1

x− 1
.

Für x0 6= 1 gilt

lim
x→x0

f(x) = lim
x→x0

1

x− 1
=

1

lim
x→x0

x− 1
=

1

x0 − 1
= f(x0) .

Und x0 = 1 ist eine Polstelle, denn

lim
x↓1

1

x− 1
= ∞ und lim

x↑1
1

x− 1
= −∞

Analog zum Grenzwert von f an einer Stelle x0 in R definiert man den Grenzwert von f
für x → ∞ und für x → −∞. Betrachtet man den Graphen von f , so bedeutet lim

x→∞
f(x) = a,

dass die horizontale Gerade y = a eine Asymptote für x → ∞ ist. Genauer heisst dies, dass
der Graph für genügend grosse x im horizontalen Streifen zwischen den Geraden y = a + ε
und y = a− ε liegt.

Beispiele

1. Sei f : R\{1} −→ R, f(x) =
1

x− 1
wie vorher. Dann gilt

lim
x→∞

1

x− 1
= lim

x→−∞
1

x− 1
= 0 .
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2. Sei f(x) =
x2 − 1

x2 + 3x+ 2
die Funktion der Seiten 35/36.

2.5 Stetige Funktionen

Für die Funktion f(x) =
1

x− 1
von vorher gilt also für alle x0 6= 1, dass

lim
x→x0

f(x) =
1

x0 − 1
= f(x0) .

Tatsächlich strebt in den meisten Fällen f(x) gegen f(x0) für x → x0. Man nennt in diesen
Fällen die Funktion f stetig in x0.

Definition Sei f : D −→ R eine Funktion und x0 in D. Dann heisst f stetig in x0, wenn
gilt

lim
x→x0

f(x) = f(x0) .

Die Funktion heisst stetig in D, wenn f in jedem Punkt x0 ∈ D stetig ist.

Anschaulich bedeutet die Stetigkeit von f in einem Punkt x0, dass der Wert f(x) nahe bei
f(x0) ist, sobald x genügend nahe bei x0 ist.

Beispiele

1. f : R −→ R, f(x) = x2.

Sei x0 ∈ R und (xn)n≥1 eine beliebige Folge mit lim
n→∞

xn = x0. Dann gilt

lim
x→x0

f(x) = lim
n→∞

f(xn) = lim
n→∞

x2n = ( lim
n→∞

xn)
2 = x20 = f(x0) ,

wobei wir für die dritte Gleichung die Rechenregel (3) über Zahlenfolgen (Satz 2.1) benutzt
haben. Damit ist f stetig in x0, und da x0 beliebig war, ist f stetig in ganz R.

2. Betrachten wir noch einmal f : R −→ R definiert durch f(x) = −1 für x ≥ 0 und f(x) = 2
für x < 0 (vgl. Seite 30).

In allen x 6= 0 ist f stetig. In x0 = 0 hingegen ist f nicht stetig, denn der Grenzwert lim
x→0

f(x)

existiert nicht; der Graph macht in x0 = 0 einen Sprung.

3. Macht der Graph an einer Stelle nur einen Knick, dann ist die Funktion an dieser Stelle
immer noch stetig. Sei f : R −→ R definiert durch

f(x) =

{
−x+ 2 falls x ≥ 0

2 falls x < 0
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In allen x 6= 0 ist f (offensichtlich) stetig. Wir überprüfen nun, dass f auch in x0 = 0 stetig
ist:

Eine Funktion ist also stetig, wenn man ihren Graphen ohne abzusetzen (d.h. der Graph
macht keine Sprünge) “anständig” zeichnen kann. Alle elementaren Funktionen haben diese
Eigenschaft.

Satz 2.6 Alle elementaren Funktionen (Polynome, rationale Funktionen, Potenzfunktionen,
Exponential- und Logarithmusfunktionen, trigonometrische Funktionen) sind stetig in ihrem
Definitionsbereich.

Aus diesen elementaren Funktionen kann man eine Vielzahl von weiteren stetigen Funk-
tionen konstruieren.

Satz 2.7 Seien f, g : D −→ R zwei in einem Punkt x0 ∈ D stetige Funktionen. Dann gilt:

(1) Die Summe f +g ist stetig in x0. Hierbei ist die Funktion f +g : D −→ R definiert durch
(f + g)(x) = f(x) + g(x).

(2) Das Produkt f · g ist stetig in x0. Hierbei ist die Funktion f · g : D −→ R definiert durch
(f · g)(x) = f(x) · g(x).

(3) Ist g(x0) 6= 0, so ist auch der Quotient f
g
stetig in x0. Hierbei ist die Funktion f

g
definiert

durch f
g (x) =

f(x)
g(x) .

(4) Seien f : D −→ R und g : D′ −→ R zwei Funktionen mit f(D) ⊂ D′. Sei f stetig in x0
und g stetig in f(x0). Dann ist die Komposition g ◦ f stetig in x0.

Beispiel

Die beiden Funktionen f(x) = sin( 1x) und g(x) = x sin( 1x) von Seite 35 sind gemäss den
Sätzen 2.6 und 2.7 (2)& (4) stetig in D = R\{0}.

Wir haben oben erwähnt, dass man den Graphen einer stetigen Funktion ohne abzusetzen
zeichnen kann. Dies bedeutet, dass die Funktion alle Werte zwischen zwei Funktionswerten
annimmt (sofern sie auf dem ganzen Intervall dazwischen definiert ist). Auf dieser Eigenschaft
beruht der folgende Nullstellensatz.
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Satz 2.8 (Nullstellensatz) Ist f stetig auf dem Intervall [a, b] und haben f(a) und f(b)
unterschiedliche Vorzeichen, so hat f eine Nullstelle zwischen a und b, das heisst, es gibt ein
x0 ∈ (a, b) mit f(x0) = 0.

Beispiel

Nach den Sätzen 2.6 und 2.7 ist die Funktion f(x) = 4e−x + x2 − 3 stetig für alle x in R. Es
gilt

f(0) = 1 > 0 und f(1) = −0, 528 < 0 .

Also hat f mindestens eine Nullstelle im (offenen) Intervall (0, 1).

Wie wir eine Näherung für diese Nullstelle finden können, werden wir in Abschnitt 4.6 sehen.
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3 Komplexe Zahlen

Für alle reellen Zahlen x gilt x2 ≥ 0. Es gibt also keine reelle Zahl, welche Lösung der
Gleichung x2 + 1 = 0 ist. Allgemein hat die quadratische Gleichung

ax2 + bx+ c = 0 , a, b, c ∈ R

nur dann reelle Lösungen, wenn b2− 4ac ≥ 0 gilt. Im Bereich der reellen Zahlen ist also nicht
jede algebraische Gleichung, das heisst

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0 , mit a0, . . . , an ∈ R ,

lösbar. Dieser Mangel motiviert eine Erweiterung des Zahlbereichs R zu einem Zahlbereich,
in dem alle algebraischen Gleichungen lösbar sind. Tatsächlich reicht es aus, den Bereich R

so zu erweitern, dass

1. die spezielle Gleichung x2+1 = 0 lösbar ist, das heisst es soll eine imaginäre Zahl i geben,
so dass i2 = −1;

2. alle Grundrechenarten +, −, · und / uneingeschränkt durchführbar sind und die Rechen-
regeln für R erhalten bleiben.

Der Bereich C der komplexen Zahlen ist der kleinste Bereich mit diesen Eigenschaften. In
diesem neuen Bereich sind automatisch alle algebraischen Gleichungen lösbar!

Die Entwicklung der komplexen Zahlen war ein langer Prozess, der mehr als drei Jahrhun-
derte lang dauerte. Seit dem 19. Jh. werden die komplexen Zahlen jedoch in vielen Gebieten
der Mathematik eingesetzt und auch in den Naturwissenschaften sind sie heute unverzichtbar.

3.1 Definitionen und Rechenregeln

Ein Ausdruck der Form
z = a+ b i mit a, b ∈ R

heisst komplexe Zahl. Die Zahl i nennt man imaginäre Einheit und sie erfüllt die Gleichung

i2 = i · i = −1 .

Die Menge aller komplexen Zahlen wird mit C bezeichnet.
Die Zahl a = Re(z) heisst Realteil, die Zahl b = Im(z) Imaginärteil von z. Ist b = 0, so ist

z = a reell (insbesondere ist R ⊂ C). Ist a = 0, so ist z = bi rein imaginär.
Die Darstellung z = a+ bi ist eindeutig, das heisst, zwei komplexe Zahlen z1 = a+ bi und

z2 = c+ di sind gleich genau dann, wenn a = c und b = d.
Die komplexen Zahlen kann man als Punkte in der Gaußschen Zahlenebene darstellen.
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Die zu z = a+ bi konjugiert komplexe Zahl ist z = a− bi. In der Zahlenebene erhält man
z, indem man z an der reellen Achse spiegelt.

Der Betrag |z| von z ist definiert als |z| =
√
a2 + b2. Er entspricht dem Abstand des

Punktes z vom Ursprung in der Zahlenebene.

Definition der Addition und Subtraktion:

(a+ bi)± (c+ di) = (a± c) + (b± d)i

Die Addition und Subtraktion komplexer Zahlen entspricht der Vektoraddition und -subtrak-
tion in der Zahlenebene.

Wie multipliziert man zwei komplexe Zahlen?

Definition der Multiplikation:

(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i

Es gilt insbesondere
z · z = |z|2 .

Ist z 6= 0, dann können wir diese Gleichung auf beiden Seiten durch die reelle Zahl |z|2
dividieren und wir erhalten z · z

|z|2 = 1. Wir folgern, dass

1

z
=

z

|z|2 =
z

z · z ∈ C .

Es kann also durch jede komplexe Zahl 6= 0 dividiert werden (man schreibt auch 1
z = z−1,

wie im Reellen).

Definition der Division: Für w, z ∈ C gilt:

w

z
=

w · z
z · z =

w · z
|z|2

Das heisst, wir erweitern den Bruch mit der konjugiert komplexen Zahl des Nenners.

Beispiele

1.
4

1 + 2i
=
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2.
2 + i

3− 4i
=

3.
1

i
=

Die uns bekannten Rechenregeln für reelle Zahlen bleiben erhalten und das Kommutativ-
und Assoziativgesetz sowie die Distributivgesetze gelten auch für alle komplexen Zahlen.
Während sich die reellen Zahlen mit Hilfe der < - Relation auf dem Zahlenstrahl anordnen
lassen, ist dies für die komplexen Zahlen jedoch nicht möglich.

Es ist praktisch, die folgenden Rechenregeln zu kennen.

Satz 3.1 Für w, z ∈ C gilt:

(a) w ± z = w ± z, w · z = w · z,
(
w
z

)
= w

z

(b) |w · z| = |w| · |z|,
∣∣w
z

∣∣ = |w|
|z|

(c) |w + z| ≤ |w|+ |z| (Dreiecksungleichung)

3.2 Algebraische Gleichungen

Nun sind wir schon fähig, jede quadratische Gleichung zu lösen.

Beispiele

1. x2 = −1

2. x2 = −4

3. x2 = −c für eine positive reelle Zahl c. Die beiden Lösungen sind

x1,2 = ±
√
c i .

4. x2 + 2x+ 5 = 0

Hier muss man aufpassen. Für reelles a > 0 ist
√
a die eindeutige positive Wurzel aus a.

Hingegen ist
√−a nicht eindeutig,

√−a steht für die zwei Lösungen der Gleichung x2 = −a.
Deshalb ist

√
−1 gleich i oder gleich −i. Wir kommen später beim Wurzelziehen nochmals

darauf zurück.
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Aufpassen muss man auch beim Multiplizieren von Wurzeln. Für zwei negative reelle
Zahlen a, b gilt

√
ab 6= √

a
√
b ! Nach obiger Bemerkung ist die linke Seite eindeutig definiert

(da ab > 0), die rechte Seite jedoch nicht.

Auf ähnliche Weise wie im 4. Beispiel findet man die Lösungen der allgemeinen quadra-
tischen Gleichung

ax2 + bx+ c = 0 ,

wobei a, b, c in R. Die Lösungsformel liefert die Lösungen

x1,2 =
−b±

√
b2 − 4ac

2a
.

Abhängig von der Diskriminante D = b2 − 4ac tritt nun eine von drei möglichen Situationen
ein:

• D > 0 =⇒ zwei reelle Lösungen x1, x2

• D = 0 =⇒ eine reelle Lösung x1 = x2

• D < 0 =⇒ zwei komplexe (nicht-reelle) Lösungen x1, x2, wobei x2 = x1

Beispiel

Gesucht sind alle Lösungen der quadratischen Gleichung 4x2 + 2x+ 1 = 0.

Die obige Lösungsformel gilt auch für eine quadratische Gleichung az2 + bz + c = 0 mit
Koeffizienten a, b, c in C. Nun ist D = b2 − 4ac eine komplexe Zahl und man muss zwei Fälle
unterscheiden: Im Fall D 6= 0 gibt es zwei (komplexe) Lösungen und im Fall D = 0 gibt es
genau eine (komplexe) Lösung. Wir werden am Ende dieses Kapitels eine solche quadratische
Gleichung lösen (wenn wir gelernt haben, wie man Wurzeln aus komplexen Zahlen zieht).

Betrachten wir nun eine allgemeine algebraische Gleichung über C

anz
n + an−1z

n−1 + · · ·+ a1z + a0 = 0 , a0, . . . , an ∈ C .

Die natürliche Zahl n (falls an 6= 0) heisst der Grad der Gleichung (die linke Seite ist ja
ein Polynom). Der Mathematiker Carl Friedrich Gauß (1777 – 1855) bewies, dass jede
algebraische Gleichung über C mindestens eine (komplexe) Lösung hat. Aus dieser Aussage
erhält man den folgenden fundamentalen Satz.

Fundamentalsatz der Algebra Jede algebraische Gleichung über C vom Grad n hat bei
geeigneter Zählweise genau n Lösungen in C.
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Im Beweis wird gezeigt, dass jedes Polynom p(z) = zn + an−1z
n−1 + · · · + a1z + a0 mit

a0, . . . , an ∈ C als Produkt von genau n Linearfaktoren geschrieben werden kann,

p(z) = (z − z1) · (z − z2) · · · · · (z − zn)

mit z1, . . . , zn in C. Dann ist

p(z) = 0 ⇐⇒ z ∈ { z1, . . . , zn } .

Falls zwei oder mehr der z1, . . . , zn übereinstimmen, werden diese Nullstellen doppelt oder
mehrfach gezählt.

Beispiel

Für Gleichungen vom Grad 2, 3 und 4 gibt es Lösungsformeln. Es gibt jedoch keine Formeln
für allgemeine Gleichungen vom Grad ≥ 5. In diesen Fällen benutzt man Näherungsverfahren
zur Bestimmung der Lösungen.

3.3 Polarkoordinaten und exponentielle Darstellung

Ein Punkt z = a+ bi der Gaußschen Zahlenebene ist durch seine kartesischen Koordinaten a
und b eindeutig festgelegt. Man kann jedoch auch zwei andere Grössen zur Beschreibung von
z wählen.

Die Grössen r und ϕ nennt man Polarkoordinaten des Punktes z ∈ C. Die reelle Zahl r
ist der Abstand von z zum Ursprung in der Gaußschen Zahlenebene und der Winkel ϕ
zwischen positiver x-Achse und z nennt man das Argument von z. Das Argument von z ist
eindeutig bestimmt, falls 0 ≤ ϕ < 2π verlangt wird. Eine komplexe Zahl kann also entweder in
kartesischen Koordinaten (a, b) oder in Polarkoordinaten (r, ϕ) eindeutig beschrieben werden.
Wie hängen die Polar- und die kartesischen Koordinaten zusammen?

Da r der Abstand des Punktes z = a+ bi zum Ursprung ist, gilt

r = |z| =
√

a2 + b2 .

Damit liegt die komplexe Zahl z
r
auf dem Einheitskreis, denn

∣∣z
r

∣∣ = |z|
r

= 1. Der Real-
und der Imaginärteil von z sind demnach gegeben durch cosϕ, bzw. sinϕ. Das heisst, z

r
=

cosϕ+ i sinϕ, und so
z = r(cosϕ+ i sinϕ) .

Diese Darstellung nennt man Polarform der komplexen Zahl z.
In Polarform kann die zu z = r(cosϕ + i sinϕ) konjugiert komplexe Zahl z geschrieben

werden als z = r(cosϕ− i sinϕ) = r(cos(−ϕ) + i sin(−ϕ)).
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Wie rechnet man nun von den einen in die anderen Koordinaten um?

• (r, ϕ) −→ (a, b): Seien r, ϕ die Polarkoordinaten von z, dann gilt

z = a+ bi mit a = r cosϕ und b = r sinϕ .

Beispiele

1. r = 2, ϕ = 90◦ = π
2 .

2. r =
√
3, ϕ = 230◦.

• (a, b) −→ (r, ϕ): Sei z = a+ bi, dann gilt

r = |z| =
√
a2 + b2

ϕ =

{
arccos(ar ) falls b ≥ 0
− arccos(ar ) falls b < 0

.

Warum? Für ϕ haben wir von oben zunächst die Gleichungen cosϕ = a
r und sinϕ = b

r .
Lösungen der ersten Gleichung sind ϕ = ± arccos(ar ), wobei arccos(

a
r ) ∈ [0, π] (vgl. Seite 20).

Da sinϕ ≥ 0 für ϕ ∈ [0, π] und sinϕ < 0 für ϕ ∈ (−π, 0), gilt für ϕ ∈ (−π, π]

ϕ = +arccos
(a
r

)
⇐⇒ ϕ ≥ 0 ⇐⇒ sinϕ ≥ 0 ⇐⇒ b

r
≥ 0 ⇐⇒ b ≥ 0 .

Beispiele

1. z = 1− i

2. w = −2 + i
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Mit Hilfe der Exponentialfunktion kann die Polarform einer komplexen Zahl noch elegan-
ter geschrieben werden. Dazu erweitern wir die Exponentialfunktion auf komplexe Zahlen.
Tatsächlich ist für jede komplexe Zahl z die Potenzreihe

ez =

∞∑

k=0

zk

k!

wieder eine komplexe Zahl. Wir haben also eine Funktion f : C −→ C, f(z) = ez. Wie im
Reellen gilt ez+w = ez · ew für alle z, w ∈ C und weiter ist ez = ez für alle z ∈ C.

Wir betrachten nun ez für die rein imaginäre Zahl z = iϕ, d.h. für ϕ ∈ R. Es gilt

|eiϕ|2 = eiϕ · eiϕ = eiϕ · eiϕ = eiϕ · e−iϕ = e0 = 1

und damit |eiϕ| = 1. Dies bedeutet, dass eiϕ auf dem Einheitskreis in der Gaußschen Zahlene-
bene liegt. Nun kann man zeigen, dass ϕ gerade das Argument (im Bogenmass) der komplexen
Zahl eiϕ ist. Es folgt, dass der Realteil von eiϕ gleich cosϕ und der Imaginärteil von eiϕ gleich
sinϕ ist.

Das heisst, es gilt die

Eulersche Identität: eiϕ = cosϕ+ i sinϕ

Als Spezialfall (ϕ = π) ergibt sich die wunderschöne Beziehung:

e
iπ
+ 1 = 0

Für z = r(cosϕ+ i sinϕ) erhalten wir nun aus der Eulerschen Identität die exponentielle
Darstellung

z = r · eiϕ ,

wobei r der Betrag und ϕ das Argument von z sind.

Beispiele

1. z = 1− i
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2. z = 5 ei
4π
3

Die Multiplikation und Division von komplexen Zahlen in dieser Darstellung sind nun
ganz einfach zu rechnen und erst noch geometrisch interpretierbar!

Satz 3.2 Seien z1 = r1e
iϕ1 und z2 = r2e

iϕ2 zwei komplexe Zahlen. Dann gilt

z1 · z2 = r1 r2 e
i(ϕ1+ϕ2) und

z1
z2

=
r1
r2

ei(ϕ1−ϕ2)

Beispiel

z1 = 2 ei
π
6 , z2 = ei

π
2

Die Multiplikation mit i entspricht also einer Drehung um 90◦ um den Ursprung der Gauß-
schen Zahlenebene. Allgemein entspricht die Multiplikation mit einer komplexen Zahl z = reiϕ

einer Drehstreckung (mit dem Streckfaktor r und dem Drehwinkel ϕ).

3.4 Potenzen und Wurzeln

Potenzen komplexer Zahlen werden wie im Reellen definiert, das heisst

z0 = 1 , z1 = z , zn = zn−1 · z , und z−n =
1

zn

für alle n ∈ N. In der exponentiellen Darstellung ist das Potenzieren einfach:

z = reiϕ =⇒ zn = rneinϕ

In Polarkoordinaten erhält man

zn = (r(cosϕ+ i sinϕ))n = rn(cos(nϕ) + i sin(nϕ)) .

Formel von de Moivre: (cosϕ+ i sinϕ)n = cos(nϕ) + i sin(nϕ) für n ∈ Z.
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Die Formel von de Moivre kann benutzt werden, um cos(nϕ) und sin(nϕ) für n ∈ N durch
Potenzen von cosϕ und sinϕ auszudrücken (vgl. Formelsammlung).

Da zwei komplexe Zahlen genau dann gleich sind, wenn ihre Real- und Imaginärteile überein-
stimmen, folgt

cos(2ϕ) = cos2 ϕ− sin2 ϕ und sin(2ϕ) = 2 cosϕ sinϕ .

Beispiel

(1− i)16 = ?

Einheitswurzeln

Was sind nun die Lösungen der speziellen Gleichung

zn = 1 ?

Wir schreiben die rechte Seite exponentiell, zn = 1 = e2πi. BeimWurzelziehen, als Umkehrung
des Potenzierens, dividieren wir das Argument durch n und erhalten die Lösung

ζ = ei
2π
n = cos

(
2π

n

)
+ i sin

(
2π

n

)
.

Dies ist eine der genau n verschiedenen (komplexen) Lösungen

ζk = ei
2πk
n , k = 0, 1, . . . , n− 1 .

Die Zahlen ζk (k = 0, 1, . . . , n−1) nennt man n-te Einheitswurzeln. In der Gaußschen Zahlen-
ebene liegen sie genau auf den Ecken des dem Einheitskreis einbeschriebenen regelmässigen
n-Ecks, wobei die eine Ecke bei z = 1 liegt.

Beispiele

1. z4 = 1.
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2. z6 = 1. Die Lösungen sind zk = ei
π
3
k für k = 0, 1, . . . , 5.

z0 = 1

z1 = ei
π
3

z2 = ei
2π
3

z3 = eiπ = −1

z4 = ei
4π
3

z5 = ei
5π
3

Allgemeine Wurzeln

Betrachten wir nun die allgemeinere Gleichung

zn = w

für w ∈ C, w 6∈ R≥0. Schreiben wir w in exponentieller Form w = reiϕ und ist ζ wie vorher

die n-te Einheitswurzel ζ = ei
2π
n , dann sind alle Lösungen der Gleichung gegeben durch

z0 =
n
√
rei

ϕ

n sowie z0ζ, z0ζ
2, . . . , z0ζ

n−1 .

Die Gleichung zn = w hat also genau n verschiedene Lösungen. Man nennt jede dieser
Lösungen eine n-te Wurzel von w und bezeichnet sie mit n

√
w. Die Wurzel aus einer komplexen

Zahl ist also nicht eindeutig, wie schon auf Seite 43 für n = 2 bemerkt.

Beispiele

1. Wir betrachten die Gleichung z3 = −2 . Mit −2 = 2 eiπ und ζ = ei
2π
3 finden wir die

Lösungen

z0 =
3
√
2 ei

π
3 , z0ζ =

3
√
2 eiπ = − 3

√
2, z0ζ

2 =
3
√
2 ei

5π
3 .

2. Gesucht sind die Lösungen der quadratischen Gleichung z2 − (1 + 3i)z − 2 + i = 0.
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4 Differentiation

Alle elementaren Funktionen (und damit auch Summen, Produkte und Quotienten davon)
sind in ihrem Definitionsbereich nicht nur stetig, sondern auch differenzierbar. Mit Hilfe der
Ableitung können wir ihre Maxima und Minima bestimmen, die Nullstellen näherungsweise
berechnen sowie komplizierte Funktionen durch einfachere Funktionen beschreiben.

4.1 Die Ableitung einer Funktion

Der Begriff der Ableitung ist aus einem praktischen Problem entstanden. Nehmen wir an,
wir fahren mit dem Zug von Basel nach Chur. Für die rund 200 km lange Strecke benötigen
wir 2 Stunden und 19 Minuten, das heisst, 2,32 Stunden. Wie schnell sind wir gefahren, das
heisst, wie gross war unsere Geschwindigkeit?

Nun, Geschwindigkeit ist gleich Weg durch Zeit, genauer: zurückgelegter Weg durch ver-
strichene Zeitspanne. Für unsere Geschwindigkeit folgt also

Geschwindigkeit =
200 km

2, 32 h
≈ 86

km

h
.

Dies ist unsere mittlere oder durchschnittliche Geschwindigkeit.
Sei allgemein s(t) der zurückgelegte Weg zum Zeitpunkt t. Gehen wir vom zurückgelegten

Weg s(t0) zu einem Zeitpunkt t0 aus, dann können wir die mittlere Geschwindigkeit während
der folgenden Zeitspanne h (d.h. von t0 bis t0 + h) berechnen als

s(t0 + h)− s(t0)

h
.

Nun wollen wir aber wissen, wie gross unsere Geschwindigkeit zu einem bestimmten Zeit-
punkt war. Wie kann die momentane Geschwindigkeit zu einem genauen Zeitpunkt t0 berech-
net werden? Die Idee ist, die momentane Geschwindigkeit durch mittlere Geschwindigkeiten
anzunähern.

Beispiel

Nach dem langen Halt im Bahnhof Zürich fährt der Zug wieder los. Dieser Anfahrvorgang
sei durch die Wegfunktion s(t) = t2 (in Metern) beschrieben. Wie gross ist dann unsere Ge-
schwindigkeit nach genau 3 Sekunden nach dem Anfahren? Wir betrachten also den Zeitpunkt
t0 = 3 und lassen die Zeitspanne h immer kleiner werden.

Zeitspanne h 1 0, 1 0, 01 0, 001

mittlere Geschwindigkeit s(t0+h)−s(t0)
h

7 6, 1 6, 01 6, 001

Wir erkennen, dass sich für h → 0 die momentane Geschwindigkeit 6 m
s nähert.

Allgemein berechnet sich die momentane Geschwindigkeit zur Zeit t0 durch

lim
h→0

s(t0 + h)− s(t0)

h
.

Diese Idee der Näherung geht auf Isaac Newton (1643 – 1727) zurück. Doch damals kannte
man noch keine präzise Definition des Grenzwerts. Diese wurde erst im 19. Jahrhundert ein-
geführt. Heute nennen wir diesen Grenzwert die Ableitung der Funktion s(t).
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Definition Sei f : D −→ R eine reelle Funktion. Dann heisst f an der Stelle x0 ∈ D
differenzierbar, wenn der Grenzwert

lim
h→0

f(x0 + h)− f(x0)

h

existiert. Er heisst Ableitung (oder Differentialquotient) von f in x0 und wird mit f ′(x0)
bezeichnet. Der Ausdruck

f(x0 + h)− f(x0)

h

wird Differenzenquotient genannt.

Andere Notationen: Für die Ableitung sind auch die folgenden Schreibweisen üblich:

f ′(x0) =
df

dx
(x0) =

df

dx

∣∣∣
x=x0

Ist die (Weg-)Funktion s(t) abhängig von der Zeit t, dann wird speziell in der Physik die
Ableitung mit ṡ(t) bezeichnet.

Anstelle von h ist auch ∆x üblich, bzw. x = x0 +∆x. Damit ist

f(x0 + h)− f(x0) = f(x0 +∆x)− f(x0) = f(x)− f(x0) = ∆f

und man erhält für f ′(x0) die äquivalenten Schreibweisen

lim
h→0

f(x0 + h)− f(x0)

h
= lim

∆x→0

f(x0 +∆x)− f(x0)

∆x
= lim

x→x0

f(x)− f(x0)

x− x0
= lim

∆x→0

∆f

∆x
.

Geometrische Deutung

Der Differenzenquotient ist gleich der Steigung der Sekante durch die Punkte P = (x0, f(x0))
und Q = (x0 + h, f(x0 + h)) auf dem Graphen von f . Für h → 0 (d.h. lässt man Q gegen P
wandern) geht die Sekante in die Tangente an den Graphen von f in x0 über. Die Ableitung
f ′(x0) beschreibt also die Steigung der Tangente an den Funktionsgraphen an der Stelle x0
(was auch als Steigung des Funktionsgraphen in x0 bezeichnet wird).
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Auf diese Interpretation der Ableitung stiess unabhängig von Newton Gottfried Wilhelm

Leibniz (1646 – 1716), als er sich fragte, wie man die Steigung einer Kurve (insbesondere
eines Funktionsgraphen) in einem Punkt erklären kann.

Definition Eine Funktion f : D −→ R heisst differenzierbar (in D), falls f in allen x ∈ D
differenzierbar ist. Die Funktion f ′ : D −→ R, die jedem x ∈ D die Zahl f ′(x) zuordnet,
heisst Ableitung von f .

Anschaulich gesehen ist eine Funktion differenzierbar, wenn sich an jedem Punkt des
Graphen in eindeutiger Weise eine Tangente anlegen lässt. Eine Funktion ist also insbesondere
an einer Stelle nicht differenzierbar, wenn sie dort einen Sprung macht, eine Polstelle hat oder
oszilliert; das heisst, wenn sie dort nicht stetig ist. Es kann aber auch Stellen geben, an welchen
die Funktion wohl stetig ist, jedoch nicht differenzierbar, beispielsweise wenn die Funktion
einen Knick macht.

Es gilt also:
f differenzierbar in x0 =⇒ f stetig in x0

Die umgekehrte Richtung “⇐=” ist hingegen falsch.

x0 x0x0

x0

nicht differenzierbar
in 

unstetig,

x0 x0

nicht differenzierbar
in 

stetig,

in 

stetig,
differenzierbar

Beispiele

1. Sei s(t) = t2 die Wegfunktion vom Beispiel auf Seite 51. Wie gross ist die (momentane)
Geschwindigkeit zur Zeit t0 ?

Zum Zeitpunkt t0 = 3 s beträgt die Geschwindigkeit also tatsächlich s′(3) = 6 m
s .

2. Sei f(x) = c eine konstante Funktion. Dann ist f(x0 + h) − f(x0) = c− c = 0 und damit
f ′(x0) = 0 für alle x0 ∈ R. Dies erkennt man auch direkt am Graphen von f .
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3. Sei f(x) =
√
x = x

1
2 . Indem man den Differenzenquotienten geschickt erweitert, erhält

man

f(x0 + h)− f(x0)

h
=

(
√
x0 + h−√

x0)

h
· (
√
x0 + h+

√
x0)

(
√
x0 + h+

√
x0)

=
1√

x0 + h+
√
x0

Es folgt

f ′(x0) = lim
h→0

1√
x0 + h+

√
x0

=
1

2
√
x0

=
1

2
x
− 1

2
0 .

Bemerkung Für jede reelle Zahl r gilt (Beweis Seite 57):

f(x) = xr =⇒ f ′(x) = r xr−1

4. Sei f(x) = |x|.

Diese Funktion ist differenzierbar in allen x ∈ R, ausser in x0 = 0. Man erkennt dies direkt am
Graphen von f , denn in x0 = 0 macht er einen Knick und es ist unmöglich, hier eine Tangente
auf eindeutige Weise anzulegen. Tatsächlich existiert der Differentialquotient in x0 = 0 nicht,
denn

lim
h↓0

f(x0 + h)− f(x0)

h
=

aber

lim
h↑0

f(x0 + h)− f(x0)

h
=

Um für eine konkrete Funktion f die Ableitung f ′ zu bestimmen, sind die folgenden
Ableitungsregeln sehr nützlich.

Satz 4.1 (Ableitungsregeln) (a) Seien f, g differenzierbar. Dann sind auch f + g, λf für
λ ∈ R, f · g und f

g (überall wo g(x) 6= 0) differenzierbar.

(i) Es gilt
(f + g)′ = f ′ + g′ und (λf)′ = λf ′ für alle λ ∈ R .

(ii) Es gilt die Produktregel
(f · g)′ = f ′ · g + f · g′ .

(iii) Es gilt die Quotientenregel

(
f

g

)′
=

f ′ · g − f · g′
g2

.
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(b) Ist f(x) =

∞∑

k=0

akx
k eine auf dem (offenen) Intervall I konvergente Potenzreihe, dann ist

f auf I differenzierbar und es gilt

f ′(x) =
∞∑

k=1

kakx
k−1 für alle x ∈ I.

Die Regeln von Satz 4.1 (a) sollten aus der Schule bekannt sein. Wir geben hier deshalb nur
Beispiele zu Satz 4.1 (b).

Beispiele

1. Sei f(x) = ex = 1 + x+ x2

2! +
x3

3! +
x4

4! + · · · . Mit Hilfe von Satz 4.1 (b) folgt

Also gilt (ex)′ = ex. Bis auf Vielfache ist f(x) = ex die einzige reelle Funktion f mit f ′ = f .

2. Auch cos x und sinx können als Potenzreihen dargestellt werden. Aus der Potenzreihe von
eix und der Eulerschen Identität eix = cos x+ i sinx folgt, dass

cos x = 1− x2

2!
+

x4

4!
− · · ·+ · · · =

∞∑

k=0

(−1)k
x2k

(2k)!

sinx = x− x3

3!
+

x5

5!
− · · ·+ · · · =

∞∑

k=0

(−1)k
x2k+1

(2k + 1)!
.

Für die Ableitungen können wir nach Satz 4.1 (b) gliedweise ableiten. Wir erhalten

und analog

(sinx)′ = 1− x2

2!
+

x4

4!
− · · · + · · · = cos x .

Es gilt also:
(cos x)′ = − sinx und (sinx)′ = cos x

Als nächstes betrachten wir zusammengesetzte Funktionen (wie am Ende von Kapitel 1,
Seite 17, definiert). Sei h = g ◦ f , wobei f : D −→ R und g : D̃ −→ R mit f(D) ⊆ D̃. Das
heisst, es gilt h(x) = (g ◦ f)(x) = g(f(x)) für alle x ∈ D.

Satz 4.2 (Kettenregel) Ist f differenzierbar in x0 und g differenzierbar in y0 = f(x0), so
ist die Komposition g ◦ f differenzierbar in x0 und es gilt

(g ◦ f)′(x0) = g′(f(x0)) · f ′(x0) .

Da (g ◦ f)(x) = g(f(x)), nennt man g die äussere Funktion und f die innere Funktion. Die
Kettenregel

(g ◦ f)′(x0) = g′(f(x0)) · f ′(x0)

kann man sich (in Kurzform) also so merken:
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äussere Ableitung · innere Ableitung

Genauer bedeutet dies: Die Ableitung der äusseren Funktion an der Stelle der inneren Funk-
tion mal die Ableitung der inneren Funktion.

Beispiele

1. Sei h(x) = (sinx)5 = sin5 x.

2. Sei h(x) = ecos(3x+π).

Satz 4.3 (Ableitung einer Umkehrfunktion) Sei f : D −→ R umkehrbar und diffe-
renzierbar in x0 mit f ′(x0) 6= 0. Dann ist die Umkehrfunktion g = f−1 differenzierbar in
y0 = f(x0) und es gilt

g′(y0) =
1

f ′(x0)
=

1

f ′(g(y0))
.

Beispiele

1. Die Funktion g(y) = ln(y) ist die Umkehrfunktion von f(x) = ex.

Es gilt also für alle y > 0,

(ln(y))′ =
1

y
.

Damit und mit Hilfe der Kettenregel können wir die Ableitungsregel

(xr)′ = r xr−1
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für alle reellen Zahlen r von Seite 54 überprüfen:

2. Die Funktion f(x) = sinx : [−π
2 ,

π
2 ] −→ [−1, 1] ist umkehrbar und f ′(x) = cos x ist 6= 0 für

−π
2 < x < π

2 . Die Umkehrfunktion g(y) = arcsin y ist deshalb differenzierbar für −1 < y < 1
(denn sin(±π

2 ) = ±1) und es gilt

Wegen cos2 x+ sin2 x = 1 ist cos x =
√

1− sin2 x =
√

1− (sinx)2. Damit erhalten wir

Es gilt also für −1 < y < 1,

(arcsin y)′ =
1√

1− y2
.

4.2 Extremalstellen

Sei f : D −→ R eine differenzierbare Funktion. Falls die Ableitung f ′ : D −→ R wieder
differenzierbar ist, können wir die Ableitung von f ′ bilden und erhalten die zweite Ableitung
f ′′ von f , usw. Eine Funktion f , die man auf diese Weise n-mal ableiten kann, heisst n-mal
differenzierbar. Die n-te Ableitung bezeichnet man mit

f (n)(x) .

Alternative Schreibweisen sind

f (n)(x) = f
′′···′(x) =

dnf(x)

dxn
=

dn

dxn
f(x) .

Das Ziel dieses Abschnitts ist, aus den Ableitungen einer Funktion Rückschlüsse auf deren
Verlauf zu ziehen.

Das Monotonieverhalten einer Funktion kann direkt an der Ableitung der Funktion ab-
gelesen werden. Dieser Zusammenhang basiert auf dem folgenden wichtigen Satz.

Satz 4.4 (Mittelwertsatz) Sei f eine reelle Funktion, die in einem Intervall [a, b] diffe-
renzierbar ist. Dann gibt es einen Punkt x0 ∈ [a, b], so dass

f(b)− f(a) = f ′(x0) · (b− a) .

Der Mittelwertsatz sagt aus, dass es zu jeder Sekante eine parallele Tangente an den Funk-
tionsgraphen gibt.
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Steigung der Sekante =
f(b)− f(a)

b− a
= f ′(x0) = Steigung der Tangente in x0

Beispiel

Wir betrachten f(x) = x3 − x im Intervall [a, b] = [0, 2]. Es gilt

Nach dem Mittelwertsatz gibt es also (mindestens) ein x0 ∈ [0, 2] mit f ′(x0) = 3. Nun ist

Da x0 im Intervall [0, 2] liegt, ist also x0 =
2√
3
≈ 1, 15 der gesuchte Punkt.

Satz 4.5 Sei f differenzierbar in [a, b]. Dann gilt

(i) f monoton wachsend in [a, b] ⇐⇒ f ′(x) ≥ 0 für alle x ∈ [a, b]

(ii) f monoton fallend in [a, b] ⇐⇒ f ′(x) ≤ 0 für alle x ∈ [a, b]

(iii) f konstant in [a, b] ⇐⇒ f ′(x) = 0 für alle x ∈ [a, b]

Satz 4.5 ist nachvollziehbar, wenn f ′(x) als “momentane Änderungsrate” von f interpre-
tiert wird. Der Mittelwertsatz geht in die Beweise der Richtungen “⇐=” ein.

Beispiel
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Sei nun f : [a, b] −→ R eine Funktion. Wir wollen die sogenannten Extremalstellen (bzw.
die Extrema) bestimmen.

Die Punkte x im offenen Intervall (a, b) = {x ∈ R | a < x < b} nennen wir die inneren
Punkte und die Punkte x = a und x = b heissen Randpunkte von [a, b].

Definition Ein Punkt x0 ∈ [a, b] heisst

• globale Maximalstelle von f in [a, b], falls gilt

f(x) ≤ f(x0) für alle x ∈ [a, b] ;

lokale Maximalstelle, falls x0 ein innerer Punkt ist und

f(x) ≤ f(x0) für alle x in einer Umgebung von x0 .

Man nennt f(x0) ein globales (bzw. lokales) Maximum von f in [a, b].

• globale Minimalstelle von f in [a, b], falls gilt

f(x) ≥ f(x0) für alle x ∈ [a, b] ;

lokale Minimalstelle, falls x0 ein innerer Punkt ist und

f(x) ≥ f(x0) für alle x in einer Umgebung von x0 .

Man nennt f(x0) ein globales (bzw. lokales) Minimum von f in [a, b].

Eine Maximalstelle oder Minimalstelle x0 heisst auch eine Extremalstelle und der Wert f(x0)
ein Extremum.

y=f(x)

globales Maximum

lokale Extremalstellen

a b x

y

Wenn f auf einem abgeschlossenen Intervall [a, b] definiert und dort stetig ist, dann hat
f in [a, b] (globale) Extrema. Wie finden wir diese Extrema?

Beim Graphen oben erkennen wir, dass die Tangente an den Graphen an einer lokalen
Maximal- oder Minimalstelle waagrecht ist, das heisst, die Steigung der Tangente Null ist.
Für eine lokale Extremalstelle x0 gilt also f ′(x0) = 0.

Nicht jede Stelle x0 mit f ′(x0) = 0 ist jedoch eine Extremalstelle. Auch bei einem Sat-
telpunkt (s. unten) verschwindet die erste Ableitung. Zum Beispiel gilt f ′(0) = 0 für die
Funktion f(x) = x3, aber f hat in x0 = 0 kein Extrema, sondern einen Sattelpunkt.

Die zweiten Ableitungen in x0 (falls sie existieren) sagen uns, ob x0 eine Extremalstelle
ist, und wenn ja, von welcher Art.
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Satz 4.6 Sei x0 ∈ (a, b). Dann gilt:

f ′(x0) = 0 und f ′′(x0) < 0 =⇒ f(x0) ist ein lokales Maximum

f ′(x0) = 0 und f ′′(x0) > 0 =⇒ f(x0) ist ein lokales Minimum

Schauen wir uns diese beiden Fälle separat genauer an.

• Sei f ′(x0) = 0 und f ′′(x0) < 0.

Dann gilt, dass f ′′(x) < 0 in einer (kleinen) Umgebung U(x0) von x0.

=⇒ f ′(x) ist monoton fallend in U(x0)

=⇒ f beschreibt eine Rechtskurve in U(x0)

=⇒ f(x0) ist ein lokales Maximum

y

x

m=2

m=1

m=0

m=−2

y=f(x)

m = f ′(x) ist monoton fallend

• Sei f ′(x0) = 0 und f ′′(x0) > 0.

Dann gilt, dass f ′′(x) > 0 in einer (kleinen) Umgebung U(x0) von x0.

=⇒ f ′(x) ist monoton wachsend in U(x0)

=⇒ f beschreibt eine Linkskurve in U(x0)

=⇒ f(x0) ist ein lokales Minimum

y

x

m=−2

y=f(x)

m=1.2

m=0.8

m = f ′(x) ist monoton wachsend

Satz 4.6 ist nur für innere Punkte x0, wo f zweimal differenzierbar ist, anwendbar. Rand-
punkte müssen separat betrachtet werden. Beim Graphen auf Seite 59 zum Beispiel gilt für
die globale Maximalstelle x = b, dass f ′(b) 6= 0 (bzw. f ist nicht differenzierbar in b).
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Weiter gelten die Pfeile in Satz 4.6 nicht in umgekehrter Richtung. Zum Beispiel hat die
Funktion f(x) = x4 in x0 = 0 ein lokales (und globales) Minimum. Damit folgt f ′(0) = 0.
Aber für diese Funktion ist die zweite Ableitung ebenfalls Null: f ′′(0) = 0 .

Vorgehen zur Bestimmung der Extremalstellen von f : [a, b] −→ R :

(1) Bestimmung und Untersuchung von allen Stellen x0 mit f ′(x0) = 0.

(2) Berechnung von f(a), f(b) und den Funktionswerten in den Punkten, wo f nicht diffe-
renzierbar ist. Vergleich mit den in (1) erhaltenen Maxima und Minima.

Beispiel

Sei f : [−1, 10] −→ R, f(x) = (x2 − 4x) e−x .

(1)

(2) f ist überall differenzierbar. Vorher unter (1) haben wir demnach alle lokalen Extremal-
stellen gefunden. Für die gobalen Extremalstellen müssen wir nur noch die Funktions-
werte f(−1) und f(10) mit dem in (1) gefundenen Maximum und Minimum vergleichen.

Wir schliessen, dass f(5, 24) = 0, 034 ein lokales Maximum, f(−1) = 13, 59 ein globales
Maximum und f(0, 76) = −1, 15 ein lokales und globales Minimum ist.
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Wir haben oben gesehen, dass der Funktionsgraph bei einem lokalen Maximum eine
Rechtskurve beschreibt (es gilt dort f ′′(x) < 0) und bei einem lokalen Minimum eine Links-
kurve (es gilt dort f ′′(x) > 0). Ist f ′′ stetig, dann gibt es (nach dem Nullstellensatz) eine
Stelle x0 dazwischen mit f ′′(x0) = 0. An dieser Stelle geht die Rechts- in eine Linkskurve
(bzw. die Links- in eine Rechtskurve) über.

Definition Eine Funktion f hat in x0 einen Wendepunkt, wenn im Punkt (x0, f(x0)) die
Krümmung des Graphen von f wechselt (die Rechts- in eine Linkskurve übergeht oder um-
gekehrt). Gilt zusätzlich f ′(x0) = 0 (waagrechte Tangente in x0), dann nennt man den Wen-
depunkt einen Sattelpunkt.

An einem Wendepunkt “schneidet” die Tangente den Funktionsgraphen.

x0

y

x
f’’=0f’’<0 f’’>0

Satz 4.7 Sei x0 ∈ (a, b). Dann gilt:

f ′′(x0) = 0 und f ′′′(x0) 6= 0 =⇒ f hat in x0 einen Wendepunkt

Beispiel

Wir betrachten nochmals f(x) = (x2−4x) e−x. Die Gleichung f ′′(x) = (x2−8x+10) e−x = 0
hat die beiden Lösungen x1 = 4 +

√
6 ≈ 6, 45 und x2 = 4−

√
6 ≈ 1, 55. Da f ′′′(x1) 6= 0 und

f ′′′(x2) 6= 0, sind (6, 45; 0, 025) und (1, 55;−0, 81) zwei Wendepunkte von f .

Hat f in x0 einen Wendepunkt, dann hat die Ableitung f ′ in x0 ein Extremum. Dies
erklärt die Bedingung f ′′′(x0) 6= 0 (vgl. Satz 4.6).

Die Bedingung f ′′′(x0) 6= 0 in Satz 4.7 ist jedoch nicht notwendig für einen Wendepunkt in
x0 (da f ′′(x0) 6= 0 in Satz 4.6 nicht notwendig ist). Zum Beispiel hat die Funktion f(x) = x5

einen Wendepunkt in x0 = 0 mit f ′′′(0) = 0.
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4.3 Die Regeln von Bernoulli-de l’Hôpital

In Kapitel 2 haben wir gesehen, wie man Grenzwerte der Form lim
x→x0

f(x)
g(x) berechnet. Es gibt

jedoch Grenzwerte, die wir mit den dort angegebenen Methoden nicht bestimmen können.
Betrachten wir zum Beispiel den Grenzwert

lim
x→0

sinx

x
.

Bei diesem Beispiel strebt sowohl der Zähler als auch der Nenner gegen 0 für x → 0.
Mit Hilfe des Mittelwertsatzes (Satz 4.4) können wir nun diesen Grenzwert bestimmen

(wobei es auch mit der Potenzreihe von sinx ginge). Wir wenden also den Mittelwertsatz für
f(x) = sinx auf dem Intervall [0, x] an:

Dieser Trick funktioniert allgemein und wir erhalten die Regeln von Bernoulli-de l’Hôpital.

Satz 4.8 Seien f, g : (a, b) −→ R differenzierbar, wobei −∞ ≤ a < b ≤ ∞. Weiter gelte

lim
x→a

f(x) = lim
x→a

g(x) = 0 oder lim
x→a

f(x) = lim
x→a

g(x) = ±∞ .

Falls der Grenzwert lim
x→a

f ′(x)
g′(x) existiert (d.h. ∈ R ∪ {±∞} ist), gilt

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)
g′(x)

.

Dies gilt analog für Grenzwerte x → b.

Beispiele

1. lim
x→0

ex − 1

x

2. lim
x→∞

x2 + 109999

2x − 102022

Dies erklärt die Merkregel Exponentiell ist stärker als polynomial von Kapitel 2 (Seite 28).
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3. lim
x→0

ln(1 + cx)

x
= lim

x→0

(ln(1 + cx))′

(x)′
= lim

x→0

c

1 + cx
= c.

Damit gilt weiter

lim
x→0

(1 + cx)
1
x = lim

x→0
e

1
x
ln(1+cx) = e

lim
x→0

ln(1+cx)
x = ec ,

wobei wir beim zweiten Gleichheitszeichen die Stetigkeit von ex benutzt haben. Für die Folge
xn = 1

n
mit lim

n→∞
xn = 0 folgt insbesondere, dass

ec = lim
x→0

(1 + cx)
1
x = lim

n→∞
(1 + cxn)

1
xn = lim

n→∞

(
1 +

c

n

)n
,

wie in Kapitel 2 (Seite 33) für c = 1 behauptet.

4.4 Lineare Approximation

An den Graphen einer differenzierbaren Funktion f legen wir die Tangente in einem Punkt
P = (x0, f(x0)) an. Zoomen wir den Punkt P stark heran, so ist die Funktionskurve von der
Geraden nicht mehr zu unterscheiden!

Beispiel f(x) = x2, Tangente an f im Punkt P = (1, 1)

Die Tangente eignet sich also als lokale (lineare) Näherung der Funktion.

Satz 4.9 Unter allen Geraden durch den Punkt (x0, f(x0)) ist die Tangente diejenige Gera-
de, die f lokal um x0 am besten approximiert.

Wie ist das gemeint? Die Tangente an den Graphen von f in x0 ist gegeben durch

y = t(x) = f(x0) + f ′(x0)(x− x0) .

Für x nahe bei x0 stimmen die Funktionswerte f(x) ungefähr mit den Werten t(x) überein:
f(x) ≈ t(x). Dies können wir auch so schreiben:

f(x0 + h) ≈ t(x0 + h) für h mit |h| klein.

Der Fehler r(h) dieser Näherung ist dabei gegeben durch

r(h) = f(x0 + h)− t(x0 + h) = f(x0 + h)− f(x0)− f ′(x0) · h . (∗)
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Da t(x0) = f(x0), geht r(h) gegen 0 für h → 0. Aber auch r(h)
h geht gegen 0 für h → 0 :

lim
h→0

r(h)

h
= lim

h→0

(
f(x0 + h)− f(x0)

h
− f ′(x0)

)
= f ′(x0)− f ′(x0) = 0

Hier ist entscheidend, dass t′(x0) = f ′(x0), das heisst, dass die Steigungen von t und f in x0
übereinstimmen. Deshalb ist die Tangente die einzige Gerade durch den Punkt (x0, f(x0)),

für die nicht nur r(h), sondern auch r(h)
h gegen 0 geht für h → 0, was bedeutet, dass die

Differenz r(h) = f(x0 + h)− t(x0 + h) schneller als h gegen 0 geht.
Lösen wir die Gleichung (∗) nach f(x0 + h) auf, erhalten wir die folgende Näherung für

f in der Nähe von x0.

Satz 4.10 Sei f : D −→ R differenzierbar in x0 ∈ D. Dann gilt

f(x0 + h) = f(x0) + f ′(x0) · h+ r(h) mit lim
h→0

r(h)

h
= 0 .

Da das Restglied r(h) für kleine |h| verschwindend klein ist, benutzt man für komplizierte
Funktionen f in der Nähe einer Stelle x0 oft die lineare Näherung

f(x0 + h) ≈ f(x0) + f ′(x0) · h für kleine |h| (N)

Beispiel

Mit Hilfe der Näherungsformel (N) kann zum Beispiel (im Kopf!) eine gute Näherung von√
8, 92 gegeben werden.

Der auf 7 Nachkommastellen gerundete Wert von
√
8, 92 ist 2,9866369, der Näherungsfehler

r(−0, 08) beträgt also nur −0, 0000298 = 2, 98 · 10−5 !
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Auf der Formel (N) beruhen auch Näherungen einiger elementarer Funktionen, die häufig
(zum Beispiel in der Physik) gebraucht werden. Für kleine |x| gilt:

(1 + x)n ≈ 1 + nx

1

1− x
≈ 1 + x

√
1 + x ≈ 1 +

x

2
ex ≈ 1 + x

sinx ≈ x

Um zum Beispiel die Näherung sinx ≈ x zu erhalten, nutzt man die Näherungsformel (N)
für f(x) = sinx, h = x, x0 = 0 mit f ′(x) = cos x.

4.5 Taylorpolynome und Taylorreihen

Im vorhergehenden Abschnitt haben wir eine reelle Funktion f in der Nähe eines Punktes
(x0, f(x0)) durch eine lineare Funktion approximiert. Wir können diese Näherung verbes-
sern, indem wir anstelle einer linearen Funktion eine Polynomfunktion von höherem Grad
verwenden.

Damit diese Näherung gut ist, soll die Polynomfunktion p(x) in (der Nähe von) x0
möglichst die gleiche Krümmung wie die Funktion f(x) aufweisen. Das Krümmungsverhalten
von f wird durch die Ableitungen von f beschrieben. Ist die Funktion f n-mal differenzierbar,
so können wir fordern, dass die ersten n Ableitungen von f und von p in x0 übereinstimmen,
und zusätzlich soll natürlich p(x0) = f(x0) sein. Es soll also gelten:

• p(x0) = f(x0) (gleiche Funktionswerte in x0)

• p′(x0) = f ′(x0) (gleiche Tangente in x0)

• p′′(x0) = f ′′(x0) (gleiche Krümmung in x0)

...

• p(n)(x0) = f (n)(x0)

Dies sind n+1 Bedingungen. Mit einer Polynomfunktion p(x) = pn(x) mit n+1 Koeffizienten,
also vom Grad ≤ n, können alle Bedingungen erfüllt werden.
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Satz 4.11 Das Polynom pn(x) vom Grad ≤ n, das die Bedingungen p(k)(x0) = f (k)(x0) für
k = 0, . . . , n erfüllt, ist gegeben durch

pn(x) = f(x0) +
f ′(x0)
1!

(x− x0) + · · ·+ f (n)(x0)

n!
(x− x0)

n =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k .

Das Polynom pn(x) heisst n-tes Taylorpolynom von f um den Entwicklungspunkt x0.

Für n = 1 ist das Taylorpolynom gegeben durch

p1(x) = f(x0) + f ′(x0)(x− x0) .

Wenig überraschend ist dies die Gleichung der Tangente an f in x0 !
Die Taylorpolynome sind also Erweiterungen der linearen Näherung vom letzten Ab-

schnitt, bzw. sie verbessern die lineare Näherung. Satz 4.10 lautet für h = x− x0 :

f(x) = f(x0) + f ′(x0)(x− x0) + r(x− x0) mit lim
x→x0

r(x− x0)

x− x0
= 0

Für die Taylorpolynome pn(x) gilt nun

f(x) = pn(x) + rn(x− x0) mit lim
x→x0

rn(x− x0)

(x− x0)n
= 0 .

Das Restglied rn(x − x0) geht also sehr schnell gegen 0 für x → x0. Falls f (n + 1)-mal
differenzierbar ist, kann das Restglied (das Lagrangesche Restglied) geschrieben werden als

rn(x− x0) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1 für ein ξ zwischen x0 und x.

Beispiele

1. Sei f(x) = 1
1+x . Gesucht ist das Taylorpolynom p3(x) im Entwicklungspunkt x0 = 0.

Weiter findet man

p6(x) = 1− x+ x2 − x3 + x4 − x5 + x6

p9(x) = 1− x+ x2 − x3 + x4 − x5 + x6 − x7 + x8 − x9

...

pn(x) =

n∑

k=0

(−1)kxk
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2. Sei f(x) = ln(x). Gesucht ist das Taylorpolynom p4(x) im Entwicklungspunkt x0 = 1.
Wir berechnen

f ′(x) = 1
x =⇒ f ′(1) = 1

f ′′(x) = − 1
x2 =⇒ f ′′(1) = −1

f ′′′(x) = 2
x3 =⇒ f ′′′(1) = 2

f (4)(x) = − 6
x4 =⇒ f (4)(1) = −6

Der Entwicklungspunkt x0 = 1 bedeutet, dass p4(x) die Funktion f(x) = ln(x) in der Nähe
von x0 = 1 gut approximiert. Man löst die Klammern (x − 1)k im Taylorpolynom nicht
auf, denn so erhält man für ein konkretes x effizient die Differenz von ln(x) und p4(x). Zum
Beispiel gilt für x = 1, 1, dass

ln(1, 1) − p4(1, 1) = 0, 0953 − (0, 1 − 0, 12

2
+

0, 13

3
− 0, 14

4
) ≈ 1, 85 · 10−6 .

Für x = 2 ist p4(x) keine so gute Näherung für ln(x) mehr; es gilt ln(2) − p4(2) ≈ 0, 110.
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Ist die Funktion f unendlich oft differenzierbar in einer Stelle x0, dann können nicht
nur die Taylorpolynome betrachtet werden, sondern die sogenannte Taylorreihe um den
Entwicklungspunkt x0,

∞∑

k=0

f (k)(x0)

k!
(x− x0)

k .

Ob diese Reihe überhaupt konvergent ist, hängt davon ab, wie nahe x bei x0 ist. Jedoch
konvergiert die Taylorreihe auch für x nahe bei x0 nicht für alle Funktionen f , und wenn,
dann muss die Reihe auch gar nicht mit den Funktionswerten f(x) übereinstimmen.

Es gibt aber einige schöne Beispiele, wo die Taylorreihe für gewisse, bzw. alle x ∈ R

konvergiert und für diese x gleich den Funktionswerten f(x) ist.

Beispiele

1. Betrachten wir nochmals f(x) = 1
1+x . Diese Funktion ist unendlich oft differenzierbar, und

tatsächlich wissen wir ja von den geometrischen Reihen her, dass

f(x) =
1

1 + x
=

∞∑

k=0

(−1)kxk für |x| < 1 .

2. Sei f(x) = ex. Für diese Funktion gilt f (k)(x) = ex für alle k ≥ 1. Wählen wir den
Entwicklungspunkt x0 = 0, dann gilt f (k)(0) = e0 = 1 für alle k. Wir erhalten die Taylorreihe

1 + x+
x2

2!
+

x3

3!
+ · · · =

∞∑

k=0

xk

k!
= ex für alle x ∈ R .

Die Potenzreihe, mit welcher wir ex definiert haben, ist genau die Taylorreihe von ex !

3. Genauso verhält es sich mit den Funktionen sinx und cos x. Wir haben auf Seite 55 gesehen,
dass diese Funktionen als unendliche Reihen darstellbar sind, nämlich

sinx = x− x3

3!
+

x5

5!
− . . . =

∞∑

k=0

(−1)k

(2k + 1)!
x2k+1

cos x = 1− x2

2!
+

x4

4!
− . . . =

∞∑

k=0

(−1)k

(2k)!
x2k

Dies sind die Taylorreihen von sinx und cosx um den Entwicklungspunkt x0 = 0. Sie kon-
vergieren also für alle x ∈ R gegen die Funktionswerte.
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4.6 Näherungsverfahren zur Lösung von Gleichungen

Das Newton-Verfahren

Mit Hilfe des Newton-Verfahrens können Nullstellen einer differenzierbaren Funktion nähe-
rungsweise bestimmt werden. Dieses Verfahren beruht auf der Näherungsformel (N) von Ab-
schnitt 4.4, bzw. auf der Näherung der Funktion durch Tangenten.

Beispiel

Nehmen wir an, Sie nehmen ein Medikament in Form einer Tablette ein. Dann kann die Kon-
zentration des Wirkstoffes im Blutplasma zum Zeitpunkt x nach der Einnahme durch die
Funktion

f(x) = C
ka

ka − ke
(e−kex − e−kax)

in µg pro ml beschrieben werden (unter gewissen vereinfachenden Annahmen). Dabei ist ka
die Absorptionskonstante (also ein Mass dafür, wie schnell der Wirkstoff aufgenommen wird),
ke ist die Eliminationskonstante (ein Mass dafür, wie schnell der Wirkstoff abgebaut wird)
und C ist eine zeitunabhängige Grösse.

Zur Bestimmung des Zeitpunktes xmax, in welchem die Konzentration des Wirkstoffes
am grössten ist, berechnet man die Nullstelle der Ableitung von f . Tatsächlich kann die
Gleichung f ′(xmax) = 0 problemlos nach xmax aufgelöst werden. Anders sieht es aus, wenn
man die Zeitspanne berechnen möchte, während der das Medikament wirkt. Für die Wirkung
braucht es eine minimale Konzentration m > 0. Graphisch sieht dies so aus:

Zu bestimmen sind also x mit f(x) = m, bzw. mit f(x) − m = 0. Wieder brauchen wir
Nullstellen einer Funktion, hier der Funktion f(x) − m. Im Gegensatz zu vorher kann die
Gleichung f(x)−m = 0 jedoch nicht nach x aufgelöst werden! Wir können diese Nullstellen
nur mit einem Näherungsverfahren bestimmen. Analog kann man Nullstellen einer allgemei-
nen Polynomfunktion vom Grad ≥ 5 nicht exakt bestimmen (es gibt keine Lösungsformel,
wie wir im vorhergehenden Kapitel gesehen haben). Für solche Situationen brauchen wir das
Newton-Verfahren.

Gegeben ist also eine Funktion f : [a, b] −→ R, von der wir annehmen, dass sie eine
Nullstelle hat, es also ein xnull in [a, b] mit f(xnull) = 0 gibt, und weiter nehmen wir an, dass
f differenzierbar ist. Dann nähern wir uns xnull wie folgt.

Wir wählen eine Stelle x0 ∈ [a, b] aus (die wir nahe bei xnull vermuten) und betrachten
die lineare Näherung von f um x0, das heisst

f(x) ≈ f(x0) + f ′(x0) · (x− x0) = t(x) .
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Wie wir schon gesehen haben, ist die Funktion t(x) nichts anderes als die Tangente an den
Graphen von f in x0. Als Nächstes bestimmen wir die Nullstelle x1 dieser Tangente. Um
eine waagrechte Tangente t(x) ohne Nullstelle auszuschliessen, sollten wir x0 mit f ′(x0) 6= 0
gewählt haben.

In günstigen Situationen liegt nun x1 näher bei xnull als x0. Der Vorgang wird wiederholt mit
x1 anstelle von x0, um noch eine bessere Näherung x2 von xnull zu finden, usw.

Das Newton-Verfahren ist das wiederholte Anwenden der Formel

xn+1 = xn − f(xn)

f ′(xn)

für n ≥ 0, wobei x0 ein geschickt gewählter Startpunkt ist (möglichst nahe bei der gesuchten
Nullstelle und so, dass f ′(x0) 6= 0).

In vielen Fällen konvergiert die Folge (xn) schnell gegen die Nullstelle xnull, wenn x0 nahe
bei xnull ist.

Beispiel

Gesucht ist eine Nullstelle der Funktion f(x) = x5 + 5x+ 1.

Für einen geeigneten Startwert schaut man sich entweder den Graphen von f an oder man
nutzt den Nullstellensatz 2.8 (Seite 40):



72

Mit dem Startwert x0 = 0 findet man:

n xn
1 −0, 2
2 −0, 199936102
3 −0, 199936102

Mit dem Startwert x0 = 10 brauchen wir 13 Schritte, um auf die Zahl −0, 199936102 zu
kommen, mit dem Startwert x0 = 1000 sind es 35 Schritte.

Dies war ein harmloses Beispiel, wo das Newton-Verfahren schnell konvergierte. Dies lag
vor allem daran, dass f eine streng monoton wachsende Funktion ist und demnach auch nur
eine Nullstelle hat.

Es gibt aber andere Beispiele, wo bei ungeschickt gewähltem Startwert das Verfahren
versagt.

Beispiele

1. Gesucht ist eine Nullstelle der Funktion f(x) = x3 − 2x+ 2.
Die Iterationsformel lautet

xn+1 = xn − x3n − 2xn + 2

3x2n − 2
.

x0 = 0 x1 = 1 x2 = 0

Mit dem Startwert x0 = 0 (oder x0 = 1) nimmt xn abwechslungsweise die Werte 0 und 1 an.
Die Folge (xn) konvergiert also nicht.

Mit den Startwerten x0 = −1 oder x0 = −4 zum Beispiel findet man hingegen (nach 7
bzw. 6 Schritten) die Nullstelle

xnull = −1, 769292354 .

2. Die Funktion f(x) = x3 − 2x+ 1
8 hat drei verschiedene Nullstellen. Um alle drei Nullstel-

len mit Hilfe des Newton-Verfahrens zu erhalten, müssen die Startwerte geschickt gewählt
werden. Ungünstig sind Startwerte nahe bei einer Extremalstelle, da an diesen Stellen die
Tangente an die Funktion fast horizontal verläuft.

3. Die Folge (xn) des Newton-Verfahrens konvergiert für die Funktion f(x) = x2− 2x+2 mit
keinem Startwert x0. Der einfache Grund ist, dass diese Funktion gar keine Nullstelle hat.
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4. Offensichtlich ist x = 0 die einzige Nullstelle der Funktion

f(x) =
x√

1 + x2
.

Allerdings konvergiert die Folge (xn) des Newton-Verfahrens nur für Startwerte x0 mit |x0| < 1.
Für |x0| > 1 divergiert die Folge (xn) und für x0 = ±1 springt die Folge zwischen +1 und −1
hin und her (Details dazu siehe Zusatzaufgabe der Übung 6).

Ist f : [a, b] −→ R zweimal stetig differenzierbar, dann gilt für die Konvergenz des Newton-
Verfahrens:

• Ist xnull eine einfache Nullstelle (d.h. f
′(xnull) 6= 0), dann konvergiert das Newton-Verfahren

für alle Startwerte x0 nahe bei xnull.

In diesem Fall gibt es eine reelle Zahl c > 0, so dass

|xn+1 − xnull| ≤ c |xn − xnull|2 für alle n .

Grob gesagt verdoppelt sich die Anzahl der korrekten Stellen bei jedem Schritt.

• Bei einer mehrfachen Nullstelle xnull ist die Konvergenz langsamer.

Sucht man eine Lösung einer beliebigen (algebraischen) Gleichung, so kann man alle
Terme der Gleichung auf eine Seite bringen, so dass man eine Gleichung der Form f(x) = 0
erhält. Mit Hilfe des Newton-Verfahrens findet man so (im günstigen Fall) näherungsweise
eine Lösung der ursprünglichen Gleichung.

Beispiel

Unser Taschenrechner sagt uns, dass

√
2 = 1, 4142136 . . .

Woher kommt diese Zahl? Tatsächlich kann
√
2 sehr schnell mit Hilfe des Newton-Verfahrens

berechnet werden. Die Zahl
√
2 ist ja definiert als positive Lösung der Gleichung

x2 = 2 .
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Diese Gleichung kann zur Gleichung x2 − 2 = 0 umgeformt werden. Wir suchen also die
positive Nullstelle der Funktion

f(x) = x2 − 2 .

Die Iterationsformel des Newton-Verfahrens lautet damit

xn+1 = xn − f(xn)

f ′(xn)
= xn − x2n − 2

2xn
=

2x2n − x2n + 2

2xn
=

1

2

(
xn +

2

xn

)

für n ≥ 0. Da 12 < 2 < 22, gilt 1 <
√
2 < 2. Wir können also zum Beispiel den Startwert

x0 = 1 wählen und erhalten

n xn
1 1, 5
2 1, 416
3 1, 414215686
4 1, 414213562
5 1, 414213562

Die obige Iterationsformel für
√
2 ist übrigens genau die rekursiv definierte Zahlenfolge, die

wir schon in Kapitel 2 (Seite 29) untersucht haben.

Fixpunktiteration

Die Fixpunktiteration ist ein weiteres Verfahren, mit dem man eine Lösung einer Gleichung
näherungsweise bestimmen kann.

Ist f : D −→ R eine Funktion, dann heisst x ∈ D Fixpunkt von f , falls gilt

f(x) = x .

Beispiele

1. Sei f(x) = 1
2x. Dann ist 0 der einzige Fixpunkt von f .

2. Die Funktion f(x) = x2 hat die beiden Fixpunkte 0 und 1.

Geometrisch betrachtet ist die x-Koordinate von jedem Schnittpunkt des Graphen von f
mit der Geraden y = x ein Fixpunkt von f .
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Mit der Fixpunktiteration kann man die Fixpunkte einer Funktion bestimmen. Das geht
wie folgt. Man wählt einen Startwert x0. Dann berechnet man schrittweise

x1 = f(x0) , x2 = f(x1) , . . . , xn+1 = f(xn) , . . .

Konvergiert die Folge (xn) gegen einen Grenzwert xfix und ist f stetig, dann folgt

f(xfix) = xfix .

Wegen der Stetigkeit von f gilt nämlich

xfix = lim
n→∞

xn+1 = lim
n→∞

f(xn) = f( lim
n→∞

xn) = f(xfix) .

x0 x0

Beispiel

Gesucht ist x ∈ R mit cos x = x. Wir wählen den Startwert x0 = 1 und führen die Fixpunkt-
iteration durch. Mit dem Taschenrechner geht das so: Das Bogenmass einstellen (Anzeige
rad), dann fortlaufend die cos-Taste drücken.

Wir brauchen ein wenig Geduld, doch wir erhalten schliesslich nach 53 Schritten den
Fixpunkt

xfix = 0, 739085133 .

Für sogenannte kontrahierende Funktionen konvergiert die Fixpunktiteration immer ge-
gen einen Fixpunkt.

Definition Eine Funktion f : D −→ R heisst kontrahierend, falls es eine Konstante K < 1
gibt, so dass

|f(b)− f(a)| ≤ K|b− a| für alle a, b ∈ D .

Dies bedeutet, dass der Abstand von zwei Funktionswerten f(a) und f(b) stets kleiner ist als
der Abstand der Werte a und b.

Geometrisch betrachtet ist eine Funktion kontrahierend, wenn ihr Funktionsgraph eine
“flache” Kurve darstellt.

Beispiel

Die Funktion f(x) = 1
2x ist kontrahierend für alle x ∈ R.
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Für beliebige a, b ∈ R gilt:

Um für eine kompliziertere Funktion f : [a, b] −→ R überprüfen zu können, ob sie kon-
trahierend ist, genügt es zu untersuchen, ob es eine Konstante K < 1 gibt mit

|f ′(x)| ≤ K

für alle x ∈ [a, b]. Wegen des Mittelwertsatzes (Satz 4.4) folgt dann nämlich, dass

|f(b)− f(a)| = |f ′(x0)| · |b− a| ≤ K|b− a|

wobei x0 ∈ [a, b]. Also ist f kontrahierend. Die Bedingung |f ′(x)| ≤ K < 1 bestätigt auch un-
sere geometrische Beobachtung, dass der Graph einer kontrahierenden Funktion eine “flache”
Kurve ist (die Tangentensteigung ist überall “klein”).

Ist nun f kontrahierend und wenden wir das Fixpunktverfahren an, dann folgt

|xn+1 − xfix| = |f(xn)− f(xfix)| ≤ K|xn − xfix| < |xn − xfix| ,

das heisst, xn+1 liegt näher beim Fixpunkt xfix als xn.

Satz 4.12 (Fixpunktsatz) Sei D ein Intervall und f : D −→ R kontrahierend mit f(D) ⊂ D.
Dann besitzt f genau einen Fixpunkt xfix in D. Weiter konvergiert die Folge

xn+1 = f(xn)

mit jedem beliebigen Startwert x0 ∈ D gegen xfix.

Dass f höchstens einen Fixpunkt hat, folgt aus der Bedingung, dass f kontrahierend ist.
Denn hätte f zwei Fixpunkte, dann würde der Abstand dieser beiden Fixpunkte durch f
nicht verkleinert, ein Widerspruch zu f kontrahierend.

Beispiele

1. Beim Newton-Verfahren haben wir die Gleichung x5 + 5x + 1 = 0 betrachtet. Diese Glei-
chung können wir in eine Fixpunktgleichung umformen.
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Ist f(x) = −1
5(x

5 + 1) kontrahierend, zum Beispiel auf D = [−4
5 ,

4
5 ] ?

Also ist f kontrahierend auf D. Weiter gilt f(D) ⊂ D.
Warum gilt f(D) ⊂ D ? Nun, f(−1) = 0 ∈ D und f(1) = −2

5 ∈ D. Da f ′(x) = −x4 ≤ 0
für alle x ∈ D, ist f monoton fallend in D. Also liegen alle Funktionswerte für x ∈ D zwischen
f(−1) = 0 und f(1) = −2

5 , d.h. f(D) ⊂ [−2
5 , 0] ⊂ D.

Wählen wir nun zum Beispiel den Startwert x0 = 0. Nach dem Fixpunktsatz muss die
Fixpunktiteration gegen den Fixpunkt in D konvergieren, was auch der Fall ist:

n xn
1 −0, 2
2 −0, 199936
3 −0, 199936102
4 −0, 199936102

Im Allgemeinen konvergiert das Newton-Verfahren schneller als die Fixpunktiteration.

2. Die Funktion
f(x) = x2

ist kontrahierend auf dem Intervall D = [−1
3 ,

1
3 ] und f(D) ⊂ D. Mit jedem Startwert x0 ∈ D

konvergiert also die Iteration xn+1 = f(xn) = x2n gegen den Fixpunkt xfix = 0.
Für den anderen Fixpunkt x̃fix = 1 gilt f ′(x̃fix) = 2 > 1 und wir können den Fixpunktsatz

nicht anwenden. Tatsächlich divergiert die Folge xn gegen ∞ für jeden Startwert x0 > 1.
Nun gibt es einen Trick, und zwar kann die Umkehrfunktion betrachtet werden (falls f

umkehrbar ist).
x = f(x) =⇒ f−1(x) = f−1(f(x)) = x

Die Fixpunkte von f und f−1 sind identisch und wir können den Fixpunktsatz auf f−1

(anstelle von f) anwenden. Ist der Funktionsgraph von f “steil”, dann ist der Graph von f−1

“flach” und umgekehrt.

Die Funktion f : R≥0 −→ R≥0, f(x) = x2 ist umkehrbar mit f−1(x) =
√
x. Für f−1

sind nun tatsächlich die Voraussetzungen vom Fixpunktsatz im Intervall D = [13 , 100] bei-
spielsweise erfüllt. Mit der Fixpunktiteration xn+1 = f−1(xn) =

√
xn erhalten wir somit den

Fixpunkt x̃fix = 1, und zwar für jeden Startwert in D.
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5 Integration

Es gibt zwei verschiedene Arten von Integration: Bei der unbestimmten Integration wird eine
Stammfunktion gesucht, bei der bestimmten Integration geht es um die Berechnung eines
Flächeninhalts. Der Zusammenhang dieser beiden Arten wird im Hauptsatz der Differential-
und Integralrechnung ersichtlich.

5.1 Das unbestimmte Integral

Definition Eine Funktion F (x) heisst Stammfunktion von f(x), falls

F ′(x) = f(x) .

Beispiel

Sei f(x) = 3x2. Dann ist F (x) = x3 eine Stammfunktion von f(x). Dies ist jedoch nicht
die einzige, denn auch F (x) = x3 + 10 oder F (x) = x3 + π2022 ist eine. Die allgemeine
Stammfunktion ist

F (x) = x3 + c

für eine Konstante c.

Definition Die Menge aller Stammfunktionen von f(x) nennt man unbestimmtes Integral
und schreibt ∫

f(x)dx = F (x) + c .

Wichtige Beispiele
∫

xndx =
1

n+ 1
xn+1 + c

∫
exdx = ex + c

∫
sin(x)dx = − cos(x) + c

∫
cos(x)dx = sin(x) + c

∫
1

x2 + 1
dx = arctan(x) + c

∫
1

x
dx = ln(|x|) + c

Warum gilt die letzte Gleichung? Für x > 0 haben wir gezeigt, dass

(ln(|x|))′ = (ln(x))′ =
1

x
.

Für x < 0 wenden wir die Kettenregel an und erhalten

Also ist ln(|x|) eine Stammfunktion von 1
x für x 6= 0.
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5.2 Das bestimmte Integral

Gegeben sei eine auf dem Intervall [a, b] nicht-negative und beschränkte (bei Stetigkeit erfüllt)
Funktion f , das heisst es gibt reelle Zahlen m und M , so dass für alle x ∈ [a, b] die folgende
Ungleichung gilt: 0 < m ≤ f(x) ≤ M .

Frage: Wie gross ist der Flächeninhalt der zwischen der x-Achse, den vertikalen Grenzen
x = a und x = b und der Kurve y = f(x) eingeschlossenen Fläche?

Idee: Beschreibung der Fläche durch Rechtecke (näherungsweise).

Wir teilen deshalb das Intervall [a, b] in n Teilintervalle gleicher Länge l =
b− a

n
ein, indem

wir n− 1 Zwischenpunkte einfügen:

a = a+ 0 · l︸ ︷︷ ︸
=x0

< a+ 1 · l︸ ︷︷ ︸
x1

< a+ 2 · l︸ ︷︷ ︸
x2

< · · · < a+ (n− 1) · l︸ ︷︷ ︸
xn−1

< b = a+ n · l︸ ︷︷ ︸
xn

.

Das Intervall wird also in die n Teilintervalle [xi−1, xi] für i = 1, . . . , n zerlegt.
Für jedes dieser Teilintervalle definieren wir das Minimum und das Maximum der Funktion

f auf diesem Intervall

mi = Minimum von f auf [xi−1, xi]

Mi = Maximum von f auf [xi−1, xi]

und wir definieren die folgenden beiden Summen, die Näherungen für den gesuchten Flächen-
inhalt sind.

Untersumme Obersumme

Un =

n∑

i=1

mi (xi − xi−1)︸ ︷︷ ︸
=l

On =

n∑

i=1

Mi (xi − xi−1)︸ ︷︷ ︸
=l
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Mit dem globalen Maximum M und dem globalen Minimum m von f gilt somit

m(b− a) ≤ Un ≤ Flächeninhalt ≤ On ≤ M(b− a) .

Die beiden Folgen (Un)n≥1 und (On)n≥1 sind also beschränkt. Ausserdem ist (Un)n≥1 monoton
wachsend und (On)n≥1 monoton fallend. Beide Folgen sind somit konvergent, müssen aber
im Allgemeinen nicht den gleichen Grenzwert haben!

Definition Falls

lim
n→∞

Un = lim
n→∞

On

gilt, so heisst dieser gemeinsame Grenzwert (der dann der gesuchte Flächeninhalt ist) das
bestimmte Integral und man schreibt

b∫

a

f(x)dx .

Diese Schreibweise geht auf Leibniz zurück. Das Integralzeichen
∫
steht für

∫
umme (mit

unendlich vielen Summanden) und dx = ∆x = xi − xi−1 ist ein “unendlich kleiner” Schritt.
Das bestimmte Integral wird nicht nur zur Berechnung des Flächeninhalts einer geometri-

schen Fläche benutzt. Der Flächeninhalt kann beispielsweise auch eine Weglänge oder einen
Zuwachs bedeuten.

Beispiele

1. Wir fahren mit dem Velo zur Mathe-Vorlesung und bewegen uns mit der Geschwindigkeit
v(t) fort. Dann haben wir den Weg

Ankunftszeit∫

Startzeit

v(t)dt

zurückgelegt.

2. Die Basler Bevölkerung wuchs in der ersten Hälfte dieses Jahres. Die Wachstumsrate betrug
g(t). Dann ist der Zuwachs in diesem Zeitraum gegeben durch

30. Juni∫

1. Januar

g(t)dt .

Da wir es meistens mit stetigen Funktionen zu tun haben, ist die folgende Tatsache sehr
praktisch.

Satz 5.1 Ist die Funktion f stetig in [a, b], dann gilt

lim
n→∞

Un = lim
n→∞

On =

∫ b

a

f(x)dx.

Insbesondere existieren alle vorkommenden Grenzwerte.
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Eigenschaften des bestimmten Integrals

1. Es gilt
∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx

für c ∈ [a, b]. Insbesondere existiert das Integral, auch wenn f in einzelnen Stellen nicht stetig
ist (man nennt f in diesem Fall stückweise stetig).

Beispiel

Sei

f(x) =

{
1 für x ≤ 3
2 für x > 3

2. Nimmt die Funktion auch negative Werte an, so ist das Folgende zu beachten. Das be-
stimmte Integral

∫ b

a

f(x)dx

ist der Flächeninhalt der Fläche zwischen der Kurve und der x-Achse, wobei der Flächeninhalt
von Flächenstücken unterhalb der x-Achse negativ gezählt wird.

y

x

f(x)

+

−

+

Beispiel
∫ 2π

0
sin(x) dx

3. Man definiert
∫ b

a

f(x)dx = −
∫ a

b

f(x)dx .

4. Es gilt
∫ a

a

f(x)dx = 0 .
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5. Es gilt ∫ b

a

λ · f(x)dx = λ ·
∫ b

a

f(x)dx für λ ∈ R

∫ b

a

(f(x) + g(x))dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx

6. Für den Inhalt A der Fläche, die von den Graphen der beiden Funktionen f(x) und g(x)
eingeschlossen wird, gilt

A =

∫ b

a

(f(x)− g(x))dx .

y

x

f(x)

g(x)

a b

F

Integralmittelwert

Beginnen wir mit einem Beispiel. Wir wollen das Integral der Funktion f(x) = 1
2x + 1

2 zwi-
schen den Grenzen 1 und 5 bestimmen.

Satz 5.2 (Integralmittelwert) Sei f stetig in [a, b]. Dann gibt es ein x0 ∈ [a, b] mit

∫ b

a

f(x)dx = f(x0)(b− a) .

Die Bezeichnung Integralmittelwert kommt von der Gleichung im Satz dividiert durch b− a,

1

b− a

∫ b

a

f(x)dx = f(x0) . (IM)

Beschreibt zum Beispiel f(x) die Tagestemperatur für x zwischen a = 0 und b = 24
(Stunden), dann wird durch die linke Seite der Gleichung (IM) die mittlere Tagestempe-
ratur berechnet. Die rechte Seite der Gleichung (IM) sagt weiter aus, dass diese mittlere
Tagestemperatur zu einem bestimmten Zeitpunkt x0 tatsächlich auch angenommen wird.
Hierfür ist die Stetigkeit von f wesentlich.
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Hauptsatz der Differential- und Integralrechnung

Ein bestimmtes Integral der Funktion f kann mit Hilfe einer Stammfunktion von f berechnet
werden.

Beispiel

Sei f(t) die Menge an Räppli (= Konfetti), die pro (infinitesimal kleine) Zeiteinheit während
des Cortège (= Fasnachtsumzug) auf die Mittlere Brücke in Basel fällt. Sei F (t) die Gesamt-
menge an Räppli (seit Beginn des Cortège zur Zeit t = 0) auf der Mittleren Brücke. Dann
gilt

F (t) =

∫ t

0
f(x)dx . (1)

Die Änderungsrate der Gesamtmenge an Räppli entspricht dem Zuwachs pro Zeiteinheit

F ′(t) = f(t) . (2)

Die Menge an Räppli, die in einem Zeitintervall [t1, t2] auf die Mittlere Brücke fällt, entspricht
der Differenz der Gesamtmengen,

∫ t2

t1

f(x)dx = F (t2)− F (t1) . (3)

Die Gleichungen (1) – (3) gelten für allgemeine Funktionen f mit einer Stammfunktion F .
Integrieren ist also die Umkehrung des Ableitens.

Satz 5.3 (Hauptsatz der Differential- und Integralrechnung)
Sei f stetig in [a, b]. Dann gilt

∫ b

a

f(x)dx = F (b)− F (a)

für eine beliebige Stammfunktion F von f , das heisst, für F mit F ′(x) = f(x).

Man schreibt ∫ b

a

f(x)dx = F (x)
∣∣∣
b

a
.

Für die Herleitung dieses Satzes zeigt man zunächst, dass

Fa(x) =

∫ x

a

f(t)dt

eine Stammfunktion von f ist, und zwar diejenige, für die Fa(a) = 0 gilt. Mit einer kurzen
Rechnung erhält man daraus die Behauptung des Satzes.

Beispiele

1.

∫ 4

1

(
x2 +

√
x
)
dx =

2.

∫ π

0

(
2 cos(x)− ex

)
dx =
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5.3 Integrationstechniken

In Kapitel 4 über die Differentiation haben wir praktische Regeln kennengelernt, mit welchen
jede aus elementaren Funktionen zusammengesetzte Funktion abgeleitet werden kann. Für
die Integration gibt es auch Regeln und Tricks (die wir hier einüben wollen), mit welchen man
gewisse Integrale von Hand gut berechnen kann. Doch leider gibt es zahlreiche Integrale, die
trotz Anwendung all dieser Tricks nicht berechenbar sind. Diese besitzen nachweislich keine
aus den elementaren Funktionen zusammengesetzte Stammfunktion. In diesen Fällen liefert
das Integral

Fa(x) =

∫ x

a

f(t)dt

eine neue Funktion. Zum Beispiel ist der Integralsinus Si(x) für x ≥ 0 definiert durch

Si(x) =

∫ x

0

sin(t)

t
dt

(vgl. Seite 90) und die Fehlerfunktion erf(x) für x ≥ 0 ist definiert durch

erf(x) =
2√
π

∫ x

0
e−t2dt

(vgl. Seite 90 und nächstes Semester).

Stossen Sie also eines Tages auf ein Integral, welches Sie nicht mit den üblichen Tricks
lösen können, sollten Sie nicht zu lange zögern, in eine Formelsammlung zu schauen. Finden
Sie dort Ihr Integral nicht, versuchen Sie es mit einem CAS (Computeralgebrasystem wie
zum Beispiel Maple oder Mathematica) oder fragen Sie direkt eine*n Mathematiker*in (oder
besser eine*n theoretische*n Physiker*in).

Schliesslich sagt man:

Ableiten ist ein Handwerk, Integrieren ist eine Kunst.

Partielle Integration

Seien u = u(x) und v = v(x) zwei differenzierbare Funktionen. Aus der Produktregel folgt

(u v)′ = u′v + u v′ ,

das heisst,

u′v = (u v)′ − u v′ .

Integrieren ergibt ∫
u′v dx = u v −

∫
u v′dx .

Satz 5.4 ∫ b

a

u′(x) v(x)dx = u(x) v(x)
∣∣∣
b

a
−
∫ b

a

u(x) v′(x)dx
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Ist also die zu integrierende Funktion f(x) = f1(x)f2(x) ein Produkt von zwei Funktionen
f1, f2 und das Produkt F1(x)f

′
2(x) oder f ′

1(x)F2(x), wobei F1, F2 Stammfunktionen von f1,
bzw. f2 sind, einfacher als f(x) zu integrieren, dann ist partielle Integration empfehlenswert.

Beispiele

1.

∫
x ex dx = ?

Durch Ableiten können wir das Resultat kontrollieren:

(x ex − ex + c)′ =

2.

∫
x2 cos(x) dx = ?

3.

∫
ln(x) dx = ?

Hier wenden wir einen Trick an, und zwar wählen wir u′ = 1 und v = ln(x). Dann ist u = x
und v′ = 1

x
. Es folgt
∫

ln(x) dx =

∫
1 · ln(x) dx = x ln(x)−

∫
x
1

x
dx = x ln(x)− x+ c .

4. I =

∫ π
2

0
sin2(x) dx = ?
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Wegen sin2(x) + cos2(x) = 1 gilt cos2(x) = 1− sin2(x). Es folgt

Substitution

Sei F eine Stammfunktion der Funktion f . Dann gilt nach der Kettenregel

(F (g(x)))′ = F ′(g(x)) · g′(x) = f(g(x)) · g′(x) .

Durch Integration erhalten wir

∫
f(g(x)) · g′(x) dx = F (g(x)) + c .

Wir können auch u = g(x) substituieren. Es gilt dann (formal) g′(x) = du
dx , und damit

g′(x)dx = du.

Satz 5.5 Es gilt ∫
f(g(x)) · g′(x) dx =

∫
f(u) du ,

wobei u = g(x) substituiert wurde.

Ist also die zu integrierende Funktion ein Produkt von zwei Funktionen, wobei die eine Funk-
tion zusammengesetzt und die andere die Ableitung der inneren Funktion ist, dann ist Sub-
stitution empfehlenswert.

Beispiel

∫
2x cos(x2) dx = ?
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Für das bestimmte Integral gilt mit den Bemerkungen vor Satz 5.5, dass

∫ b

a

f(g(x)) · g′(x) dx = F (g(x))
∣∣∣
b

a
= F (g(b)) − F (g(a)) = F (u)

∣∣∣
g(b)

g(a)
=

∫ g(b)

g(a)
f(u)du .

Wir können also u = g(x) substituieren wie vorher, doch müssen wir die Integrationsgrenzen
entsprechend anpassen.

Satz 5.6 Es gilt ∫ b

a

f(g(x)) · g′(x) dx =

∫ g(b)

g(a)
f(u) du

mit u = g(x).

Beispiele

1.

∫ π

π
2

2x cos(x2) dx = ? Wie oben setzen wir u = g(x) = x2, und damit ist du = 2x dx.

Dies stimmt überein mit der Berechnung via unbestimmtes Integral vom Beispiel oben.

2.

∫ π
2

0

sinx√
1 + cos x

dx = ?

3.

∫ e3

e

1

x
ln(lnx) dx = ?
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4. Manchmal ist eine Substitution u = g(x) hilfreich, obwohl g′(x) nicht explizit im Integran-
den vorkommt.

∫ 4

0
e
√
x dx = ?

Partialbruchzerlegung

Ziel der Partialbruchzerlegung ist, eine rationale Funktion auf eine Linearkombination der
folgenden Bestandteile zu bringen:

xn ,
1

(x− a)n
,

2x+ p

(x2 + px+ q)n
,

1

x2 + 1

für n ≥ 1. Die Stammfunktionen dieser Funktionen sind nämlich bekannt. Es gilt

∫
1

(x− a)n
dx =

−1

(n− 1)(x− a)n−1
+ c (n ≥ 2) ,

∫
1

x− a
dx = ln(|x− a|) + c ,

∫
2x+ p

x2 + px+ q
dx = ln(|x2 + px+ q|) + c ,

∫
1

x2 + 1
dx = arctan(x) + c .

Um das Vorgehen zu verstehen, betrachten wir hier zwei typische Beispiele. Weitere Bei-
spiele sind in den Übungs(zusatz)aufgaben zu finden.

Beispiele

1.
x+ 1

x2 − 4
=

x+ 1

(x− 2)(x+ 2)

Zuerst faktorisiert man das Nennerpolynom (wenn möglich). Wegen der beiden Linearfakto-

ren x− 2 und x+ 2 erwartet man Ausdrücke der Gestalt
a

x− 2
und

b

x+ 2
für reelle Zahlen

a, b. Wir machen daher den Ansatz

x+ 1

x2 − 4
=

a

x− 2
+

b

x+ 2
.
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Es gilt also a = 3
4 , b =

1
4 und wir finden

∫
x+ 1

x2 − 4
dx =

1

4

(∫
3

x− 2
dx+

∫
1

x+ 2
dx

)

=
1

4
(3 ln |x− 2|+ ln |x+ 2|) + c =

1

4
ln(|x− 2|2|x2 − 4|) + c .

Alternative Methode zur Bestimmung von a und b:

Wir gehen vom gleichen Ansatz wie oben aus. Nun multiplizieren wir diese Gleichung mit
x− 2 und setzen anschliessend x = 2.

Zur Bestimmung von b multiplizieren wir den Ansatz mit x + 2 und setzen anschliessend
x = −2.

2. Ziel ist die Bestimmung einer Stammfunktion von

f(x) =
x3 + x2 − 2x+ 1

x2 + 2x+ 1
.

Hier gilt
Grad(Zählerpolynom) ≥ Grad(Nennerpolynom) .

In diesem Fall führen wir zuerst eine Polynomdivision durch. Wir erhalten

f(x) = x− 1 +
−x+ 2

x2 + 2x+ 1
.

Für den Bruch machen wir nun wieder einen Ansatz.

Für die Stammfunktion von f finden wir damit
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Integration einer Potenzreihe

Wir haben in Satz 4.1 (Seite 55) gesehen, dass eine Potenzreihe gliedweise abgeleitet werden

kann. Analog kann eine Potenzreihe f(x) =
∞∑

k=0

akx
k gliedweise integriert werden. Ist f(x)

konvergent auf einem Intervall I, dann ist die auf diese Weise erhaltene Stammfunktion von
f ebenfalls konvergent auf I.

Beispiele

1. Mit Hilfe der Potenzreihe von sin(t) wollen wir den Integralsinus

Si(x) =

∫ x

0

sin(t)

t
dt

durch eine Potenzreihe beschreiben. Wir dividieren die Potenzreihe von sin(t) gliedweise durch
t und erhalten

sin t

t
=

1

t

(
t− t3

3!
+

t5

5!
− · · · + · · ·

)
= 1− t2

3!
+

t4

5!
− · · ·+ · · · .

Diese Reihe ist konvergent für alle t ∈ R. Nun integrieren wir gliedweise. Dies ergibt

∫
sin t

t
dt = t− t3

3 · 3! +
t5

5 · 5! − · · · + · · ·+ c .

Damit gilt für x ≥ 0

Si(x) =

∫ x

0

sin(t)

t
dt = x− x3

3 · 3! +
x5

5 · 5! − · · ·+ · · · .

2. Analog schreiben wir für die Fehlerfunktion erf(x) die Funktion e−t2 als Potenzreihe:

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · =⇒ e−t2 = 1− t2 +

t4

2!
− t6

3!
+ · · ·

Gliedweises integrieren ergibt

∫
e−t2dt = t− t3

3
+

t5

5 · 2! −
t7

7 · 3! + · · · − · · ·+ c

und wir erhalten für x ≥ 0

erf(x) =
2√
π

∫ x

0
e−t2dt =

2√
π

(
x− x3

3
+

x5

5 · 2! −
x7

7 · 3! + · · ·
)
.
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Wie berechne ich ein Integral
b∫
a

f(x) dx ?

• Direkt, das heisst mit Hilfe einer Stammfunktion F von f und Satz 5.3.

• Wenn f(x) = f1(x)f2(x) ein Produkt von zwei Funktionen f1, f2 mit Stammfunktionen
F1, bzw. F2 ist, kann man es versuchen mit

- partieller Integration (Satz 5.4), falls F1(x)f
′
2(x) oder f ′

1(x)F2(x) einfacher als f(x) zu
integrieren ist,

- Substitution (Satz 5.6), falls f1(x) = g(h(x)) eine zusammengesetzte Funktion und
f2(x) = h′(x) die Ableitung der inneren Funktion ist.

• Wenn f(x) = p(x)
q(x) eine rationale Funktion ist

- und q′(x) = p(x), dann ist F (x) = ln |q(x)| eine Stammfunktion von f ,

- und q′(x) 6= p(x), dann kann man es mit einer Partialbruchzerlegung (S. 88–89) versuchen.

• Wenn f(x) als Potenzreihe darstellbar ist, kann gliedweise integriert werden (S. 90).

5.4 Uneigentliche Integrale

Gegeben sei eine auf dem rechts (bzw. links) offenen Intervall [a, b) (resp. (a, b]) definierte
und stetige Funktion f(x). Wir wollen den Begriff des bestimmten Integrals erweitern, um
eine Möglichkeit zu haben,

• Funktionen f , die bei der Annährung x → b (resp. x → a) nicht beschränkt sind, und

• Funktionen f über unbeschränkte Integrationsintervalle [a,∞) (resp. (−∞, b])

zu integrieren. Dazu definieren wir zunächst die folgenden vier Ausdrücke.

Definition

f(x) für x → b nicht beschränkt:

∫ b

a

f(x) dx = lim
r↑b

∫ r

a

f(x) dx

f(x) für x → a nicht beschränkt:

∫ b

a

f(x) dx = lim
r↓a

∫ b

r

f(x) dx

unbeschränktes Intervall [a,∞):

∫ ∞

a

f(x) dx = lim
r→∞

∫ r

a

f(x) dx

unbeschränktes Intervall (−∞, b]:

∫ b

−∞
f(x) dx = lim

r→−∞

∫ b

r

f(x) dx

Diese Integrale nennt man uneigentliche Integrale. Ein uneigentliches Integral konvergiert
(bzw. divergiert), wenn der zugehörige Grenzwert existiert (bzw. nicht existiert).
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Beispiele

1.

∫ 1

0

1

x
dx =

Zunächst ist nicht klar, was dieses Integral überhaupt bedeutet. Geometrisch misst das
Integral den Flächeninhalt unter der Kurve der Funktion f(x) = 1

x , welche allerdings im Null-
punkt eine Polstelle hat. Intuitiv könnten hier zwei Dinge passieren: Entweder der Flächeninhalt
ist unendlich gross (da die Funktion unendlich wächst) oder der Flächeninhalt ist endlich (da
das unendliche Wachstum der Funktion durch die schnelle Annährung an die y-Achse kom-
pensiert wird).

2.

∫ 1

0

1

x2
dx = lim

r↓0

∫ 1

r

1

x2
dx = ∞ , denn

∫ 1

r

1

x2
dx = −1

x

∣∣∣∣
1

r

= −1 +
1

r
und lim

r↓0
1

r
= ∞
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3.

∫ 1

0

1√
x
dx =

4.

∫ ∞

0
xe−x dx = lim

r→∞

∫ r

0
xe−x dx = 1 , denn

∫ r

0
xe−x dx = −(x+ 1)e−x

∣∣∣
r

0
= −r + 1

er
+ 1

wobei hier partiell integriert wurde wie im 1. Beispiel auf Seite 85. Mit der Regel von Bernoulli-
de l’Hôpital folgt

lim
r→∞

−r + 1

er
= lim

r→∞
− 1

er
= 0 .

Intuitiv könnten auch hier zwei Dinge passieren: Entweder der Flächeninhalt ist unendlich
gross (da das Intervall unendlich lang ist) oder der Flächeninhalt ist endlich (da die unendliche
Intervalllänge durch die schnelle Annährung an die x-Achse kompensiert wird).
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6 Differentialgleichungen

Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und
Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialglei-
chung sind Funktionen y, welche die Gleichung erfüllen.

Gewisse Differentialgleichungen sind uns schon in Kapitel 5 begegnet, nämlich in der Form

y′ = f(x)

wobei f eine gegebene reelle Funktion ist. Eine Lösung dieser Gleichung ist eine Stammfunk-
tion y = y(x) = F (x) von f(x). Diese Lösung ist eindeutig bis auf eine Konstante c. Es gibt
eine eindeutige Lösung, wenn zusätzlich eine sogenannte Anfangsbedingung vorgegeben ist,
zum Beispiel y(0) = 0.

Differentialgleichungen kommen vor allem in der Physik vor, aber auch das Wachstums-
verhalten von Populationen wird oft mit Hilfe von Differentialgleichungen beschrieben.

Beispiel

Fruchtfliegen vermehren sich im Sommer unter idealen Bedingungen besonders schnell. Eine
Biologin stellt fest, dass für die Wachstumsrate y′(t) von Fruchtfliegen zum Zeitpunkt t die
Beziehung

y′(t) = 1, 5 y(t)

gilt. Dabei bezeichnet y(t) die Anzahl der Fruchtfliegen nach t Tagen. Am ersten Tag (zum
Zeitpunkt t = 0) zählt sie 20 Fruchtfliegen. Mit wievielen Fruchtfliegen muss sie nach einer
Woche rechnen?

Die Differentialgleichung im vorhergehenden Beispiel nennt man Differentialgleichung
(kurz DGL) erster Ordnung, weil nur y und die erste Ableitung von y vorkommen. Allgemein
nennt man eine Differentialgleichung von n-ter Ordnung, wenn die n-te Ableitung von y die
höchste in der Differentialgleichung vorkommende Ableitung ist.

Differentialgleichungen von erster Ordnung sind zum Beispiel

y′ = 0 , y′ = f(x) , y′ = ay + b , y′ = p(x)y + q(x) , y′ = ay2 + by + c .

Differentialgleichungen von zweiter Ordnung sind zum Beispiel

y′′ = 0 , y′′ + ay = 0 , y′′ + by′ + cy = cos x .

6.1 Separierbare Differentialgleichungen

Exponentielles Wachstum

Die Gleichung
y′ = y (1)

ist eine Differentialgleichung erster Ordnung. Genauer müsste man schreiben f ′(x) = f(x)
für alle x ∈ R. Um aber anzudeuten, dass die Funktion f variabel ist, schreiben wir in diesem
Kapitel statt f immer y, also y′(x) = y(x) für alle x ∈ R. Und weil in dieser Gleichung y und
nicht x gesucht ist, lassen wir in der Differentialgleichung wie oben das x einfach weg.
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Eine Lösung der DGL (1) können wir erraten: Die Funktion

y(x) = ex

erfüllt die DGL (1), denn (ex)′ = ex. Ist dies die einzige Lösung?

Betrachten wir die DGL y′ = y geometrisch, indem wir in jedem Punkt (x, y) des Ko-
ordinatensystems y′ = y als Steigung einzeichnen. Das heisst, wir zeichnen in (x0, y0) einen
Geradenabschnitt der Geraden durch (x0, y0) mit der Steigung y0 ein.

Dies nennt man ein Richtungsfeld. Eine Lösung y(x) der DGL y′ = y “passt” in dieses
Richtungsfeld, denn die rot eingezeichneten Steigungen sind gerade Tangentenabschnitte an
den Graphen von y(x) (y′ ist ja die Steigung der Tangente an die Funktion y(x) ).

Im ersten Bild ist die Lösung y = ex eingezeichnet, denn für diese Lösung gilt die Anfangs-
bedingung

y(0) = e0 = 1 .

Im mittleren Bild gilt die Anfangsbedingung y(0) = 2, was durch die Funktion y(x) = 2ex

erfüllt ist. Im Bild rechts sehen wir die Lösung y(x) = −1
2e

x, da dort die Anfangsbedingung
y(0) = −1

2 gilt.

Die allgemeine Lösung der Differentialgleichung y′ = y ist also gegeben durch

y(x) = Aex ,

wobei die reelle Zahl A durch die Anfangsbedingung y(0) = Ae0 = A bestimmt ist.
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Betrachten wir nun die leicht allgemeinere Differentialgleichung

y′ = ay (2)

für eine reelle Zahl a. Für jede Konstante A (d.h. reelle Zahl A) ist die Funktion

y(x) = Aeax

eine Lösung dieser DGL, und jede Lösung hat diese Form. Durch Ableiten können wir
überprüfen, dass y(x) eine Lösung ist:

Die Differentialgleichung (2) beschreibt, falls A > 0, ein exponentielles Wachstum für
a > 0, bzw. ein exponentieller Zerfall für a < 0, wobei die momentane Wachstums-, bzw.
Zerfallsgeschwindigkeit y′ proportional vom Bestand y abhängt.

Beispiel

Die Wachstumsrate von Fruchtfliegen aus dem Beispiel zu Beginn des Kapitels ist genau von
dieser Form, und zwar gilt

y′(t) = 1, 5 y(t) ,

das heisst, a = 1, 5. Die Lösung ist also von der Form

y(t) = Ae1,5 t .

Mit der Anfangsbedingung y(0) = 20 können wir A und damit die Lösung y(t) bestimmen:

Nach einer Woche muss die Biologin bei idealen Bedingungen also bereits mit

y(7) = 726310

Fruchtfliegen rechnen!

Beschränktes Wachstum

Wir verallgemeinern noch einmal und betrachten die Differentialgleichung

y′ = ay + b (3)

für reelle Zahlen a 6= 0 und b.
Um eine Lösung dieser Differentialgleichung zu finden, schreiben wir

dy

dx
= y′(x) = ay + b .

Nun bringen wir die Variablen y auf die linke Seite (dabei setzen wir voraus, dass y 6= − b
a)

und die Variablen x auf die rechte Seite und integrieren beide Seiten.

dy

ay + b
= dx =⇒

∫
dy

ay + b
=

∫
dx .
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Wir erhalten

und lösen diese Gleichung nach y auf:

Zu Beginn dieses Beispiels hatten wir vorausgesetzt, dass y 6= − b
a
. Aber y = − b

a
ist auch eine

Lösung der DGL (3), denn die Ableitung einer konstanten Funktion ist gleich Null.
Die Differentialgleichung (3) hat also die allgemeine Lösung

y(x) = Aeax − b

a

für eine beliebige Konstante A.
Bei vielen Wachstumsprozessen in der Natur ist die Zu- oder Abnahme eines Bestandes

durch eine natürliche Grenze (man nennt sie Sättigungs- oder Kapazitätsgrenze) beschränkt.
Zum Beispiel kann ein Teich nicht unendlich viele Fische aufnehmen oder eine warme Flüs-
sigkeit kann sich nicht unendlich stark abkühlen. Die Wachstumsgeschwindigkeit ist in diesen
Fällen proportional zur Differenz aus Sättigungsgrenze S und Bestand, das heisst, man erhält
eine Differentialgleichung der Form

y′ = a(S − y) = −ay + aS

für eine Konstante a. Diese Differentialgleichung ist vom Typ der DGL (3) und hat damit
die allgemeine Lösung

y(x) = S +Ae−ax .

Für a > 0 ist die Funktion e−ax monoton fallend. Deshalb beschreibt y(x) einen Wachstums-
prozess, falls A < 0 und einen Zerfallsprozess, falls A > 0.

Beispiel

Frisch aufgebrühter Kaffee hat eine Temperatur um die 80◦ C. Als angenehme Trinktempe-
ratur gilt etwa 45◦ C. Wir lassen den Kaffee im 20◦ C warmen Zimmer stehen. Pro Minute
kühlt der Kaffee um 15 Prozent der aktuellen Temperaturdifferenz zur Raumtemperatur ab.
Nach wieviel Minuten können wir den Kaffee trinken, ohne uns die Zunge zu verbrennen?
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Sei y = y(x) die Temperatur des Kaffees in ◦ C nach x Minuten. Dann gilt

Für die eindeutige Lösung erhalten wir

Der Graph von y(x) = 20 + 60 e−0,15·x sieht so aus:

Für die optimale Trinktemperatur von 45◦ C müssen wir nun die Gleichung y(x) = 45 nach
x auflösen:

Wir können unseren Kaffee also nach ungefähr 6 Minuten trinken.

Trennung der Variablen

Kehren wir nochmals zur allgemeinen Differentialgleichung (3) zurück. Die Methode, mit
der wir diese Differentialgleichung gelöst haben, ist auch auf andere Differentialgleichungen
anwendbar, nämlich auf sogenannte separierbare Differentialgleichungen.
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Definition Eine Differentialgleichung der Form

y′ = g(x)h(y)

für Funktionen g(x) und h(y) in x, bzw. y heisst separierbar.

Eine separierbare Differentialgleichung kann nach der folgenden Methode gelöst werden;
man nennt sie Trennung der Variablen.

1. Schreibe
dy

dx
= g(x)h(y) .

2. Trenne die Variablen, das heisst bringe y nach links und x nach rechts:

1

h(y)
dy = g(x)dx

3. Integriere unbestimmt: ∫
1

h(y)
dy =

∫
g(x)dx

4. Löse nach y auf.

5. Jede Nullstelle y = y0 von h(y) ergibt zusätzlich eine konstante Lösung y(x) = y0.
(Diese Lösungen wurden im 2. Schritt bei der Division durch h(y) ausgeschlossen.)

Beispiel

Gesucht ist die Lösung der Differentialgleichung

y′ = (y − 2)(x+ 1)2

mit der Anfangsbedingung y(−1) = 2, 5. In der obigen Notation ist hier

g(x) = (x+ 1)2 und h(y) = y − 2 .

Diese DGL ist also separierbar und wir können sie durch Trennung der Variablen lösen.
Die ersten beiden Schritte ergeben

Im dritten Schritt wird integriert:

Und schliesslich müssen wir die Gleichung nach y auflösen:

Die konstante Funktion y(x) = 2 (gemäss 5. Schritt) ist hier wegen der Anfangsbedingung
y(−1) = 2, 5 keine Lösung.
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Mit der Anfangsbedingung folgt

Die eindeutige Lösung der Differentialgleichung ist also

y(x) =
1

2
e

1
3
(x+1)3 + 2 .

Logistisches Wachstum

Wachstumsprozesse können zu verschiedenen Zeitpunkten unterschiedlich verlaufen. Es kann
zum Beispiel vorkommen, dass eine Population zunächst exponentiell wächst, da die Sät-
tigungsgrenze zunächst noch kein Hindernis für die noch kleine Population darstellt. Doch
nähert sich die Grösse der Population der Sättigungsgrenze, dann verringert sich das Wachs-
tum und es ist begrenzt. Man nennt diese Kombination von exponentiellem und begrenztem
Wachstum logistisches Wachstum. Die Wachstumsgeschwindigkeit ist hier proportional zum
Produkt vom Bestand und der Differenz aus Sättigungsgrenze und Bestand. Wir erhalten
also eine Differentialgleichung der Form

y′ = ay(S − y) . (4)

Ist die Population y noch klein, dann ist S − y ≈ S und y′ ≈ aSy beschreibt ein exponen-
tielles Wachstum. Je mehr sich y der Grenze S nähert, desto kleiner wird S − y, und die
Änderungsrate von y nimmt immer mehr ab.

Beispiel

Wir beobachten das Wachstum einer Pantoffeltierchenpopulation im Labor mit konstanten
Umweltbedingungen. Die Population wird durch die Gleichung

y′ = 1, 1 · y ·
(
900− y

900

)

beschrieben. Welche Funktion y beschreibt die Anzahl der Pantoffeltierchen in Abhängigkeit
der Zeit, wenn wir zur Zeit x = 0 ein einziges Pantoffeltierchen haben?

Diese Differentialgleichung beschreibt ein logistisches Wachstum mit Sättigungsgrenze
S = 900 und a = 1,1

900 .
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Wir können die Differentialgleichung (4) (und damit auch die DGL des Beispiels) durch
Trennung der Variablen lösen.

Das Integral auf der linken Seite berechnen wir mit Hilfe einer Partialbruchzerlegung. Wir
machen den Ansatz

Wir bestimmen α und β mit der alternativen Methode, multiplizieren also den Ansatz zuerst
mit y und dann mit y − S :

Es folgt

Damit erhalten wir

ln

( |y − S|
|y|

)
= −aSx+ c

und wir müssen diese Gleichung noch nach y auflösen.

Die allgemeine Lösung der Differentialgleichung (4) ist also

y(x) =
S

1−Ae−aSx

für eine Konstante A 6= 0. Zusätzliche Lösungen sind die konstanten Funktionen y(x) = 0
und y(x) = S (da hier h(y) = ay(S − y) = 0 für y0 = 0 und y0 = S).
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Beispiel

Für das Wachstum der Pantoffeltierchenpopulation gilt S = 900 und a = 1,1
900 . Mit der

Anfangsbedingung y(0) = 1 erhalten wir für A :

Das Wachstum der Pantoffeltierchenpopulation wird also beschrieben durch

y(x) =
900

1 + 899 e−1,1·x .

Die Differentialgleichung (4) ist ein Spezialfall einer Differentialgleichung der Form

y′ = ay2 + by + c (5)

für reelle Zahlen a 6= 0, b und c. Hat das quadratische Polynom auf der rechten Seite zwei
verschiedene reelle Nullstellen y1, y2, dann können wir die Differentialgleichung (5) analog
zur DGL (4) lösen. Die Geraden y = y1 und y = y2 bilden in diesem Fall Asymptoten für die
Lösung y(x). Der Fall y1 = y2 führt durch direkte Integration (ohne Partialbruchzerlegung)
auf eine rationale Funktion y. Und hat das quadratische Polynom keine reelle Nullstelle, dann
kommt mit Hilfe einer Substitution der Arcustangens ins Spiel (s. Zusatzübung).

6.2 Lineare Differentialgleichungen erster Ordnung

Eine Differentialgleichung erster Ordnung heisst linear, wenn sie auf die Form

y′ = p(x)y + q(x) (I)

für Funktionen p(x) und q(x) gebracht werden kann. Die DGL

y′ = p(x)y (H)

heisst die zur Gleichung (I) zugehörige homogene Gleichung. Entsprechend nennt man die
Gleichung (I) manchmal inhomogen.
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Da die DGL (I) linear in y′ und y ist, gilt das Folgende. Ist y1 eine Lösung von (I) und
y0 eine Lösung von (H), dann ist die Summe y2 = y1 + y0 wieder eine Lösung von (I). Sind
umgekehrt y1 und y2 zwei Lösungen von (I), dann ist die Differenz y0 = y1 − y2 eine Lösung
von (H). Damit gilt der folgende Satz.

Satz 6.1 Die allgemeine Lösung von (I) erhält man durch Addition einer partikulären Lösung
von (I) und der allgemeinen Lösung von (H).

Die allgemeine Lösung von (H) erhält man durch Trennung der Variablen, da (H) eine sepa-
rierbare DGL ist. Wie wir eine partikuläre (d.h. einzelne) Lösung von (I) finden, schauen wir
uns zuerst an einem Beispiel an.

Beispiel

Wir betrachten die DGL xy′ − 2y = x3. Dies ist eine lineare DGL erster Ordnung, denn wir
können sie umschreiben zu

y′ =
2

x
y + x2 . (I)

Es ist also p(x) = 2
x
und q(x) = x2. Die zugehörige homogene Gleichung ist

y′ =
2

x
y . (H)

Diese homogene Gleichung (H) können wir durch Trennung der Variablen lösen:

dy

dx
=

2

x
y =⇒

∫
dy

y
=

∫
2

x
dx

Integration führt zu
ln |y| = 2 ln |x|+ c = ln(x2) + c

und auflösen nach y ergibt

y = ± eln(x
2)+c = ± ec · x2 = A · x2 mit A = ±ec 6= 0 .

Hinzu kommt die konstante Lösung y = 0. Die allgemeine Lösung von (H) ist also

yH(x) = Ax2 .

für eine beliebige Konstante A.
Um eine partikuläre Lösung der inhomogenen Gleichung (I) zu finden, machen wir nun

einen Ansatz, der Variation der Konstanten genannt wird und erstmals von Joseph-Louis

Lagrange (1736 – 1813) benutzt wurde. Wir nehmen die allgemeine Lösung yH(x) = Ax2

von (H) und ersetzen die Konstante A durch eine (noch unbekannte) Funktion a(x), das
heisst wir setzen

y(x) = a(x) · x2 .
Diesen Ansatz setzen wir in die Gleichung (I) ein:

Linke Seite:
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Rechte Seite:

Da “Linke Seite = Rechte Seite” wegen der Gleichung (I), folgt

Die Konstante c können wir weglassen, da wir nur eine einzelne Lösung von (I) suchen; also
a(x) = x genügt. Damit erhalten wir eine partikuläre Lösung der Gleichung (I),

yP(x) = a(x) · x2 = x3 .

Nun addieren wir die partikuläre Lösung von (I) und die allgemeine Lösung von (H),

y(x) = yP(x) + yH(x) = x3 +Ax2 .

Gemäss Satz 6.1 ist dies die allgemeine Lösung der inhomogenen Gleichung (I).

Dieser Ansatz mit der Variation der Konstanten lässt sich auf eine beliebige lineare DGL
erster Ordnung (I) y′ = p(x)y + q(x) anwenden. Sei (H) y′ = p(x)y wie vorher.

Herleitung und Bestimmung der allgemeinen Lösung von (I)

Schritt 1 : Bestimmung der allgemeinen Lösung yH von (H) durch Trennung der Variablen.

dy

dx
= y′ = p(x) · y =⇒

∫
dy

y
=

∫
p(x)dx .

Integration führt zu
ln |y| = P (x) + c

für eine Stammfunktion P (x) von p(x). Auflösen nach y ergibt die allgemeine Lösung

yH(x) = AeP (x)

für eine beliebige Konstante A.

Schritt 2 : Bestimmung einer partikulären Lösung yP von (I) durch Variation derKonstanten.

Aufgrund der allgemeinen Lösung in Schritt 1 machen wir den Ansatz

yP(x) = a(x) eP (x)

und setzen ihn in die Gleichung (I) ein:

Es folgt
a′(x) eP (x) = q(x) =⇒ a′(x) = q(x) e−P (x) .

Ist Q(x) eine Stammfunktion von q(x) e−P (x), dann erhalten wir eine partikuläre Lösung

yP (x) = Q(x) eP (x) .
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Schritt 3 : Gemäss Satz 6.1 ist nun die allgemeine Lösung von (I) gegeben durch

y(x) = yP(x) + yH(x) = Q(x) eP (x) +AeP (x) = (Q(x) +A) eP (x) ,

wobei P (x) und Q(x) Stammfunktionen von p(x), bzw. q(x) e−P (x) sind.

Beispiele

1. Gesucht ist die allgemeine Lösung der inhomogenen linearen DGL

y′ = y + x .

Hier ist also p(x) = 1 und q(x) = x.

Schritt 1 : Eine Stammfunktion von p(x) = 1 ist P (x) = x. Also ist

yH(x) = AeP (x) = Aex

die allgemeine Lösung der zugehörigen homogenen DGL y′ = y. Das wissen wir auch vom
Beginn dieses Kapitels (Seite 95).

Schritt 2 : Für eine partikuläre Lösung brauchen wir eine Stammfunktion Q(x) von

q(x) e−P (x) = x e−x .

Mit partieller Integration wie im 1. Beispiel auf Seite 85 finden wir

Q(x) = −(1 + x) e−x .

Damit erhalten wir die partikuläre Lösung

Schritt 3 : Die allgemeine Lösung der DGL y′ = y + x ist demnach

y(x) = yP + yH = −1− x+Aex .

Die Bilder zeigen die eindeutigen Lösungen zu verschiedenen Anfangsbedingungen:

• Bild links: y(0) = −1
2 =⇒ A = 1

2

• Bild Mitte: y(0) = −1 =⇒ A = 0

• Bild rechts: y(0) = −2 =⇒ A = −1
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2. Gesucht ist die eindeutige Lösung der inhomogenen linearen DGL

y′ = cos(x) y + esin(x)

mit der Anfangsbedingung y(π) = 0. Hier ist also p(x) = cos(x) und q(x) = esin(x).
Eine Stammfunktion von p(x) = cos(x) ist

Für yP brauchen wir eine Stammfunktion Q(x) von

Damit erhalten wir die allgemeine Lösung der DGL

Mit der Anfangsbedingung y(π) = 0 erhalten wir für die Konstante A die Gleichung

Die eindeutige Lösung ist also gegeben durch y(x) = (x− π) esin(x) .

6.3 Lineare Differentialgleichungen zweiter Ordnung

Wir beginnen mit drei Beispielen.

1. Die DGL y′′ = 0 hat die allgemeine Lösung

y(x) = Ax+B

für beliebige Konstanten A und B.

2. Die DGL y′′ = y hat die allgemeine Lösung

y(x) = Aex +Be−x

für beliebige Konstanten A und B. Tatsächlich sind dies Lösungen, denn
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3. Die DGL y′′ = −y hat die allgemeine Lösung

y(x) = A cos(x) +B sin(x)

für beliebige Konstanten A und B.

In allen drei Beispielen können zwei Konstanten A und B frei gewählt werden. Um eine
eindeutige Lösung zu erhalten, müssen deshalb zwei Anfangsbedingungen vorgegeben werden,
zum Beispiel y(0) und y′(0).

Allgemein untersuchen wir hier Differentialgleichungen der Form

ay′′ + by′ + cy = 0 (6)

mit a 6= 0, welche man homogene lineare Differentialgleichung zweiter Ordnung (mit konstan-
ten Koeffizienten) nennt.

Wir bemerken zuerst, dass für eine Lösung y von (6) auch Ay, für jede reelle Zahl A, eine
Lösung ist, und sind y1, y2 zwei Lösungen von (6), dann ist auch die Summe y1 + y2 eine
Lösung von (6). Die Lösungen von (6) bilden deshalb einen sogenannten Vektorraum, wie wir
in Kapitel 9 sehen werden.

Um eine Lösung von (6) zu finden, machen wir den Ansatz y(x) = eλx und setzen ihn in
die Gleichung (6) ein:

Da eλx 6= 0, folgt
aλ2 + bλ+ c = 0 .

Diese Gleichung nennt man charakteristische Gleichung von (6).
Wir erhalten also eine Lösung y(x) = eλx von (6), wenn λ die charakteristische Gleichung

erfüllt. Diese Gleichung hat entweder zwei verschiedene reelle Lösungen, eine reelle Lösung
oder zwei konjugiert komplexe Lösungen. Wir untersuchen diese drei Fälle nacheinander.

1. Fall: Die Gleichung aλ2 + bλ+ c = 0 hat zwei verschiedene reelle Lösungen.

Dies ist genau dann der Fall, wenn b2 − 4ac > 0. Die beiden reellen Lösungen sind dann
gegeben durch

λ1 =
−b+

√
b2 − 4ac

2a
und λ2 =

−b−
√
b2 − 4ac

2a
.

Die allgemeine Lösung der DGL (6) ist in diesem Fall

y(x) = Aeλ1x +Beλ2x .

Da λ1 und λ2 Lösungen der charakteristischen Gleichung sind, sind eλ1x und eλ2x Lösungen
der DGL (6). Nach der Bemerkung oben ist dann auch jede Linearkombination eine Lösung.

Beispiel

Gesucht ist die Lösung der DGL

2y′′ − 10y′ + 12y = 0

mit den Anfangsbedingungen y(0) = 7 und y′(0) = 19.
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Charakteristische Gleichung:

Mit den Anfangsbedingungen gilt

Die (eindeutige) Lösung ist also y(x) = 2e2x + 5e3x .

2. Fall: Die Gleichung aλ2 + bλ+ c = 0 hat eine reelle Lösung.

Dies ist genau dann der Fall, wenn b2 − 4ac = 0. Die Lösung ist dann gegeben durch

λ0 =
−b

2a
.

Die allgemeine Lösung der DGL (6) ist in diesem Fall

y(x) = (Ax+B)eλ0x .

Dass eλ0x eine Lösung ist, ist klar von der Herleitung. Dass xeλ0x eine Lösung ist, kann man
durch Einsetzen in die Gleichung (6) überprüfen.

Beispiel

Gesucht ist die Lösung der DGL

y′′ − 10y′ + 25y = 0

mit den Anfangsbedingungen y(0) = 3 und y′(0) = 13.
Die charakteristische Gleichung lautet:

0 = λ2 − 10λ+ 25 = (λ− 5)2 =⇒ λ0 = 5
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Die allgemeine Lösung ist also gegeben durch

y(x) = (Ax+B)e5x .

Von der ersten Anfangsbedingung erhalten wir direkt 3 = y(0) = B. Für die zweite Anfangs-
bedingung müssen wir zuerst y(x) ableiten.

Die (eindeutige) Lösung ist also y(x) = (−2x+ 3)e5x .

3. Fall: Die Gleichung aλ2 + bλ+ c = 0 hat zwei konjugiert komplexe Lösungen.

Dies ist genau dann der Fall, wenn b2−4ac < 0. Die beiden konjugiert komplexen Lösungen
sind dann gegeben durch

λ1 = α+ iω und λ2 = α− iω , wobei α = − b

2a
, ω =

√
4ac− b2

2a
.

Die allgemeine Lösung der DGL (6) ist in diesem Fall

y(x) = eαx(A sin(ωx) +B cos(ωx)) .

Dass eαx sin(ωx) und eαx cos(ωx) Lösungen von (6) sind, könnten wir vermuten, da

eλ1x = e(α+iω)x = eαxeiωx = eαx(cos(ωx) + i sin(ωx))

eine Lösung von (6) ist und die DGL linear in y, y′ und y′′ ist.

Beispiel

Gesucht ist die Lösung der DGL

y′′ − 4y′ + 13y = 0

mit den Anfangsbedingungen y(0) = 3 und y′(0) = 9.
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Die allgemeine Lösung ist also gegeben durch

y(x) = e2x(A sin(3x) +B cos(3x)) .

Die erste Anfangsbedingung gibt wieder direkt 3 = y(0) = B. Für die zweite Anfangsbedin-
gung müssen wir wieder zuerst y(x) ableiten.

Die (eindeutige) Lösung ist also

y(x) = e2x(sin(3x) + 3 cos(3x)) =
√
10 e2x(sin(3x+ u))

mit u = arccos
(

1√
10

)
≈ 1, 25 (vgl. Satz 1.3).

Physikalische Anwendung: Das Federpendel

Wir betrachten einen an einer Spiralfeder aufgehängten Körper der Masse m. Die Funktion
y(t) soll die Auslenkung des Körpers aus der Ruhelage zum Zeitpunkt t beschreiben.

Experimente zeigen, dass bei kleinen Auslenkungen aus der Ruhelage die rücktreibende Kraft
proportional zur Auslenkung ist. Der Proportionalitätsfaktor k > 0 hängt nur von der Feder
ab und heisst Federkonstante. Da diese Kraft entgegen der Auslenkung wirkt, können wir sie
durch −ky angeben. Die Auslenkung wird zudem durch eine Reibungskraft (Luftwiderstand)
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gebremst. Diese ist proportional zur Geschwindigkeit y′(t). Den Proportionalitätsfaktor be-
zeichnen wir mit ρ. Da die Kraft gleich Masse m mal Beschleunigung y′′(t) ist, erhalten wir
die Differentialgleichung

my′′ = −ky − ρy′ ,

die wir umschreiben zu
my′′ + ρy′ + ky = 0 .

Dies ist eine homogene lineare DGL zweiter Ordnung. Die zugehörige charakteristische Glei-
chung lautet

mλ2 + ρλ+ k = 0 .

Wir nehmen nun an, dass die Reibung klein ist, das heisst, es gelte ρ2 < 4mk. Damit sind
wir im 3. Fall. Für die allgemeine Lösung erhalten wir

y(t) = eαt(A sin(ωt) +B cos(ωt)) = Ceαt sin(ωt+ u)

mit

α = − ρ

2m
und ω =

√
k

m
− ρ2

4m2

und reellen Zahlen A,B (bzw. C, u), welche durch die Anfangsbedingungen festgelegt werden.
Man erkennt, dass die Schwingung gedämpft ist, das heisst, die Amplitude nimmt ab und zwar
exponentiell mit Ceα t = Ce−

ρ

2m
t.

Für k = m = 1 und ρ = 0, 1 beispielsweise sieht der Graph von y(t) so aus:

6.4 Systeme von linearen Differentialgleichungen

Die einfachste Form eines solchen Systems besteht aus zwei Differentialgleichungen

y′1 = ay1 + by2

y′2 = cy1 + dy2 (7)

mit reellen Zahlen a, b, c, d und hat als Lösung Paare von Funktionen y1(x), y2(x). Diese
beiden Funktionen sind also untereinander “gekoppelt”.

Systeme von zwei und mehr linearen Differentialgleichungen können mit Hilfe von so-
genannten Eigenwerten und Eigenvektoren (der Koeffizientenmatrix) gelöst werden. Diese
Begriffe werden wir jedoch erst im nächsten Semester kennenlernen. Wir werden dann, als
Anwendung, ein System von linearen Differentialgleichungen lösen.

Sind die Koeffizienten a, b, c, d des Systems (7) abhängig von x, dann gibt es keine allge-
meine Lösungsverfahren.
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Räuber-Beute-Beziehungen

Interessant sind speziell Systeme von Differentialgleichungen, die zwei (oder mehrere) Po-
pulationen beschreiben, die sich gegenseitig beeinflussen. Betrachten wir zum Beispiel zwei
konkurrierende Populationen, Raubtiere und ihre Beutetiere. Abhängig von der Zeit t be-
zeichne y1 = y1(t) die Anzahl der Beutetiere und y2 = y2(t) die Anzahl der Räubertiere.

Ohne Räuber würde sich die Beute gemäss y′1 = ay1 vermehren. Sind Räuber anwesend,
vermindert sich die Wachstumsrate y′1 um einen Term proportional zur Anzahl der Räuber.
Für die Population der Beute ergibt dies eine Differentialgleichung der Form

y′1 = (a− by2) y1 .

Für die Räuber gilt, dass sie ohne Beute gemäss y′2 = −cy2 aussterben würden. Gibt es
Beutetiere, dann vermindert sich die Sterberate um einen Term proportional zur Anzahl der
Beutetiere. Für die Population der Räuber ergibt dies eine Differentialgleichung der Form

y′2 = −(c− dy1) y2 .

Diese beiden Differentialgleichungen bilden ein System von Differentialgleichungen, das
Volterra-Lotka Räuber-Beute-Modell genannt wird. Lösungsfunktionen y1 und y2 können nur
mit Hilfe von numerischen Verfahren berechnet werden. Eine typische Lösung sieht wie folgt
aus, wobei die blaue Kurve die Populationsdichte der Beute und die rote Kurve die Popula-
tionsdichte der Räuber anzeigt.

Zu Beginn wachsen beide Populationen. Ab einem bestimmten Zeitpunkt gibt es zuviele
Räuber, so dass der Bestand an Beutetieren stark zurückgeht. Mit der Zeit gibt es dadurch
zu wenig Beute für die Räuber, so dass die Räuberpopulation zeitverzögert abnimmt. Dadurch
erholt sich jedoch die Beutepopulation wieder. Nach einer gewissen Zeit gibt es wieder genug
Beute, so dass auch wieder die Räuberpopulation zunimmt und sich der Zyklus wiederholt.



113

7 Lineare Gleichungssysteme

Lineare Gleichungssysteme treten in vielen mathematischen, aber auch naturwissenschaftli-
chen Problemen auf; zum Beispiel beim Lösen von Differentialgleichungen, bei Optimierungs-
aufgaben, in der Elektrotechnik und auch in der Chemie. Bei Anwendungen treten meist sehr
viele Gleichungen und Unbekannte auf, was effiziente Lösungsmethoden unabdingbar macht.
Hilfsmittel dieser Lösungsmethoden sind Vektoren und Matrizen.

7.1 Vektoren in der Ebene und im Raum

In diesem Abschnitt ist das Wichtigste über Vektoren in der Ebene und im Raum zusam-
mengefasst. All dies sollte aus der Schule bekannt sein. Der restliche Stoff dieses Semesters
baut auf diesen Grundlagen auf.

In der Ebene und im Raum lassen sich Vektoren geometrisch als gerichtete Strecken
oder Pfeile darstellen. Wir beschreiben die Vektoren ausschliesslich durch Länge und Rich-
tung. Deshalb betrachten wir zwei Vektoren als gleich, wenn ihre Richtung und ihre Länge
übereinstimmen.

Unter einem Ortsvektor
−→
OP eines Punktes P verstehen wir den gerichteten Pfeil im Ko-

ordinatensystem mit Anfangspunkt im Ursprung O und Endpunkt P . Wir können uns also
jeden Vektor als Ortsvektor vorstellen.

P

Wir schreiben einen Vektor sowohl in der Ebene als auch im Raum als Spaltenvektor :

~u =

(
u1
u2

)
, ~v =



v1
v2
v3


 .

Die reellen Zahlen u1, u2 bzw. v1, v2, v3 heissen Komponenten des Vektors ~u bzw. ~v. Diese
Komponenten beziehen sich auf die Standardbasis ~e1, ~e2 der Ebene bzw. ~e1, ~e2, ~e3 des Raumes.
Das heisst, es gilt

~u =

(
u1
u2

)
= u1~e1 + u2~e2 mit ~e1 =

(
1
0

)
, ~e2 =

(
0
1

)

bzw.

~v =



v1
v2
v3


 = v1~e1 + v2~e2 + v3~e3 mit ~e1 =



1
0
0


 , ~e2 =



0
1
0


 , ~e3 =



0
0
1



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Fassen wir ~u =

(
u1
u2

)
als Ortsvektor ~u =

−→
OP auf, dann sind die Komponenten u1, u2 von ~u

gerade die Koordinaten des Punktes P : P = (u1, u2). Analog für ~v =
−→
OP im Raum.

Rechenregeln

Die Definition von Summe ~u+~v, Differenz ~u−~v und Skalarmultiplikation k~u mit einer reellen
Zahl k erfolgt komponentenweise:

~u± ~v =



u1
u2
u3


±



v1
v2
v3


 =



u1 ± v1
u2 ± v2
u3 ± v3


 und k~u = k



u1
u2
u3


 =



ku1
ku2
ku3


 .

u

v

u+v

k2u

k1u

u

−u

Diese Vektoroperationen gehorchen den folgenden Regeln.

Satz 7.1 Für Vektoren ~u, ~v und ~w in der Ebene oder im Raum und reelle Zahlen k, l gilt:

(i) ~u+ ~v = ~v + ~u

(ii) (~u+ ~v) + ~w = ~u+ (~v + ~w)

(iii) ~u+~0 = ~0 + ~u = ~u

(iv) ~u+ (−~u) = ~0

(v) k(l~u) = (kl)~u

(vi) k(~u+ ~v) = k~u+ k~v

(vii) (k + l)~u = k~u+ l~u

(viii) 1~u = ~u
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Die Länge (oder Norm) ‖~u‖ eines Vektors ~u =

(
u1
u2

)
in der Ebene, bzw. ~u =



u1
u2
u3


 im

Raum ist gegeben durch

‖~u‖ =
√

u21 + u22 , bzw. ‖~u‖ =
√

u21 + u22 + u23 .

u

x

y

u

u

2

1

x

y

z

u2

u1

u3

u

d

Geraden und Ebenen im Raum

Es gibt im Wesentlichen zwei verschiedene Beschreibungsformen von Geraden und Ebenen,
die Parametergleichung und die Koordinatengleichung.

Parametergleichung einer Geraden. Eine Gerade in der Ebene bzw. im Raum ist gegeben
durch

~r =

(
x
y

)
= ~u+ t ~v bzw. ~r =



x
y
z


 = ~u+ t ~v mit t ∈ R

wobei ~u =
−→
OP der Ortsvektor eines (fest gewählten) beliebigen Punktes P auf der Geraden

und ~v ein Richtungsvektor längs der Geraden ist. Für jeden Punkt der Geraden gibt es also
(genau) ein t in R, so dass der Vektor ~r der Ortsvektor dieses Punktes beschreibt. Man nennt
t einen Parameter.

x

y

z

u

v

g

Punkt Q ∈ g ⇐⇒ es gibt ein t ∈ R mit ~r = ~u+ t ~v =
−→
OQ
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Beispiel

Gesucht ist eine Parametergleichung für die Gerade g durch die beiden Punkte A = (1,−2, 5)
und B = (4, 6,−2). Liegt C = (7, 14,−9) auf der Geraden g ?

Parametergleichung einer Ebene. Eine Ebene im Raum ist gegeben durch

~r =



x
y
z


 = ~u+ s~v + t ~w mit s, t ∈ R

wobei ~u =
−→
OP der Ortsvektor eines beliebigen Punktes P auf der Ebene und ~v und ~w zwei

nicht parallele Richtungsvektoren in der Ebene sind. Hier sind s und t zwei Parameter.

x

y

z

v

w

u

Aus der Schule wissen Sie, dass eine Gleichung der Form y = mx+ q eine Gerade in der
Ebene beschreibt, wobei m die Steigung und q der y-Achsenabschnitt der Geraden ist. Die
folgende leicht allgemeinere Schreibweise dieser Gleichung beschreibt auch die Geraden, die
parallel zur y-Achse sind.
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Koordinatengleichung einer Geraden in der Ebene. Eine Gerade in der Ebene ist
gegeben durch

ax+ by + c = 0

wobei a, b, c reelle Zahlen sind. Dabei gilt:

Der Punkt P = (x0, y0) liegt auf der Geraden ⇐⇒ ax0 + by0 + c = 0

Koordinatengleichung einer Ebene im Raum. Eine Ebene im Raum ist gegeben durch

ax+ by + cz + d = 0

wobei a, b, c, d reelle Zahlen sind.

Tatsächlich beschreibt diese Gleichung eine Ebene und nicht eine Gerade. Es ist eine Glei-
chung in den drei Unbekannten x, y, z. Zwei Unbekannte sind also frei wählbar, dann ist die
dritte bestimmt. Dies entspricht den zwei Dimensionen der Ebene (bzw. den zwei Parametern
der Parametergleichung einer Ebene).

Eine Gerade im Raum ist nicht durch eine einzige Koordinatengleichung beschreibbar. Es
sind zwei Koordinatengleichungen dafür nötig. Geometrisch bedeuten die zwei Gleichungen
zwei Ebenen. Die Gerade wird also als Schnittgerade zweier Ebenen beschrieben.

Beispiel

Man bestimme die Schnittgerade der beiden Ebenen gegeben durch 2x+ 3y − z + 1 = 0 und
x− y + 2z − 1 = 0.
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7.2 Der n-dimensionale Raum

Im vorhergehenden Abschnitt haben wir speziell die Ebene und den (dreidimensionalen)
Raum untersucht. In Räumen mit vier oder mehr Dimensionen kann ganz ähnlich gerechnet
werden. Solche Räume kommen ins Spiel, wenn wir lineare Gleichungssysteme lösen wol-
len. Hat nämlich ein lineares Gleichungssystem vier oder mehr Unbekannte, so liegen seine
Lösungen nicht in der Ebene oder im (dreidimensionalen) Raum, sondern in einem Raum
von höherer Dimension. Die Rechenarten des vorhergehenden Abschnitts können problemlos
auf höherdimensionale Räume erweitert werden.

Sei n eine natürliche Zahl. Die Menge aller geordneten n-Tupel

(x1, x2, . . . , xn)

mit reellen Zahlen x1, x2, . . . , xn heisst n-dimensionaler Raum und wird mit Rn bezeichnet.
Den 2- und 3-dimensionalen Raum kennen wir schon. Der Raum R2 ist die Ebene und R3 ist
der Raum aus dem vorhergehenden Abschnitt.

Wie in R2 und R3 bezeichnen wir mit P = (x1, . . . , xn) einen Punkt in Rn und mit

~v =



v1
...
vn




einen Vektor in Rn. Eine Addition und eine Skalarmultiplikation können wir für alle n ≥ 1
komponentenweise definieren,

~u+ ~v =



u1
...
un


+



v1
...
vn


 =



u1 + v1

...
un + vn


 und k~v =



kv1
...

kvn




für k ∈ R. Die Subtraktion kann dann als ~u−~v = ~u+(−~v) definiert werden, wobei −~v = (−1)~v
der Vektor mit den Komponenten −v1, . . . ,−vn ist.

Die Vektoren im Rn gehorchen damit denselben Rechenregeln wie die Vektoren im R2

und R3. Es sind die Gesetze (i)–(viii) aus Satz 7.1.

Weiter ist die Länge (oder Norm) eines Vektors ~u in Rn definiert durch

‖~u‖ =
√

u21 + · · ·+ u2n .

7.3 Lineare Gleichungssysteme und Matrizen

Wir beginnen mit einem Beispiel eines linearen Gleichungssystems aus der Chemie.

Beispiel: Reaktionsgleichung

Wird Kaliumdichromat K2Cr2O7 auf über 500◦ C erhitzt, zerfällt es in Kaliumchromat
K2CrO4, Chromoxid Cr2O3 und Sauerstoff O2. Die Reaktionsgleichung lautet mit unbekann-
ten Molekülzahlen:

x1K2Cr2O7 −→ x2K2CrO4 + x3Cr2O3 + x4O2



119

Wie sehen die Koeffizienten x1, x2, x3, x4 in der Reaktionsgleichung aus, die gewährleisten,
dass bei den Reaktanden und Produkten der Gleichung die Anzahlen der jeweiligen Atome
gleich sind?

Bringen wir alle Terme auf die linke Seite, erhalten wir die folgenden drei linearen Gleichungen

2x1 − 2x2 = 0 (8)

2x1 − x2 − 2x3 = 0 (9)

7x1 − 4x2 − 3x3 − 2x4 = 0 (10)

also ein lineares Gleichungssystem. Wir könnten dieses Gleichungssystem mit Methoden aus
der Schule lösen, zum Beispiel durch Einsetzen. Hätte dieses System jedoch mehr Unbekannte
und Gleichungen, wäre diese Lösungsmethode sehr aufwendig. Es ist deshalb sinnvoll, eine
Lösungsmethode zu kennen, mit der man jedes lineare System effizient lösen kann.

Zuerst halten wir noch ein paar wichtige allgemeine Tatsachen über lineare Gleichungs-
systeme fest.

Allgemein nennt man m lineare Gleichungen

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
... (G)

am1x1 + · · ·+ amnxn = bm

in n Variablen ein lineares Gleichungssystem. Die reellen Zahlen a11, . . . , amn nennt man
Koeffizienten des Gleichungssystems (oder der Gleichungen). Eine Lösung des Systems besteht
aus n Zahlen z1, . . . , zn mit der Eigenschaft, dass jede Gleichung des Systems durch die
Substitution x1 = z1, x2 = z2, . . . , xn = zn erfüllt wird. Die Gesamtheit aller Lösungen heisst
Lösungsmenge oder allgemeine Lösung des Gleichungssystems.

Zum Beispiel bilden die Gleichungen

x1 − 3x2 = −7

2x1 + x2 = 7

ein lineares Gleichungssystem.

Wir verändern die zweite Gleichung und erhalten ein neues Gleichungssystem:

x1 − 3x2 = −7

2x1 − 6x2 = 7

Dieses System hat keine Lösung! Also ist nicht jedes Gleichungssystem lösbar.



120

Wir verändern die zweite Gleichung noch einmal und erhalten wieder ein neues System:

x1 − 3x2 = −7

2x1 − 6x2 = −14

Diese zweite Gleichung ist nun überflüssig, da sie ein Vielfaches der ersten Gleichung ist
und deshalb keine neue Bedingung an x1 und x2 stellt. Die beiden Gleichungen beschreiben
dieselbe Gerade in der Ebene (als Koordinatengleichungen). Alle Punkte (x1, x2) auf die-
ser Geraden sind Lösungen des Gleichungssystems. Dieses System hat also unendlich viele
Lösungen. Wir können diese Lösungen auch mit Hilfe eines Parameters beschreiben:

Dies führt zur Parametergleichung der Geraden:

Wir haben nun je ein lineares Gleichungssystem mit genau einer Lösung, mit keiner Lösung
und mit unendlich vielen Lösungen gesehen. Tatsächlich können bei einem beliebigen linearen
Gleichungssystem stets nur genau diese drei Fälle auftreten.

Für Systeme in 2 oder 3 Unbekannten kann diese Tatsache geometrisch begründet werden,
denn eine Gleichung in 2 Unbekannten beschreibt eine Gerade in der Ebene und eine Glei-
chung in 3 Unbekannten beschreibt eine Ebene im Raum. Das heisst, das lineare Gleichungs-
system hat eine Lösung, wenn die Geraden (bzw. Ebenen) einen gemeinsamen Schnittpunkt
haben.

genau eine Lösung keine Lösung unendlich viele Lösungen

Um lineare Gleichungssysteme effizient lösen zu können, schreibt man sie mit Hilfe von
sogenannten Matrizen,

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


 , (A |~b) =




a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
am1 am2 · · · amn bm


 .

Die Matrix A nennt man Koeffizientenmatrix des Systems (G) und die Matrix (A |~b) heisst
erweiterte Matrix des Systems.
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Matrizen

Allgemein ist eine (reelle oder komplexe) Matrix ein rechteckiges Zahlenschema




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn




wobei aij für i = 1, . . . ,m und j = 1, . . . , n (reelle oder komplexe) Zahlen sind; man nennt sie
Elemente oder Einträge der Matrix (nächstes Semester werden wir auch Matrizen benutzen,
deren Einträge Funktionen sind). Hat die Matrix m Zeilen und n Spalten, dann bezeichnet
man die Matrix als m× n-Matrix.

Ist speziell n = 1, so hat die m× 1-Matrix nur eine Spalte




a1
...
am


 ,

ist also nichts anderes als ein Spaltenvektor. Ist m = 1, so hat die 1×n-Matrix nur eine Zeile

(
a1 · · · an

)

und wird auch als Zeilenvektor bezeichnet.

Ist m = n, so nennt man die n × n-Matrix quadratisch der Ordnung n. Die Elemente
a11, a22, . . . , ann heissen Diagonalelemente. Sind alle Elemente ausser den Diagonalelementen
einer Matrix gleich Null, dann nennt man die Matrix eine Diagonalmatrix.

Eine spezielle Diagonalmatrix ist die Einheitsmatrix

E = En =



1 0

. . .

0 1




der Ordnung n. Weiter nennt man die Matrix, deren sämtliche Elemente gleich Null sind,
Nullmatrix und bezeichnet sie mit 0.

Schliesslich nennt man zwei Matrizen gleich, wenn sie dieselbe Anzahl Zeilen und Spalten
haben (d.h. dieselbe Grösse haben) und einander entsprechende Einträge übereinstimmen.

7.4 Der Gauß-Algorithmus

Es gibt verschiedene Methoden, ein lineares Gleichungssystem zu lösen. Der Gauß-Algorith-
mus (oder das Gauß-Jordan-Verfahren) ist ein Lösungsverfahren, das für beliebige lineare
Systeme anwendbar ist. Er ist leicht auf einem Computer programmierbar und vor allem sehr
effizient. Weitere Lösungsmethoden sind zum Beispiel die Cramersche Regel und das Lösen
mit Hilfe der inversen Matrix, die jedoch nur für gewisse quadratische Koeffizientenmatrizen
anwendbar sind, das heisst insbesondere, für lineare Systeme mit gleich vielen Gleichungen
wie Unbekannten. Sie sind eher vom theoretischen Standpunkt her interessant.



122

Gewisse lineare Gleichungssysteme sind ganz einfach zu lösen, zum Beispiel

x1 + x2 − x3 = 0

x2 − x3 = 1 (S1)

x3 = 3

Durch Rückwärtseinsetzen (d.h. die 3. Gleichung in die 2. Gleichung einsetzen) erhält man

und mit der ersten Gleichung

Noch einfacher zu lösen ist

x1 + x4 = 4
x2 − 2x4 = 6 (S2)

x3 + 3x4 = 3

Wir setzen x4 = t ∈ R und erhalten damit

Das Ziel des Gauß-Algorithmus ist, ein gegebenes lineares Gleichungssystem in eine der
Formen der beiden Beispiele (S1) und (S2) zu bringen. Dadurch kann schliesslich die Lö-
sungsmenge leicht abgelesen werden.

Der Gauß-Algorithmus wird an der erweiterten Matrix des Systems durchgeführt, da
dadurch viel Schreibarbeit gespart werden kann. Die erweiterte Matrix des linearen Systems
(S1) ist 


1 1 −1 0
0 1 −1 1
0 0 1 3




Sie ist in sogenannter Zeilenstufenform. Die erweiterte Matrix des Systems (S2) ist




1 0 0 1 4
0 1 0 −2 6
0 0 1 3 3




Diese Matrix hat sogenannte reduzierte Zeilenstufenform.
Allgemein hat eine Matrix Zeilenstufenform, wenn sie die folgende Gestalt hat:




1 ∗ ∗ · · · ∗ ∗
1 ∗ · · · ∗ ∗

1 ∗
0 0




Dabei gilt:

• Hat die Matrix Zeilen, die nur Nullen enthalten, dann stehen diese in den untersten
Zeilen der Matrix.
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• Wenn eine Zeile nicht nur aus Nullen besteht, so ist die erste von Null verschiedene
Zahl eine Eins (man nennt sie führende Eins der Zeile).

• In zwei aufeinanderfolgenden Zeilen, die Einträge 6= 0 enthalten, steht die führende Eins
der unteren Zeile rechts von der führenden Eins der oberen Zeile.

Zum Beispiel sind die folgenden Matrizen in Zeilenstufenform:

A =



1 3 0
0 1 −2
0 0 1


 , B =



1 1 0
0 1 0
0 0 0


 , C =



1 2 −1
0 0 0
0 0 0


 , D =



1 3 2 1
0 1 2 5
0 0 0 1


 .

Hingegen sind

F =



0 1 0
0 0 0
1 0 0


 , G =



1 0 0
0 1 0
0 2 0


 , H =



1 0 2
0 1 3
1 1 5




nicht in Zeilenstufenform.
Eine Matrix ist in reduzierter Zeilenstufenform, wenn sie in Zeilenstufenform ist und

zusätzlich gilt:

• Eine Spalte, die eine führende Eins enthält, hat keine weiteren Einträge 6= 0.

Zum Beispiel sind die folgenden Matrizen in reduzierter Zeilenstufenform:

E =



1 0 0
0 1 0
0 0 1


 , M =



1 0 0
0 0 1
0 0 0


 , N =



1 0 2 0
0 1 2 0
0 0 0 1


 .

Das Ziel des Gauß-Algorithmus ist also, die erweiterte Matrix eines linearen Systems
in (reduzierte) Zeilenstufenform zu bringen. Dies kann durch Zeilenumformungen erreicht
werden. Zeilenumformungen der erweiterten Matrix eines linearen Systems bedeuten Ope-
rationen mit den linearen Gleichungen. Zulässig sind also nur Zeilenumformungen, welche
die Lösungsmenge der Gleichungen nicht verändern. Man nennt solche Zeilenumformungen
elementare Zeilenumformungen. Es gibt drei verschiedene Typen davon:

1. Vertauschen von zwei Zeilen

2. Multiplikation einer Zeile mit einer Zahl 6= 0

3. Addition eines Vielfachen einer Zeile zu einer anderen Zeile

Beispiel
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Die Schritte des Gauß-Algorithmus sind nun die Folgenden:

1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 6= 0 enthält.

2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte eine Null, dann vertauschen wir
die erste Zeile mit einer geeigneten anderen Zeile.

3. Ist a der erste Eintrag der in Schritt 1 gefundenen Spalte, dann dividieren wir die erste
Zeile durch a, um die führende Eins zu erzeugen.

1.-3. zusammengefasst: Wir erzeugen “oben links” eine (führende) Eins.

4. Wir addieren passende Vielfache der ersten Zeile zu den übrigen Zeilen, um unterhalb
der führenden Eins Nullen zu erzeugen.

5. Wir wenden die ersten vier Schritte auf den Teil der Matrix an, den wir durch Strei-
chen der ersten Zeile erhalten, und wiederholen dieses Verfahren, bis die erweiterte
Koeffizientenmatrix Zeilenstufenform hat.

6. Mit der letzten nicht verschwindenden Zeile beginnend, addieren wir geeignete Vielfache
jeder Zeile zu den darüberliegenden Zeilen, um über den führenden Einsen Nullen zu
erzeugen.

Die Schritte 1-5 haben für das lineare System zur Folge, dass sukzessive die Variablen
x1, x2, . . . eliminiert werden.

Manchmal ist es weniger aufwendig, die Matrix nur in Zeilenstufenform zu bringen und
damit den Schritt 6 wegzulassen. Das lineare System kann dann durch Rückwärtseinsetzen
wie in Beispiel (S1) gelöst werden. Zu beachten ist, dass eine Matrix auf verschiedene Zeilen-
stufenformen gebracht werden kann. Ihre reduzierte Zeilenstufenform ist hingegen eindeutig.

Die Ausführung der Schritte 1-5 heisst Gauß-Algorithmus, benannt nach dem berühmten
Mathematiker Carl Friedrich Gauß (1777–1855). Wird auch Schritt 6 ausgeführt, dann
spricht man vom Gauß-Jordan-Verfahren. Oft nennt man aber auch Letzteres Gauß-Algo-
rithmus, was auch wir tun.

Beispiele

1. Gegeben ist das lineare System

x+ 4y + 3z = 1
2x+ 5y + 9z = 14
x− 3y − 2z = 5

Die erweiterte Matrix ist

Wir lösen nun das Gleichungssystem mit Hilfe des Gauß-Algorithmus und beobachten gleich-
zeitig, welche Auswirkungen die Zeilenumformungen der erweiterten Matrix auf das lineare
System haben.
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x+ 4y + 3z = 1
−3y + 3z = 12
−7y − 5z = 4

x+ 4y + 3z = 1
y − z = −4

−7y − 5z = 4

x+ 4y + 3z = 1
y − z = −4
−12z = −24

x+ 4y + 3z = 1
y − z = −4

z = 2

Nun ist die erweiterte Matrix in Zeilenstufenform. Man könnte an diesem Punkt das Glei-
chungssystem durch Rückwärtseinsetzen lösen. Wir tun dies nicht, sondern fahren mit dem
Algorithmus (Schritt 6) fort, bis die erweiterte Matrix in reduzierter Zeilenstufenform ist.

x+ 4y = −5
y = −2

z = 2

x = 3
y = −2

z = 2

Damit ist das Gleichungssytem gelöst!

2. Wir lösen das Beispiel zu Beginn dieses Abschnitts (zur Reaktionsgleichung) mit Hilfe des
Gauß-Algorithmus. Das System war

2x1 − 2x2 = 0

2x1 − x2 − 2x3 = 0

7x1 − 4x2 − 3x3 − 2x4 = 0 .

Da auf den rechten Seiten der Gleichungen alles Nullen stehen, ist die erweiterte Koeffizien-
tenmatrix von der Form (A |~0). Die letzte Spalte ~0 können wir für den Gauß-Algorithmus
weglassen, da sie durch die Zeilenumformungen nicht verändert wird.
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Wir erhalten also die unendlich vielen Lösungen

~x =




x1
x2
x3
x4


 = t




4
3
4
3
2
3

1


 , t ∈ R .

Zur Vermeidung der Brüche hätte man vorher auch x4 = 3t setzen können. Damit erhalten
wir x3 = 2t, x2 = 4t und x1 = 4t, das heisst,

~x =




x1
x2
x3
x4


 = t




4
4
2
3


 , t ∈ R .

Für die Reaktionsgleichung suchen wir eine Lösung mit x1, x2, x3, x4 ∈ N. Die kleinste Lösung
erhalten wir für t = 1,

x1 = 4 , x2 = 4 , x3 = 2 , x4 = 3 .

Die Reaktionsgleichung lautet damit:

4K2Cr2O7 −→ 4K2CrO4 + 2Cr2O3 + 3O2

Der Gauß-Algorithmus ist für dieses Beispiel allerdings nicht die effizienteste Lösungsmethode.
Die Koeffizientenmatrix A hat “oben rechts” (anstatt “unten links” wie in der Zeilenstufen-
form) alles Nullen, so dass man direkt x1 = t ∈ R setzen könnte und dann durch sukzessives
Einsetzen x2 = t, x3 =

1
2t und x4 =

3
4 t erhält.



127

3. Wir betrachten das System

x1 + 3x2 = 12

x1 + x2 = 6

4x1 − 2x2 = 14 .

Die dritte Zeile bedeutet (übersetzt in eine lineare Gleichung)

0 · x1 + 0 · x2 = 8 .

Das ist ein Widerspruch. Dieses System hat keine Lösung!

7.5 Lösbarkeitskriterien

Gegeben sei eine m× n-Matrix A = (aij). Wir bringen sie auf Zeilenstufenform

A → Ã =




1 ∗ ∗ · · · ∗ ∗
1 ∗ · · · ∗ ∗

1 ∗
0 0




wobei die ersten r Zeilen keine Nullzeilen sind und die letzten m− r Zeilen Nullzeilen sind.
Dann nennt man die Zahl r den Rang von A; man schreibt r = rg(A).

Satz 7.2 Gegeben ist ein lineares Gleichungssystem mit m Gleichungen und n Unbekannten.
Sei A die Koeffizientenmatrix und (A |~b) die erweiterte Matrix.

(1) Das System ist lösbar ⇐⇒ rg(A) = rg(A |~b)

(2) Ist das System lösbar, dann gilt:

Anzahl der freien Parameter = n− rg(A)

(3) Das System ist eindeutig lösbar ⇐⇒ n = rg(A) = rg(A |~b)
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Beispiele

1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix




−1 3 2 1
1 2 −3 0
1 −3 −2 1


 .

2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix




−1 3 2 1
1 2 −3 0
1 −3 −2 −1


 .

Schritte des Gauß-Algorithmus führen auf die erweiterte Matrix

(A |~b) =




−1 3 2 1
0 5 −1 1
0 0 0 0


 .

3. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix

(A |~b) =




−1 3 2 1
0 5 −1 1
0 0 1 2


 .

Nun bleibt nur noch die Frage offen, ob der Rang einer Matrix unabhängig ist vom
Vorgehen, die Matrix auf Zeilenstufenform zu bringen. Tatsächlich ist das der Fall. Das werden
wir aber erst im übernächsten Kapitel einsehen können.
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7.6 Struktur der Lösungsmenge

Ein lineares Gleichungssystem

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
... (G)

am1x1 + · · ·+ amnxn = bm

heisst homogen, falls b1 = b2 = · · · = bm = 0. Andernfalls heisst es inhomogen.
Ein homogenes lineares System hat stets die triviale Lösung (x1, . . . , xn) = (0, . . . , 0).

Satz 7.3 Ein homogenes lineares Gleichungssystem mit n > m (d.h. mehr Unbekannten als
Gleichungen) hat stets unendlich viele Lösungen.

Dieser Satz ist eine direkte Folgerung von Satz 7.2. Wie oben bemerkt, ist ein homogenes
lineares System immer lösbar. Ist A die Koeffizientenmatrix des Systems, dann gilt

Nach Satz 7.2 (2) gibt es also mindestens einen freien Parameter, das heisst, unendlich viele
Lösungen.

Ist (G) ein lineares Gleichungssystem, so heisst dasjenige Gleichungssystem, welches durch
Nullsetzen aller bi entsteht, das zugehörige homogene Gleichungssystem (hG). Wir bezeichnen
mit L(G), bzw. L(hG), die Lösungsmenge des Systems (G), bzw. (hG).

Satz 7.4 Es gilt
L(G) = ~xP + L(hG)

für eine partikuläre Lösung ~xP von (G).

Dieser Satz kann auf dieselbe Art bewiesen werden wie der Satz 6.1 (Seite 103) über lineare
Differentialgleichungen erster Ordnung.

Beispiel

Wir betrachten nochmals das lineare System (S2)

x1 + x4 = 4
x2 − 2x4 = 6 (G)

x3 + 3x4 = 3

von Seite 122. Eine partikuläre (d.h. einzelne) Lösung können wir sofort erraten, nämlich

x4 = 0 , x1 = 4 , x2 = 6 , x3 = 3 .

Das zugehörige homogene System ist

x1 + x4 = 0
x2 − 2x4 = 0 (hG)

x3 + 3x4 = 0
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Die allgemeine Lösung erkennen wir ebenfalls sofort:

x4 = t ∈ R , x1 = −t , x2 = 2t , x3 = −3t .

Die Lösungen, geschrieben als Vektoren in R4, sind also

~xP =




4
6
3
0


 , L(hG) = { t




−1
2
−3
1


 | t ∈ R } .

Wir erhalten nun nach Satz 7.4 die Lösungsmenge des Systems (G)

L(G) = ~xP + L(hG) = {




4
6
3
0


+ t




−1
2
−3
1


 | t ∈ R } ,

die natürlich mit der Lösungsmenge, die wir auf Seite 122 gefunden haben, nämlich

x1 = 4− t , x2 = 6 + 2t , x3 = 3− 3t , x4 = t für t ∈ R ,

übereinstimmt.

Der Satz 7.4 und das Beispiel zeigen die interessante Struktur der Lösungsmenge L(G)
eines inhomogenen linearen Gleichungssystems. Der Gauß-Algorithmus bleibt aber die erste
Wahl der Lösungsmethode eines solchen Systems.
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8 Rechnen mit Matrizen

Matrizen kann man mit einer reellen Zahl multiplizieren und (mit gewissen Einschränkungen)
addieren und multiplizieren. Für Anwendungen sind diese Rechenoperationen sehr nützlich
und daher wichtig.

Bezüglich der Addition kann mit Matrizen so gerechnet werden wie mit reellen Zahlen
oder Vektoren. Bezüglich der Multiplikation gibt es jedoch einige Rechenregeln der rellen
Zahlen, welche für Matrizen nicht mehr gelten.

8.1 Matrixoperationen und ihre Eigenschaften

Addition und skalare Multiplikation

Matrizen können nur dann addiert oder subtrahiert werden, wenn sie dieselbe Grösse (d.h.
gleich viele Zeilen und gleich viele Spalten) haben. Sind A und B zwei Matrizen derselben
Grösse, so ist ihre Summe A+B diejenige Matrix, die durch Addition der einander entspre-
chenden Elemente entsteht.

Beispiel

A =

(
1 2 3
−1 4 2

)
, B =

(
0 2 −4
−2 1 3

)

=⇒ A+B =

(
1 + 0 2 + 2 3 + (−4)

−1 + (−2) 4 + 1 2 + 3

)
=

(
1 4 −1
−3 5 5

)

Die Differenz A − B erhält man durch Subtraktion der Elemente in B von den entspre-
chenden Elementen in A.

=⇒ A−B =

(
1− 0 2− 2 3− (−4)

−1− (−2) 4− 1 2− 3

)
=

(
1 0 7
1 3 −1

)

Sei nun A eine m×n-Matrix und λ in R. Dann ist die skalare Multiplikation λA (d.h. die
Multiplikation der Matrix Amit der reellen Zahl λ) diem×n-Matrix, die durch Multiplikation
jedes Elementes von A mit der Zahl λ entsteht. Für λ = 2 und A wie oben gilt zum Beispiel

2A =

(
2 · 1 2 · 2 2 · 3

2 · (−1) 2 · 4 2 · 2

)
=

(
2 4 6
−2 8 4

)
.

Für λ = −1 schreibt man −A für das Produkt (−1)A. Mit A wie oben gilt

−A =

(
−1 −2 −3
1 −4 −2

)
.

Die Matrix −A ist das additiv Inverse der Matrix A, das heisst

A+ (−A) = (−A) +A = 0 ,

wobei mit 0 auf der rechten Seite die Nullmatrix (mit m Zeilen und n Spalten) gemeint ist.
Die wichtigsten Rechenregeln für diese Matrixoperationen sind diejenigen aus Satz 7.1

aus dem 7. Kapitel, wenn Vektoren ~u,~v, ~w durch Matrizen A,B,C derselben Grösse ersetzt
werden.
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Matrixmultiplikation

Die Definition der Matrixmultiplikation ist auf den ersten Blick recht unnatürlich, doch in-
terpretiert man eine Matrix als eine sogenannte lineare Abbildung (was wir im nächsten
Semester tun werden), dann ist die folgende Definition sinnvoll.

Seien A eine m× k-Matrix und B eine k × n-Matrix,

A =




a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
...

ai1 ai2 · · · aik
...

...
...

am1 am2 · · · amk




, B =




b11 b12 · · · b1j · · · b1n
b21 b22 · · · b2j · · · b2n
...

...
...

...
bk1 bk2 · · · bkj · · · bkn


 .

Dann ist das Produkt AB eine m× n-Matrix mit den Einträgen cij definiert durch

cij = ai1b1j + ai2b2j + · · ·+ aikbkj

für i = 1, . . . ,m und j = 1, . . . , n. Das Element cij setzt sich also aus den Elementen der i-ten
Zeile von A und den Elementen der j-ten Spalte von B zusammen (man merke sich: “Zeile
mal Spalte”).

Nach Definition der Matrixmultiplikation kann das Produkt AB also nur dann gebildet
werden, wenn die Anzahl der Spalten von A gleich der Anzahl der Zeilen von B ist. Ist dies
nicht der Fall, dann ist das Produkt AB nicht defniert.

Beispiel
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Eigenschaften der Matrixmultiplikation

1. Die Matrixmultiplikation ist nicht kommutativ.

Das heisst, für Matrizen A, B gilt im Allgemeinen

AB 6= BA .

Zum Beispiel ist AB definiert, BA hingegen nicht. Oder beide Produkte AB und BA sind
definiert, jedoch haben sie verschiedene Grössen. Aber auch wenn AB und BA definiert
sind und dieselbe Grösse haben, kann man nicht davon ausgehen, dass die beiden Produkte
übereinstimmen!

Beispiel

A =

(
1 2
0 1

)
, B =

(
1 2
3 4

)

AB =

(
7 10
3 4

)
6= BA =

(
1 4
3 10

)

2. Die Matrixmultiplikation ist assoziativ und distributiv.

Das heisst, für Matrizen A,B und C entsprechender Grösse gilt:

(1) (AB)C = A(BC)

(2) (A+B)C = AC +BC und C(A+B) = CA+CB

Beispiel

Seien A, B wie vorher und C =

(
2
3

)
. Dann gilt

(AB)C =

(
7 10
3 4

)(
2
3

)
=

(
44
18

)

A(BC) =

(
1 2
0 1

)(
8
18

)
=

(
44
18

)

3. Die Einheitsmatrix E übernimmt die Rolle der “Eins”.

Das heisst, es gilt

EA = AE = A

für jede beliebige Matrix A. Zur Erinnerung: E ist die quadratische Matrix

E =



1 0

. . .

0 1


 .

Ist A eine m × n-Matrix, dann steht E beim Produkt EA für eine m ×m-Matrix, beim
Produkt AE steht E für eine n× n-Matrix.
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Beispiel

EA =

(
1 0
0 1

)(
1 2 3
−1 4 2

)
=

(
1 2 3
−1 4 2

)
= A

AE =

(
1 2 3
−1 4 2

)

1 0 0
0 1 0
0 0 1


 =

(
1 2 3
−1 4 2

)
= A

4. Es gibt Nullteiler.

Das heisst, es gibt Matrizen A, B mit

AB = 0 ,

aber A 6= 0 und B 6= 0.

Beispiel

A =

(
2 4
1 2

)
, B =

(
−2 4
1 −2

)
=⇒ AB =

(
0 0
0 0

)
= 0

5. Matrizen darf man im Allgemeinen nicht kürzen.

Das heisst, für Matrizen A,B,C gilt im Allgemeinen

AB = AC und A 6= 0 6=⇒ B = C

Beispiel

A =

(
2 3
6 9

)
, B =

(
1 1
1 2

)
, C =

(
−2 1
3 2

)

=⇒ AB = AC =

(
5 8
15 24

)
aber B 6= C

Für reelle Zahlen a, b, c lautet die Kürzungsregel wie folgt:

ab = ac und a 6= 0 =⇒ b = c

Wir müssen also lediglich a = 0 ausschliessen. Dabei ist die 0 genau diejenige Zahl, durch
die wir nicht dividieren können.

Bei Matrizen genügt es nicht, nur die Matrix A = 0 auszuschliessen (wie uns das Beispiel
zeigt). Bedeutet dies etwa, dass wir nicht durch jede Matrix 6= 0 dividieren können? Wir
werden im nächsten Abschnitt sehen, dass genau das der Fall ist.
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Die Transponierte

Sei A eine m× n-Matrix,

A =




a11 a12 · · · · · · a1n
a21 a22 · · · · · · a2n
...

...
...

am1 am2 · · · · · · amn


 .

Dann ist die Transponierte AT von A die n×m-Matrix

AT =




a11 a21 · · · am1

a12 a22 · · · am2
...

...
...

...
...

...
a1n a2n · · · amn




,

das heisst, die Zeilen werden mit den Spalten vertauscht.

Beispiele

A =

(
1 0 3
2 5 −1

)
, B =

(
1 3
2 6

)
, C =



1
0
2




=⇒ AT =



1 2
0 5
3 −1


 , BT =

(
1 2
3 6

)
, CT =

(
1 0 2

)

Man nennt eine (quadratische) Matrix A symmetrisch, wenn gilt

AT = A .

Beispiele

Symmetrisch sind

A =

(
1 3
3 6

)
und B =



1 0 3
0 5 −1
3 −1 2


 .

Satz 8.1 Für Matrizen entsprechender Grössen gilt:

(1) (AT )T = A

(2) (A+B)T = AT +BT

(3) (AB)T = BTAT
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8.2 Invertierbare Matrizen

Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen
a 6= 0 und b gilt b = 1

a genau dann, wenn a · b = 1.
Übertragen wir dies von den reellen Zahlen a 6= 0, b auf quadratische Matrizen A 6= 0,

B, dann müssen wir feststellen, dass es nicht zu jeder quadratischen Matrix A 6= 0 eine
quadratische Matrix B mit AB = E gibt (nach der 3. Eigenschaft, Seite 133, übernimmt ja
die Einheitsmatrix E die Rolle der 1 ).

Beispiel

A =

(
1 0
0 0

)

Gesucht sind reelle Zahlen a, b, c, d, so dass die Matrix

B =

(
a b
c d

)

die Gleichung AB = E erfüllt.

Für diese Matrix A gibt es also keine 2× 2-Matrix B mit AB = E (analog auch keine Matrix
B mit BA = E).

Definition Sei A eine quadratische Matrix. Gibt es eine Matrix A−1 mit

AA−1 = A−1A = E

so heisst A invertierbar und die Matrix A−1 nennt man Inverse von A (sie ist eindeutig
bestimmt durch A).

Beispiel

Invertierbar ist die Matrix

A =

(
3 5
1 2

)
mit A−1 =

(
2 −5
−1 3

)
.

Für die Inverse einer invertierbaren 2× 2-Matrix gibt es eine einfache Formel.

Satz 8.2 Die Matrix

A =

(
a b
c d

)

ist invertierbar genau dann, wenn ad− bc 6= 0. In diesem Fall gilt

A−1 =
1

ad− bc

(
d −b
−c a

)
.
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Beispiel

Sind die Matrizen

A =

(
4 2
1 −2

)
und B =

(
4 2
2 1

)

invertierbar?

Bevor wir weitere Beispiele von Inversen betrachten, kehren wir nochmals zur Eigenschaft
zurück, dass Matrizen im Allgemeinen nicht gekürzt werden dürfen. Es gilt nun nämlich das
Folgende.

Kürzungsregel: Für Matrizen A, B, C gilt:

AB = AC und A invertierbar =⇒ B = C

Diese Kürzungsregel gilt, da die Gleichung AB = AC von links mit A−1 multipliziert werden
kann:

Weiter gelten die folgenden Eigenschaften für invertierbare Matrizen.

Satz 8.3 Seien A und B zwei invertierbare Matrizen. Dann gilt:

(1) (A−1)−1 = A

(2) (AB)−1 = B−1A−1

(3) Auch AT ist invertierbar und (AT )−1 = (A−1)T .

Warum wird bei der Eigenschaft (2) die Reihenfolge der Matrizen vertauscht? Nun, sei C die
Inverse von AB. Dann gilt E = C(AB). Multiplizieren wir diese Gleichung von rechts mit
B−1, dann erhalten wir wegen BB−1 = E

B−1 = EB−1 = C(AB)B−1 = CA(BB−1) = CAE = CA .

Nun multiplizieren wir diese Gleichung von rechts mit A−1 und finden

B−1A−1 = CAA−1 = CE = C .
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Bestimmung der Inversen

Um die Inverse einer Matrix von beliebiger Grösse zu bestimmen, kann der Gaußsche Algorith-
mus (in leicht veränderter Form) benutzt werden. Wie dies funktioniert, wird am folgenden
Beispiel erklärt.

Beispiel

Gegeben ist die 3× 3-Matrix

A =



4 0 5
0 1 −6
3 0 4


 .

Gesucht ist

A−1 =



x1 u1 v1
x2 u2 v2
x3 u3 v3




mit AA−1 = E (falls A invertierbar ist). Wenn wir die Matrixmultiplikation AA−1 ausführen,
erhalten wir aus der Matrixgleichung AA−1 = E das folgende lineare Gleichungssystem:

4x1 + 5x3 = 1
x2 − 6x3 = 0

3x1 + 4x3 = 0

4u1 + 5u3 = 0
u2 − 6u3 = 1

3u1 + 4u3 = 0

4v1 + 5v3 = 0
v2 − 6v3 = 0

3v1 + 4v3 = 1

Dies sind 9 Gleichungen in 9 Unbekannten. Doch fassen wir die drei Gleichungen 1–3, 4–6
und 7–9 je als ein Gleichungssystem auf, dann haben diese drei Gleichungssysteme dieselbe
Koeffizientenmatrix und nur die Zahlen auf der rechten Seite sind unterschiedlich. Die Schritte
im Gauß-Algorithmus zur Lösung dieser drei Systeme sind deshalb für jedes System dieselben.
Also führen wir den Gauß-Algorithmus für diese drei Systeme gleichzeitig aus.

Dazu schreiben wir die Koeffizientenmatrix der drei Systeme hin und fügen die Zahlen
der rechten Seiten der Gleichungssysteme als Spalten hinzu:




4 0 5 1 0 0
0 1 −6 0 1 0
3 0 4 0 0 1


 = (A |E)

Nun führen wir den Gauß-Algorithmus durch, und zwar bis wir die Matrix A auf die reduzierte
Zeilenstufenform gebracht haben, welches die Einheitsmatrix E ist, falls A invertierbar ist.
Wir starten also mit (A |E), führen elementare Zeilenumformungen durch (eine Zeile besteht
hier aus 6 Einträgen), bis wir die Form (E |B) erreichen. Die Matrix B ist dann die gesuchte
Inverse A−1 = B !
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(A |E) =




4 0 5 1 0 0
0 1 −6 0 1 0
3 0 4 0 0 1




Wir erhalten also die Inverse

A−1 =




4 0 −5
−18 1 24
−3 0 4


 .

Bei diesem Verfahren muss man von einer gegebenen Matrix A nicht im Voraus wis-
sen, ob sie invertierbar ist oder nicht. Ist A invertierbar, dann führt das eben beschriebene
Vorgehen automatisch zur Inversen. Ist A jedoch nicht invertierbar, dann ist die reduzierte
Zeilenstufenform von A nicht die Einheitsmatrix E; das heisst, es ist nicht möglich, durch
Zeilenumformungen zur Matrix E zu gelangen.

Beispiel

Gegeben ist die Matrix

A =

(
4 2
2 1

)
.



140

Dann gilt

(A |E) =

(
4 2 1 0
2 1 0 1

)
−→

z′1=
1
4
z1

(
1 1

2
1
4 0

2 1 0 1

)
−→

z′2=z2−2z1

(
1 1

2
1
4 0

0 0 −1
2 1

)

Die Zeilenstufenform der Matrix A hat eine Nullzeile. Die reduzierte Zeilenstufenform von A
kann also nicht E sein. Das heisst, dass A nicht invertierbar ist.

Man kann dies auch mit Hilfe des Ranges ausdrücken.

Satz 8.4 Sei A eine n× n-Matrix. Dann gilt

A ist invertierbar ⇐⇒ rg(A) = n

8.3 Potenzen einer Matrix

Für eine quadratische Matrix A definiert man

A0 = E und An = AA · · ·A︸ ︷︷ ︸
n Faktoren

für n ≥ 1 .

Ist A ausserdem invertierbar, so ist

A−n = (A−1)n = A−1A−1 · · ·A−1
︸ ︷︷ ︸

n Faktoren

.

Es gelten die üblichen Potenzgesetze, das heisst für ganze Zahlen r und s gilt

ArAs = Ar+s und (Ar)s = Ars .

Für eine Diagonalmatrix

D =



d1 0

. . .

0 dn




gilt

Dr =



dr1 0

. . .

0 drn


 für r in Z .

Insbesondere ist

D−1 =




1
d1

0
. . .

0 1
dn


 .

Mit Diagonalmatrizen lässt es sich also sehr leicht rechnen.
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Anwendung: Markov-Ketten

Die Berechnung einer hohen Potenz einer Matrix ist in vielen Anwendungen notwendig. Ma-
trixpotenzen kommen bei iterativen Prozessen ins Spiel.

Beispiel

Nehmen wir an, wir haben zwei Säcke, X und Y , mit Sand. Sei x0, bzw. y0 die Masse des San-
des in Sack X, bzw. Y zu Beginn. Nun verändern wir die Massen in gewissen (regelmässigen)
Zeitabständen, und zwar schütten wir die Hälfte des Sandes von Sack X in den Sack Y und
2
5 des Sandes von Sack Y in den Sack X.

Sei xk, bzw. yk die Masse des Sandes in Sack X, bzw. Y nach k Zeitetappen. Dann gilt

Sei ~vk der Spaltenvektor in R2 mit den Einträgen xk und yk. Dann können wir schreiben

~v1 =

(
x1
y1

)
=

(
1
2

2
5

1
2

3
5

)(
x0
y0

)
= A~v0 mit der Matrix A =

(
1
2

2
5

1
2

3
5

)
.

Weiter gilt ~v2 = A~v1 = A2~v0 und allgemein ~vk = Ak~v0 für k ≥ 1.
Diesen Umverteilungsprozess können wir auch mit Wahrscheinlichkeiten beschreiben. Neh-

men wir an, dass sich zu Beginn ein rotes Sandkorn in Sack X befindet. Nach einer Zeitetappe
ist die Wahrscheinlichkeit, dass sich dieses rote Sandkorn in Sack Y befindet, gleich 1

2 (und
ebenfalls gleich 1

2 , dass es in Sack X bleibt). Mit Hilfe der Matrix A von oben können wir
dies durch (12 ,

1
2)

T = A (1, 0)T berechnen. Allgemeiner, ist xk, bzw. yk die Wahrscheinlich-
keit, dass sich das rote Sandkorn nach k Zeitetappen in Sack X, bzw. Y befindet, dann gilt
~vk = (xk, yk)

T = Ak ~v0 wie oben. Wenn diese Wahrscheinlichkeiten xk, yk nur von xk−1 und
yk−1 abhängen (wie wir das angenommen haben), spricht man von einer Markov-Kette.

Allgemeiner versteht man unter einer Markov-Kette die folgende Situation. Gegeben sei
ein System mit n verschiedenen Zuständen. Sei pji die Wahrscheinlichkeit, dass das System
vom Zustand i in den Zustand j wechselt und sei A = (pij) die entsprechende n× n-Matrix.

Weiter sei ~vk = (x
(k)
1 , . . . , x

(k)
n )T der Zustandsvektor nach k Zeitetappen, das heisst, x

(k)
i ist

die Wahrscheinlichkeit, dass das System nach k Zeitetappen im Zustand i ist. Dann gilt

~vk = Ak ~v0 .

Die Matrix A ist eine sogenannte stochastische Matrix. Es gilt 0 ≤ pij ≤ 1 und die Summe
aller Einträge in einer Spalte ist gleich 1.
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Beispiel

Wir beobachten einen Wolf, der sich abwechselnd in der Nähe von Basel und in der Nähe
von Liestal aufhält. Unsere Beobachtung zeigt, dass wenn der Wolf an einem Tag in Basel
ist, er am folgenden Tag stets in Liestal herumstreicht. Wenn er in Liestal ist, dann ist er
am folgenden Tag mit einer Wahrscheinlichkeit von 1

4 in Basel. Wenn wir den Wolf heute in
Basel sehen, mit welcher Wahrscheinlichkeit ist er drei Tage später in Liestal?

Wir müssen also ~v3 = A3~v0 für ~v0 = (1, 0)T berechnen. Wir sehen sofort, dass ~v1 = (0, 1)T

(da der Wolf nach einem Tag in Basel stets in Liestal ist) und dass ~v2 = (14 ,
3
4 )

T . Für ~v3
erhalten wir

~v3 = A~v2 =

(
0 1

4

1 3
4

)(
1
4
3
4

)
=

(
3
16
13
16

)
=

(
0, 1875

0, 8125

)
=

(
x3

y3

)
.

Der Wolf ist also drei Tage später mit einer Wahrscheinlichkeit von y3 = 0, 8125 in Liestal.
Wie gross sind wohl die Wahrscheinlichkeiten für beispielsweise k = 30 (nach einem

Monat) oder k = 365 (nach einem Jahr)? Dazu muss man A30, bzw. A365 berechnen, was
am schnellsten durch sogenanntes Diagonalisieren der Matrix A geht. Wir werden nächstes
Semester lernen, wie man quadratische Matrizen diagonalisiert (falls möglich) und wie man
dadurch Matrixpotenzen schnell berechnen kann.

8.4 Determinanten

Die Determinante ordnet jeder n×n-Matrix A eine bestimmte reelle Zahl zu. Man bezeichnet
sie mit

det(A) .

Betrachten wir als erstes den Spezialfall n = 1: Eine 1 × 1-Matrix A besteht nur aus einem
Eintrag a, das heisst, A = (a) und es gilt det(A) = a.

n = 2

A =

(
a11 a12
a21 a22

)
det(A) = a11a22 − a12a21

Diesen Ausdruck haben wir schon bei der Inversen von A angetroffen (Satz 8.2). Das heisst,
die Matrix A ist invertierbar, genau dann wenn det(A) 6= 0.

n = 3

A =




a11 a12 a13
a21 a22 a23
a31 a32 a33




det(A) = a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a11a23a32 − a12a21a33
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Beispiel

A =




1 −1 2
3 1 0
−2 0 2




n ≥ 2

A =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . .
...

an1 an2 . . . ann




Für allgemeines n ≥ 2 kann det(A) rekursiv definiert werden.
Sei Aij diejenige (n− 1)× (n− 1)-Matrix, die man aus A durch Streichen der i-ten Zeile

und j-ten Spalte erhält.

Entwicklung nach der ersten Zeile:

det(A) = a11 det(A11)− a12 det(A12) + · · ·+ (−1)n+1a1n det(A1n)

Die Determinante kann nach einer beliebigen Zeile oder Spalte entwickelt werden.

Entwicklung nach der i-ten Zeile:

det(A) =

n∑

j=1

(−1)i+jaij det(Aij)

Entwicklung nach der j-ten Spalte:

det(A) =
n∑

i=1

(−1)i+jaij det(Aij)

Die reelle Zahl (−1)i+j det(Aij) heisst Kofaktor von aij . Das Vorzeichen (−1)i+j des Kofaktors
kann man sich mit Hilfe des folgenden Schemas merken:




+ − + − · · ·
− + − + · · ·
+ − +
...

...
. . .




Beispiele

1. Entwickeln wir eine 3×3-Matrix nach der ersten Zeile, so erhalten wir die obige Definition:

det




a11 a12 a13
a21 a22 a23
a31 a32 a33


 = a11 det

(
a22 a23
a32 a33

)
− a12 det

(
a21 a23
a31 a33

)
+ a13 det

(
a21 a22
a31 a32

)

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31

+a13a21a32 − a13a22a31
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2. Sei

A =




1 2 0
−1 1 3
4 1 0




Da die letzte Spalte zwei Nullen enthält, entwickeln wir nach dieser Spalte und erhalten

3. Sei

B =




−3 6 4 −7
0 1 3 5
0 0 −2 9
0 0 0 337




Entwicklung nach der ersten Spalte ergibt

Satz 8.5 Seien A und B zwei n× n-Matrizen. Dann gilt

(a) det(AB) = det(A) det(B)

(b) A invertierbar ⇐⇒ det(A) 6= 0

(c) det(A−1) = 1
det(A) , falls A invertierbar ist

(d) det(AT ) = det(A)

Beim Berechnen von Determinanten sind weiter die folgenden Regeln nützlich:

1. Vertauscht man in einer Matrix zwei Zeilen (oder zwei Spalten), so ändert die Determinante
das Vorzeichen.

2. Sind zwei Zeilen (oder zwei Spalten) einer Matrix gleich, so ist die Determinante gleich 0.

3. Multipliziert man eine Zeile (oder Spalte) einer Matrix mit einer reellen Zahl λ, so multi-
pliziert sich auch die Determinante mit λ.

4. Addiert man in einer Matrix ein Vielfaches einer Zeile (oder Spalte) zu einer anderen, so
ändert sich die Determinante nicht.
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5. Es gilt

det




a11 a12 · · · a1n

0 a22
...

...
. . .

. . .
...

0 · · · 0 ann




= det




a11 0 · · · 0

a21 a22
. . .

...
...

. . .
. . . 0

an1 · · · · · · ann




= a11a22 · · · ann .

Die Regeln 1, 3 und 4 zeigen uns, wie sich die Determinante einer Matrix bei einer elementaren
Zeilenumformung verändert. Zur Berechnung der Determinante können wir also elementare
Zeilenumformungen durchführen (wie beim Gauß-Algorithmus), um eine obere oder untere
Dreiecksmatrix zu erhalten. Mit der Regel 5 ist dann die Berechnung der Determinante ein-
fach.

Beispiel

det




1 1 0 3
2 0 1 −1
0 2 −1 4
−1 −1 2 1


 =

Die Determinante hat eine geometrische Bedeutung.

Satz 8.6 Sei A eine n × n-Matrix. Dann ist |det(A)| gleich dem Volumen des von den
Spaltenvektoren von A aufgespannten Parallelepipeds.

Beispiel

Welchen Flächeninhalt hat das Parallelogramm in R2 aufgespannt von den Vektoren ~u = ( 31 )
und ~v = ( 24 ) ?
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Schliesslich bleibt noch zu erwähnen, dass die Determinante einer n× n-Matrix mit Hilfe
von Permutationen, das heisst, umkehrbaren Abbildungen σ : {1, 2, . . . , n} −→ {1, 2, . . . , n},
definiert werden kann. Die Determinante ist damit eine Summe von n! Summanden (man
summiert über alle Permutationen σ). Diese Definition hat aber nur einen theoretischen
Nutzen. Deshalb verzichten wir hier auf die genaue Definition.

8.5 Zwei weitere Lösungsmethoden für lineare Gleichungssysteme

Wir betrachten noch einmal ein lineares Gleichungssystem:

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
... (G)

am1x1 + · · ·+ amnxn = bm

Seien

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


 , ~x =




x1
x2
...
xn


 in Rn , ~b =




b1
b2
...
bm


 in Rm .

Dann können wir das System (G) schreiben als

A~x = ~b .

Lösung mit Hilfe der Inversen

Hat das lineare System gleich viele Gleichungen wie Unbekannte, sagen wir n, und ist die
zugehörige Koeffizientenmatrix A invertierbar, so gilt rg(A) = rg(A |~b ) = n. Es gibt also
genau eine Lösung. Diese kann mit Hilfe der Inversen von A direkt angegeben werden.

Multiplizieren wir nämlich die Gleichung A~x = ~b von links mit A−1, dann ist

~x = A−1~b

die eindeutige Lösung des Systems.

Beispiel

Gegeben sei das lineare System

3x+ y = 1

5x+ 2y = 1
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Cramersche Regel

Auch die Cramersche Regel, benannt nach dem Schweizer Mathematiker Gabriel Cramer

(1704 – 1752), ist nur anwendbar für lineare Systeme mit invertierbarer Koeffizientenmatrix.
Ist A~x = ~b das lineare System, dann ist die Lösung ~x = (x1, . . . , xn)

T gegeben durch

x1 =
det(A1)

det(A)
, x2 =

det(A2)

det(A)
, . . . , xn =

det(An)

det(A)

wobei die Matrix Aj dadurch entsteht, dass die j-te Spalte von A durch den Spaltenvektor ~b
ersetzt wird.

Beispiel

Gegeben sei das lineare System

3x+ y = 1

5x+ 2y = 1

Wie im vorhergehenden Beispiel ist

A =

(
3 1
5 2

)
mit det(A) = 1 und ~b =

(
1
1

)
.
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9 Vektorräume

Die Menge Rn der Vektoren ist nicht die einzige Menge in der Mathematik, deren Elemente
man addieren und mit einer reellen Zahl multiplizieren kann. Zur einheitlichen Betrachtung
solcher Mengen wurde der Begriff des (abstrakten) Vektorraums eingeführt. Wir werden se-
hen, dass die Lösungsmenge von jedem homogenen linearen Gleichungssystem ein solcher
Vektorraum ist und wir werden dadurch die auftretenden Parameter besser verstehen können.
Weiter können wir endlich genau erklären, was Dimension bedeutet.

9.1 Definition und Beispiele

Die Menge Rn besteht aus (Spalten-)Vektoren ~x mit Komponenten x1, . . . , xn ∈ R. Wir
haben in Kapitel 7 gesehen, dass man zwei Vektoren in Rn addieren und mit einer reellen
Zahl multiplizieren kann. Dabei gelten die Rechenregeln von Satz 7.1.

Nun nennt man jede Menge, die genau diese Eigenschaften hat, einen (reellen) Vektorraum
(da sich diese Menge eben genau so wie die Menge Rn der Vektoren verhält). Die Elemente
dieser Menge müssen jedoch keine Vektoren sein!

Definition Ein (reeller) Vektorraum ist eine Menge V mit einer Addition und einer Skalar-
multiplikation, so dass für alle u,v ∈ V , k ∈ R auch

u+ v ∈ V , kv ∈ V

gilt und alle Eigenschaften aus Satz 7.1 erfüllt sind.

Aus der Bedingung k ∈ R, v ∈ V =⇒ kv ∈ V folgt insbesondere für k = 0, dass

0 ∈ V .

Das heisst, ein Vektorraum enthält immer ein Nullelement.

Beispiele

1. Die Menge Rn ist für jedes n ≥ 1 ein Vektorraum.

2. Die Menge aller n× n-Matrizen ist ein Vektorraum.

Wir haben in Kapitel 8 gesehen, dass man zwei n× n-Matrizen addieren und eine Matrix
mit einer reellen Zahl multiplizieren kann, wobei die Rechenregeln von Satz 7.1 gelten.

3. Die Menge aller Polynome vom Grad ≤ 2,

{ ax2 + bx+ c | a, b, c ∈ R } ,

ist ein Vektorraum. Er ist im Wesentlichen derselbe wie R3.

Analog ist die Menge aller Polynome vom Grad ≤ n (oder auch ohne Beschränkung des
Grades) ein Vektorraum.

4. Die Menge aller reellen Funktionen { f | f : [0, 1] −→ R } ist ein Vektorraum.

Man definiert Addition und Skalarmultiplikation durch

(f + g)(x) = f(x) + g(x) und (kf)(x) = k f(x) für x ∈ [0, 1] .

Das Nullelement ist dabei die Funktion f mit f(x) = 0 für alle x ∈ [0, 1].
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Der Raum Rn ist also für jede natürliche Zahl n ein Vektorraum. Man kann sich nun
fragen, ob es Teilmengen U von Rn (oder allgemein eines Vektorraums V ) gibt, die bezüglich
der Addition und Skalarmultiplikation in Rn (bzw. V ) einen Vektorraum bilden.

Glücklicherweise kann man recht schnell überprüfen, ob eine gegebene Teilmenge U eines
Vektorraums V selbst ein Vektorraum ist. Die (nichtleere) Menge U ist nämlich genau dann
ein Vektorraum in V , wenn gilt

u,v ∈ U, k ∈ R =⇒ u+ v ∈ U, ku ∈ U .

Man muss also nur überprüfen, ob die Teilmenge U abgeschlossen ist bezüglich der Addition
und der Skalarmultiplikation. Als Teilmenge des Vektorraums V gelten die Eigenschaften von
Satz 7.1 automatisch! Wählt man in der Bedingung oben k = 0, so sieht man, dass U das
Nullelement 0 des Vektorraums V enthalten muss.

Jeder Vektorraum V 6= {0} enthält mindestens zwei Teilmengen, die selbst Vektorräume
sind, nämlich den ganzen Raum V und den Nullvektorraum {0}.

Vektorräume in R2

Wie eben bemerkt sind R2 und {~0} Vektorräume.

Ein einzelner Vektor ~v 6= ~0 (zusammen mit dem Nullvektor ~0) ist kein Vektorraum, da mit ~v
auch alle Vielfachen k~v, für k ∈ R, im Vektorraum liegen müssen. Ist also eine Gerade durch
den Ursprung ein Vektorraum?

Auch zwei einzelne (nicht auf einer Geraden liegende) Vektoren 6= ~0 (zusammen mit dem Null-
vektor ~0) bilden keinen Vektorraum. Zunächst müssen die Vielfachen k~u und l~v, für k, l ∈ R,
im Vektorraum liegen. Aber auch die Summe ~u + ~v und dann ~u + (~u + ~v), usw. muss im
Vektorraum liegen. Damit erhält man ganz R2.
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Die Vektorräume in R2 sind also

• {~0}
• Geraden durch den Ursprung
• R2

Vektorräume in R3

Die Vektorräume in R3 sind (gemäss ähnlichen Überlegungen wie in R2)

• {~0}
• Geraden durch den Ursprung
• Ebenen durch den Ursprung
• R3

Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der De-
finition des Vektorraums bedeutet die Skalarmultiplikation dann Multiplikation mit einer
komplexen Zahl k (anstelle einer reellen Zahl k). Das typische Beispiel eines komplexen
Vektorraums ist die Menge Cn der Vektoren mit Komponenten z1, . . . , zn in C. Komplexe
Vektorräume treten zum Beispiel in der Quantenmechanik auf oder als Lösungsmengen von
homogenen linearen Gleichungssystemen mit komplexen Zahlen als Koeffizienten.

9.2 Linearkombinationen

Im Folgenden beschränken wir uns auf Vektorräume, die Teilmengen von Rn sind (zur Veran-
schaulichung kann dabei stets n = 2 oder 3 gewählt werden). Jedoch können alle hier gemach-
ten Aussagen von Rn auf einen beliebigen reellen (oder komplexen) Vektorraum übertragen
werden.

Gegeben sind Vektoren ~v1, . . . , ~vr in Rn. Ein Vektor ~w in Rn ist eine Linearkombination
der Vektoren ~v1, . . . , ~vr, wenn es reelle Zahlen c1, . . . , cr gibt, so dass ~w geschrieben werden
kann als

~w = c1~v1 + · · ·+ cr~vr .

Die Zahlen c1, . . . , cr nennt man Koeffizienten.

Beispiel

Ist der Vektor ~w = ( 56 ) eine Linearkombination von ~v1 = ( 12 ) und ~v2 = ( 20 ) ?

Nun sei V die Menge aller Linearkombinationen der Vektoren ~v1, . . . , ~vr in Rn. Dann ist
V ein Vektorraum in Rn. Man schreibt

V = 〈~v1, . . . , ~vr〉
(oder V = Lin(~v1, . . . , ~vr) oder V = span(~v1, . . . , ~vr) ). Man sagt auch, dass ~v1, . . . , ~vr den
Vektorraum V aufspannen oder erzeugen.
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Beispiele

Gegeben sind die Vektoren ~v1 =
(

1
0
1

)
, ~v2 =

(
1
0
−1

)
, ~v3 =

(
2
0
0

)
und ~v4 =

(
0
1
0

)
.

1. Sei V1 = 〈~v1〉 der von ~v1 aufgespannte Vektorraum in R3.

Dann besteht V1 aus allen Vielfachen von ~v1,

V1 = { c~v1 | c ∈ R } .

Also ist V1 die Gerade durch den Ursprung mit Richtungsvektor ~v1.

2. Sei V2 = 〈~v1, ~v2〉 der von den Vektoren ~v1 und ~v2 aufgespannte Vektorraum.

Das heisst,
V2 = { c1~v1 + c2~v2 | c1, c2 ∈ R } .

Insbesondere sind

~e1 =
1

2
~v1 +

1

2
~v2 und ~e3 =

1

2
~v1 −

1

2
~v2 in V2.

Der Vektorraum V2 ist also die xz-Ebene.

3. Sei V3 = 〈~v1, ~v2, ~v3〉.
Der Vektor ~v3 ist eine Linearkombination der Vektoren ~v1 und ~v2,

~v3 = ~v1 + ~v2

Also ist ~v3 ∈ V2 und damit ist V3 = V2 = 〈~v1, ~v2〉.
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4. Sei V4 = 〈~v1, ~v2, ~v4〉.
Nun ist ~v4 keine Linearkombination der Vektoren ~v1 und ~v2. Da ~v4 = ~e2, sehen wir sofort,
dass V4 = R3.

Man möchte nun einen Vektorraum V = 〈~v1, . . . , ~vr〉 in Rn mit möglichst wenigen Vektoren
erzeugen. Wir haben im 3. Beispiel gesehen, dass man einen Vektor ~vi weglassen kann, wenn
man ihn als Linearkombination der anderen Vektoren schreiben kann.

Definition Sei r ≥ 2. Die Vektoren ~v1, . . . , ~vr in Rn heissen linear abhängig, wenn sich einer
der r Vektoren als Linearkombination der anderen r − 1 Vektoren schreiben lässt. Ist dies
nicht möglich, dann nennt man die Vektoren ~v1, . . . , ~vr linear unabhängig.

Beispiel

Sind die Vektoren ~v1 =
(

2
−1
0

)
, ~v2 =

(
1
2
5

)
, ~v3 =

(
7
−1
5

)
linear abhängig?

Wie überprüft man aber nun, dass gewisse Vektoren linear unabhängig sind? Dazu be-
nutzt man eine äquivalente Definition von linear (un-)abhängig. Und zwar sind die Vektoren
~v1, . . . , ~vr in Rn linear unabhängig, falls die Gleichung

c1~v1 + · · ·+ cr~vr = ~0

nur die (triviale) Lösung
c1 = c2 = · · · = cr = 0

hat. Andernfalls nennt man ~v1, . . . , ~vr linear abhängig.
Beschränken wir uns jedoch auf Vektoren in R2 und R3, dann kann die Frage nach der

linearen (Un-)Abhängigkeit mit Hilfe von geometrischen Betrachtungen beantwortet werden.

Vektoren in R2

• 2 Vektoren sind linear abhängig

⇐⇒ einer ist ein Vielfaches des anderen

⇐⇒ sie liegen auf der gleichen Geraden durch den Ursprung
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• 3 oder mehr Vektoren sind stets linear abhängig.

Machen wir nämlich den Ansatz

c1~v1 + c2~v2 + c3~v3 = ~0

für die drei Vektoren ~v1, ~v2, ~v3 in R2, dann ist dies ein homogenes lineares Gleichungs-
system mit 2 Gleichungen in den 3 Unbekannten c1, c2, c3. Nach Satz 7.3 hat dieses
unendlich viele Lösungen, insbesondere eine nichttriviale Lösung.

Vektoren in R3

• 2 Vektoren sind linear abhängig

⇐⇒ einer ist ein Vielfaches des anderen

⇐⇒ sie liegen auf der gleichen Geraden durch den Ursprung

• 3 Vektoren sind linear abhängig

⇐⇒ sie liegen auf der gleichen Ebene durch den Ursprung

x

y

z

v

w

u

linear abhängige Vektoren

x

y

z

w

u

linear unabhängige Vektoren

v

• 4 und mehr Vektoren sind stets linear abhängig

Die letzte Aussage bei Vektoren in R2 und R3 gilt allgemeiner.

Satz 9.1 Seien ~v1, . . . , ~vr Vektoren in Rn. Ist r > n, dann sind ~v1, . . . , ~vr linear abhängig.

Begründen kann man dies wie in R2 mit Hilfe von Satz 7.3 über homogene lineare Gleichungs-
systeme (man hat n Gleichungen und r > n Unbekannte).

Wie können wir konkret überprüfen, ob drei Vektoren in R3 linear unabhängig sind oder
nicht? Nun, drei Vektoren ~v1, ~v2, ~v3 in R3 spannen genau dann ein Parallelepiped auf, wenn
sie linear unabhängig sind (d.h. nicht in einer Ebene liegen). In diesem Fall (und nur in
diesem) ist das Volumen dieses Parallelepipeds eine Zahl ungleich Null. Nach Satz 8.6 ist
dieses Volumen gleich |det(A)|, wobei A die 3 × 3-Matrix mit den Spalten ~v1, ~v2, ~v3 ist. Es
gilt also:

~v1, ~v2, ~v3 linear unabhängig ⇐⇒ det(A) 6= 0

Auch dies gilt allgemeiner.
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Satz 9.2 Seien ~v1, . . . , ~vn Vektoren in Rn und A die n×n-Matrix mit ~v1, . . . , ~vn als Spalten.
Dann gilt:

~v1, . . . , ~vn linear unabhängig ⇐⇒ det(A) 6= 0

Beispiele

1. Sind die Vektoren ~v1 =
(

2
−3

)
und ~v2 =

(−1
8

)
linear abhängig?

2. Sind die Vektoren ~v1 =
(

1
−2
1

)
, ~v2 =

(
2
0
3

)
und ~v3 =

(
0
−1
2

)
linear abhängig?

3. Auf Seite 152 haben wir gesehen, dass ~v1 =
(

2
−1
0

)
, ~v2 =

(
1
2
5

)
, ~v3 =

(
7
−1
5

)
linear abhängig

sind. Tatsächlich gilt det(~v1 ~v2 ~v3) = 0.

9.3 Basis und Dimension

Im letzten Abschnitt haben wir versucht, einen Vektorraum mit so wenigen Vektoren wie
möglich zu erzeugen. Wird ein Vektorraum V = 〈~v1, . . . , ~vr〉 in Rn mit linear abhängigen
Vektoren ~v1, . . . , ~vr erzeugt, so kann mindestens ein Vektor (einer, der sich als Linearkombi-
nation der anderen schreiben lässt) weggelassen werden, ohne dass sich der Vektorraum V
verkleinert. Optimal ist also, einen Vektorraum mit linear unabhängigen Vektoren zu erzeu-
gen. Man nennt diese Vektoren dann eine Basis des Vektorraums.

Definition Vektoren ~v1, . . . , ~vn bilden eine Basis eines Vektorraums V , wenn sie die folgen-
den zwei Bedingungen erfüllen:

(1) V = 〈~v1, . . . , ~vn〉, das heisst, ~v1, . . . , ~vn erzeugen V .

(2) ~v1, . . . , ~vn sind linear unabhängig.

Man nennt ~v1, . . . , ~vn Basisvektoren von V .

Basen sind wegen der folgenden Tatsache sehr wichtig und nützlich.

Satz 9.3 Bilden ~v1, . . . , ~vn eine Basis des Vektorraums V , so kann jeder Vektor ~v in V
eindeutig geschrieben werden als

~v = c1~v1 + · · ·+ cn~vn

mit reellen Zahlen c1, . . . , cn.
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Basen von R2

In Kapitel 7 haben wir bemerkt, dass die Schreibweise ~v = ( v1v2 ) bedeutet

~v = v1

(
1
0

)
+ v2

(
0
1

)
= v1~e1 + v2~e2 .

Die beiden Vektoren ~e1 und ~e2 bilden eine Basis von R2, die sogenannte Standardbasis.
Die Vektoren ~e1 und ~e2 spannen den ganzen Raum R2 auf, denn wie gerade gezeigt ist

jedes ~v in R2 als Linearkombination von ~e1 und ~e2 schreibbar. Zudem sind ~e1 und ~e2 linear
unabhängig.

Ebensogut könnte man jedoch die Vektoren

~u1 =

(
3
1

)
und ~u2 =

(
1
−1

)

als Basis des R2 wählen. Denn jeder Vektor ~v = ( v1v2 ) von R2 lässt sich als Linearkombination
von ~u1 und ~u2 schreiben:

~v =
1

4
(v1 + v2) ~u1 +

1

4
(v1 − 3v2) ~u2

Das heisst, die Vektoren ~u1 und ~u2 erzeugen R2. Zudem sind ~u1 und ~u2 linear unabhängig.
Die Wahl einer Basis von R2 (bzw. Rn) ist nichts anderes als die Wahl eines Koordi-

natensystems für R2 (bzw. Rn). Die Richtungen der Basisvektoren definieren die positiven
Koordinatenachsen und ihre Längen legen die Masseinheiten fest.

Können drei Vektoren in R2 eine Basis für R2 bilden? Nein, denn drei Vektoren in R2

sind stets linear abhängig (Satz 9.1). Kann ein einziger Vektor in R2 eine Basis für R2 sein?
Nein, denn ein einzelner Vektor spannt nur eine Gerade auf, der R2 ist jedoch eine Ebene. Es
folgt, dass eine Basis für R2 immer aus zwei Vektoren besteht.

Satz 9.4 Hat ein Vektorraum endlich viele Basisvektoren, so ist die Anzahl der Basisvektoren
für alle Basen gleich.

Definition Die Anzahl der Basisvektoren eines Vektorraums V heisst Dimension von V .
Man schreibt dim(V ).

Für V = {~0 } setzt man dim({~0 }) = 0.
Eine Gerade durch den Ursprung ist ein Vektorraum erzeugt durch einen Vektor 6= ~0, also

ist seine Dimension gleich 1.
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Der Vektorraum R2 hat (wie oben bemerkt) stets zwei Basisvektoren, also ist seine Di-
mension gleich 2. Tatsächlich bilden zwei Vektoren in R2 eine Basis genau dann, wenn sie
linear unabhängig sind.

Satz 9.5 Gegeben seien n Vektoren ~v1, . . . , ~vn eines Vektorraums V , wobei n = dim(V ).
Dann gilt:

~v1, . . . , ~vn bilden eine Basis von V ⇐⇒ ~v1, . . . , ~vn sind linear unabhängig

Beispiel

Bilden die Vektoren ~v1 = ( 24 ) und ~v2 = ( 35 ) eine Basis von R2 ?

Basen von R3

Schon in Kapitel 7 haben wir festgehalten, dass die Schreibweise ~v =
(

v1
v2
v3

)
bedeutet

~v = v1



1
0
0


+ v2



0
1
0


+ v3



0
0
1


 = v1~e1 + v2~e2 + v3~e3 .

Die Vektoren ~e1, ~e2 und ~e3 bilden die sogenannte Standardbasis von R3. Die Dimension von
R3 ist also 3.

Wie für R2 können wir auch andere Basisvektoren für R3 wählen. Wegen Satz 9.5 bilden
beliebige drei linear unabhängige Vektoren von R3 eine Basis von R3; zum Beispiel die drei
Vektoren ~v1, ~v2, ~v3 vom 2. Beispiel auf Seite 154.

Beispiel

Welche Dimension hat der Vektorraum V = 〈~v1, ~v2, ~v3〉 von R3 mit ~v1 =
(−1

2
1

)
, ~v2 =

(
1
−1
3

)

und ~v3 =
(−5

8
−3

)
?

Die Vektoren ~v1, ~v2, ~v3 sind also linear abhängig und bilden keine Basis von V . Die Dimen-
sion von V ist demnach kleiner als 3. Ist die Dimension 2, das heisst, gibt es zwei linear
unabhängige Vektoren?
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Standardbasis von Rn

Analog zu R2 und R3 hat Rn für beliebige n in N die Standardbasis

~e1 =




1
0
0
...
0




, ~e2 =




0
1
0
...
0




, . . . , ~en =




0
0
...
0
1




.

Es gilt also dim(Rn) = n.

Die Vektorräume Rn und alle darin enthaltenen Vektorräume sind alles Beispiele von
endlich-dimensionalen Vektorräumen, das heisst von Vektorräumen mit endlich vielen Ba-
sisvektoren. Hat eine Basis eines Vektorraums V unendlich viele Vektoren, so nennt man V
unendlich-dimensional. Zum Beispiel ist der Vektorraum aller reellen Funktionen unendlich-
dimensional.

1. Anwendung: Der Rang einer Matrix

Mit Hilfe der neuen Kenntnisse über Vektorräume können wir den Rang einer Matrix ohne
Zuhilfenahme einer Zeilenstufenform definieren.

Sei A eine m×n-Matrix. Die m Zeilen von A fassen wir als Vektoren in Rn auf. Sie span-
nen somit einen Vektorraum in Rn auf, den sogenannten Zeilenraum. Nun gilt der folgende
Zusammenhang mit dem Rang rg(A) der Matrix A:

rg(A) = maximale Anzahl linear unabhängiger Zeilenvektoren

= Dimension des Zeilenraums

Bringen wir nämlich die Matrix A auf Zeilenstufenform, dann ersetzen wir bei einer elementa-
ren Zeilenumformung eine Zeile durch eine Linearkombination dieser Zeile mit einer anderen;
das heisst, der Zeilenraum wird dabei nicht verändert. Die Nichtnullzeilen in der Zeilenstu-
fenform sind schliesslich linear unabhängig (wegen den Nullen “unten links”).

Beispiel

Sei

A =

(
1 2 0
0 1 −1

)
.
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Betrachten wir nun die Spalten der Matrix A. Die n Spalten sind Vektoren in Rm, spannen
deshalb einen Vektorraum in Rm auf, den sogenannten Spaltenraum.

Erstaunlicherweise spielt es überhaupt keine Rolle, ob wir die Zeilen oder die Spalten der
Matrix A betrachten, um den Rang zu bestimmen.

Satz 9.6 Es gilt:

rg(A) = maximale Anzahl linear unabhängiger Zeilenvektoren

= maximale Anzahl linear unabhängiger Spaltenvektoren

In anderen Worten: rg(A) = Dimension(Zeilenraum) = Dimension(Spaltenraum)

Der Rang einer Matrix ist also tatsächlich unabhängig vom Vorgehen, die Matrix auf
Zeilenstufenform zu bringen. Dies war in Kapitel 7 (Seite 128) noch unklar.

An dieser Stelle wollen wir einmal zusammenfassen, was der Rang einer n×n-Matrix alles
aussagt.

Satz 9.7 Sei A eine n× n-Matrix. Dann gilt:

rg(A) = n ⇐⇒ A ist invertierbar

⇐⇒ det(A) 6= 0

⇐⇒ die Spaltenvektoren sind linear unabhängig

⇐⇒ die Spaltenvektoren sind eine Basis von Rn

⇐⇒ die Zeilenvektoren sind eine Basis von Rn

⇐⇒ die Zeilenvektoren sind linear unabhängig

Weiter sind alle Aussagen von Satz 9.7 gleichbedeutend mit der Aussage, dass das lineare
Gleichungssystem A~x = ~b für jedes ~b ∈ Rn genau eine Lösung hat.

2. Anwendung: Parameter der Lösungsmenge eines linearen Gleichungssystems

Sei A eine m× n-Matrix. Wir betrachten das homogene lineare Gleichungssystem

A~x = ~0

für ~x in Rn.

Seien ~x1 und ~x2 zwei Lösungen dieses Systems. Dann ist auch die Summe dieser beiden
Lösungen eine Lösung, denn

A(~x1 + ~x2) = A~x1 +A~x2 = ~0 +~0 = ~0 .

Weiter sind die Vielfachen dieser Lösungen auch Lösungen, denn für t ∈ R gilt

A(t~x1) = tA~x1 = t ·~0 = ~0 .

Dies bedeutet: Der Lösungsraum ist ein Vektorraum in Rn !
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Satz 9.8 Sei A eine m×n-Matrix. Dann ist die Lösungsmenge von A~x = ~0 ein Vektorraum
in Rn der Dimension k = n− rg(A).

Das heisst, es gibt k linear unabhängige Vektoren ~x1, . . . , ~xk, so dass jede Lösung ~x ein-
deutig geschrieben werden kann als

~x = t1~x1 + · · · + tk~xk

für t1, . . . , tk in R.

Die reellen Zahlen t1, . . . , tk sind die Parameter der Lösung. Die Vektoren ~x1, . . . , ~xk sind eine
Basis des Lösungsraums.

Geometrisch gesehen kommen als Lösungsräume eines homogenen linearen Systems mit
3 Unbekannten also nur der Nullvektorraum {~0}, eine Gerade durch den Ursprung, eine Ebene
durch den Ursprung oder der ganze Raum R3 in Frage.

Beispiel

Wir betrachten das lineare Gleichungssystem

x+ 2y = 0

y − z = 0

Dies ist ein homogenes System A~x = ~0 mit der Koeffizientenmatrix

A =

(
1 2 0
0 1 −1

)
,

die wir schon im Beispiel auf Seite 157 untersucht haben. Nach Satz 9.8 ist die Lösungsmenge
ein Vektorraum der Dimension

Es ist also eine Gerade durch den Ursprung. Sie ist gegeben durch

Von Satz 7.4 wissen wir, dass die Lösungsmenge L(G) eines allgemeinen linearen Systems

A~x = ~b

von der Form
L(G) = ~xP + L(hG)

ist, wobei L(hG) die Lösungsmenge des zugehörigen homogenen Systems ist. Der Raum L(G)
ist also ein um den Vektor ~xP verschobener Vektorraum.

9.4 Orthogonale Vektoren

Seien ~u = ( u1
u2 ) und ~v = ( v1v2 ) in R2, bzw. ~u =

(
u1
u2
u3

)
und ~v =

(
v1
v2
v3

)
in R3.

Definition Das Skalarprodukt von ~u und ~v ist definiert durch

~u · ~v = u1v1 + u2v2 , bzw. ~u · ~v = u1v1 + u2v2 + u3v3 .
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Man nennt dieses Produkt Skalarprodukt, weil das Ergebnis eine reelle Zahl, das heisst ein
Skalar ist.

Sei ϕ der (kleinere) Zwischenwinkel von ~u und ~v (d.h. 0 ≤ ϕ ≤ π). Dann gilt

~u · ~v = ‖~u‖‖~v‖ cosϕ .

Insbesondere stehen zwei Vektoren ~u und ~v senkrecht aufeinander (d.h. der Zwischenwinkel
ist ein rechter Winkel), wenn ~u · ~v = 0. Die Vektoren heissen in diesem Fall orthogonal. Man
setzt fest, dass der Nullvektor senkrecht zu jedem Vektor steht.

Satz 9.9 Es gilt:

~u und ~v sind orthogonal ⇐⇒ ~u · ~v = 0

Beispiel

Sind die Vektoren ~u =
(

1
−3

)
und ~v = ( 62 ) orthogonal?

Dieses Skalarprodukt kann man auf (Spalten-)Vektoren ~u und ~v in Rn erweitern. Sind
u1, . . . , un und v1, . . . , vn die Komponenten, dann definiert man

~u · ~v = ~uT~v = u1v1 + · · ·+ unvn .

Man nennt die Vektoren ~u und ~v orthogonal, wenn ~u · ~v = 0.

Satz 9.10 Für Vektoren ~u, ~v, ~w in Rn und k ∈ R gilt:

(i) ~u · ~v = ~v · ~u

(ii) ~u · (~v + ~w) = ~u · ~v + ~u · ~w

(iii) k(~u · ~v) = (k~u) · ~v = ~u · (k~v)

(iv) ~v · ~v = ‖~v‖2 ≥ 0 und ~v · ~v = 0 ⇔ ~v = ~0

An dieser Stelle sei kurz an das Vektorprodukt ~u × ~v von zwei Vektoren ~u und ~v in R3

erinnert. Es gilt

~u× ~v =



u1
u2
u3


×



v1
v2
v3


 =



u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1


 .

Das Ergebnis ist also wieder ein Vektor in R3, wobei der Vektor ~u × ~v senkrecht auf ~u und
auf ~v steht. Das Vektorprodukt ist jedoch nur für Vektoren in R3 definiert! Es wird auch
Kreuzprodukt genannt.

Oft ist es praktisch, einen Vektor ~u in einen zu einem vorgegebenen Vektor ~a 6= ~0 parallelen
und einen dazu senkrechten Summanden zu zerlegen.
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Der Vektor ~w1 heisst Orthogonalprojektion von ~u auf ~a und wird mit proj~a(~u) bezeichnet.
Der zweite Vektor ist dann gegeben durch ~w2 = ~u− ~w1.

Satz 9.11 Für Vektoren ~u und ~a 6= ~0 in Rn gilt

proj~a(~u) =
~u · ~a
‖~a‖2 ~a .

Beispiel

Seien ~u = ( 31 ) und ~a =
(−4

2

)
.

Wir haben gesehen, dass es viele verschiedene Basen für den Vektorraum Rn gibt. Die
Standardbasis ~e1, . . . , ~en zeichnet sich dadurch aus, dass die Vektoren alle die Länge 1 haben
und je zwei Vektoren orthogonal zueinander sind. Manchmal ist es nützlich, eine andere Basis
mit diesen beiden Eigenschaften zu verwenden.

Sei V ein Vektorraum in Rm.

Definition Man nennt eine Basis ~v1, . . . , ~vn eine Orthonormalbasis von V , wenn gilt

(1) ~v1, . . . , ~vn sind paarweise orthogonal und

(2) ~v1, . . . , ~vn haben die Länge 1.

Beispiel

Eine Orthonormalbasis von R2 bilden die beiden Vektoren ~v1 =
1√
2
( 11 ) und ~v2 =

1√
2

(
1
−1

)
.
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Orthonormalbasen haben die folgende wichtige Eigenschaft (welche aus Satz 9.10 folgt).

Satz 9.12 Sei ~v1, . . . , ~vn eine Orthonormalbasis von V und ~v ∈ V beliebig. Dann gilt

~v = c1~v1 + · · ·+ cn~vn mit ci = ~v · ~vi .

Die einzelnen Summanden ci~vi sind dabei die Orthogonalprojektionen von ~v auf die Basis-
vektoren ~v1, . . . , ~vn ! Denn wegen ‖~vi‖ = 1 gilt

proj~vi(~v) =
~v · ~vi
‖~vi‖2

~vi = (~v · ~vi)~vi = ci~vi .

Beispiel

Sei ~v1 =
1√
2
( 11 ), ~v2 =

1√
2

(
1
−1

)
die Orthonormalbasis von R2 von vorher. Sei ~v = ( 13 ).

Zu bestimmen sind c1, c2 mit ~v = c1~v1 + c2~v2.

Ausgehend von einer beliebigen Basis von V kann mit Hilfe des sogenannten Gram-
Schmidtschen Orthogonalisierungsverfahrens eine Orthonormalbasis konstruiert werden. Auf
dieses Verfahren wollen wir hier aber nicht eintreten.

Definition Eine n× n-Matrix A heisst orthogonal, wenn gilt

ATA = AAT = E .

Orthogonal ist zum Beispiel die Matrix

A =
1√
2

(
1 1
1 −1

)
.

Satz 9.13 Sei A eine orthogonale n× n-Matrix. Dann gilt:

(1) Die Spalten (bzw. Zeilen) bilden eine Orthonormalbasis von Rn.

(2) A ist invertierbar und A−1 = AT .

(3) det(A) = ±1.

Orthogonale Matrizen werden nächstes Semester eine wichtige Rolle spielen.
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9.5 Näherungslösungen für unlösbare lineare Gleichungssysteme

Bei Messungen oder bei der Auswertung von statistischen Daten treten oft lineare Glei-
chungssysteme auf, die überbestimmt sind. Das heisst, das lineare System ist nicht lösbar.
Man sucht deshalb nach geeigneten Näherungslösungen.

Sei A eine m × n-Matrix und ~b ∈ Rm, so dass das lineare System A~x = ~b keine Lösung
hat. Wir nennen einen Vektor ~x∗ eine Näherungslösung, wenn

‖~b−A~x∗‖

minimal ist. Man nennt dies lineares Ausgleichsproblem oder Methode der kleinsten Quadrate.
Der zweite Name kommt daher, weil die Summe der Fehlerquadrate

‖~b−A~x∗‖2 = ‖~r‖2 = r21 + · · ·+ r2m für ~b−A~x∗ = ~r =

( r1
...
rm

)

minimiert wird.

Satz 9.14 Jede Lösung ~x∗ des (stets lösbaren) linearen Gleichungssystems

ATA~x = AT~b

ist eine Näherungslösung für das (unlösbare) System A~x = ~b.

Beispiel

Gesucht ist die Gerade in der Ebene, welche die vier Punkte (0, 1), (1, 3), (2, 4), (3, 4) am
besten approximiert.

Schreiben wir mx+ q = y für die Gerade und setzen die vier Punkte ein, so erhalten wir
das lineare System

q = 1

m+ q = 3

2m+ q = 4

3m+ q = 4

in den Unbekannten m und q, welches offensichtlich unlösbar ist. Wir haben hier

A =




0 1
1 1
2 1
3 1


 und ~b =




1
3
4
4




und berechnen

ATA =

(
14 6
6 4

)
und AT~b =

(
23
12

)
.

Wir erhalten also eine Näherungslösung ~x∗ = (mq ) als Lösung des Systems

(
14 6
6 4

)(
m
q

)
=

(
23
12

)
.
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Mit Hilfe der Inversen von ATA erhalten wir

(
m
q

)
=

(
14 6
6 4

)−1(
23
12

)
=

1

20

(
4 −6
−6 14

)(
23
12

)
=

(
1
3
2

)
,

das heisst m = 1 und q = 3
2 . Die gesuchte Näherungsgerade ist also

Wir können zumindest geometrisch nachvollziehen, was hinter Satz 9.14 steckt. Ob ein
lineares Gleichungssystem A~x = ~b eine Lösung hat oder nicht, hängt von den Spaltenvektoren
~a1, . . . ,~an (in Rm) von A und dem Vektor ~b (in Rm) ab. Sind

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


 und ~x =




x1
x2
...
xn


 ,

dann gilt

A~x =




a11x1 + a12x2 + · · · + a1nxn
a21x1 + a22x2 + · · · + a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn


 = x1




a11
a21
...

am1


+ x2




a12
a22
...

am2


+ · · · + xn




a1n
a2n
...

amn


 .

Das heisst, das System A~x = ~b kann auch als

x1~a1 + · · · + xn~an = ~b

geschrieben werden.
Das System A~x = ~b hat also genau dann eine Lösung x1, . . . , xn, falls sich ~b als Linear-

kombination der Spaltenvektoren ~a1, . . . ,~an von A schreiben lässt. Das ist genau dann der
Fall, falls ~b im Spaltenraum von A (d.h. im Vektorraum aufgespannt von ~a1, . . . ,~an) liegt.
(Weiter gibt es genau eine Lösung, falls ~a1, . . . ,~an linear unabhängig sind, das heisst, eine
Basis des Spaltenraums von A sind.)

Hat also das System A~x = ~b keine Lösung, dann liegt ~b nicht im Spaltenraum von
A. Eine Näherungslösung ~x∗ hat dann die Eigenschaft, dass A~x∗ die Orthogonalprojekti-
on von ~b auf den Spaltenraum von A ist. Diese Orthogonalprojektion ist dabei eindeutig, die
Näherungslösung ~x∗ jedoch nicht unbedingt.
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10 Fourierreihen

In einigen Bereichen der Physik und der Chemie (zum Beispiel bei der Spektralanalyse zur
Bestimmung von chemischen Elementen) ist es aufschlussreich, eine reelle Funktion als un-
endliche Summe von trigonometrischen Funktionen darstellen zu können. Man nennt diese
Darstellung Fourierreihe der Funktion.

Bei der Bild- und Audiokompression beispielsweise genügt es, eine Funktion durch eine
endliche Summe von trigonometrischen Funktionen näherungsweise zu beschreiben. Diese
endliche Summe nennt man Fourierpolynom der Funktion.

Wir wollen im Folgenden untersuchen, wie man ein Fourierpolynom und die Fourierreihe
einer Funktion bestimmt und mit welchem Vektorraum die Fourierreihe zusammenhängt.

10.1 Fourierpolynome

Nehmen wir an, wir haben ein (akustisches) Signal, das wir auf dem Computer abspeichern
möchten. Das Signal könnte wie folgt aussehen:

Dieses Signal wird in konstanten Zeitabständen, zum Beispiel alle Hundertstelsekunden, ge-
messen. Es liegen daher nur die Funktionswerte zu den Zeitpunkten −0.50,−0.49, . . . , 0.49,
0.50 vor. Die 100 gemessenen Funktionswerte könnten nun abgespeichert werden, doch bei
einer grösseren Anzahl von Messungen würde dies zu Speicherproblemen führen. Wie kann
also das Signal mit möglichst geringem Speicheraufwand aber zugleich möglichst geringem
Informationsverlust abgespeichert werden?

Tatsächlich ist es möglich, nahezu jede beliebige Funktion durch ein sogenanntes trigono-
metrisches Polynom anzunähern. Nehmen wir an, das Signal sei durch die Funktion f(t) = |t|
gegeben und vergleichen wir dies mit dem trigonometrischen Polynom

F3(t) =
1

4
− 2

π2
cos(2πt) − 2

9π2
cos(6πt) .

Wir sehen, dass die Näherung auf dem gesamten Intervall [−1
2 ,

1
2 ] recht gut ist. Wären wir mit

dieser Näherung zufrieden (und würden wir gewisse Informationsverluste in Kauf nehmen),
dann müssten wir nur die drei Koeffizienten 1

4 , − 2
π2 und − 2

9π2 speichern!
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Betrachten wir nun allgemein reelle Funktionen auf dem Intervall [−T
2 ,

T
2 ] für T > 0.

Definition Ein trigonometrisches Polynom oder Fourierpolynom ist ein Ausdruck der Form

Fn(t) =
a0
2

+ a1 cos(ωt) + b1 sin(ωt) + · · ·+ an cos(nωt) + bn sin(nωt)

=
a0
2

+
n∑

k=1

(ak cos(kωt) + bk sin(kωt))

wobei ω = 2π
T . Die Koeffizienten ak und bk heissen Fourierkoeffizienten von Fn.

Im Beispiel oben ist F3(t) ein Fourierpolynom vom Grad 3 mit den Koeffizienten

a0 =
1

2
, a1 = − 2

π2
, a2 = 0 , a3 = − 2

9π2
und b1 = b2 = b3 = 0 .

Anstelle von Potenzen tk enthält das Fourierpolynom die Funktionen cos(kωt) und sin(kωt),
welche periodisch mit der Periode T = 2π

ω
sind. Es genügt daher, Fn auf einem Intervall der

Länge T zu untersuchen, zum Beispiel auf [−T
2 ,

T
2 ].

Wie müssen nun die Koeffizienten ak und bk gewählt werden, damit Fn(t) eine möglichst
gute Näherung einer gegebenen Funktion f(t) auf dem ganzen Intervall [−T

2 ,
T
2 ] ist?

Ähnlich wie im Abschnitt 9.5 über Näherungslösungen von linearen Systemen soll die
“quadratische Abweichung” |f(t) − Fn(t)|2 minimal sein, und zwar über das ganze Intervall
[−T

2 ,
T
2 ] betrachtet. Das heisst, der Wert

∫ T
2

−T
2

(f(t)− Fn(t))
2dt

soll minimal sein.

Satz 10.1 Sei f(t) eine (stückweise) stetige und beschränkte Funktion und n ∈ N. Dann sind
die Koeffizienten des bestapproximierenden trigonometrischen Polynoms vom Grad n gegeben
durch

ak =
2

T

∫ T
2

−T
2

cos(kωt)f(t) dt

bk =
2

T

∫ T
2

−T
2

sin(kωt)f(t) dt

für k = 0, . . . , n.

Für k = 0 gilt speziell

b0 =
2

T

∫ T
2

−T
2

0 dt = 0 und a0 =
2

T

∫ T
2

−T
2

f(t) dt .

Die Hälfte der Fourierkoeffizienten ist jeweils 0, falls die Funktion f gerade (das heisst
f(−t) = f(t)) oder ungerade (d.h. f(−t) = −f(t)) ist.
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Satz 10.2 Es gilt:

f(t) gerade =⇒ bk = 0 für alle k = 0, . . . , n

f(t) ungerade =⇒ ak = 0 für alle k = 0, . . . , n

Ist nämlich f(t) gerade, dann ist sin(kωt)f(t) eine ungerade Funktion (da sin(t) ungerade
ist) und damit ist das Integral über das Intervall [−T

2 ,
T
2 ] gleich 0. Ist f(t) ungerade, dann

ist die Funktion cos(kωt)f(t) ungerade, da cos(t) gerade ist.

Beispiel

Wir wollen überprüfen, ob das Fourierpolynom F3(t) zur Funktion f(t) = |t| vom Beispiel
von Seite 165 mit den Aussagen von Satz 10.1 übereinstimmt.

Wir betrachten hier also das Intervall [−1
2 ,

1
2 ], das heisst T = 1 und damit ω = 2π

T = 2π.
Das Fourierpolynom vom Grad 3 hat nun die Form

F3(t) =
a0
2

+ a1 cos(2πt) + b1 sin(2πt) + a2 cos(4πt) + b2 sin(4πt)

+ a3 cos(6πt) + b3 sin(6πt) ,

wobei die Koeffizienten ak, bk durch Satz 10.1 gegeben sind. Da die Funktion f(t) = |t| gerade
ist, gilt (mit Satz 10.2) für die Koeffizienten

Der Koeffizient a0 ist einfach zu bestimmen:

Den Koeffizienten a1 berechnen wir mit Hilfe von partieller Integration:
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Analog (mit partieller Integration) finden wir die Koeffizienten

a2 = 4

∫ 1
2

0
t cos(4πt)dt = 0 und a3 = 4

∫ 1
2

0
t cos(6πt)dt = − 2

9π2
.

Das Fourierpolynom vom Grad 3 lautet also (wie auf Seite 166)

F3(t) =
1

4
− 2

π2
cos(2πt) − 2

9π2
cos(6πt) .

Die Funktion f(t) = |t| ist natürlich für alle t ∈ R definiert, doch die Approximation von f
durch das Fourierpolynom F3 ist nur auf dem Intervall [−1

2 ,
1
2 ] gut:

Ist die Funktion f periodisch mit der Periode T , das heisst gilt

f(t+ T ) = f(t) für alle t ∈ R ,

dann ist das Fourierpolynom auf ganz R eine gute Approximation. In diesem Fall kann anstelle
des Intervalls [−T

2 ,
T
2 ] auch [0, T ] oder jedes andere Intervall der Länge T verwendet werden.

In der Praxis ist meist nicht die Funktionsgleichung von f(t) gegeben, sondern nur die
Funktionswerte f(tk) zu bestimmten Zeitpunkten tk. Die Integrale zur Berechnung der Fou-
rierkoeffizienten werden dann durch Summen approximiert.

10.2 Fourierreihen

Das Fourierpolynom approximiert die Funktion umso besser, je grösser der Grad n des Poly-
noms ist.

Satz 10.3 Sei f eine (stückweise) stetige, beschränkte Funktion mit zugehörigen Fourier-
polynomen Fn. Dann kann die Approximation f(t) ≈ Fn(t) beliebig genau gemacht werden,
indem der Grad n gross genug gewählt wird.

Ist f differenzierbar an einer Stelle t, dann gilt

f(t) =
a0
2

+

∞∑

k=1

(ak cos(kωt) + bk sin(kωt)) .

Die Reihe auf der rechten Seite nennt man Fourierreihe F(t) von f(t).
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Beispiel

Wir betrachten die Funktion

f(t) =

{
1 für t ≥ 0
0 für t < 0

im Intervall [−π, π].

Das Intervall hat nun die Länge T = 2π, das heisst ω = 2π
T

= 1. Die Fourierreihe hat also
die Form

F(t) =
a0
2

+ a1 cos(t) + b1 sin(t) + a2 cos(2t) + b2 sin(2t) + · · ·

Für die Fourierkoeffizienten ak erhalten wir

a0 = 1 und ak =
1

π

∫ π

0
cos(kt)dt = 0 für k ≥ 1 .

Und für die Koeffizienten bk erhalten wir

bk =
1

π

∫ π

0
sin(kt)dt =

1− (−1)k

kπ
für k ≥ 1 .

Die Fourierreihe lautet demnach

F(t) =
1

2
+

∞∑

k=1

1− (−1)k

kπ
sin(kt)

=
1

2
+

2

π
sin(t) +

2

3π
sin(3t) +

2

5π
sin(5t) + · · ·

Nach Satz 10.3 gilt F(t) = f(t) für jedes t 6= 0 in [−π, π] (denn f ist differenzierbar in t 6= 0).

10.3 Eine Orthonormalbasis bestehend aus Funktionen

In diesem Abschnitt untersuchen wir die Fourierreihe einer Funktion mit Hilfe der Theorie
über Orthonormalbasen von Vektorräumen.

Wir haben in Kapitel 9 gesehen, dass die Menge der reellen Funktionen von [0, 1] nach R

einen reellen Vektorraum bilden. Ebenso bildet die Menge der im Intervall [−π, π] stetigen
Funktionen einen (reellen) Vektorraum. Wir bezeichnen ihn mit C = C[−π, π].

Auf dem Vektorraum Rn haben wir in Abschnitt 9.4 ein Skalarprodukt definiert. Die
charakteristischen Eigenschaften des Skalarprodukts sind in Satz 9.10 aufgelistet. Wir können
nun auch auf dem Vektorraum C der stetigen Funktionen ein Skalarprodukt definieren.
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Definition Das Skalarprodukt von zwei Funktionen f, g in C ist definiert durch

〈f, g〉 =
∫ π

−π

f(x)g(x)dx .

Anstelle von 〈f, g〉 könnte man (analog zu Vektoren) auch f ·g schreiben, doch die Bezeichnung
〈f, g〉 ist üblicher.

Der Name Skalarprodukt ist gerechtfertigt, da genau die zu Satz 9.10 analogen Eigen-
schaften gelten!

Für Vektoren ~v ∈ Rn gibt es den Zusammenhang ‖~v‖2 = ~v · ~v zwischen der Länge eines
Vektors und dem Skalarprodukt des Vektors mit sich selbst. Für Funktionen f in C definieren
wir die Länge oder Norm von f durch

‖f‖ =
√

〈f, f〉 =
√∫ π

−π

f(x)2dx .

Und analog zu Vektoren nennen wir zwei Funktionen f, g ∈ C orthogonal, wenn gilt

〈f, g〉 = 0 .

Satz 10.4 Die Funktionen

1√
π
,

1√
π
cos(nx) ,

1√
π
sin(nx) für n ∈ N

bilden eine Orthonormalbasis für den Vektorraum C = C[−π, π].

Konkret bedeutet der Satz, dass gilt

∫ π

−π

cos(nx) cos(mx) dx =

{
π für m = n
0 für m 6= n

,

∫ π

−π

sin(nx) sin(mx) dx =

{
π für m = n
0 für m 6= n

,

und ∫ π

−π

sin(nx) cos(mx) dx = 0 .

Die ersten beiden Integrale können mit Hilfe der partiellen Integration berechnet werden. Das
dritte Integral ist klar, da der Integrand eine ungerade Funktion ist. Oder bildlich für zwei
Beispiele:
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Dass sich jede stetige Funktion f als Fourierreihe darstellen lässt, kann man also so
interpretieren, dass sich jede solche Funktion f als unendliche Linearkombination der Basis-
funktionen aus Satz 10.4 schreiben lässt (der Vektorraum C ist ja unendlich-dimensional).
Die Fourierkoeffizienten sind nun einfach die Koeffizienten dieser Linearkombination. Doch
da wir eine Orthonormalbasis haben, sind (gemäss Satz 9.12) die Fourierkoeffizienten an, bn
nichts anderes als die Orthogonalprojektionen von f auf die Basisfunktionen:

〈f(x), 1√
π
cos(nx)〉 1√

π
cos(nx) =

(
1

π

∫ π

−π

cos(nx)f(x) dx

)
cos(nx) = an cos(nx)

〈f(x), 1√
π
sin(nx)〉 1√

π
sin(nx) =

(
1

π

∫ π

−π

sin(nx)f(x) dx

)
sin(nx) = bn sin(nx)

Zu erwähnen bleibt, dass sich die Schreibweise der Fourierreihe und der Nachweis von
Satz 10.4 vereinfachen, wenn man komplexe Zahlen zu Hilfe nimmt. Wegen der Eulerschen
Identität gilt

F(t) =

∞∑

k=−∞
cke

ikωt

mit den komplexen Koeffizienten

ck =
1

T

∫ T
2

−T
2

e−ikωtf(t) dt .
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11 Boolesche Algebra

Die Boolesche Algebra ist eine “Algebra der Logik”, die George Boole (1815 – 1864) als erster
entwickelt hat. Sie ist die Grundlage für den Entwurf von elektronischen Schaltungen und von
Computerprogrammen. Die Boolesche Algebra kennt nur die beiden Zustände “wahr” und
“falsch”, die in einem Schaltkreis den grundlegenden Zuständen “Strom fliesst” und “Strom
fliesst nicht” entsprechen. Diese beiden Zustände werden im Folgenden durch die Zahlen 1
und 0 beschrieben.

11.1 Grundlegende Operationen und Gesetze

Die Boolesche Algebra geht von der Menge {0, 1} aus.

Definition Auf der Menge {0, 1} sind die folgenden drei Operationen definiert.

(1) Die Konjunktion ∧ (Und-Verknüpfung) ist eine Verknüpfung, die von zwei Argumenten
abhängt. Sie ist genau dann 1, wenn das erste und das zweite Argument 1 ist, und in
jedem anderen Fall 0. Man liest a ∧ b als “a und b”.

(2) Die Disjunktion ∨ (Oder-Verknüpfung) ist eine weitere von zwei Argumenten abhängige
Verknüpfung. Sie ist genau dann 1, wenn das erste oder das zweite Argument 1 ist, und
sonst 0. Man liest a ∨ b als “a oder b”.

(3) Die Negation ¬ (Nicht-Operator) hängt nur von einem Argument ab. Sie ist 0, wenn das
Argument 1 ist, und 1, wenn das Argument 0 ist. Man liest ¬a als “nicht a”.

Diese drei Verknüpfungen können übersichtlich mit Verknüpfungstafeln dargestellt werden:

∧ 0 1

0 0 0

1 0 1

∨ 0 1

0 0 1

1 1 1

x ¬x
0 1

1 0

Diese drei Operationen können nun mehrfach hintereinander ausgeführt werden, um weite-
re boolesche Ausdrücke zu erhalten. Dabei haben die Operationen unterschiedliche Priorität:
¬ kommt vor ∧, und ∧ kommt vor ∨. Für andere Prioritäten muss man Klammern setzen.

Beispiel

¬0 ∨ 1 ∧ 0 =

Die folgenden Rechengesetze für ∧, ∨ und ¬ erinnern an die Rechengesetze für reelle
Zahlen, wenn wir ∧ als Multiplikation und ∨ als Addition interpretieren.

Satz 11.1 Für alle x, y, z in {0, 1} gelten die folgenden Gesetze.

(a) Kommutativgesetze: x ∧ y = y ∧ x und x ∨ y = y ∨ x

(b) Assoziativgesetze: x ∧ (y ∧ z) = (x ∧ y) ∧ z und x ∨ (y ∨ z) = (x ∨ y) ∨ z

(c) Distributivgesetze: x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) und x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

(d) Existenz neutraler Elemente: 1 ∧ x = x und 0 ∨ x = x

(e) Existenz des Komplements: x ∧ ¬x = 0 und x ∨ ¬x = 1
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In Satz 11.1 geht jeweils der zweite Teil des Gesetzes aus dem ersten Teil hervor, indem
man ∧ und ∨ sowie 1 und 0 vertauscht.

Satz 11.2 Jede Aussage, die aus Satz 11.1 folgt, bleibt gültig, wenn die Operationen ∧ und
∨ sowie die Zahlen 1 und 0 überall gleichzeitig vertauscht werden.

Diese Eigenschaft der Booleschen Algebra heisst Dualität. Eine Aussage, die durch Vertau-
schen von ∧ und ∨ sowie 1 und 0 aus einer anderen hervorgeht, heisst zu dieser dual.

Mit Hilfe dieser Eigenschaft können weitere Gesetze hergeleitet werden.

Satz 11.3 Für alle x, y, z in {0, 1} gelten die folgenden Gesetze.

(a) Absorptionsgesetze: x ∧ (x ∨ y) = x und x ∨ (x ∧ y) = x

(b) Idempotenzgesetze: x ∨ x = x und x ∧ x = x

(c) Involutionsgesetz: ¬(¬x) = x

(d) Gesetze von de Morgan: ¬(x ∧ y) = ¬x ∨ ¬y und ¬(x ∨ y) = ¬x ∧ ¬y

Die Gesetze der Sätze 11.1–11.3 kann man beweisen, indem man alle möglichen Werte für
x und y einsetzt und überprüft, ob jeweils die linke und die rechte Seite einer Gleichung
übereinstimmen. Bei Satz 11.3 geht es teilweise eleganter, indem man schon bekannte Gesetze
anwendet. Die Absorptionsgesetze kann man beispielsweise wie folgt nachweisen:

Wegen der Dualität folgt das zweite Absorptionsgesetz.

11.2 Boolesche Funktionen und ihre Normalformen

Eine n-stellige boolesche Funktion ist eine Abbildung

f : {0, 1}n −→ {0, 1} .

Jedem n-Tupel (x1, . . . , xn) mit xi ∈ {0, 1} wird eindeutig eine Zahl

f(x1, . . . , xn) ∈ {0, 1}

zugeordnet.

Beispiel

Für n = 1 gibt es genau 4 verschiedene boolesche Funktionen: Die Nullfunktion f(x) = 0, die
Einsfunktion f(x) = 1, die Identität f(x) = x und die Negation f(x) = ¬x.

Satz 11.4 Es gibt genau 2(2
n) verschiedene n-stellige boolesche Funktionen.

Es gibt also 2(2
2) = 16 2-stellige boolesche Funktionen. In der folgenden Wertetabelle sind

alle Funktionen aufgelistet.
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x y f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Einige dieser Funktionen sind uns schon bekannt:

Drei weitere Funktionen sind wichtig und als einfacher boolescher Ausdruck beschreibbar.
Die Funktion

f9(x, y) = ¬(x ∨ y)

ist die negierte Oder-Verknüpfung. Nach dem englischen “not or” bezeichnet man sie als
NOR-Verknüpfung.

Analog ist die Funktion
f15(x, y) = ¬(x ∧ y)

die sogenannte NAND-Verknüpfung (nach “not and”).
Die Funktion

f7(x, y) = (x ∨ y) ∧ ¬(x ∧ y)

ergibt genau dann 1, wenn x 6= y ist, das heisst, wenn entweder x oder y gleich 1 ist. Nach
dem englischen “exclusive or” bezeichnet man sie als XOR-Verknüpfung.

Bei der letzten Funktion sieht man, dass es gar nicht so einfach ist, von der Wertetabelle
einer Funktion auf einen booleschen Ausdruck zu schliessen. Dabei ist ein boolescher Ausdruck
für eine Funktion nicht eindeutig. Wir wollen deshalb im Folgenden untersuchen, wie man
erstens überhaupt einen booleschen Ausdruck für eine Funktion findet und zweitens, wie man
den gefundenen Ausdruck vereinfachen kann.

Normalformen

Ausgehend von der Wertetabelle einer booleschen Funktion kann mit Hilfe eines Verfahrens
der boolesche Ausdruck der Funktion in sogenannter disjunktiver, bzw. konjunktiver Normal-
form aufgestellt werden.

Definition Eine Vollkonjunktion ist ein boolescher Ausdruck, in dem alle Variablen genau
einmal vorkommen und durch ∧ (konjunktiv) verbunden sind. Dabei dürfen die Variablen
auch negiert auftreten.

Ein Ausdruck liegt in der disjunktiven Normalform vor, wenn er aus Vollkonjunktionen
besteht, die durch ∨ (disjunktiv) verknüpft sind.

Beispiel

Der Boolesche Ausdruck

(x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ y ∧ ¬z) ∨ (x ∧ ¬y ∧ z)

liegt in disjunktiver Normalform vor.
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Das folgende Beispiel soll zeigen, wie man von der Wertetabelle einer booleschen Funktion
ihren booleschen Ausdruck in disjunktiver Normalform erhält.

Beispiel

Wir betrachten die 3-stellige boolesche Funktion f , die durch die folgende Wertetabelle ge-
geben ist.

Zeile x y z f(x, y, z)

1 0 0 0 0

2 0 0 1 0

3 0 1 0 1

4 0 1 1 1

5 1 0 0 0

6 1 0 1 0

7 1 1 0 0

8 1 1 1 1

1. Schritt: Wir suchen diejenigen Zeilen, die den Funktionswert 1 haben.

2. Schritt: Für jede dieser Zeilen stellen wir die Vollkonjunktion auf, die für die Variablen
dieser Zeile den Wert 1 liefert.

3. Schritt: Diese Vollkonjunktionen werden durch ∨ verknüpft.

Dieser Ausdruck ist nun genau dann 1, wenn eine der drei Vollkonjunktionen gleich 1 ist, was
genau für die Zeilen 3, 4 und 8 der Fall ist. Also haben wir die disjunktive Normalform von
f gefunden.

Die disjunktive Normalform besteht demnach aus genau so vielen Vollkonjunktionen, wie
in der Wertetabelle der Funktionswert 1 vorkommt. Die disjunktive Normalform ist also ideal,
wenn der Funktionswert 1 nicht oft vorkommt. Ansonsten stellt man besser die konjunktive
Normalform auf.

Definition Eine Volldisjunktion ist ein boolescher Ausdruck, in dem alle Variablen genau
einmal vorkommen und durch ∨ (disjunktiv) verbunden sind. Dabei dürfen die Variablen
auch negiert auftreten.

Ein Ausdruck liegt in der konjunktiven Normalform vor, wenn er aus Volldisjunktionen
besteht, die durch ∧ (konjunktiv) verknüpft sind.
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Beispiel

Der Boolesche Ausdruck

(¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z) ∧ (x ∨ ¬y ∨ z)

liegt in konjunktiver Normalform vor.

Das Verfahren, mit dem man von der Wertetabelle einer booleschen Funktion zu ihrem
Ausdruck in konjunktiver Normalform gelangt, ist dual zum vorherigen Verfahren.

Vereinfachen von booleschen Ausdrücken

Die disjunktive, bzw. konjunktive Normalform einer booleschen Funktion ist oft ein unnötig
langer Ausdruck. Als nächstes sollte man also diesen booleschen Ausdruck vereinfachen (wenn
möglich). Das kann man systematisch tun, und zwar zum Beispiel mit dem Verfahren von
Karnaugh und Veitch. Wir wollen hier nur kurz andeuten, wie das funktioniert.

Das Verfahren von Karnaugh und Veitch geht von der disjunktiven Normalform aus. Die
Grundidee des Verfahrens ist, den Ausdruck systematisch so umzuformen, dass Terme der
Form x ∨ ¬x entstehen. Nach Satz 11.1(e) haben diese Terme stets den Wert 1 und können
in einer Konjunktion weggelassen werden.

Beispiel

Wir vereinfachen die 3-stellige boolesche Funktion vom Beispiel auf der Seite 175.

f(x, y, z) = (¬x ∧ y ∧ ¬z) ∨ (¬x ∧ y ∧ z) ∨ (x ∧ y ∧ z)

Der Vorteil des Verfahrens von Karnaugh und Veitch ist nun, dass diese Umformungen
nicht auf gut Glück von Hand durchgeführt werden müssen, sondern graphisch am sogenann-
ten KV-Diagramm abgelesen werden können. Darauf wollen wir aber nicht näher eingehen.

11.3 Logische Schaltungen

Jeder Computer ist aus logischen Schaltungen aufgebaut. Dabei ist eine logische Schaltung
nichts anderes als eine physikalische Realisierung einer booleschen Funktion. Die beiden
Zustände 0 und 1 der Booleschen Algebra werden durch unterschiedliche elektrische Spannun-
gen realisiert. Meist entspricht der Zustand 0 der Spannung 0 (oder einer minimalen Spanung
Umin) und der Zustand 1 einer maximalen Spannung Umax. Dabei sind gewisse Toleranzbe-
reiche um diese Spannungen erlaubt.

Die grundlegenden booleschen Operationen ∧, ∨ und ¬ werden durch elektronische Bau-
teile umgesetzt, die man Gatter nennt. Solche Gatter kann man mit einfachen Schaltern
und Relais verwirklichen. In Schaltplänen werden Gatter durch ihre jeweiligen Schaltsymbole
dargestellt. Die Schaltsymbole der drei Grundgatter AND, OR und NOT sind die Folgenden.
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Diese drei Grundgatter kann man nun hintereinanderschalten. Dabei werden vor- oder
nachgeschaltete NOT-Gatter am Eingang bzw. Ausgang vereinfacht als Kreis symbolisiert.
Das NAND- und das NOR-Gatter sind demnach wie folgt.

Der folgende Satz sagt aus, dass entweder NAND- oder NOR-Gatter genügen, um jede
beliebige boolesche Funktion zu verwirklichen.

Satz 11.5 Die drei booleschen Grundoperationen ∧, ∨ und ¬ können als Hintereinander-
ausführung von ausschliesslich NAND-Funktionen oder ausschliesslich NOR-Funktionen ge-
schrieben werden.

Der Beweis dieses Satzes nutzt die Gesetze von de Morgan (Satz 11.3(d)). Wir zeigen exem-
plarisch den ersten Teil des Satzes, wobei wir NAND(x, y) = ¬(x ∧ y) schreiben.

x ∧ y = (x ∧ y) ∨ 0 = ¬(¬(x ∧ y) ∧ 1) = NAND(NAND(x, y), 1)

x ∨ y = (x ∧ 1) ∨ (y ∧ 1) = ¬(¬(x ∧ 1) ∧ ¬(y ∧ 1)) = NAND(NAND(x, 1),NAND(y, 1))

¬x = ¬(x ∧ 1) = NAND(x, 1)

Wenn wir nun eine beliebige boolesche Funktion mit Hilfe der drei Grundgatter und der
NAND- und NOR-Gatter realisieren wollen, können wir wie folgt vorgehen:

1. Die Wertetabelle der booleschen Funktion aufstellen.

2. Die disjunktive Normalform der Funktion ablesen.

3. Die disjunktive Normalform vereinfachen.

4. Der vereinfachte Ausdruck mit einer Gatterschaltung realisieren.

Beispiel

Wir wollen die einfachste Form einer Rechenschaltung realisieren, nämlich die Addition
von zwei einstelligen Binärzahlen. Wenn beide Bits gleich 1 sind, ensteht eine zweistellige
Binärzahl, das heisst, ein Übertrag in die nächsthöhere Binärstellle:

0 + 0 = 0 , 0 + 1 = 1 , 1 + 0 = 1 , 1 + 1 = 10

Für jede der beiden Binärstellen benötigt die Schaltung einen Ausgang. Wir bezeichnen diese
beiden Ausgänge mit s (für Summe) und u (für Übertrag). Die Wertetabelle sieht damit wie
folgt aus.
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x y u s

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Für beide Ausgänge können wir die disjunktive Normalform aus der Tabelle ablesen:

Beide Ausdrücke können nicht weiter vereinfacht werden. Wir können also direkt die Schal-
tung angeben:

Diese Schaltung nennt manHalbaddierer. Ummehrstellige Binärzahlen addieren zu können,
reichen Halbaddierer nicht mehr aus. Denn zur Summe zweier Bits muss dann im Allgemeinen
noch der Übertrag aus der vorherigen Stelle addiert werden. Insgesamt müssen also an jeder
Stelle drei Bits addiert werden. Die Schaltung, die drei Bits addiert, nennt man Volladdie-
rer. Ein Volladdierer kann aus zwei Halbaddierern und einem OR-Gatter zusammengesetzt
werden (deshalb der Name Halbaddierer). Allgemein kann man durch Zusammenschalten
von n− 1 Volladdierern und einem Halbaddierer zwei n-stellige Binärzahlen addieren. Solche
Addierwerke bilden die Grundlage der Computertechnik.
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