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1 Grundlagen

1.1 Zahlen, Mengen und Symbole

In diesem ersten Abschnitt werden die gebrauchlichsten Bezeichnungen und Symbole definiert.

Zahlenmengen
Die Menge N der natirlichen Zahlen ist gegeben durch
N=1{1,2,3,...},
die Menge Z der ganzen Zahlen ist gegeben durch
Z=A{...,-2,-1,0,1,2,3,... },
und die Menge Q der rationalen Zahlen (Briiche) ist gegeben durch
Q:{g | pin Z,q in N} .

In Q sind alle Operationen (Addition, Subtraktion, Multiplikation, Division) in eindeutiger
Weise durchfiihrbar, ausser der Division durch 0. Jede rationale Zahl ldsst sich als (endlicher
oder periodisch unendlicher) Dezimalbruch darstellen, zum Beispiel

=1:4=0,25 als endlicher Dezimalbruch und
=1:3=0,3~0,33333333 als periodischer Dezimalbruch.

QO [

Die Darstellung einer rationalen Zahl als Bruch ist nicht eindeutig, zum Beispiel ist

0 5 = — = — = — T s e
’ 2 4 6 ’
die Darstellung als Dezimalbruch ist hingegen eindeutig, wenn man “Neunerenden” nicht
zuldsst, wie zum Beispiel 0,49 = 0,4999... = 0,5. Es gilt 0,9 = 1, wie wir spéter noch in
den Ubungen zeigen werden.
Die rationalen Zahlen kann man als Punkte auf der Zahlengeraden veranschaulichen:

O @ O O0—0—0 0—0 @
1 3 222

_9 1 e 222
2 4 L 2 99

Es bleiben jedoch Liicken auf der Zahlengeraden. Durch Hinzunahme aller Zahlen in diesen
Liicken erhéalt man die Menge R der reellen Zahlen. Das heisst, die Menge der reellen Zahlen
ist die Gesamtheit aller Zahlen auf der Zahlengeraden. Man sagt, dass die reellen Zahlen die
rationalen Zahlen vervollstdndigen (mathematisch kann dies durch Grenzwertbetrachtungen
exakt beschrieben werden). Eine reelle Zahl, die nicht rational ist, nennt man irrational. Zum
Beispiel sind die Zahlen v/2, v/2022, ¥/1893, log(99), , e, usw. irrational.

Wir werden spéter noch eine weitere Zahlenmenge kennenlernen, ndmlich die Menge C
der komplexen Zahlen.



Runden von Dezimalzahlen

Rechenmaschinen rechnen aufgrund ihres endlichen Speichers mit gerundeten Zahlen und
auch bei Messungen entstehen Ungenauigkeiten.

Je nach Situation runden wir eine Zahl auf £ Stellen nach dem Komma (d.h. auf &
Nachkommastellen). Dabei werden Ziffern > 5 aufgerundet und Ziffern < 5 abgerundet.
Beispiel
Die Zahl m = 3,1415926. .. soll auf k£ = 2, k = 3 und auf kK = 4 Nachkommastellen gerundet
werden.

Ist umgekehrt eine Dezimalzahl gegeben, so muss man davon ausgehen, dass sie gerundet
wurde. Ist eine Zahl a mit k£ Nachkommastellen gegeben, so weicht der exakte Wert von a
hochstens um 0,5 - 107% vom angegebenen Wert ab (gemiiss den Rundungsregeln).
Beispiele
1. Die Angabe a = 7,24 bedeutet, dass 7,235 < a < 7,245.

2. Die Angabe a = 7,240 bedeutet, dass 7,2395 < a < 7, 2405.

Bei Rechenoperationen muss man sich iiberlegen, wieviele Nachkommastellen bei der An-
gabe des Endergebnisses sinnvoll sind.

Beispiele

Der Rundungsfehler kann sich bei Rechenoperationen vergrossern. Bei mehreren Rechen-
schritten ist es daher wichtig, dass erst das Endergebnis gerundet wird, und nicht schon jedes
Zwischenergebnis!

Beispiel
Wir berechnen die Zahl

a =

~| ©

1
: [2+10000- (5 —0,111)}

e cxakt:

e durch Runden auf jeweils drei Nachkommastellen nach jedem Zwischenschritt:



e durch Ausmultiplizieren aller Klammern und dann Runden wie vorher:

18 90000 1 9
2. -2 111
7t g7 1O

~ 2,571 490000 - 0,016 — 1,286 - 1110 ~ 2, 571 + 1440 — 1427, 46 ~ 15,11

a =

Dieses Beispiel zeigt, dass auch die Reihenfolge der Rechenschritte eine Rolle spielt. Bei einer
Summe mit sehr kleinen und sehr grossen Summanden sollte man die Summanden nach
aufsteigender Grosse aufsummieren.

Beispiel

Die Summe S = 10 4+ 0,4 + 0, 4 soll berechnet werden, indem nach jedem Rechenschritt auf
eine ganze Zahl gerundet wird.

Absoluter Betrag

Der (absolute) Betrag einer reellen Zahl z ist definiert durch

2| = T falls z > 0
= r fallsz <0
Anschaulich ist |z| der Abstand der Zahl  vom Nullpunkt auf der Zahlengeraden.
Der Ausdruck |z — a| beschreibt den Abstand von zwei Zahlen x und a (auf der Zahlen-
geraden).
Beispiel
Welche Zahlen z erfiillen die Bedingung |z + 3| =17

Nun, 1 = |z + 3| = |z — (—3)|. Der Abstand von z zu —3 ist also 1. Wir erhalten z = —2 und
x = —4 als Losungen.

Spéter in diesem Kapitel (Seite 12) kommen wir nochmals aufs Rechnen mit Betrégen zuriick.

Mengentheoretische und logische Symbole

Die wichtigsten mengentheoretischen Symbole sind die Folgenden:

x € R Dies bedeutet, dass x eine reelle Zahl ist, d.h. = gehort zur Menge R (bzw. z ist
Element der Menge R).

% ¢ N Dies heisst, dass % keine natiirliche Zahl ist, d.h. dass % nicht zur Menge N der
natiirlichen Zahlen gehort.

M C R Die Menge M ist eine Teilmenge der reellen Zahlen (eventuell auch ganz R),
zum Beispiel gilt Q C R.

R\M = Menge der reellen Zahlen, die nicht in M liegen = {zx e R | 2 ¢ M},
zum Beispiel ist R\Q die Menge der irrationalen Zahlen.

R? = Menge der geordneten Zahlenpaare = {(x,y) | z,y € R}.
N xZ = Menge der geordneten Zahlenpaare = {(x,y) | x € Ny € Z}.
[a, b] = abgeschlossenes Intervall zwischen a und b = {zx € R | a <z < b}.

(a,b) = offenes Intervall zwischen a und b = {x e R | a < x < b}.



Eine logische Folgerung beschreibt man mit einem Pfeil. Man unterscheidet:

A= B Aus der Aussage A folgt Aussage B, d.h. wenn A wahr ist, so ist auch B wahr.
(Dies ist gleichbedeutend mit: Wenn B falsch ist, dann ist auch A falsch.)

A<= B Aus A folgt B und aus B folgt A, d.h. A ist genau dann wahr, wenn B wahr
ist. (Die Aussagen A und B sind gleichbedeutend, man sagt auch dquivalent.)

Beispiele

1. n ist teilbar durch 6 = n ist teilbar durch 2.
Die Umkehrung “«<=" gilt hier nicht. Die Aussage ist gleichbedeutend mit:
n ist nicht teilbar durch 2 = n ist nicht teilbar durch 6.

2. |z| <1 = —1<z<1 < ze[-1,1]

Summen- und Produktzeichen

Fiir Summen mit mehreren Summanden und Produkte mit mehreren Faktoren ist es prak-
tisch, das folgende Summen- bzw. Produktzeichen zu benutzen. Man schreibt

N N
al—l—ag—i—---—l—aN:E a, und al-ag---aN:Han.
n=1 n=1

Die Summe, bzw. das Produkt muss dabei nicht mit dem Index 1 beginnen. Es gilt zum

Beispiel
N 8
as+as+-+ay=> a, und as-ag-ar-ag= ][ an.
n=3 n=>5
Fiir £ > N gilt die Vereinbarung
N N
ZanZO und Hanzl.
n=~k n=k
Beispiele
10
1
1. - =
>
n=1
7
2. H n? =
n=3

2

3.) (3n+5) =

n=-—1



4 1+1 1+1 + 1+1—
' 4 9 16 81 100

5. 5:7-9-11-13-15-17 =

Wir werden vor allem das Summenzeichen gebrauchen (im néchsten Kapitel und dann in
der Statistik im néchsten Semester). Wir notieren hier deshalb nur die Rechenregeln fiir das
Summenzeichen:

N N N
N SURTRED S 38
n=1 n=1 n=1
N N
2 (c-ap)=c Zan
n=1 n=1
N k N
3. Zan:Zan—i— Z ap firke{l,...,N}
n=1 n=1 n=k+1

1.2 Funktionen und Abbildungen

Der Funktionsbegriff ist einer der zentralsten Begriffe in der Mathematik. Er spielt auch bei
allen Anwendungen in den Naturwissenschaften eine fundamentale Rolle. Funktionen treten
iiberall da auf, wo Zusammenhénge zwischen zwei (oder mehreren) Grossen bestehen.
Beispiel

Zustandsgleichung des idealen Gases. Der Druck eines Gases in einem geschlossenen Gefiss
héngt von der Temperatur und dem Volumen ab. Mit Hilfe geeigneter Skalen wird der Druck
durch eine Grosse p € R, die (absolute) Temperatur durch 7" € R und das Volumen durch
V € R angegeben, und jedem bestimmten Wert von V und T entspricht ein Wert von p. Fiir
1 mol (1 mol = 6,022 - 10> Molekiile bzw. Atome (Avogadrosche Zahl)) eines idealen Gases
gilt die Beziehung

_ AT

P= wobei R eine (absolute) Konstante ist.

Halten wir das Volumen fest, so gilt p(7') = a7 mit a = %. Halten wir jedoch die Temperatur
fest, so gilt p(V)) = b mit b = RT.

Wie im Beispiel betrachten wir zunéchst vor allem Zuordnungen zwischen Grossen, wel-
che Werte in den reellen Zahlen annehmen. Im néchsten Semester werden wir jedoch auch
allgemeinere Zuordnungen (sogenannte Abbildungen) studieren.

Definition Seien X und Y zwei Mengen. Eine Vorschrift f, die jedem Element x aus X
(x € X) genau ein Element y aus Y (y € Y) zuordnet, heisst Abbildung. Wir schreiben

f: X—Y
x> f(x)
Die Menge X heisst Definitionsbereich und die Menge Y Zielbereich von f.



Eine Abbildung ordnet also jedem x € X eindeutig ein y € Y zu. Es konnen jedoch zwei
verschiedene z, 2’ € X demselben y € Y zugeordnet werden. Ausserdem muss nicht zu jedem
y € Y ein x € X existieren, dem es zugeordnet wird. Man nennt deshalb die Teilmenge

fX)={f(z)|ze X} ={yeY |esgibteinx € X mit y= f(x) }

von Y die Bildmenge (oder den Wertebereich) von f. Entsprechend ist f(x) das Bild von f
an der Stelle x.

Ist der Zielbereich Y eine Zahlenmenge, dann nennen wir die Abbildung eine Funktion (in
vielen Biichern werden Abbildungen und Funktionen synonym verwendet). Funktionen mit
Y = R und X C R heissen reelle Funktionen. Fiir X schreiben wir in diesem Fall D und
meinen damit jeweils die grosstmogliche Teilmenge von R, auf der die Funktionsvorschrift f
definiert ist.

Beispiele

1. f: D — R, f(z) = 22 definiert eine reelle Funktion.

2. Sei X die Menge aller Studierenden der Pharmazie im ersten Semester und Y die Men-
ge {blau, griin, braun }. Dann ist die Zuordnung f : X — Y, die jedem*r Studierenden
seine*ihre Augenfarbe zuordnet, eine Abbildung. Die Bildmenge ist ganz Y, falls es je min-
destens eine*n Studierende*n mit der Augenfarbe blau, griin, bzw. braun gibt.

3. Sei X = R2. Dann definiert f : X — R mit f(z,y) = /22 + y? eine Funktion in
zwei Variablen. Fiir einen Punkt P = (z,y) in R? gibt f(x,y) den Abstand von P zum
Ursprung an. Der Definitionsbereich ist also (D =) X = R? und die Bildmenge ist gleich
f(X) ={z € R|z > 0}. Funktionen in zwei und mehr Variablen werden wir im néchsten
Semester untersuchen.

4. Funktionen konnen auch abschnittsweise definiert werden. Zum Beispiel ist f : D — R

definiert durch
r—3 fallsz >0

f(m):{ﬁ falls . < 0

auch eine (reelle) Funktion.



Reelle Funktionen kénnen mit Hilfe ihres Graphen dargestellt werden. Der Graph einer
reellen Funktion f : D — R ist definiert als die Menge aller Punkte der Ebene mit den
Koordinaten (z, f(z)) fir z € D:

Graph(f) ={ (z,f(z)) |z €D } CD xR

Der Graph ist also eine Kurve in R? mit der Eigenschaft, dass iiber jedem z € D auf der
x-Achse genau ein Punkt des Graphen von f liegt, ndmlich der Punkt (z, f(x)). Umgekehrt
konnen jedoch mehreren x1,x2,--- € D der gleiche Wert y zugeordnet sein, das heisst, die
Parallele zur z-Achse in der Hohe y kann den Graphen in mehreren Punkten schneiden.

Beispiel

flz)=2*—1

Die reellen Funktionen kénnen in verschiedene Typen eingeteilt werden. Wir betrachten
hier zunéchst die sogenannten algebraischen Funktionen; das sind Funktionen, deren Funkti-
onsvorschrift f(z) sich mittels der Grundoperationen +, —, -, / und ¢/ aus der Variablen x
und reellen Konstanten bilden ldsst. Die sogenannten transzendenten Funktionen (das sind
alle anderen, wie zum Beispiel die trigonometrischen Funktionen und die Exponential- und
Logarithmusfunktionen) betrachten wir spéter.

Polynomfunktionen

Eine Funktion f : R — R mit der Gleichung
f(@) =ap2" + an_12" '+ + a7+ ag,

wobei ag, . ..,a, € R, a, # 0 und n € NU{0}, heisst Polynomfunktion (oder kurz Polynom).
Man nennt a,, den Leitkoeffizienten von f und n den Grad von f.
Finige spezielle Polynomfunktionen kennen Sie aus der Schule:

Konstante Funktionen f(z) = ¢ mit ¢ € R (Polynom vom Grad 0)
Lineare Funktionen f(x) = ax +b mit a,b € R, a #0 (Grad 1)
Quadratische Funktionen f(x) = az® 4+ bx + ¢ mit a,b,c €R, a # 0 (Grad 2)

Potenzfunktionen f(x) = 2™ (Grad n)



Hier sind die Graphen einiger Beispiele:

6 6 6
4 4 4

2 2 2

6 6

f4(l‘):*l'3+5€2+2 f5(I>:*ZE6+31E573:E+2 f6($):$n (TL: ’3’4’5)

Offensichtlich verhalten sich die verschiedenen Polynomfunktionen sehr unterschiedlich, so
dass kaum allgemeine Aussagen iiber diese Funktionen gemacht werden kénnen. Was wir
hingegen leicht von der Funktionsvorschrift ablesen kénnen, ist das Verhalten der Funktion
(oder des Graphen) fiir grosse |z|, das heisst fir z gegen +oo.

Sei f(x) = apz™ + an_12" 1+ -+ + a1x + agp die Funktionsvorschrift. Klammern wir den
Ausdruck a,z™ aus, so erhalten wir

anT a1 apxm

an—1 a ao )

£(z) = ana” <1 +

Fiir x gegen +oo geht der Ausdruck in der Klammer gegen 1, das heisst fiir wachsendes |z
nédhert sich der Graph von f immer mehr dem Graphen der Funktion g(z) = a,z™.
Beispiele

f(x) = —2® + 234+ 22 + 2 mit g(z) = —2° und f(2) = 325 + 32% — 32 + 2 mit g(z) = 32

6

y 4




Rationale Funktionen

Eine Funktion f : D — R mit der Vorschrift

wobei p(z) und ¢(z) Polynome sind, heisst rationale Funktion.
Fiir den maximalen Definitionsbereich D einer rationalen Funktion f gilt

D:R\{xla"'axk}a

wobei x1, ...,z die verschiedenen Nullstellen des Nennerpolynoms ¢(x) sind. Ist gleichzeitig
p(z;) # 0, dann bildet diese Nullstelle eine sogenannte Polstelle von f. Dies bedeutet, dass
die Gerade z = x; eine senkrechte Asymptote fiir den Graphen von f ist. Anschaulich ist eine
Asymptote eine Gerade, an die sich der Funktionsgraph anschmiegt.

r =2

f(‘L) - 1;3—&-1:12—21; - x(wfll)(a;+2) f(‘L) - 1;21,——;1—2 - (x+f)—?31:72)

Ist n < m fiir den Grad n von p(z) und m von ¢(z), dann gibt es eine waagrechte
Asymptote fiir den Graphen von f (der Funktionsgraph schmiegt sich fiir z gegen +oo an
diese waagrechte Gerade).

-6 -4 -2 0 W 2 4 6 -6 f;—y 0 2 4 6

) . Co.4,.2
flo) = g, Asymptoter y =0 f(z) = 255, Asymptote: y = —3
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Im Fall n > m muss die Asymptote nicht notwendigerweise eine Gerade sein.

Y

5

-15 “
-20 -6
fla) = Bgigt s = 30 — 445813 fla) = St = 2

3
dr—4 4 4xr—4

Die Asymptoten g(z) = 3z — 4, bzw. g(z) = %mz — 2 in den beiden Beispielen findet man
durch Polynomdivision. Wir fithren sie fiir das erste Beispiel durch:

Allgemein fiir f(z) = % mit n = Grad(p) > Grad(q) = m gibt es Polynome g(z) und r(x)

mit Grad(g) =n —m > 0 und Grad(r) < Grad(q), so dass
p(x) = g(z) - q(z) +r(z)

(analog zur Division mit Rest bei den natiirlichen Zahlen). Division durch ¢(x) ergibt
p(z) (ﬂf)
flz) = =g(x
(@)= 28 —g(a) +
Fiir x gegen 400 geht der zweite Term gegen 0 (da Grad(r) < Grad(q)), so dass das Polynom
g(z) eine Asymptote fiir den Graphen von f bildet.
Allgemeine Potenzen
Fiir n in N ist die Potenzfunktion " =z - - - -z (n Faktoren) fiir alle z in R definiert.

Fiir « # 0 definieren wir weiter

1
2°=1 und x_":—n firneN.
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Damit ist =™ fiir alle n in Z und (z # 0) definiert und es gelten die iiblichen Regeln:
=z"-2", =z =z =z "= —,

Achtung: Die Klammern bei der dritten Regel sind notwendig, denn z"" wird als z(™")
interpretiert, was im Allgemeinen ungleich (z™)™ = ™™ ist. Zum Beispiel ist

25* = 81 =14096
2B = 281 &9 42.10% .

1
Wie kénnen wir weiter za (fiir ¢ € N) sinnvoll definieren? Stellen wir die Bedingung, dass
die vorhergehenden Regeln auch fiir rationale Exponenten gelten sollen, dann folgt

11 1 11,1
Fotets _a

(x%)q:xa-xa---xazxq 1

1
e =g =ux,

wobei im Produkt ¢ Faktoren und in der Summe ¢ Summanden vorkommen. Dies fithrt zur
folgenden Definition.

Definition Sei z > 0 und ¢ in N. Die g-te Wurzel von x ist definiert durch

=

e = ¥/x = diejenige positive reelle Zahl, deren g-te Potenz gleich z ist.
Zusiitzlich gilt ¥/0 = 0.

Insbesondere ist also 22 = Vv fiir > 0 mit der iiblichen Konvention, dass y/z stets die
positive Quadratwurzel bezeichnet.
Die Graphen von f(x) = x fiir ¢ = 2,3,4,5,0 sehen so aus:

41

Allgemein definieren wir nun fiir £ in Q (mit ¢ in N) und z >0

P
€T4d

1\P 1
= (wq) :(\Q/E)p:\q/mp:(xp)q
wobei dies alles verschiedene Schreibweisen fiir dasselbe sind.
Auf die Frage, wie wir zum Beispiel 22 oder ™ sinnvoll definieren konnen, kommen wir
im néchsten Kapitel zuriick.
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Die Betragsfunktion

Die Betragsfunktion ist definiert durch

z falls > 0
—x fallsz <0

Hier ist der Graph von f:

Betrige kommen auch in Gleichungen und Ungleichungen vor. Oft tritt dann nicht |z|
auf, sondern eine ganze Seite der (Un-)Gleichung steht im Betrag, das heisst, eine Seite der
(Un-)Gleichung ist von der Form |f(x)| fir irgendeine reelle Funktion f. Um eine solche
(Un-)Gleichungen umformen oder 16sen zu kénnen, muss zuerst der Betrag aufgelost werden.
Dies geschieht mit Hilfe einer Fallunterscheidung, denn gemiiss der Definition des Betrags
(s.0.) gilt

) f@) falls f(z) >0
@)l = { —f(z) falls f(z) <0

fiir jede reelle Funktion f.
Beispiele

1. Gesucht sind alle x € R mit |z + 3| =1. (Dies ist das Beispiel von Seite 3.)

Graphisch:
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2. Gesucht sind alle z € R mit |z — 1| = 2z.

e x>1: Danngilt xt—1=2x = —1=2 Widerspruchzuxz > 1!

e x<1: Damngilt —(z—1)=22 = 1=3zr = x:%

Die Gleichung |z — 1| = 2z hat also nur eine Losung: = = %
Graphisch:

g(z) =2z

f(x) = |z =1
3. Gesucht sind alle z € R mit |2? — 1] > 3.
Graphisch:
y=3

Gleichwertige Schreibweisen fiir die Losungsmenge sind:
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Umkehrbarkeit

Sei f : D — R eine (reelle) Funktion. Dann ist die Umkehrfunktion von f (falls es sie
iiberhaupt gibt) diejenige Vorschrift, die einer Zahl y € R diejenige Zahl x € D zuordnet,
fiir die f(z) = y gilt. Die Klammerbemerkung “falls es sie iiberhaupt gibt” kommt daher, da
zwei Probleme auftreten kénnen:

(1) Eventuell gibt es nicht zu jedem y € R ein € D mit f(x) = y.

(2) Eventuell gibt es zu einem y € R nicht nur ein € D mit f(z) = y, sondern ein weiteres
T #xin D mit f(Z) =y.

v

Problem (1) Problem (2)

Beispiel

Sei f: R — R mit f(x) = 22. Dann gibt es zum Beispiel zu y = —1 € R kein x € R = D
mit f(r) =22 = —-1. Undzuy =4 gibt esz =2, 7 = —2 mit f(r) =4 = f(Z) und = # 7.

Wir miissen also zuerst definieren, welche Funktionen eine Umkehrfunktion haben. Das
machen wir gleich allgemein fiir Abbildungen und nicht nur fiir Funktionen.

Definition Eine Abbildung f : X — Y heisst umkehrbar, wenn es zu jedem y € Y genau
ein x € X gibt mit y = f(x).

Die Abbildung f~!:Y — X, die jedem y € Y das € X mit y = f(x) zuordnet, heisst
Umkehrabbildung von f (bzw. Umkehrfunktion, falls f eine Funktion ist).

X Y

f umkehrbar f nicht umkehrbar

Anschaulich gesprochen gilt:
f umkehrbar <= auf jedes Element in Y zeigt genau ein Pfeil

Achtung:
fH ) # = = (fl@)™t 1

Beispiele

1. Die Funktion f: R — R, f(x) = 3z ist umkehrbar mit Umkehrfunktion f=!: R — R,
fHz) = %x
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2. f:R — R, f(z) = 22 ist (gemiss den Bemerkungen auf Seite 14) nicht umkehrbar, da
fiir f beide Probleme (1) und (2) auftreten.

3. f:R\{0} — R, f(z)=2.

Es folgt, dass f : R\{0} — R\{0} (mit verkleinertem Zielbereich) umkehrbar ist.

4. Seien X = {Studierende der Pharmazie im 1. Semester}, Y = {blau, griin, braun } und
f: X — Y ordnet jedem*r Studierenden seine*ihre Augenfarbe zu. Nun ist f keine reelle
Funktion. Wird hier jedem y € Y genau ein x € X zugeordnet?

Dass f in diesem Beispiel nicht umkehrbar ist, erkennt man auch daran, dass die Menge X
aus (viel) mehr Elementen besteht als die Menge Y.

Zur Untersuchung von speziell reellen Funktionen f: D — R gibt es weitere Methoden.
Das Problem (1) héngt mit der Bildmenge f(D) von f zusammen. Denn zu y € R gibt
es genau dann ein z € D mit y = f(z), wenn y € f(D). Wir konnen also (wie vorher
im 3. Beispiel) den Zielbereich R auf f(D) verkleinern, dann tritt Problem (1) nicht auf. Ob
Problem (2) auf f : D — f(D) zutrifft oder nicht, kann einfach am Graphen von f abgelesen
werden. Wenn jede Parallele zur z-Achse den Graphen in hochstens einem Punkt schneidet,
ist f umkehrbar.

_ 3

f(z)=2% -3z
nicht umkehrbar

f(z) = a*

nicht umkehrbar

f(x)

umkehrbar

Dies héngt mit der Monotonie der Funktion zusammen. Eine Funktion f : D — R heisst

monoton wachsend falls  f(z1) < f(z2)
streng monoton wachsend falls  f(x1) < f(x2)
monoton fallend falls  f(z1) > f(x2)
streng monoton fallend falls  f(z1) > f(z2)

fiir alle 1,29 € D mit 1 < xo gilt.
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Satz 1.1 Ist eine reelle Funktion f : D — f(D) streng monoton wachsend oder streng
monoton fallend, dann ist sie umkehrbar.

Ist eine Funktion f : D — f(D) nicht streng monoton wachsend oder fallend, so kann
man meistens eine Teilmenge von D finden, auf welcher f streng monoton wachsend oder
fallend ist. Eingeschrinkt auf diese Teilmenge ist dann f eine umkehrbare Funktion (sofern
der Zielbereich gleich der Bildmenge ist).

Beispiel
Sei Ryg = {z € R| 2z >0} und f : R — R>o mit f(x) = 22. Dann gilt R>¢ = f(R).
Auf dem ganzen Definitionsbereich D = R ist f allerdings nicht umkehrbar, wie man dem
Graphen ansieht.

Verkleinert man hingegen den Definitionsbereich D = R auf die Teilmenge R>¢, dann ist
f 1 R>g — R>¢ streng monoton wachsend, also umkehrbar. Die Umkehrfunktion ist gegeben
durch fil : RZO — Rzo, fﬁl(.%') = \/E

Auf der Teilmenge R<g = {x € R | 2 < 0} ist f ebenfalls umkehrbar, weil f auf R<g
streng monoton fallend ist. Die Umkehrfunktion ist f=!: Rsg — R<q, f~H(z) = —v/7.

In den folgenden Abbildungen sind die Graphen von f(z) = z?, links auf R>q, rechts
auf R<p, mit zugehoriger Umkehrfunktion f~!(x) = +/z zu sehen. Man erkennt, dass die
Graphen von f und f~! spiegelbildlich zur Geraden y = = liegen.

61

Um die Funktionsgleichung einer Umkehrfunktion zu bestimmen, geht man vor wie im
1. und 3. Beispiel auf den Seiten 14/15. Man setzt y = f(x), 16st die Gleichung nach x auf
und vertauscht anschliessend die Variablen o und y. Dann ist f~! gegeben durch f~!(z) = y.
Dieses Vertauschen der Variablen x und y entspricht genau dem Spiegeln des Graphen von
f an der Geraden y = .

Wie der Name Umkehrfunktion oder allgemeiner Umkehrabbildung andeutet, ist f~1 die
“Umkehrung” der Abbildung f. Dies ist im folgenden Sinn gemeint.

Satz 1.2 Fiir eine umkehrbare Abbildung f : X — Y und ihre Umkehrabbildung f~' gilt

U @) =2 und (7 y) =y
fir allex € X undy €Y.

Die Schreibweise f~!(f(z)) bedeutet, dass zuerst f auf z angewendet wird und danach f~!
auf f(x).
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Beispiel
Sei f(z) =32 mit f~l(y) = g (vgl. 3. Beispiel auf Seite 15).

Fiir f~!(f(z)) schreibt man auch (f~! o f)(x) und meint damit also die Komposition (d.h.
Verkettung) von f und f~1.

Definition Seien f: X — Y und g : Y — Z zwei Abbildungen. Dann ist die Komposition
von f und g definiert als die Funktion go f : X — Z mit

(go flx) =g(f(x)) firallez € X .

Achtung: Die Komposition g o f liest man von rechts nach links, das heisst zuerst f, dann g.

1.3 Trigonometrische Funktionen

Der Winkel ist das Mass einer Rotation, und zwar einer Drehung im positiven Drehsinn (d.h.
Gegenuhrzeigersinn). Wir zihlen die Drehungen: ganze Drehungen plus Teile von ganzen
Drehungen. Die iiblichen Skalen fiir Winkel sind das Gradmass und das Bogenmass:

Gradmass: Mass fiir die Drehung = 360°
Bogenmass: Mass fiir die Drehung = 27 = Umfang des Kreises vom Radius 1

Das Bogenmass entspricht der Lédnge eines Bogens auf dem Kreis vom Radius 1 mit dem

entsprechenden Zentriwinkel.

Fiir den Radius r» = 1 folgt b = ¢.

=
o
=
N[
NS
—_
—_
N~

Drehungen | —

Gradmass —90° | 0° | 90° | 180° | 270° | 360° | 540° | 720°

[NIE
o

[NIE
3

54

o
3
w
3
i
3

Bogenmass | —

Das Verhéltnis o : 360° = ¢ : 27 fithrt zu den Umrechnungen:

o Winkel im Gradmass =— ¢ = 2 Winkel im Bogenmass

o
360°

¢ Winkel im Bogenmass — o = 2£ 360° Winkel im Gradmass
T
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Beispiel

Wir betrachten die Drehung als Prozess, und daher ist 540° # 180°, 360° # 0° und auch
—180° # 180°. Nimmt man jedoch das Resultat der Drehung, das heisst die Endlage, dann
gilt 540° = 180°, 360° = 0° und auch —180° = 180°.

Nun starten wir mit dem Punkt Py = (1,0) auf dem Einheitskreis (das ist der Kreis mit
Radius 1 und Mittelpunkt (0,0)) und drehen ihn um den Winkel ¢. Dies liefert den Punkt
P, auf der Kreislinie. Wie oben bemerkt, gilt dann P, o, = F,.

Y
P,
1
0 si\1
cos z

Definition Die trigonometrischen Funktionen cos : R — R (Cosinus) und sin : R — R
(Sinus) werden wie folgt definiert:

cosp = x-Koordinate des Punktes P,
singp = y-Koordinate des Punktes P,

Der Winkel ¢ wird dabei {iblicherweise im Bogenmass angegeben.

Es gilt cosp € [—1,1] und sinp € [—1,1] fiir alle ¢ in R, und jeder Wert zwischen —1
und 1 wird von beiden Funktionen angenommen, das heisst, die Bildmenge der Funktionen
cos und sin ist jeweils das ganze Intervall [—1,1].

Eigenschaften

Die folgenden Eigenschaften kénnen direkt am Einheitskreis abgelesen werden. Sie sollten aus
der Schule bekannt sein.

(1) Periodizitit: Es gilt P,yor = P, und daher
cos(p + 2mk) = cose und  sin(p + 27k) = sinp fiir alle k € Z,
das heisst, cos und sin sind periodische Funktionen mit der Periode 2.

(2) Pythagoras: cos® p + sin? ¢ = 1 fiir alle ¢ in R.

(Hier ist cos? ¢ die iibliche Kurzschreibweise fiir (cos )?2.)
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(3) Nullstellen:

cosp =0 <= P,aufy-Achse <= p=35+kr firkeZ
sing =0 <= P,auf x-Achse <= ¢ =kr firkecZ

(4) Symmetrien:

cos(p+m) = —cosp cos(p + 5) —sing

sin(p+m) = —singp sin(p+35) = cosp
und

cos(—p) = cosgp

sin(—¢) = —singp

Die letzten zwei Zeilen besagen, dass cos eine gerade und sin eine ungerade Funktion ist.

Dabei heisst eine reelle Funktion gerade, wenn f(—x) = f(x) fiir alle z in D und sie heisst
ungerade, wenn f(—z) = —f(x) fiir alle  in D. Der Graph einer geraden Funktion ist
achsensymmetrisch zur y-Achse, der Graph einer ungeraden Funktion ist punktsymme-
trisch zum Ursprung.

(5) Additionstheoreme:

cos(a+ ) = cosacosfS —sinasinfj

sin(a + ) = sinacosf + cosasin 3

Die Graphen von cos und sin:

SIE]
o|a
IN)

Wegen der Gleichung cos ¢ = sin(¢ + 7) ist der Graph von cos gegeniiber dem Graphen von

sin um % nach links verschoben.
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Umkehrfunktionen

Die Cosinusfunktion ist als Funktion von R nach R nicht umkehrbar. Doch auf gewissen
Intervallen ist sie streng monoton fallend, zum Beispiel auf dem Intervall [0, 7r]. Verkleinern wir
noch den Zielbereich auf die Bildmenge [—1, 1], dann erhalten wir die umkehrbare Funktion
cos : [0,7] — [—1,1]. Die Umkehrfunktion heisst Arcuscosinusfunktion

arccos : [—1,1] — [0, 7]

Achtung: Beim Losen der Gleichung cos(z) = a ist 1 = arccos(a) nur eine von unendlich
vielen Losungen, namlich diejenige im Intervall [0, 7r]. Da die Cosinusfunktion 27-periodisch
ist, gibt man jeweils die Losungen in einem Intervall der Lénge 27 an. Bei cos bietet sich das
Intervall [—7, 7] an, denn wegen cos(—x) = cos(z) ist 9 = —z1 = — arccos(a) € [—m,0] eine
weitere Losung von cos(x) = a.

= Losungen von cos(z) = a im Intervall [, 7] sind z1 2 = £ arccos(a)!

Analog ist die Sinusfunktion streng monoton wachsend auf dem Intervall [—7, 7], das heisst
T T

sin : [=5, 5] — [~1,1] ist umkehrbar. Die Umkehrfunktion nennt man Arcussinusfunktion
arcsin : [-1,1] — [-5, 5]

1.59

0.57

|
w |
a
«w |
El

NI
-
INE
JE]
oA A
PASE]
-
N|a

-0.5
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Achtung: Beim Losen der Gleichung sin(x) = b ist 1 = arcsin(b) nur eine Losung, ndmlich

diejenige im Intervall [—Z, Z]. Bei der Sinusfunktion bietet sich [—Z, 2%] als Intervall der Lénge
27 an, denn wegen sin(m — z) = —sin(—z) = sin(z) ist 22 = 7 — 2y = 7 — arcsin(b) € [Z, 2]
eine weitere Losung von sin(x) = b.

= Losungen von sin(z) = b im Intervall [—Z, 3Z] sind 21 = arcsin(b) und 2o = 7—arcsin(b) !

Definition Die Tangensfunktion ist definiert durch

Der Definitionsbereich ist {¢ € R | cosp # 0} = R\{5 + k7 | k € Z}.

!
)

L
IS

tan(z)

Eigenschaften der Tangensfunktion:

(1) Es gilt tan(—¢) = —tanp, d.h. tan ist eine ungerade Funktion.

(2) Es gilt tan(p + k) = tan ¢ fiir alle k in Z, d.h. tan ist periodisch mit der Periode 7.

(3) Auf dem offenen Intervall (—%,T) ist tan streng monoton wachsend und die Bildmenge

272
ist R.

Wegen der dritten Eigenschaft ist tan : (=%, %) — R umkehrbar. Die Umkehrfunktion
heisst Arcustangensfunktion
arctan : R — (=5, 3)

NE

r
2

|
[SIE!
.
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Modifizierte trigonometrische Funktionen

Die Graphen der Funktionen f(z) = sin(x—u), g(z) = sin(az) und h(z) = Asin(z) fir u, o, A
in R sind gegeniiber der Sinuskurve um w nach rechts verschoben, bzw. in der z-Richtung
gestaucht (fiir |o| > 1) oder gestreckt (fiir |a| < 1), bzw. in der y-Richtung gestreckt (fiir
|A| > 1) oder gestaucht (fir |A| < 1).

Hier die Graphen von sin(z), sin(z — 2), sin(2z),

2 2 29

X n 3n noS n X 3 T 5 n -
2|

N

™|

ole
M

' o
\%
ol
.
.

.
e

-2 -2 -2

Kombinationen von diesen Modifikationen tauchen bei Schwingungsproblemen in der Phy-
sik auf und haben meistens die Form
y(t) = Asin(wt + ¢) .

Dabei ist t € R die Zeit, w die Kreisfrequenz, A (> 0) die Amplitude und ¢ die Phase. Diese
Funktion ist periodisch mit der Periode (= Schwingungsdauer) T' = 2w—’r Thre Werte liegen
zwischen —A und A und ihr Graph ist um ¢ nach links verschoben.

Hier der Graph von y(t) = Asin(wt +¢) mit A=6, T = 2L =8, p = 3T;

w

y
2n S5m T -n o 0 n T 3n 2n 5m \3n
2 2 2 2
-1

Die blaue Kurve auf der rechten Seite ist der Graph der Funktion f(z) = sin(x) + cos(z).
Er sieht aus wie eine verschobene und in Richtung der y-Achse gestreckte Sinuskurve.

N“*’

Satz 1.3 Jede Linearkombination Asin(x)+ B cos(x) ist eine (modifizierte) trigonometrische
Funktion und ldsst sich in der Form
Asin(z) + B cos(z) = C'sin(x + u)

darstellen. Dabei ist C =/ A% + B2, und u ist bestimmt durch die Gleichungen A = C cos(u),
B = C'sin(u). Umgekehrt lisst sich jede modifizierte trigonometrische Funktion C sin(x + u)
(oder C cos(x + v)) als Linearkombination Asin(z) + B cos(x) darstellen.
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Die Gleichungen fiir u folgen direkt aus dem Additionstheorem fiir die Sinusfunktion,

Csin(z + u) = C cos(u) sin(z) + C'sin(u) cos(z) = Asin(z) + B cos(z) ,
=A =B

und die Gleichung fiir C gilt, da

A% 4+ B? = C?cos®(u) + C?sin®(u) = C?(cos®(u) + sin®(u)) = C2.

/

=1

Beispiel

sin(z) + cos(x) =7

Graphisch sieht die Situation im Beispiel so aus:

w/ 'IT /2 2m

|
~
SE
NEI

Zur eindeutigen Bestimmung des Winkels v in Satz 1.3 sind also tatséchlich beide Gleichungen

A = Ccosu und B = C'sinu notwendig!
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2 Grenzwerte und stetige Funktionen

In den Naturwissenschaften interessiert man sich oft fiir das Verhalten einer reellen Funktion
f(z) in der Nihe einer bestimmten Stelle = oder fiir sehr grosse . Um dieses Verhalten von f
exakt beschreiben zu kénnen, miissen wir zunéchst die Begriffe beliebig nahe bei ..., beliebig
gross und beliebig klein mathematisch beschreiben.

2.1 Folgen
Als erstes Beispiel betrachten wir die Folge der Zahlen

123 999999
273747 77771000000" "
Wir erkennen, dass die n-te Zahl dieser Folge von der Form

n
n+1

an =
ist.

Definition Eine Folge von reellen Zahlen (oder Zahlenfolge) ist eine Funktion N — R, die
jedem n in N ein a, = a(n) in R zuordnet (man nennt a,, das n-te Glied der Folge). Wir
schreiben (ay)nen oder (ay)n>1 fiir die Folge.

In vielen Beispielen beginnt die Folge mit einem nullten Glied ag. Es sind also auch Folgen
(an)n>0 zuléssig.

Beispiele

1. 1,2,3,...,n,...
11 1

2. 1,5,3,...,%,...

3. a,=n%>—1 fiirn>1

4. an:ﬁ flirn>0
5. anp = (=1)" fiirn>0
Wir betrachten nun nochmals das Beispiel ganz oben mit a, = nL—l—l’ d.h. die Folge
: N

Die Folgenglieder a,, kommen der Zahl 1 mit wachsendem n immer ndher. Das heisst, der
Abstand |a,, — 1| wird beliebig klein. Dieses “beliebig klein” kann wie folgt prézisiert werden.

Wir geben uns ein beliebiges Intervall um die Zahl 1 herum vor und iiberpriifen, ob ab
einem bestimmten Index N alle Folgenglieder a,, (n > N) in diesem Intervall liegen. Ist dies
fiir jedes noch so kleine Intervall der Fall, dann heisst die Folge konvergent gegen 1.
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Betrachten wir die folgenden Intervalle:

e (1-1,1+1)=(2,2) (offenes Intervall, ohne die Grenzen 3 und 2)

[
—
—_
|
ool
—_
_l’_
ool
SN—
I
—
oI~y
[o/s]Ne}
N~—

e (1 —¢,1+¢) fiir ein beliebiges € > 0
Wir werden im 3. Beispiel unten sehen, dass wir jedes N mit N > % wéahlen kénnen.
Es gilt dann, dass a,, fiir alle n > N im Intervall (1 —e,1 4 ¢) liegen.

Eine allgemeine Folge (a,)nen heisst nun konvergent gegen a in R, wenn es zu jedem & > 0
ein N in N gibt, so dass a,, fiir alle n > N im Intervall (a — ¢,a + ¢) liegen.
Dies kann man auch mit Hilfe des Betrages oder Abstands beschreiben, denn

an € (a—¢c,a+¢e) <= a—c<ap<a+te <= J|a,—a|<e

Definition Eine Folge (a,)nen heisst konvergent gegen a in R, wenn gilt:
Zu jedem e > 0 gibt es ein N in N, so dass

lap, —a|l <e fiirallen>N.

Wie im Beispiel oben hingt die Zahl N von ¢ ab (je kleiner £, desto grosser muss N im
Allgemeinen gewihlt werden).
Die Zahl a heisst Grenzwert der Folge. Man schreibt

lim a, = a oder an, — a fir n — oco.
n—oo

Ist die Folge nicht konvergent, dann nennt man sie divergent.
Beispiele
1. Sei a in R und a, = a fiir alle n. Dann gilt lim a, = a.
n—oo
Denn |a,, — a| =0 < ¢ fiir jedes € > 0 und alle n in N.

2. lim L =0.

n—oo

Sei ¢ > 0. Gibt es ein N (abhéngig von ¢), so dass [+ — 0| < ¢ fiir alle n > N ?
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Denn sei € > 0. Wahle N > % Dann folgt fiir alle n > N, dass

<e.

n _1':

<1<1
n_— N

n—mn+1)| | -1 | 1
n+1 Cn+1|

4. ap = (—1)™ ist divergent.
Denn unendlich viele Folgenglieder sind gleich 1, aber auch unendlich viele Folgenglieder
sind gleich —1. Fiir € = % zum Beispiel gibt es also kein N, so dass die a,, fir alle n > N

im Intervall (1— %, 1+ %) = (%, %) liegen. Die Folge konvergiert daher nicht gegen 1. Analog

konvergiert sie auch nicht gegen —1. Ein anderer Grenzwert kommt nicht in Frage.

Unter den divergenten Folgen gibt es speziell die bestimmt divergenten Folgen, welche nach
400 oder nach —oo streben.

Definition Die Folge (ay)nen hat den Grenzwert oo, wenn gilt:
Zu jedem K in R gibt es ein N in N mit

ap > K fir allen > N .

Man schreibt dafiir li_>m a, = 00. Analog definiert man lim a,, = —oo (d.h. in diesem Fall
n o n—oo
lautet die Bedingung a, < K fir allen > N ).

Beispiele
1. Die Folge (n)nen ist bestimmt divergent gegen oo.

2. Die Folge ((—1)")nen ist divergent, aber nicht bestimmt divergent.
Ein weiteres wichtiges Beispiel ist die geometrische Folge (¢")nen. Es gilt

0 fiir |[gf <1 (konvergent)
lim ¢" = 1 firg=1 (konvergent)
n—oo . .
oo firg>1  (bestimmt divergent)

Fir ¢ < —1 ist die Folge unbestimmt divergent.

Satz 2.1 (Rechenregeln) Seien (an)nen und (by)nen konvergente Folgen und ¢ in R.

(1) lim (an +by) = lim a, + lim b,
n—o0 n—o0 n—o0

@) Jfe-an) =c- lig o

(3) lim (anpby,) = (lim ay,) - ( lim b,)

n—oo n—oo n—oo
' an lim a, .
(4) lim (E> = 22 falls by # 0 und lim by # 0
n—oo

Diese Rechenregeln kann man teilweise auf Folgen mit dem Grenzwert oo oder —oo erweitern.
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(5) Ist lim a, = oo und lim b, = b, so gilt

n—oo n—oo
. . oo firb>0 . bn,
i (an & bn) =00, lim (anbn) = { % twnoo 0 Am(gr) =0
(6) Ist lim a, = lim b, = oo, so gilt
n—oo n—o0
lim (a, + by) = o0 und lim (a,b,) = 00.
n—oo n—oo

Diese Rechenregeln sind sehr wichtig und niitzlich. Ausgehend vom Wissen, dass

1 1
lim — =0 bzw. lim — =0 firk>1,
n—oo N n—oon
kann mit Hilfe dieser Rechenregeln der Grenzwert von vielen Zahlenfolgen bestimmt werden.
Dabei hat man gleichzeitig auch bewiesen, dass die Zahlenfolgen konvergent sind, und zwar
ohne Anwendung des (eher umsténdlichen) Kriteriums in der Definition einer konvergenten
Folge.

Beispiele

Typische Beispiele sind Folgen mit rationalen Ausdriicken. Man dividiert zuerst Zahler und
Nenner durch die héchste im Nenner vorkommende Potenz von n und wendet anschliessend
die Rechenregeln an.

n
1. =
n n+1
9 n+ 2
Ay = —5———
"on2 —2n+1
5 n?—2n 1-2 . i 1-0 1
. Qp = = m aq, = —— — —
T4+l 5+ 4 nsoo 540 B
4 3 2 2 1 2 1
-2 1 n“(l—=2+ = 1-2+— 1
4. an:n 2n t_ ( o ”4):n2-bn mit lim b, = limnil’#:—

Mit Rechenregel (5) folgt lim a, = cc.
n—o0
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Weiter kann man Aussagen iiber die Konvergenz einer Folge machen, wenn man die Folge
auf Monotonie und Beschrénktheit untersucht.

Definition Eine Folge (a,)nen heisst

e monoton wachsend bzw. fallend, wenn gilt

Ant+1 2> Gn  bzw. apt1 < apn fir alle n in N
e beschrdnkt, wenn es eine reelle Zahl K gibt mit
lan| < K fiir alle n in N,

Die Zahl K nennt man eine Schranke fiir die Folge.
Beispiele
1. Die Folge a, = 1 ist (streng) monoton fallend.
Die Folge a,, = v/n — 10 ist (streng) monoton wachsend.
Die Folge a,, = % ist beschrankt.
Die Folge a,, = (—1)™ ist beschréinkt.

A

Die Folge a,, = v/n — 10 ist nicht beschrinkt.

Satz 2.2 Ist eine Zahlenfolge konvergent, dann ist sie beschrdnkt.

Gleichbedeutend mit Satz 2.2 ist die Aussage, dass jede nicht beschrinkte Folge nicht kon-
vergent (d.h. divergent) ist, wie das zum Beispiel bei der Folge a,, = v/n — 10 der Fall ist. Die
Umkehrung ist allerdings falsch. Es gibt Folgen, welche beschrénkt, jedoch nicht konvergent
sind. Die Folge a,, = (—1)" ist eine solche Folge.

Satz 2.3 Ist eine Zahlenfolge beschrinkt und monoton wachsend oder fallend, dann ist sie
konvergent.

Satz 2.3 ist vor allem dann niitzlich, wenn der Grenzwert einer Folge unbekannt ist oder wenn
die Folge rekursiv definiert ist (s. unten).
Schliesslich gibt es noch eine wichtige Regel zum Merken:

Exponentiell ist stirker als polynomial.

Es gilt also beispielsweise

2 ) R
lim <n ;;L n) =0 und lim <W> =00.

n—oo n—oo

Dies kann man mit Hilfe der Regeln von Bernoulli-de 'Hopital herleiten (vgl. Kapitel 4).

Rekursiv definierte Folgen

Bis jetzt haben wir Zahlenfolgen betrachtet, deren Folgenglieder explizit durch eine Formel,
abhingig von n, gegeben waren. Man kann Folgen jedoch auch rekursiv definieren, das heisst,
man definiert das n-te Folgenglied mit Hilfe von vorangehenden Folgengliedern. Dabei darf
nicht vergessen werden, das erste Glied explizit anzugeben.
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Beispiele

1 2
1. Sei apy1 = 3 (an + —> fiir n > 1 und a; = 1. Durch Einsetzen erhélt man
n

as=1,5, a3=1416666..., ay=1,414215..., as=1414213... .

Diese Folge ist monoton fallend fir n > 2 und beschréinkt (es gilt |a,| = a, < 1,5). Nach
Satz 2.3 ist die Folge also konvergent. Sei a der Grenzwert der Folge. Lassen wir nun n
gegen oo gehen auf beiden Seiten der Gleichung fiir a,41, dann erhalten wir mit Hilfe der
Rechenregeln (Satz 2.1) und wegen nh_)ngo nt1 = nh_)ngo an = a, dass

1 2
az—(a—l——) —
2 a

2. Wir wollen die durchschnittliche Population einer Bakterienkultur in einem Experiment
durch eine Folge (an)n>0 beschreiben, und zwar so, dass a, die (ungefihre) Anzahl von
Bakterien nach n Tagen darstellt. Wir nehmen an, dass am Anfang 5000 Bakterien vorhanden
sind, die sich mit einer téglichen Rate von 4% vermehren, das heisst, jeden Tag kommen
4% der Population vom Vortag hinzu. Ausserdem sterben durch dussere Einfliisse téglich
100 Bakterien. Damit ergibt sich fiir die Anzahl a,1 von Bakterien nach n + 1 Tagen der
folgende Zusammenhang zu der Anzahl a,, von Bakterien am Vortag:

i1 = 1,04 - a, — 100

Berechnen wir die ersten Folgenglieder:

Und weiter

as = 1,04- (1,042 5000 — 100 - (1 + 1,04)) — 100
= 1,04 5000 — 100 - (1 + 1,04 + 1,04%)

Allgemein gilt also
ap =1,04" - 5000 — 100 - (1 + 1,04 +--- 4+ 1,047 1) .

Dies ist nun immerhin eine explizite Formel fiir a,,, mit der wir uns im Moment begniigen
miissen. Doch im néchsten Abschnitt (Seite 31) werden wir sehen (oder Sie wissen es aus der
Schule), dass die Summe 1+ 1,04 + --- + 1,04" ! eine geometrische Reihe ist, die wir noch
einmal vereinfachen kénnen.
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2.2 Reihen
Sei ag,ay,a9,... eine beliebige Folge. Wir bilden daraus eine neue Folge durch sukzessives
“Aufsummieren”:
So = Qo
s1 = ap+ai=so+al
S2 = ap+ay+az=Ss1+az
Sp = ao+ar+--+ap=3Sp-1+an
Diese Folge sg, s1, o, ... der Partialsummen kann also explizit oder rekursiv definiert werden.

Explizit kann sie elegant mit Hilfe des Summenzeichens geschrieben werden:
n
sn:a0+a1—i—a2—|—---+an22ak
k=0

Definition Die unendliche Reihe -
>
k=0

ist konvergent, falls die Folge (s, )nen der Partialsummen konvergiert. Man schreibt kurz
[e.e] n
Zak:s, falls s = lim s, = lim Zak.
o n—00 n—00 o

Andernfalls heisst die unendliche Reihe Z ay, divergent.
k=0

Beispiele

o0
1
1. Die harmonische Reihe Z z ist divergent.

k=1
In der Partialsumme s,, fassen wir die Summanden wie folgt zusammen:

1+1+(1+1)+(1+1+1+1)+(1+1+ +1)+
6 — = L0t I T TR TR W
" 2 3 4 5 6 7 8 9 10 16

Die einzelnen Klammerausdriicke sind jeweils > % Also ist die Folge der Partialsummen nicht
beschrénkt und daher (geméss Satz 2.2) nicht konvergent.
o0

Man sieht an diesem Beispiel, dass eine Reihe E ay, divergent sein kann, auch wenn die

k=0
Folge der Glieder a gegen Null strebt.
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o0

1
2. Die unendliche Reihe Z 2 ist konvergent.
. 1 2
LEONHARD EULER zeigte 1735, dass » _ 3 = & ~ 1,644934068 (“Basler Problem”).

k=1

Geometrische Reihen

Sei g eine reelle Zahl. Dann ist (qk)kzo eine geometrische Folge und die zugehorige unendliche
oo

Reihe Z ¢" nennt man geometrische Reihe. Wie gross ist die Partialsumme sy, ?
k=0

Fiir ¢ # 1 erhalten wir
1— qn+1
Sp = ————
l—q

Ist |g| < 1, dann gilt lim ¢" = 0 (vgl. Seite 26). Damit gilt der folgende Satz.
n—o0

oo
Satz 2.4 Die geometrische Reihe Z ¢" konvergiert fiir lg] < 1 und es gilt
k=0

o0 1
= k:—
S_Zq 1—¢q°
k=0

Damit kénnen wir endlich das Resultat von unserem Beispiel am Ende des Abschnitts 2.1
schoner darstellen. Fiir die Anzahl a,, von Bakterien nach n Tagen gilt

an =1,04" - 5000 — 100 - (141,04 + --- 4+ 1,04"71) .
Mit obiger Formel gilt
1+1,044+---+1,04" 1 =

und wir finden

1,047 — 1

= 1,04" - — 100 -
an ;0475000 — 100 - ~—=or

=1,04" - 5000 — 2500 - (1,04™ — 1)
= 2500 (1,04" +1).

Wegen lim 1,04" = oo folgt lim a, = oo, die Bakterienpopulation wichst also unbegrenzt.
n—oo n—o0
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Eine geometrische Reihe muss nicht mit dem nullten Glied ¢° = 1 beginnen. Manchmal
beginnt sie mit ¢! = ¢, manchmal mit ¢?, oder allgemein mit ¢ fiir ein m > 0. Nehmen wir
an, dass |¢| < 1. Dann gilt

Es folgt
o
> =",
q - 1 o I
k=m q
wobei ¢"" das erste Glied der Reihe ist.

Beispiel
Welche rationale Zahl stellt der periodische Dezimalbruch 0,01 = 0,0111... dar?

Analog kann man zeigen, dass 0,9 = 1 (vgl. Ubungszusatzaufgabe).
Potenzreihen

(e}
Wir haben vorher gesehen, dass die Reihe Zxk fiir alle x mit || < 1, das heisst fiir z im
k=0
offenen Intervall I = (—1,1), konvergent mit Summe ﬁ ist. Betrachten wir die Funktion
flx) = ﬁ : I — R, dann konnen wir also die Polynome

n
Sp(x) = Zxk =l4z+22+23+ - 42"
k=0

als Niherungen von f(z) auffassen. Fiir kleine |z| gilt in “erster” Niherung -~ ~ 1+ z, in

“zweiter” Naherung ﬁ ~ 14+ 22 usw.

Allgemein ist eine Potenzreihe eine Reihe der Gestalt

o0
E akxk s
k=0

wobei (ag)r>0 eine beliebige Folge ist.
Das zentrale Problem bei Potenzreihen besteht darin, alle x in R anzugeben, fiir welche
die Reihe konvergiert. Es stellt sich heraus, dass die Menge dieser x stets ein offenes Intervall

o0
ist, das heisst, auf diesem Intervall definiert f(z) = Zakxk eine reelle Funktion. Auf diese

k=0
Weise erhalten wir wichtige Funktionen. Das wohl wichtigste Beispiel ist die (natiirliche)

Exponentialfunktion.
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2.3 Exponential- und Logarithmusfunktionen

Die natiirliche Exponentialfunktion f(x) = e® = exp(x) ist definiert durch die Potenzreihe

2
X
_1+1,+—+—+ E S

fiir alle z in R. Insbesondere ist die Fulersche Zahl e gegeben durch die unendliche Reihe

1 2
e=l+g+75; + = + Z A 2,7182818284590452354 .

Die Zahl e kann auch als Grenzwert einer Folge definiert werden (vgl. Abschnitt 4.3),

1 n
e = lim (1 + —> .
n—00 n

Die natiirliche Exponentialfunktion ist auf ganz R streng monoton wachsend und ihre
Bildmenge ist Rsg. Die Funktion e* : R — Ry ist also umkehrbar. Die Umkehrfunktion
wird natirliche Logarithmusfunktion genannt:

In: Ryy — R
x +— In(x)

Die Graphen von e” und

-4

Es gibt noch weitere Exponentialfunktionen. Sei ¢ > 0 in R, a # 1. Eine Funktion
f R — R mit der Gleichung
f(z) = a”
heisst Ezponentialfunktion zur Basis a. Wie a® fiir x in Q definiert ist, haben wir in Kapitel 1
gesehen. Aber was bedeutet nun a® fiir beispielsweise a = 3 und z = v/5? Nun, da e® und
In(z) Umkehrfunktionen voneinander sind, gilt (mit Hilfe der Rechenregel fiir den natiirlichen
Logarithmus)

a® = eln(a ) — e:vln(a)

fiir alle z in Q. Fiir irrationale x definieren wir nun a* durch diese Gleichung. Also ist
3v5 = e\/gln(?’), wofiir man mit der Potenzreihe von e® problemlos eine gute Ndherung erhilt.
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Hier die Graphen einiger Exponentialfunktionen:
.
o

54

» fla) =37, flx) =5 f@)=(3)" f@) = (3)"

Exponentialfunktionen sind sehr wichtige Funktionen, beispielsweise um Wachstumsprozesse
mathematisch beschreiben zu kénnen (wie im Beispiel am Ende des Abschnitts 2.1, Seite 29).

Die Funktion f(x) = a” ist streng monoton wachsend fiir a > 1 und streng monoton
fallend fiir 0 < a < 1. Die Bildmenge ist gleich R+ fiir jedes a. Es folgt wie fiir e*, dass die
Funktion f : R — Ry umkehrbar ist. Die Umkehrfunktion wird Logarithmusfunktion zur
Basis a genannt:

log, : Ryo — R
x  +—  log,(x)

Zur Erinnerung seien die Logarithmusgesetze erwéhnt. Sei a > 0, a # 1 reell. Dann gilt
fiir alle z,y in Ryq:

(1) logy(z-y) = log,(z)+log,(y)
(2) log, (5) = log,(x) —log,(y)
(3) log,(z¥) = y-log,(x)

(4) logy(a) = =

Beispiel

Im Beispiel am Ende von Abschnitt 2.1 (Seiten 29 und 31) haben wir gesehen, dass fiir die
Anzahl a,, von Bakterien nach n Tagen gilt

an = 2500 - (1,04" + 1) .

Nach wieviel Tagen sind es eine Million Bakterien?
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2.4 Grenzwerte beil Funktionen
Betrachten wir die beiden reellen Funktionen:

flx) = sin(%) g(z) = xsin(3)

0.8 4

|—

0.6

|
|/ ‘

f

[

I
‘0

\
‘ I
15 K] <5 || [ ] o5 1 15
; / ‘\‘ | -1 -08  -06 -0.4 W \/ v 04 0.6 0.8 1
T Al |
\\7// ‘\“ U \ -0.24

Beide Funktionen sind fiir 2y = 0 nicht definiert. Doch wihrend f in der Ndhe von 0 zwischen
den Werten —1 und 1 oszilliert, ndhern sich die Funktionswerte von g dem Wert 0 fiir z gegen
0. Man sagt, dass g an der Stelle xo = 0 den Grenzwert a = 0 hat. Prézise kann die Ndherung
von x gegen 0 durch Folgen beschrieben werden.

Definition Sei f : D — R eine Funktion und zg eine reelle Zahl, die Grenzwert einer
Zahlenfolge (z,)nen mit x, € D ist. Dann ist a der Grenzwert von f an der Stelle xg, falls
fiir jede Folge (x,) mit z,, € D, x,, # xo fiir alle n, und lim x,, = xo gilt, dass

n— oo

a= nh_)rrgo f(zn) .
Wir schreiben dann
a= lim f(z).
T—T0

Die reelle Zahl xy kann dabei in D liegen, muss aber nicht.
Der Grenzwert einer Funktion ist also definiert durch den Grenzwert von Zahlenfolgen.
Wir kénnen deshalb die Rechenregeln fiir Folgen (Satz 2.1) anwenden.

Beispiel

Wir betrachten die rationale Funktion

x? — T T —
(x) 1 (x4 1)( 1)

T 2213242 (x 4+ 1)(x + 2)
definiert auf D = R\{-2, —1}.
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e xg=—1: Sei (x,) eine Folge mit lim z,, = —1, z, € D und z,, # —1 fiir alle n.
n—oo
e 1o = —2: Da fiir xt — —2 insbesondere x # —1 ist, gilt
1 -1 -1
lim f(z)= lim =1 = lim > .
r——2 r—>—2 (.%' =+ 1)(.%' + 2) z——2x +2

Ist nun (z,) eine Folge mit Grenzwert —2 und alle Folgenglieder z,, sind kleiner als —2,
dann strebt f(z,) gegen +oo (denn Zihler < 0, Nenner < 0). Gilt jedoch x,, > —2 fiir
alle n, dann strebt f(z,) gegen —oo (denn Zidhler < 0, Nenner > 0). Der Grenzwert
lim f(z) existiert also nicht.
z——2
FEine Stelle zq, in deren unmittelbarer Néhe die Funktionswerte iiber alle Grenzen hinaus
wachsen oder fallen, nennt man eine Polstelle. Im Beispiel oben ist 2y = —2 eine Polstelle.
Wie in diesem Beispiel verhélt sich eine Funktion manchmal unterschiedlich, je nachdem
ob sich z der Stelle zg “von links” oder “von rechts” nihert.

Definition Fiir den linksseitigen Grenzwert betrachtet man nur Folgen x, mit x, < xg,
man schreibt

lim f(z).

ztxg
Fiir den rechtsseitigen Grenzwert betrachtet man nur Folgen x, mit x,, > x¢, man schreibt

lim f(z).

xlxg

Satz 2.5 Sei f : D — R eine Funktion und a in R. Dann ist a = lim f(z) genau dann,
T—T0

wenn gilt

lim f(z) = lim f(z) =a.

) zlxo

Beispiele
1. Sei f: R — R definiert durch

—1 fallsz>0
f(m):{ 2 fallsz <0

Der Grenzwert lin}) f(x) existiert also nicht. Der Graph macht in zg = 0 einen Sprung.
T—
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2. Sei f:R\{1} — R, f(z) = ——.

z—1
Fiir zg # 1 gilt

1 1 1
lim f(z) = lim =

f(zo) .

T—T0 z—z0 L — 1 lim x—1 o — 1
T—T0

Und zg = 1 ist eine Polstelle, denn

Analog zum Grenzwert von f an einer Stelle xg in R definiert man den Grenzwert von f
fiir x — oo und fiir z — —oo. Betrachtet man den Graphen von f, so bedeutet 1i_>m f(z) = a,
x o

dass die horizontale Gerade y = a eine Asymptote fiir x — oo ist. Genauer heisst dies, dass
der Graph fiir geniigend grosse x im horizontalen Streifen zwischen den Geraden y = a + ¢
und y = a — € liegt.

Beispiele
1
1. Sei f:R\{1} — R, f(z) = p— wie vorher. Dann gilt
r —

=0.
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|

2850t f@) = s

die Funktion der Seiten 35/36.

2.5 Stetige Funktionen

Fiir die Funktion f(x) = 7 von vorher gilt also fiir alle xg # 1, dass

mligclo f(.%') - .%'01— 1 - f(-%'o) )

Tatséchlich strebt in den meisten Fillen f(z) gegen f(xg) fiir £ — x9. Man nennt in diesen
Fillen die Funktion f stetig in xg.

Definition Sei f: D — R eine Funktion und zg in D. Dann heisst f stetig in xg, wenn
gilt
lim f(z) = f(zo) -

T—T0

Die Funktion heisst stetig in D, wenn f in jedem Punkt x¢ € D stetig ist.

Anschaulich bedeutet die Stetigkeit von f in einem Punkt xg, dass der Wert f(z) nahe bei
f(xg) ist, sobald x geniigend nahe bei z ist.

Beispiele

L. f:R—R, f(x) =22

Sei zp € R und (x,,),>1 eine beliebige Folge mit lim x, = xy. Dann gilt
- n—oo

. L T 2 _ 2_ .2 _
Jim fz) = hm f(zp) = lm 25 = (lim zn)” = 25 = f(20),

wobei wir fiir die dritte Gleichung die Rechenregel (3) iiber Zahlenfolgen (Satz 2.1) benutzt
haben. Damit ist f stetig in x(, und da x( beliebig war, ist f stetig in ganz R.

2. Betrachten wir noch einmal f : R — R definiert durch f(z) = —1 fir x > 0 und f(z) =2
fiir x <0 (vgl. Seite 30).

In allen x # 0 ist f stetig. In zg = 0 hingegen ist f nicht stetig, denn der Grenzwert ilgbf(a:)
existiert nicht; der Graph macht in ¢y = 0 einen Sprung.

3. Macht der Graph an einer Stelle nur einen Knick, dann ist die Funktion an dieser Stelle
immer noch stetig. Sei f : R — R definiert durch

Fa) = —r+2 fallsz >0 ' "
- 2 fallsz <0 ——
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In allen = # 0 ist f (offensichtlich) stetig. Wir iiberpriifen nun, dass f auch in zy = 0 stetig
ist:

Eine Funktion ist also stetig, wenn man ihren Graphen ohne abzusetzen (d.h. der Graph
macht keine Spriinge) “anstédndig” zeichnen kann. Alle elementaren Funktionen haben diese
Eigenschaft.

Satz 2.6 Alle elementaren Funktionen (Polynome, rationale Funktionen, Potenzfunktionen,
Exponential- und Logarithmusfunktionen, trigonometrische Funktionen) sind stetig in ihrem
Definitionsbereich.

Aus diesen elementaren Funktionen kann man eine Vielzahl von weiteren stetigen Funk-
tionen konstruieren.

Satz 2.7 Seien f,g: D — R zwei in einem Punkt xo € D stetige Funktionen. Dann gilt:

(1) Die Summe f+ g ist stetig in xo. Hierbei ist die Funktion f+g: D — R definiert durch
(f +9)(@) = f(z) + g(=).

(2) Das Produkt f - g ist stetig in xqo. Hierbei ist die Funktion f-g: D — R definiert durch
(f-9)(x) = f(z) - g(x).
(3) Ist g(xg) # 0, so ist auch der Quotient g stetig in xo. Hierbei ist die Funktion g definiert

Lig) = f@)
durch 5(x) = R

(4) Seien f: D — R und g : D' — R zwei Funktionen mit f(D) C D'. Sei f stetig in xq
und g stetig in f(xg). Dann ist die Komposition g o f stetig in xg.

Beispiel

Die beiden Funktionen f(z) = sin(1) und g(z) = zsin(l) von Seite 35 sind gemiiss den
Sétzen 2.6 und 2.7 (2) & (4) stetig in D = R\{0}.

Wir haben oben erwihnt, dass man den Graphen einer stetigen Funktion ohne abzusetzen
zeichnen kann. Dies bedeutet, dass die Funktion alle Werte zwischen zwei Funktionswerten
annimmt (sofern sie auf dem ganzen Intervall dazwischen definiert ist). Auf dieser Eigenschaft
beruht der folgende Nullstellensatz.

(b, (b)) (a, f(a))
f(v) ¢ ° fla) 4 °

fa)y e
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Satz 2.8 (Nullstellensatz) Ist f stetig auf dem Intervall [a,b] und haben f(a) und f(b)
unterschiedliche Vorzeichen, so hat f eine Nullstelle zwischen a und b, das heisst, es gibt ein
xg € (a,b) mit f(xg) = 0.
Beispiel
Nach den Sitzen 2.6 und 2.7 ist die Funktion f(x) = 4e™* + 22 — 3 stetig fiir alle  in R. Es
gilt

f0O)=1>0 und f(1)=-0,528<0.

Also hat f mindestens eine Nullstelle im (offenen) Intervall (0,1).

Wie wir eine Naherung fiir diese Nullstelle finden kénnen, werden wir in Abschnitt 4.6 sehen.
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3 Komplexe Zahlen

Fiir alle reellen Zahlen z gilt 22 > 0. Es gibt also keine reelle Zahl, welche Losung der

Gleichung 2% 4+ 1 = 0 ist. Allgemein hat die quadratische Gleichung
ar’ +br+c=0, a,b,ce R

nur dann reelle Losungen, wenn b% — 4ac > 0 gilt. Im Bereich der reellen Zahlen ist also nicht
jede algebraische Gleichung, das heisst

1

ant" + ap_12" + - +ax+ag=0, mit ag,...,a, € R,

losbar. Dieser Mangel motiviert eine Erweiterung des Zahlbereichs R zu einem Zahlbereich,
in dem alle algebraischen Gleichungen l6sbar sind. Tatséchlich reicht es aus, den Bereich R
so zu erweitern, dass

1. die spezielle Gleichung 2% + 1 = 0 losbar ist, das heisst es soll eine imagindre Zahl i geben,
so dass i = —1;

2. alle Grundrechenarten +, —, - und / uneingeschrénkt durchfithrbar sind und die Rechen-
regeln fiir R erhalten bleiben.

Der Bereich C der komplexen Zahlen ist der kleinste Bereich mit diesen Eigenschaften. In
diesem neuen Bereich sind automatisch alle algebraischen Gleichungen l6sbar!

Die Entwicklung der komplexen Zahlen war ein langer Prozess, der mehr als drei Jahrhun-
derte lang dauerte. Seit dem 19. Jh. werden die komplexen Zahlen jedoch in vielen Gebieten
der Mathematik eingesetzt und auch in den Naturwissenschaften sind sie heute unverzichtbar.

3.1 Definitionen und Rechenregeln

Ein Ausdruck der Form
z=a+bi mit a,b € R

heisst komplere Zahl. Die Zahl i nennt man imagindre Finheit und sie erfiillt die Gleichung

Die Menge aller komplexen Zahlen wird mit C bezeichnet.

Die Zahl a = Re(z) heisst Realteil, die Zahl b = Im(z) Imagindrteil von z. Ist b = 0, so ist
z = a reell (insbesondere ist R C C). Ist a = 0, so ist z = bi rein imagindr.

Die Darstellung z = a + bi ist eindeutig, das heisst, zwei komplexe Zahlen z; = a + bi und
z9 = ¢ + di sind gleich genau dann, wenn a = ¢ und b = d.

Die komplexen Zahlen kann man als Punkte in der Gaufischen Zahlenebene darstellen.
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Die zu z = a + bi konjugiert komplexe Zahl ist Z = a — bi. In der Zahlenebene erhélt man
Z, indem man z an der reellen Achse spiegelt.

Der Betrag |z| von z ist definiert als |z| = va? + b%. Er entspricht dem Abstand des
Punktes z vom Ursprung in der Zahlenebene.

Definition der Addition und Subtraktion:
(a+bi)£(c+di) = (atec)+ (bE£d)i

Die Addition und Subtraktion komplexer Zahlen entspricht der Vektoraddition und -subtrak-

tion in der Zahlenebene.
Wie multipliziert man zwei komplexe Zahlen?

Definition der Multiplikation:
(a+bi) - (c+di) = (ac — bd) + (ad + be)i

Es gilt insbesondere
z-Z=|z%.

Ist z # 0, dann koénnen wir diese Gleichung auf beiden Seiten durch die reelle Zahl |z|?
Z, = 1. Wir folgern, dass

dividieren und wir erhalten z - B
1 z z
=T = I = eC.
22 2%
-1

= Z s

x|

Es kann also durch jede komplexe Zahl # 0 dividiert werden (man schreibt auch %

wie im Reellen).

Definition der Division: Fiir w, z € C gilt:

Das heisst, wir erweitern den Bruch mit der konjugiert komplexen Zahl des Nenners.

Beispiele
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241
2. =
3—4i
1
3. - =

Die uns bekannten Rechenregeln fiir reelle Zahlen bleiben erhalten und das Kommutativ-
und Assoziativgesetz sowie die Distributivgesetze gelten auch fiir alle komplexen Zahlen.
Wiéhrend sich die reellen Zahlen mit Hilfe der <-Relation auf dem Zahlenstrahl anordnen
lassen, ist dies fiir die komplexen Zahlen jedoch nicht mdéglich.

Es ist praktisch, die folgenden Rechenregeln zu kennen.

Satz 3.1 Fiir w,z € C gilt:

(a) wkz=w+z w=z=w-z (%)=

wllg]

(b) w2 = |w| - |o], |2

(¢) lw+z| <|w|+ |z| (Dreiecksungleichung)

3.2 Algebraische Gleichungen

Nun sind wir schon fihig, jede quadratische Gleichung zu 16sen.

Beispiele

Loa?2=-1

2. 22 =—4

3. 2 = —c¢ fiir eine positive reelle Zahl c. Die beiden Lisungen sind

T1,2 = i\/Ei .

4. 22 4+2x+5=0

Hier muss man aufpassen. Fiir reelles a > 0 ist y/a die eindeutige positive Wurzel aus a.
Hingegen ist \/—a nicht eindeutig, /—a steht fiir die zwei Losungen der Gleichung z? = —a.
Deshalb ist v/—1 gleich i oder gleich —i. Wir kommen spiter beim Wurzelziechen nochmals
darauf zuriick.
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Aufpassen muss man auch beim Multiplizieren von Wurzeln. Fiir zwei negative reelle

Zahlen a,b gilt vab # \/5\/5 ! Nach obiger Bemerkung ist die linke Seite eindeutig definiert
(da ab > 0), die rechte Seite jedoch nicht.

Auf dhnliche Weise wie im 4. Beispiel findet man die Losungen der allgemeinen quadra-
tischen Gleichung
ar’ +br+c=0,

wobei a, b, ¢ in R. Die Losungsformel liefert die Losungen

 —b=E Vb2 — dac

2a

1,2

Abhingig von der Diskriminante D = b — 4ac tritt nun eine von drei moglichen Situationen
ein:

e D>0 = zwei reelle Losungen x1, xo
e D=0 = eine reelle Lésung x; = x2
e D<0 = zwei komplexe (nicht-reelle) Losungen x1, x2, wobei xo = Ty

Beispiel
Gesucht sind alle Losungen der quadratischen Gleichung 422 + 2z + 1 = 0.

Die obige Losungsformel gilt auch fiir eine quadratische Gleichung az? + bz + ¢ = 0 mit
Koeffizienten a, b, c in C. Nun ist D = b? — 4ac eine komplexe Zahl und man muss zwei Fille
unterscheiden: Im Fall D # 0 gibt es zwei (komplexe) Losungen und im Fall D = 0 gibt es
genau eine (komplexe) Losung. Wir werden am Ende dieses Kapitels eine solche quadratische
Gleichung l6sen (wenn wir gelernt haben, wie man Wurzeln aus komplexen Zahlen zieht).

Betrachten wir nun eine allgemeine algebraische Gleichung iiber C

1

a2t + ap_12"" "+ +arz+ag=0, ag,...,a, € C.

Die natiirliche Zahl n (falls a, # 0) heisst der Grad der Gleichung (die linke Seite ist ja
ein Polynom). Der Mathematiker CARL FRIEDRICH GAUSS (1777 — 1855) bewies, dass jede
algebraische Gleichung iiber C mindestens eine (komplexe) Losung hat. Aus dieser Aussage
erhélt man den folgenden fundamentalen Satz.

Fundamentalsatz der Algebra Jede algebraische Gleichung iber C vom Grad n hat bei
geeigneter Zihlweise genau n Losungen in C.
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Im Beweis wird gezeigt, dass jedes Polynom p(z) = 2" + a,_ 12" ' + --- + a1z + ag mit

ag, - - -, ay € C als Produkt von genau n Linearfaktoren geschrieben werden kann,
p(z)=(z—2z1) - (z—22) (22— 2zp)
mit z1,..., 2z, in C. Dann ist

p(z)=0 <= ze{z,....,2n }.
Falls zwei oder mehr der zq,...,z, iibereinstimmen, werden diese Nullstellen doppelt oder
mehrfach gezahlt.
Beispiel

Fiir Gleichungen vom Grad 2, 3 und 4 gibt es Losungsformeln. Es gibt jedoch keine Formeln
fiir allgemeine Gleichungen vom Grad > 5. In diesen Féllen benutzt man Néherungsverfahren
zur Bestimmung der Losungen.

3.3 DPolarkoordinaten und exponentielle Darstellung

Ein Punkt z = a + bi der Gauflschen Zahlenebene ist durch seine kartesischen Koordinaten a
und b eindeutig festgelegt. Man kann jedoch auch zwei andere Grossen zur Beschreibung von
z wahlen.

Yi
z=a+bi

Die Grossen r und ¢ nennt man Polarkoordinaten des Punktes z € C. Die reelle Zahl r
ist der Abstand von z zum Ursprung in der Gaufischen Zahlenebene und der Winkel ¢
zwischen positiver z-Achse und z nennt man das Argument von z. Das Argument von z ist
eindeutig bestimmt, falls 0 < ¢ < 27 verlangt wird. Eine komplexe Zahl kann also entweder in
kartesischen Koordinaten (a, b) oder in Polarkoordinaten (r, ¢) eindeutig beschrieben werden.
Wie héngen die Polar- und die kartesischen Koordinaten zusammen?

Da r der Abstand des Punktes z = a 4 bi zum Ursprung ist, gilt

r=|z| =Va®+b%.
||

Damit liegt die komplexe Zahl Z auf dem Einheitskreis, denn |§| = 1 = 1. Der Real-
und der Imaginérteil von z sind demnach gegeben durch cos ¢, bzw. sin . Das heisst, =2 =
cos  + i sin ¢, und so

z=r(cosp+isingp).

Diese Darstellung nennt man Polarform der komplexen Zahl z.
In Polarform kann die zu z = r(cos ¢ + isin ) konjugiert komplexe Zahl Z geschrieben
werden als Z = r(cos ¢ — isin ) = r(cos(—p) + isin(—yp)).
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Wie rechnet man nun von den einen in die anderen Koordinaten um?

o (r,¢) — (a,b): Seien r, ¢ die Polarkoordinaten von z, dann gilt
z=a+b mit a =rcosp und b=rsingp.

Beispiele

1L.r=2¢=90°=3.

2. 7 =+/3, ¢ = 230°.

o (a,b) — (r,¢): Sei z=a+ bi, dann gilt

ro= |zl = Va2 + b2

{ arccos(%) falls b > 0

LA arccos(%) falls b <0

Warum? Fiir ¢ haben wir von oben zunéchst die Gleichungen cos¢p = % und sing =
Losungen der ersten Gleichung sind ¢ = £ arccos($), wobei arccos(%) € [0, 7] (vgl. Seite 20).
Da sinp > 0 fiir ¢ € [0, 7] und sing < 0 fiir ¢ € (—m7,0), gilt fir ¢ € (—m, 7]

b
-

b
goz—{—arccos(g) <— p>0 <= sinpg>0 <= ->0<«< b>0.
T T

Beispiele
1. z=1—1

2. w=-2+1
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Mit Hilfe der Exponentialfunktion kann die Polarform einer komplexen Zahl noch elegan-
ter geschrieben werden. Dazu erweitern wir die Exponentialfunktion auf komplexe Zahlen.
Tatséchlich ist fiir jede komplexe Zahl z die Potenzreihe

> Lk
-3
k!

k=0

wieder eine komplexe Zahl. Wir haben also eine Funktion f : C — C, f(z) = €*. Wie im
Reellen gilt e*T% = ¢* - ¥ fiir alle z,w € C und weiter ist e* = €7 fiir alle z € C.
Wir betrachten nun e? fiir die rein imaginédre Zahl z = iy, d.h. fiir ¢ € R. Es gilt

€02 = P eiv =¥ . =¥ .7 =0 =1

und damit |¢??| = 1. Dies bedeutet, dass ¢¥ auf dem Einheitskreis in der Gau8schen Zahlene-
bene liegt. Nun kann man zeigen, dass ¢ gerade das Argument (im Bogenmass) der komplexen
Zahl €' ist. Es folgt, dass der Realteil von €% gleich cos ¢ und der Imaginérteil von €' gleich
sin ¢ ist.

sin ¢

Das heisst, es gilt die
Eulersche Identitiit: e = cosp + ising

Als Spezialfall (¢ = 7) ergibt sich die wunderschéne Beziehung:
e€T+1=0

Fiir z = r(cos ¢+ isin ¢) erhalten wir nun aus der Eulerschen Identitéit die exponentielle
Darstellung ‘
z=r-e%,

wobei r der Betrag und ¢ das Argument von z sind.

Beispiele

1. z=1—1
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Die Multiplikation und Division von komplexen Zahlen in dieser Darstellung sind nun
ganz einfach zu rechnen und erst noch geometrisch interpretierbar!

Satz 3.2 Seien z; = rie'?! und zo = 19e"? zwei komplexe Zahlen. Dann gilt

AL _ T i)

22 2

21 - 29 = 1y T €P1T¥2) und

Beispiel

iz iz
21 =2€'6, z9g =€"2

Die Multiplikation mit ¢ entspricht also einer Drehung um 90° um den Ursprung der Gauf-
schen Zahlenebene. Allgemein entspricht die Multiplikation mit einer komplexen Zahl z = re'®
einer Drehstreckung (mit dem Streckfaktor » und dem Drehwinkel ¢).

3.4 Potenzen und Wurzeln

Potenzen komplexer Zahlen werden wie im Reellen definiert, das heisst

=1, 2=z, 2"=z"1.2, und 2 "=—

fiir alle n € N. In der exponentiellen Darstellung ist das Potenzieren einfach:

z=re¥ = '=r"e"?

In Polarkoordinaten erhilt man

n

2" = (r(cosp +isinp))" = r"(cos(ny) + isin(ny)) .

Formel von de Moivre: (cosy¢ + isinp)™ = cos(ny) +isin(ny) fir n € Z.
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Die Formel von de Moivre kann benutzt werden, um cos(n¢) und sin(nep) fir n € N durch
Potenzen von cos ¢ und sin ¢ auszudriicken (vgl. Formelsammlung).

Da zwei komplexe Zahlen genau dann gleich sind, wenn ihre Real- und Imaginérteile tiberein-
stimmen, folgt

cos(2¢) = cos® p — sin? und sin(2p) = 2cos psing .
Beispiel
(1—0)t=7
Einheitswurzeln

Was sind nun die Losungen der speziellen Gleichung
=17

Wir schreiben die rechte Seite exponentiell, 2 = 1 = €2™. Beim Wurzelziehen, als Umkehrung
des Potenzierens, dividieren wir das Argument durch n und erhalten die Losung

(5) i ()
=cos| — ) +esm|— | .
n n

Dies ist eine der genau n verschiedenen (komplexen) Losungen

S|y

(=¢

i 2k

F=e", k=0,1,...,n—1.

Die Zahlen ¢* (k = 0,1,...,n—1) nennt man n-te Einheitswurzeln. In der GauBschen Zahlen-
ebene liegen sie genau auf den Ecken des dem Einheitskreis einbeschriebenen regelméssigen
n-Ecks, wobei die eine Ecke bei z = 1 liegt.

Beispiele
124 =1.
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2. 25 =1. Die Losungen sind z, = sk fiir k=0,1,...,5.

Yl
20 = Z

I
oo

21

22 23 2=1

zZ3 =

25

24 25

Allgemeine Wurzeln

Betrachten wir nun die allgemeinere Gleichung
2" =w

fiir w € C, w & R>g. Schreiben wir w in exponentieller Form w = re®¥ und ist ¢ wie vorher
die n-te Einheitswurzel ¢ = ei%ﬂ, dann sind alle Losungen der Gleichung gegeben durch

T . _
20 = {/retn sowie z0(,z0C2, ..., 20" .
Die Gleichung 2™ = w hat also genau n verschiedene Lésungen. Man nennt jede dieser

Losungen eine n-te Wurzel von w und bezeichnet sie mit {/w. Die Wurzel aus einer komplexen
Zahl ist also nicht eindeutig, wie schon auf Seite 43 fiir n = 2 bemerkt.

Beispiele

1. Wir betrachten die Gleichung 22 = —2. Mit —2 = 2¢™ und ¢ = ¢i% finden wir die

Losungen
. . - 57
20=V2e3, 2(=V2eT=-V2, z(*=V2e% .

2. Gesucht sind die Losungen der quadratischen Gleichung 22 — (1 + 3i)z — 2 +4 = 0.
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4 Differentiation

Alle elementaren Funktionen (und damit auch Summen, Produkte und Quotienten davon)
sind in ihrem Definitionsbereich nicht nur stetig, sondern auch differenzierbar. Mit Hilfe der
Ableitung konnen wir ihre Maxima und Minima bestimmen, die Nullstellen ndherungsweise
berechnen sowie komplizierte Funktionen durch einfachere Funktionen beschreiben.

4.1 Die Ableitung einer Funktion

Der Begriff der Ableitung ist aus einem praktischen Problem entstanden. Nehmen wir an,
wir fahren mit dem Zug von Basel nach Chur. Fiir die rund 200 km lange Strecke benttigen
wir 2 Stunden und 19 Minuten, das heisst, 2,32 Stunden. Wie schnell sind wir gefahren, das
heisst, wie gross war unsere Geschwindigkeit?

Nun, Geschwindigkeit ist gleich Weg durch Zeit, genauer: zuriickgelegter Weg durch ver-
strichene Zeitspanne. Fiir unsere Geschwindigkeit folgt also

200 km - km

2,32h ~ 86

Dies ist unsere mittlere oder durchschnittliche Geschwindigkeit.

Sei allgemein s(t) der zuriickgelegte Weg zum Zeitpunkt ¢. Gehen wir vom zuriickgelegten
Weg s(tp) zu einem Zeitpunkt ¢y aus, dann kénnen wir die mittlere Geschwindigkeit wihrend
der folgenden Zeitspanne h (d.h. von ¢y bis ¢ty + h) berechnen als

s(to + h) — s(to)
Y .

Nun wollen wir aber wissen, wie gross unsere Geschwindigkeit zu einem bestimmten Zeit-
punkt war. Wie kann die momentane Geschwindigkeit zu einem genauen Zeitpunkt to berech-
net werden? Die Idee ist, die momentane Geschwindigkeit durch mittlere Geschwindigkeiten
anzunéhern.

Geschwindigkeit =

Beispiel

Nach dem langen Halt im Bahnhof Ziirich fahrt der Zug wieder los. Dieser Anfahrvorgang
sei durch die Wegfunktion s(t) = #? (in Metern) beschrieben. Wie gross ist dann unsere Ge-
schwindigkeit nach genau 3 Sekunden nach dem Anfahren? Wir betrachten also den Zeitpunkt
to = 3 und lassen die Zeitspanne h immer kleiner werden.

Zeitspanne h | 1] 0,1 | 0,01 | 0,001

mittlere Geschwindigkeit w‘ 7 ‘ 6,1 ‘ 6,01 ‘ 6,001

Wir erkennen, dass sich fiir A — 0 die momentane Geschwindigkeit 6 %+ néhert.
Allgemein berechnet sich die momentane Geschwindigkeit zur Zeit tg durch

lim s(to + h) — s(to) .
h—0 h

Diese Idee der Néherung geht auf ISAAC NEWTON (1643 — 1727) zuriick. Doch damals kannte
man noch keine prézise Definition des Grenzwerts. Diese wurde erst im 19. Jahrhundert ein-
gefithrt. Heute nennen wir diesen Grenzwert die Ableitung der Funktion s(t).
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Definition Sei f : D — R eine reelle Funktion. Dann heisst f an der Stelle xyg € D
differenzierbar, wenn der Grenzwert

lim f(zo+h) — f(z0)

h—0 h

existiert. Er heisst Ableitung (oder Differentialquotient) von f in zp und wird mit f’(z)
bezeichnet. Der Ausdruck
f(zo+h) — fzo)

h

wird Differenzenquotient genannt.

Andere Notationen: Fiir die Ableitung sind auch die folgenden Schreibweisen {iblich:

d, d
fI(CC(]) - é(:ﬂo) - é T=x0

Ist die (Weg-)Funktion s(t) abhéngig von der Zeit ¢, dann wird speziell in der Physik die
Ableitung mit $(¢) bezeichnet.
Anstelle von A ist auch Az {iblich, bzw. x = x¢ + Az. Damit ist

f(@o+h) = f(xo) = f(xo + Az) — f(zo) = f(z) — f(z0) = Af
und man erhilt fiir f'(zg) die dquivalenten Schreibweisen

lim flzo+h) — fzo) _ lim flzo+ Ax) — f(zo) _ lim flx) = flxo) _ lim Af

h—0 h Az—0 Az z—x0 T — T Az—0 Ax

Geometrische Deutung

Der Differenzenquotient ist gleich der Steigung der Sekante durch die Punkte P = (xq, f(x0))
und Q = (zo + h, f(zo + h)) auf dem Graphen von f. Fiir A — 0 (d.h. ldsst man @ gegen P
wandern) geht die Sekante in die Tangente an den Graphen von f in z( iiber. Die Ableitung
1’ (x0) beschreibt also die Steigung der Tangente an den Funktionsgraphen an der Stelle xg
(was auch als Steigung des Funktionsgraphen in xg bezeichnet wird).

J(@o+ h) — f(ao)

=% % v Y/ F % 1 F % 7 %

"
Tangente i 0 zo+h

/ Sekante
o
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Auf diese Interpretation der Ableitung stiess unabhéingig von Newton GOTTFRIED WILHELM
LEIBNIZ (1646 — 1716), als er sich fragte, wie man die Steigung einer Kurve (insbesondere
eines Funktionsgraphen) in einem Punkt erkléren kann.

Definition Eine Funktion f: D — R heisst differenzierbar (in D), falls f in allen z € D
differenzierbar ist. Die Funktion f’' : D — R, die jedem xz € D die Zahl f’(x) zuordnet,
heisst Ableitung von f.

Anschaulich gesehen ist eine Funktion differenzierbar, wenn sich an jedem Punkt des
Graphen in eindeutiger Weise eine Tangente anlegen lésst. Fine Funktion ist also insbesondere
an einer Stelle nicht differenzierbar, wenn sie dort einen Sprung macht, eine Polstelle hat oder
oszilliert; das heisst, wenn sie dort nicht stetig ist. Es kann aber auch Stellen geben, an welchen
die Funktion wohl stetig ist, jedoch nicht differenzierbar, beispielsweise wenn die Funktion
einen Knick macht.

Es gilt also:

f differenzierbar in g = [ stetig in xg

Die umgekehrte Richtung “<=" ist hingegen falsch.

Xo — Xo / Xo
unstetig, stetig, stetig,
nicht differenzierbar nicht differenzierbar differenzierbar
inXo inXo inXo

Beispiele

1. Sei s(t) = t* die Wegfunktion vom Beispiel auf Seite 51. Wie gross ist die (momentane)
Geschwindigkeit zur Zeit tg 7

Zum Zeitpunkt to = 3s betrigt die Geschwindigkeit also tatsichlich s'(3) = 6 2.

S

2. Sei f(z) = c eine konstante Funktion. Dann ist f(z¢ 4+ h) — f(29) = ¢ — ¢ = 0 und damit
f'(x¢) = 0 fiir alle g € R. Dies erkennt man auch direkt am Graphen von f.
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3. Sei f(x) = x = 2. Indem man den Differenzenquotienten geschickt erweitert, erhélt
man

fl@o+h) — flxzo) _ (Wxo+h—yw) (Vawoth+ro) 1
h h (Vo +h+/xo) oo+ h+/xo

Es folgt
1 1 1 -

/ :1 = = —
f o) o0 Vg TR+ yig  2yEs 20

1
2

Bemerkung Fiir jede reelle Zahl r gilt (Beweis Seite 57):

fay=a" = fa)=ra

4. Sei f(z) = |z|.

Diese Funktion ist differenzierbar in allen z € R, ausser in g = 0. Man erkennt dies direkt am
Graphen von f, denn in xy = 0 macht er einen Knick und es ist unmoglich, hier eine Tangente
auf eindeutige Weise anzulegen. Tatséchlich existiert der Differentialquotient in xg = 0 nicht,

denn
lim fl@o+h) = flzo) _
h10 h

aber
i L @0+ 1) = f(ao) _
h10 h

Um fiir eine konkrete Funktion f die Ableitung f’ zu bestimmen, sind die folgenden
Ableitungsregeln sehr niitzlich.

Satz 4.1 (Ableitungsregeln) (a) Seien f,g differenzierbar. Dann sind auch f+ g, \f fir
ANER, f-g und g (iiberall wo g(x) # 0) differenzierbar.

(i) Es gilt
(f+9) =f+g und (N) =Xf firale eR.

(ii) Es gilt die Produktregel
(f-9)=f-9+f4g.

([)'_ fg-f-d
et

(iii) Es gilt die Quotientenregel
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oo

(b) Ist f(x) = Zakazk eine auf dem (offenen) Intervall I konvergente Potenzreihe, dann ist
k=0
f auf I differenzierbar und es gilt

f(z) = Z kapz®t  fiir alle z € 1.
k=1

Die Regeln von Satz 4.1 (a) sollten aus der Schule bekannt sein. Wir geben hier deshalb nur
Beispiele zu Satz 4.1 (b).

Beispiele
1. Sei f(z)=€e"=1+z+ g—? + ?5_? + % + --- . Mit Hilfe von Satz 4.1 (b) folgt

Also gilt (e”)" = e®. Bis auf Vielfache ist f(x) = e® die einzige reelle Funktion f mit f' = f.

2. Auch cos x und sin x konnen als Potenzreihen dargestellt werden. Aus der Potenzreihe von
e und der Eulerschen Identitit e = cosx + isin z folgt, dass

00
$2 $4 2k

fr— _— — —_— e e o e e _ kx
cosr = 1 o T + —kz_o( 1) on]
. R 0 .zt
e = et S gy

Fiir die Ableitungen kénnen wir nach Satz 4.1 (b) gliedweise ableiten. Wir erhalten

und analog
o 2 g
(Slnﬂf)zl—g—l-z— +---=coszx.
Es gilt also:
(cosz) = —sinx und (sinz) = cosx

Als néchstes betrachten wir zusammengesetzte Funktionen (wie am Ende von Kapitel 1,
Seite 17, definiert). Sei h = go f, wobei f: D — R und g : D — R mit f(D) C D. Das
heisst, es gilt h(z) = (g0 f)(z) = g(f(z)) fiir alle z € D.

Satz 4.2 (Kettenregel) Ist f differenzierbar in xo und g differenzierbar in yo = f(xo), so
ist die Komposition g o f differenzierbar in xo und es gilt

(go f)(x0) =g (f(z0)) - ['(z0) -

Da (go f)(x) = g(f(x)), nennt man g die dussere Funktion und f die innere Funktion. Die
Kettenregel

(g0 f)(x0) =g (f(x0)) - f'(0)

kann man sich (in Kurzform) also so merken:
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dussere Ableitung - innere Ableitung

Genauer bedeutet dies: Die Ableitung der dusseren Funktion an der Stelle der inneren Funk-
tion mal die Ableitung der inneren Funktion.

Beispiele

1. Sei h(z) = (sinz)® = sin® z.

2. Sei h(x) = ecsBrtm),

Satz 4.3 (Ableitung einer Umkehrfunktion) Sei f : D — R umkehrbar und diffe-
renzierbar in xq mit f'(xg) # 0. Dann ist die Umkehrfunktion g = f~1 differenzierbar in

yo = f(xo) und es gilt
1 1

90) = T = Flam))

Beispiele

1. Die Funktion g(y) = In(y) ist die Umkehrfunktion von f(x) = e”.

Es gilt also fiir alle y > 0,

(In(y))" = —.

Damit und mit Hilfe der Kettenregel kénnen wir die Ableitungsregel

(xr)/ _ Tm‘r_l
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fiir alle reellen Zahlen r von Seite 54 iiberpriifen:

2. Die Funktion f(z) =sinxz : [-5, 5] — [—1,1] ist umkehrbar und f'(z) = cosz ist # 0 fiir
—% <z < 5. Die Umkehrfunktion g(y) = arcsiny ist deshalb differenzierbar fiir -1 <y <1

(denn sin(£%) = £1) und es gilt

Wegen cos? z +sin?z = 1 ist cosz = /1 — sin? x = /1 — (sinz)2. Damit erhalten wir

Es gilt also fiir —1 <y < 1,
(arcsiny)’ =
I—y
4.2 Extremalstellen

Sei f : D — R eine differenzierbare Funktion. Falls die Ableitung f’' : D — R wieder
differenzierbar ist, kénnen wir die Ableitung von f’ bilden und erhalten die zweite Ableitung
f” von f, usw. Eine Funktion f, die man auf diese Weise n-mal ableiten kann, heisst n-mal
differenzierbar. Die n-te Ableitung bezeichnet man mit

().
Alternative Schreibweisen sind
"o d" f(x) dm”
(n) frg — _ —
1O = ) = IO iy

Das Ziel dieses Abschnitts ist, aus den Ableitungen einer Funktion Riickschliisse auf deren
Verlauf zu ziehen.

Das Monotonieverhalten einer Funktion kann direkt an der Ableitung der Funktion ab-
gelesen werden. Dieser Zusammenhang basiert auf dem folgenden wichtigen Satz.

Satz 4.4 (Mittelwertsatz) Sei f eine reelle Funktion, die in einem Intervall [a,b] diffe-
renzierbar ist. Dann gibt es einen Punkt xg € [a,b], so dass

f(b) = f(a) = f'(z0) - (b—a).

Der Mittelwertsatz sagt aus, dass es zu jeder Sekante eine parallele Tangente an den Funk-
tionsgraphen gibt.
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Tangente

Steigung der Sekante

Beispiel
Wir betrachten f(x) = 23 — z im Intervall [a,b] = [0,2]. Es gilt

Nach dem Mittelwertsatz gibt es also (mindestens) ein xg € [0,2] mit f'(z¢) = 3. Nun ist

J(x)

Da z im Intervall [0,2] liegt, ist also 29 = % ~ 1,15 der gesuchte Punkt.

V3
Satz 4.5 Sei f differenzierbar in [a,b]. Dann gilt
(i) f monoton wachsend in [a,b] <= f'(x) >0 fiir alle z € [a,b]
(ii)  f monoton fallend in [a,b] <— f(z) <0 fiir alle x € [a, b
(iii) f konstant in [a,b] <~ f'(x) =0 fir alle x € [a,b]

Satz 4.5 ist nachvollziehbar, wenn f’(z) als “momentane Anderungsrate” von f interpre-
tiert wird. Der Mittelwertsatz geht in die Beweise der Richtungen “<=" ein.

Beispiel
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Sei nun f : [a,b] — R eine Funktion. Wir wollen die sogenannten Extremalstellen (bzw.
die Extrema) bestimmen.

Die Punkte = im offenen Intervall (a,b) = {x € R | a < 2 < b} nennen wir die inneren
Punkte und die Punkte z = @ und x = b heissen Randpunkte von [a, b)].

Definition Ein Punkt z( € [a, b] heisst
e globale Mazimalstelle von f in [a,b], falls gilt
f(z) < f(xo) fir alle z € [a,b] ;
lokale Mazximalstelle, falls xq ein innerer Punkt ist und
f(z) < f(=zo) fiir alle z in einer Umgebung von x .
Man nennt f(z) ein globales (bzw. lokales) Mazimum von f in [a,b].
e globale Minimalstelle von f in [a,b], falls gilt
f(z) > f(xo) fir alle = € [a,b] ;
lokale Minimalstelle, falls x(y ein innerer Punkt ist und
f(z) > f(=zo) fiir alle x in einer Umgebung von x .
Man nennt f(zg) ein globales (bzw. lokales) Minimum von f in [a,b].

Eine Maximalstelle oder Minimalstelle xy heisst auch eine Extremalstelle und der Wert f(z)
ein Fxtremum.

y=f(x)

a (b X
globales Maximum

lokale Extremalstellen

Wenn f auf einem abgeschlossenen Intervall [a,b] definiert und dort stetig ist, dann hat
f in [a,b] (globale) Extrema. Wie finden wir diese Extrema?

Beim Graphen oben erkennen wir, dass die Tangente an den Graphen an einer lokalen
Maximal- oder Minimalstelle waagrecht ist, das heisst, die Steigung der Tangente Null ist.
Fiir eine lokale Extremalstelle z( gilt also f’(x¢) = 0.

Nicht jede Stelle zp mit f’(z9) = 0 ist jedoch eine Extremalstelle. Auch bei einem Sat-
telpunkt (s. unten) verschwindet die erste Ableitung. Zum Beispiel gilt f/(0) = 0 fiir die
Funktion f(z) = 3, aber f hat in 29 = 0 kein Extrema, sondern einen Sattelpunkt.

Die zweiten Ableitungen in x (falls sie existieren) sagen uns, ob xg eine Extremalstelle
ist, und wenn ja, von welcher Art.
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Satz 4.6 Sei xo € (a,b). Dann gilt:
f'(x0) =0 und f"(x0) <0 = f(zo) ist ein lokales Mazimum
f'(x0) =0 und f"(x0) >0 = f(zo) ist ein lokales Minimum
Schauen wir uns diese beiden Fille separat genauer an.
e Sei f(x9) =0 und f"(zp) < 0.
Dann gilt, dass f”(x) < 0 in einer (kleinen) Umgebung U(x) von .

= f'(x) ist monoton fallend in U(xq)
= f beschreibt eine Rechtskurve in U(zg)

=  f(xp) ist ein lokales Maximum

m = f’(x) ist monoton fallend

e Sei f'(x9g) =0 und f"(xzo) > 0.
Dann gilt, dass f”(x) > 0 in einer (kleinen) Umgebung U (x() von .

= f'(z) ist monoton wachsend in U(z¢)
= f beschreibt eine Linkskurve in U(zg)
= f(zo) ist ein lokales Minimum

y

=

m = f’(x) ist monoton wachsend

Satz 4.6 ist nur fiir innere Punkte xg, wo f zweimal differenzierbar ist, anwendbar. Rand-
punkte miissen separat betrachtet werden. Beim Graphen auf Seite 59 zum Beispiel gilt fiir
die globale Maximalstelle x = b, dass f'(b) # 0 (bzw. f ist nicht differenzierbar in b).
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Weiter gelten die Pfeile in Satz 4.6 nicht in umgekehrter Richtung. Zum Beispiel hat die
Funktion f(z) = 2* in 29 = 0 ein lokales (und globales) Minimum. Damit folgt f/(0) = 0.
Aber fiir diese Funktion ist die zweite Ableitung ebenfalls Null: f”(0) =0.

Vorgehen zur Bestimmung der Extremalstellen von f: [a,b] — R:
(1) Bestimmung und Untersuchung von allen Stellen x¢ mit f’(z) = 0.

(2) Berechnung von f(a), f(b) und den Funktionswerten in den Punkten, wo f nicht diffe-
renzierbar ist. Vergleich mit den in (1) erhaltenen Maxima und Minima.

Beispiel
Sei f:[-1,10] — R, f(z) = (2% —4z)e .
(1)

(2) f ist tiberall differenzierbar. Vorher unter (1) haben wir demnach alle lokalen Extremal-
stellen gefunden. Fiir die gobalen Extremalstellen miissen wir nur noch die Funktions-
werte f(—1) und f(10) mit dem in (1) gefundenen Maximum und Minimum vergleichen.

Wir schliessen, dass f(5,24) = 0,034 ein lokales Maximum, f(—1) = 13,59 ein globales
Maximum und f(0,76) = —1, 15 ein lokales und globales Minimum ist.
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Wir haben oben gesehen, dass der Funktionsgraph bei einem lokalen Maximum eine
Rechtskurve beschreibt (es gilt dort f”(x) < 0) und bei einem lokalen Minimum eine Links-
kurve (es gilt dort f”(z) > 0). Ist f” stetig, dann gibt es (nach dem Nullstellensatz) eine
Stelle zp dazwischen mit f”(xz9) = 0. An dieser Stelle geht die Rechts- in eine Linkskurve
(bzw. die Links- in eine Rechtskurve) iiber.

Definition Eine Funktion f hat in z¢ einen Wendepunkt, wenn im Punkt (xg, f(x¢)) die
Kriimmung des Graphen von f wechselt (die Rechts- in eine Linkskurve iibergeht oder um-
gekehrt). Gilt zusitzlich f'(zg) = 0 (waagrechte Tangente in x(), dann nennt man den Wen-
depunkt einen Sattelpunkt.

An einem Wendepunkt “schneidet” die Tangente den Funktionsgraphen.

y

Xo
f'<0 =— =0 —= >0

Satz 4.7 Sei xy € (a,b). Dann gilt:

f"(x0) =0 und f"(z0) #0 == f hat in xg einen Wendepunkt

Beispiel

Wir betrachten nochmals f(x) = (22 —4x) e~*. Die Gleichung f”(z) = (22—~ 8x+10)e % =0
hat die beiden Losungen z1 = 4 + v/6 ~ 6,45 und 29 = 4 — /6 ~ 1,55. Da " (1) # 0 und
1" (x2) # 0, sind (6,45;0,025) und (1,55; —0,81) zwei Wendepunkte von f.

Hat f in zp einen Wendepunkt, dann hat die Ableitung f’ in zy ein Extremum. Dies
erklirt die Bedingung f”'(xo) # 0 (vgl. Satz 4.6).

Die Bedingung f”(zg) # 0 in Satz 4.7 ist jedoch nicht notwendig fiir einen Wendepunkt in
zo (da f"(wg) # 0 in Satz 4.6 nicht notwendig ist). Zum Beispiel hat die Funktion f(z) = 2°
einen Wendepunkt in 2o = 0 mit f/(0) = 0.
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4.3 Die Regeln von Bernoulli-de ’Hopital

In Kapitel 2 haben wir gesehen, wie man Grenzwerte der Form lim % berechnet. Es gibt

T—TQ
jedoch Grenzwerte, die wir mit den dort angegebenen Methoden nicht bestimmen koénnen.

Betrachten wir zum Beispiel den Grenzwert

sin x

lim
z—0 X

Bei diesem Beispiel strebt sowohl der Zihler als auch der Nenner gegen 0 fiir x — 0.

Mit Hilfe des Mittelwertsatzes (Satz 4.4) konnen wir nun diesen Grenzwert bestimmen
(wobei es auch mit der Potenzreihe von sinz ginge). Wir wenden also den Mittelwertsatz fiir
f(z) = sinz auf dem Intervall [0, z] an:

Dieser Trick funktioniert allgemein und wir erhalten die Regeln von Bernoulli-de I’Hépital.

Satz 4.8 Seien f,g: (a,b) — R differenzierbar, wobei —oco < a < b < oco. Weiter gelte

lim f(x) = liin g(x) =0 oder lim f(x) = lim g(z) = £o0.

rT—ra rT—ra T—ra

Falls der Grenzwert 1i£>n _{;:((g existiert (d.h. € RU{%o0} ist), gilt

lim f(2) = lim J'(x)

rag(z) ~wreg(x)

Dies gilt analog fiir Grenzwerte x — b.

Beispiele

xT
1
1. lim &
x—0 X

562 + 109999
2. }E‘;o or _ 102022

Dies erklirt die Merkregel Exponentiell ist starker als polynomial von Kapitel 2 (Seite 28).
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/
3 lim In(1 + cz) i (In(1 4 cx)) o ¢ _
z—0 x z—0 (x) =01+ cx

Damit gilt weiter

. 1 . 1 In(1+cz) lim L(l:cz)
lim(1+cz)= = lime= = ez—0 =e

z—0 z—0 ’

wobei wir beim zweiten Gleichheitszeichen die Stetigkeit von e® benutzt haben. Fiir die Folge

Ty = % mit lim z, = 0 folgt insbesondere, dass
n—oo

e = lim(l—i—cm)% = lim (1—|—cxn)i = lim (1+ £>n ,
n

z—0 n—00 n—00

wie in Kapitel 2 (Seite 33) fiir ¢ = 1 behauptet.

4.4 Lineare Approximation

An den Graphen einer differenzierbaren Funktion f legen wir die Tangente in einem Punkt
P = (z9, f(x0)) an. Zoomen wir den Punkt P stark heran, so ist die Funktionskurve von der
Geraden nicht mehr zu unterscheiden!

Beispiel f(z) = 2%, Tangente an f im Punkt P = (1,1)

27 1.24 1.02q

1.5+ 1.1 1.014

y 1 y 1.0q y 1
0.54 0.91 0.991
0 0.8 1 T T | 0.98 { T T !
0 0.5 1 1.5 2 0.9 1.0 1.1 1.2 0.99 1 1.01 1.02
X X X

Die Tangente eignet sich also als lokale (lineare) Ndherung der Funktion.

Satz 4.9 Unter allen Geraden durch den Punkt (xo, f(x0)) ist die Tangente diejenige Gera-
de, die f lokal um xo am besten approximiert.

Wie ist das gemeint? Die Tangente an den Graphen von f in xq ist gegeben durch
y = t(x) = f(z0) + f'(x0)(z — 20) -

Fiir  nahe bei 2o stimmen die Funktionswerte f(z) ungefihr mit den Werten ¢(x) iiberein:
f(x) = t(x). Dies kénnen wir auch so schreiben:

f(zo+ h) =~ t(xg+ h) fiir h mit |h| klein.
Der Fehler r(h) dieser Néherung ist dabei gegeben durch

r(h) = f(xo+h) —t(xo + h) = f(zo + h) — f(xo) — f'(x0) - h . (%)
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Da t(z) = f(xo), geht r(h) gegen 0 fiir h — 0. Aber auch L:) geht gegen 0 fiir h — 0:

lim, @ = lim (f(xo il h})L — o) _ f'(%)) = f'(wo) — f'(x0) =0

Hier ist entscheidend, dass t'(z) = f’(z¢), das heisst, dass die Steigungen von ¢ und f in x
iibereinstimmen. Deshalb ist die Tangente die einzige Gerade durch den Punkt (zg, f(xo)),
fiir die nicht nur r(h), sondern auch @ gegen 0 geht fiir h — 0, was bedeutet, dass die
Differenz r(h) = f(xo + h) — t(xo + h) schneller als h gegen 0 geht.

Losen wir die Gleichung (%) nach f(zo + h) auf, erhalten wir die folgende Ndherung fiir
f in der Nihe von z.

Satz 4.10 Sei f: D — R differenzierbar in xo € D. Dann gilt

h
f(xo+h) = f(zo) + f'(x0) -h+r(h) mit lim rlh) _ 0.
h—0 h
flz) \
feath)’
fzo) 4
Tangente

-2 -1 0 1 2 3 4 5

Da das Restglied r(h) fiir kleine |h| verschwindend klein ist, benutzt man fiir komplizierte
Funktionen f in der N&he einer Stelle xg oft die lineare Néherung

f(xo+ h) =~ f(zo) + f'(x0) - h fiir kleine |h| (N)

Beispiel
Mit Hilfe der Ndherungsformel (N) kann zum Beispiel (im Kopf!) eine gute Néherung von
V8,92 gegeben werden.

Der auf 7 Nachkommastellen gerundete Wert von /8,92 ist 2,9866369, der Niherungsfehler
r(—0,08) betrigt also nur —0,0000298 = 2,98 - 1075 !
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Auf der Formel (N) beruhen auch Nidherungen einiger elementarer Funktionen, die haufig
(zum Beispiel in der Physik) gebraucht werden. Fiir kleine |x| gilt:

(1+2)" =~ 14+nx
1
1—2
Vitr ~ 1+§
e’ = l+zx

sinr ~ x

~ 1l+=x

Um zum Beispiel die Nidherung sinx &~ x zu erhalten, nutzt man die Néherungsformel (N)
fir f(z) =sinz, h =2z, xg = 0 mit f/'(x) = cosz.

14 sin(x)

4.5 Taylorpolynome und Taylorreihen

Im vorhergehenden Abschnitt haben wir eine reelle Funktion f in der Nihe eines Punktes
(o, f(zg)) durch eine lineare Funktion approximiert. Wir konnen diese Ndherung verbes-
sern, indem wir anstelle einer linearen Funktion eine Polynomfunktion von héherem Grad
verwenden.

Damit diese Néherung gut ist, soll die Polynomfunktion p(z) in (der N#he von) x
moglichst die gleiche Kriimmung wie die Funktion f(x) aufweisen. Das Kriimmungsverhalten
von f wird durch die Ableitungen von f beschrieben. Ist die Funktion f n-mal differenzierbar,
so konnen wir fordern, dass die ersten n Ableitungen von f und von p in xg iibereinstimmen,
und zusétzlich soll natiirlich p(xzg) = f(zp) sein. Es soll also gelten:

e p(xg) = f(zo) (gleiche Funktionswerte in )
o p'(z9) = f'(zg)  (gleiche Tangente in x()

o p'(xo) = f"(xg) (gleiche Kriimmung in )

o p(™(xg) = £ (x0)
Dies sind n+1 Bedingungen. Mit einer Polynomfunktion p(z) = p,(x) mit n+1 Koeffizienten,
also vom Grad < n, konnen alle Bedingungen erfiillt werden.
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Satz 4.11 Das Polynom p,(z) vom Grad < n, das die Bedingungen p®*)(zq) = f%)(xq) fiir
k=0,...,n erfillt, ist gegeben durch

'z () (1 npk) (g
pn(x):f(xo)—i-f(uo)(x—xo)—i—---—i-fT(!o)(x—xo)”:kz_of k(' 0)(x—x0)k.

Das Polynom p,,(x) heisst n-tes Taylorpolynom von f um den Entwicklungspunkt xg.
Fiir n = 1 ist das Taylorpolynom gegeben durch

pi(@) = f(zo) + f'(z0)(z — o) -
Wenig iiberraschend ist dies die Gleichung der Tangente an f in z!
Die Taylorpolynome sind also Erweiterungen der linearen Néherung vom letzten Ab-

schnitt, bzw. sie verbessern die lineare Naherung. Satz 4.10 lautet fiir h =z — xg:

r(x — xo)

f(x) = f(zo) + f(x0)(x — w0) +7(x —x0) mit lim =0

r—x0 X — X(

Fiir die Taylorpolynome p,(z) gilt nun

f(z) =pn(x) +rp(z —2x0) mit lim rn(® = Zo) =0.

=z (x — 20)"

Das Restglied r,(z — xp) geht also sehr schnell gegen 0 fiir x — xg. Falls f (n 4 1)-mal
differenzierbar ist, kann das Restglied (das Lagrangesche Restglied) geschrieben werden als

f(n+1)(£) )n+1

7nn(x_x(]) = (Cﬂ—xo

(n+ 1) fiir ein £ zwischen xy und x.

Beispiele

1. Sei f(x) = . Gesucht ist das Taylorpolynom ps(x) im Entwicklungspunkt zy = 0.

1
1+x

Weiter findet man
pe(r) = 1—a+a?—a342%— 25428
po(z) = 1—z+a2?—ad+a2* -2 +25 2" +2% —2°

pa(e) = Y (1"
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2. Sei f(x) = In(z). Gesucht ist das Taylorpolynom py(z) im Entwicklungspunkt zo = 1.
Wir berechnen
fll@) =1 — f(1)=1

T

fe)=—k = fra=-1
f”/(.%') — % — f/l/(l) —9
fO@) =-& = [O(1) =6

pa(x)

Der Entwicklungspunkt xy = 1 bedeutet, dass p4(z) die Funktion f(z) = In(x) in der Nihe
von zy = 1 gut approximiert. Man 16st die Klammern (z — 1)*¥ im Taylorpolynom nicht
auf, denn so erhilt man fiir ein konkretes x effizient die Differenz von In(z) und ps(z). Zum
Beispiel gilt fir x = 1,1, dass

0,12 N 0,13 0,14

In(1,1) —pg(1,1) = — (0,1 —
n(1,1) — pa(1,1) 0,0953 — (0, 2 3 1

) ~ 1,85-1079.

Fiir x = 2 ist p4(x) keine so gute Niherung fiir In(x) mehr; es gilt In(2) — p4(2) ~ 0, 110.



69

Ist die Funktion f unendlich oft differenzierbar in einer Stelle zy, dann kénnen nicht
nur die Taylorpolynome betrachtet werden, sondern die sogenannte Taylorreihe um den
Entwicklungspunkt xg,

> r(k)
> ! k;(!xO) (& — zo)" .
k=0

Ob diese Reihe iiberhaupt konvergent ist, hdngt davon ab, wie nahe x bei xq ist. Jedoch
konvergiert die Taylorreihe auch fiir  nahe bei xg nicht fiir alle Funktionen f, und wenn,
dann muss die Reihe auch gar nicht mit den Funktionswerten f(z) iibereinstimmen.

Es gibt aber einige schone Beispiele, wo die Taylorreihe fiir gewisse, bzw. alle z € R
konvergiert und fiir diese z gleich den Funktionswerten f(z) ist.

Beispiele
1. Betrachten wir nochmals f(z) = 1= + . Diese Funktion ist unendlich oft differenzierbar, und
tatsdchlich wissen wir ja von den geometrischen Reihen her, dass

[e o]
=) (=1)Fz* fir 2] <1.
k=0

1

fa) = 1

2. Sei f(z) = e®. Fiir diese Funktion gilt f*)(z) = e* fiir alle k¥ > 1. Wihlen wir den
Entwicklungspunkt xg = 0, dann gilt f (k)(O) = ¢ = 1 fiir alle k. Wir erhalten die Taylorreihe

22
1—|—x—i———i———|— ijl:ex fiir alle x € R.

Die Potenzreihe, mit welcher wir e* definiert haben, ist genau die Taylorreihe von e*!

3. Genauso verhélt es sich mit den Funktionen sin « und cos . Wir haben auf Seite 55 gesehen,
dass diese Funktionen als unendliche Reihen darstellbar sind, ndmlich

3 5 o0 1\k
sng = - T T G ke
3! 5! (2k + 1)!
k=0
2 4 o0 k
_ Z &z _ (=1 o
cosxr = l—g—i—z—... = ,;_0 (2k)!x

Dies sind die Taylorreihen von sinx und cosx um den Entwicklungspunkt zy = 0. Sie kon-
vergieren also fiir alle z € R gegen die Funktionswerte.
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4.6 Niherungsverfahren zur Losung von Gleichungen
Das Newton-Verfahren

Mit Hilfe des Newton-Verfahrens konnen Nullstellen einer differenzierbaren Funktion ndhe-
rungsweise bestimmt werden. Dieses Verfahren beruht auf der N&dherungsformel (N) von Ab-
schnitt 4.4, bzw. auf der Naherung der Funktion durch Tangenten.

Beispiel
Nehmen wir an, Sie nehmen ein Medikament in Form einer Tablette ein. Dann kann die Kon-

zentration des Wirkstoffes im Blutplasma zum Zeitpunkt x nach der Einnahme durch die
Funktion

ka
f(x)zcka—ke

in pg pro ml beschrieben werden (unter gewissen vereinfachenden Annahmen). Dabei ist &,
die Absorptionskonstante (also ein Mass dafiir, wie schnell der Wirkstoff aufgenommen wird),
k. ist die Eliminationskonstante (ein Mass dafiir, wie schnell der Wirkstoff abgebaut wird)
und C ist eine zeitunabhéngige Grosse.

Zur Bestimmung des Zeitpunktes x,,q., in welchem die Konzentration des Wirkstoffes
am grossten ist, berechnet man die Nullstelle der Ableitung von f. Tatséchlich kann die
Gleichung f'(xmqez) = 0 problemlos nach ., aufgelost werden. Anders sieht es aus, wenn
man die Zeitspanne berechnen méchte, wahrend der das Medikament wirkt. Fiir die Wirkung
braucht es eine minimale Konzentration m > 0. Graphisch sieht dies so aus:

(efkem _ B*kall?)
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Zu bestimmen sind also  mit f(z) = m, bzw. mit f(z) —m = 0. Wieder brauchen wir
Nullstellen einer Funktion, hier der Funktion f(x) —m. Im Gegensatz zu vorher kann die
Gleichung f(x) —m = 0 jedoch nicht nach x aufgelost werden! Wir kénnen diese Nullstellen
nur mit einem Niherungsverfahren bestimmen. Analog kann man Nullstellen einer allgemei-
nen Polynomfunktion vom Grad > 5 nicht exakt bestimmen (es gibt keine Losungsformel,
wie wir im vorhergehenden Kapitel gesehen haben). Fiir solche Situationen brauchen wir das
Newton-Verfahren.

Gegeben ist also eine Funktion f : [a,b] — R, von der wir annehmen, dass sie eine
Nullstelle hat, es also ein ) in [a,b] mit f(xyy) = 0 gibt, und weiter nehmen wir an, dass
f differenzierbar ist. Dann ndhern wir uns x,,; wie folgt.

Wir wéhlen eine Stelle o € [a,b] aus (die wir nahe bei z,,; vermuten) und betrachten
die lineare Ndherung von f um zg, das heisst

f(@) = f(xo) + f'(wo) - (x — x0) = t(x) .
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Wie wir schon gesehen haben, ist die Funktion ¢(z) nichts anderes als die Tangente an den
Graphen von f in xg. Als Néchstes bestimmen wir die Nullstelle z1 dieser Tangente. Um
eine waagrechte Tangente t(x) ohne Nullstelle auszuschliessen, sollten wir xy mit f’(x¢) # 0
gewahlt haben.

In gilinstigen Situationen liegt nun x; niher bei x, als zg. Der Vorgang wird wiederholt mit
x1 anstelle von xg, um noch eine bessere Niherung xo von ) zu finden, usw.

Das Newton- Verfahren ist das wiederholte Anwenden der Formel

T T T )

Tn

fiir n > 0, wobei z¢ ein geschickt gewéhlter Startpunkt ist (moglichst nahe bei der gesuchten
Nullstelle und so, dass f’(zg) # 0).

In vielen Féllen konvergiert die Folge (z,,) schnell gegen die Nullstelle zp,), wenn zg nahe
bei x,,y ist.

Beispiel
Gesucht ist eine Nullstelle der Funktion f(z) = 2° + 5z + 1.

Fiir einen geeigneten Startwert schaut man sich entweder den Graphen von f an oder man
nutzt den Nullstellensatz 2.8 (Seite 40):
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Mit dem Startwert xo = 0 findet man:

L,
—0,2
—0,199936102
—0,199936102

W N 3

Mit dem Startwert xy = 10 brauchen wir 13 Schritte, um auf die Zahl —0,199936102 zu
kommen, mit dem Startwert xg = 1000 sind es 35 Schritte.

Dies war ein harmloses Beispiel, wo das Newton-Verfahren schnell konvergierte. Dies lag
vor allem daran, dass f eine streng monoton wachsende Funktion ist und demnach auch nur
eine Nullstelle hat.

Es gibt aber andere Beispiele, wo bei ungeschickt gew#hltem Startwert das Verfahren
versagt.

Beispiele

1. Gesucht ist eine Nullstelle der Funktion f(z) = 23 — 2z + 2.
Die Iterationsformel lautet

3 — 22, + 2

Tpn4+l = Tp — 322 _ 9
n

-2

:L”():O 561:1 xgz()

Mit dem Startwert zo = 0 (oder xg = 1) nimmt x,, abwechslungsweise die Werte 0 und 1 an.
Die Folge (z,,) konvergiert also nicht.

Mit den Startwerten zyp = —1 oder zp = —4 zum Beispiel findet man hingegen (nach 7
bzw. 6 Schritten) die Nullstelle

Tou = —1, 769292354 .

2. Die Funktion f(z) = 2® — 2z + 1 hat drei verschiedene Nullstellen. Um alle drei Nullstel-
len mit Hilfe des Newton-Verfahrens zu erhalten, miissen die Startwerte geschickt gewihlt
werden. Ungiinstig sind Startwerte nahe bei einer Extremalstelle, da an diesen Stellen die
Tangente an die Funktion fast horizontal verlduft.

3. Die Folge () des Newton-Verfahrens konvergiert fiir die Funktion f(z) = 22 — 2z + 2 mit
keinem Startwert xg. Der einfache Grund ist, dass diese Funktion gar keine Nullstelle hat.
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4. Offensichtlich ist = 0 die einzige Nullstelle der Funktion
T

V1+a2

Allerdings konvergiert die Folge (z,,) des Newton-Verfahrens nur fiir Startwerte xg mit |zo| < 1.
Fiir |zo| > 1 divergiert die Folge (z,,) und fiir g = £1 springt die Folge zwischen +1 und —1
hin und her (Details dazu siehe Zusatzaufgabe der Ubung 6).

flz) =

Tangente in o = 2 14 I

- . 0.5

Tangente in g =1

T T T T T T T T T T T
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 25 3

-0.51

1]
f(z) Tangente in zy =

Ist f : [a,b] — R zweimal stetig differenzierbar, dann gilt fiir die Konvergenz des Newton-
Verfahrens:

e Ist 2,y eine einfache Nullstelle (d.h. f/(zpu) # 0), dann konvergiert das Newton-Verfahren
fiir alle Startwerte xg nahe bei z,.

In diesem Fall gibt es eine reelle Zahl ¢ > 0, so dass
|Tp41 — Toat] < o, — xnuu\z fiir alle n.
Grob gesagt verdoppelt sich die Anzahl der korrekten Stellen bei jedem Schritt.

e Bei einer mehrfachen Nullstelle z,,,) ist die Konvergenz langsamer.

Sucht man eine Losung einer beliebigen (algebraischen) Gleichung, so kann man alle
Terme der Gleichung auf eine Seite bringen, so dass man eine Gleichung der Form f(z) =0
erhélt. Mit Hilfe des Newton-Verfahrens findet man so (im giinstigen Fall) n&herungsweise
eine Losung der urspriinglichen Gleichung.

Beispiel

Unser Taschenrechner sagt uns, dass
V2 =1,4142136. ..

Woher kommt diese Zahl? Tatsiichlich kann /2 sehr schnell mit Hilfe des Newton-Verfahrens
berechnet werden. Die Zahl v/2 ist ja definiert als positive Losung der Gleichung

=2,



74

Diese Gleichung kann zur Gleichung 2?2 — 2 = 0 umgeformt werden. Wir suchen also die
positive Nullstelle der Funktion

flz)=2%-2.
Die Iterationsformel des Newton-Verfahrens lautet damit
_ f@n) e —2  2al—ai+2 1 2

fir n > 0. Da 12 < 2 < 22, gilt 1 < /2 < 2. Wir kénnen also zum Beispiel den Startwert
zo = 1 wéahlen und erhalten

T
1,5

1,416
1,414215686
1,414213562
1,414213562

U W N S

Die obige Iterationsformel fiir /2 ist iibrigens genau die rekursiv definierte Zahlenfolge, die
wir schon in Kapitel 2 (Seite 29) untersucht haben.

Fixpunktiteration

Die Fixpunktiteration ist ein weiteres Verfahren, mit dem man eine Losung einer Gleichung
naherungsweise bestimmen kann.
Ist f: D — R eine Funktion, dann heisst x € D Fizpunkt von f, falls gilt

flx)==.

Beispiele

1. Sei f(x) = %x Dann ist 0 der einzige Fixpunkt von f.
2. Die Funktion f(z) = 22 hat die beiden Fixpunkte 0 und 1.

Geometrisch betrachtet ist die xz-Koordinate von jedem Schnittpunkt des Graphen von f
mit der Geraden y = x ein Fixpunkt von f.
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Mit der Fizpunktiteration kann man die Fixpunkte einer Funktion bestimmen. Das geht
wie folgt. Man wéhlt einen Startwert zg. Dann berechnet man schrittweise

1= f(zo), x2=[f(z1), ..., @ny1=f(zn),
Konvergiert die Folge (x,) gegen einen Grenzwert xg, und ist f stetig, dann folgt
f(xﬁx) = Tfix -
Wegen der Stetigkeit von f gilt ndmlich
Tx = nh_{go Tn+l = nh_{go f(xn) = f(nh_{go Tn) = f(Thx) -

A A

,,,,,,,,,,,,,
777777777

X0 X0

Beispiel

Gesucht ist € R mit cosz = z. Wir wihlen den Startwert o = 1 und fiithren die Fixpunkt-
iteration durch. Mit dem Taschenrechner geht das so: Das Bogenmass einstellen (Anzeige
RAD), dann fortlaufend die cos-Taste driicken.
Wir brauchen ein wenig Geduld, doch wir erhalten schliesslich nach 53 Schritten den
Fixpunkt
rax = 0,739085133 .

Fiir sogenannte kontrahierende Funktionen konvergiert die Fixpunktiteration immer ge-
gen einen Fixpunkt.

Definition Eine Funktion f : D — R heisst kontrahierend, falls es eine Konstante K < 1
gibt, so dass
|f(b) = f(a)] < K|b—a] fiir alle a,b € D .

Dies bedeutet, dass der Abstand von zwei Funktionswerten f(a) und f(b) stets kleiner ist als

der Abstand der Werte a und b.

Geometrisch betrachtet ist eine Funktion kontrahierend, wenn ihr Funktionsgraph eine
“flache” Kurve darstellt.

Beispiel

Die Funktion f(z) = iz ist kontrahierend fiir alle z € R.
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Fiir beliebige a,b € R gilt:

Um fiir eine kompliziertere Funktion f : [a,b] — R iiberpriifen zu kénnen, ob sie kon-
trahierend ist, geniigt es zu untersuchen, ob es eine Konstante K < 1 gibt mit

[f'(@)] < K
fiir alle z € [a, b]. Wegen des Mittelwertsatzes (Satz 4.4) folgt dann némlich, dass

1£(6) = f(a)l = [f(zo)| - [b—a| < K|b—a

wobei zq € [a,b]. Also ist f kontrahierend. Die Bedingung | f'(z)| < K < 1 bestétigt auch un-
sere geometrische Beobachtung, dass der Graph einer kontrahierenden Funktion eine “flache”
Kurve ist (die Tangentensteigung ist tiberall “klein”).

Ist nun f kontrahierend und wenden wir das Fixpunktverfahren an, dann folgt

|1 — Tax| = [f(zn) — f(@x)| < Kl|zp — x| < |20 — 2a4]
das heisst, x,, 11 liegt ndher beim Fixpunkt xgy als x,.

Satz 4.12 (Fixpunktsatz) Sei D ein Intervall und f : D — R kontrahierend mit f(D) C D.
Dann besitzt f genau einen Fixpunkt xgx itn D. Weiter konvergiert die Folge

Tnt1 = f(xn)
mit jedem beliebigen Startwert xg € D gegen Tgax.

Dass f hochstens einen Fixpunkt hat, folgt aus der Bedingung, dass f kontrahierend ist.
Denn hitte f zwei Fixpunkte, dann wiirde der Abstand dieser beiden Fixpunkte durch f
nicht verkleinert, ein Widerspruch zu f kontrahierend.

Beispiele
1. Beim Newton-Verfahren haben wir die Gleichung 2° + 5z 4+ 1 = 0 betrachtet. Diese Glei-
chung kénnen wir in eine Fixpunktgleichung umformen.
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Ist f(z) = —£(2% + 1) kontrahierend, zum Beispiel auf D = [—%, %] ?

Also ist f kontrahierend auf D. Weiter gilt f(D) C D.

Warum gilt f(D) C D? Nun, f(—1) =0€ D und f(1) = =2 € D. Da f'(z) = —a* <0
fiir alle x € D, ist f monoton fallend in D. Also liegen alle Funktionswerte fiir x € D zwischen
f(=1)=0und f(1) = -2, d.h. f(D)C[-2,0] C D.

Wiéhlen wir nun zum Beispiel den Startwert zg = 0. Nach dem Fixpunktsatz muss die
Fixpunktiteration gegen den Fixpunkt in D konvergieren, was auch der Fall ist:

L,
—0,2
—0,199936
—0,199936102
—0,199936102

=W N =3

Im Allgemeinen konvergiert das Newton-Verfahren schneller als die Fixpunktiteration.

2. Die Funktion
fz) =2

ist kontrahierend auf dem Intervall D = [—%, 2] und f(D) C D. Mit jedem Startwert zo € D
konvergiert also die Iteration z,11 = f(x,) = 22 gegen den Fixpunkt zg, = 0.
Fiir den anderen Fixpunkt Zg, = 1 gilt f'(Zg,) = 2 > 1 und wir kénnen den Fixpunktsatz
nicht anwenden. Tatséchlich divergiert die Folge x,, gegen oo fiir jeden Startwert xzg > 1.
Nun gibt es einen Trick, und zwar kann die Umkehrfunktion betrachtet werden (falls f
umkehrbar ist).

v=fl@) = [)=ff@)=2

Die Fixpunkte von f und f~! sind identisch und wir kénnen den Fixpunktsatz auf f—*
(anstelle von f) anwenden. Ist der Funktionsgraph von f “steil”, dann ist der Graph von f~1
“flach” und umgekehrt.

Die Funktion f : R>g — Rxq, f(x) = 2? ist umkehrbar mit f~(x) = /x. Fiir f~!
sind nun tatséchlich die Voraussetzungen vom Fixpunktsatz im Intervall D = [%, 100] bei-
spielsweise erfiillt. Mit der Fixpunktiteration x,1 = f~!(x,) = \/Tp erhalten wir somit den
Fixpunkt Zg, = 1, und zwar fiir jeden Startwert in D.
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5 Integration

Es gibt zwei verschiedene Arten von Integration: Bei der unbestimmten Integration wird eine
Stammfunktion gesucht, bei der bestimmten Integration geht es um die Berechnung eines
Fldacheninhalts. Der Zusammenhang dieser beiden Arten wird im Hauptsatz der Differential-
und Integralrechnung ersichtlich.

5.1 Das unbestimmte Integral
Definition Eine Funktion F(x) heisst Stammfunktion von f(z), falls
F'(x) = f(x).
Beispiel
Sei f(x) = 322 Dann ist F(r) = 2% eine Stammfunktion von f(x). Dies ist jedoch nicht
die einzige, denn auch F(z) = z3 + 10 oder F(z) = 23 + 72?2 ist eine. Die allgemeine
Stammfunktion ist
F(r)=a2%+c¢
fiir eine Konstante c.

Definition Die Menge aller Stammfunktionen von f(z) nennt man unbestimmtes Integral
und schreibt

/ f(z)dz = F(z) +c.

Wichtige Beispiele

1
/x"dm = — "4 e
n+1

/exdx = e"+c
/sin(x)dw = —cos(z)+c
/cos(:r:)d:v = sin(z) +c¢
/ L dr — arct n(zx) +

o e = arctan(z) +c
1
—dz = 1
/x x n(|z|) + ¢

Warum gilt die letzte Gleichung? Fiir x > 0 haben wir gezeigt, dass

(in(jz})) = (n(a)) =

Fiir x < 0 wenden wir die Kettenregel an und erhalten

Also ist In(|z|) eine Stammfunktion von 1 fiir 2 # 0.
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5.2 Das bestimmte Integral

Gegeben sei eine auf dem Intervall [a, b] nicht-negative und beschrénkte (bei Stetigkeit erfiillt)
Funktion f, das heisst es gibt reelle Zahlen m und M, so dass fiir alle = € [a, b] die folgende
Ungleichung gilt: 0 < m < f(x) < M.

Frage: Wie gross ist der Flidcheninhalt der zwischen der x-Achse, den vertikalen Grenzen
x =a und x = b und der Kurve y = f(x) eingeschlossenen Fliche?

Idee: Beschreibung der Flidche durch Rechtecke (ndherungsweise).

Wir teilen deshalb das Intervall [a,b] in n Teilintervalle gleicher Linge | =

ein, indem

wir n — 1 Zwischenpunkte einfiigen:

a=a+0-1l <a+ll<a+2-]l<---<a+(n-1)-l <b=a+n-I.
—_—— ——— ——— —_———

—_——
=x0 xr1 T2 Tpn_1 In
Das Intervall wird also in die n Teilintervalle [x;_1, ;] fiir i = 1,...,n zerlegt.

Fiir jedes dieser Teilintervalle definieren wir das Minimum und das Maximum der Funktion
f auf diesem Intervall

m; = Minimum von f auf [z;_1, ;]

M; = Maximum von f auf [z;_1, 2]

und wir definieren die folgenden beiden Summen, die Naherungen fiir den gesuchten Fléchen-
inhalt sind.

Untersumme Obersumme
n n

Up = Zmz (i — wi—1) O, = ZMi (i — T5-1)
i=1 M i=1 v

=l = =l

251 Z 251 7
201 Z 20 7

15 Z 15 7
/] /]
10 10
5 5
0 0
0 1 2 3 4 5 0 1 2 3 4 5
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Mit dem globalen Maximum M und dem globalen Minimum m von f gilt somit
m(b—a) < U, < Flicheninhalt < O, < M(b—a).

Die beiden Folgen (U, )n>1 und (O, ), >1 sind also beschrankt. Ausserdem ist (Uy,),>1 monoton
wachsend und (O,,),>1 monoton fallend. Beide Folgen sind somit konvergent, miissen aber
im Allgemeinen nicht den gleichen Grenzwert haben!

Definition Falls

lim U, = lim O,

n—o0 n—oo

gilt, so heisst dieser gemeinsame Grenzwert (der dann der gesuchte Flicheninhalt ist) das
bestimmte Integral und man schreibt
b
a

Diese Schreibweise geht auf LEIBNIZ zuriick. Das Integralzeichen [ steht fiir [umme (mit
unendlich vielen Summanden) und dr = Ax = x; — ;1 ist ein “unendlich kleiner” Schritt.

Das bestimmte Integral wird nicht nur zur Berechnung des Flécheninhalts einer geometri-
schen Flédche benutzt. Der Flicheninhalt kann beispielsweise auch eine Weglénge oder einen
Zuwachs bedeuten.

Beispiele

1. Wir fahren mit dem Velo zur Mathe-Vorlesung und bewegen uns mit der Geschwindigkeit
v(t) fort. Dann haben wir den Weg

Ankunftszeit
v(t)dt
Startzeit
zuriickgelegt.

2. Die Basler Bevolkerung wuchs in der ersten Hilfte dieses Jahres. Die Wachstumsrate betrug
g(t). Dann ist der Zuwachs in diesem Zeitraum gegeben durch

30. Juni
g(t)dt .

1. Januar

Da wir es meistens mit stetigen Funktionen zu tun haben, ist die folgende Tatsache sehr
praktisch.

Satz 5.1 Ist die Funktion f stetig in |a,b], dann gilt

n—o0

b
lim U, = ILm O, :/ f(z)dx.

Insbesondere existieren alle vorkommenden Grenzwerte.
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Eigenschaften des bestimmten Integrals

/ab f@)dz = / f(x)dx+/cb f(2)dz

fiir ¢ € [a, b]. Insbesondere existiert das Integral, auch wenn f in einzelnen Stellen nicht stetig
ist (man nennt f in diesem Fall stickweise stetig).

1. Es gilt

Beispiel
Sei

2. Nimmt die Funktion auch negative Werte an, so ist das Folgende zu beachten. Das be-

stimmte Integral
b
| s

ist der Flécheninhalt der Fliche zwischen der Kurve und der z-Achse, wobei der Flicheninhalt
von Flichenstiicken unterhalb der z-Achse negativ gezahlt wird.

Y

Beispiel

2
/ sin(z) dz
0

3. Man definiert

4. Es gilt
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5. Es gilt
b
/ A fx)dx = A f(x)dx fir A e R

b b
[ G@ganas = [ e+ [ gl

6. Fiir den Inhalt A der Fliche, die von den Graphen der beiden Funktionen f(x) und g(z)
eingeschlossen wird, gilt

Integralmittelwert

Beginnen wir mit einem Beispiel. Wir wollen das Integral der Funktion f(z) = %x + % Zwi-
schen den Grenzen 1 und 5 bestimmen.

Satz 5.2 (Integralmittelwert) Sei f stetig in [a,b]. Dann gibt es ein xg € [a,b] mit

b
| f@de = )b -a).
Die Bezeichnung Integralmittelwert kommt von der Gleichung im Satz dividiert durch b — a,

1
b—a

b
/ f(@)dz = f(zo). (1)

Beschreibt zum Beispiel f(x) die Tagestemperatur fiir x zwischen ¢ = 0 und b = 24
(Stunden), dann wird durch die linke Seite der Gleichung (IM) die mittlere Tagestempe-
ratur berechnet. Die rechte Seite der Gleichung (IM) sagt weiter aus, dass diese mittlere
Tagestemperatur zu einem bestimmten Zeitpunkt xy tatséichlich auch angenommen wird.
Hierfiir ist die Stetigkeit von f wesentlich.
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Hauptsatz der Differential- und Integralrechnung

Ein bestimmtes Integral der Funktion f kann mit Hilfe einer Stammfunktion von f berechnet
werden.

Beispiel

Sei f(t) die Menge an Réppli (= Konfetti), die pro (infinitesimal kleine) Zeiteinheit wéhrend
des Cortege (= Fasnachtsumzug) auf die Mittlere Briicke in Basel fillt. Sei F'(¢) die Gesamt-

menge an Rappli (seit Beginn des Cortege zur Zeit ¢ = 0) auf der Mittleren Briicke. Dann
gilt

t
Pt = [ s@ys. 1)
Die Anderungsrate der Gesamtmenge an Réppli entspricht dem Zuwachs pro Zeiteinheit

F/(t) = £(1). (2)

Die Menge an Réppli, die in einem Zeitintervall [t1, to] auf die Mittlere Briicke fillt, entspricht
der Differenz der Gesamtmengen,

t2
f(@)de = F(t2) = F(t1) - (3)
t1
Die Gleichungen (1) — (3) gelten fiir allgemeine Funktionen f mit einer Stammfunktion F'.

Integrieren ist also die Umkehrung des Ableitens.

Satz 5.3 (Hauptsatz der Differential- und Integralrechnung)
Sei f stetig in [a,b]. Dann gilt

b
| f@de = F®) - Fla)
fiir eine beliebige Stammfunktion F von f, das heisst, fiir F mit F'(z) = f(z).

Man schreibt
b

[ e = Fe

a
Fiir die Herleitung dieses Satzes zeigt man zunéchst, dass

Fa) = [ " f(tyat

eine Stammfunktion von f ist, und zwar diejenige, fiir die F,(a) = 0 gilt. Mit einer kurzen
Rechnung erhélt man daraus die Behauptung des Satzes.

Beispiele

L /14(x2+ﬁ) d —

2. /Oﬂ (2cos(z) — ) dx =
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5.3 Integrationstechniken

In Kapitel 4 iiber die Differentiation haben wir praktische Regeln kennengelernt, mit welchen
jede aus elementaren Funktionen zusammengesetzte Funktion abgeleitet werden kann. Fiir
die Integration gibt es auch Regeln und Tricks (die wir hier einiiben wollen), mit welchen man
gewisse Integrale von Hand gut berechnen kann. Doch leider gibt es zahlreiche Integrale, die
trotz Anwendung all dieser Tricks nicht berechenbar sind. Diese besitzen nachweislich keine
aus den elementaren Funktionen zusammengesetzte Stammfunktion. In diesen Féllen liefert
das Integral

Fa) = [ " f(t)at

eine neue Funktion. Zum Beispiel ist der Integralsinus Si(x) fiir x > 0 definiert durch

Si(z) = /0 "sin®) g,

t

(vgl. Seite 90) und die Fehlerfunktion erf(x) fiir x > 0 ist definiert durch

2 xr
erf(m) = ﬁ/o eitht

(vgl. Seite 90 und néchstes Semester).

Stossen Sie also eines Tages auf ein Integral, welches Sie nicht mit den iiblichen Tricks
16sen koénnen, sollten Sie nicht zu lange z6gern, in eine Formelsammlung zu schauen. Finden
Sie dort Ihr Integral nicht, versuchen Sie es mit einem CAS (Computeralgebrasystem wie
zum Beispiel Maple oder Mathematica) oder fragen Sie direkt eine*n Mathematiker*in (oder
besser eine*n theoretische*n Physiker*in).

Schliesslich sagt man:

Ableiten ist ein Handwerk, Integrieren ist eine Kunst.
Partielle Integration
Seien u = u(x) und v = v(x) zwei differenzierbare Funktionen. Aus der Produktregel folgt
(uv) =v'v+ur,

das heisst,

u'v = (uv) —uv.

/u'vdx:uv—/uv'dx.

Integrieren ergibt

Satz 5.4
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Ist also die zu integrierende Funktion f(z) = fi(z)f2(x) ein Produkt von zwei Funktionen
f1, f2 und das Produkt Fi(z)f}(x) oder f](z)Fs(x), wobei Fy, F> Stammfunktionen von fi,
bzw. fs sind, einfacher als f(z) zu integrieren, dann ist partielle Integration empfehlenswert.

Beispiele

1./wexdm:?

Durch Ableiten konnen wir das Resultat kontrollieren:

(xe® —e" +c) =

2. /:U2 cos(z)dr =7

3 / In(z) de =7

Hier wenden wir einen Trick an, und zwar wihlen wir /' = 1 und v = In(x). Dann ist u = x
und v’ = 1. Es folgt

/ln(x)dm:/l-ln(m)dx:xln(x)—/x%dx:xln(x)—m—l—c.

(ME]

4. I:/ sin?(z) dz = ?
0
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Wegen sin?(x) + cos?(z) = 1 gilt cos?(z) = 1 — sin?(z). Es folgt

Substitution

Sei F' eine Stammfunktion der Funktion f. Dann gilt nach der Kettenregel

(F(g(x))) = F'(g(x)) - ¢'(x) = f(g(x)) - ¢' () .

Durch Integration erhalten wir

[ 166 2)do = Flg(a)) +c.

Wir konnen auch u = g(x) substituieren. Es gilt dann (formal) ¢’(z) = 2, und damit

g (z)dz = du.
Satz 5.5 FEs gilt

[ o) wyde = [ swyu,

wobei uw = g(x) substituiert wurde.

Ist also die zu integrierende Funktion ein Produkt von zwei Funktionen, wobei die eine Funk-
tion zusammengesetzt und die andere die Ableitung der inneren Funktion ist, dann ist Sub-
stitution empfehlenswert.

Beispiel

/2:6 cos(z?) dx =7



87

Fiir das bestimmte Integral gilt mit den Bemerkungen vor Satz 5.5, dass

b , b g(b) g(b)
[ S o wrds = Figt@| = Fo0) ~ Pt = F@f! T = [ sy
a a a g(a
Wir kénnen also v = g(z) substituieren wie vorher, doch miissen wir die Integrationsgrenzen

entsprechend anpassen.

Satz 5.6 FEs gilt

mit u = g(x).

Beispiele

s

2z cos(z?)dr =?  Wie oben setzen wir u = g(x) = 22, und damit ist du = 2z dz.

™

w.\.v

Dies stimmt tiberein mit der Berechnung via unbestimmtes Integral vom Beispiel oben.

3 sinx
2./ ——dzx ="
o V14coszx
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4. Manchmal ist eine Substitution u = g(z) hilfreich, obwohl ¢’(x) nicht explizit im Integran-
den vorkommt.

4
/ eVedy = ?
0

Partialbruchzerlegung

Ziel der Partialbruchzerlegung ist, eine rationale Funktion auf eine Linearkombination der
folgenden Bestandteile zu bringen:

1 20 +p 1
(x—ay’  (@+pr+on’  22+1

",

fiir n > 1. Die Stammfunktionen dieser Funktionen sind nédmlich bekannt. Es gilt

1 -1 1
/ i — te n>2), / de =In(|z —a|) +

(x —a)" (n—1)(x —a)*? r—a
2 1
/ng;iqu:ln(‘xZ‘f‘PﬂU‘f‘q,)‘i‘C, /x2+1dx:arctan(m)+c.

Um das Vorgehen zu verstehen, betrachten wir hier zwei typische Beispiele. Weitere Bei-
spiele sind in den Ubungs(zusatz)aufgaben zu finden.

Beispiele

z+1 z+1
1. =
22—4  (z—-2)(x+2)

Zuerst faktorisiert man das Nennerpolynom (wenn moglich). Wegen der beiden Linearfakto-

und
T — T

ren ¢ — 2 und z + 2 erwartet man Ausdriicke der Gestalt 5 fiir reelle Zahlen

a,b. Wir machen daher den Ansatz

r+1 a b

$2—4_£C—2+$—|—2.
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Es gilt also a = %, b= i und wir finden

z+1 1 3 1
/x2_4d:'3 - Z</x—2dx+/x+2dx>

1 1
= 1(3111]35—2\ +Injz+2|)+c= Zln(\x—le\xQ—éﬂ)—i—c.

Alternative Methode zur Bestimmung von a und b:

Wir gehen vom gleichen Ansatz wie oben aus. Nun multiplizieren wir diese Gleichung mit
x — 2 und setzen anschliessend x = 2.

Zur Bestimmung von b multiplizieren wir den Ansatz mit x + 2 und setzen anschliessend
T =-—2.

2. Ziel ist die Bestimmung einer Stammfunktion von

f() 42 —2r+1
xTr) =
22+ 2x+1

Hier gilt
Grad(Z&hlerpolynom) > Grad(Nennerpolynom) .
In diesem Fall fithren wir zuerst eine Polynomdivision durch. Wir erhalten
-z + 2
224+ 2x+1°
Fiir den Bruch machen wir nun wieder einen Ansatz.

J@)=a—1+

Fiir die Stammfunktion von f finden wir damit



90

Integration einer Potenzreihe

Wir haben in Satz 4.1 (Seite 55) gesehen, dass eine Potenzreihe gliedweise abgeleitet werden
kann. Analog kann eine Potenzreihe f(x) = iakaﬁk gliedweise integriert werden. Ist f(z)
konvergent auf einem Intervall I, dann ist diekf:i?lf diese Weise erhaltene Stammfunktion von
f ebenfalls konvergent auf I.

Beispiele

1. Mit Hilfe der Potenzreihe von sin(¢) wollen wir den Integralsinus

Si(z) :/Oxwdt

t

durch eine Potenzreihe beschreiben. Wir dividieren die Potenzreihe von sin(t) gliedweise durch
t und erhalten

sint 1

Diese Reihe ist konvergent fiir alle ¢ € R. Nun integrieren wir gliedweise. Dies ergibt

sintdt . t3 N 1o .
_— = —_— —_— — s e . ... C‘
t 3-31 5.5
Damit gilt fiir x > 0
¥ sin(t) z3 z°
Si(z)= | X gt = — — 4+ & ...
i(z) A ¢ RN TIE) +

2. Analog schreiben wir fiir die Fehlerfunktion erf(z) die Funktion e~'* als Potenzreihe:
2 3 4 46
v LT eyt D
6—1—|—$+E+§+ - e’ =1 t+2! 3!—i—
Gliedweises integrieren ergibt
/ Pt =t r + e v + +c
e — —_ — S e e — e
3 5.2 7.3

und wir erhalten fiir x > 0

9 [® 9 3 5 7
erf(ﬂ:):—/ e_tht:_(x_x__{_x__x__F...)‘
0 . .3
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b
Wie berechne ich ein Integral [ f(z)dxz?
a

o Direkt, das heisst mit Hilfe einer Stammfunktion F von f und Satz 5.3.

e Wenn f(z) = fi(x)f2(x) ein Produkt von zwei Funktionen fi, fo mit Stammfunktionen
F1, bzw. F; ist, kann man es versuchen mit

- partieller Integration (Satz 5.4), falls Fy(x)f5(z) oder fi(x)Fy(x) einfacher als f(z) zu
integrieren ist,

- Substitution (Satz 5.6), falls fi(z) = g(h(z)) eine zusammengesetzte Funktion und
f2(x) = W' (z) die Ableitung der inneren Funktion ist.

e Wenn f(z) = fz% eine rationale Funktion ist

- und ¢'(z) = p(x), dann ist F(x) = In|g(x)| eine Stammfunktion von f,

- und ¢'(z) # p(x), dann kann man es mit einer Partialbruchzerlegung (S. 88-89) versuchen.

e Wenn f(z) als Potenzreihe darstellbar ist, kann gliedweise integriert werden (S. 90).

5.4 Uneigentliche Integrale

Gegeben sei eine auf dem rechts (bzw. links) offenen Intervall [a,b) (resp. (a,b]) definierte
und stetige Funktion f(x). Wir wollen den Begriff des bestimmten Integrals erweitern, um
eine Moglichkeit zu haben,

e Funktionen f, die bei der Annéhrung x — b (resp. © — a) nicht beschrankt sind, und
e Funktionen f iiber unbeschrinkte Integrationsintervalle [a, c0) (resp. (—oo, b))

zu integrieren. Dazu definieren wir zunéchst die folgenden vier Ausdriicke.

Definition

b r

f(x) fiir £ — b nicht beschrankt: / flx)dxe = lig} / f(x) dx
b b

f(z) fir £ — a nicht beschrénkt: / flx)yde = liin / f(z) dz

unbeschrinktes Intervall [a, 00): / flx)dx = le f(x) dx
b b

unbeschrinktes Intervall (—oo, b]: / flx)dx = lim f(x) dx

—00 r——00 r

Diese Integrale nennt man uneigentliche Integrale. Ein uneigentliches Integral konvergiert
(bzw. divergiert), wenn der zugehorige Grenzwert existiert (bzw. nicht existiert).
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Beispiele

1
1
1./—dx:
o T

207

Zunichst ist nicht klar, was dieses Integral iiberhaupt bedeutet. Geometrisch misst das
Integral den Flidcheninhalt unter der Kurve der Funktion f(z) = %, welche allerdings im Null-
punkt eine Polstelle hat. Intuitiv kénnten hier zwei Dinge passieren: Entweder der Flacheninhalt
ist unendlich gross (da die Funktion unendlich wichst) oder der Flécheninhalt ist endlich (da
das unendliche Wachstum der Funktion durch die schnelle Annéhrung an die y-Achse kom-
pensiert wird).

1 |
2./ — dz = lim — dx = oo , denn
0oz r{0 J, T

1

1 1
[ Lao !
X x

207

157

y 101
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207

y 101

o T
4./ re Tdr = lim re ®dr = 1 , denn
0

T—00 0

T r 1
/ e ¥dr = —(x+1)e*| = It +1
0 0 er

wobei hier partiell integriert wurde wie im 1. Beispiel auf Seite 85. Mit der Regel von Bernoulli-
de ’Hopital folgt

. r+1 . 1
lim — = lim —— =0
r—00 e’ r—oo e’
041
0.3
y 0.2
0.1
0 ‘
0 2 4 6 8 10

Intuitiv kénnten auch hier zwei Dinge passieren: Entweder der Flicheninhalt ist unendlich
gross (da das Intervall unendlich lang ist) oder der Flicheninhalt ist endlich (da die unendliche
Intervalllinge durch die schnelle Ann#hrung an die z-Achse kompensiert wird).
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6 Differentialgleichungen

Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und
Ableitungen (die erste oder auch hohere) von y vorkommen. Losungen einer Differentialglei-
chung sind Funktionen y, welche die Gleichung erfiillen.

Gewisse Differentialgleichungen sind uns schon in Kapitel 5 begegnet, ndmlich in der Form

y' = f(x)

wobei f eine gegebene reelle Funktion ist. Eine Losung dieser Gleichung ist eine Stammfunk-
tion y = y(x) = F(z) von f(x). Diese Losung ist eindeutig bis auf eine Konstante c¢. Es gibt
eine eindeutige Losung, wenn zusétzlich eine sogenannte Anfangsbedingung vorgegeben ist,
zum Beispiel y(0) = 0.

Differentialgleichungen kommen vor allem in der Physik vor, aber auch das Wachstums-
verhalten von Populationen wird oft mit Hilfe von Differentialgleichungen beschrieben.

Beispiel

Fruchtfliegen vermehren sich im Sommer unter idealen Bedingungen besonders schnell. Eine
Biologin stellt fest, dass fiir die Wachstumsrate y'(¢) von Fruchtfliegen zum Zeitpunkt ¢ die
Beziehung

y'(t) =1,5y(t)

gilt. Dabei bezeichnet y(t) die Anzahl der Fruchtfliegen nach ¢ Tagen. Am ersten Tag (zum
Zeitpunkt ¢ = 0) z#hlt sie 20 Fruchtfliegen. Mit wievielen Fruchtfliegen muss sie nach einer
Woche rechnen?

Die Differentialgleichung im vorhergehenden Beispiel nennt man Differentialgleichung
(kurz DGL) erster Ordnung, weil nur y und die erste Ableitung von y vorkommen. Allgemein
nennt man eine Differentialgleichung von n-ter Ordnung, wenn die n-te Ableitung von y die
héchste in der Differentialgleichung vorkommende Ableitung ist.

Differentialgleichungen von erster Ordnung sind zum Beispiel

y=0, y=[f), y=ay+b, ¥ =pl)y+a), y=a’+by+c.
Differentialgleichungen von zweiter Ordnung sind zum Beispiel

y' =0, ¢ ' +ay=0, o' +by +cy=coszx.

6.1 Separierbare Differentialgleichungen
Exponentielles Wachstum

Die Gleichung
y =y (1)

ist eine Differentialgleichung erster Ordnung. Genauer miisste man schreiben f'(z) = f(x)
fiir alle z € R. Um aber anzudeuten, dass die Funktion f variabel ist, schreiben wir in diesem
Kapitel statt f immer y, also ¢/(z) = y(x) fiir alle z € R. Und weil in dieser Gleichung y und
nicht z gesucht ist, lassen wir in der Differentialgleichung wie oben das x einfach weg.
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Eine Losung der DGL (1) kénnen wir erraten: Die Funktion
y(@) =e

erfiillt die DGL (1), denn (e®) = €®. Ist dies die einzige Losung?

Betrachten wir die DGL 3’ = y geometrisch, indem wir in jedem Punkt (x,y) des Ko-
ordinatensystems 3’ = y als Steigung einzeichnen. Das heisst, wir zeichnen in (zg,yo) einen
Geradenabschnitt der Geraden durch (zg,yp) mit der Steigung y ein.

)
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Dies nennt man ein Richtungsfeld. Eine Losung y(z) der DGL ¢ = y “passt” in dieses
Richtungsfeld, denn die rot eingezeichneten Steigungen sind gerade Tangentenabschnitte an
den Graphen von y(z) (v ist ja die Steigung der Tangente an die Funktion y(x) ).

OOl
g g d

- e e e B S
S N N O N RN S O RN S S SSRGS IO W
N N N N N N Y R O N N N N
AR N N e N N e N R N NN
AR R AR R R R R AR S e e e e e e N R S N e N N
ARRRARRRARRRARR RN ARRRARRRRRRIAR R RN RN
ARRRRAR R R R AR R R R R I I I T I B O R e N A I R I R Y
AARARRARARRARNARRARARRRARAEERRARARRARRARRARRRRARRARRR
A RARRARARRARRA AR RRARARARRA AR A RRARRARRRRARRRRRRRRN
AR TR T TV TV T U T O VO T T R UV U -y AR TR N TR N R R Y

Im ersten Bild ist die Losung y = e* eingezeichnet, denn fiir diese Losung gilt die Anfangs-
bedingung

y(0) =€’ =1.
Im mittleren Bild gilt die Anfangsbedingung y(0) = 2, was durch die Funktion y(z) = 2e*
erfiillt ist. Im Bild rechts sehen wir die Losung y(z) = —%ex, da dort die Anfangsbedingung

— 1
y(0) = —35 gilt.
Die allgemeine Losung der Differentialgleichung 1/ = y ist also gegeben durch

y(r) = Ae”,

wobei die reelle Zahl A durch die Anfangsbedingung y(0) = Ae® = A bestimmt ist.
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Betrachten wir nun die leicht allgemeinere Differentialgleichung

y = ay (2)
fiir eine reelle Zahl a. Fiir jede Konstante A (d.h. reelle Zahl A) ist die Funktion
y(@) = A

eine Losung dieser DGL, und jede Losung hat diese Form. Durch Ableiten kénnen wir
iiberpriifen, dass y(z) eine Losung ist:

Die Differentialgleichung (2) beschreibt, falls A > 0, ein exponentielles Wachstum fiir
a > 0, bzw. ein exponentieller Zerfall fiir ¢ < 0, wobei die momentane Wachstums-, bzw.
Zerfallsgeschwindigkeit y’ proportional vom Bestand y abhéngt.
Beispiel

Die Wachstumsrate von Fruchtfliegen aus dem Beispiel zu Beginn des Kapitels ist genau von
dieser Form, und zwar gilt

y'(t) = 1,5y(t),
das heisst, a = 1, 5. Die Losung ist also von der Form

y(t) = Ae'Pt.

Mit der Anfangsbedingung y(0) = 20 kénnen wir A und damit die Losung y(t) bestimmen:

Nach einer Woche muss die Biologin bei idealen Bedingungen also bereits mit
y(7) = 726310

Fruchtfliegen rechnen!

Beschrinktes Wachstum
Wir verallgemeinern noch einmal und betrachten die Differentialgleichung

y =ay+b 3)
fiir reelle Zahlen a # 0 und b.

Um eine Losung dieser Differentialgleichung zu finden, schreiben wir

d
ﬁzy/(x):ay—i—b.

Nun bringen wir die Variablen y auf die linke Seite (dabei setzen wir voraus, dass y # —3)

und die Variablen x auf die rechte Seite und integrieren beide Seiten.

dy =dr — / dy :/dx.
ay +b ay +b
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Wir erhalten

und 16sen diese Gleichung nach y auf:

Zu Beginn dieses Beispiels hatten wir vorausgesetzt, dass y # —3. Aber y = —g ist auch eine
Losung der DGL (3), denn die Ableitung einer konstanten Funktion ist gleich Null.
Die Differentialgleichung (3) hat also die allgemeine Losung

b
ax
y(r) = Ae? — "
fiir eine beliebige Konstante A.

Bei vielen Wachstumsprozessen in der Natur ist die Zu- oder Abnahme eines Bestandes
durch eine natiirliche Grenze (man nennt sie Sittigungs- oder Kapazititsgrenze) beschréankt.
Zum Beispiel kann ein Teich nicht unendlich viele Fische aufnehmen oder eine warme Fliis-
sigkeit kann sich nicht unendlich stark abkiihlen. Die Wachstumsgeschwindigkeit ist in diesen
Féllen proportional zur Differenz aus Séttigungsgrenze S und Bestand, das heisst, man erhélt
eine Differentialgleichung der Form

vy =a(S—y)=—ay+aS

fiir eine Konstante a. Diese Differentialgleichung ist vom Typ der DGL (3) und hat damit
die allgemeine Losung
ylx) =S+ Ae .

Fiir @ > 0 ist die Funktion e”** monoton fallend. Deshalb beschreibt y(z) einen Wachstums-
prozess, falls A < 0 und einen Zerfallsprozess, falls A > 0.

Beispiel

Frisch aufgebriihter Kaffee hat eine Temperatur um die 80° C. Als angenehme Trinktempe-
ratur gilt etwa 45° C. Wir lassen den Kaffee im 20° C warmen Zimmer stehen. Pro Minute
kiithlt der Kaffee um 15 Prozent der aktuellen Temperaturdifferenz zur Raumtemperatur ab.
Nach wieviel Minuten kénnen wir den Kaffee trinken, ohne uns die Zunge zu verbrennen?
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Sei y = y(x) die Temperatur des Kaffees in ° C nach z Minuten. Dann gilt

Fiir die eindeutige Losung erhalten wir

Der Graph von y(z) = 20 4+ 60 e~%'7 sieht so aus:

1004

50

Fiir die optimale Trinktemperatur von 45° C miissen wir nun die Gleichung y(z) = 45 nach
x auflésen:

Wir kénnen unseren Kaffee also nach ungefdhr 6 Minuten trinken.

Trennung der Variablen

Kehren wir nochmals zur allgemeinen Differentialgleichung (3) zuriick. Die Methode, mit
der wir diese Differentialgleichung gel6st haben, ist auch auf andere Differentialgleichungen
anwendbar, ndmlich auf sogenannte separierbare Differentialgleichungen.
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Definition Eine Differentialgleichung der Form
y = g()h(y)
fiir Funktionen g(z) und h(y) in z, bzw. y heisst separierbar.

Eine separierbare Differentialgleichung kann nach der folgenden Methode geldst werden;
man nennt sie Trennung der Variablen.
1. Schreibe

W~ ).

2. Trenne die Variablen, das heisst bringe y nach links und = nach rechts:

1
mdy = g(x)dx

/@dy:/g(m)dx

5. Jede Nullstelle y = yo von h(y) ergibt zusitzlich eine konstante Losung y(z) = yo.
(Diese Losungen wurden im 2. Schritt bei der Division durch h(y) ausgeschlossen.)

3. Integriere unbestimmt:

4. Lose nach y auf.

Beispiel
Gesucht ist die Losung der Differentialgleichung

Yy =(y—2)(z+1)*
mit der Anfangsbedingung y(—1) = 2,5. In der obigen Notation ist hier
g@)=(z+1)> wnd h(y)=y-2.

Diese DGL ist also separierbar und wir kénnen sie durch Trennung der Variablen 16sen.
Die ersten beiden Schritte ergeben

Im dritten Schritt wird integriert:

Und schliesslich miissen wir die Gleichung nach y auflosen:

Die konstante Funktion y(x) = 2 (geméss 5. Schritt) ist hier wegen der Anfangsbedingung
y(—1) = 2,5 keine Losung.
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Mit der Anfangsbedingung folgt

Die eindeutige Losung der Differentialgleichung ist also

y@)Z%eaﬁﬂg+2.
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Logistisches Wachstum

Wachstumsprozesse konnen zu verschiedenen Zeitpunkten unterschiedlich verlaufen. Es kann
zum Beispiel vorkommen, dass eine Population zunéchst exponentiell wéchst, da die Sit-
tigungsgrenze zunichst noch kein Hindernis fiir die noch kleine Population darstellt. Doch
néhert sich die Grosse der Population der Sittigungsgrenze, dann verringert sich das Wachs-
tum und es ist begrenzt. Man nennt diese Kombination von exponentiellem und begrenztem
Wachstum logistisches Wachstum. Die Wachstumsgeschwindigkeit ist hier proportional zum
Produkt vom Bestand und der Differenz aus Séttigungsgrenze und Bestand. Wir erhalten
also eine Differentialgleichung der Form

y =ay(S—y). (4)
Ist die Population y noch klein, dann ist S —y ~ S und y’ ~ aSy beschreibt ein exponen-

tielles Wachstum. Je mehr sich y der Grenze S néhert, desto kleiner wird S — y, und die
Anderungsrate von y nimmt immer mehr ab.

Beispiel

Wir beobachten das Wachstum einer Pantoffeltierchenpopulation im Labor mit konstanten
Umweltbedingungen. Die Population wird durch die Gleichung

900 — y
'=1,1-y-
v =11y (St

beschrieben. Welche Funktion y beschreibt die Anzahl der Pantoffeltierchen in Abhéngigkeit
der Zeit, wenn wir zur Zeit £ = 0 ein einziges Pantoffeltierchen haben?
Diese Differentialgleichung beschreibt ein logistisches Wachstum mit S#ttigungsgrenze

Sz900unda:%.
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Wir kénnen die Differentialgleichung (4) (und damit auch die DGL des Beispiels) durch
Trennung der Variablen losen.

Das Integral auf der linken Seite berechnen wir mit Hilfe einer Partialbruchzerlegung. Wir
machen den Ansatz

Wir bestimmen « und § mit der alternativen Methode, multiplizieren also den Ansatz zuerst
mit y und dann mit y — .5:

Es folgt

Damit erhalten wir

ln(’y_s‘> = —aSz +c
Yl

und wir miissen diese Gleichung noch nach y auflésen.

Die allgemeine Losung der Differentialgleichung (4) ist also
S

fiir eine Konstante A # 0. Zusétzliche Losungen sind die konstanten Funktionen y(x) = 0

und y(z) = S (da hier h(y) = ay(S —y) = 0 fiir yo = 0 und yo = 5).
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Beispiel

Fiir das Wachstum der Pantoffeltierchenpopulation gilt S = 900 und a

Anfangsbedingung y(0) = 1 erhalten wir fiir A:

Das Wachstum der Pantoffeltierchenpopulation wird also beschrieben durch

900

y()

_ 900
14899 Ll
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500 4
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Die Differentialgleichung (4) ist ein Spezialfall einer Differentialgleichung der Form

y/

=ay’ +by+c

()

fiir reelle Zahlen a # 0, b und ¢. Hat das quadratische Polynom auf der rechten Seite zwei
verschiedene reelle Nullstellen y;, y2, dann kénnen wir die Differentialgleichung (5) analog
zur DGL (4) 16sen. Die Geraden y = y; und y = y9 bilden in diesem Fall Asymptoten fiir die
Losung y(x). Der Fall y; = yo fithrt durch direkte Integration (ohne Partialbruchzerlegung)
auf eine rationale Funktion y. Und hat das quadratische Polynom keine reelle Nullstelle, dann
kommt mit Hilfe einer Substitution der Arcustangens ins Spiel (s. Zusatziibung).

6.2 Lineare Differentialgleichungen erster Ordnung

Eine Differentialgleichung erster Ordnung heisst linear, wenn sie auf die Form

/

Y

= p(z)y + q(x)

fiir Funktionen p(x) und ¢(x) gebracht werden kann. Die DGL

y = p(x)y

(D

(H)

heisst die zur Gleichung (I) zugehorige homogene Gleichung. Entsprechend nennt man die
Gleichung (I) manchmal inhomogen.
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Da die DGL (I) linear in 3’ und y ist, gilt das Folgende. Ist y; eine Losung von (I) und
yo eine Losung von (H), dann ist die Summe yo = y1 + yo wieder eine Losung von (I). Sind
umgekehrt y; und yo zwei Losungen von (I), dann ist die Differenz yy = y; — y2 eine Losung
von (H). Damit gilt der folgende Satz.

Satz 6.1 Die allgemeine Losung von (1) erhdlt man durch Addition einer partikuliren Losung
von (I) und der allgemeinen Lésung von (H).

Die allgemeine Losung von (H) erhélt man durch Trennung der Variablen, da (H) eine sepa-
rierbare DGL ist. Wie wir eine partikulire (d.h. einzelne) Losung von (I) finden, schauen wir
uns zuerst an einem Beispiel an.

Beispiel

Wir betrachten die DGL zy’ — 2y = 2. Dies ist eine lineare DGL erster Ordnung, denn wir
kénnen sie umschreiben zu

2
/ 2
— . 1
y=-yt+t=zx ()

Es ist also p(z) = 2 und g(z) = 2?. Die zugehérige homogene Gleichung ist

2
/

_ 2, H
y'="y (H)

Diese homogene Gleichung (H) kénnen wir durch Trennung der Variablen l6sen:
d 2 d 2
= -y = / & / —dx
de Y x

In|y| = 2In |z| + ¢ = In(2?) + ¢

Integration fiihrt zu

und auflésen nach y ergibt
y::I:eln(mQ)Jrc::I:ec-xQ:A-:U2 mit A =4e“#0.
Hinzu kommt die konstante Losung y = 0. Die allgemeine Losung von (H) ist also
yu(z) = Az? .

fiir eine beliebige Konstante A.

Um eine partikulidre Losung der inhomogenen Gleichung (I) zu finden, machen wir nun
einen Ansatz, der Variation der Konstanten genannt wird und erstmals von JOSEPH-LOUIS
LAGRANGE (1736 — 1813) benutzt wurde. Wir nehmen die allgemeine Losung yy(z) = Az?
von (H) und ersetzen die Konstante A durch eine (noch unbekannte) Funktion a(x), das

heisst wir setzen

y(z) = a(x) - 2? .

Diesen Ansatz setzen wir in die Gleichung (I) ein:

Linke Seite:
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Rechte Seite:

Da “Linke Seite = Rechte Seite” wegen der Gleichung (I), folgt

Die Konstante ¢ kénnen wir weglassen, da wir nur eine einzelne Losung von (I) suchen; also
a(x) = x geniigt. Damit erhalten wir eine partikulire Losung der Gleichung (I),

yp(z) = a(z) - 2% =23

Nun addieren wir die partikulére Losung von (I) und die allgemeine Losung von (H),
y(@) = yp(2) + yu(z) = 2° + As?
Gemiss Satz 6.1 ist dies die allgemeine Losung der inhomogenen Gleichung (I).
Dieser Ansatz mit der Variation der Konstanten ldsst sich auf eine beliebige lineare DGL
erster Ordnung (I) ¥’ = p(z)y + ¢(x) anwenden. Sei (H) y' = p(z)y wie vorher.
Herleitung und Bestimmung der allgemeinen Lésung von (I)
Schritt 1: Bestimmung der allgemeinen Losung yy von (H) durch Trennung der Variablen.
d d
ﬁzy’:p(x)-y = /?y:/p(m)dx.

Integration fiithrt zu
Inly| = P(x) + ¢

fiir eine Stammfunktion P(z) von p(z). Auflésen nach y ergibt die allgemeine Losung
yu(z) = Ael®)

fiir eine beliebige Konstante A.

Schritt 2: Bestimmung einer partikuldren Losung yp von (I) durch Variation der Konstanten.
Aufgrund der allgemeinen Losung in Schritt 1 machen wir den Ansatz

yp(x) = a(z) "

und setzen ihn in die Gleichung (I) ein:

Es folgt
a'(x) eP(@) — q(x) = a(x) = q(x) e P)

Ist Q(z) eine Stammfunktion von ¢(z) e (), dann erhalten wir eine partikulire Losung

yp(r) = Q(x) eP@)
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Schritt 3: Geméss Satz 6.1 ist nun die allgemeine L6sung von (I) gegeben durch

)P+ Ae"® = (Q(a) + A) ",

y(x) = yp(x) +yn(z) = Qz
wobei P(x) und Q(z) Stammfunktionen von p(z), bzaw. g(x) e @) sind.

Beispiele

1. Gesucht ist die allgemeine Losung der inhomogenen linearen DGL

y=ytz.

=1 und ¢q(z) = z.

Hier ist also p(x)

= z. Also ist

1ist P(x)

Schritt 1: Eine Stammfunktion von p(z)

AeP@) — A

yu ()

die allgemeine Losung der zugehorigen homogenen DGL 3/ = y. Das wissen wir auch vom
q(z) e P@ = e,

Beginn dieses Kapitels (Seite 95).
Schritt 2: Fiir eine partikuldre Losung brauchen wir eine Stammfunktion Q(z) von

Mit partieller Integration wie im 1. Beispiel auf Seite 85 finden wir

Qz) = —(1+z)e .

Damit erhalten wir die partikulédre Losung

Schritt 3: Die allgemeine Losung der DGL 3/ = y + z ist demnach

yptyp=—1—x+ Ae”.

y()

Die Bilder zeigen die eindeutigen Losungen zu verschiedenen Anfangsbedingungen:
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2. Gesucht ist die eindeutige Losung der inhomogenen linearen DGL

sin(x)

y = cos(z)y +e

sin(z)

mit der Anfangsbedingung y(m) = 0. Hier ist also p(z) = cos(x) und ¢(z) = e
Eine Stammfunktion von p(x) = cos(z) ist

Fiir yp brauchen wir eine Stammfunktion Q(x) von

Damit erhalten wir die allgemeine Losung der DGL

Mit der Anfangsbedingung y(m) = 0 erhalten wir fiir die Konstante A die Gleichung

SONONNONNNN

SN\ S S e

NN N

|
~
\ A e e O

e

N NN

,/,)/5

6.3 Lineare Differentialgleichungen zweiter Ordnung
Wir beginnen mit drei Beispielen.
1. Die DGL 3” = 0 hat die allgemeine Losung

y(z) = Az + B

fiir beliebige Konstanten A und B.
2. Die DGL y” = y hat die allgemeine Losung

y(x) = Ae® + Be™®

fiir beliebige Konstanten A und B. Tatséchlich sind dies Losungen, denn
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3. Die DGL y” = —y hat die allgemeine Losung
y(x) = Acos(x) + Bsin(x)

fiir beliebige Konstanten A und B.

In allen drei Beispielen kénnen zwei Konstanten A und B frei gewéhlt werden. Um eine
eindeutige Losung zu erhalten, miissen deshalb zwei Anfangsbedingungen vorgegeben werden,
zum Beispiel y(0) und y'(0).

Allgemein untersuchen wir hier Differentialgleichungen der Form

ay” +by +cy=0 (6)

mit a # 0, welche man homogene lineare Differentialgleichung zweiter Ordnung (mit konstan-
ten Koeffizienten) nennt.

Wir bemerken zuerst, dass fiir eine Losung y von (6) auch Ay, fiir jede reelle Zahl A, eine
Losung ist, und sind y;, yo zwei Losungen von (6), dann ist auch die Summe y; + y2 eine
Losung von (6). Die Losungen von (6) bilden deshalb einen sogenannten Vektorraum, wie wir
in Kapitel 9 sehen werden.

Az

Um eine Losung von (6) zu finden, machen wir den Ansatz y(z) = e und setzen ihn in

die Gleichung (6) ein:

Da e £ 0, folgt
aX’ +bA+c=0.
Diese Gleichung nennt man charakteristische Gleichung von (6).
Wir erhalten also eine Losung y(z) = e*® von (6), wenn A die charakteristische Gleichung

erfiillt. Diese Gleichung hat entweder zwei verschiedene reelle Losungen, eine reelle Losung
oder zwei konjugiert komplexe Losungen. Wir untersuchen diese drei Fille nacheinander.

1. Fall: Die Gleichung a\? 4+ bA + ¢ = 0 hat zwei verschiedene reelle Losungen.

Dies ist genau dann der Fall, wenn b?> — 4ac > 0. Die beiden reellen Lésungen sind dann

gegeben durch
—b+ Vb?% — 4ac wnd X —b—Vb?% — 4ac
— 2 pr— .
2a 2a

Die allgemeine Losung der DGL (6) ist in diesem Fall

A1

y(x) = AeM?® + Bel2?®
Da A; und Ay Losungen der charakteristischen Gleichung sind, sind e** und e*?* Losungen
der DGL (6). Nach der Bemerkung oben ist dann auch jede Linearkombination eine Losung.
Beispiel
Gesucht ist die Losung der DGL
29" — 10y + 12y = 0

mit den Anfangsbedingungen y(0) = 7 und ¢'(0) = 19.
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Charakteristische Gleichung;:

Mit den Anfangsbedingungen gilt

Die (eindeutige) Losung ist also y(z) = 2€2* + 537 .

2. Fall: Die Gleichung aA? 4+ b\ + ¢ = 0 hat eine reelle Losung.
Dies ist genau dann der Fall, wenn b?> — 4ac = 0. Die Losung ist dann gegeben durch

—b

Ao
Die allgemeine Losung der DGL (6) ist in diesem Fall

y(x) = (Az + B)eo®

)\0 >\0

Dass €% eine Losung ist, ist klar von der Herleitung. Dass xze*%* eine Losung ist, kann man

durch Einsetzen in die Gleichung (6) tiberpriifen.
Beispiel
Gesucht ist die Losung der DGL

y" — 10y + 25y =0

mit den Anfangsbedingungen y(0) = 3 und ¢'(0) = 13.
Die charakteristische Gleichung lautet:

0=2—10\+25= (A —5)? — N =5
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Die allgemeine Losung ist also gegeben durch
y(z) = (Az 4+ B)e®® .

Von der ersten Anfangsbedingung erhalten wir direkt 3 = y(0) = B. Fiir die zweite Anfangs-
bedingung miissen wir zuerst y(z) ableiten.

Die (eindeutige) Losung ist also y(z) = (—2x + 3)e>® .

3004
200

100

3. Fall: Die Gleichung a\? + b\ + ¢ = 0 hat zwei konjugiert komplexe Losungen.

Dies ist genau dann der Fall, wenn b?>—4ac < 0. Die beiden konjugiert komplexen Losungen
sind dann gegeben durch

b Vdac — b2
M=a+iw und I=a—iw, Wobeia:—z—,w:%.
a a

Die allgemeine Losung der DGL (6) ist in diesem Fall
y(x) = e**(Asin(wx) + B cos(wx)) .

Dass e** sin(wx) und e** cos(wzx) Losungen von (6) sind, konnten wir vermuten, da

eME — plativ)r _ paxiwe _ e“*(cos(wx) + isin(wz))

eine Losung von (6) ist und die DGL linear in y,y’ und y” ist.
Beispiel
Gesucht ist die Losung der DGL

y" — 4y +13y =0

mit den Anfangsbedingungen y(0) = 3 und y'(0) = 9.
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Die allgemeine Losung ist also gegeben durch
y(x) = e**(Asin(3z) + B cos(3z)) .

Die erste Anfangsbedingung gibt wieder direkt 3 = y(0) = B. Fiir die zweite Anfangsbedin-
gung miissen wir wieder zuerst y(z) ableiten.

Die (eindeutige) Losung ist also
y(x) = e**(sin(3z) + 3cos(3z)) = V10 e* (sin(3z + u))

mit u = arccos(\/%) ~ 1,25 (vgl. Satz 1.3).

500001

-500004

-~100000

~1500004

Physikalische Anwendung: Das Federpendel

Wir betrachten einen an einer Spiralfeder aufgehéingten Korper der Masse m. Die Funktion
y(t) soll die Auslenkung des Korpers aus der Ruhelage zum Zeitpunkt ¢ beschreiben.

Experimente zeigen, dass bei kleinen Auslenkungen aus der Ruhelage die riicktreibende Kraft
proportional zur Auslenkung ist. Der Proportionalititsfaktor k£ > 0 hidngt nur von der Feder
ab und heisst Federkonstante. Da diese Kraft entgegen der Auslenkung wirkt, konnen wir sie
durch —ky angeben. Die Auslenkung wird zudem durch eine Reibungskraft (Luftwiderstand)
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gebremst. Diese ist proportional zur Geschwindigkeit 3/(¢). Den Proportionalititsfaktor be-

zeichnen wir mit p. Da die Kraft gleich Masse m mal Beschleunigung y”(t) ist, erhalten wir
die Differentialgleichung

7
my =

= —ky—py,
die wir umschreiben zu
my" +py' +ky=0.

Dies ist eine homogene lineare DGL zweiter Ordnung. Die zugehorige charakteristische Glei-
chung lautet

m\ +p\+k=0.

Wir nehmen nun an, dass die Reibung klein ist, das heisst, es gelte p?> < 4mk. Damit sind
wir im 3. Fall. Fiir die allgemeine Losung erhalten wir

y(t) = e (Asin(wt) + B cos(wt)) = Ce™ sin(wt + u)

p ko p?

a:—% und w= T
und reellen Zahlen A, B (bzw. C, u), welche durch die Anfangsbedingungen festgelegt werden.
Man erkennt, dass die Schwingung geddmpft ist, das heisst, die Amplitude nimmt ab und zwar
exponentiell mit Ce®! = Ce zm'?

Fiir k =m =1 und p = 0,1 beispielsweise sieht der Graph von y(t) so aus:

| y(t)
osf{ | “‘ \

|| / \ / \

| | \

| N\
(AR AN ANA
[ 1o | 5 | 1o 1 [ % [25 30
| “ / \ / \F\ / /

6.4 Systeme von linearen Differentialgleichungen

Die einfachste Form eines solchen Systems besteht aus zwei Differentialgleichungen

Y1
Y

ay1 + bya
cy1 + dys

(7)
mit reellen Zahlen a,b,c,d und hat als Losung Paare von Funktionen y;(z), y2(x). Diese
beiden Funktionen sind also untereinander “gekoppelt”.

Systeme von zwei und mehr linearen Differentialgleichungen kénnen mit Hilfe von so-
genannten Eigenwerten und Eigenvektoren (der Koeffizientenmatrix) gelost werden. Diese

Begriffe werden wir jedoch erst im n#chsten Semester kennenlernen. Wir werden dann, als
Anwendung, ein System von linearen Differentialgleichungen 16sen.

Sind die Koeffizienten a, b, ¢, d des Systems (7) abhéngig von x, dann gibt es keine allge-
meine Losungsverfahren.
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Riuber-Beute-Beziehungen

Interessant sind speziell Systeme von Differentialgleichungen, die zwei (oder mehrere) Po-
pulationen beschreiben, die sich gegenseitig beeinflussen. Betrachten wir zum Beispiel zwei
konkurrierende Populationen, Raubtiere und ihre Beutetiere. Abhéngig von der Zeit ¢t be-
zeichne y; = y;1(t) die Anzahl der Beutetiere und y2 = y2(t) die Anzahl der Ridubertiere.

Ohne Réuber wiirde sich die Beute geméss y; = ay; vermehren. Sind Réuber anwesend,
vermindert sich die Wachstumsrate y; um einen Term proportional zur Anzahl der Réuber.
Fiir die Population der Beute ergibt dies eine Differentialgleichung der Form

y) = (a—by2) y1 .

Fiir die Riauber gilt, dass sie ohne Beute gemiss y) = —cys aussterben wiirden. Gibt es
Beutetiere, dann vermindert sich die Sterberate um einen Term proportional zur Anzahl der
Beutetiere. Fiir die Population der Rauber ergibt dies eine Differentialgleichung der Form

Yy = —(c—dy1)y2 -

Diese beiden Differentialgleichungen bilden ein System von Differentialgleichungen, das
Volterra-Lotka Rduber-Beute-Modell genannt wird. Losungsfunktionen y; und yo kénnen nur
mit Hilfe von numerischen Verfahren berechnet werden. Eine typische Losung sieht wie folgt
aus, wobei die blaue Kurve die Populationsdichte der Beute und die rote Kurve die Popula-
tionsdichte der Rauber anzeigt.

100
80
60
401

207

Zu Beginn wachsen beide Populationen. Ab einem bestimmten Zeitpunkt gibt es zuviele
Réuber, so dass der Bestand an Beutetieren stark zuriickgeht. Mit der Zeit gibt es dadurch
zu wenig Beute fiir die Réduber, so dass die Rduberpopulation zeitverzogert abnimmt. Dadurch
erholt sich jedoch die Beutepopulation wieder. Nach einer gewissen Zeit gibt es wieder genug
Beute, so dass auch wieder die Rauberpopulation zunimmt und sich der Zyklus wiederholt.
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7 Lineare Gleichungssysteme

Lineare Gleichungssysteme treten in vielen mathematischen, aber auch naturwissenschaftli-
chen Problemen auf; zum Beispiel beim Losen von Differentialgleichungen, bei Optimierungs-
aufgaben, in der Elektrotechnik und auch in der Chemie. Bei Anwendungen treten meist sehr
viele Gleichungen und Unbekannte auf, was effiziente Losungsmethoden unabdingbar macht.
Hilfsmittel dieser Losungsmethoden sind Vektoren und Matrizen.

7.1 Vektoren in der Ebene und im Raum

In diesem Abschnitt ist das Wichtigste iiber Vektoren in der Ebene und im Raum zusam-
mengefasst. All dies sollte aus der Schule bekannt sein. Der restliche Stoff dieses Semesters
baut auf diesen Grundlagen auf.

In der Ebene und im Raum lassen sich Vektoren geometrisch als gerichtete Strecken
oder Pfeile darstellen. Wir beschreiben die Vektoren ausschliesslich durch Lénge und Rich-
tung. Deshalb betrachten wir zwei Vektoren als gleich, wenn ihre Richtung und ihre Lénge
iibereinstimmen. .

Unter einem Ortsvektor OP eines Punktes P verstehen wir den gerichteten Pfeil im Ko-
ordinatensystem mit Anfangspunkt im Ursprung O und Endpunkt P. Wir kénnen uns also
jeden Vektor als Ortsvektor vorstellen.

7.

/

Wir schreiben einen Vektor sowohl in der Ebene als auch im Raum als Spaltenvektor:

V1
- uy -
U= , U= | v
U2

v3

Die reellen Zahlen wq,us bzw. v1,v9,v3 heissen Komponenten des Vektors ¢ bzw. ¢. Diese
Komponenten beziehen sich auf die Standardbasis €1, € der Ebene bzw. €7, €3, €3 des Raumes.

Das heisst, es gilt
. U1 o . . 1\ . 0
u= = u1€] + us€y mit €7 = , €9 =
U 0 1

bzw.
V1 1 0 0
U= | vy | =v1€] + v2E5 + v3€3 mite; =10],é&=11],e35=10
V3 0 1
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-1

- U Lo . . L
Fassen wir « = ( 1) als Ortsvektor & =OP auf, dann sind die Komponenten uq, us von @
U2

—
gerade die Koordinaten des Punktes P: P = (uj,u2). Analog fiir ¥ =OP im Raum.

Rechenregeln

Die Definition von Summe i+ 9, Differenz @ — ¥ und Skalarmultiplikation ki mit einer reellen

Zahl k erfolgt komponentenweise:

(75} U1 Ul + U1 (75} k:ul
UEtT=u | £ |v2] = | us £y und ki=k|us | = | kug
us U3 us + V3 us kiU3
u+v
\Y k1U
u Kau u

Diese Vektoroperationen gehorchen den folgenden Regeln.
Satz 7.1 Fiir Vektoren i, U und W in der Ebene oder im Raum und reelle Zahlen k,1 gilt:

(i) a+v=0+u
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U1l
. .. - . - u . - .
Die Lénge (oder Norm) ||i|| eines Vektors @ = ( 1> in der Ebene, bzw. € = | ua | im
U2
u3

Raum ist gegeben durch
2

]| = \/uf +us, bzw. ||| = \/m

z

uz

Geraden und Ebenen im Raum

Es gibt im Wesentlichen zwei verschiedene Beschreibungsformen von Geraden und Ebenen,
die Parametergleichung und die Koordinatengleichung.

Parametergleichung einer Geraden. Eine Gerade in der Ebene bzw. im Raum ist gegeben
durch

T
F:(j):ﬁ—i—t@' bzw. 7= |y |=4u+t7 mitteR
z

wobei :O—IS der Ortsvektor eines (fest gewéhlten) beliebigen Punktes P auf der Geraden
und ¥ ein Richtungsvektor langs der Geraden ist. Fiir jeden Punkt der Geraden gibt es also
(genau) ein ¢ in R, so dass der Vektor 7 der Ortsvektor dieses Punktes beschreibt. Man nennt
t einen Parameter.

X

H
Punkt Q € g <= esgibteint € Rmit r=4d+1t7=0Q
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Beispiel
Gesucht ist eine Parametergleichung fiir die Gerade g durch die beiden Punkte A = (1,—2,5)
und B = (4,6, —2). Liegt C' = (7,14, —9) auf der Geraden ¢?

Parametergleichung einer Ebene. Eine Ebene im Raum ist gegeben durch
x
Fr=|y| =d+sv+td mit s,t € R
z

H
wobei @ =OP der Ortsvektor eines beliebigen Punktes P auf der Ebene und ¢ und @ zwei

nicht parallele Richtungsvektoren in der Ebene sind. Hier sind s und ¢ zwei Parameter.
z

\ Y

w

X

Aus der Schule wissen Sie, dass eine Gleichung der Form y = max + ¢ eine Gerade in der
Ebene beschreibt, wobei m die Steigung und ¢ der y-Achsenabschnitt der Geraden ist. Die
folgende leicht allgemeinere Schreibweise dieser Gleichung beschreibt auch die Geraden, die
parallel zur y-Achse sind.
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Koordinatengleichung einer Geraden in der Ebene. Eine Gerade in der Ebene ist
gegeben durch
ar+by+c=0

wobei a, b, ¢ reelle Zahlen sind. Dabei gilt:

Der Punkt P = (z,y0) liegt auf der Geraden <= axo+byo+c=0

Koordinatengleichung einer Ebene im Raum. Eine Fbene im Raum ist gegeben durch
ar +by+cz+d=0

wobei a, b, ¢, d reelle Zahlen sind.

Tatséchlich beschreibt diese Gleichung eine Ebene und nicht eine Gerade. Es ist eine Glei-
chung in den drei Unbekannten z,y, z. Zwei Unbekannte sind also frei wahlbar, dann ist die
dritte bestimmt. Dies entspricht den zwei Dimensionen der Ebene (bzw. den zwei Parametern
der Parametergleichung einer Ebene).

Eine Gerade im Raum ist nicht durch eine einzige Koordinatengleichung beschreibbar. Es
sind zwei Koordinatengleichungen dafiir n6tig. Geometrisch bedeuten die zwei Gleichungen
zwei Ebenen. Die Gerade wird also als Schnittgerade zweier Ebenen beschrieben.

Beispiel
Man bestimme die Schnittgerade der beiden Ebenen gegeben durch 2z + 3y — 2+ 1 = 0 und
r—y+2z—1=0.
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7.2 Der n-dimensionale Raum

Im vorhergehenden Abschnitt haben wir speziell die Ebene und den (dreidimensionalen)
Raum untersucht. In Rdumen mit vier oder mehr Dimensionen kann ganz dhnlich gerechnet
werden. Solche Rdume kommen ins Spiel, wenn wir lineare Gleichungssysteme 16sen wol-
len. Hat ndmlich ein lineares Gleichungssystem vier oder mehr Unbekannte, so liegen seine
Losungen nicht in der Ebene oder im (dreidimensionalen) Raum, sondern in einem Raum
von hoherer Dimension. Die Rechenarten des vorhergehenden Abschnitts kénnen problemlos
auf hoherdimensionale Réume erweitert werden.
Sei n eine natiirliche Zahl. Die Menge aller geordneten n-Tupel

(1'17.7]2, e 7'7;71)

mit reellen Zahlen x1,xs,...,x, heisst n-dimensionaler Raum und wird mit R"™ bezeichnet.
Den 2- und 3-dimensionalen Raum kennen wir schon. Der Raum R? ist die Ebene und R? ist
der Raum aus dem vorhergehenden Abschnitt.

Wie in R? und R? bezeichnen wir mit P = (1, ...,2,) einen Punkt in R und mit
vy
T=1:
Uy,

einen Vektor in R™. Eine Addition und eine Skalarmultiplikation konnen wir fiir alle n > 1
komponentenweise definieren,

Ul 1 uy + v kvy
und k

Up, Un, Up + Up, kv,

1
+
<y
Il
+
Il
S
Il

fiir £ € R. Die Subtraktion kann dann als @—9 = @+ (—%) definiert werden, wobei —¢' = (—1)¥
der Vektor mit den Komponenten —uvy, ..., —wv, ist.

Die Vektoren im R"™ gehorchen damit denselben Rechenregeln wie die Vektoren im R?
und R3. Es sind die Gesetze (i)—(viii) aus Satz 7.1.

Weiter ist die Linge (oder Norm) eines Vektors @ in R™ definiert durch

@l = \fut+ - g

7.3 Lineare Gleichungssysteme und Matrizen
Wir beginnen mit einem Beispiel eines linearen Gleichungssystems aus der Chemie.

Beispiel: Reaktionsgleichung

Wird Kaliumdichromat KoCroO7 auf iiber 500° C erhitzt, zerfillt es in Kaliumchromat
K5CrOy4, Chromoxid CryO3 und Sauerstoff O,. Die Reaktionsgleichung lautet mit unbekann-
ten Molekiilzahlen:

21K9Cr07 — 29KoCrOy + 23Cr903 + 2409
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Wie sehen die Koeffizienten z1, x2, x3, x4 in der Reaktionsgleichung aus, die gewéhrleisten,
dass bei den Reaktanden und Produkten der Gleichung die Anzahlen der jeweiligen Atome
gleich sind?

Bringen wir alle Terme auf die linke Seite, erhalten wir die folgenden drei linearen Gleichungen

221 — 2z = 0 (8)
2$1 — X9 — 2$3 = 0 (9)
7$1 - 4$2 - 3$3 - 2$4 = 0 (10)

also ein lineares Gleichungssystem. Wir kénnten dieses Gleichungssystem mit Methoden aus
der Schule 16sen, zum Beispiel durch Einsetzen. Hétte dieses System jedoch mehr Unbekannte
und Gleichungen, wire diese Losungsmethode sehr aufwendig. Es ist deshalb sinnvoll, eine
Losungsmethode zu kennen, mit der man jedes lineare System effizient l6sen kann.

Zuerst halten wir noch ein paar wichtige allgemeine Tatsachen iiber lineare Gleichungs-
systeme fest.
Allgemein nennt man m lineare Gleichungen

aney + -+ apr, = b
a1 + -+ agT, = by
(G)

121 + -+ GpnTn = by
in n Variablen ein lineares Gleichungssystem. Die reellen Zahlen aq1,...,amy, nennt man
Koeffizienten des Gleichungssystems (oder der Gleichungen). Eine Ldsung des Systems besteht
aus n Zahlen zi,...,z, mit der Eigenschaft, dass jede Gleichung des Systems durch die
Substitution x1 = 21,22 = 23, ..., %, = 2z, erfillt wird. Die Gesamtheit aller Losungen heisst

Lésungsmenge oder allgemeine Lisung des Gleichungssystems.
Zum Beispiel bilden die Gleichungen

1‘1—3.%'2 = -7
2004+ = 7

ein lineares Gleichungssystem.

Wir verédndern die zweite Gleichung und erhalten ein neues Gleichungssystem:

.%'1—31‘2 = -7
21‘1—61‘2 = 7

Dieses System hat keine Losung! Also ist nicht jedes Gleichungssystem losbar.
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Wir veréindern die zweite Gleichung noch einmal und erhalten wieder ein neues System:

1‘1—3.%'2 = -7
2$1—6$2 = —-14

Diese zweite Gleichung ist nun iiberfliissig, da sie ein Vielfaches der ersten Gleichung ist
und deshalb keine neue Bedingung an x; und x4 stellt. Die beiden Gleichungen beschreiben
dieselbe Gerade in der Ebene (als Koordinatengleichungen). Alle Punkte (z1,z2) auf die-
ser Geraden sind Losungen des Gleichungssystems. Dieses System hat also unendlich viele
Losungen. Wir konnen diese Losungen auch mit Hilfe eines Parameters beschreiben:

Dies fiihrt zur Parametergleichung der Geraden:

Wir haben nun je ein lineares Gleichungssystem mit genau einer Losung, mit keiner Losung
und mit unendlich vielen Losungen gesehen. Tatséchlich kénnen bei einem beliebigen linearen
Gleichungssystem stets nur genau diese drei Fille auftreten.

Fiir Systeme in 2 oder 3 Unbekannten kann diese Tatsache geometrisch begriindet werden,
denn eine Gleichung in 2 Unbekannten beschreibt eine Gerade in der Ebene und eine Glei-
chung in 3 Unbekannten beschreibt eine Ebene im Raum. Das heisst, das lineare Gleichungs-
system hat eine Losung, wenn die Geraden (bzw. Ebenen) einen gemeinsamen Schnittpunkt

haben.
: /
92

=] 2 i o 1 2 3 4 3 2 K] o 1 2 3 @ 3 2 a1 o 1 2 3

genau eine Losung keine Losung unendlich viele Losungen

Um lineare Gleichungssysteme effizient 16sen zu konnen, schreibt man sie mit Hilfe von
sogenannten Matrizen,

a1 a2 - Qg air a2 - Gy | b1

a1 azr - Qo . a1 azx -+ a2y | bo
am | "L -

aml1 am2 - Amn aml1 am2 - Amn bm

—,

Die Matrix A nennt man Koeffizientenmatriz des Systems (G) und die Matrix (A |b) heisst
erweiterte Matrixz des Systems.
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Matrizen

Allgemein ist eine (reelle oder komplexe) Matriz ein rechteckiges Zahlenschema

a1 a2 - Gip
a1 a2 -+ Q2p
aml Am2 **° Omnp
wobei a;; fiir i =1,...,mund j = 1,...,n (reelle oder komplexe) Zahlen sind; man nennt sie

Elemente oder FEintrige der Matrix (néchstes Semester werden wir auch Matrizen benutzen,
deren Eintridge Funktionen sind). Hat die Matrix m Zeilen und n Spalten, dann bezeichnet
man die Matrix als m x n-Matriz.

Ist speziell n = 1, so hat die m x 1-Matrix nur eine Spalte

ay

am

ist also nichts anderes als ein Spaltenvektor. Ist m = 1, so hat die 1 x n-Matrix nur eine Zeile

(ar - an)

und wird auch als Zeilenvektor bezeichnet.

Ist m = n, so nennt man die n x n-Matrix quadratisch der Ordnung n. Die Elemente
ai1, a9, .. ., any heissen Diagonalelemente. Sind alle Elemente ausser den Diagonalelementen
einer Matrix gleich Null, dann nennt man die Matrix eine Diagonalmatriz.

Eine spezielle Diagonalmatrix ist die Finheitsmatriz

1 0

0 1
der Ordnung n. Weiter nennt man die Matrix, deren sdmtliche Elemente gleich Null sind,
Nullmatriz und bezeichnet sie mit 0.

Schliesslich nennt man zwei Matrizen gleich, wenn sie dieselbe Anzahl Zeilen und Spalten
haben (d.h. dieselbe Grisse haben) und einander entsprechende Eintrége tibereinstimmen.

7.4 Der Gauf-Algorithmus

Es gibt verschiedene Methoden, ein lineares Gleichungssystem zu 16sen. Der Gauf3-Algorith-
mus (oder das GauB-Jordan-Verfahren) ist ein Losungsverfahren, das fiir beliebige lineare
Systeme anwendbar ist. Er ist leicht auf einem Computer programmierbar und vor allem sehr
effizient. Weitere Losungsmethoden sind zum Beispiel die Cramersche Regel und das Losen
mit Hilfe der inversen Matrix, die jedoch nur fiir gewisse quadratische Koeffizientenmatrizen
anwendbar sind, das heisst insbesondere, fiir lineare Systeme mit gleich vielen Gleichungen
wie Unbekannten. Sie sind eher vom theoretischen Standpunkt her interessant.
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Gewisse lineare Gleichungssysteme sind ganz einfach zu losen, zum Beispiel

T1+x9—23 = 0
Tro — T3 = 1 (Sl)
r3 = 3

Durch Riickwértseinsetzen (d.h. die 3. Gleichung in die 2. Gleichung einsetzen) erhélt man

und mit der ersten Gleichung

Noch einfacher zu 16sen ist

1 + g = 4
T2 — 24 = 6 (S2)
r3 + 31‘4 = 3

Wir setzen z4 =t € R und erhalten damit

Das Ziel des Gauf3-Algorithmus ist, ein gegebenes lineares Gleichungssystem in eine der
Formen der beiden Beispiele (S1) und (S2) zu bringen. Dadurch kann schliesslich die Lo-
sungsmenge leicht abgelesen werden.

Der Gauf-Algorithmus wird an der erweiterten Matrix des Systems durchgefiihrt, da
dadurch viel Schreibarbeit gespart werden kann. Die erweiterte Matrix des linearen Systems

(S1) ist

1 1 —-1]0
01 —-1]1
00 113

Sie ist in sogenannter Zeilenstufenform. Die erweiterte Matrix des Systems (S2) ist

1 00 1|4
01 0 —-2|6
001 3|3

Diese Matrix hat sogenannte reduzierte Zeilenstufenform.
Allgemein hat eine Matrix Zeilenstufenform, wenn sie die folgende Gestalt hat:

1 * % -+ % %
1 % -+ % %
1

0

Dabei gilt:

e Hat die Matrix Zeilen, die nur Nullen enthalten, dann stehen diese in den untersten
Zeilen der Matrix.
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e Wenn eine Zeile nicht nur aus Nullen besteht, so ist die erste von Null verschiedene
Zahl eine Eins (man nennt sie fithrende Eins der Zeile).

e In zwei aufeinanderfolgenden Zeilen, die Eintrédge # 0 enthalten, steht die fithrende Eins
der unteren Zeile rechts von der fithrenden Eins der oberen Zeile.

Zum Beispiel sind die folgenden Matrizen in Zeilenstufenform:

13 0 1 10 1 2 -1 1 3 21
A=|(01 -2|, B=|01 0|, C=|00 0], D=0 1 2 5
0 0 1 0 00 0 0 0 001
Hingegen sind
010 1 00 1 0 2
F=|0 00, G=|01 0], H=(0 1 3
1 00 0 20 115

nicht in Zeilenstufenform.
Eine Matrix ist in reduzierter Zeilenstufenform, wenn sie in Zeilenstufenform ist und
zuséatzlich gilt:

e Eine Spalte, die eine fiihrende Eins enthélt, hat keine weiteren Eintréige # 0.

Zum Beispiel sind die folgenden Matrizen in reduzierter Zeilenstufenform:

100 100 1020
E=|010]|, M=|0o0 1|, N=[01 2 0
00 1 00 0 000 1

Das Ziel des Gauf-Algorithmus ist also, die erweiterte Matrix eines linearen Systems
in (reduzierte) Zeilenstufenform zu bringen. Dies kann durch Zeilenumformungen erreicht
werden. Zeilenumformungen der erweiterten Matrix eines linearen Systems bedeuten Ope-
rationen mit den linearen Gleichungen. Zuléssig sind also nur Zeilenumformungen, welche
die Losungsmenge der Gleichungen nicht verédndern. Man nennt solche Zeilenumformungen
elementare Zeilenumformungen. Es gibt drei verschiedene Typen davon:

1. Vertauschen von zwei Zeilen
2. Multiplikation einer Zeile mit einer Zahl # 0

3. Addition eines Vielfachen einer Zeile zu einer anderen Zeile

Beispiel
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Die Schritte des Gauf-Algorithmus sind nun die Folgenden:

1.
2.

Wir bestimmen die am weitesten links stehende Spalte, die Eintréige # 0 enthélt.

Ist die oberste Zahl der in Schritt 1 gefundenen Spalte eine Null, dann vertauschen wir
die erste Zeile mit einer geeigneten anderen Zeile.

Ist a der erste Eintrag der in Schritt 1 gefundenen Spalte, dann dividieren wir die erste
Zeile durch a, um die fithrende Eins zu erzeugen.

. zusammengefasst: Wir erzeugen “oben links” eine (fithrende) Eins.

Wir addieren passende Vielfache der ersten Zeile zu den iibrigen Zeilen, um unterhalb
der fithrenden Eins Nullen zu erzeugen.

Wir wenden die ersten vier Schritte auf den Teil der Matrix an, den wir durch Strei-
chen der ersten Zeile erhalten, und wiederholen dieses Verfahren, bis die erweiterte
Koeffizientenmatrix Zeilenstufenform hat.

Mit der letzten nicht verschwindenden Zeile beginnend, addieren wir geeignete Vielfache
jeder Zeile zu den dariiberliegenden Zeilen, um iiber den fiihrenden Einsen Nullen zu
erzeugen.

Die Schritte 1-5 haben fiir das lineare System zur Folge, dass sukzessive die Variablen
T1,T9,... eliminiert werden.

Manchmal ist es weniger aufwendig, die Matrix nur in Zeilenstufenform zu bringen und
damit den Schritt 6 wegzulassen. Das lineare System kann dann durch Riickwértseinsetzen
wie in Beispiel (S1) gelost werden. Zu beachten ist, dass eine Matrix auf verschiedene Zeilen-
stufenformen gebracht werden kann. Ihre reduzierte Zeilenstufenform ist hingegen eindeutig.

Die Ausfiihrung der Schritte 1-5 heisst Gauf3-Algorithmus, benannt nach dem berithmten
Mathematiker CARL FRIEDRICH GAUS (1777-1855). Wird auch Schritt 6 ausgefiihrt, dann
spricht man vom Gauf$-Jordan- Verfahren. Oft nennt man aber auch Letzteres Gauf3-Algo-
rithmus, was auch wir tun.

Beispiele

1. Gegeben ist das lineare System
r4+4y+3z = 1
2045y +92z = 14
r—3y—2z = 5

Die erweiterte Matrix ist

Wir 16sen nun das Gleichungssystem mit Hilfe des Gau-Algorithmus und beobachten gleich-
zeitig, welche Auswirkungen die Zeilenumformungen der erweiterten Matrix auf das lineare
System haben.
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z4+4y+3z2 = 1
—3Jy+3z = 12
—Ty—95z = 4

r+4y+3z = 1

y— 2z = —4
—Ty —95z = 4
r+4y+3z = 1
y— 2z = —4
—12z = -24
r+4y+3z = 1
y— 2z = —4

z = 2

Nun ist die erweiterte Matrix in Zeilenstufenform. Man kénnte an diesem Punkt das Glei-
chungssystem durch Riickwértseinsetzen 16sen. Wir tun dies nicht, sondern fahren mit dem
Algorithmus (Schritt 6) fort, bis die erweiterte Matrix in reduzierter Zeilenstufenform ist.

T+ 4y = -5
Y = -2

z = 2

T = 3
Y = -2

z = 2

Damit ist das Gleichungssytem gelost!

2. Wir 16sen das Beispiel zu Beginn dieses Abschnitts (zur Reaktionsgleichung) mit Hilfe des
GauB-Algorithmus. Das System war

2.%'1 - 2.%'2 =
2$1 — T2 — 2$3 =
7$1 - 4$2 - 3$3 - 2$4 ==
Da auf den rechten Seiten der Gleichungen alles Nullen stehen, ist die erweiterte Koeffizien-

tenmatrix von der Form (A|0). Die letzte Spalte 0 kénnen wir fiir den GauB-Algorithmus
weglassen, da sie durch die Zeilenumformungen nicht verdndert wird.
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Wir erhalten also die unendlich vielen Lésungen

4

T 3

x 4
F=|"7|=t]3 JteR.

T3 3

334 1

Zur Vermeidung der Briiche hétte man vorher auch x4 = 3t setzen kénnen. Damit erhalten
wir xg = 2t, 9 = 4t und z1 = 4¢, das heisst,

il 4

I N Y teR.
T3 2
Xyq 3

Fiir die Reaktionsgleichung suchen wir eine Losung mit z1, 9, x3, 4 € N. Die kleinste Losung
erhalten wir fiir t = 1,
e :4, .%'2:4, .%'3:2, .%'4:3.

Die Reaktionsgleichung lautet damit:
4K5Cry07 — 4K9CrOy4 + 2Cry03 + 304

Der GauB-Algorithmus ist fiir dieses Beispiel allerdings nicht die effizienteste Losungsmethode.
Die Koeffizientenmatrix A hat “oben rechts” (anstatt “unten links” wie in der Zeilenstufen-
form) alles Nullen, so dass man direkt 1 = ¢ € R setzen kénnte und dann durch sukzessives
Einsetzen zo = t, 3 = %t und x4 = %t erhilt.
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3. Wir betrachten das System

T+ 3562 = 12
r1+x0 = 6
45[?1 — 25[72 = 14.

Die dritte Zeile bedeutet (iibersetzt in eine lineare Gleichung)
O-z1+0-29=28.

Das ist ein Widerspruch. Dieses System hat keine Losung!

7.5 Losbarkeitskriterien

Gegeben sei eine m x n-Matrix A = (a;j). Wir bringen sie auf Zeilenstufenform

1 * % -+ % x

A o A- 1 % -+ % x
1 %

0 0

wobel die ersten r Zeilen keine Nullzeilen sind und die letzten m — r Zeilen Nullzeilen sind.
Dann nennt man die Zahl r den Rang von A; man schreibt r = rg(A).

Satz 7.2 Gegeben ist ein lineares Gleichungssystem mit m Gleichungen und n Unbekannten.

-,

Sei A die Koeffizientenmatriz und (A|b) die erweiterte Matriz.
(1) Das System ist losbar <=  rg(A) =rg(A|b)
(2) Ist das System losbar, dann gilt:

Anzahl der freien Parameter = n —rg(A)

-,

(3) Das System ist eindeutig losbar <= n =rg(A) =1rg(A|b)
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Beispiele

1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix

-1 3 2|1
1 2 =310
1 -3 -2]1

2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix

-1 3 2 1
1 2 =30
1 -3 -2|-1

Schritte des Gauf-Algorithmus fithren auf die erweiterte Matrix

-1 3 21
(Alb) = 0 5 —1|1
0 0 0

3. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix

-1 3 2 |1
Ay =1 0 5 -1/1
0 0 1 |2

Nun bleibt nur noch die Frage offen, ob der Rang einer Matrix unabhingig ist vom
Vorgehen, die Matrix auf Zeilenstufenform zu bringen. Tatséchlich ist das der Fall. Das werden
wir aber erst im {ibernéchsten Kapitel einsehen kénnen.



129

7.6 Struktur der Losungsmenge

Ein lineares Gleichungssystem

a1+ -+ Ty, = bl
a1+ + ATy = by
(G)
Am1ZT1 + -+ Ty = by
heisst homogen, falls by = by = - -- = b, = 0. Andernfalls heisst es inhomogen.
Ein homogenes lineares System hat stets die triviale Lisung (z1,...,2,) = (0,...,0).

Satz 7.3 Ein homogenes lineares Gleichungssystem mit n > m (d.h. mehr Unbekannten als
Gleichungen) hat stets unendlich viele Lisungen.

Dieser Satz ist eine direkte Folgerung von Satz 7.2. Wie oben bemerkt, ist ein homogenes
lineares System immer l6sbar. Ist A die Koeffizientenmatrix des Systems, dann gilt

Nach Satz 7.2 (2) gibt es also mindestens einen freien Parameter, das heisst, unendlich viele
Losungen.

Ist (G) ein lineares Gleichungssystem, so heisst dasjenige Gleichungssystem, welches durch
Nullsetzen aller b; entsteht, das zugehdrige homogene Gleichungssystem (hG). Wir bezeichnen
mit L(G), bzw. L(hG), die Losungsmenge des Systems (G), bzw. (hG).

Satz 7.4 FEs gilt
L(G) = ¥p + L(hQG)

fir eine partikulire Losung Zp von (G).

Dieser Satz kann auf dieselbe Art bewiesen werden wie der Satz 6.1 (Seite 103) iiber lineare
Differentialgleichungen erster Ordnung.

Beispiel
Wir betrachten nochmals das lineare System (S2)

T + x4 = 4
) - 2z4 = 6 (G)
r3 + 34 = 3

von Seite 122. Eine partikulédre (d.h. einzelne) Losung kénnen wir sofort erraten, ndmlich
$4:0, Tl :4, $2:6, $3:3.
Das zugehorige homogene System ist

T + xg = 0
X9 — 2$4 =
r3 + 3.%'4 = 0

)
—~
=
)
~
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Die allgemeine Losung erkennen wir ebenfalls sofort:
zy=teR, x1=—t, x9 =2t, x3=—3t.
Die Losungen, geschrieben als Vektoren in R*, sind also

-1
2
-3
1

. L(hG)={t IteR}.

1
S W O

Wir erhalten nun nach Satz 7.4 die Losungsmenge des Systems (G)
-1
2
+t| - |teR },

3
1

L(G) = Tp + L(hG) = |

S W O

die natiirlich mit der Losungsmenge, die wir auf Seite 122 gefunden haben, ndmlich
r1=4—t,20=6+2t, 23 =3—-3t, x4 =1 firte R,
iibereinstimmt.

Der Satz 7.4 und das Beispiel zeigen die interessante Struktur der Losungsmenge L(G)
eines inhomogenen linearen Gleichungssystems. Der Gaufl-Algorithmus bleibt aber die erste
Wahl der Lésungsmethode eines solchen Systems.
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8 Rechnen mit Matrizen

Matrizen kann man mit einer reellen Zahl multiplizieren und (mit gewissen Einschrinkungen)
addieren und multiplizieren. Fiir Anwendungen sind diese Rechenoperationen sehr niitzlich
und daher wichtig.

Beziiglich der Addition kann mit Matrizen so gerechnet werden wie mit reellen Zahlen
oder Vektoren. Beziiglich der Multiplikation gibt es jedoch einige Rechenregeln der rellen
Zahlen, welche fiir Matrizen nicht mehr gelten.

8.1 Matrixoperationen und ihre Eigenschaften

Addition und skalare Multiplikation

Matrizen kénnen nur dann addiert oder subtrahiert werden, wenn sie dieselbe Grosse (d.h.
gleich viele Zeilen und gleich viele Spalten) haben. Sind A und B zwei Matrizen derselben
Grosse, so ist ihre Summe A + B diejenige Matrix, die durch Addition der einander entspre-
chenden Elemente entsteht.

1 2 3 0 2 —4
A_<—142>’ B_<—21 3)

B 1+0 242 3+(-4)\_(1 4 -1
— A+B_<—1+(—2) 441 2+3 >_<—3 5 5)

Beispiel

Die Differenz A — B erhilt man durch Subtraktion der Elemente in B von den entspre-
chenden Elementen in A.

= a-m= (00 S0 D)

Sei nun A eine m x n-Matrix und A in R. Dann ist die skalare Multiplikation AA (d.h. die
Multiplikation der Matrix A mit der reellen Zahl \) die m x n-Matrix, die durch Multiplikation
jedes Elementes von A mit der Zahl A entsteht. Fiir A = 2 und A wie oben gilt zum Beispiel

2.1 2-2 2-3 2 46
24 = <2-(—1) 2.4 2-2> - (—2 8 4> ‘
Fiir A = —1 schreibt man —A fiir das Produkt (—1)A. Mit A wie oben gilt
~1 -2 -3
A= ( 1 —4 —2) '
Die Matrix — A ist das additiv Inverse der Matrix A, das heisst

A+ (-4)=(-4)+A=0,

wobei mit 0 auf der rechten Seite die Nullmatrix (mit m Zeilen und n Spalten) gemeint ist.

Die wichtigsten Rechenregeln fiir diese Matrixoperationen sind diejenigen aus Satz 7.1
aus dem 7. Kapitel, wenn Vektoren @, v, w durch Matrizen A, B, C derselben Grésse ersetzt
werden.
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Matrixmultiplikation

Die Definition der Matrixmultiplikation ist auf den ersten Blick recht unnatiirlich, doch in-
terpretiert man eine Matrix als eine sogenannte lineare Abbildung (was wir im néchsten
Semester tun werden), dann ist die folgende Definition sinnvoll.

Seien A eine m x k-Matrix und B eine k x n-Matrix,

ail  aig o aik
dg1 az2 ccc o A2k bir bz -+ by e bip
: : : bor baz -++ by; o bop
A= , B=1 . .
a1 Q2 ot Gk : : :
A N S R
am1 Am2 - amk

Dann ist das Produkt AB eine m x n-Matrix mit den Eintrégen c¢;; definiert durch
Cij = abij + aioboj + - -+ + aiby;

firi=1,...,mund j =1,...,n. Das Element c;; setzt sich also aus den Elementen der i-ten
Zeile von A und den Elementen der j-ten Spalte von B zusammen (man merke sich: “Zeile
mal Spalte”).

Nach Definition der Matrixmultiplikation kann das Produkt AB also nur dann gebildet
werden, wenn die Anzahl der Spalten von A gleich der Anzahl der Zeilen von B ist. Ist dies
nicht der Fall, dann ist das Produkt AB nicht defniert.

Beispiel
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Eigenschaften der Matrixmultiplikation

1. Die Matrixmultiplikation ist nicht kommutativ.

Das heisst, fiir Matrizen A, B gilt im Allgemeinen

AB # BA.

Zum Beispiel ist AB definiert, BA hingegen nicht. Oder beide Produkte AB und B A sind
definiert, jedoch haben sie verschiedene Grossen. Aber auch wenn AB und BA definiert
sind und dieselbe Grosse haben, kann man nicht davon ausgehen, dass die beiden Produkte

iibereinstimmen!
1 2 1 2
a=(o 1) 2= 3)

7 10 1 4
AB:(?, 4>%BA:<3 10>

2. Die Matrixmultiplikation ist assoziativ und distributiv.

Beispiel

Das heisst, fiir Matrizen A, B und C' entsprechender Grosse gilt:

(1) (AB)C = A(BC)
(2) (A+B)C = AC+ BC und C(A+B)=CA+CB

Beispiel

Seien A, B wie vorher und C' = (g

ame=(5 9 ()= ()
A(BC) = (3 f) (188> B (@

3. Die Einheitsmatriz E iibernimmt die Rolle der “Eins”.

> . Dann gilt

Das heisst, es gilt
FA=AFE=A

fiir jede beliebige Matrix A. Zur Erinnerung: F ist die quadratische Matrix

Ist A eine m x n-Matrix, dann steht E beim Produkt FA fiir eine m x m-Matrix, beim
Produkt AE steht E fiir eine n x n-Matrix.
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Beispiel

4. Es gibt Nullteiler.
Das heisst, es gibt Matrizen A, B mit

AB =0,
aber A # 0 und B # 0.

Beispiel

2 4 -2 4 00
A_<1 2>,B_<1 _2> — AB—<0 0>_0
5. Matrizen darf man im Allgemeinen nicht kiirzen.

Das heisst, fiir Matrizen A, B, C gilt im Allgemeinen

AB=AC und A#0 = B=C

Beispiel
2 3 11 -2 1
=63 m=(e) o= (3)

5 8

= AB:AC:<15 o

) aber B #C

Fiir reelle Zahlen a, b, c lautet die Kiirzungsregel wie folgt:
ab=ac und a#0 — b=c
Wir miissen also lediglich a = 0 ausschliessen. Dabei ist die 0 genau diejenige Zahl, durch

die wir nicht dividieren konnen.

Bei Matrizen geniigt es nicht, nur die Matrix A = 0 auszuschliessen (wie uns das Beispiel
zeigt). Bedeutet dies etwa, dass wir nicht durch jede Matrix # 0 dividieren kénnen? Wir
werden im néchsten Abschnitt sehen, dass genau das der Fall ist.
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Die Transponierte

Sei A eine m x n-Matrix,

all a12 oo .. aln

a1 a2 ot A2p
A =

aml am2 oo .. amn

Dann ist die Transponierte AT von A die n x m-Matrix

ail a1 - am1
a2 a2 - am?2
T
A = ,
Qln A2n - Omn

das heisst, die Zeilen werden mit den Spalten vertauscht.

Beispiele

1

10 3 1 3
a=(as 5) m=(g) c=|0
2

1 2 1 9

— AT=[0 5], BT , ch=(1 0 2
3 1 3 6

Man nennt eine (quadratische) Matrix A symmetrisch, wenn gilt
AT =A.
Beispiele

Symmetrisch sind

1 0 3
A= (1 3> und B=10 5 -1
3 6 3

Satz 8.1 Fir Matrizen entsprechender Grdssen gilt:
1) ANHT=4
(2) (A+B)T = AT+ BT

(3) (AB)T =BT AT
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8.2 Invertierbare Matrizen

Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, fiir reelle Zahlen
a#0und b gilt b= % genau dann, wenn a - b = 1.
Ubertragen wir dies von den reellen Zahlen a # 0, b auf quadratische Matrizen A # 0,
B, dann miissen wir feststellen, dass es nicht zu jeder quadratischen Matrix A # 0 eine
quadratische Matrix B mit AB = E gibt (nach der 3. Eigenschaft, Seite 133, iibernimmt ja
die Einheitsmatrix E die Rolle der 1).
10
(0 1)

Gesucht sind reelle Zahlen a, b, ¢, d, so dass die Matrix

(¢ 3)

Beispiel
A

B

die Gleichung AB = F erfiillt.

Fiir diese Matrix A gibt es also keine 2 x 2-Matrix B mit AB = E (analog auch keine Matrix
B mit BA=FE).

Definition Sei A eine quadratische Matrix. Gibt es eine Matrix A~! mit
AA ' =A"1A=E

so heisst A invertierbar und die Matrix A~! nennt man Inverse von A (sie ist eindeutig
bestimmt durch A).

Beispiel

Invertierbar ist die Matrix
(3 5 . (2 =5
A_<1 2) mit A —<_1 3>.
Fiir die Inverse einer invertierbaren 2 x 2-Matrix gibt es eine einfache Formel.

(Y

ist invertierbar genau dann, wenn ad — bc # 0. In diesem Fall gilt

1 d b
A7l = .
ad — be (—c a >

Satz 8.2 Die Matrix
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Beispiel
Sind die Matrizen

invertierbar?

Bevor wir weitere Beispiele von Inversen betrachten, kehren wir nochmals zur Eigenschaft
zuriick, dass Matrizen im Allgemeinen nicht gekiirzt werden diirfen. Es gilt nun néamlich das
Folgende.

Kiirzungsregel: Fiir Matrizen A, B, C gilt:
AB = AC und A invertierbar =— B=C

Diese Kiirzungsregel gilt, da die Gleichung AB = AC von links mit A~! multipliziert werden
kann:

Weiter gelten die folgenden Eigenschaften fiir invertierbare Matrizen.
Satz 8.3 Scien A und B zwei invertierbare Matrizen. Dann gilt:

(1) A t=4

(2) (AB)"t=pB"14a"!

(3) Auch AT ist invertierbar und (A7)t = (A~H)T.

Warum wird bei der Eigenschaft (2) die Reihenfolge der Matrizen vertauscht? Nun, sei C' die
Inverse von AB. Dann gilt E = C(AB). Multiplizieren wir diese Gleichung von rechts mit
B!, dann erhalten wir wegen BB~! = F

B '=EB'=C(AB)B™' =CA(BB™')=CAE =CA.
Nun multiplizieren wir diese Gleichung von rechts mit A~ und finden

B Al =CAA ' =CE=C.
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Bestimmung der Inversen

Um die Inverse einer Matrix von beliebiger Grosse zu bestimmen, kann der Gauflsche Algorith-
mus (in leicht verdnderter Form) benutzt werden. Wie dies funktioniert, wird am folgenden
Beispiel erklért.

Beispiel
Gegeben ist die 3 x 3-Matrix
4 0 5
A=10 1 -6
3 0 4
Gesucht ist
r1 U1 U1
Ail = o U2 V9
r3 us U3

mit AA~! = E (falls A invertierbar ist). Wenn wir die Matrixmultiplikation AA~! ausfiihren,
erhalten wir aus der Matrixgleichung AA~! = E das folgende lineare Gleichungssystem:

4xq + br3 = 1
) - 65[73 =

3 + 4xr3 = 0

4uq 4+ buz = 0
(%) - GU3 = 1

3uy + 4duz = 0

4vq 4+ bv3 = 0
(% 61)3 = 0

3u1 4+ 4dvs = 1

Dies sind 9 Gleichungen in 9 Unbekannten. Doch fassen wir die drei Gleichungen 1-3, 4-6
und 7-9 je als ein Gleichungssystem auf, dann haben diese drei Gleichungssysteme dieselbe
Koeffizientenmatrix und nur die Zahlen auf der rechten Seite sind unterschiedlich. Die Schritte
im Gauf-Algorithmus zur Losung dieser drei Systeme sind deshalb fiir jedes System dieselben.
Also fiithren wir den Gaufi-Algorithmus fiir diese drei Systeme gleichzeitig aus.

Dazu schreiben wir die Koeffizientenmatrix der drei Systeme hin und fiigen die Zahlen
der rechten Seiten der Gleichungssysteme als Spalten hinzu:

40 5100
01 —6/0 1 0 |=(A|E)
30 4001

Nun fithren wir den Gau$-Algorithmus durch, und zwar bis wir die Matrix A auf die reduzierte
Zeilenstufenform gebracht haben, welches die Einheitsmatrix E ist, falls A invertierbar ist.
Wir starten also mit (A | E), fithren elementare Zeilenumformungen durch (eine Zeile besteht
hier aus 6 Eintrégen), bis wir die Form (E | B) erreichen. Die Matrix B ist dann die gesuchte
Inverse A~! = B!
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4 0 511 00
(AlE)=( 0 1 —6]0 1 O
30 4]0 01
Wir erhalten also die Inverse
4 0 -5
Alt=|-18 1 24
-3 0 4

Bei diesem Verfahren muss man von einer gegebenen Matrix A nicht im Voraus wis-
sen, ob sie invertierbar ist oder nicht. Ist A invertierbar, dann fiihrt das eben beschriebene
Vorgehen automatisch zur Inversen. Ist A jedoch nicht invertierbar, dann ist die reduzierte
Zeilenstufenform von A nicht die Einheitsmatrix E'; das heisst, es ist nicht moglich, durch
Zeilenumformungen zur Matrix E zu gelangen.

Beispiel
Gegeben ist die Matrix
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Dann gilt

4 21 0 1 0 1 1
A|E) = — — 2
am=(3 100 9) 7 (2 1Y)z (6 8

Die Zeilenstufenform der Matrix A hat eine Nullzeile. Die reduzierte Zeilenstufenform von A
kann also nicht F sein. Das heisst, dass A nicht invertierbar ist.

— N
O =

Man kann dies auch mit Hilfe des Ranges ausdriicken.

Satz 8.4 Sei A eine n x n-Matriz. Dann gilt

A ist invertierbar < r1g(A)=n

8.3 Potenzen einer Matrix

Fiir eine quadratische Matrix A definiert man

A= F und A= AA-- A firn>1.

n Faktoren
Ist A ausserdem invertierbar, so ist

A=A hHr=4"14"1... 471

n Faktoren

Es gelten die iiblichen Potenzgesetze, das heisst fiir ganze Zahlen r und s gilt
ATAS = ATTS und (A")% = A" .

Fiir eine Diagonalmatrix

dy 0
D =
0 dp,
gilt
dj 0
D" = firrin Z.
0 d,
Insbesondere ist
L 0
dy
D! =
1
0 T

Mit Diagonalmatrizen lésst es sich also sehr leicht rechnen.
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Anwendung: Markov-Ketten

Die Berechnung einer hohen Potenz einer Matrix ist in vielen Anwendungen notwendig. Ma-
trixpotenzen kommen bei iterativen Prozessen ins Spiel.

Beispiel
Nehmen wir an, wir haben zwei Sécke, X und Y, mit Sand. Sei xg, bzw. y9 die Masse des San-
des in Sack X, bzw. Y zu Beginn. Nun verdndern wir die Massen in gewissen (regelméssigen)

Zeitabstdnden, und zwar schiitten wir die Hélfte des Sandes von Sack X in den Sack Y und
% des Sandes von Sack Y in den Sack X.

Sei xp, bzw. y; die Masse des Sandes in Sack X, bzw. Y nach k Zeitetappen. Dann gilt

Sei 7, der Spaltenvektor in R? mit den Eintrigen z;, und yj,. Dann kénnen wir schreiben

U = <x1> = ) <x0> = A mit der Matrix A = ( ) .
Y1 Yo

Weiter gilt ¥, = At} = A%ty und allgemein @, = A*%, fiir k > 1.

Diesen Umverteilungsprozess kénnen wir auch mit Wahrscheinlichkeiten beschreiben. Neh-
men wir an, dass sich zu Beginn ein rotes Sandkorn in Sack X befindet. Nach einer Zeitetappe
ist die Wahrscheinlichkeit, dass sich dieses rote Sandkorn in Sack Y befindet, gleich % (und
ebenfalls gleich %, dass es in Sack X bleibt). Mit Hilfe der Matrix A von oben kénnen wir
dies durch (3,3)T = A(1,0)T berechnen. Allgemeiner, ist xy, bzw. y), die Wahrscheinlich-
keit, dass sich das rote Sandkorn nach k Zeitetappen in Sack X, bzw. Y befindet, dann gilt
U = (xg, yk)T = AF §y wie oben. Wenn diese Wahrscheinlichkeiten zj, y; nur von zj;_; und

yr—1 abhingen (wie wir das angenommen haben), spricht man von einer Markov-Kette.

NI NI~
alw U
NI— N[
alw U N

VR

Allgemeiner versteht man unter einer Markov-Kette die folgende Situation. Gegeben sei
ein System mit n verschiedenen Zustédnden. Sei pj; die Wahrscheinlichkeit, dass das System
vom Zustand ¢ in den Zustand j wechselt und sei A = (p;;) die entsprechende n x n-Matrix.
Weiter sei v}, = (w&k), . ,xslk))T der Zustandsvektor nach k Zeitetappen, das heisst, xﬁk)
die Wahrscheinlichkeit, dass das System nach k Zeitetappen im Zustand 7 ist. Dann gilt

ist

.= AR5, .

Die Matrix A ist eine sogenannte stochastische Matriz. Es gilt 0 < p;; < 1 und die Summe
aller Eintrige in einer Spalte ist gleich 1.
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Beispiel

Wir beobachten einen Wolf, der sich abwechselnd in der N&he von Basel und in der N&he
von Liestal aufhélt. Unsere Beobachtung zeigt, dass wenn der Wolf an einem Tag in Basel
ist, er am folgenden Tag stets in Liestal herumstreicht. Wenn er in Liestal ist, dann ist er
am folgenden Tag mit einer Wahrscheinlichkeit von % in Basel. Wenn wir den Wolf heute in

Basel sehen, mit welcher Wahrscheinlichkeit ist er drei Tage spéter in Liestal?

Wir miissen also @3 = A3% fiir 7y = (1,0)7 berechnen. Wir sehen sofort, dass #; = (0,1)7
(da der Wolf nach einem Tag in Basel stets in Liestal ist) und dass v = (1,3)7. Fiir o

erhalten wir

. . 0
U3:A’L)2: 1

) ()= () (o)~ ()
3 B 0,8125 Y3

Der Wolf ist also drei Tage spéter mit einer Wahrscheinlichkeit von y3 = 0,8125 in Liestal.

Wie gross sind wohl die Wahrscheinlichkeiten fiir beispielsweise & = 30 (nach einem
Monat) oder k = 365 (nach einem Jahr)? Dazu muss man A3, bzw. A3%° berechnen, was
am schnellsten durch sogenanntes Diagonalisieren der Matrix A geht. Wir werden néchstes
Semester lernen, wie man quadratische Matrizen diagonalisiert (falls moglich) und wie man
dadurch Matrixpotenzen schnell berechnen kann.

IS

8.4 Determinanten

Die Determinante ordnet jeder n x n-Matrix A eine bestimmte reelle Zahl zu. Man bezeichnet
sie mit
det(A) .

Betrachten wir als erstes den Spezialfall n = 1: Eine 1 x 1-Matrix A besteht nur aus einem
Eintrag a, das heisst, A = (a) und es gilt det(A) = a.

ailp ai2
A= det(A) = a11G092 — 12021
az1 G22

Diesen Ausdruck haben wir schon bei der Inversen von A angetroffen (Satz 8.2). Das heisst,
die Matrix A ist invertierbar, genau dann wenn det(A) # 0.

n=3

ai; a2 ai3
A= a1 a2 ax
a3l asz2 as3

det(A) = ai1a2a33 + ajzazszas; + aizaziass

—a13a22a31 — (11023032 — (12021033
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Beispiel
1 -1 2
A=1 3 1 0
-2 0 2
n>2
ayj; aip ... Qain
A: any agzy ... Q9n
Gpl QAnp2 ... Gpp

Fir allgemeines n > 2 kann det(A) rekursiv definiert werden.
Sei A;; diejenige (n — 1) x (n — 1)-Matrix, die man aus A durch Streichen der i-ten Zeile
und j-ten Spalte erhélt.

Entwicklung nach der ersten Zeile:
det(A) = arl det(An) — a2 det(Alg) —+ -+ (—1)"+1a1n det(Aln)

Die Determinante kann nach einer beliebigen Zeile oder Spalte entwickelt werden.

Entwicklung nach der i-ten Zeile:

n

det(A) = Z(—l)”jaij det(A;;)
j=1

Entwicklung nach der j-ten Spalte:

n

det(A) =Y (=1)""a;; det(Ajj)

i=1
Die reelle Zahl (—1)"™7 det(A;;) heisst Kofaktor von a;;. Das Vorzeichen (—1)"J des Kofaktors
kann man sich mit Hilfe des folgenden Schemas merken:

+ - + -

Beispiele

1. Entwickeln wir eine 3 x 3-Matrix nach der ersten Zeile, so erhalten wir die obige Definition:
s a2 a a21 a2 az1 22
det a1 Qa9 a23 = aqajpdet 22 B _ a1s det 3 + aq3 det
azz a33 asr a33 azp as2
azy az2 ass

= (11022033 — 011023032 — G12021033 + 12023031

+a13a21a32 — A13G22a31
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2. Sei
1

2 0
A=|-1 1 3
4 1 0

Da die letzte Spalte zwei Nullen enthélt, entwickeln wir nach dieser Spalte und erhalten

3. Sei
-3 6 4 -7
0 1 3 5
B= 0O 0 -2 9
0 0 0 337

Entwicklung nach der ersten Spalte ergibt

Satz 8.5 Seien A und B zwei n X n-Matrizen. Dann gilt

(a) det(AB) = det(A)det(B)

(b) A invertierbar <= det(A) # 0

(c) det(A™1) = m, falls A invertierbar ist

(d) det(AT) = det(A)

Beim Berechnen von Determinanten sind weiter die folgenden Regeln niitzlich:

1. Vertauscht man in einer Matrix zwei Zeilen (oder zwei Spalten), so &ndert die Determinante
das Vorzeichen.

2. Sind zwei Zeilen (oder zwei Spalten) einer Matrix gleich, so ist die Determinante gleich 0.

3. Multipliziert man eine Zeile (oder Spalte) einer Matrix mit einer reellen Zahl A, so multi-
pliziert sich auch die Determinante mit A.

4. Addiert man in einer Matrix ein Vielfaches einer Zeile (oder Spalte) zu einer anderen, so
dndert sich die Determinante nicht.
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5. Es gilt
a1 a2 v+ Gln air 0 -+ 0
0 . :
det 422 — det | 920 922 = a11a92 " Qny, -
. c . * 0
0 o« . 0 ann anl .« .. “ . ann

Die Regeln 1, 3 und 4 zeigen uns, wie sich die Determinante einer Matrix bei einer elementaren
Zeilenumformung verdndert. Zur Berechnung der Determinante konnen wir also elementare
Zeilenumformungen durchfithren (wie beim Gauf-Algorithmus), um eine obere oder untere
Dreiecksmatrix zu erhalten. Mit der Regel 5 ist dann die Berechnung der Determinante ein-
fach.

Beispiel
11 0 3
2 0 1 -1
iy 2 -
-1 -1 2 1

Die Determinante hat eine geometrische Bedeutunyg.

Satz 8.6 Sei A eine n x n-Matriz. Dann ist |det(A)| gleich dem Volumen des von den
Spaltenvektoren von A aufgespannten Parallelepipeds.

Beispiel
Welchen Fliicheninhalt hat das Parallelogramm in R? aufgespannt von den Vektoren @ = (3)
und = (3)7

I3
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Schliesslich bleibt noch zu erwihnen, dass die Determinante einer n x n-Matrix mit Hilfe
von Permutationen, das heisst, umkehrbaren Abbildungen o : {1,2,...,n} — {1,2,...,n},
definiert werden kann. Die Determinante ist damit eine Summe von n! Summanden (man
summiert iiber alle Permutationen o). Diese Definition hat aber nur einen theoretischen
Nutzen. Deshalb verzichten wir hier auf die genaue Definition.

8.5 Zwei weitere Losungsmethoden fiir lineare Gleichungssysteme

Wir betrachten noch einmal ein lineares Gleichungssystem:

aney + -+ apr, = b
a1 + -+ agmT, = by
(G)
Am1T1 + - + AmpTn bm
Seien
air a2 -+ aip 1 by
asy az - A, T2 - by
A= , T= inR", b= . in R™.
aml Am2 - Omn Tn bm
Dann kénnen wir das System (G) schreiben als
AT =b.

Loésung mit Hilfe der Inversen

Hat das lineare System gleich viele Gleichungen wie Unbekannte, sagen wir n, und ist die

zugehorige Koeffizientenmatrix A invertierbar, so gilt rg(A) = rg(A|g ) = n. Es gibt also

genau eine Losung. Diese kann mit Hilfe der Inversen von A direkt angegeben werden.
Multiplizieren wir nidmlich die Gleichung AZ = b von links mit A~! dann ist

F=A"1%
die eindeutige Losung des Systems.
Beispiel
Gegeben sei das lineare System
3+ y = 1

Sr+2y = 1
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Cramersche Regel

Auch die Cramersche Regel, benannt nach dem Schweizer Mathematiker GABRIEL CRAMER
(1704 — 1752), ist nur anwendbar fiir lineare Systeme mit invertierbarer Koeffizientenmatrix.

Ist A7 = b das lineare System, dann ist die Losung Z = (z1,...,2,) gegeben durch
det(Ay) det(As) det(A,,)
T]=——-, Tg=———, .., Tp=——
det(A) det(A) det(A)

wobei die Matrix A; dadurch entsteht, dass die j-te Spalte von A durch den Spaltenvektor b
ersetzt wird.

Beispiel

Gegeben sei das lineare System

x4+ y = 1
dx+2y = 1

Wie im vorhergehenden Beispiel ist

31 . - 1
A= <5 2) mit  det(A) =1 und b—<1>.
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9 Vektorriaume

Die Menge R™ der Vektoren ist nicht die einzige Menge in der Mathematik, deren Elemente
man addieren und mit einer reellen Zahl multiplizieren kann. Zur einheitlichen Betrachtung
solcher Mengen wurde der Begriff des (abstrakten) Vektorraums eingefiihrt. Wir werden se-
hen, dass die Losungsmenge von jedem homogenen linearen Gleichungssystem ein solcher
Vektorraum ist und wir werden dadurch die auftretenden Parameter besser verstehen kénnen.
Weiter konnen wir endlich genau erklédren, was Dimension bedeutet.

9.1 Definition und Beispiele

Die Menge R™ besteht aus (Spalten-)Vektoren Z mit Komponenten zi,...,z, € R. Wir
haben in Kapitel 7 gesehen, dass man zwei Vektoren in R" addieren und mit einer reellen
Zahl multiplizieren kann. Dabei gelten die Rechenregeln von Satz 7.1.

Nun nennt man jede Menge, die genau diese Eigenschaften hat, einen (reellen) Vektorraum
(da sich diese Menge eben genau so wie die Menge R™ der Vektoren verhilt). Die Elemente
dieser Menge miissen jedoch keine Vektoren sein!

Definition Ein (reeller) Vektorraum ist eine Menge V' mit einer Addition und einer Skalar-
multiplikation, so dass fiir alle u,v € V, k € R auch

u+veV, kveV
gilt und alle Eigenschaften aus Satz 7.1 erfiillt sind.
Aus der Bedingung k € R, ve V. = kv € V folgt insbesondere fiir £ = 0, dass
0OeV.
Das heisst, ein Vektorraum enthélt immer ein Nullelement.
Beispiele
1. Die Menge R" ist fiir jedes n > 1 ein Vektorraum.

2. Die Menge aller n x n-Matrizen ist ein Vektorraum.

Wir haben in Kapitel 8 gesehen, dass man zwei n x n-Matrizen addieren und eine Matrix
mit einer reellen Zahl multiplizieren kann, wobei die Rechenregeln von Satz 7.1 gelten.

3. Die Menge aller Polynome vom Grad < 2,
{az®* +bx+c|abceR},

ist ein Vektorraum. Er ist im Wesentlichen derselbe wie R3.

Analog ist die Menge aller Polynome vom Grad < n (oder auch ohne Beschrinkung des
Grades) ein Vektorraum.

4. Die Menge aller reellen Funktionen { f | f:]0,1] — R } ist ein Vektorraum.
Man definiert Addition und Skalarmultiplikation durch

(f+9)(@) = fl@) +g(x)  uwnd  (kf)(x) =kfz)  firzc[0,1].
Das Nullelement ist dabei die Funktion f mit f(z) = 0 fiir alle z € [0, 1].
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Der Raum R" ist also fiir jede natiirliche Zahl n ein Vektorraum. Man kann sich nun
fragen, ob es Teilmengen U von R"™ (oder allgemein eines Vektorraums V') gibt, die beziiglich
der Addition und Skalarmultiplikation in R™ (bzw. V') einen Vektorraum bilden.

Gliicklicherweise kann man recht schnell iiberpriifen, ob eine gegebene Teilmenge U eines
Vektorraums V selbst ein Vektorraum ist. Die (nichtleere) Menge U ist ndmlich genau dann
ein Vektorraum in V', wenn gilt

uvelU keR = u+vel kueU.

Man muss also nur iiberpriifen, ob die Teilmenge U abgeschlossen ist beziiglich der Addition
und der Skalarmultiplikation. Als Teilmenge des Vektorraums V' gelten die Eigenschaften von
Satz 7.1 automatisch! Wahlt man in der Bedingung oben k& = 0, so sieht man, dass U das
Nullelement O des Vektorraums V' enthalten muss.

Jeder Vektorraum V # {0} enthélt mindestens zwei Teilmengen, die selbst Vektorrdume
sind, ndmlich den ganzen Raum V und den Nullvektorraum {0}.

Vektorriume in R2

Wie eben bemerkt sind R? und {0} Vektorriume.

Ein einzelner Vektor @ # 0 (zusammen mit dem Nullvektor 0) ist kein Vektorraum, da mit
auch alle Vielfachen kv, fiir k € R, im Vektorraum liegen miissen. Ist also eine Gerade durch
den Ursprung ein Vektorraum?

Auch zwei einzelne (nicht auf einer Geraden liegende) Vektoren # 0 (zusammen mit dem Null-
vektor 6) bilden keinen Vektorraum. Zunéchst miissen die Vielfachen k@ und 14, fiir k,1 € R,
im Vektorraum liegen. Aber auch die Summe @ + ¢ und dann @ + (@ + ¥), usw. muss im
Vektorraum liegen. Damit erhilt man ganz R2.
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Die Vektorrdume in R? sind also

o {0}
e Geraden durch den Ursprung
¢ RZ
Vektorriume in R3
Die Vektorriume in R? sind (gemiss dhnlichen Uberlegungen wie in R?)
{0}
Geraden durch den Ursprung

Ebenen durch den Ursprung
R3

Analog zu reellen Vektorrdumen kann man kompleze Vektorrdume definieren. In der De-
finition des Vektorraums bedeutet die Skalarmultiplikation dann Multiplikation mit einer
komplexen Zahl k (anstelle einer reellen Zahl k). Das typische Beispiel eines komplexen
Vektorraums ist die Menge C" der Vektoren mit Komponenten zi,...,z, in C. Komplexe
Vektorrdume treten zum Beispiel in der Quantenmechanik auf oder als Losungsmengen von
homogenen linearen Gleichungssystemen mit komplexen Zahlen als Koeffizienten.

9.2 Linearkombinationen

Im Folgenden beschriinken wir uns auf Vektorrdume, die Teilmengen von R sind (zur Veran-
schaulichung kann dabei stets n = 2 oder 3 gewéhlt werden). Jedoch kénnen alle hier gemach-
ten Aussagen von R™ auf einen beliebigen reellen (oder komplexen) Vektorraum iibertragen
werden.

Gegeben sind Vektoren o1, ..., in R™. Ein Vektor & in R" ist eine Linearkombination
der Vektoren #,..., 7., wenn es reelle Zahlen ¢y, ..., ¢, gibt, so dass @ geschrieben werden
kann als

w=cv + -+ U, .
Die Zahlen ci,...,c, nennt man Koeffizienten.
Beispiel

Ist der Vektor w = () eine Linearkombination von ¢ = (3) und v = (2)?

Nun sei V die Menge aller Linearkombinationen der Vektoren 1, ..., 7, in R™. Dann ist
V ein Vektorraum in R"™. Man schreibt
V= <271"",U7’>
(oder V' = Lin(?y,...,9,) oder V = span(vi,...,7,)). Man sagt auch, dass ¢1,...,7, den

Vektorraum V' aufspannen oder erzeugen.
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Beispiele
Gegeben sind die Vektoren v = ((1)), Ug = <_(1)1), U3 = (((2))) und U4 = <g>.
1. Sei V4 = (#1) der von #; aufgespannte Vektorraum in R3.
Dann besteht V; aus allen Vielfachen von 7,
Vi={cti|ceR}.

Also ist V7 die Gerade durch den Ursprung mit Richtungsvektor v7.

2. Sei Va = (¥, U3) der von den Vektoren ¥ und v, aufgespannte Vektorraum.
Das heisst,
Vo = { U1 + coUs ‘ c1,c5 € R }
Insbesondere sind
o . 1

1
€1 = 5?71 + 5?72 und €3 = 5?71 — 5?72 in V5.

Der Vektorraum V5 ist also die zz-Ebene.

3. Sei Vg = <?71,172,173>.

Der Vektor v3 ist eine Linearkombination der Vektoren 7 und s,
U3 = U1 + U

Also ist U5 € Vo und damit ist V3 = V, = (¥, o).
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4. Sei ‘/4 == <271,’L72,’L74>.
Nun ist ¥4 keine Linearkombination der Vektoren ¢ und ¥5. Da ¥4 = €5, sehen wir sofort,
dass V; = R3.

Man mochte nun einen Vektorraum V' = (1, ..., 7,) in R™ mit moglichst wenigen Vektoren
erzeugen. Wir haben im 3. Beispiel gesehen, dass man einen Vektor ; weglassen kann, wenn
man ihn als Linearkombination der anderen Vektoren schreiben kann.

Definition Seir > 2. Die Vektoren vy, ..., v, in R™ heissen linear abhdngig, wenn sich einer
der r Vektoren als Linearkombination der anderen r — 1 Vektoren schreiben lédsst. Ist dies
nicht moglich, dann nennt man die Vektoren vy, ..., 9, linear unabhingig.

Beispiel

Sind die Vektoren v; = <—01 ), Uy = (é), Uy = <€1) linear abhéngig?

Wie {iiberpriift man aber nun, dass gewisse Vektoren linear unabhéngig sind? Dazu be-
nutzt man eine dquivalente Definition von linear (un-)abhéngig. Und zwar sind die Vektoren
U1, ..., in R™ linear unabhdngig, falls die Gleichung

0161+---+CT17T=6
nur die (triviale) Losung

co=cp=---=c¢ =0
hat. Andernfalls nennt man 1, ..., v, linear abhdngig.

Beschrinken wir uns jedoch auf Vektoren in R? und R?, dann kann die Frage nach der
linearen (Un-)Abhéngigkeit mit Hilfe von geometrischen Betrachtungen beantwortet werden.

Vektoren in R?2

e 2 Vektoren sind linear abhéngig
<= elner ist ein Vielfaches des anderen

<= sie liegen auf der gleichen Geraden durch den Ursprung

linear abhangig linear unabhangig
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e 3 oder mehr Vektoren sind stets linear abhéngig.
Machen wir ndmlich den Ansatz
1701 + colg + ¢33 = 6

fiir die drei Vektoren @), ¥, U3 in R?, dann ist dies ein homogenes lineares Gleichungs-
system mit 2 Gleichungen in den 3 Unbekannten ci, ca, c3. Nach Satz 7.3 hat dieses
unendlich viele Lésungen, insbesondere eine nichttriviale Losung.

Vektoren in R?

e 2 Vektoren sind linear abhéngig
<= elner ist ein Vielfaches des anderen

<= sie liegen auf der gleichen Geraden durch den Ursprung

e 3 Vektoren sind linear abhéngig

<= sie liegen auf der gleichen Ebene durch den Ursprung

Z Z

linear abhéngige Vektoren . .
linear unabhéngige Vektoren

e 4 und mehr Vektoren sind stets linear abhéngig
Die letzte Aussage bei Vektoren in R? und R? gilt allgemeiner.

Satz 9.1 Seien v1,...,0, Vektoren in R™. Ist r > n, dann sind U1, ..., U, linear abhdngig.

Begriinden kann man dies wie in R? mit Hilfe von Satz 7.3 iiber homogene lineare Gleichungs-
systeme (man hat n Gleichungen und r > n Unbekannte).

Wie kénnen wir konkret iiberpriifen, ob drei Vektoren in R3 linear unabhiingig sind oder
nicht? Nun, drei Vektoren @, U2, /3 in R3 spannen genau dann ein Parallelepiped auf, wenn
sie linear unabhéngig sind (d.h. nicht in einer Ebene liegen). In diesem Fall (und nur in
diesem) ist das Volumen dieses Parallelepipeds eine Zahl ungleich Null. Nach Satz 8.6 ist
dieses Volumen gleich | det(A)|, wobei A die 3 x 3-Matrix mit den Spalten ¥, ¥, U3 ist. Es
gilt also:

U1, Ug, U3 linear unabhiingig <= det(A) # 0

Auch dies gilt allgemeiner.
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Satz 9.2 Seien vy,...,0, Vektoren in R™ und A die n x n-Matriz mit vy, ..., U, als Spalten.
Dann gilt:

U1y ..., Ty linear unabhingig <= det(A) #0
Beispiele

1. Sind die Vektoren v] = (33) und v3 = (%1) linear abhéngig?

2. Sind die Vektoren v] = (—12>, vy = <§> und vz = (—21> linear abhingig?

3. Auf Seite 152 haben wir gesehen, dass v] = (—zl), Up = <é>, U3 = (—;1> linear abhingig
sind. Tatséchlich gilt det(v) U2 v3) = 0.

9.3 Basis und Dimension

Im letzten Abschnitt haben wir versucht, einen Vektorraum mit so wenigen Vektoren wie
moglich zu erzeugen. Wird ein Vektorraum V = (#},...,7,) in R™ mit linear abh#ngigen
Vektoren 1, ..., 9, erzeugt, so kann mindestens ein Vektor (einer, der sich als Linearkombi-
nation der anderen schreiben lidsst) weggelassen werden, ohne dass sich der Vektorraum V
verkleinert. Optimal ist also, einen Vektorraum mit linear unabhéngigen Vektoren zu erzeu-
gen. Man nennt diese Vektoren dann eine Basis des Vektorraums.

Definition Vektoren v1,..., %9, bilden eine Basis eines Vektorraums V', wenn sie die folgen-
den zwei Bedingungen erfiillen:

(1) V.= (¥1,...,0,), das heisst, v1,...,7, erzeugen V.
(2) v1,...,0, sind linear unabhéngig.
Man nennt 1, ..., U, Basisvektoren von V.

Basen sind wegen der folgenden Tatsache sehr wichtig und niitzlich.

Satz 9.3 Bilden v1,...,U, eine Basis des Vektorraums V', so kann jeder Vektor v in V
eindeutig geschrieben werden als

U=t + -+ cpy

mit reellen Zahlen cy,. .., cp.
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Basen von R2

In Kapitel 7 haben wir bemerkt, dass die Schreibweise ¥ = (3! ) bedeutet

S 1 0 - .
U= 0 + vy 1 = v1€1 + v9€y .

Die beiden Vektoren & und €, bilden eine Basis von R?, die sogenannte Standardbasis.

Die Vektoren €; und & spannen den ganzen Raum R? auf, denn wie gerade gezeigt ist
jedes ¥ in R? als Linearkombination von € und & schreibbar. Zudem sind & und & linear
unabhéngig.

Ebensogut kénnte man jedoch die Vektoren

’Jl = <:1))> und Z_[Q = (_11>

als Basis des R? withlen. Denn jeder Vektor ©' = (}}) von R? lisst sich als Linearkombination
von 4 und s schreiben:

L1 o1 L
U= Z(Ul + vg) Uy + Z(Ul — 3ug) s
Das heisst, die Vektoren #; und s erzeugen R?. Zudem sind #; und 5 linear unabhingig.

Die Wahl einer Basis von R? (bzw. R") ist nichts anderes als die Wahl eines Koordi-
natensystems fiir R? (bzw. R"). Die Richtungen der Basisvektoren definieren die positiven
Koordinatenachsen und ihre Léngen legen die Masseinheiten fest.

Konnen drei Vektoren in R? eine Basis fiir R? bilden? Nein, denn drei Vektoren in R?
sind stets linear abhingig (Satz 9.1). Kann ein einziger Vektor in R? eine Basis fiir R? sein?
Nein, denn ein einzelner Vektor spannt nur eine Gerade auf, der R? ist jedoch eine Ebene. Es
folgt, dass eine Basis fiir R? immer aus zwei Vektoren besteht.

Satz 9.4 Hat ein Vektorraum endlich viele Basisvektoren, so ist die Anzahl der Basisvektoren
fiir alle Basen gleich.

Definition Die Anzahl der Basisvektoren eines Vektorraums V heisst Dimension von V.

Man schreibt dim(V).

Fiir V = {0} setzt man dim({0}) = 0.
Eine Gerade durch den Ursprung ist ein Vektorraum erzeugt durch einen Vektor 0, also
ist seine Dimension gleich 1.
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Der Vektorraum R? hat (wie oben bemerkt) stets zwei Basisvektoren, also ist seine Di-
mension gleich 2. Tatséchlich bilden zwei Vektoren in R? eine Basis genau dann, wenn sie
linear unabhéingig sind.

Satz 9.5 Gegeben seien n Vektoren vy,...,0, eines Vektorraums V, wobei n = dim(V).
Dann gilt:

VU1,...,U, bilden eine Basis von V <= U1,...,U, sind linear unabhdngig
Beispiel

Bilden die Vektoren @y = (2) und @ = () eine Basis von R??

Basen von R?

Schon in Kapitel 7 haben wir festgehalten, dass die Schreibweise v = (:1%) bedeutet

1 0 0
T=v1 |0 +vo 1] +v3|0]| =wv1€] + v2€y + v3€3.
0 0 1

Die Vektoren &, e, und € bilden die sogenannte Standardbasis von R3. Die Dimension von
R3 ist also 3.

Wie fiir R? kénnen wir auch andere Basisvektoren fiir R? wihlen. Wegen Satz 9.5 bilden
beliebige drei linear unabhingige Vektoren von R? eine Basis von R?; zum Beispiel die drei
Vektoren v, v3, U3 vom 2. Beispiel auf Seite 154.

Beispiel
-1 1
Welche Dimension hat der Vektorraum V = (@), ¥, U3) von R3 mit @ = < 2 ), Uy = <—1>

~ -5
und U3 = < 83) ?

Die Vektoren ¥, v, U3 sind also linear abhéngig und bilden keine Basis von V. Die Dimen-
sion von V ist demnach kleiner als 3. Ist die Dimension 2, das heisst, gibt es zwei linear
unabhéingige Vektoren?
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Standardbasis von R"”

Analog zu R? und R? hat R” fiir beliebige n in N die Standardbasis

1 0 0

0 1 0

= 0 , €y = 0 B I
: 0

0 0 1

Es gilt also dim(R") = n.

Die Vektorrdume R™ und alle darin enthaltenen Vektorrdume sind alles Beispiele von
endlich-dimensionalen Vektorrdumen, das heisst von Vektorrdumen mit endlich vielen Ba-
sisvektoren. Hat eine Basis eines Vektorraums V unendlich viele Vektoren, so nennt man V'
unendlich-dimensional. Zum Beispiel ist der Vektorraum aller reellen Funktionen unendlich-
dimensional.

1. Anwendung: Der Rang einer Matrix

Mit Hilfe der neuen Kenntnisse iiber Vektorrdume kénnen wir den Rang einer Matrix ohne
Zuhilfenahme einer Zeilenstufenform definieren.

Sei A eine m x n-Matrix. Die m Zeilen von A fassen wir als Vektoren in R™ auf. Sie span-
nen somit einen Vektorraum in R™ auf, den sogenannten Zeilenraum. Nun gilt der folgende
Zusammenhang mit dem Rang rg(A) der Matrix A:

rg(A) = maximale Anzahl linear unabhéngiger Zeilenvektoren

= Dimension des Zeilenraums

Bringen wir ndmlich die Matrix A auf Zeilenstufenform, dann ersetzen wir bei einer elementa-
ren Zeilenumformung eine Zeile durch eine Linearkombination dieser Zeile mit einer anderen;
das heisst, der Zeilenraum wird dabei nicht verdndert. Die Nichtnullzeilen in der Zeilenstu-
fenform sind schliesslich linear unabhéingig (wegen den Nullen “unten links”).

Beispiel
Sei
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Betrachten wir nun die Spalten der Matrix A. Die n Spalten sind Vektoren in R™, spannen
deshalb einen Vektorraum in R™ auf, den sogenannten Spaltenraum.

Erstaunlicherweise spielt es iiberhaupt keine Rolle, ob wir die Zeilen oder die Spalten der
Matrix A betrachten, um den Rang zu bestimmen.

Satz 9.6 Es gilt:

rg(A) = mazimale Anzahl linear unabhdngiger Zeilenvektoren

= maximale Anzahl linear unabhdngiger Spaltenvektoren

In anderen Worten: rg(A) = Dimension(Zeilenraum) = Dimension(Spaltenraum)

Der Rang einer Matrix ist also tatsédchlich unabhéngig vom Vorgehen, die Matrix auf
Zeilenstufenform zu bringen. Dies war in Kapitel 7 (Seite 128) noch unklar.

An dieser Stelle wollen wir einmal zusammenfassen, was der Rang einer n x n-Matrix alles
aussagt.

Satz 9.7 Sei A eine n x n-Matriz. Dann gilt:

rg(A) =n <= A ist invertierbar

det(A) #0

die Spaltenvektoren sind linear unabhdngig
die Spaltenvektoren sind eine Basis von R"

die Zeilenvektoren sind eine Basis von R"

rreuy

die Zeilenvektoren sind linear unabhdingig

Weiter sind alle Aussagen von Satz 9.7 gleichbedeutend mit der Aussage, dass das lineare
Gleichungssystem AX = b fiir jedes b € R™ genau eine Losung hat.

2. Anwendung: Parameter der L6sungsmenge eines linearen Gleichungssystems
Sei A eine m x n-Matrix. Wir betrachten das homogene lineare Gleichungssystem
A =0
fiir Z in R™.
Seien 7 und I zwei Losungen dieses Systems. Dann ist auch die Summe dieser beiden
Losungen eine Losung, denn
A(Z) + @) = Ay + Ao =0+0=0.

Weiter sind die Vielfachen dieser Losungen auch Losungen, denn fiir ¢ € R gilt

Dies bedeutet: Der Losungsraum ist ein Vektorraum in R™!
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Satz 9.8 Sei A eine m x n-Matriz. Dann ist die Lisungsmenge von AxX = 0 ein Vektorraum
in R™ der Dimension k =n —rg(A).

Das heisst, es gibt k linear unabhingige Vektoren T1,..., T, so dass jede Lisung T ein-
deutig geschrieben werden kann als

T=tT1+ -+ Ty,
fiir t1, ..., ty in R.

Die reellen Zahlen tq, ..., t; sind die Parameter der Losung. Die Vektoren &1, ..., Z; sind eine
Basis des Losungsraums.

Geometrisch gesehen kommen als Losungsrdume eines homogenen linearen Systems mit
3 Unbekannten also nur der Nullvektorraum {6}, eine Gerade durch den Ursprung, eine Ebene
durch den Ursprung oder der ganze Raum R? in Frage.

Beispiel
Wir betrachten das lineare Gleichungssystem
T+ 2y =
y—z =

Dies ist ein homogenes System A7 = 0 mit der Koeffizientenmatrix

12 0
A_<0 1 —1)’

die wir schon im Beispiel auf Seite 157 untersucht haben. Nach Satz 9.8 ist die Losungsmenge
ein Vektorraum der Dimension

Es ist also eine Gerade durch den Ursprung. Sie ist gegeben durch

Von Satz 7.4 wissen wir, dass die Losungsmenge L(G) eines allgemeinen linearen Systems
AZ=1b
von der Form
L(G) = Zp + L(hQG)

ist, wobei L(hG) die Losungsmenge des zugehorigen homogenen Systems ist. Der Raum L(G)
ist also ein um den Vektor Zp verschobener Vektorraum.

9.4 Orthogonale Vektoren

. - u - vy - ) - (u Y A I 3
Selenu—(uQ)undv—(UQ)ln]R,bzw.u—(gg) undv-(gg in R°.

Definition Das Skalarprodukt von 4 und ¥ ist definiert durch

- U = U1 + Uy + uzvs .

£

- = uqvy + ugvo bzw.

]
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Man nennt dieses Produkt Skalarprodukt, weil das Ergebnis eine reelle Zahl, das heisst ein

Skalar ist.
Sei ¢ der (kleinere) Zwischenwinkel von «@ und ¥ (d.h. 0 < ¢ < 7). Dann gilt

-0 = |[all|v]| cos .

Insbesondere stehen zwei Vektoren @ und ¢ senkrecht aufeinander (d.h. der Zwischenwinkel
ist ein rechter Winkel), wenn 4 - ¥ = 0. Die Vektoren heissen in diesem Fall orthogonal. Man
setzt fest, dass der Nullvektor senkrecht zu jedem Vektor steht.

Satz 9.9 FEs gilt:
4 und U sind orthogonal <= 4 -U7=0

Beispiel
Sind die Vektoren @ = ('3) und @ = (§) orthogonal?

Dieses Skalarprodukt kann man auf (Spalten-)Vektoren @ und o in R™ erweitern. Sind
Ul,...,U, und vy,...,v, die Komponenten, dann definiert man

T T=00T=uvy+ -+ upvy .

Man nennt die Vektoren @ und ¥ orthogonal, wenn 4 - ¥ = 0.

Satz 9.10 Fir Vektoren 4, ¥, @ in R™ und k € R gilt:

(i) @ (F+w) =T+ 0
(i) k(@-0) = (kit) - & = i@ - (k)

(iv) ©-0=|7)?>0 und 7-7=0 < T=0

An dieser Stelle sei kurz an das Vektorprodukt @ x ¥ von zwei Vektoren @ und ¢ in R3

erinnert. Es gilt

U1 U1 U2V3 — UZV2
UXT= (75 X | V2 = | uz?v1 —u1vs
us V3 U1V — UV

Das Ergebnis ist also wieder ein Vektor in R, wobei der Vektor i x #' senkrecht auf % und
auf ¥ steht. Das Vektorprodukt ist jedoch nur fiir Vektoren in R? definiert! Es wird auch
Kreuzprodukt genannt.

Oft ist es praktisch, einen Vektor 4 in einen zu einem vorgegebenen Vektor @ # 0 parallelen
und einen dazu senkrechten Summanden zu zerlegen.
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Der Vektor w; heisst Orthogonalprojektion von i auf @ und wird mit projz (@) bezeichnet.
Der zweite Vektor ist dann gegeben durch Wy = 4 — ;.

Satz 9.11 Fir Vektoren @ und @ # 0 in R™ gilt

ST}

Ly u-a
prOJa(U): Hd»H a.

[\

Beispiel

Seien @ = () und @ = (3}).

Wir haben gesehen, dass es viele verschiedene Basen fiir den Vektorraum R™ gibt. Die
Standardbasis €1, . .., €, zeichnet sich dadurch aus, dass die Vektoren alle die Lénge 1 haben
und je zwei Vektoren orthogonal zueinander sind. Manchmal ist es niitzlich, eine andere Basis
mit diesen beiden Eigenschaften zu verwenden.

Sei V ein Vektorraum in R™.

Definition Man nennt eine Basis v, ..., U, eine Orthonormalbasis von V, wenn gilt

(1) #y,...,0, sind paarweise orthogonal und
(2) v1,...,0, haben die Linge 1.
Beispiel

Eine Orthonormalbasis von R?2 bilden die beiden Vektoren ¥ =

Sl
—~
==
N~—

=]
=
Q.
St
Il

S
—
HH
SN—
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Orthonormalbasen haben die folgende wichtige Eigenschaft (welche aus Satz 9.10 folgt).
Satz 9.12 Sei ¥y, ..., U, eine Orthonormalbasis von V und v € V beliebig. Dann gilt
U=c1t1 + -+ c,Un mit ¢; =07 .

Die einzelnen Summanden ¢;v; sind dabei die Orthogonalprojektionen von ¢ auf die Basis-

vektoren ¥, ..., 4, ! Denn wegen ||0;|| = 1 gilt
R T R
(2

Beispiel

s = 1 1 - 1 1 . . 2 s = (1
Sei ¥ = 7 (1), U2 = 7 () die Orthonormalbasis von R? von vorher. Sei 7 = (}).
Zu bestimmen sind ¢, co mit ¥ = ¢107 + coth.

Ausgehend von einer beliebigen Basis von V' kann mit Hilfe des sogenannten Gram-
Schmidtschen Orthogonalisierungsverfahrens eine Orthonormalbasis konstruiert werden. Auf
dieses Verfahren wollen wir hier aber nicht eintreten.

Definition FEine n x n-Matrix A heisst orthogonal, wenn gilt
ATA=AAT=E.

Orthogonal ist zum Beispiel die Matrix

)

Satz 9.13 Sei A eine orthogonale n X n-Matriz. Dann gilt:

(1) Die Spalten (bzw. Zeilen) bilden eine Orthonormalbasis von R™.
(2) A ist invertierbar und A=t = AT,

(3) det(A) = +£1.

Orthogonale Matrizen werden nichstes Semester eine wichtige Rolle spielen.
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9.5 Naiherungslosungen fiir unlésbare lineare Gleichungssysteme

Bei Messungen oder bei der Auswertung von statistischen Daten treten oft lineare Glei-
chungssysteme auf, die iiberbestimmt sind. Das heisst, das lineare System ist nicht 16sbar.
Man sucht deshalb nach geeigneten Naherungslosungen.

Sei A eine m x n-Matrix und b € R™ so dass das lineare System AZ = b keine Losung
hat. Wir nennen einen Vektor Z* eine Naherungslosung, wenn

16— AZ"]|

minimal ist. Man nennt dies lineares Ausgleichsproblem oder Methode der kleinsten Quadrate.
Der zweite Name kommt daher, weil die Summe der Fehlerquadrate

T1
|6 — AT > = [|F2=r2+---+72,  fiir b— AT _r_<;>

Tm

minimiert wird.

Satz 9.14 Jede Losung &* des (stets losbaren) linearen Gleichungssystems
ATAz = ATh

ist eine Niherungslosung fiir das (unlésbare) System AT = b.

Beispiel
Gesucht ist die Gerade in der Ebene, welche die vier Punkte (0,1), (1,3), (2,4), (3,4) am
besten approximiert.

Schreiben wir mx + ¢ = y fiir die Gerade und setzen die vier Punkte ein, so erhalten wir
das lineare System

q
m+q
2m +q
Im+q =

Il
= s W =

in den Unbekannten m und ¢, welches offensichtlich unlésbar ist. Wir haben hier

b=

W N = O
— ==
=
=
o,

N N

und berechnen
T, (14 6 T (23
At A= <6 4 und A b= 12)

Wir erhalten also eine Niherungslosung 7* = ('7') als Losung des Systems

(&9 0)- ()
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Mit Hilfe der Inversen von AL A erhalten wir

)= @)= (5 D) -0

das heisst m =1 und ¢ = % Die gesuchte Naherungsgerade ist also

3
I
Y 2

Wir kénnen zumindest geometrisch nachvollziehen, was hinter Satz 9.14 steckt. Ob ein
lineares Gleichungssystem AZ = b eine Losung hat oder nicht, hingt von den Spaltenvektoren
ai,...,dp (in R™) von A und dem Vektor b (in R™) ab. Sind

ajl a2 -+ Glp T
a1 G2 -+ Q2p . )
A= ] ] ] und I = . ,
aml1 Am2 - Amn Tn
dann gilt
a1121 + a12x2 + -+ + A1pTy ail a2 a1n
. G21%1 + Q2222 + -+ - + G2pn a1 a2 Q2n
AZ = ) =z | . | H+z2| . |+ Fy

Am1T1 + amax2 + - + AmpTy am1 Am?2 Amn

Das heisst, das System AZ = b kann auch als

geschrieben werden.

Das System AX = b hat also genau dann eine Losung x1, ..., Z,, falls sich b als Linear-
kombination der Spaltenvektoren dy,...,d, von A schreiben lisst. Das ist genau dann der
Fall, falls b im Spaltenraum von A (d.h. im Vektorraum aufgespannt von ay,...,d,) liegt.
(Weiter gibt es genau eine Losung, falls dy,...,d, linear unabhéngig sind, das heisst, eine
Basis des Spaltenraums von A sind.)

Hat also das System AZ = b keine Losung, dann liegt b nicht im Spaltenraum von
A. Eine Naherungslosung #* hat dann die Eigenschaft, dass AZ* die Orthogonalprojekti-
on von b auf den Spaltenraum von A ist. Diese Orthogonalprojektion ist dabei eindeutig, die
N#herungslosung £* jedoch nicht unbedingt.
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10 Fourierreihen

In einigen Bereichen der Physik und der Chemie (zum Beispiel bei der Spektralanalyse zur
Bestimmung von chemischen Elementen) ist es aufschlussreich, eine reelle Funktion als un-
endliche Summe von trigonometrischen Funktionen darstellen zu kénnen. Man nennt diese
Darstellung Fourierreihe der Funktion.

Bei der Bild- und Audiokompression beispielsweise geniigt es, eine Funktion durch eine
endliche Summe von trigonometrischen Funktionen nidherungsweise zu beschreiben. Diese
endliche Summe nennt man Fourierpolynom der Funktion.

Wir wollen im Folgenden untersuchen, wie man ein Fourierpolynom und die Fourierreihe
einer Funktion bestimmt und mit welchem Vektorraum die Fourierreihe zusammenhéngt.

10.1 Fourierpolynome

Nehmen wir an, wir haben ein (akustisches) Signal, das wir auf dem Computer abspeichern
mochten. Das Signal kdnnte wie folgt aussehen:

Dieses Signal wird in konstanten Zeitabsténden, zum Beispiel alle Hundertstelsekunden, ge-
messen. Es liegen daher nur die Funktionswerte zu den Zeitpunkten —0.50, —0.49, ..., 0.49,
0.50 vor. Die 100 gemessenen Funktionswerte konnten nun abgespeichert werden, doch bei
einer grosseren Anzahl von Messungen wiirde dies zu Speicherproblemen fithren. Wie kann
also das Signal mit moglichst geringem Speicheraufwand aber zugleich moglichst geringem
Informationsverlust abgespeichert werden?

Tatséchlich ist es moglich, nahezu jede beliebige Funktion durch ein sogenanntes trigono-
metrisches Polynom anzun&hern. Nehmen wir an, das Signal sei durch die Funktion f(¢) = |¢|
gegeben und vergleichen wir dies mit dem trigonometrischen Polynom

1 2 2
F5(t) = 12 cos(2mt) — 0.3 cos(67t) .
f(t)
Fg(t) 021

Wir sehen, dass die Naherung auf dem gesamten Intervall [—%, %] recht gut ist. Waren wir mit

dieser Néherung zufrieden (und wiirden wir gewisse Informationsverluste in Kauf nehmen),
dann miissten wir nur die drei Koeffizienten %, —% und —# speichern!
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Betrachten wir nun allgemein reelle Funktionen auf dem Intervall [—%, %] fiir T > 0.

Definition Ein trigonometrisches Polynom oder Fourierpolynom ist ein Ausdruck der Form

E,(t) = % + aq cos(wt) + by sin(wt) + - - - + a, cos(nwt) + by, sin(nwt)
= % + Z (ag, cos(kwt) + by, sin(kwt))
k=1

wobei w = 2% Die Koeflizienten a; und by heissen Fourierkoeffizienten von F,.

Im Beispiel oben ist F3(t) ein Fourierpolynom vom Grad 3 mit den Koeffizienten

2

2
’al__ﬁ’@_o’a‘g__ﬁ und bl—bg—bg—o.

1
CLO:§

Anstelle von Potenzen t* enthélt das Fourierpolynom die Funktionen cos(kwt) und sin(kwt),
welche periodisch mit der Periode T' = %’r sind. Es geniigt daher, F), auf einem Intervall der
Lange T zu untersuchen, zum Beispiel auf [—%, %]

Wie miissen nun die Koeffizienten aj und by gewéhlt werden, damit F),(¢) eine moglichst
gute Niherung einer gegebenen Funktion f(¢) auf dem ganzen Intervall [—%, %] ist?

Ahnlich wie im Abschnitt 9.5 iiber Ndherungslosungen von linearen Systemen soll die
“quadratische Abweichung” |f(t) — Fy,(t)|> minimal sein, und zwar iiber das ganze Intervall

[—Z., L] betrachtet. Das heisst, der Wert

soll minimal sein.

Satz 10.1 Sei f(t) eine (stickweise) stetige und beschrinkte Funktion und n € N. Dann sind
die Koeffizienten des bestapproximierenden trigonometrischen Polynoms vom Grad n gegeben
durch

a = %/_2 cos(kwt) f(t) dt
b, = %/_2 sin(kwt) f(t) dt

firk=0,...,n.

Fiir £ = 0 gilt speziell

Sl

b—2 %Odt—o d _ 2 t)dt
0—?/5 = un ao—f/ f(t)dt.

Sl

Die Hilfte der Fourierkoeffizienten ist jeweils 0, falls die Funktion f gerade (das heisst
f(=t) = f(t)) oder ungerade (d.h. f(—t) = —f(t)) ist.
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Satz 10.2 Es gilt:

f(t) gerade = by, =0 firallek=0,...,n
f(t) ungerade — ap =0 firalek=0,...,n

Ist ndmlich f(t) gerade, dann ist sin(kwt)f(t) eine ungerade Funktion (da sin(¢) ungerade
ist) und damit ist das Integral iiber das Intervall [-Z, L] gleich 0. Ist f(t) ungerade, dann
ist die Funktion cos(kwt) f(t) ungerade, da cos(t) gerade ist.

Beispiel
Wir wollen iiberpriifen, ob das Fourierpolynom F3(t) zur Funktion f(t) = |t| vom Beispiel
von Seite 165 mit den Aussagen von Satz 10.1 iibereinstimmt.
Wir betrachten hier also das Intervall [—%, %], das heisst 7' = 1 und damit w = QT” = 2.
Das Fourierpolynom vom Grad 3 hat nun die Form
F5(t) = % + aq cos(2mt) + by sin(27t) + ag cos(4nt) + be sin(4nt)
+ ag cos(6mt) + b3 sin(67t) ,

wobei die Koeffizienten ay, by durch Satz 10.1 gegeben sind. Da die Funktion f(t) = || gerade
ist, gilt (mit Satz 10.2) fiir die Koeffizienten

Der Koeffizient ag ist einfach zu bestimmen:

Den Koeffizienten a; berechnen wir mit Hilfe von partieller Integration:
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Analog (mit partieller Integration) finden wir die Koeffizienten

1 1
2 2 2
ag = 4/2 tcos(4nt)dt =0 und a3z = 4/2 tcos(67t)dt = —— .
0 0 9

Das Fourierpolynom vom Grad 3 lautet also (wie auf Seite 166)

2
= cos(2mt) — 02 cos(67t) .

Die Funktion f(t) = |t| ist natiirlich fiir alle ¢ € R deﬁniert doch die Approximation von f
durch das Fourierpolynom F3 ist nur auf dem Intervall [—1 55 2] gut:

ft) 081

0.44

Ist die Funktion f periodisch mit der Periode T', das heisst gilt
f+T)=f(t) firallet e R,

dann ist das Fourierpolynom auf ganz R eine gute Approximation. In diesem Fall kann anstelle
L Z] auch [0, T] oder jedes andere Intervall der Linge T’ verwendet werden.

In der Praxis ist meist nicht die Funktionsgleichung von f(t) gegeben, sondern nur die
Funktionswerte f(tx) zu bestimmten Zeitpunkten t;. Die Integrale zur Berechnung der Fou-

rierkoeffizienten werden dann durch Summen approximiert.

des Intervalls [—

10.2 Fourierreihen

Das Fourierpolynom approximiert die Funktion umso besser, je grosser der Grad n des Poly-
noms ist.

Satz 10.3 Sei f eine (stickweise) stetige, beschrinkte Funktion mit zugehdrigen Fourier-
polynomen F,. Dann kann die Approzimation f(t) ~ F,(t) beliebig genau gemacht werden,
indem der Grad n gross genug gewdhlt wird.

Ist f differenzierbar an einer Stelle t, dann gilt

0 o0
5t kz_l ay, cos(kwt) + by, sin(kwt)) .

Die Reihe auf der rechten Seite nennt man Fourierreihe F(t) von f(t).
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Beispiel
Wir betrachten die Funktion
1 firt>0
f(t)_{ 0 fiirt<0
im Intervall [—7, 7].
Das Intervall hat nun die Linge T = 2w, das heisst w = QT” = 1. Die Fourierreihe hat also

die Form a
F(t) = 30 + aq cos(t) + by sin(t) + ag cos(2t) + be sin(2t) + - - -

Fiir die Fourierkoeffizienten aj, erhalten wir

1 ™
ap=1 und ap = —/ cos(kt)dt =0 fiirk>1.
0

s

Und fiir die Koeffizienten by, erhalten wir

1 [ 1—(=1)
by, = —/ sin(kt)dt = 1= (=07 fir k > 1.
N km
Die Fourierreihe lautet demnach
1 X 1— (=1 .
k=1
L 2 in(t) + = sin(3t) + — sin(5t) +
= —+ —sin — sin — sin

2 7 T T

Nach Satz 10.3 gilt F(t) = f(t) fur jedes t # 0 in [—m, 7] (denn f ist differenzierbar in ¢ # 0).

2 ™

10.3 Eine Orthonormalbasis bestehend aus Funktionen

In diesem Abschnitt untersuchen wir die Fourierreihe einer Funktion mit Hilfe der Theorie
iiber Orthonormalbasen von Vektorrdaumen.

Wir haben in Kapitel 9 gesehen, dass die Menge der reellen Funktionen von [0, 1] nach R
einen reellen Vektorraum bilden. Ebenso bildet die Menge der im Intervall [—m, 7] stetigen
Funktionen einen (reellen) Vektorraum. Wir bezeichnen ihn mit C = C[—m, 7.

Auf dem Vektorraum R™ haben wir in Abschnitt 9.4 ein Skalarprodukt definiert. Die
charakteristischen Eigenschaften des Skalarprodukts sind in Satz 9.10 aufgelistet. Wir kénnen
nun auch auf dem Vektorraum C der stetigen Funktionen ein Skalarprodukt definieren.
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Definition Das Skalarprodukt von zwei Funktionen f, g in C ist definiert durch
(fro)=[ [f(@)g(z)dx.

Anstelle von (f, g) kénnte man (analog zu Vektoren) auch f-g schreiben, doch die Bezeichnung

(f.g) ist iiblicher.
Der Name Skalarprodukt ist gerechtfertigt, da genau die zu Satz 9.10 analogen Eigen-

schaften gelten!

Fiir Vektoren @ € R" gibt es den Zusammenhang ||#]|?> = @ - ¥ zwischen der Linge eines
Vektors und dem Skalarprodukt des Vektors mit sich selbst. Fiir Funktionen f in C definieren
wir die Ldnge oder Norm von f durch

Und analog zu Vektoren nennen wir zwei Funktionen f, g € C orthogonal, wenn gilt

(frg)=0.

Satz 10.4 Die Funktionen

1 1 1
— cos(nx), —= sin(nx) firn e N

NN Nz
bilden eine Orthonormalbasis fir den Vektorraum C = C[—m, m].
Konkret bedeutet der Satz, dass gilt

firm=n
fir m #n

)

/ " cos(na) cos(ma) dz { 0

—T

T . m firm=n
/_Wsm(nx)sm(mx)dx—{ 0 firmAn

und .
/ sin(nz) cos(mx) dr =0 .

Die ersten beiden Integrale konnen mit Hilfe der partiellen Integration berechnet werden. Das
dritte Integral ist klar, da der Integrand eine ungerade Funktion ist. Oder bildlich fiir zwei
Beispiele:

f(z) = sin(z) cos(z) f(z) = sin(2z) cos(3z)

VARV R VAR AVAV A




171

Dass sich jede stetige Funktion f als Fourierreihe darstellen ldsst, kann man also so
interpretieren, dass sich jede solche Funktion f als unendliche Linearkombination der Basis-
funktionen aus Satz 10.4 schreiben lisst (der Vektorraum C ist ja unendlich-dimensional).
Die Fourierkoeffizienten sind nun einfach die Koeffizienten dieser Linearkombination. Doch
da wir eine Orthonormalbasis haben, sind (geméss Satz 9.12) die Fourierkoeffizienten a,,, by,
nichts anderes als die Orthogonalprojektionen von f auf die Basisfunktionen:

(f(x), % cos(nz)) % cos(nz) = <l /7r cos(nz) f(x) dw) cos(nz) = a,cos(nx)

T J—n

(f(:v),%sin(nx))%sin(n:ﬂ) - (l / ' sin(n:n)f(m)d:c) sin(nz) = by sin(na)

T J—n

Zu erwihnen bleibt, dass sich die Schreibweise der Fourierreihe und der Nachweis von
Satz 10.4 vereinfachen, wenn man komplexe Zahlen zu Hilfe nimmt. Wegen der Eulerschen
Identitat gilt

mit den komplexen Koeffizienten
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11 Boolesche Algebra

Die Boolesche Algebra ist eine “Algebra der Logik”, die George Boole (1815 — 1864) als erster
entwickelt hat. Sie ist die Grundlage fiir den Entwurf von elektronischen Schaltungen und von
Computerprogrammen. Die Boolesche Algebra kennt nur die beiden Zustinde “wahr” und
“falsch”, die in einem Schaltkreis den grundlegenden Zustdnden “Strom fliesst” und “Strom
fliesst nicht” entsprechen. Diese beiden Zusténde werden im Folgenden durch die Zahlen 1
und 0 beschrieben.

11.1 Grundlegende Operationen und Gesetze
Die Boolesche Algebra geht von der Menge {0,1} aus.

Definition Auf der Menge {0, 1} sind die folgenden drei Operationen definiert.

(1) Die Kongunktion A (Und-Verkniipfung) ist eine Verkniipfung, die von zwei Argumenten
abhédngt. Sie ist genau dann 1, wenn das erste und das zweite Argument 1 ist, und in
jedem anderen Fall 0. Man liest a A b als “a und b”.

(2) Die Disjunktion V (Oder-Verkniipfung) ist eine weitere von zwei Argumenten abhéngige
Verkniipfung. Sie ist genau dann 1, wenn das erste oder das zweite Argument 1 ist, und
sonst 0. Man liest a V b als “a oder b”.

(3) Die Negation — (Nicht-Operator) hingt nur von einem Argument ab. Sie ist 0, wenn das
Argument 1 ist, und 1, wenn das Argument 0 ist. Man liest —a als “nicht a”.

Diese drei Verkniipfungen kénnen {ibersichtlich mit Verkniipfungstafeln dargestellt werden:

ANlO|1 vio|1 x|
0[0]0 0101 0] 1
1101 11111 1

Diese drei Operationen kénnen nun mehrfach hintereinander ausgefiihrt werden, um weite-
re boolesche Ausdriicke zu erhalten. Dabei haben die Operationen unterschiedliche Prioritét:
- kommt vor A, und A kommt vor V. Fiir andere Prioritdten muss man Klammern setzen.

Beispiel
0VIAO=

Die folgenden Rechengesetze fiir A, V und — erinnern an die Rechengesetze fiir reelle

Zahlen, wenn wir A als Multiplikation und V als Addition interpretieren.
Satz 11.1 Flir alle x, y, z in {0,1} gelten die folgenden Gesetze.

(a) Kommutativgesetze: zANy=yAx und zVy=yVaz

(b) Assoziativgesetze: x A(yAz)=(xAy)Az und zV(yVz)=(xVy)Vz
(c) Distributivgesetze: =V (yANz)=(xVy)A(xVz) und zAN(@yVz)=(@xAy)V(xAz)
(d) Ewxistenz neutraler Elemente: 1ANx=x und OVz=ux
)

(e) Existenz des Komplements: zAN—-x =0 und xzV-xz=1
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In Satz 11.1 geht jeweils der zweite Teil des Gesetzes aus dem ersten Teil hervor, indem
man A und V sowie 1 und 0 vertauscht.

Satz 11.2 Jede Aussage, die aus Satz 11.1 folgt, bleibt giiltig, wenn die Operationen N und
V sowie die Zahlen 1 und 0 diberall gleichzeitig vertauscht werden.

Diese Eigenschaft der Booleschen Algebra heisst Dualitdt. Eine Aussage, die durch Vertau-
schen von A und V sowie 1 und 0 aus einer anderen hervorgeht, heisst zu dieser dual.
Mit Hilfe dieser Eigenschaft kénnen weitere Gesetze hergeleitet werden.

Satz 11.3 Fir alle x, y, z in {0,1} gelten die folgenden Gesetze.
(a) Absorptionsgesetze: x A(xVy)=z und zV (xAy)==x
(b) Idempotenzgesetze: NV =z und zANz==x

(¢) Involutionsgesetz: —(—-x)=x

(d) Gesetze von de Morgan: —(x Ay)=-xzV -y und —(xVy)=-xA-y

Die Gesetze der Sdtze 11.1-11.3 kann man beweisen, indem man alle moglichen Werte fiir
x und y einsetzt und iiberpriift, ob jeweils die linke und die rechte Seite einer Gleichung
iibereinstimmen. Bei Satz 11.3 geht es teilweise eleganter, indem man schon bekannte Gesetze
anwendet. Die Absorptionsgesetze kann man beispielsweise wie folgt nachweisen:

Wegen der Dualitit folgt das zweite Absorptionsgesetz.

11.2 Boolesche Funktionen und ihre Normalformen

Eine n-stellige boolesche Funktion ist eine Abbildung
f:{0,1}" — {0,1} .
Jedem n-Tupel (z1,...,2,) mit 2; € {0,1} wird eindeutig eine Zahl

f(xla"',xn) € {071}
zugeordnet.

Beispiel
Fiir n = 1 gibt es genau 4 verschiedene boolesche Funktionen: Die Nullfunktion f(z) = 0, die
Einsfunktion f(z) = 1, die Identitédt f(x) = = und die Negation f(x) = —z.

Satz 11.4 Es gibt genau 22") verschiedene n-stellige boolesche Funktionen.

Es gibt also 22*) = 16 2-stellige boolesche Funktionen. In der folgenden Wertetabelle sind
alle Funktionen aufgelistet.
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xly\\filfo|fa|fal|Ss | fo| fr| Je| fo| fro] fir | iz | f13 | f1a | f15 | fi6
ojoffofojoyo0jo0(o0jo07]o0 1 1 1 1 1 1 1 1
oj1f4010]0]0O0 1 1 1 1 0 0 0 0 1 1 1 1
1({01 0] O 1 1 010 1 1 0 0 1 1 0 0 1 1
11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Einige dieser Funktionen sind uns schon bekannt:

Drei weitere Funktionen sind wichtig und als einfacher boolescher Ausdruck beschreibbar.
Die Funktion

fo(z,y) = ~(z Vy)
ist die negierte Oder-Verkniipfung. Nach dem englischen “not or” bezeichnet man sie als
NOR-Verkniipfung.
Analog ist die Funktion
fis(z,y) = ~(z Ay)

die sogenannte NAND-Verkniipfung (nach “not and”).
Die Funktion

frz,y) = (@ Vy)A-(zAy)

ergibt genau dann 1, wenn x # y ist, das heisst, wenn entweder x oder y gleich 1 ist. Nach
dem englischen “exclusive or” bezeichnet man sie als XOR-Verkniipfung.

Bei der letzten Funktion sieht man, dass es gar nicht so einfach ist, von der Wertetabelle
einer Funktion auf einen booleschen Ausdruck zu schliessen. Dabei ist ein boolescher Ausdruck
fiir eine Funktion nicht eindeutig. Wir wollen deshalb im Folgenden untersuchen, wie man
erstens iiberhaupt einen booleschen Ausdruck fiir eine Funktion findet und zweitens, wie man
den gefundenen Ausdruck vereinfachen kann.

Normalformen

Ausgehend von der Wertetabelle einer booleschen Funktion kann mit Hilfe eines Verfahrens
der boolesche Ausdruck der Funktion in sogenannter disjunktiver, bzw. konjunktiver Normal-
form aufgestellt werden.

Definition Eine Vollkonjunktion ist ein boolescher Ausdruck, in dem alle Variablen genau
einmal vorkommen und durch A (konjunktiv) verbunden sind. Dabei diirfen die Variablen
auch negiert auftreten.

Ein Ausdruck liegt in der disjunktiven Normalform vor, wenn er aus Vollkonjunktionen
besteht, die durch V (disjunktiv) verkniipft sind.

Beispiel
Der Boolesche Ausdruck

(xA=yA=z)V(czAyA-z)V(z A=y A z)

liegt in disjunktiver Normalform vor.



175

Das folgende Beispiel soll zeigen, wie man von der Wertetabelle einer booleschen Funktion
ihren booleschen Ausdruck in disjunktiver Normalform erhélt.
Beispiel
Wir betrachten die 3-stellige boolesche Funktion f, die durch die folgende Wertetabelle ge-
geben ist.

Zeile |z |y | z | f(z,y,2)
1 0[{010 0
2 0|01 0
3 0[110 1
4 0111 1
) 1{0]0 0
6 1101 0
7 1(11]0 0
8 17171 1

1. Schritt: Wir suchen diejenigen Zeilen, die den Funktionswert 1 haben.

2. Schritt: Fiir jede dieser Zeilen stellen wir die Vollkonjunktion auf, die fiir die Variablen
dieser Zeile den Wert 1 liefert.

3. Schritt: Diese Vollkonjunktionen werden durch V verkniipft.

Dieser Ausdruck ist nun genau dann 1, wenn eine der drei Vollkonjunktionen gleich 1 ist, was
genau fiir die Zeilen 3, 4 und 8 der Fall ist. Also haben wir die disjunktive Normalform von
f gefunden.

Die disjunktive Normalform besteht demnach aus genau so vielen Vollkonjunktionen, wie
in der Wertetabelle der Funktionswert 1 vorkommt. Die disjunktive Normalform ist also ideal,
wenn der Funktionswert 1 nicht oft vorkommt. Ansonsten stellt man besser die konjunktive
Normalform auf.

Definition Eine Volldisjunktion ist ein boolescher Ausdruck, in dem alle Variablen genau
einmal vorkommen und durch V (disjunktiv) verbunden sind. Dabei diirfen die Variablen
auch negiert auftreten.

Ein Ausdruck liegt in der konjunktiven Normalform vor, wenn er aus Volldisjunktionen
besteht, die durch A (konjunktiv) verkniipft sind.
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Beispiel
Der Boolesche Ausdruck

(mxVyV-oz)A(—xV-yVz)A(zV-yVz)
liegt in konjunktiver Normalform vor.

Das Verfahren, mit dem man von der Wertetabelle einer booleschen Funktion zu ihrem
Ausdruck in konjunktiver Normalform gelangt, ist dual zum vorherigen Verfahren.

Vereinfachen von booleschen Ausdriicken

Die disjunktive, bzw. konjunktive Normalform einer booleschen Funktion ist oft ein unnotig
langer Ausdruck. Als néichstes sollte man also diesen booleschen Ausdruck vereinfachen (wenn
moglich). Das kann man systematisch tun, und zwar zum Beispiel mit dem Verfahren von
Karnaugh und Veitch. Wir wollen hier nur kurz andeuten, wie das funktioniert.

Das Verfahren von Karnaugh und Veitch geht von der disjunktiven Normalform aus. Die
Grundidee des Verfahrens ist, den Ausdruck systematisch so umzuformen, dass Terme der
Form z V —z entstehen. Nach Satz 11.1(e) haben diese Terme stets den Wert 1 und kénnen
in einer Konjunktion weggelassen werden.

Beispiel

Wir vereinfachen die 3-stellige boolesche Funktion vom Beispiel auf der Seite 175.

flzy,2) =(rx AyA—-z)V(cx AyAz)V(zAyAz)

Der Vorteil des Verfahrens von Karnaugh und Veitch ist nun, dass diese Umformungen
nicht auf gut Gliick von Hand durchgefiihrt werden miissen, sondern graphisch am sogenann-
ten KV-Diagramm abgelesen werden kénnen. Darauf wollen wir aber nicht nidher eingehen.

11.3 Logische Schaltungen

Jeder Computer ist aus logischen Schaltungen aufgebaut. Dabei ist eine logische Schaltung
nichts anderes als eine physikalische Realisierung einer booleschen Funktion. Die beiden
Zusténde 0 und 1 der Booleschen Algebra werden durch unterschiedliche elektrische Spannun-
gen realisiert. Meist entspricht der Zustand 0 der Spannung 0 (oder einer minimalen Spanung
Umin) und der Zustand 1 einer maximalen Spannung Up,ax. Dabei sind gewisse Toleranzbe-
reiche um diese Spannungen erlaubt.

Die grundlegenden booleschen Operationen A, V und — werden durch elektronische Bau-
teile umgesetzt, die man Gatter nennt. Solche Gatter kann man mit einfachen Schaltern
und Relais verwirklichen. In Schaltpldnen werden Gatter durch ihre jeweiligen Schaltsymbole
dargestellt. Die Schaltsymbole der drei Grundgatter AND, OR und NOT sind die Folgenden.
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TNy
Yy — Yy —

rVy T

AND — Gatter OR — Gatter NOT — Gatter

Diese drei Grundgatter kann man nun hintereinanderschalten. Dabei werden vor- oder
nachgeschaltete NOT-Gatter am Eingang bzw. Ausgang vereinfacht als Kreis symbolisiert.
Das NAND- und das NOR-Gatter sind demnach wie folgt.

& x
O— —(z Ay) O— —(zVy)
Yy — Y —

NAND — Gatter NOR — Gatter

Der folgende Satz sagt aus, dass entweder NAND- oder NOR-Gatter geniigen, um jede
beliebige boolesche Funktion zu verwirklichen.

Satz 11.5 Die drei booleschen Grundoperationen A, V und — kénnen als Hintereinander-
ausfihrung von ausschliesslich NAND-Funktionen oder ausschliesslich NOR-Funktionen ge-
schrieben werden.

Der Beweis dieses Satzes nutzt die Gesetze von de Morgan (Satz 11.3(d)). Wir zeigen exem-
plarisch den ersten Teil des Satzes, wobei wir NAND(z,y) = —(z A y) schreiben.

z Ay = (zAy)V0O=-=(=(zAy) A1) =NANDNAND(z,y),1)
xVy = @A)V (yAl) ==(-(xA1)A=(yA1l)) = NAND(NAND(z,1),NAND(y, 1))
-z = —(xA1l)=NAND(z,1)
Wenn wir nun eine beliebige boolesche Funktion mit Hilfe der drei Grundgatter und der
NAND- und NOR-Gatter realisieren wollen, kénnen wir wie folgt vorgehen:

1. Die Wertetabelle der booleschen Funktion aufstellen.
2. Die disjunktive Normalform der Funktion ablesen.
3. Die disjunktive Normalform vereinfachen.

4. Der vereinfachte Ausdruck mit einer Gatterschaltung realisieren.
Beispiel
Wir wollen die einfachste Form einer Rechenschaltung realisieren, nédmlich die Addition

von zwei einstelligen Bin&drzahlen. Wenn beide Bits gleich 1 sind, ensteht eine zweistellige
Biniirzahl, das heisst, ein Ubertrag in die nichsthohere Binérstellle:

0+0=0,0+1=1,140=1,1+1=10

Fiir jede der beiden Bin#rstellen benttigt die Schaltung einen Ausgang. Wir bezeichnen diese
beiden Ausgéinge mit s (fiir Summe) und u (fiir Ubertrag). Die Wertetabelle sieht damit wie
folgt aus.
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el k=lE=1ks]
el el B el N
—lo|lo|lo|
ol lol®

Fiir beide Ausgéinge konnen wir die disjunktive Normalform aus der Tabelle ablesen:

Beide Ausdriicke konnen nicht weiter vereinfacht werden. Wir kénnen also direkt die Schal-
tung angeben:

Diese Schaltung nennt man Halbaddierer. Um mehrstellige Binérzahlen addieren zu kénnen,
reichen Halbaddierer nicht mehr aus. Denn zur Summe zweier Bits muss dann im Allgemeinen
noch der Ubertrag aus der vorherigen Stelle addiert werden. Insgesamt miissen also an jeder
Stelle drei Bits addiert werden. Die Schaltung, die drei Bits addiert, nennt man Volladdie-
rer. Ein Volladdierer kann aus zwei Halbaddierern und einem OR-Gatter zusammengesetzt
werden (deshalb der Name Halbaddierer). Allgemein kann man durch Zusammenschalten
von n — 1 Volladdierern und einem Halbaddierer zwei n-stellige Bindrzahlen addieren. Solche
Addierwerke bilden die Grundlage der Computertechnik.
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