statistical mechanics of graph neural networks

math+x ivan dokmanić | SADA | UniBas + UIUC

november 9, 2022

University of Basel

(we shrunk but we will regrow)

autumn

pattern recognition

a practical introduction computational sustainability to data science (ML on graphs) AI 4 social good

mathematics of data science

occasionally

research: tools and theory

ML + physics of complex networks ML + dynamical systems

ML for imaging

ML for Earth and planetary science

\mathcal{X}

unknown *p*_{X,Y}

$\underset{f \in \mathcal{F}}{\text{minimize } \mathbb{P}\left[f(X) \neq Y\right]}$

 $\underset{f \in \mathcal{F}}{\text{minimize}} \quad \frac{1}{N} \sum_{n=1}^{N} \mathbf{1} \left[f(x_n) \neq y_n \right]$ n=1

a combinatorial graph

G = (V, E)

an adjacency matrix

 $A = (a_{ij})$ $(i,j) \in E$ $(i,j) \notin E$ $a_{ij} =$ 0

Benson et al. 2016

air transport network in the US

collaboration network of network scientists

neural network of c. elegans

Newman 2006

von Mering 2002

protein–protein interaction graph in yeast

reactions between metabolites in e. coli

killer applications

molecule design Stokes et al. 2020

quantum chemistry Gilmer et al. 2017

force chains in jammed solids Mandal, Caser, Sollich 2022

fast molecular dynamics Husic et al. 2020

Ernst, Gander, 2012. Why is it difficult to solve Helmholtz problems with classical iterative methods?

right the solution of the Helmholtz equation, with the same boundary conditions

$-(\Delta - \eta)u = f \ (\eta > 0) \qquad -(\Delta + k^2)u = f$

Fig. 1 Solution of Laplace's equation on the left, with a point source on the boundary, and on the

link prediction in complex networks

applications of walkpooling we're hearing about

learning dynamical systems on net

dynamics of proteins

MC IN Reciprocal Sensory in<mark>put</mark>

a few possible theses

- modeling earthquake dynamics along the San Jacinto fault by neural point processes & reinforcement learning
- applying FunkNN to model continuously deforming protein surfaces
- using graph neural networks to model dynamics of granular material
- applying transformers or diffusion models to ultrasound breast tomography
- machine learning for exoplanet detection
- theory for any of the above

https://sada.dmi.unibas.ch/en/student-projects

Be cautious

Machine learning is a hot topic

Many are interested in machine learning

Machine learning requires math

Not everyone is familiar with math

Make sure you are familiar with math

(credit Alex Schwing / UIUC)