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(we shrunk but we will regrow)



teaching
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pattern recognition

mathematics of data  
science

autumn spring

a practical introduction  
to data science

(ML on graphs)

occasionally

computational sustainability

AI 4 social good



research: tools and theory
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ML + physics of  
complex networks
ML + dynamical systems

ML for imaging ML for Earth and  
planetary science
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𝒳 𝒴
unknown pX,Y

hypothesis f ∈ ℱ
minimize

f∈ℱ
ℙ [f(X) ≠ Y]

minimize
f∈ℱ

1
N

N

∑
n=1

1 [f(xn) ≠ yn]

𝒯 = {(xn, yn)}N
n=1

iid∼ pX,Y

“training set”
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A = (aij)

aij = {1 (i, j) ∈ E
0 (i, j) ∉ E

an adjacency matrix

G = (V, E) E ⊆ (V
2)

a combinatorial graph
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air transport network in the US

Benson et al. 2016

collaboration network of network 
scientists

Newman 2006

protein–protein interaction 
graph in yeast

von Mering 2002

naturkost.de

neural network of c. elegans reactions between metabolites 
in e. coli

http://naturkost.de


killer applications
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quantum chemistry

Gilmer et al. 2017

molecule design

Stokes et al. 2020 

force chains in jammed solids

Mandal, Caser, Sollich 2022

fast molecular dynamics

Husic et al. 2020
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−(Δ + k2)u = f−(Δ − η)u = f (η > 0)
Ernst, Gander, 2012. Why is it difficult to solve Helmholtz problems with classical iterative methods?



link prediction in complex networks
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applications of walkpooling we’re hearing about
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learning dynamical systems on networks

dynamics of proteins

dynamics of biological  
neural networks

ARTICLES NATURE NEUROSCIENCE

(4.5 d after fertilization), accounting for 98% of all neurons in the 
OB, and classified them as MCs (n = 745), INs (n = 254) and ‘atypical 
projection neurons’ (n = 4)25,26. We now annotated the synaptic con-
nections of these neurons to reconstruct the full wiring diagram of 
the OB. Human annotators followed each of the reconstructed skel-
etons and manually labeled all input and output synapses (Fig. 1b,c).  
Subsequently, synapses of INs were annotated again by different 
annotators. Hence, each synapse involved in MC–IN–MC connec-
tivity motifs should have been encountered at least three times. To 
obtain a conservative estimate of the wiring diagram with few false 
positives, we retained only synapses that were annotated at least 
twice by independent annotators.

Each synapse was assigned a unitary weight so that the total con-
nection strength between a pair of neurons equaled the number of 
synapses. The resulting wiring diagram contained 19,874 MC→IN 
synapses, 17,524 MC←IN synapses (Fig. 1d) and 13,610 synapses 
between INs. We also observed contact sites between MCs associated  

with the same glomerulus where plasma membranes showed strong 
staining, but these sites usually lacked vesicles. Therefore, we did 
not consider synaptic connections between MCs. Axons of sensory 
neurons frequently made synapses onto MCs, but synapses onto INs 
were rare (Extended Data Fig. 1a)26.

On average, connected pairs of MCs and INs made 3.1 MC→IN 
synapses and 2.9 MC←IN synapses per pair, and pairs of connected 
INs made 2.6 synapses in each direction. A hallmark of synaptic 
connectivity in the adult OB is reciprocal dendrodendritic synaptic 
connections between the same MC–IN pair. In the larval OB, 52% 
of MC→IN synapses and 51% of MC←IN synapses were associ-
ated with a synapse of the opposite direction, usually within 2.5 μm, 
between the same pair of neurons (Fig. 1b). Hence, reciprocal syn-
aptic connectivity is already prominent at larval stages.

Before preparation of the OB sample for SBEM, we measured 
neuronal activity by multiphoton imaging of the calcium indica-
tor GCaMP5, which was expressed under the pan-neuronal elavl3 
promoter27. Somata observed in electron microscopy (EM) were 
mapped onto the light microscopy data using an iterative landmark-
based affine alignment procedure followed by manual proofread-
ing (Fig. 2a,b and Extended Data Fig. 1b). Somatic calcium signals 
evoked by four amino acid odors (10−4 M) and four bile acid odors 
(10−5 M) were measured sequentially in six optical planes (Fig. 2a–c 
and Extended Data Fig. 2) and temporally deconvolved to estimate 
odor-evoked firing rate changes28. The dynamics of neuronal popu-
lation activity were then represented by time series of activity vec-
tors for each odor stimulus (232 MCs and 68 INs).

Decorrelation and contrast normalization of activity patterns 
across MCs were characterized previously in the OB of adult zebraf-
ish8,14,15 and mice16–18 where >90% of neurons are GABAergic INs. 
In the larval OB, in contrast, INs account for only 25% of all neu-
rons26. Most of these INs are likely to be periglomerular and short 
axon cells, because INs with the typical morphology of granule cells 
appear only later in development. We therefore asked whether the 
core circuitry present in the larval OB already performs computa-
tions related to whitening.

Correlations between activity patterns evoked by different bile 
acids were high after stimulus onset and decreased during the sub-
sequent few hundred milliseconds (Fig. 2d,e). Patterns evoked by 
amino acids, in contrast, were less correlated throughout the odor 
response, which was expected because most amino acids have dis-
similar side chains. Further analyses of pattern decorrelation there-
fore focused on activity patterns evoked by the four bile acids, 
whereas other analyses included all eight odors. To quantify pat-
tern decorrelation, we computed the mean difference in pairwise 
Pearson correlations between a time window shortly after response 
onset (t1) and a later time window (t2) that was chosen so that the 
mean population activity across MCs was not significantly different 
from that at t1 (Fig. 2d; P = 0.57, Wilcoxon rank-sum test). Pattern 
correlations across MCs, however, were significantly lower at t2 than 
at t1 (P = 0.03, Wilcoxon rank-sum test), demonstrating that MC 
activity patterns were reorganized and decorrelated. Activity across 
INs followed the mean MC activity with a small delay and did not 
exhibit an obvious decorrelation during the early phase of the odor 
response (Fig. 2d). These findings are consistent with observations 
in the adult OB29. The natural time course of olfactory input to the 
OB of zebrafish larvae is likely to be slow because these animals live 
in slow waters close to the substratum30 and because the temporal 
resolution of their olfactory sensory neurons is low31. We therefore 
assume that the dynamics of odor-evoked population activity in the 
OB are fast compared to the kinetics of natural sensory inputs.

The contrast of MC activity patterns, as measured by the vari-
ance of activity across the population, increased shortly after 
stimulus onset and peaked slightly later than pattern correla-
tion. Subsequently, variance decreased and became more uniform 
across odors, as reflected by a significant decrease in the s.d. of the  
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Fig. 1 | Neuronal organization and computations in the OB. a, Schematic 
illustration of whitening in the OB. Top: correlated input patterns with 
different variance. Bottom: decorrelated output patterns with similar 
variance. Center: highly simplified illustration of the OB circuit. MCs 
receive excitatory input from a single glomerulus and interact via inhibitory 
INs. Whitening requires multisynaptic interactions between specific 
subsets of MCs that are mediated by INs and defined by the wiring 
diagram. Interactions between INs and top-down inputs to the OB are 
not shown. b, Example of a reciprocal synapse between an MC and an 
IN. c, Reconstructions of an MC (left) and an IN (right). Gray volumes 
show glomeruli and dots depict synapses. Colors denote synapse class: 
blue, unidirectional nonsensory input; red, unidirectional output; magenta, 
reciprocal; green, input from sensory neurons. d, Simplified representation 
of the wiring diagram between MCs and INs (binarized connection 
strength). Colored matrix elements show MC→IN synapses (blue), 
MC←IN synapses (orange) and reciprocal synapses (black).

NATURE NEUROSCIENCE | VOL 23 | MARCH 2020 | 433–442 | www.nature.com/natureneuroscience434
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a few possible theses
modeling earthquake dynamics along the San Jacinto fault by neural point 
processes & reinforcement learning

applying FunkNN to model continuously deforming protein surfaces

using graph neural networks to model dynamics of granular material

applying transformers or diffusion models to ultrasound breast tomography

https://sada.dmi.unibas.ch/en/student-projects

machine learning for exoplanet detection

theory for any of the above

https://sada.dmi.unibas.ch/en/student-projects


Be cautious 
 
   Machine learning is a hot topic 
 
   Many are interested in machine learning  
 
   Machine learning requires math 
 
   Not everyone is familiar with math 
 
   Make sure you are familiar with math  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(credit Alex Schwing / UIUC)


	page-1.001



